blob: e9cd89928e9b3b9101d5b36e03e664a008191e15 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000179 }
180 }
181 }else{
182 iTab = iRoot;
183 }
184
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
192 ){
193 return 1;
194 }
195 }
196
197 /* Failed to find the required lock. */
198 return 0;
199}
drh0ee3dbe2009-10-16 15:05:18 +0000200#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000201
drh0ee3dbe2009-10-16 15:05:18 +0000202#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000203/*
drh0ee3dbe2009-10-16 15:05:18 +0000204**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000205**
drh0ee3dbe2009-10-16 15:05:18 +0000206** Return true if it would be illegal for pBtree to write into the
207** table or index rooted at iRoot because other shared connections are
208** simultaneously reading that same table or index.
209**
210** It is illegal for pBtree to write if some other Btree object that
211** shares the same BtShared object is currently reading or writing
212** the iRoot table. Except, if the other Btree object has the
213** read-uncommitted flag set, then it is OK for the other object to
214** have a read cursor.
215**
216** For example, before writing to any part of the table or index
217** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000218**
219** assert( !hasReadConflicts(pBtree, iRoot) );
220*/
221static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227 ){
228 return 1;
229 }
230 }
231 return 0;
232}
233#endif /* #ifdef SQLITE_DEBUG */
234
danielk1977da184232006-01-05 11:34:32 +0000235/*
drh0ee3dbe2009-10-16 15:05:18 +0000236** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000237** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000238** SQLITE_OK if the lock may be obtained (by calling
239** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000240*/
drhc25eabe2009-02-24 18:57:31 +0000241static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
244
drh1fee73e2007-08-29 04:00:57 +0000245 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000249
danielk19775b413d72009-04-01 09:41:54 +0000250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
253 */
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256
drh0ee3dbe2009-10-16 15:05:18 +0000257 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000258 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000259 return SQLITE_OK;
260 }
261
danielk1977641b0f42007-12-21 04:47:25 +0000262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
264 */
drhc9166342012-01-05 23:32:06 +0000265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000268 }
269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
273 **
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275 **
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
279 */
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000286 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000287 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000288 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000289 }
290 }
291 return SQLITE_OK;
292}
drhe53831d2007-08-17 01:14:38 +0000293#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000294
drhe53831d2007-08-17 01:14:38 +0000295#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000296/*
297** Add a lock on the table with root-page iTable to the shared-btree used
298** by Btree handle p. Parameter eLock must be either READ_LOCK or
299** WRITE_LOCK.
300**
danielk19779d104862009-07-09 08:27:14 +0000301** This function assumes the following:
302**
drh0ee3dbe2009-10-16 15:05:18 +0000303** (a) The specified Btree object p is connected to a sharable
304** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000305**
drh0ee3dbe2009-10-16 15:05:18 +0000306** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000307** with the requested lock (i.e. querySharedCacheTableLock() has
308** already been called and returned SQLITE_OK).
309**
310** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000312*/
drhc25eabe2009-02-24 18:57:31 +0000313static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
317
drh1fee73e2007-08-29 04:00:57 +0000318 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000321
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327
danielk19779d104862009-07-09 08:27:14 +0000328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000332
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
338 }
339 }
340
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
343 */
344 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( !pLock ){
347 return SQLITE_NOMEM;
348 }
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
353 }
354
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
358 */
359 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
362 }
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 return SQLITE_OK;
365}
drhe53831d2007-08-17 01:14:38 +0000366#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000367
drhe53831d2007-08-17 01:14:38 +0000368#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000369/*
drhc25eabe2009-02-24 18:57:31 +0000370** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000371** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000372**
drh0ee3dbe2009-10-16 15:05:18 +0000373** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000374** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000375** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000376*/
drhc25eabe2009-02-24 18:57:31 +0000377static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000380
drh1fee73e2007-08-29 04:00:57 +0000381 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000382 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000383 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000384
danielk1977aef0bf62005-12-30 16:28:01 +0000385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000388 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
394 }
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }else{
396 ppIter = &pLock->pNext;
397 }
398 }
danielk1977641b0f42007-12-21 04:47:25 +0000399
drhc9166342012-01-05 23:32:06 +0000400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000404 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000405 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000409 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000410 **
drhc9166342012-01-05 23:32:06 +0000411 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000412 ** be zero already. So this next line is harmless in that case.
413 */
drhc9166342012-01-05 23:32:06 +0000414 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000415 }
danielk1977aef0bf62005-12-30 16:28:01 +0000416}
danielk197794b30732009-07-02 17:21:57 +0000417
danielk1977e0d9e6f2009-07-03 16:25:06 +0000418/*
drh0ee3dbe2009-10-16 15:05:18 +0000419** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000420*/
danielk197794b30732009-07-02 17:21:57 +0000421static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
430 }
431 }
432}
433
danielk1977aef0bf62005-12-30 16:28:01 +0000434#endif /* SQLITE_OMIT_SHARED_CACHE */
435
drh980b1a72006-08-16 16:42:48 +0000436static void releasePage(MemPage *pPage); /* Forward reference */
437
drh1fee73e2007-08-29 04:00:57 +0000438/*
drh0ee3dbe2009-10-16 15:05:18 +0000439***** This routine is used inside of assert() only ****
440**
441** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000442*/
drh0ee3dbe2009-10-16 15:05:18 +0000443#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000444static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000445 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000446}
447#endif
448
danielk197792d4d7a2007-05-04 12:05:56 +0000449/*
dan5a500af2014-03-11 20:33:04 +0000450** Invalidate the overflow cache of the cursor passed as the first argument.
451** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000452*/
drh036dbec2014-03-11 23:40:44 +0000453#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000454
455/*
456** Invalidate the overflow page-list cache for all cursors opened
457** on the shared btree structure pBt.
458*/
459static void invalidateAllOverflowCache(BtShared *pBt){
460 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000461 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000462 for(p=pBt->pCursor; p; p=p->pNext){
463 invalidateOverflowCache(p);
464 }
465}
danielk197796d48e92009-06-29 06:00:37 +0000466
dan5a500af2014-03-11 20:33:04 +0000467#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000468/*
469** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000470** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000471** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000472**
473** If argument isClearTable is true, then the entire contents of the
474** table is about to be deleted. In this case invalidate all incrblob
475** cursors open on any row within the table with root-page pgnoRoot.
476**
477** Otherwise, if argument isClearTable is false, then the row with
478** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000479** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000480*/
481static void invalidateIncrblobCursors(
482 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000483 i64 iRow, /* The rowid that might be changing */
484 int isClearTable /* True if all rows are being deleted */
485){
486 BtCursor *p;
487 BtShared *pBt = pBtree->pBt;
488 assert( sqlite3BtreeHoldsMutex(pBtree) );
489 for(p=pBt->pCursor; p; p=p->pNext){
drh3f387402014-09-24 01:23:00 +0000490 if( (p->curFlags & BTCF_Incrblob)!=0
491 && (isClearTable || p->info.nKey==iRow)
492 ){
danielk197796d48e92009-06-29 06:00:37 +0000493 p->eState = CURSOR_INVALID;
494 }
495 }
496}
497
danielk197792d4d7a2007-05-04 12:05:56 +0000498#else
dan5a500af2014-03-11 20:33:04 +0000499 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000500 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000501#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000502
drh980b1a72006-08-16 16:42:48 +0000503/*
danielk1977bea2a942009-01-20 17:06:27 +0000504** Set bit pgno of the BtShared.pHasContent bitvec. This is called
505** when a page that previously contained data becomes a free-list leaf
506** page.
507**
508** The BtShared.pHasContent bitvec exists to work around an obscure
509** bug caused by the interaction of two useful IO optimizations surrounding
510** free-list leaf pages:
511**
512** 1) When all data is deleted from a page and the page becomes
513** a free-list leaf page, the page is not written to the database
514** (as free-list leaf pages contain no meaningful data). Sometimes
515** such a page is not even journalled (as it will not be modified,
516** why bother journalling it?).
517**
518** 2) When a free-list leaf page is reused, its content is not read
519** from the database or written to the journal file (why should it
520** be, if it is not at all meaningful?).
521**
522** By themselves, these optimizations work fine and provide a handy
523** performance boost to bulk delete or insert operations. However, if
524** a page is moved to the free-list and then reused within the same
525** transaction, a problem comes up. If the page is not journalled when
526** it is moved to the free-list and it is also not journalled when it
527** is extracted from the free-list and reused, then the original data
528** may be lost. In the event of a rollback, it may not be possible
529** to restore the database to its original configuration.
530**
531** The solution is the BtShared.pHasContent bitvec. Whenever a page is
532** moved to become a free-list leaf page, the corresponding bit is
533** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000534** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000535** set in BtShared.pHasContent. The contents of the bitvec are cleared
536** at the end of every transaction.
537*/
538static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
539 int rc = SQLITE_OK;
540 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000541 assert( pgno<=pBt->nPage );
542 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000543 if( !pBt->pHasContent ){
544 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000545 }
546 }
547 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
548 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
549 }
550 return rc;
551}
552
553/*
554** Query the BtShared.pHasContent vector.
555**
556** This function is called when a free-list leaf page is removed from the
557** free-list for reuse. It returns false if it is safe to retrieve the
558** page from the pager layer with the 'no-content' flag set. True otherwise.
559*/
560static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
561 Bitvec *p = pBt->pHasContent;
562 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
563}
564
565/*
566** Clear (destroy) the BtShared.pHasContent bitvec. This should be
567** invoked at the conclusion of each write-transaction.
568*/
569static void btreeClearHasContent(BtShared *pBt){
570 sqlite3BitvecDestroy(pBt->pHasContent);
571 pBt->pHasContent = 0;
572}
573
574/*
drh138eeeb2013-03-27 03:15:23 +0000575** Release all of the apPage[] pages for a cursor.
576*/
577static void btreeReleaseAllCursorPages(BtCursor *pCur){
578 int i;
579 for(i=0; i<=pCur->iPage; i++){
580 releasePage(pCur->apPage[i]);
581 pCur->apPage[i] = 0;
582 }
583 pCur->iPage = -1;
584}
585
586
587/*
drh980b1a72006-08-16 16:42:48 +0000588** Save the current cursor position in the variables BtCursor.nKey
589** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000590**
591** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
592** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000593*/
594static int saveCursorPosition(BtCursor *pCur){
595 int rc;
596
597 assert( CURSOR_VALID==pCur->eState );
598 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000599 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000600
601 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000602 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000603
604 /* If this is an intKey table, then the above call to BtreeKeySize()
605 ** stores the integer key in pCur->nKey. In this case this value is
606 ** all that is required. Otherwise, if pCur is not open on an intKey
607 ** table, then malloc space for and store the pCur->nKey bytes of key
608 ** data.
609 */
drh4c301aa2009-07-15 17:25:45 +0000610 if( 0==pCur->apPage[0]->intKey ){
drhda4ca9d2014-09-09 17:27:35 +0000611 void *pKey = sqlite3Malloc( pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000612 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000613 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000614 if( rc==SQLITE_OK ){
615 pCur->pKey = pKey;
616 }else{
drh17435752007-08-16 04:30:38 +0000617 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000618 }
619 }else{
620 rc = SQLITE_NOMEM;
621 }
622 }
danielk197771d5d2c2008-09-29 11:49:47 +0000623 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000624
625 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000626 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000627 pCur->eState = CURSOR_REQUIRESEEK;
628 }
629
danielk197792d4d7a2007-05-04 12:05:56 +0000630 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000631 return rc;
632}
633
drh637f3d82014-08-22 22:26:07 +0000634/* Forward reference */
635static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
636
drh980b1a72006-08-16 16:42:48 +0000637/*
drh0ee3dbe2009-10-16 15:05:18 +0000638** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000639** the table with root-page iRoot. "Saving the cursor position" means that
640** the location in the btree is remembered in such a way that it can be
641** moved back to the same spot after the btree has been modified. This
642** routine is called just before cursor pExcept is used to modify the
643** table, for example in BtreeDelete() or BtreeInsert().
644**
645** Implementation note: This routine merely checks to see if any cursors
646** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
647** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000648*/
649static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000650 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000651 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000652 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000653 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000654 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
655 }
656 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;
657}
658
659/* This helper routine to saveAllCursors does the actual work of saving
660** the cursors if and when a cursor is found that actually requires saving.
661** The common case is that no cursors need to be saved, so this routine is
662** broken out from its caller to avoid unnecessary stack pointer movement.
663*/
664static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000665 BtCursor *p, /* The first cursor that needs saving */
666 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
667 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000668){
669 do{
drh138eeeb2013-03-27 03:15:23 +0000670 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
671 if( p->eState==CURSOR_VALID ){
672 int rc = saveCursorPosition(p);
673 if( SQLITE_OK!=rc ){
674 return rc;
675 }
676 }else{
677 testcase( p->iPage>0 );
678 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000679 }
680 }
drh637f3d82014-08-22 22:26:07 +0000681 p = p->pNext;
682 }while( p );
drh980b1a72006-08-16 16:42:48 +0000683 return SQLITE_OK;
684}
685
686/*
drhbf700f32007-03-31 02:36:44 +0000687** Clear the current cursor position.
688*/
danielk1977be51a652008-10-08 17:58:48 +0000689void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000690 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000691 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000692 pCur->pKey = 0;
693 pCur->eState = CURSOR_INVALID;
694}
695
696/*
danielk19773509a652009-07-06 18:56:13 +0000697** In this version of BtreeMoveto, pKey is a packed index record
698** such as is generated by the OP_MakeRecord opcode. Unpack the
699** record and then call BtreeMovetoUnpacked() to do the work.
700*/
701static int btreeMoveto(
702 BtCursor *pCur, /* Cursor open on the btree to be searched */
703 const void *pKey, /* Packed key if the btree is an index */
704 i64 nKey, /* Integer key for tables. Size of pKey for indices */
705 int bias, /* Bias search to the high end */
706 int *pRes /* Write search results here */
707){
708 int rc; /* Status code */
709 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000710 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000711 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000712
713 if( pKey ){
714 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000715 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
716 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
717 );
danielk19773509a652009-07-06 18:56:13 +0000718 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000719 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000720 if( pIdxKey->nField==0 ){
721 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
722 return SQLITE_CORRUPT_BKPT;
723 }
danielk19773509a652009-07-06 18:56:13 +0000724 }else{
725 pIdxKey = 0;
726 }
727 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000728 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000729 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000730 }
731 return rc;
732}
733
734/*
drh980b1a72006-08-16 16:42:48 +0000735** Restore the cursor to the position it was in (or as close to as possible)
736** when saveCursorPosition() was called. Note that this call deletes the
737** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000738** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000739** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000740*/
danielk197730548662009-07-09 05:07:37 +0000741static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000742 int rc;
drh1fee73e2007-08-29 04:00:57 +0000743 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000744 assert( pCur->eState>=CURSOR_REQUIRESEEK );
745 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000746 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000747 }
drh980b1a72006-08-16 16:42:48 +0000748 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000749 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000750 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000751 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000752 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000753 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh9b47ee32013-08-20 03:13:51 +0000754 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
755 pCur->eState = CURSOR_SKIPNEXT;
756 }
drh980b1a72006-08-16 16:42:48 +0000757 }
758 return rc;
759}
760
drha3460582008-07-11 21:02:53 +0000761#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000762 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000763 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000764 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000765
drha3460582008-07-11 21:02:53 +0000766/*
drh6848dad2014-08-22 23:33:03 +0000767** Determine whether or not a cursor has moved from the position where
768** it was last placed, or has been invalidated for any other reason.
769** Cursors can move when the row they are pointing at is deleted out
770** from under them, for example. Cursor might also move if a btree
771** is rebalanced.
drha3460582008-07-11 21:02:53 +0000772**
drh6848dad2014-08-22 23:33:03 +0000773** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000774**
drh6848dad2014-08-22 23:33:03 +0000775** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
776** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000777*/
drh6848dad2014-08-22 23:33:03 +0000778int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000779 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000780}
781
782/*
783** This routine restores a cursor back to its original position after it
784** has been moved by some outside activity (such as a btree rebalance or
785** a row having been deleted out from under the cursor).
786**
787** On success, the *pDifferentRow parameter is false if the cursor is left
788** pointing at exactly the same row. *pDifferntRow is the row the cursor
789** was pointing to has been deleted, forcing the cursor to point to some
790** nearby row.
791**
792** This routine should only be called for a cursor that just returned
793** TRUE from sqlite3BtreeCursorHasMoved().
794*/
795int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000796 int rc;
797
drh6848dad2014-08-22 23:33:03 +0000798 assert( pCur!=0 );
799 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000800 rc = restoreCursorPosition(pCur);
801 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000802 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000803 return rc;
804 }
drh9b47ee32013-08-20 03:13:51 +0000805 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
drh6848dad2014-08-22 23:33:03 +0000806 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000807 }else{
drh6848dad2014-08-22 23:33:03 +0000808 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000809 }
810 return SQLITE_OK;
811}
812
danielk1977599fcba2004-11-08 07:13:13 +0000813#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000814/*
drha3152892007-05-05 11:48:52 +0000815** Given a page number of a regular database page, return the page
816** number for the pointer-map page that contains the entry for the
817** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000818**
819** Return 0 (not a valid page) for pgno==1 since there is
820** no pointer map associated with page 1. The integrity_check logic
821** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000822*/
danielk1977266664d2006-02-10 08:24:21 +0000823static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000824 int nPagesPerMapPage;
825 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000826 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000827 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000828 nPagesPerMapPage = (pBt->usableSize/5)+1;
829 iPtrMap = (pgno-2)/nPagesPerMapPage;
830 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000831 if( ret==PENDING_BYTE_PAGE(pBt) ){
832 ret++;
833 }
834 return ret;
835}
danielk1977a19df672004-11-03 11:37:07 +0000836
danielk1977afcdd022004-10-31 16:25:42 +0000837/*
danielk1977afcdd022004-10-31 16:25:42 +0000838** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000839**
840** This routine updates the pointer map entry for page number 'key'
841** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000842**
843** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
844** a no-op. If an error occurs, the appropriate error code is written
845** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000846*/
drh98add2e2009-07-20 17:11:49 +0000847static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000848 DbPage *pDbPage; /* The pointer map page */
849 u8 *pPtrmap; /* The pointer map data */
850 Pgno iPtrmap; /* The pointer map page number */
851 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000852 int rc; /* Return code from subfunctions */
853
854 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000855
drh1fee73e2007-08-29 04:00:57 +0000856 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000857 /* The master-journal page number must never be used as a pointer map page */
858 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
859
danielk1977ac11ee62005-01-15 12:45:51 +0000860 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000861 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000862 *pRC = SQLITE_CORRUPT_BKPT;
863 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000864 }
danielk1977266664d2006-02-10 08:24:21 +0000865 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000866 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000867 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000868 *pRC = rc;
869 return;
danielk1977afcdd022004-10-31 16:25:42 +0000870 }
danielk19778c666b12008-07-18 09:34:57 +0000871 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000872 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000873 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000874 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000875 }
drhfc243732011-05-17 15:21:56 +0000876 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000877 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000878
drh615ae552005-01-16 23:21:00 +0000879 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
880 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000881 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000882 if( rc==SQLITE_OK ){
883 pPtrmap[offset] = eType;
884 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000885 }
danielk1977afcdd022004-10-31 16:25:42 +0000886 }
887
drh4925a552009-07-07 11:39:58 +0000888ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000889 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000890}
891
892/*
893** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000894**
895** This routine retrieves the pointer map entry for page 'key', writing
896** the type and parent page number to *pEType and *pPgno respectively.
897** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000898*/
danielk1977aef0bf62005-12-30 16:28:01 +0000899static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000900 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000901 int iPtrmap; /* Pointer map page index */
902 u8 *pPtrmap; /* Pointer map page data */
903 int offset; /* Offset of entry in pointer map */
904 int rc;
905
drh1fee73e2007-08-29 04:00:57 +0000906 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000907
danielk1977266664d2006-02-10 08:24:21 +0000908 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000909 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000910 if( rc!=0 ){
911 return rc;
912 }
danielk19773b8a05f2007-03-19 17:44:26 +0000913 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000914
danielk19778c666b12008-07-18 09:34:57 +0000915 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000916 if( offset<0 ){
917 sqlite3PagerUnref(pDbPage);
918 return SQLITE_CORRUPT_BKPT;
919 }
920 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000921 assert( pEType!=0 );
922 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000923 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000924
danielk19773b8a05f2007-03-19 17:44:26 +0000925 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000926 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000927 return SQLITE_OK;
928}
929
danielk197785d90ca2008-07-19 14:25:15 +0000930#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000931 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000932 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000933 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000934#endif
danielk1977afcdd022004-10-31 16:25:42 +0000935
drh0d316a42002-08-11 20:10:47 +0000936/*
drh271efa52004-05-30 19:19:05 +0000937** Given a btree page and a cell index (0 means the first cell on
938** the page, 1 means the second cell, and so forth) return a pointer
939** to the cell content.
940**
941** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000942*/
drh1688c862008-07-18 02:44:17 +0000943#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000944 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000945#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
946
drh43605152004-05-29 21:46:49 +0000947
948/*
drh93a960a2008-07-10 00:32:42 +0000949** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000950** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000951*/
952static u8 *findOverflowCell(MemPage *pPage, int iCell){
953 int i;
drh1fee73e2007-08-29 04:00:57 +0000954 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000955 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000956 int k;
drh2cbd78b2012-02-02 19:37:18 +0000957 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000958 if( k<=iCell ){
959 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000960 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000961 }
962 iCell--;
963 }
964 }
danielk19771cc5ed82007-05-16 17:28:43 +0000965 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000966}
967
968/*
969** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000970** are two versions of this function. btreeParseCell() takes a
971** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000972** takes a pointer to the body of the cell as its second argument.
drh43605152004-05-29 21:46:49 +0000973*/
danielk197730548662009-07-09 05:07:37 +0000974static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000975 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000976 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000977 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000978){
drh3e28ff52014-09-24 00:59:08 +0000979 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +0000980 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000981
drh1fee73e2007-08-29 04:00:57 +0000982 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +0000983 assert( pPage->leaf==0 || pPage->leaf==1 );
drh3e28ff52014-09-24 00:59:08 +0000984 if( pPage->intKeyLeaf ){
985 assert( pPage->childPtrSize==0 );
986 pIter = pCell + getVarint32(pCell, nPayload);
drhab1cc582014-09-23 21:25:19 +0000987 pIter += getVarint(pIter, (u64*)&pInfo->nKey);
drh3e28ff52014-09-24 00:59:08 +0000988 }else if( pPage->noPayload ){
989 assert( pPage->childPtrSize==4 );
990 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
991 pInfo->nPayload = 0;
992 pInfo->nLocal = 0;
993 pInfo->iOverflow = 0;
994 pInfo->pPayload = 0;
995 return;
drh504b6982006-01-22 21:52:56 +0000996 }else{
drh3e28ff52014-09-24 00:59:08 +0000997 pIter = pCell + pPage->childPtrSize;
drhab1cc582014-09-23 21:25:19 +0000998 pIter += getVarint32(pIter, nPayload);
drh79df1f42008-07-18 00:57:33 +0000999 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +00001000 }
drh72365832007-03-06 15:53:44 +00001001 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001002 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001003 testcase( nPayload==pPage->maxLocal );
1004 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001005 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001006 /* This is the (easy) common case where the entire payload fits
1007 ** on the local page. No overflow is required.
1008 */
drhab1cc582014-09-23 21:25:19 +00001009 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1010 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001011 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001012 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001013 }else{
drh271efa52004-05-30 19:19:05 +00001014 /* If the payload will not fit completely on the local page, we have
1015 ** to decide how much to store locally and how much to spill onto
1016 ** overflow pages. The strategy is to minimize the amount of unused
1017 ** space on overflow pages while keeping the amount of local storage
1018 ** in between minLocal and maxLocal.
1019 **
1020 ** Warning: changing the way overflow payload is distributed in any
1021 ** way will result in an incompatible file format.
1022 */
1023 int minLocal; /* Minimum amount of payload held locally */
1024 int maxLocal; /* Maximum amount of payload held locally */
1025 int surplus; /* Overflow payload available for local storage */
1026
1027 minLocal = pPage->minLocal;
1028 maxLocal = pPage->maxLocal;
1029 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001030 testcase( surplus==maxLocal );
1031 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +00001032 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +00001033 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +00001034 }else{
drhf49661a2008-12-10 16:45:50 +00001035 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +00001036 }
drhab1cc582014-09-23 21:25:19 +00001037 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
drh6f11bef2004-05-13 01:12:56 +00001038 pInfo->nSize = pInfo->iOverflow + 4;
1039 }
drh3aac2dd2004-04-26 14:10:20 +00001040}
danielk197730548662009-07-09 05:07:37 +00001041static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001042 MemPage *pPage, /* Page containing the cell */
1043 int iCell, /* The cell index. First cell is 0 */
1044 CellInfo *pInfo /* Fill in this structure */
1045){
drhc4683832014-09-23 23:12:53 +00001046 btreeParseCellPtr(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001047}
drh3aac2dd2004-04-26 14:10:20 +00001048
1049/*
drh43605152004-05-29 21:46:49 +00001050** Compute the total number of bytes that a Cell needs in the cell
1051** data area of the btree-page. The return number includes the cell
1052** data header and the local payload, but not any overflow page or
1053** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001054*/
danielk1977ae5558b2009-04-29 11:31:47 +00001055static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001056 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1057 u8 *pEnd; /* End mark for a varint */
1058 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001059
1060#ifdef SQLITE_DEBUG
1061 /* The value returned by this function should always be the same as
1062 ** the (CellInfo.nSize) value found by doing a full parse of the
1063 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1064 ** this function verifies that this invariant is not violated. */
1065 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001066 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001067#endif
1068
drh3e28ff52014-09-24 00:59:08 +00001069 if( pPage->noPayload ){
1070 pEnd = &pIter[9];
1071 while( (*pIter++)&0x80 && pIter<pEnd );
1072 assert( pPage->childPtrSize==4 );
1073 return (u16)(pIter - pCell);
drhdc41d602014-09-22 19:51:35 +00001074 }
drh3e28ff52014-09-24 00:59:08 +00001075 nSize = *pIter;
1076 if( nSize>=0x80 ){
1077 pEnd = &pIter[9];
1078 nSize &= 0x7f;
1079 do{
1080 nSize = (nSize<<7) | (*++pIter & 0x7f);
1081 }while( *(pIter)>=0x80 && pIter<pEnd );
1082 }
1083 pIter++;
drhdc41d602014-09-22 19:51:35 +00001084 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001085 /* pIter now points at the 64-bit integer key value, a variable length
1086 ** integer. The following block moves pIter to point at the first byte
1087 ** past the end of the key value. */
1088 pEnd = &pIter[9];
1089 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001090 }
drh0a45c272009-07-08 01:49:11 +00001091 testcase( nSize==pPage->maxLocal );
1092 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001093 if( nSize<=pPage->maxLocal ){
1094 nSize += (u32)(pIter - pCell);
1095 if( nSize<4 ) nSize = 4;
1096 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001097 int minLocal = pPage->minLocal;
1098 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001099 testcase( nSize==pPage->maxLocal );
1100 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001101 if( nSize>pPage->maxLocal ){
1102 nSize = minLocal;
1103 }
drh3e28ff52014-09-24 00:59:08 +00001104 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001105 }
drhdc41d602014-09-22 19:51:35 +00001106 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001107 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001108}
drh0ee3dbe2009-10-16 15:05:18 +00001109
1110#ifdef SQLITE_DEBUG
1111/* This variation on cellSizePtr() is used inside of assert() statements
1112** only. */
drha9121e42008-02-19 14:59:35 +00001113static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001114 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001115}
danielk1977bc6ada42004-06-30 08:20:16 +00001116#endif
drh3b7511c2001-05-26 13:15:44 +00001117
danielk197779a40da2005-01-16 08:00:01 +00001118#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001119/*
danielk197726836652005-01-17 01:33:13 +00001120** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001121** to an overflow page, insert an entry into the pointer-map
1122** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001123*/
drh98add2e2009-07-20 17:11:49 +00001124static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001125 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001126 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001127 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001128 btreeParseCellPtr(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001129 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001130 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001131 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001132 }
danielk1977ac11ee62005-01-15 12:45:51 +00001133}
danielk197779a40da2005-01-16 08:00:01 +00001134#endif
1135
danielk1977ac11ee62005-01-15 12:45:51 +00001136
drhda200cc2004-05-09 11:51:38 +00001137/*
drh72f82862001-05-24 21:06:34 +00001138** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001139** end of the page and all free space is collected into one
1140** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001141** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001142**
1143** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1144** b-tree page so that there are no freeblocks or fragment bytes, all
1145** unused bytes are contained in the unallocated space region, and all
1146** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001147*/
shane0af3f892008-11-12 04:55:34 +00001148static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001149 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001150 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001151 int hdr; /* Offset to the page header */
1152 int size; /* Size of a cell */
1153 int usableSize; /* Number of usable bytes on a page */
1154 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001155 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001156 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001157 unsigned char *data; /* The page data */
1158 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001159 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001160 int iCellFirst; /* First allowable cell index */
1161 int iCellLast; /* Last possible cell index */
1162
drh2af926b2001-05-15 00:39:25 +00001163
danielk19773b8a05f2007-03-19 17:44:26 +00001164 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001165 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001166 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001167 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001168 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001169 temp = 0;
1170 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001171 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001172 cellOffset = pPage->cellOffset;
1173 nCell = pPage->nCell;
1174 assert( nCell==get2byte(&data[hdr+3]) );
1175 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001176 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001177 iCellFirst = cellOffset + 2*nCell;
1178 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001179 for(i=0; i<nCell; i++){
1180 u8 *pAddr; /* The i-th cell pointer */
1181 pAddr = &data[cellOffset + i*2];
1182 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001183 testcase( pc==iCellFirst );
1184 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001185#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001186 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001187 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1188 */
1189 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001190 return SQLITE_CORRUPT_BKPT;
1191 }
drh17146622009-07-07 17:38:38 +00001192#endif
1193 assert( pc>=iCellFirst && pc<=iCellLast );
drh588400b2014-09-27 05:00:25 +00001194 size = cellSizePtr(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001195 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001196#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1197 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001198 return SQLITE_CORRUPT_BKPT;
1199 }
drh17146622009-07-07 17:38:38 +00001200#else
1201 if( cbrk<iCellFirst || pc+size>usableSize ){
1202 return SQLITE_CORRUPT_BKPT;
1203 }
1204#endif
drh7157e1d2009-07-09 13:25:32 +00001205 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001206 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001207 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001208 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001209 if( temp==0 ){
1210 int x;
1211 if( cbrk==pc ) continue;
1212 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1213 x = get2byte(&data[hdr+5]);
1214 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1215 src = temp;
1216 }
1217 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001218 }
drh17146622009-07-07 17:38:38 +00001219 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001220 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001221 data[hdr+1] = 0;
1222 data[hdr+2] = 0;
1223 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001224 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001225 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001226 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001227 return SQLITE_CORRUPT_BKPT;
1228 }
shane0af3f892008-11-12 04:55:34 +00001229 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001230}
1231
drha059ad02001-04-17 20:09:11 +00001232/*
dan8e9ba0c2014-10-14 17:27:04 +00001233** Search the free-list on page pPg for space to store a cell nByte bytes in
1234** size. If one can be found, return a pointer to the space and remove it
1235** from the free-list.
1236**
1237** If no suitable space can be found on the free-list, return NULL.
1238**
drhba0f9992014-10-30 20:48:44 +00001239** This function may detect corruption within pPg. If corruption is
1240** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001241**
1242** If a slot of at least nByte bytes is found but cannot be used because
1243** there are already at least 60 fragmented bytes on the page, return NULL.
1244** In this case, if pbDefrag parameter is not NULL, set *pbDefrag to true.
dan8e9ba0c2014-10-14 17:27:04 +00001245*/
dan61e94c92014-10-27 08:02:16 +00001246static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc, int *pbDefrag){
dan8e9ba0c2014-10-14 17:27:04 +00001247 const int hdr = pPg->hdrOffset;
1248 u8 * const aData = pPg->aData;
1249 int iAddr;
1250 int pc;
1251 int usableSize = pPg->pBt->usableSize;
1252
1253 for(iAddr=hdr+1; (pc = get2byte(&aData[iAddr]))>0; iAddr=pc){
1254 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001255 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1256 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001257 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001258 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001259 return 0;
1260 }
drh113762a2014-11-19 16:36:25 +00001261 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1262 ** freeblock form a big-endian integer which is the size of the freeblock
1263 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001264 size = get2byte(&aData[pc+2]);
1265 if( size>=nByte ){
1266 int x = size - nByte;
1267 testcase( x==4 );
1268 testcase( x==3 );
1269 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001270 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1271 ** number of bytes in fragments may not exceed 60. */
dan61e94c92014-10-27 08:02:16 +00001272 if( aData[hdr+7]>=60 ){
1273 if( pbDefrag ) *pbDefrag = 1;
1274 return 0;
1275 }
dan8e9ba0c2014-10-14 17:27:04 +00001276 /* Remove the slot from the free-list. Update the number of
1277 ** fragmented bytes within the page. */
1278 memcpy(&aData[iAddr], &aData[pc], 2);
1279 aData[hdr+7] += (u8)x;
1280 }else if( size+pc > usableSize ){
drhba0f9992014-10-30 20:48:44 +00001281 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001282 return 0;
1283 }else{
1284 /* The slot remains on the free-list. Reduce its size to account
1285 ** for the portion used by the new allocation. */
1286 put2byte(&aData[pc+2], x);
1287 }
1288 return &aData[pc + x];
1289 }
1290 }
1291
1292 return 0;
1293}
1294
1295/*
danielk19776011a752009-04-01 16:25:32 +00001296** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001297** as the first argument. Write into *pIdx the index into pPage->aData[]
1298** of the first byte of allocated space. Return either SQLITE_OK or
1299** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001300**
drh0a45c272009-07-08 01:49:11 +00001301** The caller guarantees that there is sufficient space to make the
1302** allocation. This routine might need to defragment in order to bring
1303** all the space together, however. This routine will avoid using
1304** the first two bytes past the cell pointer area since presumably this
1305** allocation is being made in order to insert a new cell, so we will
1306** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001307*/
drh0a45c272009-07-08 01:49:11 +00001308static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001309 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1310 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001311 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001312 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001313 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001314
danielk19773b8a05f2007-03-19 17:44:26 +00001315 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001316 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001317 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001318 assert( nByte>=0 ); /* Minimum cell size is 4 */
1319 assert( pPage->nFree>=nByte );
1320 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001321 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001322
drh0a45c272009-07-08 01:49:11 +00001323 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1324 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001325 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001326 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1327 ** and the reserved space is zero (the usual value for reserved space)
1328 ** then the cell content offset of an empty page wants to be 65536.
1329 ** However, that integer is too large to be stored in a 2-byte unsigned
1330 ** integer, so a value of 0 is used in its place. */
1331 top = get2byteNotZero(&data[hdr+5]);
1332 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh4c04f3c2014-08-20 11:56:14 +00001333
1334 /* If there is enough space between gap and top for one more cell pointer
1335 ** array entry offset, and if the freelist is not empty, then search the
1336 ** freelist looking for a free slot big enough to satisfy the request.
1337 */
drh0a45c272009-07-08 01:49:11 +00001338 testcase( gap+2==top );
1339 testcase( gap+1==top );
1340 testcase( gap==top );
drh4c04f3c2014-08-20 11:56:14 +00001341 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
dan61e94c92014-10-27 08:02:16 +00001342 int bDefrag = 0;
1343 u8 *pSpace = pageFindSlot(pPage, nByte, &rc, &bDefrag);
dan8e9ba0c2014-10-14 17:27:04 +00001344 if( rc ) return rc;
dan61e94c92014-10-27 08:02:16 +00001345 if( bDefrag ) goto defragment_page;
dan8e9ba0c2014-10-14 17:27:04 +00001346 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001347 assert( pSpace>=data && (pSpace - data)<65536 );
1348 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001349 return SQLITE_OK;
drh9e572e62004-04-23 23:43:10 +00001350 }
1351 }
drh43605152004-05-29 21:46:49 +00001352
drh4c04f3c2014-08-20 11:56:14 +00001353 /* The request could not be fulfilled using a freelist slot. Check
1354 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001355 */
1356 testcase( gap+2+nByte==top );
1357 if( gap+2+nByte>top ){
dan61e94c92014-10-27 08:02:16 +00001358 defragment_page:
drh1fd2d7d2014-12-02 16:16:47 +00001359 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001360 rc = defragmentPage(pPage);
1361 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001362 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001363 assert( gap+nByte<=top );
1364 }
1365
1366
drh43605152004-05-29 21:46:49 +00001367 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001368 ** and the cell content area. The btreeInitPage() call has already
1369 ** validated the freelist. Given that the freelist is valid, there
1370 ** is no way that the allocation can extend off the end of the page.
1371 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001372 */
drh0a45c272009-07-08 01:49:11 +00001373 top -= nByte;
drh43605152004-05-29 21:46:49 +00001374 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001375 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001376 *pIdx = top;
1377 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001378}
1379
1380/*
drh9e572e62004-04-23 23:43:10 +00001381** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001382** The first byte of the new free block is pPage->aData[iStart]
1383** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001384**
drh5f5c7532014-08-20 17:56:27 +00001385** Adjacent freeblocks are coalesced.
1386**
1387** Note that even though the freeblock list was checked by btreeInitPage(),
1388** that routine will not detect overlap between cells or freeblocks. Nor
1389** does it detect cells or freeblocks that encrouch into the reserved bytes
1390** at the end of the page. So do additional corruption checks inside this
1391** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001392*/
drh5f5c7532014-08-20 17:56:27 +00001393static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001394 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001395 u16 iFreeBlk; /* Address of the next freeblock */
1396 u8 hdr; /* Page header size. 0 or 100 */
1397 u8 nFrag = 0; /* Reduction in fragmentation */
1398 u16 iOrigSize = iSize; /* Original value of iSize */
1399 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1400 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001401 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001402
drh9e572e62004-04-23 23:43:10 +00001403 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001404 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh7fb91642014-08-20 14:37:09 +00001405 assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001406 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001407 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001408 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001409 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001410
drh5f5c7532014-08-20 17:56:27 +00001411 /* Overwrite deleted information with zeros when the secure_delete
1412 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001413 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001414 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001415 }
drhfcce93f2006-02-22 03:08:32 +00001416
drh5f5c7532014-08-20 17:56:27 +00001417 /* The list of freeblocks must be in ascending order. Find the
1418 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001419 */
drh43605152004-05-29 21:46:49 +00001420 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001421 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001422 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1423 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1424 }else{
1425 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1426 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1427 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001428 }
drh7bc4c452014-08-20 18:43:44 +00001429 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1430 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1431
1432 /* At this point:
1433 ** iFreeBlk: First freeblock after iStart, or zero if none
1434 ** iPtr: The address of a pointer iFreeBlk
1435 **
1436 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1437 */
1438 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1439 nFrag = iFreeBlk - iEnd;
1440 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1441 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1442 iSize = iEnd - iStart;
1443 iFreeBlk = get2byte(&data[iFreeBlk]);
1444 }
1445
drh3f387402014-09-24 01:23:00 +00001446 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1447 ** pointer in the page header) then check to see if iStart should be
1448 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001449 */
1450 if( iPtr>hdr+1 ){
1451 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1452 if( iPtrEnd+3>=iStart ){
1453 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1454 nFrag += iStart - iPtrEnd;
1455 iSize = iEnd - iPtr;
1456 iStart = iPtr;
1457 }
1458 }
1459 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1460 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001461 }
drh7bc4c452014-08-20 18:43:44 +00001462 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001463 /* The new freeblock is at the beginning of the cell content area,
1464 ** so just extend the cell content area rather than create another
1465 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001466 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001467 put2byte(&data[hdr+1], iFreeBlk);
1468 put2byte(&data[hdr+5], iEnd);
1469 }else{
1470 /* Insert the new freeblock into the freelist */
1471 put2byte(&data[iPtr], iStart);
1472 put2byte(&data[iStart], iFreeBlk);
1473 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001474 }
drh5f5c7532014-08-20 17:56:27 +00001475 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001476 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001477}
1478
1479/*
drh271efa52004-05-30 19:19:05 +00001480** Decode the flags byte (the first byte of the header) for a page
1481** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001482**
1483** Only the following combinations are supported. Anything different
1484** indicates a corrupt database files:
1485**
1486** PTF_ZERODATA
1487** PTF_ZERODATA | PTF_LEAF
1488** PTF_LEAFDATA | PTF_INTKEY
1489** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001490*/
drh44845222008-07-17 18:39:57 +00001491static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001492 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001493
1494 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001495 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001496 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001497 flagByte &= ~PTF_LEAF;
1498 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001499 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001500 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001501 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1502 ** table b-tree page. */
1503 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1504 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1505 ** table b-tree page. */
1506 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001507 pPage->intKey = 1;
drh3e28ff52014-09-24 00:59:08 +00001508 pPage->intKeyLeaf = pPage->leaf;
1509 pPage->noPayload = !pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001510 pPage->maxLocal = pBt->maxLeaf;
1511 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001512 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001513 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1514 ** index b-tree page. */
1515 assert( (PTF_ZERODATA)==2 );
1516 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1517 ** index b-tree page. */
1518 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001519 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001520 pPage->intKeyLeaf = 0;
1521 pPage->noPayload = 0;
drh271efa52004-05-30 19:19:05 +00001522 pPage->maxLocal = pBt->maxLocal;
1523 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001524 }else{
drhfdab0262014-11-20 15:30:50 +00001525 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1526 ** an error. */
drh44845222008-07-17 18:39:57 +00001527 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001528 }
drhc9166342012-01-05 23:32:06 +00001529 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001530 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001531}
1532
1533/*
drh7e3b0a02001-04-28 16:52:40 +00001534** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001535**
1536** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001537** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001538** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1539** guarantee that the page is well-formed. It only shows that
1540** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001541*/
danielk197730548662009-07-09 05:07:37 +00001542static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001543
danielk197771d5d2c2008-09-29 11:49:47 +00001544 assert( pPage->pBt!=0 );
1545 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001546 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001547 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1548 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001549
1550 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001551 u16 pc; /* Address of a freeblock within pPage->aData[] */
1552 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001553 u8 *data; /* Equal to pPage->aData */
1554 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001555 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001556 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001557 int nFree; /* Number of unused bytes on the page */
1558 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001559 int iCellFirst; /* First allowable cell or freeblock offset */
1560 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001561
1562 pBt = pPage->pBt;
1563
danielk1977eaa06f62008-09-18 17:34:44 +00001564 hdr = pPage->hdrOffset;
1565 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001566 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1567 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001568 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001569 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1570 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001571 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001572 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001573 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001574 pPage->aDataEnd = &data[usableSize];
1575 pPage->aCellIdx = &data[cellOffset];
drhfdab0262014-11-20 15:30:50 +00001576 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1577 ** the start of the cell content area. A zero value for this integer is
1578 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001579 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001580 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1581 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001582 pPage->nCell = get2byte(&data[hdr+3]);
1583 if( pPage->nCell>MX_CELL(pBt) ){
1584 /* To many cells for a single page. The page must be corrupt */
1585 return SQLITE_CORRUPT_BKPT;
1586 }
drhb908d762009-07-08 16:54:40 +00001587 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001588 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1589 ** possible for a root page of a table that contains no rows) then the
1590 ** offset to the cell content area will equal the page size minus the
1591 ** bytes of reserved space. */
1592 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001593
shane5eff7cf2009-08-10 03:57:58 +00001594 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001595 ** of page when parsing a cell.
1596 **
1597 ** The following block of code checks early to see if a cell extends
1598 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1599 ** returned if it does.
1600 */
drh0a45c272009-07-08 01:49:11 +00001601 iCellFirst = cellOffset + 2*pPage->nCell;
1602 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001603#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001604 {
drh69e931e2009-06-03 21:04:35 +00001605 int i; /* Index into the cell pointer array */
1606 int sz; /* Size of a cell */
1607
drh69e931e2009-06-03 21:04:35 +00001608 if( !pPage->leaf ) iCellLast--;
1609 for(i=0; i<pPage->nCell; i++){
1610 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001611 testcase( pc==iCellFirst );
1612 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001613 if( pc<iCellFirst || pc>iCellLast ){
1614 return SQLITE_CORRUPT_BKPT;
1615 }
1616 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001617 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001618 if( pc+sz>usableSize ){
1619 return SQLITE_CORRUPT_BKPT;
1620 }
1621 }
drh0a45c272009-07-08 01:49:11 +00001622 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001623 }
1624#endif
1625
drhfdab0262014-11-20 15:30:50 +00001626 /* Compute the total free space on the page
1627 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1628 ** start of the first freeblock on the page, or is zero if there are no
1629 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001630 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001631 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001632 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001633 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001634 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001635 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1636 ** always be at least one cell before the first freeblock.
1637 **
1638 ** Or, the freeblock is off the end of the page
1639 */
danielk1977eaa06f62008-09-18 17:34:44 +00001640 return SQLITE_CORRUPT_BKPT;
1641 }
1642 next = get2byte(&data[pc]);
1643 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001644 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1645 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001646 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001647 return SQLITE_CORRUPT_BKPT;
1648 }
shane85095702009-06-15 16:27:08 +00001649 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001650 pc = next;
1651 }
danielk197793c829c2009-06-03 17:26:17 +00001652
1653 /* At this point, nFree contains the sum of the offset to the start
1654 ** of the cell-content area plus the number of free bytes within
1655 ** the cell-content area. If this is greater than the usable-size
1656 ** of the page, then the page must be corrupted. This check also
1657 ** serves to verify that the offset to the start of the cell-content
1658 ** area, according to the page header, lies within the page.
1659 */
1660 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001661 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001662 }
shane5eff7cf2009-08-10 03:57:58 +00001663 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001664 pPage->isInit = 1;
1665 }
drh9e572e62004-04-23 23:43:10 +00001666 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001667}
1668
1669/*
drh8b2f49b2001-06-08 00:21:52 +00001670** Set up a raw page so that it looks like a database page holding
1671** no entries.
drhbd03cae2001-06-02 02:40:57 +00001672*/
drh9e572e62004-04-23 23:43:10 +00001673static void zeroPage(MemPage *pPage, int flags){
1674 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001675 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001676 u8 hdr = pPage->hdrOffset;
1677 u16 first;
drh9e572e62004-04-23 23:43:10 +00001678
danielk19773b8a05f2007-03-19 17:44:26 +00001679 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001680 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1681 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001682 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001683 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001684 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001685 memset(&data[hdr], 0, pBt->usableSize - hdr);
1686 }
drh1bd10f82008-12-10 21:19:56 +00001687 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001688 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001689 memset(&data[hdr+1], 0, 4);
1690 data[hdr+7] = 0;
1691 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001692 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001693 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001694 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001695 pPage->aDataEnd = &data[pBt->usableSize];
1696 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001697 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001698 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1699 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001700 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001701 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001702}
1703
drh897a8202008-09-18 01:08:15 +00001704
1705/*
1706** Convert a DbPage obtained from the pager into a MemPage used by
1707** the btree layer.
1708*/
1709static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1710 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1711 pPage->aData = sqlite3PagerGetData(pDbPage);
1712 pPage->pDbPage = pDbPage;
1713 pPage->pBt = pBt;
1714 pPage->pgno = pgno;
1715 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1716 return pPage;
1717}
1718
drhbd03cae2001-06-02 02:40:57 +00001719/*
drh3aac2dd2004-04-26 14:10:20 +00001720** Get a page from the pager. Initialize the MemPage.pBt and
1721** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001722**
1723** If the noContent flag is set, it means that we do not care about
1724** the content of the page at this time. So do not go to the disk
1725** to fetch the content. Just fill in the content with zeros for now.
1726** If in the future we call sqlite3PagerWrite() on this page, that
1727** means we have started to be concerned about content and the disk
1728** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001729*/
danielk197730548662009-07-09 05:07:37 +00001730static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001731 BtShared *pBt, /* The btree */
1732 Pgno pgno, /* Number of the page to fetch */
1733 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001734 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001735){
drh3aac2dd2004-04-26 14:10:20 +00001736 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001737 DbPage *pDbPage;
1738
drhb00fc3b2013-08-21 23:42:32 +00001739 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001740 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001741 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001742 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001743 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001744 return SQLITE_OK;
1745}
1746
1747/*
danielk1977bea2a942009-01-20 17:06:27 +00001748** Retrieve a page from the pager cache. If the requested page is not
1749** already in the pager cache return NULL. Initialize the MemPage.pBt and
1750** MemPage.aData elements if needed.
1751*/
1752static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1753 DbPage *pDbPage;
1754 assert( sqlite3_mutex_held(pBt->mutex) );
1755 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1756 if( pDbPage ){
1757 return btreePageFromDbPage(pDbPage, pgno, pBt);
1758 }
1759 return 0;
1760}
1761
1762/*
danielk197789d40042008-11-17 14:20:56 +00001763** Return the size of the database file in pages. If there is any kind of
1764** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001765*/
drhb1299152010-03-30 22:58:33 +00001766static Pgno btreePagecount(BtShared *pBt){
1767 return pBt->nPage;
1768}
1769u32 sqlite3BtreeLastPage(Btree *p){
1770 assert( sqlite3BtreeHoldsMutex(p) );
1771 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001772 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001773}
1774
1775/*
danielk197789bc4bc2009-07-21 19:25:24 +00001776** Get a page from the pager and initialize it. This routine is just a
1777** convenience wrapper around separate calls to btreeGetPage() and
1778** btreeInitPage().
1779**
1780** If an error occurs, then the value *ppPage is set to is undefined. It
1781** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001782*/
1783static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001784 BtShared *pBt, /* The database file */
1785 Pgno pgno, /* Number of the page to get */
1786 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001787 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001788){
1789 int rc;
drh1fee73e2007-08-29 04:00:57 +00001790 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001791 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001792
danba3cbf32010-06-30 04:29:03 +00001793 if( pgno>btreePagecount(pBt) ){
1794 rc = SQLITE_CORRUPT_BKPT;
1795 }else{
drhb00fc3b2013-08-21 23:42:32 +00001796 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001797 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001798 rc = btreeInitPage(*ppPage);
1799 if( rc!=SQLITE_OK ){
1800 releasePage(*ppPage);
1801 }
danielk197789bc4bc2009-07-21 19:25:24 +00001802 }
drhee696e22004-08-30 16:52:17 +00001803 }
danba3cbf32010-06-30 04:29:03 +00001804
1805 testcase( pgno==0 );
1806 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001807 return rc;
1808}
1809
1810/*
drh3aac2dd2004-04-26 14:10:20 +00001811** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001812** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001813*/
drh4b70f112004-05-02 21:12:19 +00001814static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001815 if( pPage ){
1816 assert( pPage->aData );
1817 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001818 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001819 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1820 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001821 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001822 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001823 }
1824}
1825
1826/*
drha6abd042004-06-09 17:37:22 +00001827** During a rollback, when the pager reloads information into the cache
1828** so that the cache is restored to its original state at the start of
1829** the transaction, for each page restored this routine is called.
1830**
1831** This routine needs to reset the extra data section at the end of the
1832** page to agree with the restored data.
1833*/
danielk1977eaa06f62008-09-18 17:34:44 +00001834static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001835 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001836 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001837 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001838 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001839 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001840 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001841 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001842 /* pPage might not be a btree page; it might be an overflow page
1843 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001844 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001845 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001846 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001847 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001848 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001849 }
drha6abd042004-06-09 17:37:22 +00001850 }
1851}
1852
1853/*
drhe5fe6902007-12-07 18:55:28 +00001854** Invoke the busy handler for a btree.
1855*/
danielk19771ceedd32008-11-19 10:22:33 +00001856static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001857 BtShared *pBt = (BtShared*)pArg;
1858 assert( pBt->db );
1859 assert( sqlite3_mutex_held(pBt->db->mutex) );
1860 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1861}
1862
1863/*
drhad3e0102004-09-03 23:32:18 +00001864** Open a database file.
1865**
drh382c0242001-10-06 16:33:02 +00001866** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001867** then an ephemeral database is created. The ephemeral database might
1868** be exclusively in memory, or it might use a disk-based memory cache.
1869** Either way, the ephemeral database will be automatically deleted
1870** when sqlite3BtreeClose() is called.
1871**
drhe53831d2007-08-17 01:14:38 +00001872** If zFilename is ":memory:" then an in-memory database is created
1873** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001874**
drh33f111d2012-01-17 15:29:14 +00001875** The "flags" parameter is a bitmask that might contain bits like
1876** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001877**
drhc47fd8e2009-04-30 13:30:32 +00001878** If the database is already opened in the same database connection
1879** and we are in shared cache mode, then the open will fail with an
1880** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1881** objects in the same database connection since doing so will lead
1882** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001883*/
drh23e11ca2004-05-04 17:27:28 +00001884int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001885 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001886 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001887 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001888 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001889 int flags, /* Options */
1890 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001891){
drh7555d8e2009-03-20 13:15:30 +00001892 BtShared *pBt = 0; /* Shared part of btree structure */
1893 Btree *p; /* Handle to return */
1894 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1895 int rc = SQLITE_OK; /* Result code from this function */
1896 u8 nReserve; /* Byte of unused space on each page */
1897 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001898
drh75c014c2010-08-30 15:02:28 +00001899 /* True if opening an ephemeral, temporary database */
1900 const int isTempDb = zFilename==0 || zFilename[0]==0;
1901
danielk1977aef0bf62005-12-30 16:28:01 +00001902 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001903 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001904 */
drhb0a7c9c2010-12-06 21:09:59 +00001905#ifdef SQLITE_OMIT_MEMORYDB
1906 const int isMemdb = 0;
1907#else
1908 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001909 || (isTempDb && sqlite3TempInMemory(db))
1910 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001911#endif
1912
drhe5fe6902007-12-07 18:55:28 +00001913 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001914 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001915 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001916 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1917
1918 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1919 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1920
1921 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1922 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001923
drh75c014c2010-08-30 15:02:28 +00001924 if( isMemdb ){
1925 flags |= BTREE_MEMORY;
1926 }
1927 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1928 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1929 }
drh17435752007-08-16 04:30:38 +00001930 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001931 if( !p ){
1932 return SQLITE_NOMEM;
1933 }
1934 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001935 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001936#ifndef SQLITE_OMIT_SHARED_CACHE
1937 p->lock.pBtree = p;
1938 p->lock.iTable = 1;
1939#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001940
drh198bf392006-01-06 21:52:49 +00001941#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001942 /*
1943 ** If this Btree is a candidate for shared cache, try to find an
1944 ** existing BtShared object that we can share with
1945 */
drh4ab9d252012-05-26 20:08:49 +00001946 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001947 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001948 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001949 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001950 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001951 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001952 if( !zFullPathname ){
1953 sqlite3_free(p);
1954 return SQLITE_NOMEM;
1955 }
drhafc8b7f2012-05-26 18:06:38 +00001956 if( isMemdb ){
1957 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1958 }else{
1959 rc = sqlite3OsFullPathname(pVfs, zFilename,
1960 nFullPathname, zFullPathname);
1961 if( rc ){
1962 sqlite3_free(zFullPathname);
1963 sqlite3_free(p);
1964 return rc;
1965 }
drh070ad6b2011-11-17 11:43:19 +00001966 }
drh30ddce62011-10-15 00:16:30 +00001967#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001968 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1969 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001970 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001971 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001972#endif
drh78f82d12008-09-02 00:52:52 +00001973 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001974 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001975 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001976 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001977 int iDb;
1978 for(iDb=db->nDb-1; iDb>=0; iDb--){
1979 Btree *pExisting = db->aDb[iDb].pBt;
1980 if( pExisting && pExisting->pBt==pBt ){
1981 sqlite3_mutex_leave(mutexShared);
1982 sqlite3_mutex_leave(mutexOpen);
1983 sqlite3_free(zFullPathname);
1984 sqlite3_free(p);
1985 return SQLITE_CONSTRAINT;
1986 }
1987 }
drhff0587c2007-08-29 17:43:19 +00001988 p->pBt = pBt;
1989 pBt->nRef++;
1990 break;
1991 }
1992 }
1993 sqlite3_mutex_leave(mutexShared);
1994 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001995 }
drhff0587c2007-08-29 17:43:19 +00001996#ifdef SQLITE_DEBUG
1997 else{
1998 /* In debug mode, we mark all persistent databases as sharable
1999 ** even when they are not. This exercises the locking code and
2000 ** gives more opportunity for asserts(sqlite3_mutex_held())
2001 ** statements to find locking problems.
2002 */
2003 p->sharable = 1;
2004 }
2005#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002006 }
2007#endif
drha059ad02001-04-17 20:09:11 +00002008 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002009 /*
2010 ** The following asserts make sure that structures used by the btree are
2011 ** the right size. This is to guard against size changes that result
2012 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002013 */
drhe53831d2007-08-17 01:14:38 +00002014 assert( sizeof(i64)==8 || sizeof(i64)==4 );
2015 assert( sizeof(u64)==8 || sizeof(u64)==4 );
2016 assert( sizeof(u32)==4 );
2017 assert( sizeof(u16)==2 );
2018 assert( sizeof(Pgno)==4 );
2019
2020 pBt = sqlite3MallocZero( sizeof(*pBt) );
2021 if( pBt==0 ){
2022 rc = SQLITE_NOMEM;
2023 goto btree_open_out;
2024 }
danielk197771d5d2c2008-09-29 11:49:47 +00002025 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002026 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002027 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002028 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002029 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2030 }
2031 if( rc!=SQLITE_OK ){
2032 goto btree_open_out;
2033 }
shanehbd2aaf92010-09-01 02:38:21 +00002034 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002035 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002036 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002037 p->pBt = pBt;
2038
drhe53831d2007-08-17 01:14:38 +00002039 pBt->pCursor = 0;
2040 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002041 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002042#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002043 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002044#endif
drh113762a2014-11-19 16:36:25 +00002045 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2046 ** determined by the 2-byte integer located at an offset of 16 bytes from
2047 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002048 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002049 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2050 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002051 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002052#ifndef SQLITE_OMIT_AUTOVACUUM
2053 /* If the magic name ":memory:" will create an in-memory database, then
2054 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2055 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2056 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2057 ** regular file-name. In this case the auto-vacuum applies as per normal.
2058 */
2059 if( zFilename && !isMemdb ){
2060 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2061 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2062 }
2063#endif
2064 nReserve = 0;
2065 }else{
drh113762a2014-11-19 16:36:25 +00002066 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2067 ** determined by the one-byte unsigned integer found at an offset of 20
2068 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002069 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002070 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002071#ifndef SQLITE_OMIT_AUTOVACUUM
2072 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2073 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2074#endif
2075 }
drhfa9601a2009-06-18 17:22:39 +00002076 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002077 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002078 pBt->usableSize = pBt->pageSize - nReserve;
2079 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002080
2081#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2082 /* Add the new BtShared object to the linked list sharable BtShareds.
2083 */
2084 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002085 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002086 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002087 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002088 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002089 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002090 if( pBt->mutex==0 ){
2091 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002092 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002093 goto btree_open_out;
2094 }
drhff0587c2007-08-29 17:43:19 +00002095 }
drhe53831d2007-08-17 01:14:38 +00002096 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002097 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2098 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002099 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002100 }
drheee46cf2004-11-06 00:02:48 +00002101#endif
drh90f5ecb2004-07-22 01:19:35 +00002102 }
danielk1977aef0bf62005-12-30 16:28:01 +00002103
drhcfed7bc2006-03-13 14:28:05 +00002104#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002105 /* If the new Btree uses a sharable pBtShared, then link the new
2106 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002107 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002108 */
drhe53831d2007-08-17 01:14:38 +00002109 if( p->sharable ){
2110 int i;
2111 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002112 for(i=0; i<db->nDb; i++){
2113 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002114 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2115 if( p->pBt<pSib->pBt ){
2116 p->pNext = pSib;
2117 p->pPrev = 0;
2118 pSib->pPrev = p;
2119 }else{
drhabddb0c2007-08-20 13:14:28 +00002120 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002121 pSib = pSib->pNext;
2122 }
2123 p->pNext = pSib->pNext;
2124 p->pPrev = pSib;
2125 if( p->pNext ){
2126 p->pNext->pPrev = p;
2127 }
2128 pSib->pNext = p;
2129 }
2130 break;
2131 }
2132 }
danielk1977aef0bf62005-12-30 16:28:01 +00002133 }
danielk1977aef0bf62005-12-30 16:28:01 +00002134#endif
2135 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002136
2137btree_open_out:
2138 if( rc!=SQLITE_OK ){
2139 if( pBt && pBt->pPager ){
2140 sqlite3PagerClose(pBt->pPager);
2141 }
drh17435752007-08-16 04:30:38 +00002142 sqlite3_free(pBt);
2143 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002144 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002145 }else{
2146 /* If the B-Tree was successfully opened, set the pager-cache size to the
2147 ** default value. Except, when opening on an existing shared pager-cache,
2148 ** do not change the pager-cache size.
2149 */
2150 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2151 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2152 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002153 }
drh7555d8e2009-03-20 13:15:30 +00002154 if( mutexOpen ){
2155 assert( sqlite3_mutex_held(mutexOpen) );
2156 sqlite3_mutex_leave(mutexOpen);
2157 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002158 return rc;
drha059ad02001-04-17 20:09:11 +00002159}
2160
2161/*
drhe53831d2007-08-17 01:14:38 +00002162** Decrement the BtShared.nRef counter. When it reaches zero,
2163** remove the BtShared structure from the sharing list. Return
2164** true if the BtShared.nRef counter reaches zero and return
2165** false if it is still positive.
2166*/
2167static int removeFromSharingList(BtShared *pBt){
2168#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002169 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002170 BtShared *pList;
2171 int removed = 0;
2172
drhd677b3d2007-08-20 22:48:41 +00002173 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002174 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002175 sqlite3_mutex_enter(pMaster);
2176 pBt->nRef--;
2177 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002178 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2179 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002180 }else{
drh78f82d12008-09-02 00:52:52 +00002181 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002182 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002183 pList=pList->pNext;
2184 }
drh34004ce2008-07-11 16:15:17 +00002185 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002186 pList->pNext = pBt->pNext;
2187 }
2188 }
drh3285db22007-09-03 22:00:39 +00002189 if( SQLITE_THREADSAFE ){
2190 sqlite3_mutex_free(pBt->mutex);
2191 }
drhe53831d2007-08-17 01:14:38 +00002192 removed = 1;
2193 }
2194 sqlite3_mutex_leave(pMaster);
2195 return removed;
2196#else
2197 return 1;
2198#endif
2199}
2200
2201/*
drhf7141992008-06-19 00:16:08 +00002202** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002203** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2204** pointer.
drhf7141992008-06-19 00:16:08 +00002205*/
2206static void allocateTempSpace(BtShared *pBt){
2207 if( !pBt->pTmpSpace ){
2208 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002209
2210 /* One of the uses of pBt->pTmpSpace is to format cells before
2211 ** inserting them into a leaf page (function fillInCell()). If
2212 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2213 ** by the various routines that manipulate binary cells. Which
2214 ** can mean that fillInCell() only initializes the first 2 or 3
2215 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2216 ** it into a database page. This is not actually a problem, but it
2217 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2218 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002219 ** zero the first 4 bytes of temp space here.
2220 **
2221 ** Also: Provide four bytes of initialized space before the
2222 ** beginning of pTmpSpace as an area available to prepend the
2223 ** left-child pointer to the beginning of a cell.
2224 */
2225 if( pBt->pTmpSpace ){
2226 memset(pBt->pTmpSpace, 0, 8);
2227 pBt->pTmpSpace += 4;
2228 }
drhf7141992008-06-19 00:16:08 +00002229 }
2230}
2231
2232/*
2233** Free the pBt->pTmpSpace allocation
2234*/
2235static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002236 if( pBt->pTmpSpace ){
2237 pBt->pTmpSpace -= 4;
2238 sqlite3PageFree(pBt->pTmpSpace);
2239 pBt->pTmpSpace = 0;
2240 }
drhf7141992008-06-19 00:16:08 +00002241}
2242
2243/*
drha059ad02001-04-17 20:09:11 +00002244** Close an open database and invalidate all cursors.
2245*/
danielk1977aef0bf62005-12-30 16:28:01 +00002246int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002247 BtShared *pBt = p->pBt;
2248 BtCursor *pCur;
2249
danielk1977aef0bf62005-12-30 16:28:01 +00002250 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002251 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002252 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002253 pCur = pBt->pCursor;
2254 while( pCur ){
2255 BtCursor *pTmp = pCur;
2256 pCur = pCur->pNext;
2257 if( pTmp->pBtree==p ){
2258 sqlite3BtreeCloseCursor(pTmp);
2259 }
drha059ad02001-04-17 20:09:11 +00002260 }
danielk1977aef0bf62005-12-30 16:28:01 +00002261
danielk19778d34dfd2006-01-24 16:37:57 +00002262 /* Rollback any active transaction and free the handle structure.
2263 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2264 ** this handle.
2265 */
drh47b7fc72014-11-11 01:33:57 +00002266 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002267 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002268
danielk1977aef0bf62005-12-30 16:28:01 +00002269 /* If there are still other outstanding references to the shared-btree
2270 ** structure, return now. The remainder of this procedure cleans
2271 ** up the shared-btree.
2272 */
drhe53831d2007-08-17 01:14:38 +00002273 assert( p->wantToLock==0 && p->locked==0 );
2274 if( !p->sharable || removeFromSharingList(pBt) ){
2275 /* The pBt is no longer on the sharing list, so we can access
2276 ** it without having to hold the mutex.
2277 **
2278 ** Clean out and delete the BtShared object.
2279 */
2280 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002281 sqlite3PagerClose(pBt->pPager);
2282 if( pBt->xFreeSchema && pBt->pSchema ){
2283 pBt->xFreeSchema(pBt->pSchema);
2284 }
drhb9755982010-07-24 16:34:37 +00002285 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002286 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002287 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002288 }
2289
drhe53831d2007-08-17 01:14:38 +00002290#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002291 assert( p->wantToLock==0 );
2292 assert( p->locked==0 );
2293 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2294 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002295#endif
2296
drhe53831d2007-08-17 01:14:38 +00002297 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002298 return SQLITE_OK;
2299}
2300
2301/*
drhda47d772002-12-02 04:25:19 +00002302** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002303**
2304** The maximum number of cache pages is set to the absolute
2305** value of mxPage. If mxPage is negative, the pager will
2306** operate asynchronously - it will not stop to do fsync()s
2307** to insure data is written to the disk surface before
2308** continuing. Transactions still work if synchronous is off,
2309** and the database cannot be corrupted if this program
2310** crashes. But if the operating system crashes or there is
2311** an abrupt power failure when synchronous is off, the database
2312** could be left in an inconsistent and unrecoverable state.
2313** Synchronous is on by default so database corruption is not
2314** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002315*/
danielk1977aef0bf62005-12-30 16:28:01 +00002316int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2317 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002318 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002319 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002320 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002321 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002322 return SQLITE_OK;
2323}
2324
drh18c7e402014-03-14 11:46:10 +00002325#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002326/*
dan5d8a1372013-03-19 19:28:06 +00002327** Change the limit on the amount of the database file that may be
2328** memory mapped.
2329*/
drh9b4c59f2013-04-15 17:03:42 +00002330int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002331 BtShared *pBt = p->pBt;
2332 assert( sqlite3_mutex_held(p->db->mutex) );
2333 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002334 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002335 sqlite3BtreeLeave(p);
2336 return SQLITE_OK;
2337}
drh18c7e402014-03-14 11:46:10 +00002338#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002339
2340/*
drh973b6e32003-02-12 14:09:42 +00002341** Change the way data is synced to disk in order to increase or decrease
2342** how well the database resists damage due to OS crashes and power
2343** failures. Level 1 is the same as asynchronous (no syncs() occur and
2344** there is a high probability of damage) Level 2 is the default. There
2345** is a very low but non-zero probability of damage. Level 3 reduces the
2346** probability of damage to near zero but with a write performance reduction.
2347*/
danielk197793758c82005-01-21 08:13:14 +00002348#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002349int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002350 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002351 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002352){
danielk1977aef0bf62005-12-30 16:28:01 +00002353 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002354 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002355 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002356 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002357 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002358 return SQLITE_OK;
2359}
danielk197793758c82005-01-21 08:13:14 +00002360#endif
drh973b6e32003-02-12 14:09:42 +00002361
drh2c8997b2005-08-27 16:36:48 +00002362/*
2363** Return TRUE if the given btree is set to safety level 1. In other
2364** words, return TRUE if no sync() occurs on the disk files.
2365*/
danielk1977aef0bf62005-12-30 16:28:01 +00002366int sqlite3BtreeSyncDisabled(Btree *p){
2367 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002368 int rc;
drhe5fe6902007-12-07 18:55:28 +00002369 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002370 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002371 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002372 rc = sqlite3PagerNosync(pBt->pPager);
2373 sqlite3BtreeLeave(p);
2374 return rc;
drh2c8997b2005-08-27 16:36:48 +00002375}
2376
drh973b6e32003-02-12 14:09:42 +00002377/*
drh90f5ecb2004-07-22 01:19:35 +00002378** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002379** Or, if the page size has already been fixed, return SQLITE_READONLY
2380** without changing anything.
drh06f50212004-11-02 14:24:33 +00002381**
2382** The page size must be a power of 2 between 512 and 65536. If the page
2383** size supplied does not meet this constraint then the page size is not
2384** changed.
2385**
2386** Page sizes are constrained to be a power of two so that the region
2387** of the database file used for locking (beginning at PENDING_BYTE,
2388** the first byte past the 1GB boundary, 0x40000000) needs to occur
2389** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002390**
2391** If parameter nReserve is less than zero, then the number of reserved
2392** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002393**
drhc9166342012-01-05 23:32:06 +00002394** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002395** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002396*/
drhce4869f2009-04-02 20:16:58 +00002397int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002398 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002399 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002400 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002401 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002402 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002403 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002404 return SQLITE_READONLY;
2405 }
2406 if( nReserve<0 ){
2407 nReserve = pBt->pageSize - pBt->usableSize;
2408 }
drhf49661a2008-12-10 16:45:50 +00002409 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002410 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2411 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002412 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002413 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002414 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002415 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002416 }
drhfa9601a2009-06-18 17:22:39 +00002417 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002418 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002419 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002420 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002421 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002422}
2423
2424/*
2425** Return the currently defined page size
2426*/
danielk1977aef0bf62005-12-30 16:28:01 +00002427int sqlite3BtreeGetPageSize(Btree *p){
2428 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002429}
drh7f751222009-03-17 22:33:00 +00002430
drha1f38532012-10-01 12:44:26 +00002431#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002432/*
2433** This function is similar to sqlite3BtreeGetReserve(), except that it
2434** may only be called if it is guaranteed that the b-tree mutex is already
2435** held.
2436**
2437** This is useful in one special case in the backup API code where it is
2438** known that the shared b-tree mutex is held, but the mutex on the
2439** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2440** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002441** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002442*/
2443int sqlite3BtreeGetReserveNoMutex(Btree *p){
2444 assert( sqlite3_mutex_held(p->pBt->mutex) );
2445 return p->pBt->pageSize - p->pBt->usableSize;
2446}
drha1f38532012-10-01 12:44:26 +00002447#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002448
danbb2b4412011-04-06 17:54:31 +00002449#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002450/*
2451** Return the number of bytes of space at the end of every page that
2452** are intentually left unused. This is the "reserved" space that is
2453** sometimes used by extensions.
2454*/
danielk1977aef0bf62005-12-30 16:28:01 +00002455int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002456 int n;
2457 sqlite3BtreeEnter(p);
2458 n = p->pBt->pageSize - p->pBt->usableSize;
2459 sqlite3BtreeLeave(p);
2460 return n;
drh2011d5f2004-07-22 02:40:37 +00002461}
drhf8e632b2007-05-08 14:51:36 +00002462
2463/*
2464** Set the maximum page count for a database if mxPage is positive.
2465** No changes are made if mxPage is 0 or negative.
2466** Regardless of the value of mxPage, return the maximum page count.
2467*/
2468int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002469 int n;
2470 sqlite3BtreeEnter(p);
2471 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2472 sqlite3BtreeLeave(p);
2473 return n;
drhf8e632b2007-05-08 14:51:36 +00002474}
drh5b47efa2010-02-12 18:18:39 +00002475
2476/*
drhc9166342012-01-05 23:32:06 +00002477** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2478** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002479** setting after the change.
2480*/
2481int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2482 int b;
drhaf034ed2010-02-12 19:46:26 +00002483 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002484 sqlite3BtreeEnter(p);
2485 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002486 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2487 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002488 }
drhc9166342012-01-05 23:32:06 +00002489 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002490 sqlite3BtreeLeave(p);
2491 return b;
2492}
danielk1977576ec6b2005-01-21 11:55:25 +00002493#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002494
2495/*
danielk1977951af802004-11-05 15:45:09 +00002496** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2497** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2498** is disabled. The default value for the auto-vacuum property is
2499** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2500*/
danielk1977aef0bf62005-12-30 16:28:01 +00002501int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002502#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002503 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002504#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002505 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002506 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002507 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002508
2509 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002510 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002511 rc = SQLITE_READONLY;
2512 }else{
drh076d4662009-02-18 20:31:18 +00002513 pBt->autoVacuum = av ?1:0;
2514 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002515 }
drhd677b3d2007-08-20 22:48:41 +00002516 sqlite3BtreeLeave(p);
2517 return rc;
danielk1977951af802004-11-05 15:45:09 +00002518#endif
2519}
2520
2521/*
2522** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2523** enabled 1 is returned. Otherwise 0.
2524*/
danielk1977aef0bf62005-12-30 16:28:01 +00002525int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002526#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002527 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002528#else
drhd677b3d2007-08-20 22:48:41 +00002529 int rc;
2530 sqlite3BtreeEnter(p);
2531 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002532 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2533 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2534 BTREE_AUTOVACUUM_INCR
2535 );
drhd677b3d2007-08-20 22:48:41 +00002536 sqlite3BtreeLeave(p);
2537 return rc;
danielk1977951af802004-11-05 15:45:09 +00002538#endif
2539}
2540
2541
2542/*
drha34b6762004-05-07 13:30:42 +00002543** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002544** also acquire a readlock on that file.
2545**
2546** SQLITE_OK is returned on success. If the file is not a
2547** well-formed database file, then SQLITE_CORRUPT is returned.
2548** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002549** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002550*/
danielk1977aef0bf62005-12-30 16:28:01 +00002551static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002552 int rc; /* Result code from subfunctions */
2553 MemPage *pPage1; /* Page 1 of the database file */
2554 int nPage; /* Number of pages in the database */
2555 int nPageFile = 0; /* Number of pages in the database file */
2556 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002557
drh1fee73e2007-08-29 04:00:57 +00002558 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002559 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002560 rc = sqlite3PagerSharedLock(pBt->pPager);
2561 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002562 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002563 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002564
2565 /* Do some checking to help insure the file we opened really is
2566 ** a valid database file.
2567 */
drhc2a4bab2010-04-02 12:46:45 +00002568 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002569 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002570 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002571 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002572 }
2573 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002574 u32 pageSize;
2575 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002576 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002577 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002578 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2579 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2580 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002581 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002582 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002583 }
dan5cf53532010-05-01 16:40:20 +00002584
2585#ifdef SQLITE_OMIT_WAL
2586 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002587 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002588 }
2589 if( page1[19]>1 ){
2590 goto page1_init_failed;
2591 }
2592#else
dane04dc882010-04-20 18:53:15 +00002593 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002594 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002595 }
dane04dc882010-04-20 18:53:15 +00002596 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002597 goto page1_init_failed;
2598 }
drhe5ae5732008-06-15 02:51:47 +00002599
dana470aeb2010-04-21 11:43:38 +00002600 /* If the write version is set to 2, this database should be accessed
2601 ** in WAL mode. If the log is not already open, open it now. Then
2602 ** return SQLITE_OK and return without populating BtShared.pPage1.
2603 ** The caller detects this and calls this function again. This is
2604 ** required as the version of page 1 currently in the page1 buffer
2605 ** may not be the latest version - there may be a newer one in the log
2606 ** file.
2607 */
drhc9166342012-01-05 23:32:06 +00002608 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002609 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002610 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002611 if( rc!=SQLITE_OK ){
2612 goto page1_init_failed;
2613 }else if( isOpen==0 ){
2614 releasePage(pPage1);
2615 return SQLITE_OK;
2616 }
dan8b5444b2010-04-27 14:37:47 +00002617 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002618 }
dan5cf53532010-05-01 16:40:20 +00002619#endif
dane04dc882010-04-20 18:53:15 +00002620
drh113762a2014-11-19 16:36:25 +00002621 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2622 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2623 **
drhe5ae5732008-06-15 02:51:47 +00002624 ** The original design allowed these amounts to vary, but as of
2625 ** version 3.6.0, we require them to be fixed.
2626 */
2627 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2628 goto page1_init_failed;
2629 }
drh113762a2014-11-19 16:36:25 +00002630 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2631 ** determined by the 2-byte integer located at an offset of 16 bytes from
2632 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002633 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002634 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2635 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002636 if( ((pageSize-1)&pageSize)!=0
2637 || pageSize>SQLITE_MAX_PAGE_SIZE
2638 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002639 ){
drh07d183d2005-05-01 22:52:42 +00002640 goto page1_init_failed;
2641 }
2642 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002643 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2644 ** integer at offset 20 is the number of bytes of space at the end of
2645 ** each page to reserve for extensions.
2646 **
2647 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2648 ** determined by the one-byte unsigned integer found at an offset of 20
2649 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002650 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002651 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002652 /* After reading the first page of the database assuming a page size
2653 ** of BtShared.pageSize, we have discovered that the page-size is
2654 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2655 ** zero and return SQLITE_OK. The caller will call this function
2656 ** again with the correct page-size.
2657 */
2658 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002659 pBt->usableSize = usableSize;
2660 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002661 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002662 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2663 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002664 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002665 }
danecac6702011-02-09 18:19:20 +00002666 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002667 rc = SQLITE_CORRUPT_BKPT;
2668 goto page1_init_failed;
2669 }
drh113762a2014-11-19 16:36:25 +00002670 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2671 ** be less than 480. In other words, if the page size is 512, then the
2672 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002673 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002674 goto page1_init_failed;
2675 }
drh43b18e12010-08-17 19:40:08 +00002676 pBt->pageSize = pageSize;
2677 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002678#ifndef SQLITE_OMIT_AUTOVACUUM
2679 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002680 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002681#endif
drh306dc212001-05-21 13:45:10 +00002682 }
drhb6f41482004-05-14 01:58:11 +00002683
2684 /* maxLocal is the maximum amount of payload to store locally for
2685 ** a cell. Make sure it is small enough so that at least minFanout
2686 ** cells can will fit on one page. We assume a 10-byte page header.
2687 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002688 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002689 ** 4-byte child pointer
2690 ** 9-byte nKey value
2691 ** 4-byte nData value
2692 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002693 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002694 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2695 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002696 */
shaneh1df2db72010-08-18 02:28:48 +00002697 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2698 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2699 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2700 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002701 if( pBt->maxLocal>127 ){
2702 pBt->max1bytePayload = 127;
2703 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002704 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002705 }
drh2e38c322004-09-03 18:38:44 +00002706 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002707 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002708 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002709 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002710
drh72f82862001-05-24 21:06:34 +00002711page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002712 releasePage(pPage1);
2713 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002714 return rc;
drh306dc212001-05-21 13:45:10 +00002715}
2716
drh85ec3b62013-05-14 23:12:06 +00002717#ifndef NDEBUG
2718/*
2719** Return the number of cursors open on pBt. This is for use
2720** in assert() expressions, so it is only compiled if NDEBUG is not
2721** defined.
2722**
2723** Only write cursors are counted if wrOnly is true. If wrOnly is
2724** false then all cursors are counted.
2725**
2726** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002727** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002728** have been tripped into the CURSOR_FAULT state are not counted.
2729*/
2730static int countValidCursors(BtShared *pBt, int wrOnly){
2731 BtCursor *pCur;
2732 int r = 0;
2733 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002734 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2735 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002736 }
2737 return r;
2738}
2739#endif
2740
drh306dc212001-05-21 13:45:10 +00002741/*
drhb8ca3072001-12-05 00:21:20 +00002742** If there are no outstanding cursors and we are not in the middle
2743** of a transaction but there is a read lock on the database, then
2744** this routine unrefs the first page of the database file which
2745** has the effect of releasing the read lock.
2746**
drhb8ca3072001-12-05 00:21:20 +00002747** If there is a transaction in progress, this routine is a no-op.
2748*/
danielk1977aef0bf62005-12-30 16:28:01 +00002749static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002750 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002751 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002752 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00002753 MemPage *pPage1 = pBt->pPage1;
2754 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00002755 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00002756 pBt->pPage1 = 0;
drhb2325b72014-09-24 18:31:07 +00002757 releasePage(pPage1);
drhb8ca3072001-12-05 00:21:20 +00002758 }
2759}
2760
2761/*
drhe39f2f92009-07-23 01:43:59 +00002762** If pBt points to an empty file then convert that empty file
2763** into a new empty database by initializing the first page of
2764** the database.
drh8b2f49b2001-06-08 00:21:52 +00002765*/
danielk1977aef0bf62005-12-30 16:28:01 +00002766static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002767 MemPage *pP1;
2768 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002769 int rc;
drhd677b3d2007-08-20 22:48:41 +00002770
drh1fee73e2007-08-29 04:00:57 +00002771 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002772 if( pBt->nPage>0 ){
2773 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002774 }
drh3aac2dd2004-04-26 14:10:20 +00002775 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002776 assert( pP1!=0 );
2777 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002778 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002779 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002780 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2781 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002782 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2783 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002784 data[18] = 1;
2785 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002786 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2787 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002788 data[21] = 64;
2789 data[22] = 32;
2790 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002791 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002792 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002793 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002794#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002795 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002796 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002797 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002798 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002799#endif
drhdd3cd972010-03-27 17:12:36 +00002800 pBt->nPage = 1;
2801 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002802 return SQLITE_OK;
2803}
2804
2805/*
danb483eba2012-10-13 19:58:11 +00002806** Initialize the first page of the database file (creating a database
2807** consisting of a single page and no schema objects). Return SQLITE_OK
2808** if successful, or an SQLite error code otherwise.
2809*/
2810int sqlite3BtreeNewDb(Btree *p){
2811 int rc;
2812 sqlite3BtreeEnter(p);
2813 p->pBt->nPage = 0;
2814 rc = newDatabase(p->pBt);
2815 sqlite3BtreeLeave(p);
2816 return rc;
2817}
2818
2819/*
danielk1977ee5741e2004-05-31 10:01:34 +00002820** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002821** is started if the second argument is nonzero, otherwise a read-
2822** transaction. If the second argument is 2 or more and exclusive
2823** transaction is started, meaning that no other process is allowed
2824** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002825** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002826** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002827**
danielk1977ee5741e2004-05-31 10:01:34 +00002828** A write-transaction must be started before attempting any
2829** changes to the database. None of the following routines
2830** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002831**
drh23e11ca2004-05-04 17:27:28 +00002832** sqlite3BtreeCreateTable()
2833** sqlite3BtreeCreateIndex()
2834** sqlite3BtreeClearTable()
2835** sqlite3BtreeDropTable()
2836** sqlite3BtreeInsert()
2837** sqlite3BtreeDelete()
2838** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002839**
drhb8ef32c2005-03-14 02:01:49 +00002840** If an initial attempt to acquire the lock fails because of lock contention
2841** and the database was previously unlocked, then invoke the busy handler
2842** if there is one. But if there was previously a read-lock, do not
2843** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2844** returned when there is already a read-lock in order to avoid a deadlock.
2845**
2846** Suppose there are two processes A and B. A has a read lock and B has
2847** a reserved lock. B tries to promote to exclusive but is blocked because
2848** of A's read lock. A tries to promote to reserved but is blocked by B.
2849** One or the other of the two processes must give way or there can be
2850** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2851** when A already has a read lock, we encourage A to give up and let B
2852** proceed.
drha059ad02001-04-17 20:09:11 +00002853*/
danielk1977aef0bf62005-12-30 16:28:01 +00002854int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002855 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002856 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002857 int rc = SQLITE_OK;
2858
drhd677b3d2007-08-20 22:48:41 +00002859 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002860 btreeIntegrity(p);
2861
danielk1977ee5741e2004-05-31 10:01:34 +00002862 /* If the btree is already in a write-transaction, or it
2863 ** is already in a read-transaction and a read-transaction
2864 ** is requested, this is a no-op.
2865 */
danielk1977aef0bf62005-12-30 16:28:01 +00002866 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002867 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002868 }
dan56c517a2013-09-26 11:04:33 +00002869 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002870
2871 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002872 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002873 rc = SQLITE_READONLY;
2874 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002875 }
2876
danielk1977404ca072009-03-16 13:19:36 +00002877#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002878 /* If another database handle has already opened a write transaction
2879 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002880 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002881 */
drhc9166342012-01-05 23:32:06 +00002882 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2883 || (pBt->btsFlags & BTS_PENDING)!=0
2884 ){
danielk1977404ca072009-03-16 13:19:36 +00002885 pBlock = pBt->pWriter->db;
2886 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002887 BtLock *pIter;
2888 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2889 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002890 pBlock = pIter->pBtree->db;
2891 break;
danielk1977641b0f42007-12-21 04:47:25 +00002892 }
2893 }
2894 }
danielk1977404ca072009-03-16 13:19:36 +00002895 if( pBlock ){
2896 sqlite3ConnectionBlocked(p->db, pBlock);
2897 rc = SQLITE_LOCKED_SHAREDCACHE;
2898 goto trans_begun;
2899 }
danielk1977641b0f42007-12-21 04:47:25 +00002900#endif
2901
danielk1977602b4662009-07-02 07:47:33 +00002902 /* Any read-only or read-write transaction implies a read-lock on
2903 ** page 1. So if some other shared-cache client already has a write-lock
2904 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002905 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2906 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002907
drhc9166342012-01-05 23:32:06 +00002908 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2909 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002910 do {
danielk1977295dc102009-04-01 19:07:03 +00002911 /* Call lockBtree() until either pBt->pPage1 is populated or
2912 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2913 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2914 ** reading page 1 it discovers that the page-size of the database
2915 ** file is not pBt->pageSize. In this case lockBtree() will update
2916 ** pBt->pageSize to the page-size of the file on disk.
2917 */
2918 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002919
drhb8ef32c2005-03-14 02:01:49 +00002920 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002921 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002922 rc = SQLITE_READONLY;
2923 }else{
danielk1977d8293352009-04-30 09:10:37 +00002924 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002925 if( rc==SQLITE_OK ){
2926 rc = newDatabase(pBt);
2927 }
drhb8ef32c2005-03-14 02:01:49 +00002928 }
2929 }
2930
danielk1977bd434552009-03-18 10:33:00 +00002931 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002932 unlockBtreeIfUnused(pBt);
2933 }
danf9b76712010-06-01 14:12:45 +00002934 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002935 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002936
2937 if( rc==SQLITE_OK ){
2938 if( p->inTrans==TRANS_NONE ){
2939 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002940#ifndef SQLITE_OMIT_SHARED_CACHE
2941 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002942 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002943 p->lock.eLock = READ_LOCK;
2944 p->lock.pNext = pBt->pLock;
2945 pBt->pLock = &p->lock;
2946 }
2947#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002948 }
2949 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2950 if( p->inTrans>pBt->inTransaction ){
2951 pBt->inTransaction = p->inTrans;
2952 }
danielk1977404ca072009-03-16 13:19:36 +00002953 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002954 MemPage *pPage1 = pBt->pPage1;
2955#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002956 assert( !pBt->pWriter );
2957 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002958 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2959 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002960#endif
dan59257dc2010-08-04 11:34:31 +00002961
2962 /* If the db-size header field is incorrect (as it may be if an old
2963 ** client has been writing the database file), update it now. Doing
2964 ** this sooner rather than later means the database size can safely
2965 ** re-read the database size from page 1 if a savepoint or transaction
2966 ** rollback occurs within the transaction.
2967 */
2968 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2969 rc = sqlite3PagerWrite(pPage1->pDbPage);
2970 if( rc==SQLITE_OK ){
2971 put4byte(&pPage1->aData[28], pBt->nPage);
2972 }
2973 }
2974 }
danielk1977aef0bf62005-12-30 16:28:01 +00002975 }
2976
drhd677b3d2007-08-20 22:48:41 +00002977
2978trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002979 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002980 /* This call makes sure that the pager has the correct number of
2981 ** open savepoints. If the second parameter is greater than 0 and
2982 ** the sub-journal is not already open, then it will be opened here.
2983 */
danielk1977fd7f0452008-12-17 17:30:26 +00002984 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2985 }
danielk197712dd5492008-12-18 15:45:07 +00002986
danielk1977aef0bf62005-12-30 16:28:01 +00002987 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002988 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002989 return rc;
drha059ad02001-04-17 20:09:11 +00002990}
2991
danielk1977687566d2004-11-02 12:56:41 +00002992#ifndef SQLITE_OMIT_AUTOVACUUM
2993
2994/*
2995** Set the pointer-map entries for all children of page pPage. Also, if
2996** pPage contains cells that point to overflow pages, set the pointer
2997** map entries for the overflow pages as well.
2998*/
2999static int setChildPtrmaps(MemPage *pPage){
3000 int i; /* Counter variable */
3001 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003002 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003003 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003004 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003005 Pgno pgno = pPage->pgno;
3006
drh1fee73e2007-08-29 04:00:57 +00003007 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003008 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003009 if( rc!=SQLITE_OK ){
3010 goto set_child_ptrmaps_out;
3011 }
danielk1977687566d2004-11-02 12:56:41 +00003012 nCell = pPage->nCell;
3013
3014 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003015 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003016
drh98add2e2009-07-20 17:11:49 +00003017 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003018
danielk1977687566d2004-11-02 12:56:41 +00003019 if( !pPage->leaf ){
3020 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003021 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003022 }
3023 }
3024
3025 if( !pPage->leaf ){
3026 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003027 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003028 }
3029
3030set_child_ptrmaps_out:
3031 pPage->isInit = isInitOrig;
3032 return rc;
3033}
3034
3035/*
drhf3aed592009-07-08 18:12:49 +00003036** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3037** that it points to iTo. Parameter eType describes the type of pointer to
3038** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003039**
3040** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3041** page of pPage.
3042**
3043** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3044** page pointed to by one of the cells on pPage.
3045**
3046** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3047** overflow page in the list.
3048*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003049static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003050 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003051 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003052 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003053 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003054 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003055 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003056 }
danielk1977f78fc082004-11-02 14:40:32 +00003057 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003058 }else{
drhf49661a2008-12-10 16:45:50 +00003059 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003060 int i;
3061 int nCell;
3062
danielk197730548662009-07-09 05:07:37 +00003063 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00003064 nCell = pPage->nCell;
3065
danielk1977687566d2004-11-02 12:56:41 +00003066 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003067 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003068 if( eType==PTRMAP_OVERFLOW1 ){
3069 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00003070 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00003071 if( info.iOverflow
3072 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3073 && iFrom==get4byte(&pCell[info.iOverflow])
3074 ){
3075 put4byte(&pCell[info.iOverflow], iTo);
3076 break;
danielk1977687566d2004-11-02 12:56:41 +00003077 }
3078 }else{
3079 if( get4byte(pCell)==iFrom ){
3080 put4byte(pCell, iTo);
3081 break;
3082 }
3083 }
3084 }
3085
3086 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003087 if( eType!=PTRMAP_BTREE ||
3088 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003089 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003090 }
danielk1977687566d2004-11-02 12:56:41 +00003091 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3092 }
3093
3094 pPage->isInit = isInitOrig;
3095 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003096 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003097}
3098
danielk1977003ba062004-11-04 02:57:33 +00003099
danielk19777701e812005-01-10 12:59:51 +00003100/*
3101** Move the open database page pDbPage to location iFreePage in the
3102** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003103**
3104** The isCommit flag indicates that there is no need to remember that
3105** the journal needs to be sync()ed before database page pDbPage->pgno
3106** can be written to. The caller has already promised not to write to that
3107** page.
danielk19777701e812005-01-10 12:59:51 +00003108*/
danielk1977003ba062004-11-04 02:57:33 +00003109static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003110 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003111 MemPage *pDbPage, /* Open page to move */
3112 u8 eType, /* Pointer map 'type' entry for pDbPage */
3113 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003114 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003115 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003116){
3117 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3118 Pgno iDbPage = pDbPage->pgno;
3119 Pager *pPager = pBt->pPager;
3120 int rc;
3121
danielk1977a0bf2652004-11-04 14:30:04 +00003122 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3123 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003124 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003125 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003126
drh85b623f2007-12-13 21:54:09 +00003127 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003128 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3129 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003130 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003131 if( rc!=SQLITE_OK ){
3132 return rc;
3133 }
3134 pDbPage->pgno = iFreePage;
3135
3136 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3137 ** that point to overflow pages. The pointer map entries for all these
3138 ** pages need to be changed.
3139 **
3140 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3141 ** pointer to a subsequent overflow page. If this is the case, then
3142 ** the pointer map needs to be updated for the subsequent overflow page.
3143 */
danielk1977a0bf2652004-11-04 14:30:04 +00003144 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003145 rc = setChildPtrmaps(pDbPage);
3146 if( rc!=SQLITE_OK ){
3147 return rc;
3148 }
3149 }else{
3150 Pgno nextOvfl = get4byte(pDbPage->aData);
3151 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003152 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003153 if( rc!=SQLITE_OK ){
3154 return rc;
3155 }
3156 }
3157 }
3158
3159 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3160 ** that it points at iFreePage. Also fix the pointer map entry for
3161 ** iPtrPage.
3162 */
danielk1977a0bf2652004-11-04 14:30:04 +00003163 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003164 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003165 if( rc!=SQLITE_OK ){
3166 return rc;
3167 }
danielk19773b8a05f2007-03-19 17:44:26 +00003168 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003169 if( rc!=SQLITE_OK ){
3170 releasePage(pPtrPage);
3171 return rc;
3172 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003173 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003174 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003175 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003176 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003177 }
danielk1977003ba062004-11-04 02:57:33 +00003178 }
danielk1977003ba062004-11-04 02:57:33 +00003179 return rc;
3180}
3181
danielk1977dddbcdc2007-04-26 14:42:34 +00003182/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003183static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003184
3185/*
dan51f0b6d2013-02-22 20:16:34 +00003186** Perform a single step of an incremental-vacuum. If successful, return
3187** SQLITE_OK. If there is no work to do (and therefore no point in
3188** calling this function again), return SQLITE_DONE. Or, if an error
3189** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003190**
peter.d.reid60ec9142014-09-06 16:39:46 +00003191** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003192** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003193**
dan51f0b6d2013-02-22 20:16:34 +00003194** Parameter nFin is the number of pages that this database would contain
3195** were this function called until it returns SQLITE_DONE.
3196**
3197** If the bCommit parameter is non-zero, this function assumes that the
3198** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003199** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003200** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003201*/
dan51f0b6d2013-02-22 20:16:34 +00003202static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003203 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003204 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003205
drh1fee73e2007-08-29 04:00:57 +00003206 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003207 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003208
3209 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003210 u8 eType;
3211 Pgno iPtrPage;
3212
3213 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003214 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003215 return SQLITE_DONE;
3216 }
3217
3218 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3219 if( rc!=SQLITE_OK ){
3220 return rc;
3221 }
3222 if( eType==PTRMAP_ROOTPAGE ){
3223 return SQLITE_CORRUPT_BKPT;
3224 }
3225
3226 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003227 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003228 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003229 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003230 ** truncated to zero after this function returns, so it doesn't
3231 ** matter if it still contains some garbage entries.
3232 */
3233 Pgno iFreePg;
3234 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003235 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003236 if( rc!=SQLITE_OK ){
3237 return rc;
3238 }
3239 assert( iFreePg==iLastPg );
3240 releasePage(pFreePg);
3241 }
3242 } else {
3243 Pgno iFreePg; /* Index of free page to move pLastPg to */
3244 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003245 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3246 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003247
drhb00fc3b2013-08-21 23:42:32 +00003248 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003249 if( rc!=SQLITE_OK ){
3250 return rc;
3251 }
3252
dan51f0b6d2013-02-22 20:16:34 +00003253 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003254 ** is swapped with the first free page pulled off the free list.
3255 **
dan51f0b6d2013-02-22 20:16:34 +00003256 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003257 ** looping until a free-page located within the first nFin pages
3258 ** of the file is found.
3259 */
dan51f0b6d2013-02-22 20:16:34 +00003260 if( bCommit==0 ){
3261 eMode = BTALLOC_LE;
3262 iNear = nFin;
3263 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003264 do {
3265 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003266 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003267 if( rc!=SQLITE_OK ){
3268 releasePage(pLastPg);
3269 return rc;
3270 }
3271 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003272 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003273 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003274
dane1df4e32013-03-05 11:27:04 +00003275 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003276 releasePage(pLastPg);
3277 if( rc!=SQLITE_OK ){
3278 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003279 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003280 }
3281 }
3282
dan51f0b6d2013-02-22 20:16:34 +00003283 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003284 do {
danielk19773460d192008-12-27 15:23:13 +00003285 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003286 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3287 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003288 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003289 }
3290 return SQLITE_OK;
3291}
3292
3293/*
dan51f0b6d2013-02-22 20:16:34 +00003294** The database opened by the first argument is an auto-vacuum database
3295** nOrig pages in size containing nFree free pages. Return the expected
3296** size of the database in pages following an auto-vacuum operation.
3297*/
3298static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3299 int nEntry; /* Number of entries on one ptrmap page */
3300 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3301 Pgno nFin; /* Return value */
3302
3303 nEntry = pBt->usableSize/5;
3304 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3305 nFin = nOrig - nFree - nPtrmap;
3306 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3307 nFin--;
3308 }
3309 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3310 nFin--;
3311 }
dan51f0b6d2013-02-22 20:16:34 +00003312
3313 return nFin;
3314}
3315
3316/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003317** A write-transaction must be opened before calling this function.
3318** It performs a single unit of work towards an incremental vacuum.
3319**
3320** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003321** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003322** SQLITE_OK is returned. Otherwise an SQLite error code.
3323*/
3324int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003325 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003326 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003327
3328 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003329 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3330 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003331 rc = SQLITE_DONE;
3332 }else{
dan51f0b6d2013-02-22 20:16:34 +00003333 Pgno nOrig = btreePagecount(pBt);
3334 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3335 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3336
dan91384712013-02-24 11:50:43 +00003337 if( nOrig<nFin ){
3338 rc = SQLITE_CORRUPT_BKPT;
3339 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003340 rc = saveAllCursors(pBt, 0, 0);
3341 if( rc==SQLITE_OK ){
3342 invalidateAllOverflowCache(pBt);
3343 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3344 }
dan51f0b6d2013-02-22 20:16:34 +00003345 if( rc==SQLITE_OK ){
3346 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3347 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3348 }
3349 }else{
3350 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003351 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003352 }
drhd677b3d2007-08-20 22:48:41 +00003353 sqlite3BtreeLeave(p);
3354 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003355}
3356
3357/*
danielk19773b8a05f2007-03-19 17:44:26 +00003358** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003359** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003360**
3361** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3362** the database file should be truncated to during the commit process.
3363** i.e. the database has been reorganized so that only the first *pnTrunc
3364** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003365*/
danielk19773460d192008-12-27 15:23:13 +00003366static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003367 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003368 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003369 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003370
drh1fee73e2007-08-29 04:00:57 +00003371 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003372 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003373 assert(pBt->autoVacuum);
3374 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003375 Pgno nFin; /* Number of pages in database after autovacuuming */
3376 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003377 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003378 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003379
drhb1299152010-03-30 22:58:33 +00003380 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003381 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3382 /* It is not possible to create a database for which the final page
3383 ** is either a pointer-map page or the pending-byte page. If one
3384 ** is encountered, this indicates corruption.
3385 */
danielk19773460d192008-12-27 15:23:13 +00003386 return SQLITE_CORRUPT_BKPT;
3387 }
danielk1977ef165ce2009-04-06 17:50:03 +00003388
danielk19773460d192008-12-27 15:23:13 +00003389 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003390 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003391 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003392 if( nFin<nOrig ){
3393 rc = saveAllCursors(pBt, 0, 0);
3394 }
danielk19773460d192008-12-27 15:23:13 +00003395 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003396 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003397 }
danielk19773460d192008-12-27 15:23:13 +00003398 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003399 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3400 put4byte(&pBt->pPage1->aData[32], 0);
3401 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003402 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003403 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003404 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003405 }
3406 if( rc!=SQLITE_OK ){
3407 sqlite3PagerRollback(pPager);
3408 }
danielk1977687566d2004-11-02 12:56:41 +00003409 }
3410
dan0aed84d2013-03-26 14:16:20 +00003411 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003412 return rc;
3413}
danielk1977dddbcdc2007-04-26 14:42:34 +00003414
danielk1977a50d9aa2009-06-08 14:49:45 +00003415#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3416# define setChildPtrmaps(x) SQLITE_OK
3417#endif
danielk1977687566d2004-11-02 12:56:41 +00003418
3419/*
drh80e35f42007-03-30 14:06:34 +00003420** This routine does the first phase of a two-phase commit. This routine
3421** causes a rollback journal to be created (if it does not already exist)
3422** and populated with enough information so that if a power loss occurs
3423** the database can be restored to its original state by playing back
3424** the journal. Then the contents of the journal are flushed out to
3425** the disk. After the journal is safely on oxide, the changes to the
3426** database are written into the database file and flushed to oxide.
3427** At the end of this call, the rollback journal still exists on the
3428** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003429** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003430** commit process.
3431**
3432** This call is a no-op if no write-transaction is currently active on pBt.
3433**
3434** Otherwise, sync the database file for the btree pBt. zMaster points to
3435** the name of a master journal file that should be written into the
3436** individual journal file, or is NULL, indicating no master journal file
3437** (single database transaction).
3438**
3439** When this is called, the master journal should already have been
3440** created, populated with this journal pointer and synced to disk.
3441**
3442** Once this is routine has returned, the only thing required to commit
3443** the write-transaction for this database file is to delete the journal.
3444*/
3445int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3446 int rc = SQLITE_OK;
3447 if( p->inTrans==TRANS_WRITE ){
3448 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003449 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003450#ifndef SQLITE_OMIT_AUTOVACUUM
3451 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003452 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003453 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003454 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003455 return rc;
3456 }
3457 }
danbc1a3c62013-02-23 16:40:46 +00003458 if( pBt->bDoTruncate ){
3459 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3460 }
drh80e35f42007-03-30 14:06:34 +00003461#endif
drh49b9d332009-01-02 18:10:42 +00003462 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003463 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003464 }
3465 return rc;
3466}
3467
3468/*
danielk197794b30732009-07-02 17:21:57 +00003469** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3470** at the conclusion of a transaction.
3471*/
3472static void btreeEndTransaction(Btree *p){
3473 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003474 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003475 assert( sqlite3BtreeHoldsMutex(p) );
3476
danbc1a3c62013-02-23 16:40:46 +00003477#ifndef SQLITE_OMIT_AUTOVACUUM
3478 pBt->bDoTruncate = 0;
3479#endif
danc0537fe2013-06-28 19:41:43 +00003480 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003481 /* If there are other active statements that belong to this database
3482 ** handle, downgrade to a read-only transaction. The other statements
3483 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003484 downgradeAllSharedCacheTableLocks(p);
3485 p->inTrans = TRANS_READ;
3486 }else{
3487 /* If the handle had any kind of transaction open, decrement the
3488 ** transaction count of the shared btree. If the transaction count
3489 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3490 ** call below will unlock the pager. */
3491 if( p->inTrans!=TRANS_NONE ){
3492 clearAllSharedCacheTableLocks(p);
3493 pBt->nTransaction--;
3494 if( 0==pBt->nTransaction ){
3495 pBt->inTransaction = TRANS_NONE;
3496 }
3497 }
3498
3499 /* Set the current transaction state to TRANS_NONE and unlock the
3500 ** pager if this call closed the only read or write transaction. */
3501 p->inTrans = TRANS_NONE;
3502 unlockBtreeIfUnused(pBt);
3503 }
3504
3505 btreeIntegrity(p);
3506}
3507
3508/*
drh2aa679f2001-06-25 02:11:07 +00003509** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003510**
drh6e345992007-03-30 11:12:08 +00003511** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003512** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3513** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3514** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003515** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003516** routine has to do is delete or truncate or zero the header in the
3517** the rollback journal (which causes the transaction to commit) and
3518** drop locks.
drh6e345992007-03-30 11:12:08 +00003519**
dan60939d02011-03-29 15:40:55 +00003520** Normally, if an error occurs while the pager layer is attempting to
3521** finalize the underlying journal file, this function returns an error and
3522** the upper layer will attempt a rollback. However, if the second argument
3523** is non-zero then this b-tree transaction is part of a multi-file
3524** transaction. In this case, the transaction has already been committed
3525** (by deleting a master journal file) and the caller will ignore this
3526** functions return code. So, even if an error occurs in the pager layer,
3527** reset the b-tree objects internal state to indicate that the write
3528** transaction has been closed. This is quite safe, as the pager will have
3529** transitioned to the error state.
3530**
drh5e00f6c2001-09-13 13:46:56 +00003531** This will release the write lock on the database file. If there
3532** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003533*/
dan60939d02011-03-29 15:40:55 +00003534int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003535
drh075ed302010-10-14 01:17:30 +00003536 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003537 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003538 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003539
3540 /* If the handle has a write-transaction open, commit the shared-btrees
3541 ** transaction and set the shared state to TRANS_READ.
3542 */
3543 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003544 int rc;
drh075ed302010-10-14 01:17:30 +00003545 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003546 assert( pBt->inTransaction==TRANS_WRITE );
3547 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003548 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003549 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003550 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003551 return rc;
3552 }
danielk1977aef0bf62005-12-30 16:28:01 +00003553 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003554 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003555 }
danielk1977aef0bf62005-12-30 16:28:01 +00003556
danielk197794b30732009-07-02 17:21:57 +00003557 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003558 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003559 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003560}
3561
drh80e35f42007-03-30 14:06:34 +00003562/*
3563** Do both phases of a commit.
3564*/
3565int sqlite3BtreeCommit(Btree *p){
3566 int rc;
drhd677b3d2007-08-20 22:48:41 +00003567 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003568 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3569 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003570 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003571 }
drhd677b3d2007-08-20 22:48:41 +00003572 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003573 return rc;
3574}
3575
drhc39e0002004-05-07 23:50:57 +00003576/*
drhfb982642007-08-30 01:19:59 +00003577** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003578** code to errCode for every cursor on any BtShared that pBtree
3579** references. Or if the writeOnly flag is set to 1, then only
3580** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003581**
drh47b7fc72014-11-11 01:33:57 +00003582** Every cursor is a candidate to be tripped, including cursors
3583** that belong to other database connections that happen to be
3584** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003585**
dan80231042014-11-12 14:56:02 +00003586** This routine gets called when a rollback occurs. If the writeOnly
3587** flag is true, then only write-cursors need be tripped - read-only
3588** cursors save their current positions so that they may continue
3589** following the rollback. Or, if writeOnly is false, all cursors are
3590** tripped. In general, writeOnly is false if the transaction being
3591** rolled back modified the database schema. In this case b-tree root
3592** pages may be moved or deleted from the database altogether, making
3593** it unsafe for read cursors to continue.
3594**
3595** If the writeOnly flag is true and an error is encountered while
3596** saving the current position of a read-only cursor, all cursors,
3597** including all read-cursors are tripped.
3598**
3599** SQLITE_OK is returned if successful, or if an error occurs while
3600** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003601*/
dan80231042014-11-12 14:56:02 +00003602int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003603 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003604 int rc = SQLITE_OK;
3605
drh47b7fc72014-11-11 01:33:57 +00003606 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003607 if( pBtree ){
3608 sqlite3BtreeEnter(pBtree);
3609 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3610 int i;
3611 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
3612 if( p->eState==CURSOR_VALID ){
drhbea3b972014-11-18 20:22:05 +00003613 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003614 if( rc!=SQLITE_OK ){
3615 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3616 break;
3617 }
3618 }
3619 }else{
3620 sqlite3BtreeClearCursor(p);
3621 p->eState = CURSOR_FAULT;
3622 p->skipNext = errCode;
3623 }
3624 for(i=0; i<=p->iPage; i++){
3625 releasePage(p->apPage[i]);
3626 p->apPage[i] = 0;
3627 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003628 }
dan80231042014-11-12 14:56:02 +00003629 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003630 }
dan80231042014-11-12 14:56:02 +00003631 return rc;
drhfb982642007-08-30 01:19:59 +00003632}
3633
3634/*
drh47b7fc72014-11-11 01:33:57 +00003635** Rollback the transaction in progress.
3636**
3637** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3638** Only write cursors are tripped if writeOnly is true but all cursors are
3639** tripped if writeOnly is false. Any attempt to use
3640** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003641**
3642** This will release the write lock on the database file. If there
3643** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003644*/
drh47b7fc72014-11-11 01:33:57 +00003645int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003646 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003647 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003648 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003649
drh47b7fc72014-11-11 01:33:57 +00003650 assert( writeOnly==1 || writeOnly==0 );
3651 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003652 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003653 if( tripCode==SQLITE_OK ){
3654 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003655 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003656 }else{
3657 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003658 }
drh0f198a72012-02-13 16:43:16 +00003659 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003660 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3661 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3662 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003663 }
danielk1977aef0bf62005-12-30 16:28:01 +00003664 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003665
3666 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003667 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003668
danielk19778d34dfd2006-01-24 16:37:57 +00003669 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003670 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003671 if( rc2!=SQLITE_OK ){
3672 rc = rc2;
3673 }
3674
drh24cd67e2004-05-10 16:18:47 +00003675 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003676 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003677 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003678 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003679 int nPage = get4byte(28+(u8*)pPage1->aData);
3680 testcase( nPage==0 );
3681 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3682 testcase( pBt->nPage!=nPage );
3683 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003684 releasePage(pPage1);
3685 }
drh85ec3b62013-05-14 23:12:06 +00003686 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003687 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003688 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003689 }
danielk1977aef0bf62005-12-30 16:28:01 +00003690
danielk197794b30732009-07-02 17:21:57 +00003691 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003692 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003693 return rc;
3694}
3695
3696/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003697** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003698** back independently of the main transaction. You must start a transaction
3699** before starting a subtransaction. The subtransaction is ended automatically
3700** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003701**
3702** Statement subtransactions are used around individual SQL statements
3703** that are contained within a BEGIN...COMMIT block. If a constraint
3704** error occurs within the statement, the effect of that one statement
3705** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003706**
3707** A statement sub-transaction is implemented as an anonymous savepoint. The
3708** value passed as the second parameter is the total number of savepoints,
3709** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3710** are no active savepoints and no other statement-transactions open,
3711** iStatement is 1. This anonymous savepoint can be released or rolled back
3712** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003713*/
danielk1977bd434552009-03-18 10:33:00 +00003714int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003715 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003716 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003717 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003718 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003719 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003720 assert( iStatement>0 );
3721 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003722 assert( pBt->inTransaction==TRANS_WRITE );
3723 /* At the pager level, a statement transaction is a savepoint with
3724 ** an index greater than all savepoints created explicitly using
3725 ** SQL statements. It is illegal to open, release or rollback any
3726 ** such savepoints while the statement transaction savepoint is active.
3727 */
3728 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003729 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003730 return rc;
3731}
3732
3733/*
danielk1977fd7f0452008-12-17 17:30:26 +00003734** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3735** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003736** savepoint identified by parameter iSavepoint, depending on the value
3737** of op.
3738**
3739** Normally, iSavepoint is greater than or equal to zero. However, if op is
3740** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3741** contents of the entire transaction are rolled back. This is different
3742** from a normal transaction rollback, as no locks are released and the
3743** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003744*/
3745int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3746 int rc = SQLITE_OK;
3747 if( p && p->inTrans==TRANS_WRITE ){
3748 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003749 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3750 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3751 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003752 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003753 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003754 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3755 pBt->nPage = 0;
3756 }
drh9f0bbf92009-01-02 21:08:09 +00003757 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003758 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003759
3760 /* The database size was written into the offset 28 of the header
3761 ** when the transaction started, so we know that the value at offset
3762 ** 28 is nonzero. */
3763 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003764 }
danielk1977fd7f0452008-12-17 17:30:26 +00003765 sqlite3BtreeLeave(p);
3766 }
3767 return rc;
3768}
3769
3770/*
drh8b2f49b2001-06-08 00:21:52 +00003771** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003772** iTable. If a read-only cursor is requested, it is assumed that
3773** the caller already has at least a read-only transaction open
3774** on the database already. If a write-cursor is requested, then
3775** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003776**
3777** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003778** If wrFlag==1, then the cursor can be used for reading or for
3779** writing if other conditions for writing are also met. These
3780** are the conditions that must be met in order for writing to
3781** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003782**
drhf74b8d92002-09-01 23:20:45 +00003783** 1: The cursor must have been opened with wrFlag==1
3784**
drhfe5d71d2007-03-19 11:54:10 +00003785** 2: Other database connections that share the same pager cache
3786** but which are not in the READ_UNCOMMITTED state may not have
3787** cursors open with wrFlag==0 on the same table. Otherwise
3788** the changes made by this write cursor would be visible to
3789** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003790**
3791** 3: The database must be writable (not on read-only media)
3792**
3793** 4: There must be an active transaction.
3794**
drh6446c4d2001-12-15 14:22:18 +00003795** No checking is done to make sure that page iTable really is the
3796** root page of a b-tree. If it is not, then the cursor acquired
3797** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003798**
drhf25a5072009-11-18 23:01:25 +00003799** It is assumed that the sqlite3BtreeCursorZero() has been called
3800** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003801*/
drhd677b3d2007-08-20 22:48:41 +00003802static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003803 Btree *p, /* The btree */
3804 int iTable, /* Root page of table to open */
3805 int wrFlag, /* 1 to write. 0 read-only */
3806 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3807 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003808){
danielk19773e8add92009-07-04 17:16:00 +00003809 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003810
drh1fee73e2007-08-29 04:00:57 +00003811 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003812 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003813
danielk1977602b4662009-07-02 07:47:33 +00003814 /* The following assert statements verify that if this is a sharable
3815 ** b-tree database, the connection is holding the required table locks,
3816 ** and that no other connection has any open cursor that conflicts with
3817 ** this lock. */
3818 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003819 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3820
danielk19773e8add92009-07-04 17:16:00 +00003821 /* Assert that the caller has opened the required transaction. */
3822 assert( p->inTrans>TRANS_NONE );
3823 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3824 assert( pBt->pPage1 && pBt->pPage1->aData );
3825
drhc9166342012-01-05 23:32:06 +00003826 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003827 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003828 }
drh3fbb0222014-09-24 19:47:27 +00003829 if( wrFlag ){
3830 allocateTempSpace(pBt);
3831 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
3832 }
drhb1299152010-03-30 22:58:33 +00003833 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003834 assert( wrFlag==0 );
3835 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003836 }
danielk1977aef0bf62005-12-30 16:28:01 +00003837
danielk1977aef0bf62005-12-30 16:28:01 +00003838 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003839 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003840 pCur->pgnoRoot = (Pgno)iTable;
3841 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003842 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003843 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003844 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00003845 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
3846 pCur->curFlags = wrFlag;
drha059ad02001-04-17 20:09:11 +00003847 pCur->pNext = pBt->pCursor;
3848 if( pCur->pNext ){
3849 pCur->pNext->pPrev = pCur;
3850 }
3851 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003852 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00003853 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003854}
drhd677b3d2007-08-20 22:48:41 +00003855int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003856 Btree *p, /* The btree */
3857 int iTable, /* Root page of table to open */
3858 int wrFlag, /* 1 to write. 0 read-only */
3859 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3860 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003861){
3862 int rc;
3863 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003864 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003865 sqlite3BtreeLeave(p);
3866 return rc;
3867}
drh7f751222009-03-17 22:33:00 +00003868
3869/*
3870** Return the size of a BtCursor object in bytes.
3871**
3872** This interfaces is needed so that users of cursors can preallocate
3873** sufficient storage to hold a cursor. The BtCursor object is opaque
3874** to users so they cannot do the sizeof() themselves - they must call
3875** this routine.
3876*/
3877int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003878 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003879}
3880
drh7f751222009-03-17 22:33:00 +00003881/*
drhf25a5072009-11-18 23:01:25 +00003882** Initialize memory that will be converted into a BtCursor object.
3883**
3884** The simple approach here would be to memset() the entire object
3885** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3886** do not need to be zeroed and they are large, so we can save a lot
3887** of run-time by skipping the initialization of those elements.
3888*/
3889void sqlite3BtreeCursorZero(BtCursor *p){
3890 memset(p, 0, offsetof(BtCursor, iPage));
3891}
3892
3893/*
drh5e00f6c2001-09-13 13:46:56 +00003894** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003895** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003896*/
drh3aac2dd2004-04-26 14:10:20 +00003897int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003898 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003899 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003900 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003901 BtShared *pBt = pCur->pBt;
3902 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003903 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003904 if( pCur->pPrev ){
3905 pCur->pPrev->pNext = pCur->pNext;
3906 }else{
3907 pBt->pCursor = pCur->pNext;
3908 }
3909 if( pCur->pNext ){
3910 pCur->pNext->pPrev = pCur->pPrev;
3911 }
danielk197771d5d2c2008-09-29 11:49:47 +00003912 for(i=0; i<=pCur->iPage; i++){
3913 releasePage(pCur->apPage[i]);
3914 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003915 unlockBtreeIfUnused(pBt);
dan5a500af2014-03-11 20:33:04 +00003916 sqlite3DbFree(pBtree->db, pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00003917 /* sqlite3_free(pCur); */
3918 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003919 }
drh8c42ca92001-06-22 19:15:00 +00003920 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003921}
3922
drh5e2f8b92001-05-28 00:41:15 +00003923/*
drh86057612007-06-26 01:04:48 +00003924** Make sure the BtCursor* given in the argument has a valid
3925** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003926** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003927**
3928** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003929** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003930**
3931** 2007-06-25: There is a bug in some versions of MSVC that cause the
3932** compiler to crash when getCellInfo() is implemented as a macro.
3933** But there is a measureable speed advantage to using the macro on gcc
3934** (when less compiler optimizations like -Os or -O0 are used and the
peter.d.reid60ec9142014-09-06 16:39:46 +00003935** compiler is not doing aggressive inlining.) So we use a real function
drh86057612007-06-26 01:04:48 +00003936** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003937*/
drh9188b382004-05-14 21:12:22 +00003938#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003939 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003940 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003941 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003942 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003943 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00003944 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003945 }
danielk19771cc5ed82007-05-16 17:28:43 +00003946#else
3947 #define assertCellInfo(x)
3948#endif
drh86057612007-06-26 01:04:48 +00003949#ifdef _MSC_VER
3950 /* Use a real function in MSVC to work around bugs in that compiler. */
3951 static void getCellInfo(BtCursor *pCur){
3952 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003953 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003954 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drh036dbec2014-03-11 23:40:44 +00003955 pCur->curFlags |= BTCF_ValidNKey;
drh86057612007-06-26 01:04:48 +00003956 }else{
3957 assertCellInfo(pCur);
3958 }
3959 }
3960#else /* if not _MSC_VER */
3961 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003962#define getCellInfo(pCur) \
3963 if( pCur->info.nSize==0 ){ \
3964 int iPage = pCur->iPage; \
drh036dbec2014-03-11 23:40:44 +00003965 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3966 pCur->curFlags |= BTCF_ValidNKey; \
danielk197771d5d2c2008-09-29 11:49:47 +00003967 }else{ \
3968 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003969 }
3970#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003971
drhea8ffdf2009-07-22 00:35:23 +00003972#ifndef NDEBUG /* The next routine used only within assert() statements */
3973/*
3974** Return true if the given BtCursor is valid. A valid cursor is one
3975** that is currently pointing to a row in a (non-empty) table.
3976** This is a verification routine is used only within assert() statements.
3977*/
3978int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3979 return pCur && pCur->eState==CURSOR_VALID;
3980}
3981#endif /* NDEBUG */
3982
drh9188b382004-05-14 21:12:22 +00003983/*
drh3aac2dd2004-04-26 14:10:20 +00003984** Set *pSize to the size of the buffer needed to hold the value of
3985** the key for the current entry. If the cursor is not pointing
3986** to a valid entry, *pSize is set to 0.
3987**
drh4b70f112004-05-02 21:12:19 +00003988** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003989** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003990**
3991** The caller must position the cursor prior to invoking this routine.
3992**
3993** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003994*/
drh4a1c3802004-05-12 15:15:47 +00003995int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003996 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00003997 assert( pCur->eState==CURSOR_VALID );
3998 getCellInfo(pCur);
3999 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004000 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004001}
drh2af926b2001-05-15 00:39:25 +00004002
drh72f82862001-05-24 21:06:34 +00004003/*
drh0e1c19e2004-05-11 00:58:56 +00004004** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004005** cursor currently points to.
4006**
4007** The caller must guarantee that the cursor is pointing to a non-NULL
4008** valid entry. In other words, the calling procedure must guarantee
4009** that the cursor has Cursor.eState==CURSOR_VALID.
4010**
4011** Failure is not possible. This function always returns SQLITE_OK.
4012** It might just as well be a procedure (returning void) but we continue
4013** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004014*/
4015int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004016 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004017 assert( pCur->eState==CURSOR_VALID );
drh3e28ff52014-09-24 00:59:08 +00004018 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004019 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004020 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004021 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004022}
4023
4024/*
danielk1977d04417962007-05-02 13:16:30 +00004025** Given the page number of an overflow page in the database (parameter
4026** ovfl), this function finds the page number of the next page in the
4027** linked list of overflow pages. If possible, it uses the auto-vacuum
4028** pointer-map data instead of reading the content of page ovfl to do so.
4029**
4030** If an error occurs an SQLite error code is returned. Otherwise:
4031**
danielk1977bea2a942009-01-20 17:06:27 +00004032** The page number of the next overflow page in the linked list is
4033** written to *pPgnoNext. If page ovfl is the last page in its linked
4034** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004035**
danielk1977bea2a942009-01-20 17:06:27 +00004036** If ppPage is not NULL, and a reference to the MemPage object corresponding
4037** to page number pOvfl was obtained, then *ppPage is set to point to that
4038** reference. It is the responsibility of the caller to call releasePage()
4039** on *ppPage to free the reference. In no reference was obtained (because
4040** the pointer-map was used to obtain the value for *pPgnoNext), then
4041** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004042*/
4043static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004044 BtShared *pBt, /* The database file */
4045 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004046 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004047 Pgno *pPgnoNext /* OUT: Next overflow page number */
4048){
4049 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004050 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004051 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004052
drh1fee73e2007-08-29 04:00:57 +00004053 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004054 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004055
4056#ifndef SQLITE_OMIT_AUTOVACUUM
4057 /* Try to find the next page in the overflow list using the
4058 ** autovacuum pointer-map pages. Guess that the next page in
4059 ** the overflow list is page number (ovfl+1). If that guess turns
4060 ** out to be wrong, fall back to loading the data of page
4061 ** number ovfl to determine the next page number.
4062 */
4063 if( pBt->autoVacuum ){
4064 Pgno pgno;
4065 Pgno iGuess = ovfl+1;
4066 u8 eType;
4067
4068 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4069 iGuess++;
4070 }
4071
drhb1299152010-03-30 22:58:33 +00004072 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004073 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004074 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004075 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004076 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004077 }
4078 }
4079 }
4080#endif
4081
danielk1977d8a3f3d2009-07-11 11:45:23 +00004082 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004083 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004084 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004085 assert( rc==SQLITE_OK || pPage==0 );
4086 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004087 next = get4byte(pPage->aData);
4088 }
danielk1977443c0592009-01-16 15:21:05 +00004089 }
danielk197745d68822009-01-16 16:23:38 +00004090
danielk1977bea2a942009-01-20 17:06:27 +00004091 *pPgnoNext = next;
4092 if( ppPage ){
4093 *ppPage = pPage;
4094 }else{
4095 releasePage(pPage);
4096 }
4097 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004098}
4099
danielk1977da107192007-05-04 08:32:13 +00004100/*
4101** Copy data from a buffer to a page, or from a page to a buffer.
4102**
4103** pPayload is a pointer to data stored on database page pDbPage.
4104** If argument eOp is false, then nByte bytes of data are copied
4105** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4106** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4107** of data are copied from the buffer pBuf to pPayload.
4108**
4109** SQLITE_OK is returned on success, otherwise an error code.
4110*/
4111static int copyPayload(
4112 void *pPayload, /* Pointer to page data */
4113 void *pBuf, /* Pointer to buffer */
4114 int nByte, /* Number of bytes to copy */
4115 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4116 DbPage *pDbPage /* Page containing pPayload */
4117){
4118 if( eOp ){
4119 /* Copy data from buffer to page (a write operation) */
4120 int rc = sqlite3PagerWrite(pDbPage);
4121 if( rc!=SQLITE_OK ){
4122 return rc;
4123 }
4124 memcpy(pPayload, pBuf, nByte);
4125 }else{
4126 /* Copy data from page to buffer (a read operation) */
4127 memcpy(pBuf, pPayload, nByte);
4128 }
4129 return SQLITE_OK;
4130}
danielk1977d04417962007-05-02 13:16:30 +00004131
4132/*
danielk19779f8d6402007-05-02 17:48:45 +00004133** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004134** for the entry that the pCur cursor is pointing to. The eOp
4135** argument is interpreted as follows:
4136**
4137** 0: The operation is a read. Populate the overflow cache.
4138** 1: The operation is a write. Populate the overflow cache.
4139** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004140**
4141** A total of "amt" bytes are read or written beginning at "offset".
4142** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004143**
drh3bcdfd22009-07-12 02:32:21 +00004144** The content being read or written might appear on the main page
4145** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004146**
dan5a500af2014-03-11 20:33:04 +00004147** If the current cursor entry uses one or more overflow pages and the
4148** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004149** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004150** Subsequent calls use this cache to make seeking to the supplied offset
4151** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004152**
4153** Once an overflow page-list cache has been allocated, it may be
4154** invalidated if some other cursor writes to the same table, or if
4155** the cursor is moved to a different row. Additionally, in auto-vacuum
4156** mode, the following events may invalidate an overflow page-list cache.
4157**
4158** * An incremental vacuum,
4159** * A commit in auto_vacuum="full" mode,
4160** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004161*/
danielk19779f8d6402007-05-02 17:48:45 +00004162static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004163 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004164 u32 offset, /* Begin reading this far into payload */
4165 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004166 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004167 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004168){
4169 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004170 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004171 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004172 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004173 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004174#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004175 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004176 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004177#endif
drh3aac2dd2004-04-26 14:10:20 +00004178
danielk1977da107192007-05-04 08:32:13 +00004179 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004180 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004181 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004182 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004183 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004184
drh86057612007-06-26 01:04:48 +00004185 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004186 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004187#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004188 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004189#endif
drhab1cc582014-09-23 21:25:19 +00004190 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004191
drhab1cc582014-09-23 21:25:19 +00004192 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004193 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004194 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004195 }
danielk1977da107192007-05-04 08:32:13 +00004196
4197 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004198 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004199 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004200 if( a+offset>pCur->info.nLocal ){
4201 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004202 }
dan5a500af2014-03-11 20:33:04 +00004203 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004204 offset = 0;
drha34b6762004-05-07 13:30:42 +00004205 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004206 amt -= a;
drhdd793422001-06-28 01:54:48 +00004207 }else{
drhfa1a98a2004-05-14 19:08:17 +00004208 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004209 }
danielk1977da107192007-05-04 08:32:13 +00004210
4211 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004212 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004213 Pgno nextPage;
4214
drhfa1a98a2004-05-14 19:08:17 +00004215 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004216
drha38c9512014-04-01 01:24:34 +00004217 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4218 ** Except, do not allocate aOverflow[] for eOp==2.
4219 **
4220 ** The aOverflow[] array is sized at one entry for each overflow page
4221 ** in the overflow chain. The page number of the first overflow page is
4222 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4223 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004224 */
drh036dbec2014-03-11 23:40:44 +00004225 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004226 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004227 if( nOvfl>pCur->nOvflAlloc ){
4228 Pgno *aNew = (Pgno*)sqlite3DbRealloc(
4229 pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4230 );
4231 if( aNew==0 ){
4232 rc = SQLITE_NOMEM;
4233 }else{
4234 pCur->nOvflAlloc = nOvfl*2;
4235 pCur->aOverflow = aNew;
4236 }
4237 }
4238 if( rc==SQLITE_OK ){
4239 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004240 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004241 }
4242 }
danielk1977da107192007-05-04 08:32:13 +00004243
4244 /* If the overflow page-list cache has been allocated and the
4245 ** entry for the first required overflow page is valid, skip
4246 ** directly to it.
4247 */
drh3f387402014-09-24 01:23:00 +00004248 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4249 && pCur->aOverflow[offset/ovflSize]
4250 ){
danielk19772dec9702007-05-02 16:48:37 +00004251 iIdx = (offset/ovflSize);
4252 nextPage = pCur->aOverflow[iIdx];
4253 offset = (offset%ovflSize);
4254 }
danielk1977da107192007-05-04 08:32:13 +00004255
4256 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4257
danielk1977da107192007-05-04 08:32:13 +00004258 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004259 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004260 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4261 pCur->aOverflow[iIdx] = nextPage;
4262 }
danielk1977da107192007-05-04 08:32:13 +00004263
danielk1977d04417962007-05-02 13:16:30 +00004264 if( offset>=ovflSize ){
4265 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004266 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004267 ** data is not required. So first try to lookup the overflow
4268 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004269 ** function.
drha38c9512014-04-01 01:24:34 +00004270 **
4271 ** Note that the aOverflow[] array must be allocated because eOp!=2
4272 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004273 */
drha38c9512014-04-01 01:24:34 +00004274 assert( eOp!=2 );
4275 assert( pCur->curFlags & BTCF_ValidOvfl );
4276 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004277 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004278 }else{
danielk1977da107192007-05-04 08:32:13 +00004279 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004280 }
danielk1977da107192007-05-04 08:32:13 +00004281 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004282 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004283 /* Need to read this page properly. It contains some of the
4284 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004285 */
danf4ba1092011-10-08 14:57:07 +00004286#ifdef SQLITE_DIRECT_OVERFLOW_READ
4287 sqlite3_file *fd;
4288#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004289 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004290 if( a + offset > ovflSize ){
4291 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004292 }
danf4ba1092011-10-08 14:57:07 +00004293
4294#ifdef SQLITE_DIRECT_OVERFLOW_READ
4295 /* If all the following are true:
4296 **
4297 ** 1) this is a read operation, and
4298 ** 2) data is required from the start of this overflow page, and
4299 ** 3) the database is file-backed, and
4300 ** 4) there is no open write-transaction, and
4301 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004302 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004303 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004304 **
4305 ** then data can be read directly from the database file into the
4306 ** output buffer, bypassing the page-cache altogether. This speeds
4307 ** up loading large records that span many overflow pages.
4308 */
dan5a500af2014-03-11 20:33:04 +00004309 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004310 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004311 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004312 && pBt->inTransaction==TRANS_READ /* (4) */
4313 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4314 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004315 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004316 ){
4317 u8 aSave[4];
4318 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004319 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004320 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004321 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004322 nextPage = get4byte(aWrite);
4323 memcpy(aWrite, aSave, 4);
4324 }else
4325#endif
4326
4327 {
4328 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004329 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004330 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004331 );
danf4ba1092011-10-08 14:57:07 +00004332 if( rc==SQLITE_OK ){
4333 aPayload = sqlite3PagerGetData(pDbPage);
4334 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004335 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004336 sqlite3PagerUnref(pDbPage);
4337 offset = 0;
4338 }
4339 }
4340 amt -= a;
4341 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004342 }
drh2af926b2001-05-15 00:39:25 +00004343 }
drh2af926b2001-05-15 00:39:25 +00004344 }
danielk1977cfe9a692004-06-16 12:00:29 +00004345
danielk1977da107192007-05-04 08:32:13 +00004346 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004347 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004348 }
danielk1977da107192007-05-04 08:32:13 +00004349 return rc;
drh2af926b2001-05-15 00:39:25 +00004350}
4351
drh72f82862001-05-24 21:06:34 +00004352/*
drh3aac2dd2004-04-26 14:10:20 +00004353** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004354** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004355** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004356**
drh5d1a8722009-07-22 18:07:40 +00004357** The caller must ensure that pCur is pointing to a valid row
4358** in the table.
4359**
drh3aac2dd2004-04-26 14:10:20 +00004360** Return SQLITE_OK on success or an error code if anything goes
4361** wrong. An error is returned if "offset+amt" is larger than
4362** the available payload.
drh72f82862001-05-24 21:06:34 +00004363*/
drha34b6762004-05-07 13:30:42 +00004364int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004365 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004366 assert( pCur->eState==CURSOR_VALID );
4367 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4368 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4369 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004370}
4371
4372/*
drh3aac2dd2004-04-26 14:10:20 +00004373** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004374** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004375** begins at "offset".
4376**
4377** Return SQLITE_OK on success or an error code if anything goes
4378** wrong. An error is returned if "offset+amt" is larger than
4379** the available payload.
drh72f82862001-05-24 21:06:34 +00004380*/
drh3aac2dd2004-04-26 14:10:20 +00004381int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004382 int rc;
4383
danielk19773588ceb2008-06-10 17:30:26 +00004384#ifndef SQLITE_OMIT_INCRBLOB
4385 if ( pCur->eState==CURSOR_INVALID ){
4386 return SQLITE_ABORT;
4387 }
4388#endif
4389
drh1fee73e2007-08-29 04:00:57 +00004390 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004391 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004392 if( rc==SQLITE_OK ){
4393 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004394 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4395 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004396 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004397 }
4398 return rc;
drh2af926b2001-05-15 00:39:25 +00004399}
4400
drh72f82862001-05-24 21:06:34 +00004401/*
drh0e1c19e2004-05-11 00:58:56 +00004402** Return a pointer to payload information from the entry that the
4403** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004404** the key if index btrees (pPage->intKey==0) and is the data for
4405** table btrees (pPage->intKey==1). The number of bytes of available
4406** key/data is written into *pAmt. If *pAmt==0, then the value
4407** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004408**
4409** This routine is an optimization. It is common for the entire key
4410** and data to fit on the local page and for there to be no overflow
4411** pages. When that is so, this routine can be used to access the
4412** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004413** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004414** the key/data and copy it into a preallocated buffer.
4415**
4416** The pointer returned by this routine looks directly into the cached
4417** page of the database. The data might change or move the next time
4418** any btree routine is called.
4419*/
drh2a8d2262013-12-09 20:43:22 +00004420static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004421 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004422 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004423){
danielk197771d5d2c2008-09-29 11:49:47 +00004424 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004425 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004426 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004427 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004428 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004429 assert( pCur->info.nSize>0 );
drh2a8d2262013-12-09 20:43:22 +00004430 *pAmt = pCur->info.nLocal;
drhab1cc582014-09-23 21:25:19 +00004431 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004432}
4433
4434
4435/*
drhe51c44f2004-05-30 20:46:09 +00004436** For the entry that cursor pCur is point to, return as
4437** many bytes of the key or data as are available on the local
4438** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004439**
4440** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004441** or be destroyed on the next call to any Btree routine,
4442** including calls from other threads against the same cache.
4443** Hence, a mutex on the BtShared should be held prior to calling
4444** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004445**
4446** These routines is used to get quick access to key and data
4447** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004448*/
drh501932c2013-11-21 21:59:53 +00004449const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004450 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004451}
drh501932c2013-11-21 21:59:53 +00004452const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004453 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004454}
4455
4456
4457/*
drh8178a752003-01-05 21:41:40 +00004458** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004459** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004460**
4461** This function returns SQLITE_CORRUPT if the page-header flags field of
4462** the new child page does not match the flags field of the parent (i.e.
4463** if an intkey page appears to be the parent of a non-intkey page, or
4464** vice-versa).
drh72f82862001-05-24 21:06:34 +00004465*/
drh3aac2dd2004-04-26 14:10:20 +00004466static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004467 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004468 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004469 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004470 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004471
drh1fee73e2007-08-29 04:00:57 +00004472 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004473 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004474 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004475 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004476 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4477 return SQLITE_CORRUPT_BKPT;
4478 }
drhb00fc3b2013-08-21 23:42:32 +00004479 rc = getAndInitPage(pBt, newPgno, &pNewPage,
drh036dbec2014-03-11 23:40:44 +00004480 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004481 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004482 pCur->apPage[i+1] = pNewPage;
4483 pCur->aiIdx[i+1] = 0;
4484 pCur->iPage++;
4485
drh271efa52004-05-30 19:19:05 +00004486 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004487 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk1977bd5969a2009-07-11 17:39:42 +00004488 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004489 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004490 }
drh72f82862001-05-24 21:06:34 +00004491 return SQLITE_OK;
4492}
4493
danbb246c42012-01-12 14:25:55 +00004494#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004495/*
4496** Page pParent is an internal (non-leaf) tree page. This function
4497** asserts that page number iChild is the left-child if the iIdx'th
4498** cell in page pParent. Or, if iIdx is equal to the total number of
4499** cells in pParent, that page number iChild is the right-child of
4500** the page.
4501*/
4502static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4503 assert( iIdx<=pParent->nCell );
4504 if( iIdx==pParent->nCell ){
4505 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4506 }else{
4507 assert( get4byte(findCell(pParent, iIdx))==iChild );
4508 }
4509}
4510#else
4511# define assertParentIndex(x,y,z)
4512#endif
4513
drh72f82862001-05-24 21:06:34 +00004514/*
drh5e2f8b92001-05-28 00:41:15 +00004515** Move the cursor up to the parent page.
4516**
4517** pCur->idx is set to the cell index that contains the pointer
4518** to the page we are coming from. If we are coming from the
4519** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004520** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004521*/
danielk197730548662009-07-09 05:07:37 +00004522static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004523 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004524 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004525 assert( pCur->iPage>0 );
4526 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004527
4528 /* UPDATE: It is actually possible for the condition tested by the assert
4529 ** below to be untrue if the database file is corrupt. This can occur if
4530 ** one cursor has modified page pParent while a reference to it is held
4531 ** by a second cursor. Which can only happen if a single page is linked
4532 ** into more than one b-tree structure in a corrupt database. */
4533#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004534 assertParentIndex(
4535 pCur->apPage[pCur->iPage-1],
4536 pCur->aiIdx[pCur->iPage-1],
4537 pCur->apPage[pCur->iPage]->pgno
4538 );
danbb246c42012-01-12 14:25:55 +00004539#endif
dan6c2688c2012-01-12 15:05:03 +00004540 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004541
danielk197771d5d2c2008-09-29 11:49:47 +00004542 releasePage(pCur->apPage[pCur->iPage]);
4543 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004544 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004545 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh72f82862001-05-24 21:06:34 +00004546}
4547
4548/*
danielk19778f880a82009-07-13 09:41:45 +00004549** Move the cursor to point to the root page of its b-tree structure.
4550**
4551** If the table has a virtual root page, then the cursor is moved to point
4552** to the virtual root page instead of the actual root page. A table has a
4553** virtual root page when the actual root page contains no cells and a
4554** single child page. This can only happen with the table rooted at page 1.
4555**
4556** If the b-tree structure is empty, the cursor state is set to
4557** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4558** cell located on the root (or virtual root) page and the cursor state
4559** is set to CURSOR_VALID.
4560**
4561** If this function returns successfully, it may be assumed that the
4562** page-header flags indicate that the [virtual] root-page is the expected
4563** kind of b-tree page (i.e. if when opening the cursor the caller did not
4564** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4565** indicating a table b-tree, or if the caller did specify a KeyInfo
4566** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4567** b-tree).
drh72f82862001-05-24 21:06:34 +00004568*/
drh5e2f8b92001-05-28 00:41:15 +00004569static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004570 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004571 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004572
drh1fee73e2007-08-29 04:00:57 +00004573 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004574 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4575 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4576 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4577 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4578 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004579 assert( pCur->skipNext!=SQLITE_OK );
4580 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004581 }
danielk1977be51a652008-10-08 17:58:48 +00004582 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004583 }
danielk197771d5d2c2008-09-29 11:49:47 +00004584
4585 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004586 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004587 }else if( pCur->pgnoRoot==0 ){
4588 pCur->eState = CURSOR_INVALID;
4589 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004590 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004591 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh036dbec2014-03-11 23:40:44 +00004592 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004593 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004594 pCur->eState = CURSOR_INVALID;
4595 return rc;
4596 }
danielk1977172114a2009-07-07 15:47:12 +00004597 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004598 }
danielk197771d5d2c2008-09-29 11:49:47 +00004599 pRoot = pCur->apPage[0];
4600 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004601
4602 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4603 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4604 ** NULL, the caller expects a table b-tree. If this is not the case,
4605 ** return an SQLITE_CORRUPT error.
4606 **
4607 ** Earlier versions of SQLite assumed that this test could not fail
4608 ** if the root page was already loaded when this function was called (i.e.
4609 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4610 ** in such a way that page pRoot is linked into a second b-tree table
4611 ** (or the freelist). */
4612 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4613 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4614 return SQLITE_CORRUPT_BKPT;
4615 }
danielk19778f880a82009-07-13 09:41:45 +00004616
danielk197771d5d2c2008-09-29 11:49:47 +00004617 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004618 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004619 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004620
drh4e8fe3f2013-12-06 23:25:27 +00004621 if( pRoot->nCell>0 ){
4622 pCur->eState = CURSOR_VALID;
4623 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004624 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004625 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004626 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004627 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004628 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004629 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004630 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004631 }
4632 return rc;
drh72f82862001-05-24 21:06:34 +00004633}
drh2af926b2001-05-15 00:39:25 +00004634
drh5e2f8b92001-05-28 00:41:15 +00004635/*
4636** Move the cursor down to the left-most leaf entry beneath the
4637** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004638**
4639** The left-most leaf is the one with the smallest key - the first
4640** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004641*/
4642static int moveToLeftmost(BtCursor *pCur){
4643 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004644 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004645 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004646
drh1fee73e2007-08-29 04:00:57 +00004647 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004648 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004649 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4650 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4651 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004652 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004653 }
drhd677b3d2007-08-20 22:48:41 +00004654 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004655}
4656
drh2dcc9aa2002-12-04 13:40:25 +00004657/*
4658** Move the cursor down to the right-most leaf entry beneath the
4659** page to which it is currently pointing. Notice the difference
4660** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4661** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4662** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004663**
4664** The right-most entry is the one with the largest key - the last
4665** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004666*/
4667static int moveToRightmost(BtCursor *pCur){
4668 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004669 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004670 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004671
drh1fee73e2007-08-29 04:00:57 +00004672 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004673 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004674 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004675 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004676 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004677 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004678 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004679 }
drhee6438d2014-09-01 13:29:32 +00004680 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4681 assert( pCur->info.nSize==0 );
4682 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4683 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004684}
4685
drh5e00f6c2001-09-13 13:46:56 +00004686/* Move the cursor to the first entry in the table. Return SQLITE_OK
4687** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004688** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004689*/
drh3aac2dd2004-04-26 14:10:20 +00004690int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004691 int rc;
drhd677b3d2007-08-20 22:48:41 +00004692
drh1fee73e2007-08-29 04:00:57 +00004693 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004694 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004695 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004696 if( rc==SQLITE_OK ){
4697 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004698 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004699 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004700 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004701 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004702 *pRes = 0;
4703 rc = moveToLeftmost(pCur);
4704 }
drh5e00f6c2001-09-13 13:46:56 +00004705 }
drh5e00f6c2001-09-13 13:46:56 +00004706 return rc;
4707}
drh5e2f8b92001-05-28 00:41:15 +00004708
drh9562b552002-02-19 15:00:07 +00004709/* Move the cursor to the last entry in the table. Return SQLITE_OK
4710** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004711** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004712*/
drh3aac2dd2004-04-26 14:10:20 +00004713int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004714 int rc;
drhd677b3d2007-08-20 22:48:41 +00004715
drh1fee73e2007-08-29 04:00:57 +00004716 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004717 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004718
4719 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004720 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004721#ifdef SQLITE_DEBUG
4722 /* This block serves to assert() that the cursor really does point
4723 ** to the last entry in the b-tree. */
4724 int ii;
4725 for(ii=0; ii<pCur->iPage; ii++){
4726 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4727 }
4728 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4729 assert( pCur->apPage[pCur->iPage]->leaf );
4730#endif
4731 return SQLITE_OK;
4732 }
4733
drh9562b552002-02-19 15:00:07 +00004734 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004735 if( rc==SQLITE_OK ){
4736 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004737 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004738 *pRes = 1;
4739 }else{
4740 assert( pCur->eState==CURSOR_VALID );
4741 *pRes = 0;
4742 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004743 if( rc==SQLITE_OK ){
4744 pCur->curFlags |= BTCF_AtLast;
4745 }else{
4746 pCur->curFlags &= ~BTCF_AtLast;
4747 }
4748
drhd677b3d2007-08-20 22:48:41 +00004749 }
drh9562b552002-02-19 15:00:07 +00004750 }
drh9562b552002-02-19 15:00:07 +00004751 return rc;
4752}
4753
drhe14006d2008-03-25 17:23:32 +00004754/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004755** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004756**
drhe63d9992008-08-13 19:11:48 +00004757** For INTKEY tables, the intKey parameter is used. pIdxKey
4758** must be NULL. For index tables, pIdxKey is used and intKey
4759** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004760**
drh5e2f8b92001-05-28 00:41:15 +00004761** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004762** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004763** were present. The cursor might point to an entry that comes
4764** before or after the key.
4765**
drh64022502009-01-09 14:11:04 +00004766** An integer is written into *pRes which is the result of
4767** comparing the key with the entry to which the cursor is
4768** pointing. The meaning of the integer written into
4769** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004770**
4771** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004772** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004773** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004774**
4775** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004776** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004777**
4778** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004779** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004780**
drha059ad02001-04-17 20:09:11 +00004781*/
drhe63d9992008-08-13 19:11:48 +00004782int sqlite3BtreeMovetoUnpacked(
4783 BtCursor *pCur, /* The cursor to be moved */
4784 UnpackedRecord *pIdxKey, /* Unpacked index key */
4785 i64 intKey, /* The table key */
4786 int biasRight, /* If true, bias the search to the high end */
4787 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004788){
drh72f82862001-05-24 21:06:34 +00004789 int rc;
dan3b9330f2014-02-27 20:44:18 +00004790 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004791
drh1fee73e2007-08-29 04:00:57 +00004792 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004793 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004794 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004795 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004796
4797 /* If the cursor is already positioned at the point we are trying
4798 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00004799 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00004800 && pCur->apPage[0]->intKey
4801 ){
drhe63d9992008-08-13 19:11:48 +00004802 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004803 *pRes = 0;
4804 return SQLITE_OK;
4805 }
drh036dbec2014-03-11 23:40:44 +00004806 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004807 *pRes = -1;
4808 return SQLITE_OK;
4809 }
4810 }
4811
dan1fed5da2014-02-25 21:01:25 +00004812 if( pIdxKey ){
4813 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00004814 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00004815 assert( pIdxKey->default_rc==1
4816 || pIdxKey->default_rc==0
4817 || pIdxKey->default_rc==-1
4818 );
drh13a747e2014-03-03 21:46:55 +00004819 }else{
drhb6e8fd12014-03-06 01:56:33 +00004820 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004821 }
4822
drh5e2f8b92001-05-28 00:41:15 +00004823 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004824 if( rc ){
4825 return rc;
4826 }
dana205a482011-08-27 18:48:57 +00004827 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4828 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4829 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004830 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004831 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004832 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004833 return SQLITE_OK;
4834 }
danielk197771d5d2c2008-09-29 11:49:47 +00004835 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004836 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004837 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004838 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004839 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004840 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004841
4842 /* pPage->nCell must be greater than zero. If this is the root-page
4843 ** the cursor would have been INVALID above and this for(;;) loop
4844 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004845 ** would have already detected db corruption. Similarly, pPage must
4846 ** be the right kind (index or table) of b-tree page. Otherwise
4847 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004848 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004849 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004850 lwr = 0;
4851 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00004852 assert( biasRight==0 || biasRight==1 );
4853 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00004854 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00004855 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00004856 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004857 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00004858 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3e28ff52014-09-24 00:59:08 +00004859 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00004860 while( 0x80 <= *(pCell++) ){
4861 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4862 }
drhd172f862006-01-12 15:01:15 +00004863 }
drha2c20e42008-03-29 16:01:04 +00004864 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00004865 if( nCellKey<intKey ){
4866 lwr = idx+1;
4867 if( lwr>upr ){ c = -1; break; }
4868 }else if( nCellKey>intKey ){
4869 upr = idx-1;
4870 if( lwr>upr ){ c = +1; break; }
4871 }else{
4872 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00004873 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00004874 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00004875 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004876 if( !pPage->leaf ){
4877 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00004878 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00004879 }else{
4880 *pRes = 0;
4881 rc = SQLITE_OK;
4882 goto moveto_finish;
4883 }
drhd793f442013-11-25 14:10:15 +00004884 }
drhebf10b12013-11-25 17:38:26 +00004885 assert( lwr+upr>=0 );
4886 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00004887 }
4888 }else{
4889 for(;;){
4890 int nCell;
drhec3e6b12013-11-25 02:38:55 +00004891 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4892
drhb2eced52010-08-12 02:41:12 +00004893 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004894 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004895 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004896 ** varint. This information is used to attempt to avoid parsing
4897 ** the entire cell by checking for the cases where the record is
4898 ** stored entirely within the b-tree page by inspecting the first
4899 ** 2 bytes of the cell.
4900 */
drhec3e6b12013-11-25 02:38:55 +00004901 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00004902 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00004903 /* This branch runs if the record-size field of the cell is a
4904 ** single byte varint and the record fits entirely on the main
4905 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004906 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00004907 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00004908 }else if( !(pCell[1] & 0x80)
4909 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4910 ){
4911 /* The record-size field is a 2 byte varint and the record
4912 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004913 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00004914 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004915 }else{
danielk197711c327a2009-05-04 19:01:26 +00004916 /* The record flows over onto one or more overflow pages. In
4917 ** this case the whole cell needs to be parsed, a buffer allocated
4918 ** and accessPayload() used to retrieve the record into the
4919 ** buffer before VdbeRecordCompare() can be called. */
4920 void *pCellKey;
4921 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004922 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004923 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004924 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004925 if( pCellKey==0 ){
4926 rc = SQLITE_NOMEM;
4927 goto moveto_finish;
4928 }
drhd793f442013-11-25 14:10:15 +00004929 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00004930 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00004931 if( rc ){
4932 sqlite3_free(pCellKey);
4933 goto moveto_finish;
4934 }
drh75179de2014-09-16 14:37:35 +00004935 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004936 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004937 }
dan38fdead2014-04-01 10:19:02 +00004938 assert(
4939 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00004940 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00004941 );
drhbb933ef2013-11-25 15:01:38 +00004942 if( c<0 ){
4943 lwr = idx+1;
4944 }else if( c>0 ){
4945 upr = idx-1;
4946 }else{
4947 assert( c==0 );
drh64022502009-01-09 14:11:04 +00004948 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004949 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00004950 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00004951 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00004952 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004953 }
drhebf10b12013-11-25 17:38:26 +00004954 if( lwr>upr ) break;
4955 assert( lwr+upr>=0 );
4956 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00004957 }
drh72f82862001-05-24 21:06:34 +00004958 }
drhb07028f2011-10-14 21:49:18 +00004959 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004960 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004961 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00004962 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00004963 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004964 *pRes = c;
4965 rc = SQLITE_OK;
4966 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00004967 }
4968moveto_next_layer:
4969 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004970 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004971 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004972 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004973 }
drhf49661a2008-12-10 16:45:50 +00004974 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00004975 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00004976 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00004977 }
drh1e968a02008-03-25 00:22:21 +00004978moveto_finish:
drhd2022b02013-11-25 16:23:52 +00004979 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004980 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00004981 return rc;
4982}
4983
drhd677b3d2007-08-20 22:48:41 +00004984
drh72f82862001-05-24 21:06:34 +00004985/*
drhc39e0002004-05-07 23:50:57 +00004986** Return TRUE if the cursor is not pointing at an entry of the table.
4987**
4988** TRUE will be returned after a call to sqlite3BtreeNext() moves
4989** past the last entry in the table or sqlite3BtreePrev() moves past
4990** the first entry. TRUE is also returned if the table is empty.
4991*/
4992int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004993 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4994 ** have been deleted? This API will need to change to return an error code
4995 ** as well as the boolean result value.
4996 */
4997 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004998}
4999
5000/*
drhbd03cae2001-06-02 02:40:57 +00005001** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005002** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005003** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005004** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005005**
drhee6438d2014-09-01 13:29:32 +00005006** The main entry point is sqlite3BtreeNext(). That routine is optimized
5007** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5008** to the next cell on the current page. The (slower) btreeNext() helper
5009** routine is called when it is necessary to move to a different page or
5010** to restore the cursor.
5011**
drhe39a7322014-02-03 14:04:11 +00005012** The calling function will set *pRes to 0 or 1. The initial *pRes value
5013** will be 1 if the cursor being stepped corresponds to an SQL index and
5014** if this routine could have been skipped if that SQL index had been
5015** a unique index. Otherwise the caller will have set *pRes to zero.
5016** Zero is the common case. The btree implementation is free to use the
5017** initial *pRes value as a hint to improve performance, but the current
5018** SQLite btree implementation does not. (Note that the comdb2 btree
5019** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005020*/
drhee6438d2014-09-01 13:29:32 +00005021static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005022 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005023 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005024 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005025
drh1fee73e2007-08-29 04:00:57 +00005026 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005027 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005028 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005029 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005030 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005031 rc = restoreCursorPosition(pCur);
5032 if( rc!=SQLITE_OK ){
5033 return rc;
5034 }
5035 if( CURSOR_INVALID==pCur->eState ){
5036 *pRes = 1;
5037 return SQLITE_OK;
5038 }
drh9b47ee32013-08-20 03:13:51 +00005039 if( pCur->skipNext ){
5040 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5041 pCur->eState = CURSOR_VALID;
5042 if( pCur->skipNext>0 ){
5043 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005044 return SQLITE_OK;
5045 }
drhf66f26a2013-08-19 20:04:10 +00005046 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005047 }
danielk1977da184232006-01-05 11:34:32 +00005048 }
danielk1977da184232006-01-05 11:34:32 +00005049
danielk197771d5d2c2008-09-29 11:49:47 +00005050 pPage = pCur->apPage[pCur->iPage];
5051 idx = ++pCur->aiIdx[pCur->iPage];
5052 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005053
5054 /* If the database file is corrupt, it is possible for the value of idx
5055 ** to be invalid here. This can only occur if a second cursor modifies
5056 ** the page while cursor pCur is holding a reference to it. Which can
5057 ** only happen if the database is corrupt in such a way as to link the
5058 ** page into more than one b-tree structure. */
5059 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005060
danielk197771d5d2c2008-09-29 11:49:47 +00005061 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005062 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005063 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005064 if( rc ) return rc;
5065 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005066 }
drh5e2f8b92001-05-28 00:41:15 +00005067 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005068 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005069 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005070 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005071 return SQLITE_OK;
5072 }
danielk197730548662009-07-09 05:07:37 +00005073 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005074 pPage = pCur->apPage[pCur->iPage];
5075 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005076 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005077 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005078 }else{
drhee6438d2014-09-01 13:29:32 +00005079 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005080 }
drh8178a752003-01-05 21:41:40 +00005081 }
drh3aac2dd2004-04-26 14:10:20 +00005082 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005083 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005084 }else{
5085 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005086 }
drh72f82862001-05-24 21:06:34 +00005087}
drhee6438d2014-09-01 13:29:32 +00005088int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5089 MemPage *pPage;
5090 assert( cursorHoldsMutex(pCur) );
5091 assert( pRes!=0 );
5092 assert( *pRes==0 || *pRes==1 );
5093 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5094 pCur->info.nSize = 0;
5095 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5096 *pRes = 0;
5097 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5098 pPage = pCur->apPage[pCur->iPage];
5099 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5100 pCur->aiIdx[pCur->iPage]--;
5101 return btreeNext(pCur, pRes);
5102 }
5103 if( pPage->leaf ){
5104 return SQLITE_OK;
5105 }else{
5106 return moveToLeftmost(pCur);
5107 }
5108}
drh72f82862001-05-24 21:06:34 +00005109
drh3b7511c2001-05-26 13:15:44 +00005110/*
drh2dcc9aa2002-12-04 13:40:25 +00005111** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005112** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005113** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005114** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005115**
drhee6438d2014-09-01 13:29:32 +00005116** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5117** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005118** to the previous cell on the current page. The (slower) btreePrevious()
5119** helper routine is called when it is necessary to move to a different page
5120** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005121**
drhe39a7322014-02-03 14:04:11 +00005122** The calling function will set *pRes to 0 or 1. The initial *pRes value
5123** will be 1 if the cursor being stepped corresponds to an SQL index and
5124** if this routine could have been skipped if that SQL index had been
5125** a unique index. Otherwise the caller will have set *pRes to zero.
5126** Zero is the common case. The btree implementation is free to use the
5127** initial *pRes value as a hint to improve performance, but the current
5128** SQLite btree implementation does not. (Note that the comdb2 btree
5129** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005130*/
drhee6438d2014-09-01 13:29:32 +00005131static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005132 int rc;
drh8178a752003-01-05 21:41:40 +00005133 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005134
drh1fee73e2007-08-29 04:00:57 +00005135 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005136 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005137 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005138 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005139 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5140 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005141 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005142 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005143 if( rc!=SQLITE_OK ){
5144 return rc;
drhf66f26a2013-08-19 20:04:10 +00005145 }
5146 if( CURSOR_INVALID==pCur->eState ){
5147 *pRes = 1;
5148 return SQLITE_OK;
5149 }
drh9b47ee32013-08-20 03:13:51 +00005150 if( pCur->skipNext ){
5151 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5152 pCur->eState = CURSOR_VALID;
5153 if( pCur->skipNext<0 ){
5154 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005155 return SQLITE_OK;
5156 }
drhf66f26a2013-08-19 20:04:10 +00005157 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005158 }
danielk1977da184232006-01-05 11:34:32 +00005159 }
danielk1977da184232006-01-05 11:34:32 +00005160
danielk197771d5d2c2008-09-29 11:49:47 +00005161 pPage = pCur->apPage[pCur->iPage];
5162 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005163 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005164 int idx = pCur->aiIdx[pCur->iPage];
5165 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005166 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005167 rc = moveToRightmost(pCur);
5168 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005169 while( pCur->aiIdx[pCur->iPage]==0 ){
5170 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005171 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005172 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005173 return SQLITE_OK;
5174 }
danielk197730548662009-07-09 05:07:37 +00005175 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005176 }
drhee6438d2014-09-01 13:29:32 +00005177 assert( pCur->info.nSize==0 );
5178 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005179
5180 pCur->aiIdx[pCur->iPage]--;
5181 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005182 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005183 rc = sqlite3BtreePrevious(pCur, pRes);
5184 }else{
5185 rc = SQLITE_OK;
5186 }
drh2dcc9aa2002-12-04 13:40:25 +00005187 }
drh2dcc9aa2002-12-04 13:40:25 +00005188 return rc;
5189}
drhee6438d2014-09-01 13:29:32 +00005190int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5191 assert( cursorHoldsMutex(pCur) );
5192 assert( pRes!=0 );
5193 assert( *pRes==0 || *pRes==1 );
5194 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5195 *pRes = 0;
5196 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5197 pCur->info.nSize = 0;
5198 if( pCur->eState!=CURSOR_VALID
5199 || pCur->aiIdx[pCur->iPage]==0
5200 || pCur->apPage[pCur->iPage]->leaf==0
5201 ){
5202 return btreePrevious(pCur, pRes);
5203 }
5204 pCur->aiIdx[pCur->iPage]--;
5205 return SQLITE_OK;
5206}
drh2dcc9aa2002-12-04 13:40:25 +00005207
5208/*
drh3b7511c2001-05-26 13:15:44 +00005209** Allocate a new page from the database file.
5210**
danielk19773b8a05f2007-03-19 17:44:26 +00005211** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005212** has already been called on the new page.) The new page has also
5213** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005214** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005215**
5216** SQLITE_OK is returned on success. Any other return value indicates
5217** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00005218** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00005219**
drh82e647d2013-03-02 03:25:55 +00005220** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005221** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005222** attempt to keep related pages close to each other in the database file,
5223** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005224**
drh82e647d2013-03-02 03:25:55 +00005225** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5226** anywhere on the free-list, then it is guaranteed to be returned. If
5227** eMode is BTALLOC_LT then the page returned will be less than or equal
5228** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5229** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005230*/
drh4f0c5872007-03-26 22:05:01 +00005231static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005232 BtShared *pBt, /* The btree */
5233 MemPage **ppPage, /* Store pointer to the allocated page here */
5234 Pgno *pPgno, /* Store the page number here */
5235 Pgno nearby, /* Search for a page near this one */
5236 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005237){
drh3aac2dd2004-04-26 14:10:20 +00005238 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005239 int rc;
drh35cd6432009-06-05 14:17:21 +00005240 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005241 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005242 MemPage *pTrunk = 0;
5243 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005244 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005245
drh1fee73e2007-08-29 04:00:57 +00005246 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005247 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005248 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005249 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005250 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5251 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005252 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005253 testcase( n==mxPage-1 );
5254 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005255 return SQLITE_CORRUPT_BKPT;
5256 }
drh3aac2dd2004-04-26 14:10:20 +00005257 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005258 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005259 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005260 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5261
drh82e647d2013-03-02 03:25:55 +00005262 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005263 ** shows that the page 'nearby' is somewhere on the free-list, then
5264 ** the entire-list will be searched for that page.
5265 */
5266#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005267 if( eMode==BTALLOC_EXACT ){
5268 if( nearby<=mxPage ){
5269 u8 eType;
5270 assert( nearby>0 );
5271 assert( pBt->autoVacuum );
5272 rc = ptrmapGet(pBt, nearby, &eType, 0);
5273 if( rc ) return rc;
5274 if( eType==PTRMAP_FREEPAGE ){
5275 searchList = 1;
5276 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005277 }
dan51f0b6d2013-02-22 20:16:34 +00005278 }else if( eMode==BTALLOC_LE ){
5279 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005280 }
5281#endif
5282
5283 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5284 ** first free-list trunk page. iPrevTrunk is initially 1.
5285 */
danielk19773b8a05f2007-03-19 17:44:26 +00005286 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005287 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005288 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005289
5290 /* The code within this loop is run only once if the 'searchList' variable
5291 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005292 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5293 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005294 */
5295 do {
5296 pPrevTrunk = pTrunk;
5297 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005298 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5299 ** is the page number of the next freelist trunk page in the list or
5300 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005301 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005302 }else{
drh113762a2014-11-19 16:36:25 +00005303 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5304 ** stores the page number of the first page of the freelist, or zero if
5305 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005306 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005307 }
drhdf35a082009-07-09 02:24:35 +00005308 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005309 if( iTrunk>mxPage ){
5310 rc = SQLITE_CORRUPT_BKPT;
5311 }else{
drhb00fc3b2013-08-21 23:42:32 +00005312 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005313 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005314 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005315 pTrunk = 0;
5316 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005317 }
drhb07028f2011-10-14 21:49:18 +00005318 assert( pTrunk!=0 );
5319 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005320 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5321 ** is the number of leaf page pointers to follow. */
5322 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005323 if( k==0 && !searchList ){
5324 /* The trunk has no leaves and the list is not being searched.
5325 ** So extract the trunk page itself and use it as the newly
5326 ** allocated page */
5327 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005328 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005329 if( rc ){
5330 goto end_allocate_page;
5331 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005332 *pPgno = iTrunk;
5333 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5334 *ppPage = pTrunk;
5335 pTrunk = 0;
5336 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005337 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005338 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005339 rc = SQLITE_CORRUPT_BKPT;
5340 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005341#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005342 }else if( searchList
5343 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5344 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005345 /* The list is being searched and this trunk page is the page
5346 ** to allocate, regardless of whether it has leaves.
5347 */
dan51f0b6d2013-02-22 20:16:34 +00005348 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005349 *ppPage = pTrunk;
5350 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005351 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005352 if( rc ){
5353 goto end_allocate_page;
5354 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005355 if( k==0 ){
5356 if( !pPrevTrunk ){
5357 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5358 }else{
danf48c3552010-08-23 15:41:24 +00005359 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5360 if( rc!=SQLITE_OK ){
5361 goto end_allocate_page;
5362 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005363 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5364 }
5365 }else{
5366 /* The trunk page is required by the caller but it contains
5367 ** pointers to free-list leaves. The first leaf becomes a trunk
5368 ** page in this case.
5369 */
5370 MemPage *pNewTrunk;
5371 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005372 if( iNewTrunk>mxPage ){
5373 rc = SQLITE_CORRUPT_BKPT;
5374 goto end_allocate_page;
5375 }
drhdf35a082009-07-09 02:24:35 +00005376 testcase( iNewTrunk==mxPage );
drhb00fc3b2013-08-21 23:42:32 +00005377 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005378 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005379 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005380 }
danielk19773b8a05f2007-03-19 17:44:26 +00005381 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005382 if( rc!=SQLITE_OK ){
5383 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005384 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005385 }
5386 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5387 put4byte(&pNewTrunk->aData[4], k-1);
5388 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005389 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005390 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005391 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005392 put4byte(&pPage1->aData[32], iNewTrunk);
5393 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005394 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005395 if( rc ){
5396 goto end_allocate_page;
5397 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005398 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5399 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005400 }
5401 pTrunk = 0;
5402 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5403#endif
danielk1977e5765212009-06-17 11:13:28 +00005404 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005405 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005406 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005407 Pgno iPage;
5408 unsigned char *aData = pTrunk->aData;
5409 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005410 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005411 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005412 if( eMode==BTALLOC_LE ){
5413 for(i=0; i<k; i++){
5414 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005415 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005416 closest = i;
5417 break;
5418 }
5419 }
5420 }else{
5421 int dist;
5422 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5423 for(i=1; i<k; i++){
5424 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5425 if( d2<dist ){
5426 closest = i;
5427 dist = d2;
5428 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005429 }
5430 }
5431 }else{
5432 closest = 0;
5433 }
5434
5435 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005436 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005437 if( iPage>mxPage ){
5438 rc = SQLITE_CORRUPT_BKPT;
5439 goto end_allocate_page;
5440 }
drhdf35a082009-07-09 02:24:35 +00005441 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005442 if( !searchList
5443 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5444 ){
danielk1977bea2a942009-01-20 17:06:27 +00005445 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005446 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005447 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5448 ": %d more free pages\n",
5449 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005450 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5451 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005452 if( closest<k-1 ){
5453 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5454 }
5455 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005456 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drhb00fc3b2013-08-21 23:42:32 +00005457 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005458 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005459 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005460 if( rc!=SQLITE_OK ){
5461 releasePage(*ppPage);
5462 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005463 }
5464 searchList = 0;
5465 }
drhee696e22004-08-30 16:52:17 +00005466 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005467 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005468 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005469 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005470 }else{
danbc1a3c62013-02-23 16:40:46 +00005471 /* There are no pages on the freelist, so append a new page to the
5472 ** database image.
5473 **
5474 ** Normally, new pages allocated by this block can be requested from the
5475 ** pager layer with the 'no-content' flag set. This prevents the pager
5476 ** from trying to read the pages content from disk. However, if the
5477 ** current transaction has already run one or more incremental-vacuum
5478 ** steps, then the page we are about to allocate may contain content
5479 ** that is required in the event of a rollback. In this case, do
5480 ** not set the no-content flag. This causes the pager to load and journal
5481 ** the current page content before overwriting it.
5482 **
5483 ** Note that the pager will not actually attempt to load or journal
5484 ** content for any page that really does lie past the end of the database
5485 ** file on disk. So the effects of disabling the no-content optimization
5486 ** here are confined to those pages that lie between the end of the
5487 ** database image and the end of the database file.
5488 */
drh3f387402014-09-24 01:23:00 +00005489 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005490
drhdd3cd972010-03-27 17:12:36 +00005491 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5492 if( rc ) return rc;
5493 pBt->nPage++;
5494 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005495
danielk1977afcdd022004-10-31 16:25:42 +00005496#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005497 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005498 /* If *pPgno refers to a pointer-map page, allocate two new pages
5499 ** at the end of the file instead of one. The first allocated page
5500 ** becomes a new pointer-map page, the second is used by the caller.
5501 */
danielk1977ac861692009-03-28 10:54:22 +00005502 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005503 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5504 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005505 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005506 if( rc==SQLITE_OK ){
5507 rc = sqlite3PagerWrite(pPg->pDbPage);
5508 releasePage(pPg);
5509 }
5510 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005511 pBt->nPage++;
5512 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005513 }
5514#endif
drhdd3cd972010-03-27 17:12:36 +00005515 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5516 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005517
danielk1977599fcba2004-11-08 07:13:13 +00005518 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005519 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005520 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005521 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005522 if( rc!=SQLITE_OK ){
5523 releasePage(*ppPage);
5524 }
drh3a4c1412004-05-09 20:40:11 +00005525 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005526 }
danielk1977599fcba2004-11-08 07:13:13 +00005527
5528 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005529
5530end_allocate_page:
5531 releasePage(pTrunk);
5532 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005533 if( rc==SQLITE_OK ){
5534 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5535 releasePage(*ppPage);
dan7df42ab2014-01-20 18:25:44 +00005536 *ppPage = 0;
danielk1977b247c212008-11-21 09:09:01 +00005537 return SQLITE_CORRUPT_BKPT;
5538 }
5539 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005540 }else{
5541 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005542 }
drh93b4fc72011-04-07 14:47:01 +00005543 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005544 return rc;
5545}
5546
5547/*
danielk1977bea2a942009-01-20 17:06:27 +00005548** This function is used to add page iPage to the database file free-list.
5549** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005550**
danielk1977bea2a942009-01-20 17:06:27 +00005551** The value passed as the second argument to this function is optional.
5552** If the caller happens to have a pointer to the MemPage object
5553** corresponding to page iPage handy, it may pass it as the second value.
5554** Otherwise, it may pass NULL.
5555**
5556** If a pointer to a MemPage object is passed as the second argument,
5557** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005558*/
danielk1977bea2a942009-01-20 17:06:27 +00005559static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5560 MemPage *pTrunk = 0; /* Free-list trunk page */
5561 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5562 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5563 MemPage *pPage; /* Page being freed. May be NULL. */
5564 int rc; /* Return Code */
5565 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005566
danielk1977bea2a942009-01-20 17:06:27 +00005567 assert( sqlite3_mutex_held(pBt->mutex) );
5568 assert( iPage>1 );
5569 assert( !pMemPage || pMemPage->pgno==iPage );
5570
5571 if( pMemPage ){
5572 pPage = pMemPage;
5573 sqlite3PagerRef(pPage->pDbPage);
5574 }else{
5575 pPage = btreePageLookup(pBt, iPage);
5576 }
drh3aac2dd2004-04-26 14:10:20 +00005577
drha34b6762004-05-07 13:30:42 +00005578 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005579 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005580 if( rc ) goto freepage_out;
5581 nFree = get4byte(&pPage1->aData[36]);
5582 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005583
drhc9166342012-01-05 23:32:06 +00005584 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005585 /* If the secure_delete option is enabled, then
5586 ** always fully overwrite deleted information with zeros.
5587 */
drhb00fc3b2013-08-21 23:42:32 +00005588 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005589 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005590 ){
5591 goto freepage_out;
5592 }
5593 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005594 }
drhfcce93f2006-02-22 03:08:32 +00005595
danielk1977687566d2004-11-02 12:56:41 +00005596 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005597 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005598 */
danielk197785d90ca2008-07-19 14:25:15 +00005599 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005600 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005601 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005602 }
danielk1977687566d2004-11-02 12:56:41 +00005603
danielk1977bea2a942009-01-20 17:06:27 +00005604 /* Now manipulate the actual database free-list structure. There are two
5605 ** possibilities. If the free-list is currently empty, or if the first
5606 ** trunk page in the free-list is full, then this page will become a
5607 ** new free-list trunk page. Otherwise, it will become a leaf of the
5608 ** first trunk page in the current free-list. This block tests if it
5609 ** is possible to add the page as a new free-list leaf.
5610 */
5611 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005612 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005613
5614 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005615 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005616 if( rc!=SQLITE_OK ){
5617 goto freepage_out;
5618 }
5619
5620 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005621 assert( pBt->usableSize>32 );
5622 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005623 rc = SQLITE_CORRUPT_BKPT;
5624 goto freepage_out;
5625 }
drheeb844a2009-08-08 18:01:07 +00005626 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005627 /* In this case there is room on the trunk page to insert the page
5628 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005629 **
5630 ** Note that the trunk page is not really full until it contains
5631 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5632 ** coded. But due to a coding error in versions of SQLite prior to
5633 ** 3.6.0, databases with freelist trunk pages holding more than
5634 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5635 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005636 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005637 ** for now. At some point in the future (once everyone has upgraded
5638 ** to 3.6.0 or later) we should consider fixing the conditional above
5639 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005640 **
5641 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5642 ** avoid using the last six entries in the freelist trunk page array in
5643 ** order that database files created by newer versions of SQLite can be
5644 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005645 */
danielk19773b8a05f2007-03-19 17:44:26 +00005646 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005647 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005648 put4byte(&pTrunk->aData[4], nLeaf+1);
5649 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005650 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005651 sqlite3PagerDontWrite(pPage->pDbPage);
5652 }
danielk1977bea2a942009-01-20 17:06:27 +00005653 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005654 }
drh3a4c1412004-05-09 20:40:11 +00005655 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005656 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005657 }
drh3b7511c2001-05-26 13:15:44 +00005658 }
danielk1977bea2a942009-01-20 17:06:27 +00005659
5660 /* If control flows to this point, then it was not possible to add the
5661 ** the page being freed as a leaf page of the first trunk in the free-list.
5662 ** Possibly because the free-list is empty, or possibly because the
5663 ** first trunk in the free-list is full. Either way, the page being freed
5664 ** will become the new first trunk page in the free-list.
5665 */
drhb00fc3b2013-08-21 23:42:32 +00005666 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005667 goto freepage_out;
5668 }
5669 rc = sqlite3PagerWrite(pPage->pDbPage);
5670 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005671 goto freepage_out;
5672 }
5673 put4byte(pPage->aData, iTrunk);
5674 put4byte(&pPage->aData[4], 0);
5675 put4byte(&pPage1->aData[32], iPage);
5676 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5677
5678freepage_out:
5679 if( pPage ){
5680 pPage->isInit = 0;
5681 }
5682 releasePage(pPage);
5683 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005684 return rc;
5685}
drhc314dc72009-07-21 11:52:34 +00005686static void freePage(MemPage *pPage, int *pRC){
5687 if( (*pRC)==SQLITE_OK ){
5688 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5689 }
danielk1977bea2a942009-01-20 17:06:27 +00005690}
drh3b7511c2001-05-26 13:15:44 +00005691
5692/*
drh9bfdc252014-09-24 02:05:41 +00005693** Free any overflow pages associated with the given Cell. Write the
5694** local Cell size (the number of bytes on the original page, omitting
5695** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005696*/
drh9bfdc252014-09-24 02:05:41 +00005697static int clearCell(
5698 MemPage *pPage, /* The page that contains the Cell */
5699 unsigned char *pCell, /* First byte of the Cell */
5700 u16 *pnSize /* Write the size of the Cell here */
5701){
danielk1977aef0bf62005-12-30 16:28:01 +00005702 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005703 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005704 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005705 int rc;
drh94440812007-03-06 11:42:19 +00005706 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005707 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005708
drh1fee73e2007-08-29 04:00:57 +00005709 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005710 btreeParseCellPtr(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005711 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005712 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005713 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005714 }
drhe42a9b42011-08-31 13:27:19 +00005715 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005716 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005717 }
drh6f11bef2004-05-13 01:12:56 +00005718 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005719 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005720 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005721 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5722 assert( ovflPgno==0 || nOvfl>0 );
5723 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005724 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005725 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005726 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005727 /* 0 is not a legal page number and page 1 cannot be an
5728 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5729 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005730 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005731 }
danielk1977bea2a942009-01-20 17:06:27 +00005732 if( nOvfl ){
5733 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5734 if( rc ) return rc;
5735 }
dan887d4b22010-02-25 12:09:16 +00005736
shaneh1da207e2010-03-09 14:41:12 +00005737 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005738 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5739 ){
5740 /* There is no reason any cursor should have an outstanding reference
5741 ** to an overflow page belonging to a cell that is being deleted/updated.
5742 ** So if there exists more than one reference to this page, then it
5743 ** must not really be an overflow page and the database must be corrupt.
5744 ** It is helpful to detect this before calling freePage2(), as
5745 ** freePage2() may zero the page contents if secure-delete mode is
5746 ** enabled. If this 'overflow' page happens to be a page that the
5747 ** caller is iterating through or using in some other way, this
5748 ** can be problematic.
5749 */
5750 rc = SQLITE_CORRUPT_BKPT;
5751 }else{
5752 rc = freePage2(pBt, pOvfl, ovflPgno);
5753 }
5754
danielk1977bea2a942009-01-20 17:06:27 +00005755 if( pOvfl ){
5756 sqlite3PagerUnref(pOvfl->pDbPage);
5757 }
drh3b7511c2001-05-26 13:15:44 +00005758 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005759 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005760 }
drh5e2f8b92001-05-28 00:41:15 +00005761 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005762}
5763
5764/*
drh91025292004-05-03 19:49:32 +00005765** Create the byte sequence used to represent a cell on page pPage
5766** and write that byte sequence into pCell[]. Overflow pages are
5767** allocated and filled in as necessary. The calling procedure
5768** is responsible for making sure sufficient space has been allocated
5769** for pCell[].
5770**
5771** Note that pCell does not necessary need to point to the pPage->aData
5772** area. pCell might point to some temporary storage. The cell will
5773** be constructed in this temporary area then copied into pPage->aData
5774** later.
drh3b7511c2001-05-26 13:15:44 +00005775*/
5776static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005777 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005778 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005779 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005780 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005781 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005782 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005783){
drh3b7511c2001-05-26 13:15:44 +00005784 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005785 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005786 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005787 int spaceLeft;
5788 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005789 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005790 unsigned char *pPrior;
5791 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005792 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005793 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005794 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00005795
drh1fee73e2007-08-29 04:00:57 +00005796 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005797
drhc5053fb2008-11-27 02:22:10 +00005798 /* pPage is not necessarily writeable since pCell might be auxiliary
5799 ** buffer space that is separate from the pPage buffer area */
5800 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5801 || sqlite3PagerIswriteable(pPage->pDbPage) );
5802
drh91025292004-05-03 19:49:32 +00005803 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00005804 nHeader = pPage->childPtrSize;
5805 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00005806 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00005807 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00005808 }else{
drh6200c882014-09-23 22:36:25 +00005809 assert( nData==0 );
5810 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00005811 }
drh6f11bef2004-05-13 01:12:56 +00005812 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00005813
drh6200c882014-09-23 22:36:25 +00005814 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00005815 if( pPage->intKey ){
5816 pSrc = pData;
5817 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005818 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005819 }else{
danielk197731d31b82009-07-13 13:18:07 +00005820 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5821 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005822 }
drh6200c882014-09-23 22:36:25 +00005823 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005824 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005825 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005826 }
drh6200c882014-09-23 22:36:25 +00005827 if( nPayload<=pPage->maxLocal ){
5828 n = nHeader + nPayload;
5829 testcase( n==3 );
5830 testcase( n==4 );
5831 if( n<4 ) n = 4;
5832 *pnSize = n;
5833 spaceLeft = nPayload;
5834 pPrior = pCell;
5835 }else{
5836 int mn = pPage->minLocal;
5837 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
5838 testcase( n==pPage->maxLocal );
5839 testcase( n==pPage->maxLocal+1 );
5840 if( n > pPage->maxLocal ) n = mn;
5841 spaceLeft = n;
5842 *pnSize = n + nHeader + 4;
5843 pPrior = &pCell[nHeader+n];
5844 }
drh3aac2dd2004-04-26 14:10:20 +00005845 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00005846
drh6200c882014-09-23 22:36:25 +00005847 /* At this point variables should be set as follows:
5848 **
5849 ** nPayload Total payload size in bytes
5850 ** pPayload Begin writing payload here
5851 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
5852 ** that means content must spill into overflow pages.
5853 ** *pnSize Size of the local cell (not counting overflow pages)
5854 ** pPrior Where to write the pgno of the first overflow page
5855 **
5856 ** Use a call to btreeParseCellPtr() to verify that the values above
5857 ** were computed correctly.
5858 */
5859#if SQLITE_DEBUG
5860 {
5861 CellInfo info;
5862 btreeParseCellPtr(pPage, pCell, &info);
5863 assert( nHeader=(int)(info.pPayload - pCell) );
5864 assert( info.nKey==nKey );
5865 assert( *pnSize == info.nSize );
5866 assert( spaceLeft == info.nLocal );
5867 assert( pPrior == &pCell[info.iOverflow] );
5868 }
5869#endif
5870
5871 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00005872 while( nPayload>0 ){
5873 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005874#ifndef SQLITE_OMIT_AUTOVACUUM
5875 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005876 if( pBt->autoVacuum ){
5877 do{
5878 pgnoOvfl++;
5879 } while(
5880 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5881 );
danielk1977b39f70b2007-05-17 18:28:11 +00005882 }
danielk1977afcdd022004-10-31 16:25:42 +00005883#endif
drhf49661a2008-12-10 16:45:50 +00005884 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005885#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005886 /* If the database supports auto-vacuum, and the second or subsequent
5887 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005888 ** for that page now.
5889 **
5890 ** If this is the first overflow page, then write a partial entry
5891 ** to the pointer-map. If we write nothing to this pointer-map slot,
5892 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005893 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005894 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005895 */
danielk19774ef24492007-05-23 09:52:41 +00005896 if( pBt->autoVacuum && rc==SQLITE_OK ){
5897 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005898 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005899 if( rc ){
5900 releasePage(pOvfl);
5901 }
danielk1977afcdd022004-10-31 16:25:42 +00005902 }
5903#endif
drh3b7511c2001-05-26 13:15:44 +00005904 if( rc ){
drh9b171272004-05-08 02:03:22 +00005905 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005906 return rc;
5907 }
drhc5053fb2008-11-27 02:22:10 +00005908
5909 /* If pToRelease is not zero than pPrior points into the data area
5910 ** of pToRelease. Make sure pToRelease is still writeable. */
5911 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5912
5913 /* If pPrior is part of the data area of pPage, then make sure pPage
5914 ** is still writeable */
5915 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5916 || sqlite3PagerIswriteable(pPage->pDbPage) );
5917
drh3aac2dd2004-04-26 14:10:20 +00005918 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005919 releasePage(pToRelease);
5920 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005921 pPrior = pOvfl->aData;
5922 put4byte(pPrior, 0);
5923 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005924 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005925 }
5926 n = nPayload;
5927 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005928
5929 /* If pToRelease is not zero than pPayload points into the data area
5930 ** of pToRelease. Make sure pToRelease is still writeable. */
5931 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5932
5933 /* If pPayload is part of the data area of pPage, then make sure pPage
5934 ** is still writeable */
5935 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5936 || sqlite3PagerIswriteable(pPage->pDbPage) );
5937
drhb026e052007-05-02 01:34:31 +00005938 if( nSrc>0 ){
5939 if( n>nSrc ) n = nSrc;
5940 assert( pSrc );
5941 memcpy(pPayload, pSrc, n);
5942 }else{
5943 memset(pPayload, 0, n);
5944 }
drh3b7511c2001-05-26 13:15:44 +00005945 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005946 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005947 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005948 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005949 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005950 if( nSrc==0 ){
5951 nSrc = nData;
5952 pSrc = pData;
5953 }
drhdd793422001-06-28 01:54:48 +00005954 }
drh9b171272004-05-08 02:03:22 +00005955 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005956 return SQLITE_OK;
5957}
5958
drh14acc042001-06-10 19:56:58 +00005959/*
5960** Remove the i-th cell from pPage. This routine effects pPage only.
5961** The cell content is not freed or deallocated. It is assumed that
5962** the cell content has been copied someplace else. This routine just
5963** removes the reference to the cell from pPage.
5964**
5965** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005966*/
drh98add2e2009-07-20 17:11:49 +00005967static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005968 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005969 u8 *data; /* pPage->aData */
5970 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005971 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005972 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005973
drh98add2e2009-07-20 17:11:49 +00005974 if( *pRC ) return;
5975
drh8c42ca92001-06-22 19:15:00 +00005976 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005977 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005978 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005979 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005980 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005981 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005982 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005983 hdr = pPage->hdrOffset;
5984 testcase( pc==get2byte(&data[hdr+5]) );
5985 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005986 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005987 *pRC = SQLITE_CORRUPT_BKPT;
5988 return;
shane0af3f892008-11-12 04:55:34 +00005989 }
shanedcc50b72008-11-13 18:29:50 +00005990 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005991 if( rc ){
5992 *pRC = rc;
5993 return;
shanedcc50b72008-11-13 18:29:50 +00005994 }
drh14acc042001-06-10 19:56:58 +00005995 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00005996 if( pPage->nCell==0 ){
5997 memset(&data[hdr+1], 0, 4);
5998 data[hdr+7] = 0;
5999 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6000 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6001 - pPage->childPtrSize - 8;
6002 }else{
6003 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6004 put2byte(&data[hdr+3], pPage->nCell);
6005 pPage->nFree += 2;
6006 }
drh14acc042001-06-10 19:56:58 +00006007}
6008
6009/*
6010** Insert a new cell on pPage at cell index "i". pCell points to the
6011** content of the cell.
6012**
6013** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006014** will not fit, then make a copy of the cell content into pTemp if
6015** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006016** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006017** in pTemp or the original pCell) and also record its index.
6018** Allocating a new entry in pPage->aCell[] implies that
6019** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006020*/
drh98add2e2009-07-20 17:11:49 +00006021static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006022 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006023 int i, /* New cell becomes the i-th cell of the page */
6024 u8 *pCell, /* Content of the new cell */
6025 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006026 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006027 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6028 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006029){
drh383d30f2010-02-26 13:07:37 +00006030 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006031 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006032 int end; /* First byte past the last cell pointer in data[] */
6033 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00006034 int cellOffset; /* Address of first cell pointer in data[] */
6035 u8 *data; /* The content of the whole page */
danielk19774dbaa892009-06-16 16:50:22 +00006036
drh98add2e2009-07-20 17:11:49 +00006037 if( *pRC ) return;
6038
drh43605152004-05-29 21:46:49 +00006039 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006040 assert( MX_CELL(pPage->pBt)<=10921 );
6041 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006042 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6043 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006044 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006045 /* The cell should normally be sized correctly. However, when moving a
6046 ** malformed cell from a leaf page to an interior page, if the cell size
6047 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6048 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6049 ** the term after the || in the following assert(). */
6050 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006051 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006052 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006053 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006054 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006055 }
danielk19774dbaa892009-06-16 16:50:22 +00006056 if( iChild ){
6057 put4byte(pCell, iChild);
6058 }
drh43605152004-05-29 21:46:49 +00006059 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006060 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6061 pPage->apOvfl[j] = pCell;
6062 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00006063 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006064 int rc = sqlite3PagerWrite(pPage->pDbPage);
6065 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006066 *pRC = rc;
6067 return;
danielk19776e465eb2007-08-21 13:11:00 +00006068 }
6069 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006070 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00006071 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00006072 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00006073 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00006074 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006075 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00006076 /* The allocateSpace() routine guarantees the following two properties
6077 ** if it returns success */
6078 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00006079 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00006080 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00006081 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006082 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006083 if( iChild ){
6084 put4byte(&data[idx], iChild);
6085 }
drh8f518832013-12-09 02:32:19 +00006086 memmove(&data[ins+2], &data[ins], end-ins);
drh43605152004-05-29 21:46:49 +00006087 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00006088 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00006089#ifndef SQLITE_OMIT_AUTOVACUUM
6090 if( pPage->pBt->autoVacuum ){
6091 /* The cell may contain a pointer to an overflow page. If so, write
6092 ** the entry for the overflow page into the pointer map.
6093 */
drh98add2e2009-07-20 17:11:49 +00006094 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006095 }
6096#endif
drh14acc042001-06-10 19:56:58 +00006097 }
6098}
6099
6100/*
dan8e9ba0c2014-10-14 17:27:04 +00006101** Array apCell[] contains pointers to nCell b-tree page cells. The
6102** szCell[] array contains the size in bytes of each cell. This function
6103** replaces the current contents of page pPg with the contents of the cell
6104** array.
6105**
6106** Some of the cells in apCell[] may currently be stored in pPg. This
6107** function works around problems caused by this by making a copy of any
6108** such cells before overwriting the page data.
6109**
6110** The MemPage.nFree field is invalidated by this function. It is the
6111** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006112*/
dan33ea4862014-10-09 19:35:37 +00006113static void rebuildPage(
6114 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006115 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006116 u8 **apCell, /* Array of cells */
6117 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006118){
6119 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6120 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6121 const int usableSize = pPg->pBt->usableSize;
6122 u8 * const pEnd = &aData[usableSize];
6123 int i;
6124 u8 *pCellptr = pPg->aCellIdx;
6125 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6126 u8 *pData;
6127
6128 i = get2byte(&aData[hdr+5]);
6129 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006130
dan8e9ba0c2014-10-14 17:27:04 +00006131 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006132 for(i=0; i<nCell; i++){
6133 u8 *pCell = apCell[i];
6134 if( pCell>aData && pCell<pEnd ){
6135 pCell = &pTmp[pCell - aData];
6136 }
6137 pData -= szCell[i];
6138 memcpy(pData, pCell, szCell[i]);
6139 put2byte(pCellptr, (pData - aData));
6140 pCellptr += 2;
6141 assert( szCell[i]==cellSizePtr(pPg, pCell) );
6142 }
6143
dand7b545b2014-10-13 18:03:27 +00006144 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006145 pPg->nCell = nCell;
6146 pPg->nOverflow = 0;
6147
6148 put2byte(&aData[hdr+1], 0);
6149 put2byte(&aData[hdr+3], pPg->nCell);
6150 put2byte(&aData[hdr+5], pData - aData);
6151 aData[hdr+7] = 0x00;
6152}
6153
dan8e9ba0c2014-10-14 17:27:04 +00006154/*
6155** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6156** contains the size in bytes of each such cell. This function attempts to
6157** add the cells stored in the array to page pPg. If it cannot (because
6158** the page needs to be defragmented before the cells will fit), non-zero
6159** is returned. Otherwise, if the cells are added successfully, zero is
6160** returned.
6161**
6162** Argument pCellptr points to the first entry in the cell-pointer array
6163** (part of page pPg) to populate. After cell apCell[0] is written to the
6164** page body, a 16-bit offset is written to pCellptr. And so on, for each
6165** cell in the array. It is the responsibility of the caller to ensure
6166** that it is safe to overwrite this part of the cell-pointer array.
6167**
6168** When this function is called, *ppData points to the start of the
6169** content area on page pPg. If the size of the content area is extended,
6170** *ppData is updated to point to the new start of the content area
6171** before returning.
6172**
6173** Finally, argument pBegin points to the byte immediately following the
6174** end of the space required by this page for the cell-pointer area (for
6175** all cells - not just those inserted by the current call). If the content
6176** area must be extended to before this point in order to accomodate all
6177** cells in apCell[], then the cells do not fit and non-zero is returned.
6178*/
dand7b545b2014-10-13 18:03:27 +00006179static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006180 MemPage *pPg, /* Page to add cells to */
6181 u8 *pBegin, /* End of cell-pointer array */
6182 u8 **ppData, /* IN/OUT: Page content -area pointer */
6183 u8 *pCellptr, /* Pointer to cell-pointer area */
6184 int nCell, /* Number of cells to add to pPg */
dand7b545b2014-10-13 18:03:27 +00006185 u8 **apCell, /* Array of cells */
6186 u16 *szCell /* Array of cell sizes */
6187){
6188 int i;
6189 u8 *aData = pPg->aData;
6190 u8 *pData = *ppData;
dan8e9ba0c2014-10-14 17:27:04 +00006191 const int bFreelist = aData[1] || aData[2];
dan23eba452014-10-24 18:43:57 +00006192 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
dand7b545b2014-10-13 18:03:27 +00006193 for(i=0; i<nCell; i++){
6194 int sz = szCell[i];
drhba0f9992014-10-30 20:48:44 +00006195 int rc;
dand7b545b2014-10-13 18:03:27 +00006196 u8 *pSlot;
drhba0f9992014-10-30 20:48:44 +00006197 if( bFreelist==0 || (pSlot = pageFindSlot(pPg, sz, &rc, 0))==0 ){
dand7b545b2014-10-13 18:03:27 +00006198 pData -= sz;
6199 if( pData<pBegin ) return 1;
6200 pSlot = pData;
6201 }
6202 memcpy(pSlot, apCell[i], sz);
6203 put2byte(pCellptr, (pSlot - aData));
6204 pCellptr += 2;
6205 }
6206 *ppData = pData;
6207 return 0;
6208}
6209
dan8e9ba0c2014-10-14 17:27:04 +00006210/*
6211** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6212** contains the size in bytes of each such cell. This function adds the
6213** space associated with each cell in the array that is currently stored
6214** within the body of pPg to the pPg free-list. The cell-pointers and other
6215** fields of the page are not updated.
6216**
6217** This function returns the total number of cells added to the free-list.
6218*/
dand7b545b2014-10-13 18:03:27 +00006219static int pageFreeArray(
6220 MemPage *pPg, /* Page to edit */
6221 int nCell, /* Cells to delete */
6222 u8 **apCell, /* Array of cells */
6223 u16 *szCell /* Array of cell sizes */
6224){
6225 u8 * const aData = pPg->aData;
6226 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006227 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006228 int nRet = 0;
6229 int i;
6230 u8 *pFree = 0;
6231 int szFree = 0;
6232
6233 for(i=0; i<nCell; i++){
6234 u8 *pCell = apCell[i];
dan89ca0b32014-10-25 20:36:28 +00006235 if( pCell>=pStart && pCell<pEnd ){
dand7b545b2014-10-13 18:03:27 +00006236 int sz = szCell[i];
6237 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006238 if( pFree ){
6239 assert( pFree>aData && (pFree - aData)<65536 );
6240 freeSpace(pPg, (u16)(pFree - aData), szFree);
6241 }
dand7b545b2014-10-13 18:03:27 +00006242 pFree = pCell;
6243 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006244 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006245 }else{
6246 pFree = pCell;
6247 szFree += sz;
6248 }
6249 nRet++;
6250 }
6251 }
drhfefa0942014-11-05 21:21:08 +00006252 if( pFree ){
6253 assert( pFree>aData && (pFree - aData)<65536 );
6254 freeSpace(pPg, (u16)(pFree - aData), szFree);
6255 }
dand7b545b2014-10-13 18:03:27 +00006256 return nRet;
6257}
6258
dand7b545b2014-10-13 18:03:27 +00006259/*
drh5ab63772014-11-27 03:46:04 +00006260** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6261** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6262** with apCell[iOld]. After balancing, this page should hold nNew cells
6263** starting at apCell[iNew].
6264**
6265** This routine makes the necessary adjustments to pPg so that it contains
6266** the correct cells after being balanced.
6267**
dand7b545b2014-10-13 18:03:27 +00006268** The pPg->nFree field is invalid when this function returns. It is the
6269** responsibility of the caller to set it correctly.
6270*/
dan09c68402014-10-11 20:00:24 +00006271static void editPage(
6272 MemPage *pPg, /* Edit this page */
6273 int iOld, /* Index of first cell currently on page */
6274 int iNew, /* Index of new first cell on page */
6275 int nNew, /* Final number of cells on page */
6276 u8 **apCell, /* Array of cells */
6277 u16 *szCell /* Array of cell sizes */
6278){
dand7b545b2014-10-13 18:03:27 +00006279 u8 * const aData = pPg->aData;
6280 const int hdr = pPg->hdrOffset;
6281 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6282 int nCell = pPg->nCell; /* Cells stored on pPg */
6283 u8 *pData;
6284 u8 *pCellptr;
6285 int i;
6286 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6287 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006288
6289#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006290 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6291 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006292#endif
6293
dand7b545b2014-10-13 18:03:27 +00006294 /* Remove cells from the start and end of the page */
6295 if( iOld<iNew ){
6296 int nShift = pageFreeArray(
6297 pPg, iNew-iOld, &apCell[iOld], &szCell[iOld]
6298 );
6299 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6300 nCell -= nShift;
6301 }
6302 if( iNewEnd < iOldEnd ){
6303 nCell -= pageFreeArray(
6304 pPg, iOldEnd-iNewEnd, &apCell[iNewEnd], &szCell[iNewEnd]
6305 );
6306 }
dan09c68402014-10-11 20:00:24 +00006307
drh5ab63772014-11-27 03:46:04 +00006308 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006309 if( pData<pBegin ) goto editpage_fail;
6310
6311 /* Add cells to the start of the page */
6312 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006313 int nAdd = MIN(nNew,iOld-iNew);
6314 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006315 pCellptr = pPg->aCellIdx;
6316 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6317 if( pageInsertArray(
6318 pPg, pBegin, &pData, pCellptr,
6319 nAdd, &apCell[iNew], &szCell[iNew]
6320 ) ) goto editpage_fail;
6321 nCell += nAdd;
6322 }
6323
6324 /* Add any overflow cells */
6325 for(i=0; i<pPg->nOverflow; i++){
6326 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6327 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006328 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006329 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6330 nCell++;
6331 if( pageInsertArray(
6332 pPg, pBegin, &pData, pCellptr,
6333 1, &apCell[iCell + iNew], &szCell[iCell + iNew]
6334 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006335 }
dand7b545b2014-10-13 18:03:27 +00006336 }
dan09c68402014-10-11 20:00:24 +00006337
dand7b545b2014-10-13 18:03:27 +00006338 /* Append cells to the end of the page */
6339 pCellptr = &pPg->aCellIdx[nCell*2];
6340 if( pageInsertArray(
6341 pPg, pBegin, &pData, pCellptr,
6342 nNew-nCell, &apCell[iNew+nCell], &szCell[iNew+nCell]
6343 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006344
dand7b545b2014-10-13 18:03:27 +00006345 pPg->nCell = nNew;
6346 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006347
dand7b545b2014-10-13 18:03:27 +00006348 put2byte(&aData[hdr+3], pPg->nCell);
6349 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006350
6351#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006352 for(i=0; i<nNew && !CORRUPT_DB; i++){
dand7b545b2014-10-13 18:03:27 +00006353 u8 *pCell = apCell[i+iNew];
6354 int iOff = get2byte(&pPg->aCellIdx[i*2]);
6355 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6356 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006357 }
dand7b545b2014-10-13 18:03:27 +00006358 assert( 0==memcmp(pCell, &aData[iOff], szCell[i+iNew]) );
6359 }
dan09c68402014-10-11 20:00:24 +00006360#endif
6361
dand7b545b2014-10-13 18:03:27 +00006362 return;
dan09c68402014-10-11 20:00:24 +00006363 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006364 /* Unable to edit this page. Rebuild it from scratch instead. */
6365 rebuildPage(pPg, nNew, &apCell[iNew], &szCell[iNew]);
6366}
6367
drh14acc042001-06-10 19:56:58 +00006368/*
drhc3b70572003-01-04 19:44:07 +00006369** The following parameters determine how many adjacent pages get involved
6370** in a balancing operation. NN is the number of neighbors on either side
6371** of the page that participate in the balancing operation. NB is the
6372** total number of pages that participate, including the target page and
6373** NN neighbors on either side.
6374**
6375** The minimum value of NN is 1 (of course). Increasing NN above 1
6376** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6377** in exchange for a larger degradation in INSERT and UPDATE performance.
6378** The value of NN appears to give the best results overall.
6379*/
6380#define NN 1 /* Number of neighbors on either side of pPage */
6381#define NB (NN*2+1) /* Total pages involved in the balance */
6382
danielk1977ac245ec2005-01-14 13:50:11 +00006383
drh615ae552005-01-16 23:21:00 +00006384#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006385/*
6386** This version of balance() handles the common special case where
6387** a new entry is being inserted on the extreme right-end of the
6388** tree, in other words, when the new entry will become the largest
6389** entry in the tree.
6390**
drhc314dc72009-07-21 11:52:34 +00006391** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006392** a new page to the right-hand side and put the one new entry in
6393** that page. This leaves the right side of the tree somewhat
6394** unbalanced. But odds are that we will be inserting new entries
6395** at the end soon afterwards so the nearly empty page will quickly
6396** fill up. On average.
6397**
6398** pPage is the leaf page which is the right-most page in the tree.
6399** pParent is its parent. pPage must have a single overflow entry
6400** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006401**
6402** The pSpace buffer is used to store a temporary copy of the divider
6403** cell that will be inserted into pParent. Such a cell consists of a 4
6404** byte page number followed by a variable length integer. In other
6405** words, at most 13 bytes. Hence the pSpace buffer must be at
6406** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006407*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006408static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6409 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006410 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006411 int rc; /* Return Code */
6412 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006413
drh1fee73e2007-08-29 04:00:57 +00006414 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006415 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006416 assert( pPage->nOverflow==1 );
6417
drh5d433ce2010-08-14 16:02:52 +00006418 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006419 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006420
danielk1977a50d9aa2009-06-08 14:49:45 +00006421 /* Allocate a new page. This page will become the right-sibling of
6422 ** pPage. Make the parent page writable, so that the new divider cell
6423 ** may be inserted. If both these operations are successful, proceed.
6424 */
drh4f0c5872007-03-26 22:05:01 +00006425 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006426
danielk1977eaa06f62008-09-18 17:34:44 +00006427 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006428
6429 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006430 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00006431 u16 szCell = cellSizePtr(pPage, pCell);
6432 u8 *pStop;
6433
drhc5053fb2008-11-27 02:22:10 +00006434 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006435 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6436 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
dan8e9ba0c2014-10-14 17:27:04 +00006437 rebuildPage(pNew, 1, &pCell, &szCell);
6438 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006439
6440 /* If this is an auto-vacuum database, update the pointer map
6441 ** with entries for the new page, and any pointer from the
6442 ** cell on the page to an overflow page. If either of these
6443 ** operations fails, the return code is set, but the contents
6444 ** of the parent page are still manipulated by thh code below.
6445 ** That is Ok, at this point the parent page is guaranteed to
6446 ** be marked as dirty. Returning an error code will cause a
6447 ** rollback, undoing any changes made to the parent page.
6448 */
6449 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006450 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6451 if( szCell>pNew->minLocal ){
6452 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006453 }
6454 }
danielk1977eaa06f62008-09-18 17:34:44 +00006455
danielk19776f235cc2009-06-04 14:46:08 +00006456 /* Create a divider cell to insert into pParent. The divider cell
6457 ** consists of a 4-byte page number (the page number of pPage) and
6458 ** a variable length key value (which must be the same value as the
6459 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006460 **
danielk19776f235cc2009-06-04 14:46:08 +00006461 ** To find the largest key value on pPage, first find the right-most
6462 ** cell on pPage. The first two fields of this cell are the
6463 ** record-length (a variable length integer at most 32-bits in size)
6464 ** and the key value (a variable length integer, may have any value).
6465 ** The first of the while(...) loops below skips over the record-length
6466 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006467 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006468 */
danielk1977eaa06f62008-09-18 17:34:44 +00006469 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006470 pStop = &pCell[9];
6471 while( (*(pCell++)&0x80) && pCell<pStop );
6472 pStop = &pCell[9];
6473 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6474
danielk19774dbaa892009-06-16 16:50:22 +00006475 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006476 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6477 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006478
6479 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006480 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6481
danielk1977e08a3c42008-09-18 18:17:03 +00006482 /* Release the reference to the new page. */
6483 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006484 }
6485
danielk1977eaa06f62008-09-18 17:34:44 +00006486 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006487}
drh615ae552005-01-16 23:21:00 +00006488#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006489
dane6593d82014-10-24 16:40:49 +00006490#if 0
drhc3b70572003-01-04 19:44:07 +00006491/*
danielk19774dbaa892009-06-16 16:50:22 +00006492** This function does not contribute anything to the operation of SQLite.
6493** it is sometimes activated temporarily while debugging code responsible
6494** for setting pointer-map entries.
6495*/
6496static int ptrmapCheckPages(MemPage **apPage, int nPage){
6497 int i, j;
6498 for(i=0; i<nPage; i++){
6499 Pgno n;
6500 u8 e;
6501 MemPage *pPage = apPage[i];
6502 BtShared *pBt = pPage->pBt;
6503 assert( pPage->isInit );
6504
6505 for(j=0; j<pPage->nCell; j++){
6506 CellInfo info;
6507 u8 *z;
6508
6509 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00006510 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006511 if( info.iOverflow ){
6512 Pgno ovfl = get4byte(&z[info.iOverflow]);
6513 ptrmapGet(pBt, ovfl, &e, &n);
6514 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6515 }
6516 if( !pPage->leaf ){
6517 Pgno child = get4byte(z);
6518 ptrmapGet(pBt, child, &e, &n);
6519 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6520 }
6521 }
6522 if( !pPage->leaf ){
6523 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6524 ptrmapGet(pBt, child, &e, &n);
6525 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6526 }
6527 }
6528 return 1;
6529}
6530#endif
6531
danielk1977cd581a72009-06-23 15:43:39 +00006532/*
6533** This function is used to copy the contents of the b-tree node stored
6534** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6535** the pointer-map entries for each child page are updated so that the
6536** parent page stored in the pointer map is page pTo. If pFrom contained
6537** any cells with overflow page pointers, then the corresponding pointer
6538** map entries are also updated so that the parent page is page pTo.
6539**
6540** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006541** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006542**
danielk197730548662009-07-09 05:07:37 +00006543** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006544**
6545** The performance of this function is not critical. It is only used by
6546** the balance_shallower() and balance_deeper() procedures, neither of
6547** which are called often under normal circumstances.
6548*/
drhc314dc72009-07-21 11:52:34 +00006549static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6550 if( (*pRC)==SQLITE_OK ){
6551 BtShared * const pBt = pFrom->pBt;
6552 u8 * const aFrom = pFrom->aData;
6553 u8 * const aTo = pTo->aData;
6554 int const iFromHdr = pFrom->hdrOffset;
6555 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006556 int rc;
drhc314dc72009-07-21 11:52:34 +00006557 int iData;
6558
6559
6560 assert( pFrom->isInit );
6561 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006562 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006563
6564 /* Copy the b-tree node content from page pFrom to page pTo. */
6565 iData = get2byte(&aFrom[iFromHdr+5]);
6566 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6567 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6568
6569 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006570 ** match the new data. The initialization of pTo can actually fail under
6571 ** fairly obscure circumstances, even though it is a copy of initialized
6572 ** page pFrom.
6573 */
drhc314dc72009-07-21 11:52:34 +00006574 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006575 rc = btreeInitPage(pTo);
6576 if( rc!=SQLITE_OK ){
6577 *pRC = rc;
6578 return;
6579 }
drhc314dc72009-07-21 11:52:34 +00006580
6581 /* If this is an auto-vacuum database, update the pointer-map entries
6582 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6583 */
6584 if( ISAUTOVACUUM ){
6585 *pRC = setChildPtrmaps(pTo);
6586 }
danielk1977cd581a72009-06-23 15:43:39 +00006587 }
danielk1977cd581a72009-06-23 15:43:39 +00006588}
6589
6590/*
danielk19774dbaa892009-06-16 16:50:22 +00006591** This routine redistributes cells on the iParentIdx'th child of pParent
6592** (hereafter "the page") and up to 2 siblings so that all pages have about the
6593** same amount of free space. Usually a single sibling on either side of the
6594** page are used in the balancing, though both siblings might come from one
6595** side if the page is the first or last child of its parent. If the page
6596** has fewer than 2 siblings (something which can only happen if the page
6597** is a root page or a child of a root page) then all available siblings
6598** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006599**
danielk19774dbaa892009-06-16 16:50:22 +00006600** The number of siblings of the page might be increased or decreased by
6601** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006602**
danielk19774dbaa892009-06-16 16:50:22 +00006603** Note that when this routine is called, some of the cells on the page
6604** might not actually be stored in MemPage.aData[]. This can happen
6605** if the page is overfull. This routine ensures that all cells allocated
6606** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006607**
danielk19774dbaa892009-06-16 16:50:22 +00006608** In the course of balancing the page and its siblings, cells may be
6609** inserted into or removed from the parent page (pParent). Doing so
6610** may cause the parent page to become overfull or underfull. If this
6611** happens, it is the responsibility of the caller to invoke the correct
6612** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006613**
drh5e00f6c2001-09-13 13:46:56 +00006614** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006615** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006616** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006617**
6618** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006619** buffer big enough to hold one page. If while inserting cells into the parent
6620** page (pParent) the parent page becomes overfull, this buffer is
6621** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006622** a maximum of four divider cells into the parent page, and the maximum
6623** size of a cell stored within an internal node is always less than 1/4
6624** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6625** enough for all overflow cells.
6626**
6627** If aOvflSpace is set to a null pointer, this function returns
6628** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006629*/
mistachkine7c54162012-10-02 22:54:27 +00006630#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6631#pragma optimize("", off)
6632#endif
danielk19774dbaa892009-06-16 16:50:22 +00006633static int balance_nonroot(
6634 MemPage *pParent, /* Parent page of siblings being balanced */
6635 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006636 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006637 int isRoot, /* True if pParent is a root-page */
6638 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006639){
drh16a9b832007-05-05 18:39:25 +00006640 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006641 int nCell = 0; /* Number of cells in apCell[] */
6642 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006643 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006644 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006645 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006646 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006647 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006648 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006649 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006650 int usableSpace; /* Bytes in pPage beyond the header */
6651 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006652 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006653 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006654 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006655 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006656 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00006657 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006658 u8 *pRight; /* Location in parent of right-sibling pointer */
6659 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006660 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
dan09c68402014-10-11 20:00:24 +00006661 int cntOld[NB+2]; /* Old index in aCell[] after i-th page */
drh2a0df922014-10-30 23:14:56 +00006662 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006663 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006664 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006665 u8 *aSpace1; /* Space for copies of dividers cells */
6666 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00006667 u8 abDone[NB+2]; /* True after i'th new page is populated */
6668 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00006669 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00006670 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
dan33ea4862014-10-09 19:35:37 +00006671
6672 memset(abDone, 0, sizeof(abDone));
danielk1977a50d9aa2009-06-08 14:49:45 +00006673 pBt = pParent->pBt;
6674 assert( sqlite3_mutex_held(pBt->mutex) );
6675 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006676
danielk1977e5765212009-06-17 11:13:28 +00006677#if 0
drh43605152004-05-29 21:46:49 +00006678 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006679#endif
drh2e38c322004-09-03 18:38:44 +00006680
danielk19774dbaa892009-06-16 16:50:22 +00006681 /* At this point pParent may have at most one overflow cell. And if
6682 ** this overflow cell is present, it must be the cell with
6683 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006684 ** is called (indirectly) from sqlite3BtreeDelete().
6685 */
danielk19774dbaa892009-06-16 16:50:22 +00006686 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006687 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006688
danielk197711a8a862009-06-17 11:49:52 +00006689 if( !aOvflSpace ){
6690 return SQLITE_NOMEM;
6691 }
6692
danielk1977a50d9aa2009-06-08 14:49:45 +00006693 /* Find the sibling pages to balance. Also locate the cells in pParent
6694 ** that divide the siblings. An attempt is made to find NN siblings on
6695 ** either side of pPage. More siblings are taken from one side, however,
6696 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006697 ** has NB or fewer children then all children of pParent are taken.
6698 **
6699 ** This loop also drops the divider cells from the parent page. This
6700 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006701 ** overflow cells in the parent page, since if any existed they will
6702 ** have already been removed.
6703 */
danielk19774dbaa892009-06-16 16:50:22 +00006704 i = pParent->nOverflow + pParent->nCell;
6705 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006706 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006707 }else{
dan7d6885a2012-08-08 14:04:56 +00006708 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006709 if( iParentIdx==0 ){
6710 nxDiv = 0;
6711 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006712 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006713 }else{
dan7d6885a2012-08-08 14:04:56 +00006714 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006715 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006716 }
dan7d6885a2012-08-08 14:04:56 +00006717 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006718 }
dan7d6885a2012-08-08 14:04:56 +00006719 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006720 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6721 pRight = &pParent->aData[pParent->hdrOffset+8];
6722 }else{
6723 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6724 }
6725 pgno = get4byte(pRight);
6726 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006727 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006728 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006729 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006730 goto balance_cleanup;
6731 }
danielk1977634f2982005-03-28 08:44:07 +00006732 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006733 if( (i--)==0 ) break;
6734
drh2cbd78b2012-02-02 19:37:18 +00006735 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6736 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006737 pgno = get4byte(apDiv[i]);
6738 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6739 pParent->nOverflow = 0;
6740 }else{
6741 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6742 pgno = get4byte(apDiv[i]);
6743 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6744
6745 /* Drop the cell from the parent page. apDiv[i] still points to
6746 ** the cell within the parent, even though it has been dropped.
6747 ** This is safe because dropping a cell only overwrites the first
6748 ** four bytes of it, and this function does not need the first
6749 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006750 ** later on.
6751 **
drh8a575d92011-10-12 17:00:28 +00006752 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006753 ** the dropCell() routine will overwrite the entire cell with zeroes.
6754 ** In this case, temporarily copy the cell into the aOvflSpace[]
6755 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6756 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006757 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006758 int iOff;
6759
6760 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006761 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006762 rc = SQLITE_CORRUPT_BKPT;
6763 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6764 goto balance_cleanup;
6765 }else{
6766 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6767 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6768 }
drh5b47efa2010-02-12 18:18:39 +00006769 }
drh98add2e2009-07-20 17:11:49 +00006770 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006771 }
drh8b2f49b2001-06-08 00:21:52 +00006772 }
6773
drha9121e42008-02-19 14:59:35 +00006774 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006775 ** alignment */
drha9121e42008-02-19 14:59:35 +00006776 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006777
drh8b2f49b2001-06-08 00:21:52 +00006778 /*
danielk1977634f2982005-03-28 08:44:07 +00006779 ** Allocate space for memory structures
6780 */
drhfacf0302008-06-17 15:12:00 +00006781 szScratch =
drha9121e42008-02-19 14:59:35 +00006782 nMaxCells*sizeof(u8*) /* apCell */
6783 + nMaxCells*sizeof(u16) /* szCell */
dan33ea4862014-10-09 19:35:37 +00006784 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00006785
drhcbd55b02014-11-04 14:22:27 +00006786 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
6787 ** that is more than 6 times the database page size. */
drh5279d342014-11-04 13:41:32 +00006788 assert( szScratch<=6*pBt->pageSize );
drhfacf0302008-06-17 15:12:00 +00006789 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006790 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006791 rc = SQLITE_NOMEM;
6792 goto balance_cleanup;
6793 }
drha9121e42008-02-19 14:59:35 +00006794 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006795 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006796 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006797
6798 /*
6799 ** Load pointers to all cells on sibling pages and the divider cells
6800 ** into the local apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00006801 ** into space obtained from aSpace1[]. The divider cells have already
6802 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00006803 **
6804 ** If the siblings are on leaf pages, then the child pointers of the
6805 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006806 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006807 ** child pointers. If siblings are not leaves, then all cell in
6808 ** apCell[] include child pointers. Either way, all cells in apCell[]
6809 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006810 **
6811 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6812 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006813 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006814 leafCorrection = apOld[0]->leaf*4;
drh3e28ff52014-09-24 00:59:08 +00006815 leafData = apOld[0]->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00006816 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006817 int limit;
dan33ea4862014-10-09 19:35:37 +00006818 MemPage *pOld = apOld[i];
danielk19774dbaa892009-06-16 16:50:22 +00006819
6820 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006821 if( pOld->nOverflow>0 ){
6822 for(j=0; j<limit; j++){
6823 assert( nCell<nMaxCells );
6824 apCell[nCell] = findOverflowCell(pOld, j);
6825 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6826 nCell++;
6827 }
6828 }else{
6829 u8 *aData = pOld->aData;
6830 u16 maskPage = pOld->maskPage;
6831 u16 cellOffset = pOld->cellOffset;
6832 for(j=0; j<limit; j++){
6833 assert( nCell<nMaxCells );
6834 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6835 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6836 nCell++;
6837 }
6838 }
dan09c68402014-10-11 20:00:24 +00006839 cntOld[i] = nCell;
danielk19774dbaa892009-06-16 16:50:22 +00006840 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006841 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006842 u8 *pTemp;
6843 assert( nCell<nMaxCells );
6844 szCell[nCell] = sz;
6845 pTemp = &aSpace1[iSpace1];
6846 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006847 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006848 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006849 memcpy(pTemp, apDiv[i], sz);
6850 apCell[nCell] = pTemp+leafCorrection;
6851 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006852 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006853 if( !pOld->leaf ){
6854 assert( leafCorrection==0 );
6855 assert( pOld->hdrOffset==0 );
6856 /* The right pointer of the child page pOld becomes the left
6857 ** pointer of the divider cell */
6858 memcpy(apCell[nCell], &pOld->aData[8], 4);
6859 }else{
6860 assert( leafCorrection==4 );
6861 if( szCell[nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00006862 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
6863 ** does exist, pad it with 0x00 bytes. */
6864 assert( szCell[nCell]==3 );
6865 assert( apCell[nCell]==&pTemp[iSpace1-3] );
6866 pTemp[iSpace1++] = 0x00;
danielk19774dbaa892009-06-16 16:50:22 +00006867 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006868 }
6869 }
drh14acc042001-06-10 19:56:58 +00006870 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006871 }
drh8b2f49b2001-06-08 00:21:52 +00006872 }
6873
6874 /*
drh6019e162001-07-02 17:51:45 +00006875 ** Figure out the number of pages needed to hold all nCell cells.
6876 ** Store this number in "k". Also compute szNew[] which is the total
6877 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006878 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006879 ** cntNew[k] should equal nCell.
6880 **
drh96f5b762004-05-16 16:24:36 +00006881 ** Values computed by this block:
6882 **
6883 ** k: The total number of sibling pages
6884 ** szNew[i]: Spaced used on the i-th sibling page.
6885 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6886 ** the right of the i-th sibling page.
6887 ** usableSpace: Number of bytes of space available on each sibling.
6888 **
drh8b2f49b2001-06-08 00:21:52 +00006889 */
drh43605152004-05-29 21:46:49 +00006890 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006891 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006892 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006893 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006894 if( subtotal > usableSpace ){
dand7b545b2014-10-13 18:03:27 +00006895 szNew[k] = subtotal - szCell[i] - 2;
drh6019e162001-07-02 17:51:45 +00006896 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006897 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006898 subtotal = 0;
6899 k++;
drh9978c972010-02-23 17:36:32 +00006900 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006901 }
6902 }
6903 szNew[k] = subtotal;
6904 cntNew[k] = nCell;
6905 k++;
drh96f5b762004-05-16 16:24:36 +00006906
6907 /*
6908 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00006909 ** on the left side (siblings with smaller keys). The left siblings are
6910 ** always nearly full, while the right-most sibling might be nearly empty.
6911 ** The next block of code attempts to adjust the packing of siblings to
6912 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00006913 **
6914 ** This adjustment is more than an optimization. The packing above might
6915 ** be so out of balance as to be illegal. For example, the right-most
6916 ** sibling might be completely empty. This adjustment is not optional.
6917 */
drh6019e162001-07-02 17:51:45 +00006918 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006919 int szRight = szNew[i]; /* Size of sibling on the right */
6920 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6921 int r; /* Index of right-most cell in left sibling */
6922 int d; /* Index of first cell to the left of right sibling */
6923
6924 r = cntNew[i-1] - 1;
6925 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006926 assert( d<nMaxCells );
6927 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006928 while( szRight==0
6929 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6930 ){
drh43605152004-05-29 21:46:49 +00006931 szRight += szCell[d] + 2;
6932 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006933 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006934 r = cntNew[i-1] - 1;
6935 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006936 }
drh96f5b762004-05-16 16:24:36 +00006937 szNew[i] = szRight;
6938 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006939 }
drh09d0deb2005-08-02 17:13:09 +00006940
drh2a0df922014-10-30 23:14:56 +00006941 /* Sanity check: For a non-corrupt database file one of the follwing
6942 ** must be true:
6943 ** (1) We found one or more cells (cntNew[0])>0), or
6944 ** (2) pPage is a virtual root page. A virtual root page is when
6945 ** the real root page is page 1 and we are the only child of
6946 ** that page.
drh09d0deb2005-08-02 17:13:09 +00006947 */
drh2a0df922014-10-30 23:14:56 +00006948 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00006949 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
6950 apOld[0]->pgno, apOld[0]->nCell,
6951 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
6952 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00006953 ));
6954
drh8b2f49b2001-06-08 00:21:52 +00006955 /*
drh6b308672002-07-08 02:16:37 +00006956 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006957 */
drheac74422009-06-14 12:47:11 +00006958 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006959 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006960 goto balance_cleanup;
6961 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006962 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006963 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006964 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006965 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006966 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006967 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006968 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006969 nNew++;
danielk197728129562005-01-11 10:25:06 +00006970 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006971 }else{
drh7aa8f852006-03-28 00:24:44 +00006972 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006973 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006974 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00006975 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00006976 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006977 nNew++;
dan09c68402014-10-11 20:00:24 +00006978 cntOld[i] = nCell;
danielk19774dbaa892009-06-16 16:50:22 +00006979
6980 /* Set the pointer-map entry for the new sibling page. */
6981 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006982 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006983 if( rc!=SQLITE_OK ){
6984 goto balance_cleanup;
6985 }
6986 }
drh6b308672002-07-08 02:16:37 +00006987 }
drh8b2f49b2001-06-08 00:21:52 +00006988 }
6989
6990 /*
dan33ea4862014-10-09 19:35:37 +00006991 ** Reassign page numbers so that the new pages are in ascending order.
6992 ** This helps to keep entries in the disk file in order so that a scan
6993 ** of the table is closer to a linear scan through the file. That in turn
6994 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00006995 **
dan33ea4862014-10-09 19:35:37 +00006996 ** An O(n^2) insertion sort algorithm is used, but since n is never more
6997 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006998 **
dan33ea4862014-10-09 19:35:37 +00006999 ** When NB==3, this one optimization makes the database about 25% faster
7000 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007001 */
dan33ea4862014-10-09 19:35:37 +00007002 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007003 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007004 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007005 for(j=0; j<i; j++){
7006 if( aPgno[j]==aPgno[i] ){
7007 /* This branch is taken if the set of sibling pages somehow contains
7008 ** duplicate entries. This can happen if the database is corrupt.
7009 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007010 ** we do the detection here in order to avoid populating the pager
7011 ** cache with two separate objects associated with the same
7012 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007013 assert( CORRUPT_DB );
7014 rc = SQLITE_CORRUPT_BKPT;
7015 goto balance_cleanup;
7016 }
7017 }
dan33ea4862014-10-09 19:35:37 +00007018 }
7019 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007020 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007021 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007022 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007023 }
drh00fe08a2014-10-31 00:05:23 +00007024 pgno = aPgOrder[iBest];
7025 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007026 if( iBest!=i ){
7027 if( iBest>i ){
7028 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7029 }
7030 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7031 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007032 }
7033 }
dan33ea4862014-10-09 19:35:37 +00007034
7035 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7036 "%d(%d nc=%d) %d(%d nc=%d)\n",
7037 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007038 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007039 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007040 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007041 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007042 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007043 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7044 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7045 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7046 ));
danielk19774dbaa892009-06-16 16:50:22 +00007047
7048 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7049 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007050
dan33ea4862014-10-09 19:35:37 +00007051 /* If the sibling pages are not leaves, ensure that the right-child pointer
7052 ** of the right-most new sibling page is set to the value that was
7053 ** originally in the same field of the right-most old sibling page. */
7054 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7055 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7056 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7057 }
danielk1977ac11ee62005-01-15 12:45:51 +00007058
dan33ea4862014-10-09 19:35:37 +00007059 /* Make any required updates to pointer map entries associated with
7060 ** cells stored on sibling pages following the balance operation. Pointer
7061 ** map entries associated with divider cells are set by the insertCell()
7062 ** routine. The associated pointer map entries are:
7063 **
7064 ** a) if the cell contains a reference to an overflow chain, the
7065 ** entry associated with the first page in the overflow chain, and
7066 **
7067 ** b) if the sibling pages are not leaves, the child page associated
7068 ** with the cell.
7069 **
7070 ** If the sibling pages are not leaves, then the pointer map entry
7071 ** associated with the right-child of each sibling may also need to be
7072 ** updated. This happens below, after the sibling pages have been
7073 ** populated, not here.
7074 */
7075 if( ISAUTOVACUUM ){
7076 MemPage *pNew = apNew[0];
7077 u8 *aOld = pNew->aData;
7078 int cntOldNext = pNew->nCell + pNew->nOverflow;
7079 int usableSize = pBt->usableSize;
7080 int iNew = 0;
7081 int iOld = 0;
danielk1977634f2982005-03-28 08:44:07 +00007082
dan33ea4862014-10-09 19:35:37 +00007083 for(i=0; i<nCell; i++){
7084 u8 *pCell = apCell[i];
7085 if( i==cntOldNext ){
7086 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7087 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7088 aOld = pOld->aData;
7089 }
7090 if( i==cntNew[iNew] ){
7091 pNew = apNew[++iNew];
7092 if( !leafData ) continue;
7093 }
7094
7095 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007096 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007097 ** or else the divider cell to the left of sibling page iOld. So,
7098 ** if sibling page iOld had the same page number as pNew, and if
7099 ** pCell really was a part of sibling page iOld (not a divider or
7100 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007101 if( iOld>=nNew
7102 || pNew->pgno!=aPgno[iOld]
7103 || pCell<aOld
7104 || pCell>=&aOld[usableSize]
7105 ){
dan33ea4862014-10-09 19:35:37 +00007106 if( !leafCorrection ){
7107 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7108 }
7109 if( szCell[i]>pNew->minLocal ){
7110 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00007111 }
drh4b70f112004-05-02 21:12:19 +00007112 }
drh14acc042001-06-10 19:56:58 +00007113 }
7114 }
dan33ea4862014-10-09 19:35:37 +00007115
7116 /* Insert new divider cells into pParent. */
7117 for(i=0; i<nNew-1; i++){
7118 u8 *pCell;
7119 u8 *pTemp;
7120 int sz;
7121 MemPage *pNew = apNew[i];
7122 j = cntNew[i];
7123
7124 assert( j<nMaxCells );
7125 pCell = apCell[j];
7126 sz = szCell[j] + leafCorrection;
7127 pTemp = &aOvflSpace[iOvflSpace];
7128 if( !pNew->leaf ){
7129 memcpy(&pNew->aData[8], pCell, 4);
7130 }else if( leafData ){
7131 /* If the tree is a leaf-data tree, and the siblings are leaves,
7132 ** then there is no divider cell in apCell[]. Instead, the divider
7133 ** cell consists of the integer key for the right-most cell of
7134 ** the sibling-page assembled above only.
7135 */
7136 CellInfo info;
7137 j--;
7138 btreeParseCellPtr(pNew, apCell[j], &info);
7139 pCell = pTemp;
7140 sz = 4 + putVarint(&pCell[4], info.nKey);
7141 pTemp = 0;
7142 }else{
7143 pCell -= 4;
7144 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7145 ** previously stored on a leaf node, and its reported size was 4
7146 ** bytes, then it may actually be smaller than this
7147 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7148 ** any cell). But it is important to pass the correct size to
7149 ** insertCell(), so reparse the cell now.
7150 **
7151 ** Note that this can never happen in an SQLite data file, as all
7152 ** cells are at least 4 bytes. It only happens in b-trees used
7153 ** to evaluate "IN (SELECT ...)" and similar clauses.
7154 */
7155 if( szCell[j]==4 ){
7156 assert(leafCorrection==4);
7157 sz = cellSizePtr(pParent, pCell);
7158 }
7159 }
7160 iOvflSpace += sz;
7161 assert( sz<=pBt->maxLocal+23 );
7162 assert( iOvflSpace <= (int)pBt->pageSize );
7163 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7164 if( rc!=SQLITE_OK ) goto balance_cleanup;
7165 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7166 }
7167
7168 /* Now update the actual sibling pages. The order in which they are updated
7169 ** is important, as this code needs to avoid disrupting any page from which
7170 ** cells may still to be read. In practice, this means:
7171 **
drhd836d422014-10-31 14:26:36 +00007172 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7173 ** then it is not safe to update page apNew[iPg] until after
7174 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007175 **
drhd836d422014-10-31 14:26:36 +00007176 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7177 ** then it is not safe to update page apNew[iPg] until after
7178 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007179 **
7180 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007181 **
7182 ** The iPg value in the following loop starts at nNew-1 goes down
7183 ** to 0, then back up to nNew-1 again, thus making two passes over
7184 ** the pages. On the initial downward pass, only condition (1) above
7185 ** needs to be tested because (2) will always be true from the previous
7186 ** step. On the upward pass, both conditions are always true, so the
7187 ** upwards pass simply processes pages that were missed on the downward
7188 ** pass.
dan33ea4862014-10-09 19:35:37 +00007189 */
drhbec021b2014-10-31 12:22:00 +00007190 for(i=1-nNew; i<nNew; i++){
7191 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007192 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007193 if( abDone[iPg] ) continue; /* Skip pages already processed */
7194 if( i>=0 /* On the upwards pass, or... */
7195 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007196 ){
dan09c68402014-10-11 20:00:24 +00007197 int iNew;
7198 int iOld;
7199 int nNewCell;
7200
drhd836d422014-10-31 14:26:36 +00007201 /* Verify condition (1): If cells are moving left, update iPg
7202 ** only after iPg-1 has already been updated. */
7203 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7204
7205 /* Verify condition (2): If cells are moving right, update iPg
7206 ** only after iPg+1 has already been updated. */
7207 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7208
dan09c68402014-10-11 20:00:24 +00007209 if( iPg==0 ){
7210 iNew = iOld = 0;
7211 nNewCell = cntNew[0];
7212 }else{
7213 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : nCell;
7214 iNew = cntNew[iPg-1] + !leafData;
7215 nNewCell = cntNew[iPg] - iNew;
7216 }
7217
7218 editPage(apNew[iPg], iOld, iNew, nNewCell, apCell, szCell);
drhd836d422014-10-31 14:26:36 +00007219 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007220 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007221 assert( apNew[iPg]->nOverflow==0 );
7222 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007223 }
7224 }
drhd836d422014-10-31 14:26:36 +00007225
7226 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007227 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7228
drh7aa8f852006-03-28 00:24:44 +00007229 assert( nOld>0 );
7230 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007231
danielk197713bd99f2009-06-24 05:40:34 +00007232 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7233 /* The root page of the b-tree now contains no cells. The only sibling
7234 ** page is the right-child of the parent. Copy the contents of the
7235 ** child page into the parent, decreasing the overall height of the
7236 ** b-tree structure by one. This is described as the "balance-shallower"
7237 ** sub-algorithm in some documentation.
7238 **
7239 ** If this is an auto-vacuum database, the call to copyNodeContent()
7240 ** sets all pointer-map entries corresponding to database image pages
7241 ** for which the pointer is stored within the content being copied.
7242 **
drh768f2902014-10-31 02:51:41 +00007243 ** It is critical that the child page be defragmented before being
7244 ** copied into the parent, because if the parent is page 1 then it will
7245 ** by smaller than the child due to the database header, and so all the
7246 ** free space needs to be up front.
7247 */
danielk197713bd99f2009-06-24 05:40:34 +00007248 assert( nNew==1 );
dan89ca0b32014-10-25 20:36:28 +00007249 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007250 testcase( rc!=SQLITE_OK );
7251 assert( apNew[0]->nFree ==
7252 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7253 || rc!=SQLITE_OK
7254 );
7255 copyNodeContent(apNew[0], pParent, &rc);
7256 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007257 }else if( ISAUTOVACUUM && !leafCorrection ){
7258 /* Fix the pointer map entries associated with the right-child of each
7259 ** sibling page. All other pointer map entries have already been taken
7260 ** care of. */
7261 for(i=0; i<nNew; i++){
7262 u32 key = get4byte(&apNew[i]->aData[8]);
7263 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007264 }
dan33ea4862014-10-09 19:35:37 +00007265 }
danielk19774dbaa892009-06-16 16:50:22 +00007266
dan33ea4862014-10-09 19:35:37 +00007267 assert( pParent->isInit );
7268 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7269 nOld, nNew, nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007270
dan33ea4862014-10-09 19:35:37 +00007271 /* Free any old pages that were not reused as new pages.
7272 */
7273 for(i=nNew; i<nOld; i++){
7274 freePage(apOld[i], &rc);
7275 }
7276
dane6593d82014-10-24 16:40:49 +00007277#if 0
dan33ea4862014-10-09 19:35:37 +00007278 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007279 /* The ptrmapCheckPages() contains assert() statements that verify that
7280 ** all pointer map pages are set correctly. This is helpful while
7281 ** debugging. This is usually disabled because a corrupt database may
7282 ** cause an assert() statement to fail. */
7283 ptrmapCheckPages(apNew, nNew);
7284 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007285 }
dan33ea4862014-10-09 19:35:37 +00007286#endif
danielk1977cd581a72009-06-23 15:43:39 +00007287
drh8b2f49b2001-06-08 00:21:52 +00007288 /*
drh14acc042001-06-10 19:56:58 +00007289 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007290 */
drh14acc042001-06-10 19:56:58 +00007291balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00007292 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00007293 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007294 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007295 }
drh14acc042001-06-10 19:56:58 +00007296 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007297 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007298 }
danielk1977eaa06f62008-09-18 17:34:44 +00007299
drh8b2f49b2001-06-08 00:21:52 +00007300 return rc;
7301}
mistachkine7c54162012-10-02 22:54:27 +00007302#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
7303#pragma optimize("", on)
7304#endif
drh8b2f49b2001-06-08 00:21:52 +00007305
drh43605152004-05-29 21:46:49 +00007306
7307/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007308** This function is called when the root page of a b-tree structure is
7309** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007310**
danielk1977a50d9aa2009-06-08 14:49:45 +00007311** A new child page is allocated and the contents of the current root
7312** page, including overflow cells, are copied into the child. The root
7313** page is then overwritten to make it an empty page with the right-child
7314** pointer pointing to the new page.
7315**
7316** Before returning, all pointer-map entries corresponding to pages
7317** that the new child-page now contains pointers to are updated. The
7318** entry corresponding to the new right-child pointer of the root
7319** page is also updated.
7320**
7321** If successful, *ppChild is set to contain a reference to the child
7322** page and SQLITE_OK is returned. In this case the caller is required
7323** to call releasePage() on *ppChild exactly once. If an error occurs,
7324** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007325*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007326static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7327 int rc; /* Return value from subprocedures */
7328 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007329 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007330 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007331
danielk1977a50d9aa2009-06-08 14:49:45 +00007332 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007333 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007334
danielk1977a50d9aa2009-06-08 14:49:45 +00007335 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7336 ** page that will become the new right-child of pPage. Copy the contents
7337 ** of the node stored on pRoot into the new child page.
7338 */
drh98add2e2009-07-20 17:11:49 +00007339 rc = sqlite3PagerWrite(pRoot->pDbPage);
7340 if( rc==SQLITE_OK ){
7341 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007342 copyNodeContent(pRoot, pChild, &rc);
7343 if( ISAUTOVACUUM ){
7344 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007345 }
7346 }
7347 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007348 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007349 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007350 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007351 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007352 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7353 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7354 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007355
danielk1977a50d9aa2009-06-08 14:49:45 +00007356 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7357
7358 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007359 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7360 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7361 memcpy(pChild->apOvfl, pRoot->apOvfl,
7362 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007363 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007364
7365 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7366 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7367 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7368
7369 *ppChild = pChild;
7370 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007371}
7372
7373/*
danielk197771d5d2c2008-09-29 11:49:47 +00007374** The page that pCur currently points to has just been modified in
7375** some way. This function figures out if this modification means the
7376** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007377** routine. Balancing routines are:
7378**
7379** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007380** balance_deeper()
7381** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007382*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007383static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007384 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007385 const int nMin = pCur->pBt->usableSize * 2 / 3;
7386 u8 aBalanceQuickSpace[13];
7387 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007388
shane75ac1de2009-06-09 18:58:52 +00007389 TESTONLY( int balance_quick_called = 0 );
7390 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007391
7392 do {
7393 int iPage = pCur->iPage;
7394 MemPage *pPage = pCur->apPage[iPage];
7395
7396 if( iPage==0 ){
7397 if( pPage->nOverflow ){
7398 /* The root page of the b-tree is overfull. In this case call the
7399 ** balance_deeper() function to create a new child for the root-page
7400 ** and copy the current contents of the root-page to it. The
7401 ** next iteration of the do-loop will balance the child page.
7402 */
7403 assert( (balance_deeper_called++)==0 );
7404 rc = balance_deeper(pPage, &pCur->apPage[1]);
7405 if( rc==SQLITE_OK ){
7406 pCur->iPage = 1;
7407 pCur->aiIdx[0] = 0;
7408 pCur->aiIdx[1] = 0;
7409 assert( pCur->apPage[1]->nOverflow );
7410 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007411 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007412 break;
7413 }
7414 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7415 break;
7416 }else{
7417 MemPage * const pParent = pCur->apPage[iPage-1];
7418 int const iIdx = pCur->aiIdx[iPage-1];
7419
7420 rc = sqlite3PagerWrite(pParent->pDbPage);
7421 if( rc==SQLITE_OK ){
7422#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007423 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007424 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007425 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007426 && pParent->pgno!=1
7427 && pParent->nCell==iIdx
7428 ){
7429 /* Call balance_quick() to create a new sibling of pPage on which
7430 ** to store the overflow cell. balance_quick() inserts a new cell
7431 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007432 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007433 ** use either balance_nonroot() or balance_deeper(). Until this
7434 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7435 ** buffer.
7436 **
7437 ** The purpose of the following assert() is to check that only a
7438 ** single call to balance_quick() is made for each call to this
7439 ** function. If this were not verified, a subtle bug involving reuse
7440 ** of the aBalanceQuickSpace[] might sneak in.
7441 */
7442 assert( (balance_quick_called++)==0 );
7443 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7444 }else
7445#endif
7446 {
7447 /* In this case, call balance_nonroot() to redistribute cells
7448 ** between pPage and up to 2 of its sibling pages. This involves
7449 ** modifying the contents of pParent, which may cause pParent to
7450 ** become overfull or underfull. The next iteration of the do-loop
7451 ** will balance the parent page to correct this.
7452 **
7453 ** If the parent page becomes overfull, the overflow cell or cells
7454 ** are stored in the pSpace buffer allocated immediately below.
7455 ** A subsequent iteration of the do-loop will deal with this by
7456 ** calling balance_nonroot() (balance_deeper() may be called first,
7457 ** but it doesn't deal with overflow cells - just moves them to a
7458 ** different page). Once this subsequent call to balance_nonroot()
7459 ** has completed, it is safe to release the pSpace buffer used by
7460 ** the previous call, as the overflow cell data will have been
7461 ** copied either into the body of a database page or into the new
7462 ** pSpace buffer passed to the latter call to balance_nonroot().
7463 */
7464 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00007465 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00007466 if( pFree ){
7467 /* If pFree is not NULL, it points to the pSpace buffer used
7468 ** by a previous call to balance_nonroot(). Its contents are
7469 ** now stored either on real database pages or within the
7470 ** new pSpace buffer, so it may be safely freed here. */
7471 sqlite3PageFree(pFree);
7472 }
7473
danielk19774dbaa892009-06-16 16:50:22 +00007474 /* The pSpace buffer will be freed after the next call to
7475 ** balance_nonroot(), or just before this function returns, whichever
7476 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007477 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007478 }
7479 }
7480
7481 pPage->nOverflow = 0;
7482
7483 /* The next iteration of the do-loop balances the parent page. */
7484 releasePage(pPage);
7485 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00007486 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007487 }while( rc==SQLITE_OK );
7488
7489 if( pFree ){
7490 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007491 }
7492 return rc;
7493}
7494
drhf74b8d92002-09-01 23:20:45 +00007495
7496/*
drh3b7511c2001-05-26 13:15:44 +00007497** Insert a new record into the BTree. The key is given by (pKey,nKey)
7498** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007499** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007500** is left pointing at a random location.
7501**
7502** For an INTKEY table, only the nKey value of the key is used. pKey is
7503** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007504**
7505** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007506** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007507** been performed. seekResult is the search result returned (a negative
7508** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007509** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007510** (pKey, nKey)).
7511**
drh3e9ca092009-09-08 01:14:48 +00007512** If the seekResult parameter is non-zero, then the caller guarantees that
7513** cursor pCur is pointing at the existing copy of a row that is to be
7514** overwritten. If the seekResult parameter is 0, then cursor pCur may
7515** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007516** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007517*/
drh3aac2dd2004-04-26 14:10:20 +00007518int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007519 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007520 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007521 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007522 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007523 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007524 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007525){
drh3b7511c2001-05-26 13:15:44 +00007526 int rc;
drh3e9ca092009-09-08 01:14:48 +00007527 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007528 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007529 int idx;
drh3b7511c2001-05-26 13:15:44 +00007530 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007531 Btree *p = pCur->pBtree;
7532 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007533 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007534 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007535
drh98add2e2009-07-20 17:11:49 +00007536 if( pCur->eState==CURSOR_FAULT ){
7537 assert( pCur->skipNext!=SQLITE_OK );
7538 return pCur->skipNext;
7539 }
7540
drh1fee73e2007-08-29 04:00:57 +00007541 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007542 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7543 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007544 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007545 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7546
danielk197731d31b82009-07-13 13:18:07 +00007547 /* Assert that the caller has been consistent. If this cursor was opened
7548 ** expecting an index b-tree, then the caller should be inserting blob
7549 ** keys with no associated data. If the cursor was opened expecting an
7550 ** intkey table, the caller should be inserting integer keys with a
7551 ** blob of associated data. */
7552 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7553
danielk19779c3acf32009-05-02 07:36:49 +00007554 /* Save the positions of any other cursors open on this table.
7555 **
danielk19773509a652009-07-06 18:56:13 +00007556 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007557 ** example, when inserting data into a table with auto-generated integer
7558 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7559 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007560 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007561 ** that the cursor is already where it needs to be and returns without
7562 ** doing any work. To avoid thwarting these optimizations, it is important
7563 ** not to clear the cursor here.
7564 */
drh4c301aa2009-07-15 17:25:45 +00007565 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7566 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007567
drhd60f4f42012-03-23 14:23:52 +00007568 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00007569 /* If this is an insert into a table b-tree, invalidate any incrblob
7570 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007571 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007572
7573 /* If the cursor is currently on the last row and we are appending a
7574 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7575 ** call */
drh3f387402014-09-24 01:23:00 +00007576 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7577 && pCur->info.nKey==nKey-1 ){
drhe0670b62014-02-12 21:31:12 +00007578 loc = -1;
7579 }
drhd60f4f42012-03-23 14:23:52 +00007580 }
7581
drh4c301aa2009-07-15 17:25:45 +00007582 if( !loc ){
7583 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7584 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007585 }
danielk1977b980d2212009-06-22 18:03:51 +00007586 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007587
danielk197771d5d2c2008-09-29 11:49:47 +00007588 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007589 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007590 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007591
drh3a4c1412004-05-09 20:40:11 +00007592 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7593 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7594 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007595 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007596 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007597 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00007598 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007599 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00007600 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007601 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007602 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007603 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007604 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007605 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007606 rc = sqlite3PagerWrite(pPage->pDbPage);
7607 if( rc ){
7608 goto end_insert;
7609 }
danielk197771d5d2c2008-09-29 11:49:47 +00007610 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007611 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007612 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007613 }
drh9bfdc252014-09-24 02:05:41 +00007614 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00007615 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007616 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007617 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007618 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007619 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007620 }else{
drh4b70f112004-05-02 21:12:19 +00007621 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007622 }
drh98add2e2009-07-20 17:11:49 +00007623 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007624 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007625
mistachkin48864df2013-03-21 21:20:32 +00007626 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007627 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007628 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007629 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007630 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007631 ** Previous versions of SQLite called moveToRoot() to move the cursor
7632 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007633 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7634 ** set the cursor state to "invalid". This makes common insert operations
7635 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007636 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007637 ** There is a subtle but important optimization here too. When inserting
7638 ** multiple records into an intkey b-tree using a single cursor (as can
7639 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7640 ** is advantageous to leave the cursor pointing to the last entry in
7641 ** the b-tree if possible. If the cursor is left pointing to the last
7642 ** entry in the table, and the next row inserted has an integer key
7643 ** larger than the largest existing key, it is possible to insert the
7644 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007645 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007646 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007647 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00007648 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00007649 rc = balance(pCur);
7650
7651 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007652 ** fails. Internal data structure corruption will result otherwise.
7653 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7654 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007655 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007656 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007657 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007658 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007659
drh2e38c322004-09-03 18:38:44 +00007660end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007661 return rc;
7662}
7663
7664/*
drh4b70f112004-05-02 21:12:19 +00007665** Delete the entry that the cursor is pointing to. The cursor
peter.d.reid60ec9142014-09-06 16:39:46 +00007666** is left pointing at an arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007667*/
drh3aac2dd2004-04-26 14:10:20 +00007668int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007669 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007670 BtShared *pBt = p->pBt;
7671 int rc; /* Return code */
7672 MemPage *pPage; /* Page to delete cell from */
7673 unsigned char *pCell; /* Pointer to cell to delete */
7674 int iCellIdx; /* Index of cell to delete */
7675 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00007676 u16 szCell; /* Size of the cell being deleted */
drh8b2f49b2001-06-08 00:21:52 +00007677
drh1fee73e2007-08-29 04:00:57 +00007678 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007679 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007680 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00007681 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00007682 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7683 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7684
danielk19774dbaa892009-06-16 16:50:22 +00007685 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7686 || NEVER(pCur->eState!=CURSOR_VALID)
7687 ){
7688 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007689 }
danielk1977da184232006-01-05 11:34:32 +00007690
danielk19774dbaa892009-06-16 16:50:22 +00007691 iCellDepth = pCur->iPage;
7692 iCellIdx = pCur->aiIdx[iCellDepth];
7693 pPage = pCur->apPage[iCellDepth];
7694 pCell = findCell(pPage, iCellIdx);
7695
7696 /* If the page containing the entry to delete is not a leaf page, move
7697 ** the cursor to the largest entry in the tree that is smaller than
7698 ** the entry being deleted. This cell will replace the cell being deleted
7699 ** from the internal node. The 'previous' entry is used for this instead
7700 ** of the 'next' entry, as the previous entry is always a part of the
7701 ** sub-tree headed by the child page of the cell being deleted. This makes
7702 ** balancing the tree following the delete operation easier. */
7703 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00007704 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00007705 rc = sqlite3BtreePrevious(pCur, &notUsed);
7706 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007707 }
7708
7709 /* Save the positions of any other cursors open on this table before
7710 ** making any modifications. Make the page containing the entry to be
7711 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007712 ** entry and finally remove the cell itself from within the page.
7713 */
7714 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7715 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007716
7717 /* If this is a delete operation to remove a row from a table b-tree,
7718 ** invalidate any incrblob cursors open on the row being deleted. */
7719 if( pCur->pKeyInfo==0 ){
7720 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7721 }
7722
drha4ec1d42009-07-11 13:13:11 +00007723 rc = sqlite3PagerWrite(pPage->pDbPage);
7724 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00007725 rc = clearCell(pPage, pCell, &szCell);
7726 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007727 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007728
danielk19774dbaa892009-06-16 16:50:22 +00007729 /* If the cell deleted was not located on a leaf page, then the cursor
7730 ** is currently pointing to the largest entry in the sub-tree headed
7731 ** by the child-page of the cell that was just deleted from an internal
7732 ** node. The cell from the leaf node needs to be moved to the internal
7733 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007734 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007735 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7736 int nCell;
7737 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7738 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007739
danielk19774dbaa892009-06-16 16:50:22 +00007740 pCell = findCell(pLeaf, pLeaf->nCell-1);
7741 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007742 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00007743 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007744 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00007745 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007746 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7747 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007748 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007749 }
danielk19774dbaa892009-06-16 16:50:22 +00007750
7751 /* Balance the tree. If the entry deleted was located on a leaf page,
7752 ** then the cursor still points to that page. In this case the first
7753 ** call to balance() repairs the tree, and the if(...) condition is
7754 ** never true.
7755 **
7756 ** Otherwise, if the entry deleted was on an internal node page, then
7757 ** pCur is pointing to the leaf page from which a cell was removed to
7758 ** replace the cell deleted from the internal node. This is slightly
7759 ** tricky as the leaf node may be underfull, and the internal node may
7760 ** be either under or overfull. In this case run the balancing algorithm
7761 ** on the leaf node first. If the balance proceeds far enough up the
7762 ** tree that we can be sure that any problem in the internal node has
7763 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7764 ** walk the cursor up the tree to the internal node and balance it as
7765 ** well. */
7766 rc = balance(pCur);
7767 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7768 while( pCur->iPage>iCellDepth ){
7769 releasePage(pCur->apPage[pCur->iPage--]);
7770 }
7771 rc = balance(pCur);
7772 }
7773
danielk19776b456a22005-03-21 04:04:02 +00007774 if( rc==SQLITE_OK ){
7775 moveToRoot(pCur);
7776 }
drh5e2f8b92001-05-28 00:41:15 +00007777 return rc;
drh3b7511c2001-05-26 13:15:44 +00007778}
drh8b2f49b2001-06-08 00:21:52 +00007779
7780/*
drhc6b52df2002-01-04 03:09:29 +00007781** Create a new BTree table. Write into *piTable the page
7782** number for the root page of the new table.
7783**
drhab01f612004-05-22 02:55:23 +00007784** The type of type is determined by the flags parameter. Only the
7785** following values of flags are currently in use. Other values for
7786** flags might not work:
7787**
7788** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7789** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007790*/
drhd4187c72010-08-30 22:15:45 +00007791static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007792 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007793 MemPage *pRoot;
7794 Pgno pgnoRoot;
7795 int rc;
drhd4187c72010-08-30 22:15:45 +00007796 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007797
drh1fee73e2007-08-29 04:00:57 +00007798 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007799 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007800 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007801
danielk1977003ba062004-11-04 02:57:33 +00007802#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007803 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007804 if( rc ){
7805 return rc;
7806 }
danielk1977003ba062004-11-04 02:57:33 +00007807#else
danielk1977687566d2004-11-02 12:56:41 +00007808 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007809 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7810 MemPage *pPageMove; /* The page to move to. */
7811
danielk197720713f32007-05-03 11:43:33 +00007812 /* Creating a new table may probably require moving an existing database
7813 ** to make room for the new tables root page. In case this page turns
7814 ** out to be an overflow page, delete all overflow page-map caches
7815 ** held by open cursors.
7816 */
danielk197792d4d7a2007-05-04 12:05:56 +00007817 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007818
danielk1977003ba062004-11-04 02:57:33 +00007819 /* Read the value of meta[3] from the database to determine where the
7820 ** root page of the new table should go. meta[3] is the largest root-page
7821 ** created so far, so the new root-page is (meta[3]+1).
7822 */
danielk1977602b4662009-07-02 07:47:33 +00007823 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007824 pgnoRoot++;
7825
danielk1977599fcba2004-11-08 07:13:13 +00007826 /* The new root-page may not be allocated on a pointer-map page, or the
7827 ** PENDING_BYTE page.
7828 */
drh72190432008-01-31 14:54:43 +00007829 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007830 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007831 pgnoRoot++;
7832 }
7833 assert( pgnoRoot>=3 );
7834
7835 /* Allocate a page. The page that currently resides at pgnoRoot will
7836 ** be moved to the allocated page (unless the allocated page happens
7837 ** to reside at pgnoRoot).
7838 */
dan51f0b6d2013-02-22 20:16:34 +00007839 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007840 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007841 return rc;
7842 }
danielk1977003ba062004-11-04 02:57:33 +00007843
7844 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007845 /* pgnoRoot is the page that will be used for the root-page of
7846 ** the new table (assuming an error did not occur). But we were
7847 ** allocated pgnoMove. If required (i.e. if it was not allocated
7848 ** by extending the file), the current page at position pgnoMove
7849 ** is already journaled.
7850 */
drheeb844a2009-08-08 18:01:07 +00007851 u8 eType = 0;
7852 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007853
danf7679ad2013-04-03 11:38:36 +00007854 /* Save the positions of any open cursors. This is required in
7855 ** case they are holding a reference to an xFetch reference
7856 ** corresponding to page pgnoRoot. */
7857 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007858 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007859 if( rc!=SQLITE_OK ){
7860 return rc;
7861 }
danielk1977f35843b2007-04-07 15:03:17 +00007862
7863 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00007864 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007865 if( rc!=SQLITE_OK ){
7866 return rc;
7867 }
7868 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007869 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7870 rc = SQLITE_CORRUPT_BKPT;
7871 }
7872 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007873 releasePage(pRoot);
7874 return rc;
7875 }
drhccae6022005-02-26 17:31:26 +00007876 assert( eType!=PTRMAP_ROOTPAGE );
7877 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007878 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007879 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007880
7881 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007882 if( rc!=SQLITE_OK ){
7883 return rc;
7884 }
drhb00fc3b2013-08-21 23:42:32 +00007885 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007886 if( rc!=SQLITE_OK ){
7887 return rc;
7888 }
danielk19773b8a05f2007-03-19 17:44:26 +00007889 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007890 if( rc!=SQLITE_OK ){
7891 releasePage(pRoot);
7892 return rc;
7893 }
7894 }else{
7895 pRoot = pPageMove;
7896 }
7897
danielk197742741be2005-01-08 12:42:39 +00007898 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007899 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007900 if( rc ){
7901 releasePage(pRoot);
7902 return rc;
7903 }
drhbf592832010-03-30 15:51:12 +00007904
7905 /* When the new root page was allocated, page 1 was made writable in
7906 ** order either to increase the database filesize, or to decrement the
7907 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7908 */
7909 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007910 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007911 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007912 releasePage(pRoot);
7913 return rc;
7914 }
danielk197742741be2005-01-08 12:42:39 +00007915
danielk1977003ba062004-11-04 02:57:33 +00007916 }else{
drh4f0c5872007-03-26 22:05:01 +00007917 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007918 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007919 }
7920#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007921 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007922 if( createTabFlags & BTREE_INTKEY ){
7923 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7924 }else{
7925 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7926 }
7927 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007928 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007929 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007930 *piTable = (int)pgnoRoot;
7931 return SQLITE_OK;
7932}
drhd677b3d2007-08-20 22:48:41 +00007933int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7934 int rc;
7935 sqlite3BtreeEnter(p);
7936 rc = btreeCreateTable(p, piTable, flags);
7937 sqlite3BtreeLeave(p);
7938 return rc;
7939}
drh8b2f49b2001-06-08 00:21:52 +00007940
7941/*
7942** Erase the given database page and all its children. Return
7943** the page to the freelist.
7944*/
drh4b70f112004-05-02 21:12:19 +00007945static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007946 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007947 Pgno pgno, /* Page number to clear */
7948 int freePageFlag, /* Deallocate page if true */
7949 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007950){
danielk1977146ba992009-07-22 14:08:13 +00007951 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007952 int rc;
drh4b70f112004-05-02 21:12:19 +00007953 unsigned char *pCell;
7954 int i;
dan8ce71842014-01-14 20:14:09 +00007955 int hdr;
drh9bfdc252014-09-24 02:05:41 +00007956 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00007957
drh1fee73e2007-08-29 04:00:57 +00007958 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007959 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007960 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007961 }
7962
dan11dcd112013-03-15 18:29:18 +00007963 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00007964 if( rc ) return rc;
dan8ce71842014-01-14 20:14:09 +00007965 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00007966 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007967 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007968 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007969 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007970 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007971 }
drh9bfdc252014-09-24 02:05:41 +00007972 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00007973 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007974 }
drha34b6762004-05-07 13:30:42 +00007975 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00007976 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007977 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007978 }else if( pnChange ){
7979 assert( pPage->intKey );
7980 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007981 }
7982 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007983 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007984 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00007985 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007986 }
danielk19776b456a22005-03-21 04:04:02 +00007987
7988cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007989 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007990 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007991}
7992
7993/*
drhab01f612004-05-22 02:55:23 +00007994** Delete all information from a single table in the database. iTable is
7995** the page number of the root of the table. After this routine returns,
7996** the root page is empty, but still exists.
7997**
7998** This routine will fail with SQLITE_LOCKED if there are any open
7999** read cursors on the table. Open write cursors are moved to the
8000** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008001**
8002** If pnChange is not NULL, then table iTable must be an intkey table. The
8003** integer value pointed to by pnChange is incremented by the number of
8004** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008005*/
danielk1977c7af4842008-10-27 13:59:33 +00008006int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008007 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008008 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008009 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008010 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008011
drhc046e3e2009-07-15 11:26:44 +00008012 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008013
drhc046e3e2009-07-15 11:26:44 +00008014 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008015 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8016 ** is the root of a table b-tree - if it is not, the following call is
8017 ** a no-op). */
8018 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008019 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008020 }
drhd677b3d2007-08-20 22:48:41 +00008021 sqlite3BtreeLeave(p);
8022 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008023}
8024
8025/*
drh079a3072014-03-19 14:10:55 +00008026** Delete all information from the single table that pCur is open on.
8027**
8028** This routine only work for pCur on an ephemeral table.
8029*/
8030int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8031 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8032}
8033
8034/*
drh8b2f49b2001-06-08 00:21:52 +00008035** Erase all information in a table and add the root of the table to
8036** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008037** page 1) is never added to the freelist.
8038**
8039** This routine will fail with SQLITE_LOCKED if there are any open
8040** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008041**
8042** If AUTOVACUUM is enabled and the page at iTable is not the last
8043** root page in the database file, then the last root page
8044** in the database file is moved into the slot formerly occupied by
8045** iTable and that last slot formerly occupied by the last root page
8046** is added to the freelist instead of iTable. In this say, all
8047** root pages are kept at the beginning of the database file, which
8048** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8049** page number that used to be the last root page in the file before
8050** the move. If no page gets moved, *piMoved is set to 0.
8051** The last root page is recorded in meta[3] and the value of
8052** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008053*/
danielk197789d40042008-11-17 14:20:56 +00008054static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008055 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008056 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008057 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008058
drh1fee73e2007-08-29 04:00:57 +00008059 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008060 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008061
danielk1977e6efa742004-11-10 11:55:10 +00008062 /* It is illegal to drop a table if any cursors are open on the
8063 ** database. This is because in auto-vacuum mode the backend may
8064 ** need to move another root-page to fill a gap left by the deleted
8065 ** root page. If an open cursor was using this page a problem would
8066 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008067 **
8068 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008069 */
drhc046e3e2009-07-15 11:26:44 +00008070 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008071 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8072 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008073 }
danielk1977a0bf2652004-11-04 14:30:04 +00008074
drhb00fc3b2013-08-21 23:42:32 +00008075 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008076 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008077 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008078 if( rc ){
8079 releasePage(pPage);
8080 return rc;
8081 }
danielk1977a0bf2652004-11-04 14:30:04 +00008082
drh205f48e2004-11-05 00:43:11 +00008083 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008084
drh4b70f112004-05-02 21:12:19 +00008085 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008086#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008087 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008088 releasePage(pPage);
8089#else
8090 if( pBt->autoVacuum ){
8091 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008092 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008093
8094 if( iTable==maxRootPgno ){
8095 /* If the table being dropped is the table with the largest root-page
8096 ** number in the database, put the root page on the free list.
8097 */
drhc314dc72009-07-21 11:52:34 +00008098 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008099 releasePage(pPage);
8100 if( rc!=SQLITE_OK ){
8101 return rc;
8102 }
8103 }else{
8104 /* The table being dropped does not have the largest root-page
8105 ** number in the database. So move the page that does into the
8106 ** gap left by the deleted root-page.
8107 */
8108 MemPage *pMove;
8109 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008110 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008111 if( rc!=SQLITE_OK ){
8112 return rc;
8113 }
danielk19774c999992008-07-16 18:17:55 +00008114 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008115 releasePage(pMove);
8116 if( rc!=SQLITE_OK ){
8117 return rc;
8118 }
drhfe3313f2009-07-21 19:02:20 +00008119 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008120 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008121 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008122 releasePage(pMove);
8123 if( rc!=SQLITE_OK ){
8124 return rc;
8125 }
8126 *piMoved = maxRootPgno;
8127 }
8128
danielk1977599fcba2004-11-08 07:13:13 +00008129 /* Set the new 'max-root-page' value in the database header. This
8130 ** is the old value less one, less one more if that happens to
8131 ** be a root-page number, less one again if that is the
8132 ** PENDING_BYTE_PAGE.
8133 */
danielk197787a6e732004-11-05 12:58:25 +00008134 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008135 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8136 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008137 maxRootPgno--;
8138 }
danielk1977599fcba2004-11-08 07:13:13 +00008139 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8140
danielk1977aef0bf62005-12-30 16:28:01 +00008141 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008142 }else{
drhc314dc72009-07-21 11:52:34 +00008143 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008144 releasePage(pPage);
8145 }
8146#endif
drh2aa679f2001-06-25 02:11:07 +00008147 }else{
drhc046e3e2009-07-15 11:26:44 +00008148 /* If sqlite3BtreeDropTable was called on page 1.
8149 ** This really never should happen except in a corrupt
8150 ** database.
8151 */
drha34b6762004-05-07 13:30:42 +00008152 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008153 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008154 }
drh8b2f49b2001-06-08 00:21:52 +00008155 return rc;
8156}
drhd677b3d2007-08-20 22:48:41 +00008157int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8158 int rc;
8159 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008160 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008161 sqlite3BtreeLeave(p);
8162 return rc;
8163}
drh8b2f49b2001-06-08 00:21:52 +00008164
drh001bbcb2003-03-19 03:14:00 +00008165
drh8b2f49b2001-06-08 00:21:52 +00008166/*
danielk1977602b4662009-07-02 07:47:33 +00008167** This function may only be called if the b-tree connection already
8168** has a read or write transaction open on the database.
8169**
drh23e11ca2004-05-04 17:27:28 +00008170** Read the meta-information out of a database file. Meta[0]
8171** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008172** through meta[15] are available for use by higher layers. Meta[0]
8173** is read-only, the others are read/write.
8174**
8175** The schema layer numbers meta values differently. At the schema
8176** layer (and the SetCookie and ReadCookie opcodes) the number of
8177** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00008178*/
danielk1977602b4662009-07-02 07:47:33 +00008179void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008180 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008181
drhd677b3d2007-08-20 22:48:41 +00008182 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008183 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008184 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008185 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008186 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008187
danielk1977602b4662009-07-02 07:47:33 +00008188 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00008189
danielk1977602b4662009-07-02 07:47:33 +00008190 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8191 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008192#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008193 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8194 pBt->btsFlags |= BTS_READ_ONLY;
8195 }
danielk1977003ba062004-11-04 02:57:33 +00008196#endif
drhae157872004-08-14 19:20:09 +00008197
drhd677b3d2007-08-20 22:48:41 +00008198 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008199}
8200
8201/*
drh23e11ca2004-05-04 17:27:28 +00008202** Write meta-information back into the database. Meta[0] is
8203** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008204*/
danielk1977aef0bf62005-12-30 16:28:01 +00008205int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8206 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008207 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008208 int rc;
drh23e11ca2004-05-04 17:27:28 +00008209 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008210 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008211 assert( p->inTrans==TRANS_WRITE );
8212 assert( pBt->pPage1!=0 );
8213 pP1 = pBt->pPage1->aData;
8214 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8215 if( rc==SQLITE_OK ){
8216 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008217#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008218 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008219 assert( pBt->autoVacuum || iMeta==0 );
8220 assert( iMeta==0 || iMeta==1 );
8221 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008222 }
drh64022502009-01-09 14:11:04 +00008223#endif
drh5df72a52002-06-06 23:16:05 +00008224 }
drhd677b3d2007-08-20 22:48:41 +00008225 sqlite3BtreeLeave(p);
8226 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008227}
drh8c42ca92001-06-22 19:15:00 +00008228
danielk1977a5533162009-02-24 10:01:51 +00008229#ifndef SQLITE_OMIT_BTREECOUNT
8230/*
8231** The first argument, pCur, is a cursor opened on some b-tree. Count the
8232** number of entries in the b-tree and write the result to *pnEntry.
8233**
8234** SQLITE_OK is returned if the operation is successfully executed.
8235** Otherwise, if an error is encountered (i.e. an IO error or database
8236** corruption) an SQLite error code is returned.
8237*/
8238int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8239 i64 nEntry = 0; /* Value to return in *pnEntry */
8240 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008241
8242 if( pCur->pgnoRoot==0 ){
8243 *pnEntry = 0;
8244 return SQLITE_OK;
8245 }
danielk1977a5533162009-02-24 10:01:51 +00008246 rc = moveToRoot(pCur);
8247
8248 /* Unless an error occurs, the following loop runs one iteration for each
8249 ** page in the B-Tree structure (not including overflow pages).
8250 */
8251 while( rc==SQLITE_OK ){
8252 int iIdx; /* Index of child node in parent */
8253 MemPage *pPage; /* Current page of the b-tree */
8254
8255 /* If this is a leaf page or the tree is not an int-key tree, then
8256 ** this page contains countable entries. Increment the entry counter
8257 ** accordingly.
8258 */
8259 pPage = pCur->apPage[pCur->iPage];
8260 if( pPage->leaf || !pPage->intKey ){
8261 nEntry += pPage->nCell;
8262 }
8263
8264 /* pPage is a leaf node. This loop navigates the cursor so that it
8265 ** points to the first interior cell that it points to the parent of
8266 ** the next page in the tree that has not yet been visited. The
8267 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8268 ** of the page, or to the number of cells in the page if the next page
8269 ** to visit is the right-child of its parent.
8270 **
8271 ** If all pages in the tree have been visited, return SQLITE_OK to the
8272 ** caller.
8273 */
8274 if( pPage->leaf ){
8275 do {
8276 if( pCur->iPage==0 ){
8277 /* All pages of the b-tree have been visited. Return successfully. */
8278 *pnEntry = nEntry;
8279 return SQLITE_OK;
8280 }
danielk197730548662009-07-09 05:07:37 +00008281 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008282 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8283
8284 pCur->aiIdx[pCur->iPage]++;
8285 pPage = pCur->apPage[pCur->iPage];
8286 }
8287
8288 /* Descend to the child node of the cell that the cursor currently
8289 ** points at. This is the right-child if (iIdx==pPage->nCell).
8290 */
8291 iIdx = pCur->aiIdx[pCur->iPage];
8292 if( iIdx==pPage->nCell ){
8293 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8294 }else{
8295 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8296 }
8297 }
8298
shanebe217792009-03-05 04:20:31 +00008299 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008300 return rc;
8301}
8302#endif
drhdd793422001-06-28 01:54:48 +00008303
drhdd793422001-06-28 01:54:48 +00008304/*
drh5eddca62001-06-30 21:53:53 +00008305** Return the pager associated with a BTree. This routine is used for
8306** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008307*/
danielk1977aef0bf62005-12-30 16:28:01 +00008308Pager *sqlite3BtreePager(Btree *p){
8309 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008310}
drh5eddca62001-06-30 21:53:53 +00008311
drhb7f91642004-10-31 02:22:47 +00008312#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008313/*
8314** Append a message to the error message string.
8315*/
drh2e38c322004-09-03 18:38:44 +00008316static void checkAppendMsg(
8317 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008318 const char *zFormat,
8319 ...
8320){
8321 va_list ap;
drh867db832014-09-26 02:41:05 +00008322 char zBuf[200];
drh1dcdbc02007-01-27 02:24:54 +00008323 if( !pCheck->mxErr ) return;
8324 pCheck->mxErr--;
8325 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008326 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008327 if( pCheck->errMsg.nChar ){
8328 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008329 }
drh867db832014-09-26 02:41:05 +00008330 if( pCheck->zPfx ){
8331 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
8332 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
drhf089aa42008-07-08 19:34:06 +00008333 }
8334 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8335 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008336 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008337 pCheck->mallocFailed = 1;
8338 }
drh5eddca62001-06-30 21:53:53 +00008339}
drhb7f91642004-10-31 02:22:47 +00008340#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008341
drhb7f91642004-10-31 02:22:47 +00008342#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008343
8344/*
8345** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8346** corresponds to page iPg is already set.
8347*/
8348static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8349 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8350 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8351}
8352
8353/*
8354** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8355*/
8356static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8357 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8358 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8359}
8360
8361
drh5eddca62001-06-30 21:53:53 +00008362/*
8363** Add 1 to the reference count for page iPage. If this is the second
8364** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008365** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008366** if this is the first reference to the page.
8367**
8368** Also check that the page number is in bounds.
8369*/
drh867db832014-09-26 02:41:05 +00008370static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008371 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008372 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008373 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008374 return 1;
8375 }
dan1235bb12012-04-03 17:43:28 +00008376 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008377 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008378 return 1;
8379 }
dan1235bb12012-04-03 17:43:28 +00008380 setPageReferenced(pCheck, iPage);
8381 return 0;
drh5eddca62001-06-30 21:53:53 +00008382}
8383
danielk1977afcdd022004-10-31 16:25:42 +00008384#ifndef SQLITE_OMIT_AUTOVACUUM
8385/*
8386** Check that the entry in the pointer-map for page iChild maps to
8387** page iParent, pointer type ptrType. If not, append an error message
8388** to pCheck.
8389*/
8390static void checkPtrmap(
8391 IntegrityCk *pCheck, /* Integrity check context */
8392 Pgno iChild, /* Child page number */
8393 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008394 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008395){
8396 int rc;
8397 u8 ePtrmapType;
8398 Pgno iPtrmapParent;
8399
8400 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8401 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008402 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008403 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008404 return;
8405 }
8406
8407 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008408 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008409 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8410 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8411 }
8412}
8413#endif
8414
drh5eddca62001-06-30 21:53:53 +00008415/*
8416** Check the integrity of the freelist or of an overflow page list.
8417** Verify that the number of pages on the list is N.
8418*/
drh30e58752002-03-02 20:41:57 +00008419static void checkList(
8420 IntegrityCk *pCheck, /* Integrity checking context */
8421 int isFreeList, /* True for a freelist. False for overflow page list */
8422 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008423 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008424){
8425 int i;
drh3a4c1412004-05-09 20:40:11 +00008426 int expected = N;
8427 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008428 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008429 DbPage *pOvflPage;
8430 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008431 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008432 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008433 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008434 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008435 break;
8436 }
drh867db832014-09-26 02:41:05 +00008437 if( checkRef(pCheck, iPage) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00008438 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh867db832014-09-26 02:41:05 +00008439 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008440 break;
8441 }
danielk19773b8a05f2007-03-19 17:44:26 +00008442 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008443 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008444 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008445#ifndef SQLITE_OMIT_AUTOVACUUM
8446 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008447 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008448 }
8449#endif
drh43b18e12010-08-17 19:40:08 +00008450 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008451 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008452 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008453 N--;
8454 }else{
8455 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008456 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008457#ifndef SQLITE_OMIT_AUTOVACUUM
8458 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008459 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008460 }
8461#endif
drh867db832014-09-26 02:41:05 +00008462 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008463 }
8464 N -= n;
drh30e58752002-03-02 20:41:57 +00008465 }
drh30e58752002-03-02 20:41:57 +00008466 }
danielk1977afcdd022004-10-31 16:25:42 +00008467#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008468 else{
8469 /* If this database supports auto-vacuum and iPage is not the last
8470 ** page in this overflow list, check that the pointer-map entry for
8471 ** the following page matches iPage.
8472 */
8473 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008474 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008475 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008476 }
danielk1977afcdd022004-10-31 16:25:42 +00008477 }
8478#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008479 iPage = get4byte(pOvflData);
8480 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00008481 }
8482}
drhb7f91642004-10-31 02:22:47 +00008483#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008484
drhb7f91642004-10-31 02:22:47 +00008485#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008486/*
8487** Do various sanity checks on a single page of a tree. Return
8488** the tree depth. Root pages return 0. Parents of root pages
8489** return 1, and so forth.
8490**
8491** These checks are done:
8492**
8493** 1. Make sure that cells and freeblocks do not overlap
8494** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00008495** NO 2. Make sure cell keys are in order.
8496** NO 3. Make sure no key is less than or equal to zLowerBound.
8497** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00008498** 5. Check the integrity of overflow pages.
8499** 6. Recursively call checkTreePage on all children.
8500** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00008501** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00008502** the root of the tree.
8503*/
8504static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00008505 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00008506 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00008507 i64 *pnParentMinKey,
8508 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00008509){
8510 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00008511 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00008512 int hdr, cellStart;
8513 int nCell;
drhda200cc2004-05-09 11:51:38 +00008514 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00008515 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00008516 int usableSize;
shane0af3f892008-11-12 04:55:34 +00008517 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00008518 i64 nMinKey = 0;
8519 i64 nMaxKey = 0;
drh867db832014-09-26 02:41:05 +00008520 const char *saved_zPfx = pCheck->zPfx;
8521 int saved_v1 = pCheck->v1;
8522 int saved_v2 = pCheck->v2;
danielk1977ef73ee92004-11-06 12:26:07 +00008523
drh5eddca62001-06-30 21:53:53 +00008524 /* Check that the page exists
8525 */
drhd9cb6ac2005-10-20 07:28:17 +00008526 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00008527 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00008528 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00008529 if( checkRef(pCheck, iPage) ) return 0;
8530 pCheck->zPfx = "Page %d: ";
8531 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00008532 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00008533 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008534 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00008535 depth = -1;
8536 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008537 }
danielk197793caf5a2009-07-11 06:55:33 +00008538
8539 /* Clear MemPage.isInit to make sure the corruption detection code in
8540 ** btreeInitPage() is executed. */
8541 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00008542 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00008543 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00008544 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00008545 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00008546 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008547 depth = -1;
8548 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008549 }
8550
8551 /* Check out all the cells.
8552 */
8553 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00008554 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00008555 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00008556 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00008557 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00008558
8559 /* Check payload overflow pages
8560 */
drh867db832014-09-26 02:41:05 +00008561 pCheck->zPfx = "On tree page %d cell %d: ";
8562 pCheck->v1 = iPage;
8563 pCheck->v2 = i;
danielk19771cc5ed82007-05-16 17:28:43 +00008564 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00008565 btreeParseCellPtr(pPage, pCell, &info);
drhab1cc582014-09-23 21:25:19 +00008566 sz = info.nPayload;
shaneh195475d2010-02-19 04:28:08 +00008567 /* For intKey pages, check that the keys are in order.
8568 */
drhab1cc582014-09-23 21:25:19 +00008569 if( pPage->intKey ){
8570 if( i==0 ){
8571 nMinKey = nMaxKey = info.nKey;
8572 }else if( info.nKey <= nMaxKey ){
drh867db832014-09-26 02:41:05 +00008573 checkAppendMsg(pCheck,
drhab1cc582014-09-23 21:25:19 +00008574 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
shaneh195475d2010-02-19 04:28:08 +00008575 }
8576 nMaxKey = info.nKey;
8577 }
danielk19775be31f52009-03-30 13:53:43 +00008578 if( (sz>info.nLocal)
8579 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8580 ){
drhb6f41482004-05-14 01:58:11 +00008581 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008582 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8583#ifndef SQLITE_OMIT_AUTOVACUUM
8584 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008585 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008586 }
8587#endif
drh867db832014-09-26 02:41:05 +00008588 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00008589 }
8590
8591 /* Check sanity of left child page.
8592 */
drhda200cc2004-05-09 11:51:38 +00008593 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008594 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008595#ifndef SQLITE_OMIT_AUTOVACUUM
8596 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008597 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008598 }
8599#endif
drh867db832014-09-26 02:41:05 +00008600 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008601 if( i>0 && d2!=depth ){
drh867db832014-09-26 02:41:05 +00008602 checkAppendMsg(pCheck, "Child page depth differs");
drhda200cc2004-05-09 11:51:38 +00008603 }
8604 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008605 }
drh5eddca62001-06-30 21:53:53 +00008606 }
shaneh195475d2010-02-19 04:28:08 +00008607
drhda200cc2004-05-09 11:51:38 +00008608 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008609 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh867db832014-09-26 02:41:05 +00008610 pCheck->zPfx = "On page %d at right child: ";
8611 pCheck->v1 = iPage;
danielk1977afcdd022004-10-31 16:25:42 +00008612#ifndef SQLITE_OMIT_AUTOVACUUM
8613 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008614 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008615 }
8616#endif
drh867db832014-09-26 02:41:05 +00008617 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008618 }
drh5eddca62001-06-30 21:53:53 +00008619
shaneh195475d2010-02-19 04:28:08 +00008620 /* For intKey leaf pages, check that the min/max keys are in order
8621 ** with any left/parent/right pages.
8622 */
drh867db832014-09-26 02:41:05 +00008623 pCheck->zPfx = "Page %d: ";
8624 pCheck->v1 = iPage;
shaneh195475d2010-02-19 04:28:08 +00008625 if( pPage->leaf && pPage->intKey ){
8626 /* if we are a left child page */
8627 if( pnParentMinKey ){
8628 /* if we are the left most child page */
8629 if( !pnParentMaxKey ){
8630 if( nMaxKey > *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00008631 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008632 "Rowid %lld out of order (max larger than parent min of %lld)",
8633 nMaxKey, *pnParentMinKey);
8634 }
8635 }else{
8636 if( nMinKey <= *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00008637 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008638 "Rowid %lld out of order (min less than parent min of %lld)",
8639 nMinKey, *pnParentMinKey);
8640 }
8641 if( nMaxKey > *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00008642 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008643 "Rowid %lld out of order (max larger than parent max of %lld)",
8644 nMaxKey, *pnParentMaxKey);
8645 }
8646 *pnParentMinKey = nMaxKey;
8647 }
8648 /* else if we're a right child page */
8649 } else if( pnParentMaxKey ){
8650 if( nMinKey <= *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00008651 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008652 "Rowid %lld out of order (min less than parent max of %lld)",
8653 nMinKey, *pnParentMaxKey);
8654 }
8655 }
8656 }
8657
drh5eddca62001-06-30 21:53:53 +00008658 /* Check for complete coverage of the page
8659 */
drhda200cc2004-05-09 11:51:38 +00008660 data = pPage->aData;
8661 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008662 hit = sqlite3PageMalloc( pBt->pageSize );
drh867db832014-09-26 02:41:05 +00008663 pCheck->zPfx = 0;
drhc890fec2008-08-01 20:10:08 +00008664 if( hit==0 ){
8665 pCheck->mallocFailed = 1;
8666 }else{
drh5d433ce2010-08-14 16:02:52 +00008667 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008668 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008669 memset(hit+contentOffset, 0, usableSize-contentOffset);
8670 memset(hit, 1, contentOffset);
drhfdab0262014-11-20 15:30:50 +00008671 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
8672 ** number of cells on the page. */
drh2e38c322004-09-03 18:38:44 +00008673 nCell = get2byte(&data[hdr+3]);
drhfdab0262014-11-20 15:30:50 +00008674 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
8675 ** immediately follows the b-tree page header. */
drh2e38c322004-09-03 18:38:44 +00008676 cellStart = hdr + 12 - 4*pPage->leaf;
drhfdab0262014-11-20 15:30:50 +00008677 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
8678 ** integer offsets to the cell contents. */
drh2e38c322004-09-03 18:38:44 +00008679 for(i=0; i<nCell; i++){
8680 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008681 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008682 int j;
drh8c2bbb62009-07-10 02:52:20 +00008683 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008684 size = cellSizePtr(pPage, &data[pc]);
8685 }
drh43b18e12010-08-17 19:40:08 +00008686 if( (int)(pc+size-1)>=usableSize ){
drh867db832014-09-26 02:41:05 +00008687 pCheck->zPfx = 0;
8688 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008689 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008690 }else{
8691 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8692 }
drh2e38c322004-09-03 18:38:44 +00008693 }
drhfdab0262014-11-20 15:30:50 +00008694 /* EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
8695 ** is the offset of the first freeblock, or zero if there are no
8696 ** freeblocks on the page. */
drh8c2bbb62009-07-10 02:52:20 +00008697 i = get2byte(&data[hdr+1]);
8698 while( i>0 ){
8699 int size, j;
8700 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8701 size = get2byte(&data[i+2]);
8702 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8703 for(j=i+size-1; j>=i; j--) hit[j]++;
drhfdab0262014-11-20 15:30:50 +00008704 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
8705 ** big-endian integer which is the offset in the b-tree page of the next
8706 ** freeblock in the chain, or zero if the freeblock is the last on the
8707 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00008708 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00008709 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
8710 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00008711 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8712 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8713 i = j;
drh2e38c322004-09-03 18:38:44 +00008714 }
8715 for(i=cnt=0; i<usableSize; i++){
8716 if( hit[i]==0 ){
8717 cnt++;
8718 }else if( hit[i]>1 ){
drh867db832014-09-26 02:41:05 +00008719 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008720 "Multiple uses for byte %d of page %d", i, iPage);
8721 break;
8722 }
8723 }
drhfdab0262014-11-20 15:30:50 +00008724 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
8725 ** is stored in the fifth field of the b-tree page header.
8726 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
8727 ** number of fragmented free bytes within the cell content area.
8728 */
drh2e38c322004-09-03 18:38:44 +00008729 if( cnt!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00008730 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00008731 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008732 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008733 }
8734 }
drh8c2bbb62009-07-10 02:52:20 +00008735 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008736 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008737
8738end_of_check:
8739 pCheck->zPfx = saved_zPfx;
8740 pCheck->v1 = saved_v1;
8741 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00008742 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008743}
drhb7f91642004-10-31 02:22:47 +00008744#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008745
drhb7f91642004-10-31 02:22:47 +00008746#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008747/*
8748** This routine does a complete check of the given BTree file. aRoot[] is
8749** an array of pages numbers were each page number is the root page of
8750** a table. nRoot is the number of entries in aRoot.
8751**
danielk19773509a652009-07-06 18:56:13 +00008752** A read-only or read-write transaction must be opened before calling
8753** this function.
8754**
drhc890fec2008-08-01 20:10:08 +00008755** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008756** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008757** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008758** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008759*/
drh1dcdbc02007-01-27 02:24:54 +00008760char *sqlite3BtreeIntegrityCheck(
8761 Btree *p, /* The btree to be checked */
8762 int *aRoot, /* An array of root pages numbers for individual trees */
8763 int nRoot, /* Number of entries in aRoot[] */
8764 int mxErr, /* Stop reporting errors after this many */
8765 int *pnErr /* Write number of errors seen to this variable */
8766){
danielk197789d40042008-11-17 14:20:56 +00008767 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008768 int nRef;
drhaaab5722002-02-19 13:39:21 +00008769 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008770 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008771 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008772
drhd677b3d2007-08-20 22:48:41 +00008773 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008774 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008775 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008776 sCheck.pBt = pBt;
8777 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008778 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008779 sCheck.mxErr = mxErr;
8780 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008781 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00008782 sCheck.zPfx = 0;
8783 sCheck.v1 = 0;
8784 sCheck.v2 = 0;
drh1dcdbc02007-01-27 02:24:54 +00008785 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008786 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008787 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008788 return 0;
8789 }
dan1235bb12012-04-03 17:43:28 +00008790
8791 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8792 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008793 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008794 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008795 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008796 }
drh42cac6d2004-11-20 20:31:11 +00008797 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008798 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008799 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008800 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008801
8802 /* Check the integrity of the freelist
8803 */
drh867db832014-09-26 02:41:05 +00008804 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00008805 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00008806 get4byte(&pBt->pPage1->aData[36]));
8807 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00008808
8809 /* Check all the tables.
8810 */
danielk197789d40042008-11-17 14:20:56 +00008811 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008812 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008813#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008814 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00008815 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008816 }
8817#endif
drh867db832014-09-26 02:41:05 +00008818 sCheck.zPfx = "List of tree roots: ";
8819 checkTreePage(&sCheck, aRoot[i], NULL, NULL);
8820 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00008821 }
8822
8823 /* Make sure every page in the file is referenced
8824 */
drh1dcdbc02007-01-27 02:24:54 +00008825 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008826#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008827 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00008828 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008829 }
danielk1977afcdd022004-10-31 16:25:42 +00008830#else
8831 /* If the database supports auto-vacuum, make sure no tables contain
8832 ** references to pointer-map pages.
8833 */
dan1235bb12012-04-03 17:43:28 +00008834 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008835 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00008836 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00008837 }
dan1235bb12012-04-03 17:43:28 +00008838 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008839 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00008840 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00008841 }
8842#endif
drh5eddca62001-06-30 21:53:53 +00008843 }
8844
drh64022502009-01-09 14:11:04 +00008845 /* Make sure this analysis did not leave any unref() pages.
8846 ** This is an internal consistency check; an integrity check
8847 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008848 */
drh64022502009-01-09 14:11:04 +00008849 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh867db832014-09-26 02:41:05 +00008850 checkAppendMsg(&sCheck,
drh5eddca62001-06-30 21:53:53 +00008851 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008852 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008853 );
drh5eddca62001-06-30 21:53:53 +00008854 }
8855
8856 /* Clean up and report errors.
8857 */
drhd677b3d2007-08-20 22:48:41 +00008858 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008859 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008860 if( sCheck.mallocFailed ){
8861 sqlite3StrAccumReset(&sCheck.errMsg);
8862 *pnErr = sCheck.nErr+1;
8863 return 0;
8864 }
drh1dcdbc02007-01-27 02:24:54 +00008865 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008866 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8867 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008868}
drhb7f91642004-10-31 02:22:47 +00008869#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008870
drh73509ee2003-04-06 20:44:45 +00008871/*
drhd4e0bb02012-05-27 01:19:04 +00008872** Return the full pathname of the underlying database file. Return
8873** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008874**
8875** The pager filename is invariant as long as the pager is
8876** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008877*/
danielk1977aef0bf62005-12-30 16:28:01 +00008878const char *sqlite3BtreeGetFilename(Btree *p){
8879 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008880 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008881}
8882
8883/*
danielk19775865e3d2004-06-14 06:03:57 +00008884** Return the pathname of the journal file for this database. The return
8885** value of this routine is the same regardless of whether the journal file
8886** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008887**
8888** The pager journal filename is invariant as long as the pager is
8889** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008890*/
danielk1977aef0bf62005-12-30 16:28:01 +00008891const char *sqlite3BtreeGetJournalname(Btree *p){
8892 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008893 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008894}
8895
danielk19771d850a72004-05-31 08:26:49 +00008896/*
8897** Return non-zero if a transaction is active.
8898*/
danielk1977aef0bf62005-12-30 16:28:01 +00008899int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008900 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008901 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008902}
8903
dana550f2d2010-08-02 10:47:05 +00008904#ifndef SQLITE_OMIT_WAL
8905/*
8906** Run a checkpoint on the Btree passed as the first argument.
8907**
8908** Return SQLITE_LOCKED if this or any other connection has an open
8909** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008910**
dancdc1f042010-11-18 12:11:05 +00008911** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008912*/
dancdc1f042010-11-18 12:11:05 +00008913int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008914 int rc = SQLITE_OK;
8915 if( p ){
8916 BtShared *pBt = p->pBt;
8917 sqlite3BtreeEnter(p);
8918 if( pBt->inTransaction!=TRANS_NONE ){
8919 rc = SQLITE_LOCKED;
8920 }else{
dancdc1f042010-11-18 12:11:05 +00008921 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008922 }
8923 sqlite3BtreeLeave(p);
8924 }
8925 return rc;
8926}
8927#endif
8928
danielk19771d850a72004-05-31 08:26:49 +00008929/*
danielk19772372c2b2006-06-27 16:34:56 +00008930** Return non-zero if a read (or write) transaction is active.
8931*/
8932int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008933 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008934 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008935 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008936}
8937
danielk197704103022009-02-03 16:51:24 +00008938int sqlite3BtreeIsInBackup(Btree *p){
8939 assert( p );
8940 assert( sqlite3_mutex_held(p->db->mutex) );
8941 return p->nBackup!=0;
8942}
8943
danielk19772372c2b2006-06-27 16:34:56 +00008944/*
danielk1977da184232006-01-05 11:34:32 +00008945** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008946** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008947** purposes (for example, to store a high-level schema associated with
8948** the shared-btree). The btree layer manages reference counting issues.
8949**
8950** The first time this is called on a shared-btree, nBytes bytes of memory
8951** are allocated, zeroed, and returned to the caller. For each subsequent
8952** call the nBytes parameter is ignored and a pointer to the same blob
8953** of memory returned.
8954**
danielk1977171bfed2008-06-23 09:50:50 +00008955** If the nBytes parameter is 0 and the blob of memory has not yet been
8956** allocated, a null pointer is returned. If the blob has already been
8957** allocated, it is returned as normal.
8958**
danielk1977da184232006-01-05 11:34:32 +00008959** Just before the shared-btree is closed, the function passed as the
8960** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008961** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008962** on the memory, the btree layer does that.
8963*/
8964void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8965 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008966 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008967 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008968 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008969 pBt->xFreeSchema = xFree;
8970 }
drh27641702007-08-22 02:56:42 +00008971 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008972 return pBt->pSchema;
8973}
8974
danielk1977c87d34d2006-01-06 13:00:28 +00008975/*
danielk1977404ca072009-03-16 13:19:36 +00008976** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8977** btree as the argument handle holds an exclusive lock on the
8978** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008979*/
8980int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008981 int rc;
drhe5fe6902007-12-07 18:55:28 +00008982 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008983 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008984 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8985 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008986 sqlite3BtreeLeave(p);
8987 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008988}
8989
drha154dcd2006-03-22 22:10:07 +00008990
8991#ifndef SQLITE_OMIT_SHARED_CACHE
8992/*
8993** Obtain a lock on the table whose root page is iTab. The
8994** lock is a write lock if isWritelock is true or a read lock
8995** if it is false.
8996*/
danielk1977c00da102006-01-07 13:21:04 +00008997int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008998 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008999 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009000 if( p->sharable ){
9001 u8 lockType = READ_LOCK + isWriteLock;
9002 assert( READ_LOCK+1==WRITE_LOCK );
9003 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009004
drh6a9ad3d2008-04-02 16:29:30 +00009005 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009006 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009007 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009008 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009009 }
9010 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009011 }
9012 return rc;
9013}
drha154dcd2006-03-22 22:10:07 +00009014#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009015
danielk1977b4e9af92007-05-01 17:49:49 +00009016#ifndef SQLITE_OMIT_INCRBLOB
9017/*
9018** Argument pCsr must be a cursor opened for writing on an
9019** INTKEY table currently pointing at a valid table entry.
9020** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009021**
9022** Only the data content may only be modified, it is not possible to
9023** change the length of the data stored. If this function is called with
9024** parameters that attempt to write past the end of the existing data,
9025** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009026*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009027int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009028 int rc;
drh1fee73e2007-08-29 04:00:57 +00009029 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009030 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009031 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009032
danielk1977c9000e62009-07-08 13:55:28 +00009033 rc = restoreCursorPosition(pCsr);
9034 if( rc!=SQLITE_OK ){
9035 return rc;
9036 }
danielk19773588ceb2008-06-10 17:30:26 +00009037 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9038 if( pCsr->eState!=CURSOR_VALID ){
9039 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009040 }
9041
dan227a1c42013-04-03 11:17:39 +00009042 /* Save the positions of all other cursors open on this table. This is
9043 ** required in case any of them are holding references to an xFetch
9044 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009045 **
drh3f387402014-09-24 01:23:00 +00009046 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009047 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9048 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009049 */
drh370c9f42013-04-03 20:04:04 +00009050 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9051 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009052
danielk1977c9000e62009-07-08 13:55:28 +00009053 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009054 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009055 ** (b) there is a read/write transaction open,
9056 ** (c) the connection holds a write-lock on the table (if required),
9057 ** (d) there are no conflicting read-locks, and
9058 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009059 */
drh036dbec2014-03-11 23:40:44 +00009060 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009061 return SQLITE_READONLY;
9062 }
drhc9166342012-01-05 23:32:06 +00009063 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9064 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009065 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9066 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009067 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009068
drhfb192682009-07-11 18:26:28 +00009069 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009070}
danielk19772dec9702007-05-02 16:48:37 +00009071
9072/*
dan5a500af2014-03-11 20:33:04 +00009073** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009074*/
dan5a500af2014-03-11 20:33:04 +00009075void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009076 pCur->curFlags |= BTCF_Incrblob;
danielk19772dec9702007-05-02 16:48:37 +00009077}
danielk1977b4e9af92007-05-01 17:49:49 +00009078#endif
dane04dc882010-04-20 18:53:15 +00009079
9080/*
9081** Set both the "read version" (single byte at byte offset 18) and
9082** "write version" (single byte at byte offset 19) fields in the database
9083** header to iVersion.
9084*/
9085int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9086 BtShared *pBt = pBtree->pBt;
9087 int rc; /* Return code */
9088
dane04dc882010-04-20 18:53:15 +00009089 assert( iVersion==1 || iVersion==2 );
9090
danb9780022010-04-21 18:37:57 +00009091 /* If setting the version fields to 1, do not automatically open the
9092 ** WAL connection, even if the version fields are currently set to 2.
9093 */
drhc9166342012-01-05 23:32:06 +00009094 pBt->btsFlags &= ~BTS_NO_WAL;
9095 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009096
9097 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009098 if( rc==SQLITE_OK ){
9099 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009100 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009101 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009102 if( rc==SQLITE_OK ){
9103 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9104 if( rc==SQLITE_OK ){
9105 aData[18] = (u8)iVersion;
9106 aData[19] = (u8)iVersion;
9107 }
9108 }
9109 }
dane04dc882010-04-20 18:53:15 +00009110 }
9111
drhc9166342012-01-05 23:32:06 +00009112 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009113 return rc;
9114}
dan428c2182012-08-06 18:50:11 +00009115
9116/*
9117** set the mask of hint flags for cursor pCsr. Currently the only valid
9118** values are 0 and BTREE_BULKLOAD.
9119*/
9120void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
9121 assert( mask==BTREE_BULKLOAD || mask==0 );
9122 pCsr->hints = mask;
9123}
drh781597f2014-05-21 08:21:07 +00009124
9125/*
9126** Return true if the given Btree is read-only.
9127*/
9128int sqlite3BtreeIsReadonly(Btree *p){
9129 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9130}
drhdef68892014-11-04 12:11:23 +00009131
9132/*
9133** Return the size of the header added to each page by this module.
9134*/
9135int sqlite3HeaderSizeBtree(void){ return sizeof(MemPage); }