blob: 0c83bc60400192a0a6b39e51ad607cfa97570bb8 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
drhccb21132020-06-19 11:34:57 +000072** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
daneebf2f52017-11-18 17:30:08 +0000115/*
116** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118**
119** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122** with the page number and filename associated with the (MemPage*).
123*/
124#ifdef SQLITE_DEBUG
125int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000126 char *zMsg;
127 sqlite3BeginBenignMalloc();
128 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130 );
drh8bfe66a2018-01-22 15:45:12 +0000131 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000132 if( zMsg ){
133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134 }
135 sqlite3_free(zMsg);
136 return SQLITE_CORRUPT_BKPT;
137}
138# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139#else
140# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141#endif
142
drhe53831d2007-08-17 01:14:38 +0000143#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000144
145#ifdef SQLITE_DEBUG
146/*
drh0ee3dbe2009-10-16 15:05:18 +0000147**** This function is only used as part of an assert() statement. ***
148**
149** Check to see if pBtree holds the required locks to read or write to the
150** table with root page iRoot. Return 1 if it does and 0 if not.
151**
152** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000153** Btree connection pBtree:
154**
155** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156**
drh0ee3dbe2009-10-16 15:05:18 +0000157** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000158** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000159** the corresponding table. This makes things a bit more complicated,
160** as this module treats each table as a separate structure. To determine
161** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000162** function has to search through the database schema.
163**
drh0ee3dbe2009-10-16 15:05:18 +0000164** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000165** hold a write-lock on the schema table (root page 1). This is also
166** acceptable.
167*/
168static int hasSharedCacheTableLock(
169 Btree *pBtree, /* Handle that must hold lock */
170 Pgno iRoot, /* Root page of b-tree */
171 int isIndex, /* True if iRoot is the root of an index b-tree */
172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
173){
174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175 Pgno iTab = 0;
176 BtLock *pLock;
177
drh0ee3dbe2009-10-16 15:05:18 +0000178 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000179 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000180 ** Return true immediately.
181 */
danielk197796d48e92009-06-29 06:00:37 +0000182 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000184 ){
185 return 1;
186 }
187
drh0ee3dbe2009-10-16 15:05:18 +0000188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
192 */
drh2c5e35f2014-08-05 11:04:21 +0000193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000194 return 1;
195 }
196
danielk197796d48e92009-06-29 06:00:37 +0000197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
200 ** table. */
201 if( isIndex ){
202 HashElem *p;
dan877859f2020-06-17 20:29:56 +0000203 int bSeen = 0;
danielk197796d48e92009-06-29 06:00:37 +0000204 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
205 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000206 if( pIdx->tnum==(int)iRoot ){
dan877859f2020-06-17 20:29:56 +0000207 if( bSeen ){
drh1ffede82015-01-30 20:59:27 +0000208 /* Two or more indexes share the same root page. There must
209 ** be imposter tables. So just return true. The assert is not
210 ** useful in that case. */
211 return 1;
212 }
shane5eff7cf2009-08-10 03:57:58 +0000213 iTab = pIdx->pTable->tnum;
dan877859f2020-06-17 20:29:56 +0000214 bSeen = 1;
danielk197796d48e92009-06-29 06:00:37 +0000215 }
216 }
217 }else{
218 iTab = iRoot;
219 }
220
221 /* Search for the required lock. Either a write-lock on root-page iTab, a
222 ** write-lock on the schema table, or (if the client is reading) a
223 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
224 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
225 if( pLock->pBtree==pBtree
226 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
227 && pLock->eLock>=eLockType
228 ){
229 return 1;
230 }
231 }
232
233 /* Failed to find the required lock. */
234 return 0;
235}
drh0ee3dbe2009-10-16 15:05:18 +0000236#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000237
drh0ee3dbe2009-10-16 15:05:18 +0000238#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000239/*
drh0ee3dbe2009-10-16 15:05:18 +0000240**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000241**
drh0ee3dbe2009-10-16 15:05:18 +0000242** Return true if it would be illegal for pBtree to write into the
243** table or index rooted at iRoot because other shared connections are
244** simultaneously reading that same table or index.
245**
246** It is illegal for pBtree to write if some other Btree object that
247** shares the same BtShared object is currently reading or writing
248** the iRoot table. Except, if the other Btree object has the
249** read-uncommitted flag set, then it is OK for the other object to
250** have a read cursor.
251**
252** For example, before writing to any part of the table or index
253** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000254**
255** assert( !hasReadConflicts(pBtree, iRoot) );
256*/
257static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
258 BtCursor *p;
259 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
260 if( p->pgnoRoot==iRoot
261 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000262 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000263 ){
264 return 1;
265 }
266 }
267 return 0;
268}
269#endif /* #ifdef SQLITE_DEBUG */
270
danielk1977da184232006-01-05 11:34:32 +0000271/*
drh0ee3dbe2009-10-16 15:05:18 +0000272** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000273** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000274** SQLITE_OK if the lock may be obtained (by calling
275** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000276*/
drhc25eabe2009-02-24 18:57:31 +0000277static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000278 BtShared *pBt = p->pBt;
279 BtLock *pIter;
280
drh1fee73e2007-08-29 04:00:57 +0000281 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000282 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
283 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000284 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000285
danielk19775b413d72009-04-01 09:41:54 +0000286 /* If requesting a write-lock, then the Btree must have an open write
287 ** transaction on this file. And, obviously, for this to be so there
288 ** must be an open write transaction on the file itself.
289 */
290 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
291 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
292
drh0ee3dbe2009-10-16 15:05:18 +0000293 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000294 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000295 return SQLITE_OK;
296 }
297
danielk1977641b0f42007-12-21 04:47:25 +0000298 /* If some other connection is holding an exclusive lock, the
299 ** requested lock may not be obtained.
300 */
drhc9166342012-01-05 23:32:06 +0000301 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000302 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
303 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000304 }
305
danielk1977e0d9e6f2009-07-03 16:25:06 +0000306 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
307 /* The condition (pIter->eLock!=eLock) in the following if(...)
308 ** statement is a simplification of:
309 **
310 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
311 **
312 ** since we know that if eLock==WRITE_LOCK, then no other connection
313 ** may hold a WRITE_LOCK on any table in this file (since there can
314 ** only be a single writer).
315 */
316 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
317 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
318 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
319 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
320 if( eLock==WRITE_LOCK ){
321 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000322 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000323 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000324 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000325 }
326 }
327 return SQLITE_OK;
328}
drhe53831d2007-08-17 01:14:38 +0000329#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000330
drhe53831d2007-08-17 01:14:38 +0000331#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000332/*
333** Add a lock on the table with root-page iTable to the shared-btree used
334** by Btree handle p. Parameter eLock must be either READ_LOCK or
335** WRITE_LOCK.
336**
danielk19779d104862009-07-09 08:27:14 +0000337** This function assumes the following:
338**
drh0ee3dbe2009-10-16 15:05:18 +0000339** (a) The specified Btree object p is connected to a sharable
340** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000341**
drh0ee3dbe2009-10-16 15:05:18 +0000342** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000343** with the requested lock (i.e. querySharedCacheTableLock() has
344** already been called and returned SQLITE_OK).
345**
346** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
347** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000348*/
drhc25eabe2009-02-24 18:57:31 +0000349static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000350 BtShared *pBt = p->pBt;
351 BtLock *pLock = 0;
352 BtLock *pIter;
353
drh1fee73e2007-08-29 04:00:57 +0000354 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000355 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
356 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000357
danielk1977e0d9e6f2009-07-03 16:25:06 +0000358 /* A connection with the read-uncommitted flag set will never try to
359 ** obtain a read-lock using this function. The only read-lock obtained
360 ** by a connection in read-uncommitted mode is on the sqlite_master
361 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000362 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000363
danielk19779d104862009-07-09 08:27:14 +0000364 /* This function should only be called on a sharable b-tree after it
365 ** has been determined that no other b-tree holds a conflicting lock. */
366 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000367 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000368
369 /* First search the list for an existing lock on this table. */
370 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
371 if( pIter->iTable==iTable && pIter->pBtree==p ){
372 pLock = pIter;
373 break;
374 }
375 }
376
377 /* If the above search did not find a BtLock struct associating Btree p
378 ** with table iTable, allocate one and link it into the list.
379 */
380 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000381 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000382 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000383 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000384 }
385 pLock->iTable = iTable;
386 pLock->pBtree = p;
387 pLock->pNext = pBt->pLock;
388 pBt->pLock = pLock;
389 }
390
391 /* Set the BtLock.eLock variable to the maximum of the current lock
392 ** and the requested lock. This means if a write-lock was already held
393 ** and a read-lock requested, we don't incorrectly downgrade the lock.
394 */
395 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000396 if( eLock>pLock->eLock ){
397 pLock->eLock = eLock;
398 }
danielk1977aef0bf62005-12-30 16:28:01 +0000399
400 return SQLITE_OK;
401}
drhe53831d2007-08-17 01:14:38 +0000402#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000403
drhe53831d2007-08-17 01:14:38 +0000404#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000405/*
drhc25eabe2009-02-24 18:57:31 +0000406** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000407** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000408**
drh0ee3dbe2009-10-16 15:05:18 +0000409** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000410** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000411** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000412*/
drhc25eabe2009-02-24 18:57:31 +0000413static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000414 BtShared *pBt = p->pBt;
415 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000416
drh1fee73e2007-08-29 04:00:57 +0000417 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000418 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000419 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000420
danielk1977aef0bf62005-12-30 16:28:01 +0000421 while( *ppIter ){
422 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000423 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000424 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000425 if( pLock->pBtree==p ){
426 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000427 assert( pLock->iTable!=1 || pLock==&p->lock );
428 if( pLock->iTable!=1 ){
429 sqlite3_free(pLock);
430 }
danielk1977aef0bf62005-12-30 16:28:01 +0000431 }else{
432 ppIter = &pLock->pNext;
433 }
434 }
danielk1977641b0f42007-12-21 04:47:25 +0000435
drhc9166342012-01-05 23:32:06 +0000436 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000437 if( pBt->pWriter==p ){
438 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000439 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000440 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000441 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000442 ** transaction. If there currently exists a writer, and p is not
443 ** that writer, then the number of locks held by connections other
444 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000445 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000446 **
drhc9166342012-01-05 23:32:06 +0000447 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000448 ** be zero already. So this next line is harmless in that case.
449 */
drhc9166342012-01-05 23:32:06 +0000450 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000451 }
danielk1977aef0bf62005-12-30 16:28:01 +0000452}
danielk197794b30732009-07-02 17:21:57 +0000453
danielk1977e0d9e6f2009-07-03 16:25:06 +0000454/*
drh0ee3dbe2009-10-16 15:05:18 +0000455** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000456*/
danielk197794b30732009-07-02 17:21:57 +0000457static void downgradeAllSharedCacheTableLocks(Btree *p){
458 BtShared *pBt = p->pBt;
459 if( pBt->pWriter==p ){
460 BtLock *pLock;
461 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000462 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000463 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
464 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
465 pLock->eLock = READ_LOCK;
466 }
467 }
468}
469
danielk1977aef0bf62005-12-30 16:28:01 +0000470#endif /* SQLITE_OMIT_SHARED_CACHE */
471
drh3908fe92017-09-01 14:50:19 +0000472static void releasePage(MemPage *pPage); /* Forward reference */
473static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000474static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000475
drh1fee73e2007-08-29 04:00:57 +0000476/*
drh0ee3dbe2009-10-16 15:05:18 +0000477***** This routine is used inside of assert() only ****
478**
479** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000480*/
drh0ee3dbe2009-10-16 15:05:18 +0000481#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000482static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000483 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000484}
drh5e08d0f2016-06-04 21:05:54 +0000485
486/* Verify that the cursor and the BtShared agree about what is the current
487** database connetion. This is important in shared-cache mode. If the database
488** connection pointers get out-of-sync, it is possible for routines like
489** btreeInitPage() to reference an stale connection pointer that references a
490** a connection that has already closed. This routine is used inside assert()
491** statements only and for the purpose of double-checking that the btree code
492** does keep the database connection pointers up-to-date.
493*/
dan7a2347e2016-01-07 16:43:54 +0000494static int cursorOwnsBtShared(BtCursor *p){
495 assert( cursorHoldsMutex(p) );
496 return (p->pBtree->db==p->pBt->db);
497}
drh1fee73e2007-08-29 04:00:57 +0000498#endif
499
danielk197792d4d7a2007-05-04 12:05:56 +0000500/*
dan5a500af2014-03-11 20:33:04 +0000501** Invalidate the overflow cache of the cursor passed as the first argument.
502** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000503*/
drh036dbec2014-03-11 23:40:44 +0000504#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000505
506/*
507** Invalidate the overflow page-list cache for all cursors opened
508** on the shared btree structure pBt.
509*/
510static void invalidateAllOverflowCache(BtShared *pBt){
511 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000512 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000513 for(p=pBt->pCursor; p; p=p->pNext){
514 invalidateOverflowCache(p);
515 }
516}
danielk197796d48e92009-06-29 06:00:37 +0000517
dan5a500af2014-03-11 20:33:04 +0000518#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000519/*
520** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000521** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000522** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000523**
524** If argument isClearTable is true, then the entire contents of the
525** table is about to be deleted. In this case invalidate all incrblob
526** cursors open on any row within the table with root-page pgnoRoot.
527**
528** Otherwise, if argument isClearTable is false, then the row with
529** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000530** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000531*/
532static void invalidateIncrblobCursors(
533 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000534 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000535 i64 iRow, /* The rowid that might be changing */
536 int isClearTable /* True if all rows are being deleted */
537){
538 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000539 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000540 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000541 pBtree->hasIncrblobCur = 0;
542 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
543 if( (p->curFlags & BTCF_Incrblob)!=0 ){
544 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000545 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000546 p->eState = CURSOR_INVALID;
547 }
danielk197796d48e92009-06-29 06:00:37 +0000548 }
549 }
550}
551
danielk197792d4d7a2007-05-04 12:05:56 +0000552#else
dan5a500af2014-03-11 20:33:04 +0000553 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000554 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000555#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000556
drh980b1a72006-08-16 16:42:48 +0000557/*
danielk1977bea2a942009-01-20 17:06:27 +0000558** Set bit pgno of the BtShared.pHasContent bitvec. This is called
559** when a page that previously contained data becomes a free-list leaf
560** page.
561**
562** The BtShared.pHasContent bitvec exists to work around an obscure
563** bug caused by the interaction of two useful IO optimizations surrounding
564** free-list leaf pages:
565**
566** 1) When all data is deleted from a page and the page becomes
567** a free-list leaf page, the page is not written to the database
568** (as free-list leaf pages contain no meaningful data). Sometimes
569** such a page is not even journalled (as it will not be modified,
570** why bother journalling it?).
571**
572** 2) When a free-list leaf page is reused, its content is not read
573** from the database or written to the journal file (why should it
574** be, if it is not at all meaningful?).
575**
576** By themselves, these optimizations work fine and provide a handy
577** performance boost to bulk delete or insert operations. However, if
578** a page is moved to the free-list and then reused within the same
579** transaction, a problem comes up. If the page is not journalled when
580** it is moved to the free-list and it is also not journalled when it
581** is extracted from the free-list and reused, then the original data
582** may be lost. In the event of a rollback, it may not be possible
583** to restore the database to its original configuration.
584**
585** The solution is the BtShared.pHasContent bitvec. Whenever a page is
586** moved to become a free-list leaf page, the corresponding bit is
587** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000588** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000589** set in BtShared.pHasContent. The contents of the bitvec are cleared
590** at the end of every transaction.
591*/
592static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
593 int rc = SQLITE_OK;
594 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000595 assert( pgno<=pBt->nPage );
596 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000597 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000598 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000599 }
600 }
601 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
602 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
603 }
604 return rc;
605}
606
607/*
608** Query the BtShared.pHasContent vector.
609**
610** This function is called when a free-list leaf page is removed from the
611** free-list for reuse. It returns false if it is safe to retrieve the
612** page from the pager layer with the 'no-content' flag set. True otherwise.
613*/
614static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
615 Bitvec *p = pBt->pHasContent;
pdrdb9cb172020-03-08 13:33:58 +0000616 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
danielk1977bea2a942009-01-20 17:06:27 +0000617}
618
619/*
620** Clear (destroy) the BtShared.pHasContent bitvec. This should be
621** invoked at the conclusion of each write-transaction.
622*/
623static void btreeClearHasContent(BtShared *pBt){
624 sqlite3BitvecDestroy(pBt->pHasContent);
625 pBt->pHasContent = 0;
626}
627
628/*
drh138eeeb2013-03-27 03:15:23 +0000629** Release all of the apPage[] pages for a cursor.
630*/
631static void btreeReleaseAllCursorPages(BtCursor *pCur){
632 int i;
drh352a35a2017-08-15 03:46:47 +0000633 if( pCur->iPage>=0 ){
634 for(i=0; i<pCur->iPage; i++){
635 releasePageNotNull(pCur->apPage[i]);
636 }
637 releasePageNotNull(pCur->pPage);
638 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000639 }
drh138eeeb2013-03-27 03:15:23 +0000640}
641
danf0ee1d32015-09-12 19:26:11 +0000642/*
643** The cursor passed as the only argument must point to a valid entry
644** when this function is called (i.e. have eState==CURSOR_VALID). This
645** function saves the current cursor key in variables pCur->nKey and
646** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
647** code otherwise.
648**
649** If the cursor is open on an intkey table, then the integer key
650** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
651** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
652** set to point to a malloced buffer pCur->nKey bytes in size containing
653** the key.
654*/
655static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000656 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000657 assert( CURSOR_VALID==pCur->eState );
658 assert( 0==pCur->pKey );
659 assert( cursorHoldsMutex(pCur) );
660
drha7c90c42016-06-04 20:37:10 +0000661 if( pCur->curIntKey ){
662 /* Only the rowid is required for a table btree */
663 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
664 }else{
danfffaf232018-12-14 13:18:35 +0000665 /* For an index btree, save the complete key content. It is possible
666 ** that the current key is corrupt. In that case, it is possible that
667 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
668 ** up to the size of 1 varint plus 1 8-byte value when the cursor
669 ** position is restored. Hence the 17 bytes of padding allocated
670 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000671 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000672 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000673 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000674 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000675 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000676 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000677 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000678 pCur->pKey = pKey;
679 }else{
680 sqlite3_free(pKey);
681 }
682 }else{
mistachkinfad30392016-02-13 23:43:46 +0000683 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000684 }
685 }
686 assert( !pCur->curIntKey || !pCur->pKey );
687 return rc;
688}
drh138eeeb2013-03-27 03:15:23 +0000689
690/*
drh980b1a72006-08-16 16:42:48 +0000691** Save the current cursor position in the variables BtCursor.nKey
692** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000693**
694** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
695** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000696*/
697static int saveCursorPosition(BtCursor *pCur){
698 int rc;
699
drhd2f83132015-03-25 17:35:01 +0000700 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000701 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000702 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000703
drh7b14b652019-12-29 22:08:20 +0000704 if( pCur->curFlags & BTCF_Pinned ){
705 return SQLITE_CONSTRAINT_PINNED;
706 }
drhd2f83132015-03-25 17:35:01 +0000707 if( pCur->eState==CURSOR_SKIPNEXT ){
708 pCur->eState = CURSOR_VALID;
709 }else{
710 pCur->skipNext = 0;
711 }
drh980b1a72006-08-16 16:42:48 +0000712
danf0ee1d32015-09-12 19:26:11 +0000713 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000714 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000715 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000716 pCur->eState = CURSOR_REQUIRESEEK;
717 }
718
dane755e102015-09-30 12:59:12 +0000719 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000720 return rc;
721}
722
drh637f3d82014-08-22 22:26:07 +0000723/* Forward reference */
724static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
725
drh980b1a72006-08-16 16:42:48 +0000726/*
drh0ee3dbe2009-10-16 15:05:18 +0000727** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000728** the table with root-page iRoot. "Saving the cursor position" means that
729** the location in the btree is remembered in such a way that it can be
730** moved back to the same spot after the btree has been modified. This
731** routine is called just before cursor pExcept is used to modify the
732** table, for example in BtreeDelete() or BtreeInsert().
733**
drh27fb7462015-06-30 02:47:36 +0000734** If there are two or more cursors on the same btree, then all such
735** cursors should have their BTCF_Multiple flag set. The btreeCursor()
736** routine enforces that rule. This routine only needs to be called in
737** the uncommon case when pExpect has the BTCF_Multiple flag set.
738**
739** If pExpect!=NULL and if no other cursors are found on the same root-page,
740** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
741** pointless call to this routine.
742**
drh637f3d82014-08-22 22:26:07 +0000743** Implementation note: This routine merely checks to see if any cursors
744** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
745** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000746*/
747static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
748 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000749 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000750 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000751 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000752 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
753 }
drh27fb7462015-06-30 02:47:36 +0000754 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
755 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
756 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000757}
758
759/* This helper routine to saveAllCursors does the actual work of saving
760** the cursors if and when a cursor is found that actually requires saving.
761** The common case is that no cursors need to be saved, so this routine is
762** broken out from its caller to avoid unnecessary stack pointer movement.
763*/
764static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000765 BtCursor *p, /* The first cursor that needs saving */
766 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
767 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000768){
769 do{
drh138eeeb2013-03-27 03:15:23 +0000770 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000771 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000772 int rc = saveCursorPosition(p);
773 if( SQLITE_OK!=rc ){
774 return rc;
775 }
776 }else{
drh85ef6302017-08-02 15:50:09 +0000777 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000778 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000779 }
780 }
drh637f3d82014-08-22 22:26:07 +0000781 p = p->pNext;
782 }while( p );
drh980b1a72006-08-16 16:42:48 +0000783 return SQLITE_OK;
784}
785
786/*
drhbf700f32007-03-31 02:36:44 +0000787** Clear the current cursor position.
788*/
danielk1977be51a652008-10-08 17:58:48 +0000789void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000790 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000791 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000792 pCur->pKey = 0;
793 pCur->eState = CURSOR_INVALID;
794}
795
796/*
danielk19773509a652009-07-06 18:56:13 +0000797** In this version of BtreeMoveto, pKey is a packed index record
798** such as is generated by the OP_MakeRecord opcode. Unpack the
799** record and then call BtreeMovetoUnpacked() to do the work.
800*/
801static int btreeMoveto(
802 BtCursor *pCur, /* Cursor open on the btree to be searched */
803 const void *pKey, /* Packed key if the btree is an index */
804 i64 nKey, /* Integer key for tables. Size of pKey for indices */
805 int bias, /* Bias search to the high end */
806 int *pRes /* Write search results here */
807){
808 int rc; /* Status code */
809 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000810
811 if( pKey ){
danb0c4c942019-01-24 15:16:17 +0000812 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +0000813 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +0000814 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000815 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +0000816 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
817 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +0000818 rc = SQLITE_CORRUPT_BKPT;
drha582b012016-12-21 19:45:54 +0000819 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000820 }
danielk19773509a652009-07-06 18:56:13 +0000821 }else{
822 pIdxKey = 0;
823 }
824 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000825moveto_done:
826 if( pIdxKey ){
827 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000828 }
829 return rc;
830}
831
832/*
drh980b1a72006-08-16 16:42:48 +0000833** Restore the cursor to the position it was in (or as close to as possible)
834** when saveCursorPosition() was called. Note that this call deletes the
835** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000836** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000837** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000838*/
danielk197730548662009-07-09 05:07:37 +0000839static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000840 int rc;
mistachkin4e2d3d42019-04-01 03:07:21 +0000841 int skipNext = 0;
dan7a2347e2016-01-07 16:43:54 +0000842 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000843 assert( pCur->eState>=CURSOR_REQUIRESEEK );
844 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000845 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000846 }
drh980b1a72006-08-16 16:42:48 +0000847 pCur->eState = CURSOR_INVALID;
drhb336d1a2019-03-30 19:17:35 +0000848 if( sqlite3FaultSim(410) ){
849 rc = SQLITE_IOERR;
850 }else{
851 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
852 }
drh980b1a72006-08-16 16:42:48 +0000853 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000854 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000855 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000856 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +0000857 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +0000858 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
859 pCur->eState = CURSOR_SKIPNEXT;
860 }
drh980b1a72006-08-16 16:42:48 +0000861 }
862 return rc;
863}
864
drha3460582008-07-11 21:02:53 +0000865#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000866 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000867 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000868 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000869
drha3460582008-07-11 21:02:53 +0000870/*
drh6848dad2014-08-22 23:33:03 +0000871** Determine whether or not a cursor has moved from the position where
872** it was last placed, or has been invalidated for any other reason.
873** Cursors can move when the row they are pointing at is deleted out
874** from under them, for example. Cursor might also move if a btree
875** is rebalanced.
drha3460582008-07-11 21:02:53 +0000876**
drh6848dad2014-08-22 23:33:03 +0000877** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000878**
drh6848dad2014-08-22 23:33:03 +0000879** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
880** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000881*/
drh6848dad2014-08-22 23:33:03 +0000882int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000883 assert( EIGHT_BYTE_ALIGNMENT(pCur)
884 || pCur==sqlite3BtreeFakeValidCursor() );
885 assert( offsetof(BtCursor, eState)==0 );
886 assert( sizeof(pCur->eState)==1 );
887 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000888}
889
890/*
drhfe0cf7a2017-08-16 19:20:20 +0000891** Return a pointer to a fake BtCursor object that will always answer
892** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
893** cursor returned must not be used with any other Btree interface.
894*/
895BtCursor *sqlite3BtreeFakeValidCursor(void){
896 static u8 fakeCursor = CURSOR_VALID;
897 assert( offsetof(BtCursor, eState)==0 );
898 return (BtCursor*)&fakeCursor;
899}
900
901/*
drh6848dad2014-08-22 23:33:03 +0000902** This routine restores a cursor back to its original position after it
903** has been moved by some outside activity (such as a btree rebalance or
904** a row having been deleted out from under the cursor).
905**
906** On success, the *pDifferentRow parameter is false if the cursor is left
907** pointing at exactly the same row. *pDifferntRow is the row the cursor
908** was pointing to has been deleted, forcing the cursor to point to some
909** nearby row.
910**
911** This routine should only be called for a cursor that just returned
912** TRUE from sqlite3BtreeCursorHasMoved().
913*/
914int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000915 int rc;
916
drh6848dad2014-08-22 23:33:03 +0000917 assert( pCur!=0 );
918 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000919 rc = restoreCursorPosition(pCur);
920 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000921 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000922 return rc;
923 }
drh606a3572015-03-25 18:29:10 +0000924 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000925 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000926 }else{
drh6848dad2014-08-22 23:33:03 +0000927 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000928 }
929 return SQLITE_OK;
930}
931
drhf7854c72015-10-27 13:24:37 +0000932#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000933/*
drh0df57012015-08-14 15:05:55 +0000934** Provide hints to the cursor. The particular hint given (and the type
935** and number of the varargs parameters) is determined by the eHintType
936** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000937*/
drh0df57012015-08-14 15:05:55 +0000938void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000939 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000940}
drhf7854c72015-10-27 13:24:37 +0000941#endif
942
943/*
944** Provide flag hints to the cursor.
945*/
946void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
947 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
948 pCur->hints = x;
949}
950
drh28935362013-12-07 20:39:19 +0000951
danielk1977599fcba2004-11-08 07:13:13 +0000952#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000953/*
drha3152892007-05-05 11:48:52 +0000954** Given a page number of a regular database page, return the page
955** number for the pointer-map page that contains the entry for the
956** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000957**
958** Return 0 (not a valid page) for pgno==1 since there is
959** no pointer map associated with page 1. The integrity_check logic
960** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000961*/
danielk1977266664d2006-02-10 08:24:21 +0000962static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000963 int nPagesPerMapPage;
964 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000965 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000966 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000967 nPagesPerMapPage = (pBt->usableSize/5)+1;
968 iPtrMap = (pgno-2)/nPagesPerMapPage;
969 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000970 if( ret==PENDING_BYTE_PAGE(pBt) ){
971 ret++;
972 }
973 return ret;
974}
danielk1977a19df672004-11-03 11:37:07 +0000975
danielk1977afcdd022004-10-31 16:25:42 +0000976/*
danielk1977afcdd022004-10-31 16:25:42 +0000977** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000978**
979** This routine updates the pointer map entry for page number 'key'
980** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000981**
982** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
983** a no-op. If an error occurs, the appropriate error code is written
984** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000985*/
drh98add2e2009-07-20 17:11:49 +0000986static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000987 DbPage *pDbPage; /* The pointer map page */
988 u8 *pPtrmap; /* The pointer map data */
989 Pgno iPtrmap; /* The pointer map page number */
990 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000991 int rc; /* Return code from subfunctions */
992
993 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000994
drh1fee73e2007-08-29 04:00:57 +0000995 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000996 /* The master-journal page number must never be used as a pointer map page */
997 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
998
danielk1977ac11ee62005-01-15 12:45:51 +0000999 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +00001000 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +00001001 *pRC = SQLITE_CORRUPT_BKPT;
1002 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +00001003 }
danielk1977266664d2006-02-10 08:24:21 +00001004 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001005 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00001006 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00001007 *pRC = rc;
1008 return;
danielk1977afcdd022004-10-31 16:25:42 +00001009 }
drh203b1ea2018-12-14 03:14:18 +00001010 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1011 /* The first byte of the extra data is the MemPage.isInit byte.
1012 ** If that byte is set, it means this page is also being used
1013 ** as a btree page. */
1014 *pRC = SQLITE_CORRUPT_BKPT;
1015 goto ptrmap_exit;
1016 }
danielk19778c666b12008-07-18 09:34:57 +00001017 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001018 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001019 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001020 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001021 }
drhfc243732011-05-17 15:21:56 +00001022 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001023 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001024
drh615ae552005-01-16 23:21:00 +00001025 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1026 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001027 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001028 if( rc==SQLITE_OK ){
1029 pPtrmap[offset] = eType;
1030 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001031 }
danielk1977afcdd022004-10-31 16:25:42 +00001032 }
1033
drh4925a552009-07-07 11:39:58 +00001034ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001035 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001036}
1037
1038/*
1039** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001040**
1041** This routine retrieves the pointer map entry for page 'key', writing
1042** the type and parent page number to *pEType and *pPgno respectively.
1043** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001044*/
danielk1977aef0bf62005-12-30 16:28:01 +00001045static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001046 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001047 int iPtrmap; /* Pointer map page index */
1048 u8 *pPtrmap; /* Pointer map page data */
1049 int offset; /* Offset of entry in pointer map */
1050 int rc;
1051
drh1fee73e2007-08-29 04:00:57 +00001052 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001053
danielk1977266664d2006-02-10 08:24:21 +00001054 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001055 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001056 if( rc!=0 ){
1057 return rc;
1058 }
danielk19773b8a05f2007-03-19 17:44:26 +00001059 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001060
danielk19778c666b12008-07-18 09:34:57 +00001061 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001062 if( offset<0 ){
1063 sqlite3PagerUnref(pDbPage);
1064 return SQLITE_CORRUPT_BKPT;
1065 }
1066 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001067 assert( pEType!=0 );
1068 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001069 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001070
danielk19773b8a05f2007-03-19 17:44:26 +00001071 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001072 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001073 return SQLITE_OK;
1074}
1075
danielk197785d90ca2008-07-19 14:25:15 +00001076#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001077 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001078 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001079 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001080#endif
danielk1977afcdd022004-10-31 16:25:42 +00001081
drh0d316a42002-08-11 20:10:47 +00001082/*
drh271efa52004-05-30 19:19:05 +00001083** Given a btree page and a cell index (0 means the first cell on
1084** the page, 1 means the second cell, and so forth) return a pointer
1085** to the cell content.
1086**
drhf44890a2015-06-27 03:58:15 +00001087** findCellPastPtr() does the same except it skips past the initial
1088** 4-byte child pointer found on interior pages, if there is one.
1089**
drh271efa52004-05-30 19:19:05 +00001090** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001091*/
drh1688c862008-07-18 02:44:17 +00001092#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001093 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001094#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001095 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001096
drh43605152004-05-29 21:46:49 +00001097
1098/*
drh5fa60512015-06-19 17:19:34 +00001099** This is common tail processing for btreeParseCellPtr() and
1100** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1101** on a single B-tree page. Make necessary adjustments to the CellInfo
1102** structure.
drh43605152004-05-29 21:46:49 +00001103*/
drh5fa60512015-06-19 17:19:34 +00001104static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1105 MemPage *pPage, /* Page containing the cell */
1106 u8 *pCell, /* Pointer to the cell text. */
1107 CellInfo *pInfo /* Fill in this structure */
1108){
1109 /* If the payload will not fit completely on the local page, we have
1110 ** to decide how much to store locally and how much to spill onto
1111 ** overflow pages. The strategy is to minimize the amount of unused
1112 ** space on overflow pages while keeping the amount of local storage
1113 ** in between minLocal and maxLocal.
1114 **
1115 ** Warning: changing the way overflow payload is distributed in any
1116 ** way will result in an incompatible file format.
1117 */
1118 int minLocal; /* Minimum amount of payload held locally */
1119 int maxLocal; /* Maximum amount of payload held locally */
1120 int surplus; /* Overflow payload available for local storage */
1121
1122 minLocal = pPage->minLocal;
1123 maxLocal = pPage->maxLocal;
1124 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1125 testcase( surplus==maxLocal );
1126 testcase( surplus==maxLocal+1 );
1127 if( surplus <= maxLocal ){
1128 pInfo->nLocal = (u16)surplus;
1129 }else{
1130 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001131 }
drh45ac1c72015-12-18 03:59:16 +00001132 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001133}
1134
1135/*
drh5fa60512015-06-19 17:19:34 +00001136** The following routines are implementations of the MemPage.xParseCell()
1137** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001138**
drh5fa60512015-06-19 17:19:34 +00001139** Parse a cell content block and fill in the CellInfo structure.
1140**
1141** btreeParseCellPtr() => table btree leaf nodes
1142** btreeParseCellNoPayload() => table btree internal nodes
1143** btreeParseCellPtrIndex() => index btree nodes
1144**
1145** There is also a wrapper function btreeParseCell() that works for
1146** all MemPage types and that references the cell by index rather than
1147** by pointer.
drh43605152004-05-29 21:46:49 +00001148*/
drh5fa60512015-06-19 17:19:34 +00001149static void btreeParseCellPtrNoPayload(
1150 MemPage *pPage, /* Page containing the cell */
1151 u8 *pCell, /* Pointer to the cell text. */
1152 CellInfo *pInfo /* Fill in this structure */
1153){
1154 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1155 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001156 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001157#ifndef SQLITE_DEBUG
1158 UNUSED_PARAMETER(pPage);
1159#endif
drh5fa60512015-06-19 17:19:34 +00001160 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1161 pInfo->nPayload = 0;
1162 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001163 pInfo->pPayload = 0;
1164 return;
1165}
danielk197730548662009-07-09 05:07:37 +00001166static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001167 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001168 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001169 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001170){
drh3e28ff52014-09-24 00:59:08 +00001171 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001172 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001173 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001174
drh1fee73e2007-08-29 04:00:57 +00001175 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001176 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001177 assert( pPage->intKeyLeaf );
1178 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001179 pIter = pCell;
1180
1181 /* The next block of code is equivalent to:
1182 **
1183 ** pIter += getVarint32(pIter, nPayload);
1184 **
1185 ** The code is inlined to avoid a function call.
1186 */
1187 nPayload = *pIter;
1188 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001189 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001190 nPayload &= 0x7f;
1191 do{
1192 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1193 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001194 }
drh56cb04e2015-06-19 18:24:37 +00001195 pIter++;
1196
1197 /* The next block of code is equivalent to:
1198 **
1199 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1200 **
1201 ** The code is inlined to avoid a function call.
1202 */
1203 iKey = *pIter;
1204 if( iKey>=0x80 ){
1205 u8 *pEnd = &pIter[7];
1206 iKey &= 0x7f;
1207 while(1){
1208 iKey = (iKey<<7) | (*++pIter & 0x7f);
1209 if( (*pIter)<0x80 ) break;
1210 if( pIter>=pEnd ){
1211 iKey = (iKey<<8) | *++pIter;
1212 break;
1213 }
1214 }
1215 }
1216 pIter++;
1217
1218 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001219 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001220 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001221 testcase( nPayload==pPage->maxLocal );
1222 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001223 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001224 /* This is the (easy) common case where the entire payload fits
1225 ** on the local page. No overflow is required.
1226 */
drhab1cc582014-09-23 21:25:19 +00001227 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1228 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001229 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001230 }else{
drh5fa60512015-06-19 17:19:34 +00001231 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001232 }
drh3aac2dd2004-04-26 14:10:20 +00001233}
drh5fa60512015-06-19 17:19:34 +00001234static void btreeParseCellPtrIndex(
1235 MemPage *pPage, /* Page containing the cell */
1236 u8 *pCell, /* Pointer to the cell text. */
1237 CellInfo *pInfo /* Fill in this structure */
1238){
1239 u8 *pIter; /* For scanning through pCell */
1240 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001241
drh5fa60512015-06-19 17:19:34 +00001242 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1243 assert( pPage->leaf==0 || pPage->leaf==1 );
1244 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001245 pIter = pCell + pPage->childPtrSize;
1246 nPayload = *pIter;
1247 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001248 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001249 nPayload &= 0x7f;
1250 do{
1251 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1252 }while( *(pIter)>=0x80 && pIter<pEnd );
1253 }
1254 pIter++;
1255 pInfo->nKey = nPayload;
1256 pInfo->nPayload = nPayload;
1257 pInfo->pPayload = pIter;
1258 testcase( nPayload==pPage->maxLocal );
1259 testcase( nPayload==pPage->maxLocal+1 );
1260 if( nPayload<=pPage->maxLocal ){
1261 /* This is the (easy) common case where the entire payload fits
1262 ** on the local page. No overflow is required.
1263 */
1264 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1265 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1266 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001267 }else{
1268 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001269 }
1270}
danielk197730548662009-07-09 05:07:37 +00001271static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001272 MemPage *pPage, /* Page containing the cell */
1273 int iCell, /* The cell index. First cell is 0 */
1274 CellInfo *pInfo /* Fill in this structure */
1275){
drh5fa60512015-06-19 17:19:34 +00001276 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001277}
drh3aac2dd2004-04-26 14:10:20 +00001278
1279/*
drh5fa60512015-06-19 17:19:34 +00001280** The following routines are implementations of the MemPage.xCellSize
1281** method.
1282**
drh43605152004-05-29 21:46:49 +00001283** Compute the total number of bytes that a Cell needs in the cell
1284** data area of the btree-page. The return number includes the cell
1285** data header and the local payload, but not any overflow page or
1286** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001287**
drh5fa60512015-06-19 17:19:34 +00001288** cellSizePtrNoPayload() => table internal nodes
1289** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001290*/
danielk1977ae5558b2009-04-29 11:31:47 +00001291static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001292 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1293 u8 *pEnd; /* End mark for a varint */
1294 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001295
1296#ifdef SQLITE_DEBUG
1297 /* The value returned by this function should always be the same as
1298 ** the (CellInfo.nSize) value found by doing a full parse of the
1299 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1300 ** this function verifies that this invariant is not violated. */
1301 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001302 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001303#endif
1304
drh3e28ff52014-09-24 00:59:08 +00001305 nSize = *pIter;
1306 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001307 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001308 nSize &= 0x7f;
1309 do{
1310 nSize = (nSize<<7) | (*++pIter & 0x7f);
1311 }while( *(pIter)>=0x80 && pIter<pEnd );
1312 }
1313 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001314 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001315 /* pIter now points at the 64-bit integer key value, a variable length
1316 ** integer. The following block moves pIter to point at the first byte
1317 ** past the end of the key value. */
1318 pEnd = &pIter[9];
1319 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001320 }
drh0a45c272009-07-08 01:49:11 +00001321 testcase( nSize==pPage->maxLocal );
1322 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001323 if( nSize<=pPage->maxLocal ){
1324 nSize += (u32)(pIter - pCell);
1325 if( nSize<4 ) nSize = 4;
1326 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001327 int minLocal = pPage->minLocal;
1328 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001329 testcase( nSize==pPage->maxLocal );
1330 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001331 if( nSize>pPage->maxLocal ){
1332 nSize = minLocal;
1333 }
drh3e28ff52014-09-24 00:59:08 +00001334 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001335 }
drhdc41d602014-09-22 19:51:35 +00001336 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001337 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001338}
drh25ada072015-06-19 15:07:14 +00001339static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1340 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1341 u8 *pEnd; /* End mark for a varint */
1342
1343#ifdef SQLITE_DEBUG
1344 /* The value returned by this function should always be the same as
1345 ** the (CellInfo.nSize) value found by doing a full parse of the
1346 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1347 ** this function verifies that this invariant is not violated. */
1348 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001349 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001350#else
1351 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001352#endif
1353
1354 assert( pPage->childPtrSize==4 );
1355 pEnd = pIter + 9;
1356 while( (*pIter++)&0x80 && pIter<pEnd );
1357 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1358 return (u16)(pIter - pCell);
1359}
1360
drh0ee3dbe2009-10-16 15:05:18 +00001361
1362#ifdef SQLITE_DEBUG
1363/* This variation on cellSizePtr() is used inside of assert() statements
1364** only. */
drha9121e42008-02-19 14:59:35 +00001365static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001366 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001367}
danielk1977bc6ada42004-06-30 08:20:16 +00001368#endif
drh3b7511c2001-05-26 13:15:44 +00001369
danielk197779a40da2005-01-16 08:00:01 +00001370#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001371/*
drh0f1bf4c2019-01-13 20:17:21 +00001372** The cell pCell is currently part of page pSrc but will ultimately be part
1373** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1374** pointer to an overflow page, insert an entry into the pointer-map for
1375** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001376*/
drh0f1bf4c2019-01-13 20:17:21 +00001377static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001378 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001379 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001380 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001381 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001382 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001383 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001384 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1385 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001386 *pRC = SQLITE_CORRUPT_BKPT;
1387 return;
1388 }
1389 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001390 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001391 }
danielk1977ac11ee62005-01-15 12:45:51 +00001392}
danielk197779a40da2005-01-16 08:00:01 +00001393#endif
1394
danielk1977ac11ee62005-01-15 12:45:51 +00001395
drhda200cc2004-05-09 11:51:38 +00001396/*
dane6d065a2017-02-24 19:58:22 +00001397** Defragment the page given. This routine reorganizes cells within the
1398** page so that there are no free-blocks on the free-block list.
1399**
1400** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1401** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001402**
1403** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1404** b-tree page so that there are no freeblocks or fragment bytes, all
1405** unused bytes are contained in the unallocated space region, and all
1406** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001407*/
dane6d065a2017-02-24 19:58:22 +00001408static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001409 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001410 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001411 int hdr; /* Offset to the page header */
1412 int size; /* Size of a cell */
1413 int usableSize; /* Number of usable bytes on a page */
1414 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001415 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001416 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001417 unsigned char *data; /* The page data */
1418 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001419 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001420 int iCellFirst; /* First allowable cell index */
1421 int iCellLast; /* Last possible cell index */
1422
danielk19773b8a05f2007-03-19 17:44:26 +00001423 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001424 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001425 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001426 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001427 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001428 temp = 0;
1429 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001430 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001431 cellOffset = pPage->cellOffset;
1432 nCell = pPage->nCell;
drh45616c72019-02-28 13:21:36 +00001433 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001434 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001435 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001436
1437 /* This block handles pages with two or fewer free blocks and nMaxFrag
1438 ** or fewer fragmented bytes. In this case it is faster to move the
1439 ** two (or one) blocks of cells using memmove() and add the required
1440 ** offsets to each pointer in the cell-pointer array than it is to
1441 ** reconstruct the entire page. */
1442 if( (int)data[hdr+7]<=nMaxFrag ){
1443 int iFree = get2byte(&data[hdr+1]);
drh119e1ff2019-03-30 18:39:13 +00001444 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001445 if( iFree ){
1446 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001447 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001448 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1449 u8 *pEnd = &data[cellOffset + nCell*2];
1450 u8 *pAddr;
1451 int sz2 = 0;
1452 int sz = get2byte(&data[iFree+2]);
1453 int top = get2byte(&data[hdr+5]);
drh4b9e7362020-02-18 23:58:58 +00001454 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001455 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001456 }
dane6d065a2017-02-24 19:58:22 +00001457 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001458 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001459 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001460 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001461 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1462 sz += sz2;
drh3b76c452020-01-03 17:40:30 +00001463 }else if( NEVER(iFree+sz>usableSize) ){
dandcc427c2019-03-21 21:18:36 +00001464 return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001465 }
dandcc427c2019-03-21 21:18:36 +00001466
dane6d065a2017-02-24 19:58:22 +00001467 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001468 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001469 memmove(&data[cbrk], &data[top], iFree-top);
1470 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1471 pc = get2byte(pAddr);
1472 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1473 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1474 }
1475 goto defragment_out;
1476 }
1477 }
1478 }
1479
drh281b21d2008-08-22 12:57:08 +00001480 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001481 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001482 for(i=0; i<nCell; i++){
1483 u8 *pAddr; /* The i-th cell pointer */
1484 pAddr = &data[cellOffset + i*2];
1485 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001486 testcase( pc==iCellFirst );
1487 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001488 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001489 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001490 */
1491 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001492 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001493 }
drh17146622009-07-07 17:38:38 +00001494 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001495 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001496 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001497 if( cbrk<iCellFirst || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001498 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001499 }
drh7157e1d2009-07-09 13:25:32 +00001500 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001501 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001502 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001503 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001504 if( temp==0 ){
1505 int x;
1506 if( cbrk==pc ) continue;
1507 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1508 x = get2byte(&data[hdr+5]);
1509 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1510 src = temp;
1511 }
1512 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001513 }
dane6d065a2017-02-24 19:58:22 +00001514 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001515
1516 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001517 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001518 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001519 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001520 }
drh17146622009-07-07 17:38:38 +00001521 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001522 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001523 data[hdr+1] = 0;
1524 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001525 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001526 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001527 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001528}
1529
drha059ad02001-04-17 20:09:11 +00001530/*
dan8e9ba0c2014-10-14 17:27:04 +00001531** Search the free-list on page pPg for space to store a cell nByte bytes in
1532** size. If one can be found, return a pointer to the space and remove it
1533** from the free-list.
1534**
1535** If no suitable space can be found on the free-list, return NULL.
1536**
drhba0f9992014-10-30 20:48:44 +00001537** This function may detect corruption within pPg. If corruption is
1538** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001539**
drhb7580e82015-06-25 18:36:13 +00001540** Slots on the free list that are between 1 and 3 bytes larger than nByte
1541** will be ignored if adding the extra space to the fragmentation count
1542** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001543*/
drhb7580e82015-06-25 18:36:13 +00001544static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001545 const int hdr = pPg->hdrOffset; /* Offset to page header */
1546 u8 * const aData = pPg->aData; /* Page data */
1547 int iAddr = hdr + 1; /* Address of ptr to pc */
1548 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */
1549 int x; /* Excess size of the slot */
1550 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1551 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001552
drhb7580e82015-06-25 18:36:13 +00001553 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001554 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001555 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1556 ** freeblock form a big-endian integer which is the size of the freeblock
1557 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001558 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001559 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001560 testcase( x==4 );
1561 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001562 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001563 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1564 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001565 if( aData[hdr+7]>57 ) return 0;
1566
dan8e9ba0c2014-10-14 17:27:04 +00001567 /* Remove the slot from the free-list. Update the number of
1568 ** fragmented bytes within the page. */
1569 memcpy(&aData[iAddr], &aData[pc], 2);
1570 aData[hdr+7] += (u8)x;
drh298f45c2019-02-08 22:34:59 +00001571 }else if( x+pc > maxPC ){
1572 /* This slot extends off the end of the usable part of the page */
1573 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1574 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001575 }else{
1576 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001577 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001578 put2byte(&aData[pc+2], x);
1579 }
1580 return &aData[pc + x];
1581 }
drhb7580e82015-06-25 18:36:13 +00001582 iAddr = pc;
1583 pc = get2byte(&aData[pc]);
drh2a934d72019-03-13 10:29:16 +00001584 if( pc<=iAddr+size ){
drh298f45c2019-02-08 22:34:59 +00001585 if( pc ){
1586 /* The next slot in the chain is not past the end of the current slot */
1587 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1588 }
1589 return 0;
1590 }
drh87d63c92017-08-23 23:09:03 +00001591 }
drh298f45c2019-02-08 22:34:59 +00001592 if( pc>maxPC+nByte-4 ){
1593 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001594 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001595 }
dan8e9ba0c2014-10-14 17:27:04 +00001596 return 0;
1597}
1598
1599/*
danielk19776011a752009-04-01 16:25:32 +00001600** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001601** as the first argument. Write into *pIdx the index into pPage->aData[]
1602** of the first byte of allocated space. Return either SQLITE_OK or
1603** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001604**
drh0a45c272009-07-08 01:49:11 +00001605** The caller guarantees that there is sufficient space to make the
1606** allocation. This routine might need to defragment in order to bring
1607** all the space together, however. This routine will avoid using
1608** the first two bytes past the cell pointer area since presumably this
1609** allocation is being made in order to insert a new cell, so we will
1610** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001611*/
drh0a45c272009-07-08 01:49:11 +00001612static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001613 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1614 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001615 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001616 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001617 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001618
danielk19773b8a05f2007-03-19 17:44:26 +00001619 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001620 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001621 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001622 assert( nByte>=0 ); /* Minimum cell size is 4 */
1623 assert( pPage->nFree>=nByte );
1624 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001625 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001626
drh0a45c272009-07-08 01:49:11 +00001627 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1628 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001629 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001630 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1631 ** and the reserved space is zero (the usual value for reserved space)
1632 ** then the cell content offset of an empty page wants to be 65536.
1633 ** However, that integer is too large to be stored in a 2-byte unsigned
1634 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001635 top = get2byte(&data[hdr+5]);
drhdfcecdf2019-05-08 00:17:45 +00001636 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
drhded340e2015-06-25 15:04:56 +00001637 if( gap>top ){
drh291508f2019-05-08 04:33:17 +00001638 if( top==0 && pPage->pBt->usableSize==65536 ){
drhded340e2015-06-25 15:04:56 +00001639 top = 65536;
1640 }else{
daneebf2f52017-11-18 17:30:08 +00001641 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001642 }
1643 }
drh43605152004-05-29 21:46:49 +00001644
drhd4a67442019-02-11 19:27:36 +00001645 /* If there is enough space between gap and top for one more cell pointer,
1646 ** and if the freelist is not empty, then search the
1647 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001648 */
drh5e2f8b92001-05-28 00:41:15 +00001649 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001650 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001651 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001652 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001653 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001654 if( pSpace ){
drh3b76c452020-01-03 17:40:30 +00001655 int g2;
drh2b96b692019-08-05 16:22:20 +00001656 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
drh3b76c452020-01-03 17:40:30 +00001657 *pIdx = g2 = (int)(pSpace-data);
1658 if( NEVER(g2<=gap) ){
drh2b96b692019-08-05 16:22:20 +00001659 return SQLITE_CORRUPT_PAGE(pPage);
1660 }else{
1661 return SQLITE_OK;
1662 }
drhb7580e82015-06-25 18:36:13 +00001663 }else if( rc ){
1664 return rc;
drh9e572e62004-04-23 23:43:10 +00001665 }
1666 }
drh43605152004-05-29 21:46:49 +00001667
drh4c04f3c2014-08-20 11:56:14 +00001668 /* The request could not be fulfilled using a freelist slot. Check
1669 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001670 */
1671 testcase( gap+2+nByte==top );
1672 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001673 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001674 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001675 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001676 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001677 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001678 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001679 }
1680
1681
drh43605152004-05-29 21:46:49 +00001682 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001683 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001684 ** validated the freelist. Given that the freelist is valid, there
1685 ** is no way that the allocation can extend off the end of the page.
1686 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001687 */
drh0a45c272009-07-08 01:49:11 +00001688 top -= nByte;
drh43605152004-05-29 21:46:49 +00001689 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001690 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001691 *pIdx = top;
1692 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001693}
1694
1695/*
drh9e572e62004-04-23 23:43:10 +00001696** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001697** The first byte of the new free block is pPage->aData[iStart]
1698** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001699**
drh5f5c7532014-08-20 17:56:27 +00001700** Adjacent freeblocks are coalesced.
1701**
drh5860a612019-02-12 16:58:26 +00001702** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001703** that routine will not detect overlap between cells or freeblocks. Nor
1704** does it detect cells or freeblocks that encrouch into the reserved bytes
1705** at the end of the page. So do additional corruption checks inside this
1706** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001707*/
drh5f5c7532014-08-20 17:56:27 +00001708static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001709 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001710 u16 iFreeBlk; /* Address of the next freeblock */
1711 u8 hdr; /* Page header size. 0 or 100 */
1712 u8 nFrag = 0; /* Reduction in fragmentation */
1713 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001714 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001715 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001716 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001717
drh9e572e62004-04-23 23:43:10 +00001718 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001719 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001720 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001721 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001722 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001723 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001724 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001725
drh5f5c7532014-08-20 17:56:27 +00001726 /* The list of freeblocks must be in ascending order. Find the
1727 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001728 */
drh43605152004-05-29 21:46:49 +00001729 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001730 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001731 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1732 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1733 }else{
drh85f071b2016-09-17 19:34:32 +00001734 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1735 if( iFreeBlk<iPtr+4 ){
drh05e8c542020-01-14 16:39:54 +00001736 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
daneebf2f52017-11-18 17:30:08 +00001737 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001738 }
drh7bc4c452014-08-20 18:43:44 +00001739 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001740 }
drh628b1a32020-01-05 21:53:15 +00001741 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
daneebf2f52017-11-18 17:30:08 +00001742 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001743 }
drh7bc4c452014-08-20 18:43:44 +00001744 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1745
1746 /* At this point:
1747 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001748 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001749 **
1750 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1751 */
1752 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1753 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001754 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001755 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drh6aa75152020-06-12 00:31:52 +00001756 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001757 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001758 }
drh7bc4c452014-08-20 18:43:44 +00001759 iSize = iEnd - iStart;
1760 iFreeBlk = get2byte(&data[iFreeBlk]);
1761 }
1762
drh3f387402014-09-24 01:23:00 +00001763 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1764 ** pointer in the page header) then check to see if iStart should be
1765 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001766 */
1767 if( iPtr>hdr+1 ){
1768 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1769 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001770 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001771 nFrag += iStart - iPtrEnd;
1772 iSize = iEnd - iPtr;
1773 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001774 }
drh9e572e62004-04-23 23:43:10 +00001775 }
daneebf2f52017-11-18 17:30:08 +00001776 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001777 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001778 }
drh5e398e42017-08-23 20:36:06 +00001779 x = get2byte(&data[hdr+5]);
1780 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001781 /* The new freeblock is at the beginning of the cell content area,
1782 ** so just extend the cell content area rather than create another
1783 ** freelist entry */
drh3b76c452020-01-03 17:40:30 +00001784 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
drh48118e42020-01-29 13:50:11 +00001785 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001786 put2byte(&data[hdr+1], iFreeBlk);
1787 put2byte(&data[hdr+5], iEnd);
1788 }else{
1789 /* Insert the new freeblock into the freelist */
1790 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001791 }
drh5e398e42017-08-23 20:36:06 +00001792 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1793 /* Overwrite deleted information with zeros when the secure_delete
1794 ** option is enabled */
1795 memset(&data[iStart], 0, iSize);
1796 }
1797 put2byte(&data[iStart], iFreeBlk);
1798 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001799 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001800 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001801}
1802
1803/*
drh271efa52004-05-30 19:19:05 +00001804** Decode the flags byte (the first byte of the header) for a page
1805** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001806**
1807** Only the following combinations are supported. Anything different
1808** indicates a corrupt database files:
1809**
1810** PTF_ZERODATA
1811** PTF_ZERODATA | PTF_LEAF
1812** PTF_LEAFDATA | PTF_INTKEY
1813** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001814*/
drh44845222008-07-17 18:39:57 +00001815static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001816 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001817
1818 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001819 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001820 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001821 flagByte &= ~PTF_LEAF;
1822 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001823 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001824 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001825 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001826 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1827 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001828 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001829 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1830 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001831 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001832 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001833 if( pPage->leaf ){
1834 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001835 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001836 }else{
1837 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001838 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001839 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001840 }
drh271efa52004-05-30 19:19:05 +00001841 pPage->maxLocal = pBt->maxLeaf;
1842 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001843 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001844 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1845 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001846 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001847 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1848 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001849 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001850 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001851 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001852 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001853 pPage->maxLocal = pBt->maxLocal;
1854 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001855 }else{
drhfdab0262014-11-20 15:30:50 +00001856 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1857 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001858 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001859 }
drhc9166342012-01-05 23:32:06 +00001860 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001861 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001862}
1863
1864/*
drhb0ea9432019-02-09 21:06:40 +00001865** Compute the amount of freespace on the page. In other words, fill
1866** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00001867*/
drhb0ea9432019-02-09 21:06:40 +00001868static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001869 int pc; /* Address of a freeblock within pPage->aData[] */
1870 u8 hdr; /* Offset to beginning of page header */
1871 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00001872 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00001873 int nFree; /* Number of unused bytes on the page */
1874 int top; /* First byte of the cell content area */
1875 int iCellFirst; /* First allowable cell or freeblock offset */
1876 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001877
danielk197771d5d2c2008-09-29 11:49:47 +00001878 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001879 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001880 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001881 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001882 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1883 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00001884 assert( pPage->isInit==1 );
1885 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001886
drhb0ea9432019-02-09 21:06:40 +00001887 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00001888 hdr = pPage->hdrOffset;
1889 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00001890 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1891 ** the start of the cell content area. A zero value for this integer is
1892 ** interpreted as 65536. */
1893 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00001894 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00001895 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00001896
drh14e845a2017-05-25 21:35:56 +00001897 /* Compute the total free space on the page
1898 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1899 ** start of the first freeblock on the page, or is zero if there are no
1900 ** freeblocks. */
1901 pc = get2byte(&data[hdr+1]);
1902 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1903 if( pc>0 ){
1904 u32 next, size;
dan9a20ea92020-01-03 15:51:23 +00001905 if( pc<top ){
drh14e845a2017-05-25 21:35:56 +00001906 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1907 ** always be at least one cell before the first freeblock.
1908 */
daneebf2f52017-11-18 17:30:08 +00001909 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001910 }
drh14e845a2017-05-25 21:35:56 +00001911 while( 1 ){
1912 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001913 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001914 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001915 }
1916 next = get2byte(&data[pc]);
1917 size = get2byte(&data[pc+2]);
1918 nFree = nFree + size;
1919 if( next<=pc+size+3 ) break;
1920 pc = next;
1921 }
1922 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001923 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001924 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001925 }
1926 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001927 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001928 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001929 }
danielk197771d5d2c2008-09-29 11:49:47 +00001930 }
drh14e845a2017-05-25 21:35:56 +00001931
1932 /* At this point, nFree contains the sum of the offset to the start
1933 ** of the cell-content area plus the number of free bytes within
1934 ** the cell-content area. If this is greater than the usable-size
1935 ** of the page, then the page must be corrupted. This check also
1936 ** serves to verify that the offset to the start of the cell-content
1937 ** area, according to the page header, lies within the page.
1938 */
drhdfcecdf2019-05-08 00:17:45 +00001939 if( nFree>usableSize || nFree<iCellFirst ){
daneebf2f52017-11-18 17:30:08 +00001940 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001941 }
1942 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00001943 return SQLITE_OK;
1944}
1945
1946/*
drh5860a612019-02-12 16:58:26 +00001947** Do additional sanity check after btreeInitPage() if
1948** PRAGMA cell_size_check=ON
1949*/
1950static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1951 int iCellFirst; /* First allowable cell or freeblock offset */
1952 int iCellLast; /* Last possible cell or freeblock offset */
1953 int i; /* Index into the cell pointer array */
1954 int sz; /* Size of a cell */
1955 int pc; /* Address of a freeblock within pPage->aData[] */
1956 u8 *data; /* Equal to pPage->aData */
1957 int usableSize; /* Maximum usable space on the page */
1958 int cellOffset; /* Start of cell content area */
1959
1960 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1961 usableSize = pPage->pBt->usableSize;
1962 iCellLast = usableSize - 4;
1963 data = pPage->aData;
1964 cellOffset = pPage->cellOffset;
1965 if( !pPage->leaf ) iCellLast--;
1966 for(i=0; i<pPage->nCell; i++){
1967 pc = get2byteAligned(&data[cellOffset+i*2]);
1968 testcase( pc==iCellFirst );
1969 testcase( pc==iCellLast );
1970 if( pc<iCellFirst || pc>iCellLast ){
1971 return SQLITE_CORRUPT_PAGE(pPage);
1972 }
1973 sz = pPage->xCellSize(pPage, &data[pc]);
1974 testcase( pc+sz==usableSize );
1975 if( pc+sz>usableSize ){
1976 return SQLITE_CORRUPT_PAGE(pPage);
1977 }
1978 }
1979 return SQLITE_OK;
1980}
1981
1982/*
drhb0ea9432019-02-09 21:06:40 +00001983** Initialize the auxiliary information for a disk block.
1984**
1985** Return SQLITE_OK on success. If we see that the page does
1986** not contain a well-formed database page, then return
1987** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1988** guarantee that the page is well-formed. It only shows that
1989** we failed to detect any corruption.
1990*/
1991static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00001992 u8 *data; /* Equal to pPage->aData */
1993 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00001994
1995 assert( pPage->pBt!=0 );
1996 assert( pPage->pBt->db!=0 );
1997 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1998 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1999 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2000 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2001 assert( pPage->isInit==0 );
2002
2003 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00002004 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00002005 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2006 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00002007 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00002008 return SQLITE_CORRUPT_PAGE(pPage);
2009 }
2010 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2011 pPage->maskPage = (u16)(pBt->pageSize - 1);
2012 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00002013 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2014 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2015 pPage->aDataEnd = pPage->aData + pBt->usableSize;
2016 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002017 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2018 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002019 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002020 if( pPage->nCell>MX_CELL(pBt) ){
2021 /* To many cells for a single page. The page must be corrupt */
2022 return SQLITE_CORRUPT_PAGE(pPage);
2023 }
2024 testcase( pPage->nCell==MX_CELL(pBt) );
2025 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2026 ** possible for a root page of a table that contains no rows) then the
2027 ** offset to the cell content area will equal the page size minus the
2028 ** bytes of reserved space. */
2029 assert( pPage->nCell>0
mistachkin065f3bf2019-03-20 05:45:03 +00002030 || get2byteNotZero(&data[5])==(int)pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002031 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002032 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002033 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002034 if( pBt->db->flags & SQLITE_CellSizeCk ){
2035 return btreeCellSizeCheck(pPage);
2036 }
drh9e572e62004-04-23 23:43:10 +00002037 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002038}
2039
2040/*
drh8b2f49b2001-06-08 00:21:52 +00002041** Set up a raw page so that it looks like a database page holding
2042** no entries.
drhbd03cae2001-06-02 02:40:57 +00002043*/
drh9e572e62004-04-23 23:43:10 +00002044static void zeroPage(MemPage *pPage, int flags){
2045 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002046 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002047 u8 hdr = pPage->hdrOffset;
2048 u16 first;
drh9e572e62004-04-23 23:43:10 +00002049
danielk19773b8a05f2007-03-19 17:44:26 +00002050 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00002051 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2052 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002053 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002054 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002055 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002056 memset(&data[hdr], 0, pBt->usableSize - hdr);
2057 }
drh1bd10f82008-12-10 21:19:56 +00002058 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002059 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002060 memset(&data[hdr+1], 0, 4);
2061 data[hdr+7] = 0;
2062 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002063 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002064 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002065 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002066 pPage->aDataEnd = &data[pBt->usableSize];
2067 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002068 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002069 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002070 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2071 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002072 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002073 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002074}
2075
drh897a8202008-09-18 01:08:15 +00002076
2077/*
2078** Convert a DbPage obtained from the pager into a MemPage used by
2079** the btree layer.
2080*/
2081static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2082 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002083 if( pgno!=pPage->pgno ){
2084 pPage->aData = sqlite3PagerGetData(pDbPage);
2085 pPage->pDbPage = pDbPage;
2086 pPage->pBt = pBt;
2087 pPage->pgno = pgno;
2088 pPage->hdrOffset = pgno==1 ? 100 : 0;
2089 }
2090 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002091 return pPage;
2092}
2093
drhbd03cae2001-06-02 02:40:57 +00002094/*
drh3aac2dd2004-04-26 14:10:20 +00002095** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002096** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002097**
drh7e8c6f12015-05-28 03:28:27 +00002098** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2099** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002100** to fetch the content. Just fill in the content with zeros for now.
2101** If in the future we call sqlite3PagerWrite() on this page, that
2102** means we have started to be concerned about content and the disk
2103** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002104*/
danielk197730548662009-07-09 05:07:37 +00002105static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002106 BtShared *pBt, /* The btree */
2107 Pgno pgno, /* Number of the page to fetch */
2108 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002109 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002110){
drh3aac2dd2004-04-26 14:10:20 +00002111 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002112 DbPage *pDbPage;
2113
drhb00fc3b2013-08-21 23:42:32 +00002114 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002115 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002116 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002117 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002118 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002119 return SQLITE_OK;
2120}
2121
2122/*
danielk1977bea2a942009-01-20 17:06:27 +00002123** Retrieve a page from the pager cache. If the requested page is not
2124** already in the pager cache return NULL. Initialize the MemPage.pBt and
2125** MemPage.aData elements if needed.
2126*/
2127static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2128 DbPage *pDbPage;
2129 assert( sqlite3_mutex_held(pBt->mutex) );
2130 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2131 if( pDbPage ){
2132 return btreePageFromDbPage(pDbPage, pgno, pBt);
2133 }
2134 return 0;
2135}
2136
2137/*
danielk197789d40042008-11-17 14:20:56 +00002138** Return the size of the database file in pages. If there is any kind of
2139** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002140*/
drhb1299152010-03-30 22:58:33 +00002141static Pgno btreePagecount(BtShared *pBt){
drh42925d12020-01-07 13:32:15 +00002142 assert( (pBt->nPage & 0x80000000)==0 || CORRUPT_DB );
drh406dfcb2020-01-07 18:10:01 +00002143 return pBt->nPage;
drhb1299152010-03-30 22:58:33 +00002144}
2145u32 sqlite3BtreeLastPage(Btree *p){
2146 assert( sqlite3BtreeHoldsMutex(p) );
drh406dfcb2020-01-07 18:10:01 +00002147 return btreePagecount(p->pBt) & 0x7fffffff;
danielk197767fd7a92008-09-10 17:53:35 +00002148}
2149
2150/*
drh28f58dd2015-06-27 19:45:03 +00002151** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002152**
drh15a00212015-06-27 20:55:00 +00002153** If pCur!=0 then the page is being fetched as part of a moveToChild()
2154** call. Do additional sanity checking on the page in this case.
2155** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002156**
2157** The page is fetched as read-write unless pCur is not NULL and is
2158** a read-only cursor.
2159**
2160** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002161** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002162*/
2163static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002164 BtShared *pBt, /* The database file */
2165 Pgno pgno, /* Number of the page to get */
2166 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002167 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2168 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002169){
2170 int rc;
drh28f58dd2015-06-27 19:45:03 +00002171 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002172 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002173 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002174 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002175 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002176
danba3cbf32010-06-30 04:29:03 +00002177 if( pgno>btreePagecount(pBt) ){
2178 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002179 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002180 }
drh9584f582015-11-04 20:22:37 +00002181 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002182 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002183 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002184 }
drh8dd1c252015-11-04 22:31:02 +00002185 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002186 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002187 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002188 rc = btreeInitPage(*ppPage);
2189 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002190 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002191 }
drhee696e22004-08-30 16:52:17 +00002192 }
drh8dd1c252015-11-04 22:31:02 +00002193 assert( (*ppPage)->pgno==pgno );
2194 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002195
drh15a00212015-06-27 20:55:00 +00002196 /* If obtaining a child page for a cursor, we must verify that the page is
2197 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002198 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002199 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002200 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002201 }
drh28f58dd2015-06-27 19:45:03 +00002202 return SQLITE_OK;
2203
drhb0ea9432019-02-09 21:06:40 +00002204getAndInitPage_error2:
2205 releasePage(*ppPage);
2206getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002207 if( pCur ){
2208 pCur->iPage--;
2209 pCur->pPage = pCur->apPage[pCur->iPage];
2210 }
danba3cbf32010-06-30 04:29:03 +00002211 testcase( pgno==0 );
2212 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002213 return rc;
2214}
2215
2216/*
drh3aac2dd2004-04-26 14:10:20 +00002217** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002218** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002219**
2220** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002221*/
drhbbf0f862015-06-27 14:59:26 +00002222static void releasePageNotNull(MemPage *pPage){
2223 assert( pPage->aData );
2224 assert( pPage->pBt );
2225 assert( pPage->pDbPage!=0 );
2226 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2227 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2228 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2229 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002230}
drh3aac2dd2004-04-26 14:10:20 +00002231static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002232 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002233}
drh3908fe92017-09-01 14:50:19 +00002234static void releasePageOne(MemPage *pPage){
2235 assert( pPage!=0 );
2236 assert( pPage->aData );
2237 assert( pPage->pBt );
2238 assert( pPage->pDbPage!=0 );
2239 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2240 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2241 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2242 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2243}
drh3aac2dd2004-04-26 14:10:20 +00002244
2245/*
drh7e8c6f12015-05-28 03:28:27 +00002246** Get an unused page.
2247**
2248** This works just like btreeGetPage() with the addition:
2249**
2250** * If the page is already in use for some other purpose, immediately
2251** release it and return an SQLITE_CURRUPT error.
2252** * Make sure the isInit flag is clear
2253*/
2254static int btreeGetUnusedPage(
2255 BtShared *pBt, /* The btree */
2256 Pgno pgno, /* Number of the page to fetch */
2257 MemPage **ppPage, /* Return the page in this parameter */
2258 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2259){
2260 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2261 if( rc==SQLITE_OK ){
2262 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2263 releasePage(*ppPage);
2264 *ppPage = 0;
2265 return SQLITE_CORRUPT_BKPT;
2266 }
2267 (*ppPage)->isInit = 0;
2268 }else{
2269 *ppPage = 0;
2270 }
2271 return rc;
2272}
2273
drha059ad02001-04-17 20:09:11 +00002274
2275/*
drha6abd042004-06-09 17:37:22 +00002276** During a rollback, when the pager reloads information into the cache
2277** so that the cache is restored to its original state at the start of
2278** the transaction, for each page restored this routine is called.
2279**
2280** This routine needs to reset the extra data section at the end of the
2281** page to agree with the restored data.
2282*/
danielk1977eaa06f62008-09-18 17:34:44 +00002283static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002284 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002285 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002286 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002287 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002288 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002289 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002290 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002291 /* pPage might not be a btree page; it might be an overflow page
2292 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002293 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002294 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002295 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002296 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002297 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002298 }
drha6abd042004-06-09 17:37:22 +00002299 }
2300}
2301
2302/*
drhe5fe6902007-12-07 18:55:28 +00002303** Invoke the busy handler for a btree.
2304*/
danielk19771ceedd32008-11-19 10:22:33 +00002305static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002306 BtShared *pBt = (BtShared*)pArg;
2307 assert( pBt->db );
2308 assert( sqlite3_mutex_held(pBt->db->mutex) );
drh783e1592020-05-06 20:55:38 +00002309 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
drhe5fe6902007-12-07 18:55:28 +00002310}
2311
2312/*
drhad3e0102004-09-03 23:32:18 +00002313** Open a database file.
2314**
drh382c0242001-10-06 16:33:02 +00002315** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002316** then an ephemeral database is created. The ephemeral database might
2317** be exclusively in memory, or it might use a disk-based memory cache.
2318** Either way, the ephemeral database will be automatically deleted
2319** when sqlite3BtreeClose() is called.
2320**
drhe53831d2007-08-17 01:14:38 +00002321** If zFilename is ":memory:" then an in-memory database is created
2322** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002323**
drh33f111d2012-01-17 15:29:14 +00002324** The "flags" parameter is a bitmask that might contain bits like
2325** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002326**
drhc47fd8e2009-04-30 13:30:32 +00002327** If the database is already opened in the same database connection
2328** and we are in shared cache mode, then the open will fail with an
2329** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2330** objects in the same database connection since doing so will lead
2331** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002332*/
drh23e11ca2004-05-04 17:27:28 +00002333int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002334 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002335 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002336 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002337 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002338 int flags, /* Options */
2339 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002340){
drh7555d8e2009-03-20 13:15:30 +00002341 BtShared *pBt = 0; /* Shared part of btree structure */
2342 Btree *p; /* Handle to return */
2343 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2344 int rc = SQLITE_OK; /* Result code from this function */
2345 u8 nReserve; /* Byte of unused space on each page */
2346 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002347
drh75c014c2010-08-30 15:02:28 +00002348 /* True if opening an ephemeral, temporary database */
2349 const int isTempDb = zFilename==0 || zFilename[0]==0;
2350
danielk1977aef0bf62005-12-30 16:28:01 +00002351 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002352 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002353 */
drhb0a7c9c2010-12-06 21:09:59 +00002354#ifdef SQLITE_OMIT_MEMORYDB
2355 const int isMemdb = 0;
2356#else
2357 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002358 || (isTempDb && sqlite3TempInMemory(db))
2359 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002360#endif
2361
drhe5fe6902007-12-07 18:55:28 +00002362 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002363 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002364 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002365 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2366
2367 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2368 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2369
2370 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2371 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002372
drh75c014c2010-08-30 15:02:28 +00002373 if( isMemdb ){
2374 flags |= BTREE_MEMORY;
2375 }
2376 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2377 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2378 }
drh17435752007-08-16 04:30:38 +00002379 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002380 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002381 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002382 }
2383 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002384 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002385#ifndef SQLITE_OMIT_SHARED_CACHE
2386 p->lock.pBtree = p;
2387 p->lock.iTable = 1;
2388#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002389
drh198bf392006-01-06 21:52:49 +00002390#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002391 /*
2392 ** If this Btree is a candidate for shared cache, try to find an
2393 ** existing BtShared object that we can share with
2394 */
drh4ab9d252012-05-26 20:08:49 +00002395 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002396 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002397 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002398 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002399 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002400 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002401
drhff0587c2007-08-29 17:43:19 +00002402 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002403 if( !zFullPathname ){
2404 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002405 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002406 }
drhafc8b7f2012-05-26 18:06:38 +00002407 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002408 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002409 }else{
2410 rc = sqlite3OsFullPathname(pVfs, zFilename,
2411 nFullPathname, zFullPathname);
2412 if( rc ){
drhc398c652019-11-22 00:42:01 +00002413 if( rc==SQLITE_OK_SYMLINK ){
2414 rc = SQLITE_OK;
2415 }else{
2416 sqlite3_free(zFullPathname);
2417 sqlite3_free(p);
2418 return rc;
2419 }
drhafc8b7f2012-05-26 18:06:38 +00002420 }
drh070ad6b2011-11-17 11:43:19 +00002421 }
drh30ddce62011-10-15 00:16:30 +00002422#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002423 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2424 sqlite3_mutex_enter(mutexOpen);
drhccb21132020-06-19 11:34:57 +00002425 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
drhff0587c2007-08-29 17:43:19 +00002426 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002427#endif
drh78f82d12008-09-02 00:52:52 +00002428 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002429 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002430 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002431 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002432 int iDb;
2433 for(iDb=db->nDb-1; iDb>=0; iDb--){
2434 Btree *pExisting = db->aDb[iDb].pBt;
2435 if( pExisting && pExisting->pBt==pBt ){
2436 sqlite3_mutex_leave(mutexShared);
2437 sqlite3_mutex_leave(mutexOpen);
2438 sqlite3_free(zFullPathname);
2439 sqlite3_free(p);
2440 return SQLITE_CONSTRAINT;
2441 }
2442 }
drhff0587c2007-08-29 17:43:19 +00002443 p->pBt = pBt;
2444 pBt->nRef++;
2445 break;
2446 }
2447 }
2448 sqlite3_mutex_leave(mutexShared);
2449 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002450 }
drhff0587c2007-08-29 17:43:19 +00002451#ifdef SQLITE_DEBUG
2452 else{
2453 /* In debug mode, we mark all persistent databases as sharable
2454 ** even when they are not. This exercises the locking code and
2455 ** gives more opportunity for asserts(sqlite3_mutex_held())
2456 ** statements to find locking problems.
2457 */
2458 p->sharable = 1;
2459 }
2460#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002461 }
2462#endif
drha059ad02001-04-17 20:09:11 +00002463 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002464 /*
2465 ** The following asserts make sure that structures used by the btree are
2466 ** the right size. This is to guard against size changes that result
2467 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002468 */
drh062cf272015-03-23 19:03:51 +00002469 assert( sizeof(i64)==8 );
2470 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002471 assert( sizeof(u32)==4 );
2472 assert( sizeof(u16)==2 );
2473 assert( sizeof(Pgno)==4 );
2474
2475 pBt = sqlite3MallocZero( sizeof(*pBt) );
2476 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002477 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002478 goto btree_open_out;
2479 }
danielk197771d5d2c2008-09-29 11:49:47 +00002480 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002481 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002482 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002483 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002484 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2485 }
2486 if( rc!=SQLITE_OK ){
2487 goto btree_open_out;
2488 }
shanehbd2aaf92010-09-01 02:38:21 +00002489 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002490 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002491 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002492 p->pBt = pBt;
2493
drhe53831d2007-08-17 01:14:38 +00002494 pBt->pCursor = 0;
2495 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002496 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002497#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002498 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002499#elif defined(SQLITE_FAST_SECURE_DELETE)
2500 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002501#endif
drh113762a2014-11-19 16:36:25 +00002502 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2503 ** determined by the 2-byte integer located at an offset of 16 bytes from
2504 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002505 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002506 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2507 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002508 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002509#ifndef SQLITE_OMIT_AUTOVACUUM
2510 /* If the magic name ":memory:" will create an in-memory database, then
2511 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2512 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2513 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2514 ** regular file-name. In this case the auto-vacuum applies as per normal.
2515 */
2516 if( zFilename && !isMemdb ){
2517 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2518 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2519 }
2520#endif
2521 nReserve = 0;
2522 }else{
drh113762a2014-11-19 16:36:25 +00002523 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2524 ** determined by the one-byte unsigned integer found at an offset of 20
2525 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002526 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002527 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002528#ifndef SQLITE_OMIT_AUTOVACUUM
2529 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2530 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2531#endif
2532 }
drhfa9601a2009-06-18 17:22:39 +00002533 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002534 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002535 pBt->usableSize = pBt->pageSize - nReserve;
2536 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002537
2538#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2539 /* Add the new BtShared object to the linked list sharable BtShareds.
2540 */
dan272989b2016-07-06 10:12:02 +00002541 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002542 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002543 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhccb21132020-06-19 11:34:57 +00002544 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
danielk1977075c23a2008-09-01 18:34:20 +00002545 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002546 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002547 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002548 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002549 goto btree_open_out;
2550 }
drhff0587c2007-08-29 17:43:19 +00002551 }
drhe53831d2007-08-17 01:14:38 +00002552 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002553 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2554 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002555 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002556 }
drheee46cf2004-11-06 00:02:48 +00002557#endif
drh90f5ecb2004-07-22 01:19:35 +00002558 }
danielk1977aef0bf62005-12-30 16:28:01 +00002559
drhcfed7bc2006-03-13 14:28:05 +00002560#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002561 /* If the new Btree uses a sharable pBtShared, then link the new
2562 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002563 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002564 */
drhe53831d2007-08-17 01:14:38 +00002565 if( p->sharable ){
2566 int i;
2567 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002568 for(i=0; i<db->nDb; i++){
2569 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002570 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002571 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002572 p->pNext = pSib;
2573 p->pPrev = 0;
2574 pSib->pPrev = p;
2575 }else{
drh3bfa7e82016-03-22 14:37:59 +00002576 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002577 pSib = pSib->pNext;
2578 }
2579 p->pNext = pSib->pNext;
2580 p->pPrev = pSib;
2581 if( p->pNext ){
2582 p->pNext->pPrev = p;
2583 }
2584 pSib->pNext = p;
2585 }
2586 break;
2587 }
2588 }
danielk1977aef0bf62005-12-30 16:28:01 +00002589 }
danielk1977aef0bf62005-12-30 16:28:01 +00002590#endif
2591 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002592
2593btree_open_out:
2594 if( rc!=SQLITE_OK ){
2595 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002596 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002597 }
drh17435752007-08-16 04:30:38 +00002598 sqlite3_free(pBt);
2599 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002600 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002601 }else{
dan0f5a1862016-08-13 14:30:23 +00002602 sqlite3_file *pFile;
2603
drh75c014c2010-08-30 15:02:28 +00002604 /* If the B-Tree was successfully opened, set the pager-cache size to the
2605 ** default value. Except, when opening on an existing shared pager-cache,
2606 ** do not change the pager-cache size.
2607 */
2608 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2609 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2610 }
dan0f5a1862016-08-13 14:30:23 +00002611
2612 pFile = sqlite3PagerFile(pBt->pPager);
2613 if( pFile->pMethods ){
2614 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2615 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002616 }
drh7555d8e2009-03-20 13:15:30 +00002617 if( mutexOpen ){
2618 assert( sqlite3_mutex_held(mutexOpen) );
2619 sqlite3_mutex_leave(mutexOpen);
2620 }
dan272989b2016-07-06 10:12:02 +00002621 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002622 return rc;
drha059ad02001-04-17 20:09:11 +00002623}
2624
2625/*
drhe53831d2007-08-17 01:14:38 +00002626** Decrement the BtShared.nRef counter. When it reaches zero,
2627** remove the BtShared structure from the sharing list. Return
2628** true if the BtShared.nRef counter reaches zero and return
2629** false if it is still positive.
2630*/
2631static int removeFromSharingList(BtShared *pBt){
2632#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002633 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002634 BtShared *pList;
2635 int removed = 0;
2636
drhd677b3d2007-08-20 22:48:41 +00002637 assert( sqlite3_mutex_notheld(pBt->mutex) );
drhccb21132020-06-19 11:34:57 +00002638 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
drhe53831d2007-08-17 01:14:38 +00002639 sqlite3_mutex_enter(pMaster);
2640 pBt->nRef--;
2641 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002642 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2643 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002644 }else{
drh78f82d12008-09-02 00:52:52 +00002645 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002646 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002647 pList=pList->pNext;
2648 }
drh34004ce2008-07-11 16:15:17 +00002649 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002650 pList->pNext = pBt->pNext;
2651 }
2652 }
drh3285db22007-09-03 22:00:39 +00002653 if( SQLITE_THREADSAFE ){
2654 sqlite3_mutex_free(pBt->mutex);
2655 }
drhe53831d2007-08-17 01:14:38 +00002656 removed = 1;
2657 }
2658 sqlite3_mutex_leave(pMaster);
2659 return removed;
2660#else
2661 return 1;
2662#endif
2663}
2664
2665/*
drhf7141992008-06-19 00:16:08 +00002666** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002667** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2668** pointer.
drhf7141992008-06-19 00:16:08 +00002669*/
2670static void allocateTempSpace(BtShared *pBt){
2671 if( !pBt->pTmpSpace ){
2672 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002673
2674 /* One of the uses of pBt->pTmpSpace is to format cells before
2675 ** inserting them into a leaf page (function fillInCell()). If
2676 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2677 ** by the various routines that manipulate binary cells. Which
2678 ** can mean that fillInCell() only initializes the first 2 or 3
2679 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2680 ** it into a database page. This is not actually a problem, but it
2681 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2682 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002683 ** zero the first 4 bytes of temp space here.
2684 **
2685 ** Also: Provide four bytes of initialized space before the
2686 ** beginning of pTmpSpace as an area available to prepend the
2687 ** left-child pointer to the beginning of a cell.
2688 */
2689 if( pBt->pTmpSpace ){
2690 memset(pBt->pTmpSpace, 0, 8);
2691 pBt->pTmpSpace += 4;
2692 }
drhf7141992008-06-19 00:16:08 +00002693 }
2694}
2695
2696/*
2697** Free the pBt->pTmpSpace allocation
2698*/
2699static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002700 if( pBt->pTmpSpace ){
2701 pBt->pTmpSpace -= 4;
2702 sqlite3PageFree(pBt->pTmpSpace);
2703 pBt->pTmpSpace = 0;
2704 }
drhf7141992008-06-19 00:16:08 +00002705}
2706
2707/*
drha059ad02001-04-17 20:09:11 +00002708** Close an open database and invalidate all cursors.
2709*/
danielk1977aef0bf62005-12-30 16:28:01 +00002710int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002711 BtShared *pBt = p->pBt;
2712 BtCursor *pCur;
2713
danielk1977aef0bf62005-12-30 16:28:01 +00002714 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002715 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002716 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002717 pCur = pBt->pCursor;
2718 while( pCur ){
2719 BtCursor *pTmp = pCur;
2720 pCur = pCur->pNext;
2721 if( pTmp->pBtree==p ){
2722 sqlite3BtreeCloseCursor(pTmp);
2723 }
drha059ad02001-04-17 20:09:11 +00002724 }
danielk1977aef0bf62005-12-30 16:28:01 +00002725
danielk19778d34dfd2006-01-24 16:37:57 +00002726 /* Rollback any active transaction and free the handle structure.
2727 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2728 ** this handle.
2729 */
drh47b7fc72014-11-11 01:33:57 +00002730 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002731 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002732
danielk1977aef0bf62005-12-30 16:28:01 +00002733 /* If there are still other outstanding references to the shared-btree
2734 ** structure, return now. The remainder of this procedure cleans
2735 ** up the shared-btree.
2736 */
drhe53831d2007-08-17 01:14:38 +00002737 assert( p->wantToLock==0 && p->locked==0 );
2738 if( !p->sharable || removeFromSharingList(pBt) ){
2739 /* The pBt is no longer on the sharing list, so we can access
2740 ** it without having to hold the mutex.
2741 **
2742 ** Clean out and delete the BtShared object.
2743 */
2744 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002745 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002746 if( pBt->xFreeSchema && pBt->pSchema ){
2747 pBt->xFreeSchema(pBt->pSchema);
2748 }
drhb9755982010-07-24 16:34:37 +00002749 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002750 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002751 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002752 }
2753
drhe53831d2007-08-17 01:14:38 +00002754#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002755 assert( p->wantToLock==0 );
2756 assert( p->locked==0 );
2757 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2758 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002759#endif
2760
drhe53831d2007-08-17 01:14:38 +00002761 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002762 return SQLITE_OK;
2763}
2764
2765/*
drh9b0cf342015-11-12 14:57:19 +00002766** Change the "soft" limit on the number of pages in the cache.
2767** Unused and unmodified pages will be recycled when the number of
2768** pages in the cache exceeds this soft limit. But the size of the
2769** cache is allowed to grow larger than this limit if it contains
2770** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002771*/
danielk1977aef0bf62005-12-30 16:28:01 +00002772int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2773 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002774 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002775 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002776 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002777 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002778 return SQLITE_OK;
2779}
2780
drh9b0cf342015-11-12 14:57:19 +00002781/*
2782** Change the "spill" limit on the number of pages in the cache.
2783** If the number of pages exceeds this limit during a write transaction,
2784** the pager might attempt to "spill" pages to the journal early in
2785** order to free up memory.
2786**
2787** The value returned is the current spill size. If zero is passed
2788** as an argument, no changes are made to the spill size setting, so
2789** using mxPage of 0 is a way to query the current spill size.
2790*/
2791int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2792 BtShared *pBt = p->pBt;
2793 int res;
2794 assert( sqlite3_mutex_held(p->db->mutex) );
2795 sqlite3BtreeEnter(p);
2796 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2797 sqlite3BtreeLeave(p);
2798 return res;
2799}
2800
drh18c7e402014-03-14 11:46:10 +00002801#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002802/*
dan5d8a1372013-03-19 19:28:06 +00002803** Change the limit on the amount of the database file that may be
2804** memory mapped.
2805*/
drh9b4c59f2013-04-15 17:03:42 +00002806int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002807 BtShared *pBt = p->pBt;
2808 assert( sqlite3_mutex_held(p->db->mutex) );
2809 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002810 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002811 sqlite3BtreeLeave(p);
2812 return SQLITE_OK;
2813}
drh18c7e402014-03-14 11:46:10 +00002814#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002815
2816/*
drh973b6e32003-02-12 14:09:42 +00002817** Change the way data is synced to disk in order to increase or decrease
2818** how well the database resists damage due to OS crashes and power
2819** failures. Level 1 is the same as asynchronous (no syncs() occur and
2820** there is a high probability of damage) Level 2 is the default. There
2821** is a very low but non-zero probability of damage. Level 3 reduces the
2822** probability of damage to near zero but with a write performance reduction.
2823*/
danielk197793758c82005-01-21 08:13:14 +00002824#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002825int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002826 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002827 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002828){
danielk1977aef0bf62005-12-30 16:28:01 +00002829 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002830 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002831 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002832 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002833 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002834 return SQLITE_OK;
2835}
danielk197793758c82005-01-21 08:13:14 +00002836#endif
drh973b6e32003-02-12 14:09:42 +00002837
drh2c8997b2005-08-27 16:36:48 +00002838/*
drh90f5ecb2004-07-22 01:19:35 +00002839** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002840** Or, if the page size has already been fixed, return SQLITE_READONLY
2841** without changing anything.
drh06f50212004-11-02 14:24:33 +00002842**
2843** The page size must be a power of 2 between 512 and 65536. If the page
2844** size supplied does not meet this constraint then the page size is not
2845** changed.
2846**
2847** Page sizes are constrained to be a power of two so that the region
2848** of the database file used for locking (beginning at PENDING_BYTE,
2849** the first byte past the 1GB boundary, 0x40000000) needs to occur
2850** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002851**
2852** If parameter nReserve is less than zero, then the number of reserved
2853** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002854**
drhc9166342012-01-05 23:32:06 +00002855** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002856** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002857*/
drhce4869f2009-04-02 20:16:58 +00002858int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002859 int rc = SQLITE_OK;
drhe937df82020-05-07 01:56:57 +00002860 int x;
danielk1977aef0bf62005-12-30 16:28:01 +00002861 BtShared *pBt = p->pBt;
drhe937df82020-05-07 01:56:57 +00002862 assert( nReserve>=0 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002863 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00002864 pBt->nReserveWanted = nReserve;
2865 x = pBt->pageSize - pBt->usableSize;
2866 if( nReserve<x ) nReserve = x;
drhc9166342012-01-05 23:32:06 +00002867 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002868 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002869 return SQLITE_READONLY;
2870 }
drhf49661a2008-12-10 16:45:50 +00002871 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002872 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2873 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002874 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002875 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002876 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002877 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002878 }
drhfa9601a2009-06-18 17:22:39 +00002879 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002880 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002881 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002882 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002883 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002884}
2885
2886/*
2887** Return the currently defined page size
2888*/
danielk1977aef0bf62005-12-30 16:28:01 +00002889int sqlite3BtreeGetPageSize(Btree *p){
2890 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002891}
drh7f751222009-03-17 22:33:00 +00002892
dan0094f372012-09-28 20:23:42 +00002893/*
2894** This function is similar to sqlite3BtreeGetReserve(), except that it
2895** may only be called if it is guaranteed that the b-tree mutex is already
2896** held.
2897**
2898** This is useful in one special case in the backup API code where it is
2899** known that the shared b-tree mutex is held, but the mutex on the
2900** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2901** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002902** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002903*/
2904int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002905 int n;
dan0094f372012-09-28 20:23:42 +00002906 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002907 n = p->pBt->pageSize - p->pBt->usableSize;
2908 return n;
dan0094f372012-09-28 20:23:42 +00002909}
2910
drh7f751222009-03-17 22:33:00 +00002911/*
2912** Return the number of bytes of space at the end of every page that
2913** are intentually left unused. This is the "reserved" space that is
2914** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002915**
drh4d347662020-04-22 00:50:21 +00002916** The value returned is the larger of the current reserve size and
2917** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2918** The amount of reserve can only grow - never shrink.
drh7f751222009-03-17 22:33:00 +00002919*/
drh45248de2020-04-20 15:18:43 +00002920int sqlite3BtreeGetRequestedReserve(Btree *p){
drhe937df82020-05-07 01:56:57 +00002921 int n1, n2;
drhd677b3d2007-08-20 22:48:41 +00002922 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00002923 n1 = (int)p->pBt->nReserveWanted;
2924 n2 = sqlite3BtreeGetReserveNoMutex(p);
drhd677b3d2007-08-20 22:48:41 +00002925 sqlite3BtreeLeave(p);
drhe937df82020-05-07 01:56:57 +00002926 return n1>n2 ? n1 : n2;
drh2011d5f2004-07-22 02:40:37 +00002927}
drhf8e632b2007-05-08 14:51:36 +00002928
drhad0961b2015-02-21 00:19:25 +00002929
drhf8e632b2007-05-08 14:51:36 +00002930/*
2931** Set the maximum page count for a database if mxPage is positive.
2932** No changes are made if mxPage is 0 or negative.
2933** Regardless of the value of mxPage, return the maximum page count.
2934*/
2935int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002936 int n;
2937 sqlite3BtreeEnter(p);
2938 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2939 sqlite3BtreeLeave(p);
2940 return n;
drhf8e632b2007-05-08 14:51:36 +00002941}
drh5b47efa2010-02-12 18:18:39 +00002942
2943/*
drha5907a82017-06-19 11:44:22 +00002944** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2945**
2946** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2947** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2948** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2949** newFlag==(-1) No changes
2950**
2951** This routine acts as a query if newFlag is less than zero
2952**
2953** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2954** freelist leaf pages are not written back to the database. Thus in-page
2955** deleted content is cleared, but freelist deleted content is not.
2956**
2957** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2958** that freelist leaf pages are written back into the database, increasing
2959** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002960*/
2961int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2962 int b;
drhaf034ed2010-02-12 19:46:26 +00002963 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002964 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002965 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2966 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002967 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002968 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2969 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2970 }
2971 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002972 sqlite3BtreeLeave(p);
2973 return b;
2974}
drh90f5ecb2004-07-22 01:19:35 +00002975
2976/*
danielk1977951af802004-11-05 15:45:09 +00002977** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2978** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2979** is disabled. The default value for the auto-vacuum property is
2980** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2981*/
danielk1977aef0bf62005-12-30 16:28:01 +00002982int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002983#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002984 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002985#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002986 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002987 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002988 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002989
2990 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002991 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002992 rc = SQLITE_READONLY;
2993 }else{
drh076d4662009-02-18 20:31:18 +00002994 pBt->autoVacuum = av ?1:0;
2995 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002996 }
drhd677b3d2007-08-20 22:48:41 +00002997 sqlite3BtreeLeave(p);
2998 return rc;
danielk1977951af802004-11-05 15:45:09 +00002999#endif
3000}
3001
3002/*
3003** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3004** enabled 1 is returned. Otherwise 0.
3005*/
danielk1977aef0bf62005-12-30 16:28:01 +00003006int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00003007#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003008 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00003009#else
drhd677b3d2007-08-20 22:48:41 +00003010 int rc;
3011 sqlite3BtreeEnter(p);
3012 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003013 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3014 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3015 BTREE_AUTOVACUUM_INCR
3016 );
drhd677b3d2007-08-20 22:48:41 +00003017 sqlite3BtreeLeave(p);
3018 return rc;
danielk1977951af802004-11-05 15:45:09 +00003019#endif
3020}
3021
danf5da7db2017-03-16 18:14:39 +00003022/*
3023** If the user has not set the safety-level for this database connection
3024** using "PRAGMA synchronous", and if the safety-level is not already
3025** set to the value passed to this function as the second parameter,
3026** set it so.
3027*/
drh2ed57372017-10-05 20:57:38 +00003028#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3029 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003030static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3031 sqlite3 *db;
3032 Db *pDb;
3033 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3034 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3035 if( pDb->bSyncSet==0
3036 && pDb->safety_level!=safety_level
3037 && pDb!=&db->aDb[1]
3038 ){
3039 pDb->safety_level = safety_level;
3040 sqlite3PagerSetFlags(pBt->pPager,
3041 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3042 }
3043 }
3044}
3045#else
danfc8f4b62017-03-16 18:54:42 +00003046# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003047#endif
danielk1977951af802004-11-05 15:45:09 +00003048
drh0314cf32018-04-28 01:27:09 +00003049/* Forward declaration */
3050static int newDatabase(BtShared*);
3051
3052
danielk1977951af802004-11-05 15:45:09 +00003053/*
drha34b6762004-05-07 13:30:42 +00003054** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003055** also acquire a readlock on that file.
3056**
3057** SQLITE_OK is returned on success. If the file is not a
3058** well-formed database file, then SQLITE_CORRUPT is returned.
3059** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003060** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003061*/
danielk1977aef0bf62005-12-30 16:28:01 +00003062static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003063 int rc; /* Result code from subfunctions */
3064 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003065 u32 nPage; /* Number of pages in the database */
3066 u32 nPageFile = 0; /* Number of pages in the database file */
3067 u32 nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00003068
drh1fee73e2007-08-29 04:00:57 +00003069 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003070 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003071 rc = sqlite3PagerSharedLock(pBt->pPager);
3072 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003073 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003074 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003075
3076 /* Do some checking to help insure the file we opened really is
3077 ** a valid database file.
3078 */
drhc2a4bab2010-04-02 12:46:45 +00003079 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003080 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003081 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003082 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003083 }
drh0314cf32018-04-28 01:27:09 +00003084 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3085 nPage = 0;
3086 }
drh97b59a52010-03-31 02:31:33 +00003087 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003088 u32 pageSize;
3089 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003090 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003091 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003092 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3093 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3094 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003095 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003096 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003097 }
dan5cf53532010-05-01 16:40:20 +00003098
3099#ifdef SQLITE_OMIT_WAL
3100 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003101 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003102 }
3103 if( page1[19]>1 ){
3104 goto page1_init_failed;
3105 }
3106#else
dane04dc882010-04-20 18:53:15 +00003107 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003108 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003109 }
dane04dc882010-04-20 18:53:15 +00003110 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003111 goto page1_init_failed;
3112 }
drhe5ae5732008-06-15 02:51:47 +00003113
dana470aeb2010-04-21 11:43:38 +00003114 /* If the write version is set to 2, this database should be accessed
3115 ** in WAL mode. If the log is not already open, open it now. Then
3116 ** return SQLITE_OK and return without populating BtShared.pPage1.
3117 ** The caller detects this and calls this function again. This is
3118 ** required as the version of page 1 currently in the page1 buffer
3119 ** may not be the latest version - there may be a newer one in the log
3120 ** file.
3121 */
drhc9166342012-01-05 23:32:06 +00003122 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003123 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003124 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003125 if( rc!=SQLITE_OK ){
3126 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003127 }else{
danf5da7db2017-03-16 18:14:39 +00003128 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003129 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003130 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003131 return SQLITE_OK;
3132 }
dane04dc882010-04-20 18:53:15 +00003133 }
dan8b5444b2010-04-27 14:37:47 +00003134 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003135 }else{
3136 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003137 }
dan5cf53532010-05-01 16:40:20 +00003138#endif
dane04dc882010-04-20 18:53:15 +00003139
drh113762a2014-11-19 16:36:25 +00003140 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3141 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3142 **
drhe5ae5732008-06-15 02:51:47 +00003143 ** The original design allowed these amounts to vary, but as of
3144 ** version 3.6.0, we require them to be fixed.
3145 */
3146 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3147 goto page1_init_failed;
3148 }
drh113762a2014-11-19 16:36:25 +00003149 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3150 ** determined by the 2-byte integer located at an offset of 16 bytes from
3151 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003152 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003153 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3154 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003155 if( ((pageSize-1)&pageSize)!=0
3156 || pageSize>SQLITE_MAX_PAGE_SIZE
3157 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003158 ){
drh07d183d2005-05-01 22:52:42 +00003159 goto page1_init_failed;
3160 }
drhdcc27002019-01-06 02:06:31 +00003161 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003162 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003163 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3164 ** integer at offset 20 is the number of bytes of space at the end of
3165 ** each page to reserve for extensions.
3166 **
3167 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3168 ** determined by the one-byte unsigned integer found at an offset of 20
3169 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003170 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003171 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003172 /* After reading the first page of the database assuming a page size
3173 ** of BtShared.pageSize, we have discovered that the page-size is
3174 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3175 ** zero and return SQLITE_OK. The caller will call this function
3176 ** again with the correct page-size.
3177 */
drh3908fe92017-09-01 14:50:19 +00003178 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003179 pBt->usableSize = usableSize;
3180 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003181 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003182 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3183 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003184 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003185 }
drh0f1c2eb2018-11-03 17:31:48 +00003186 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003187 rc = SQLITE_CORRUPT_BKPT;
3188 goto page1_init_failed;
3189 }
drh113762a2014-11-19 16:36:25 +00003190 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3191 ** be less than 480. In other words, if the page size is 512, then the
3192 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003193 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003194 goto page1_init_failed;
3195 }
drh43b18e12010-08-17 19:40:08 +00003196 pBt->pageSize = pageSize;
3197 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003198#ifndef SQLITE_OMIT_AUTOVACUUM
3199 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003200 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003201#endif
drh306dc212001-05-21 13:45:10 +00003202 }
drhb6f41482004-05-14 01:58:11 +00003203
3204 /* maxLocal is the maximum amount of payload to store locally for
3205 ** a cell. Make sure it is small enough so that at least minFanout
3206 ** cells can will fit on one page. We assume a 10-byte page header.
3207 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003208 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003209 ** 4-byte child pointer
3210 ** 9-byte nKey value
3211 ** 4-byte nData value
3212 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003213 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003214 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3215 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003216 */
shaneh1df2db72010-08-18 02:28:48 +00003217 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3218 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3219 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3220 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003221 if( pBt->maxLocal>127 ){
3222 pBt->max1bytePayload = 127;
3223 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003224 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003225 }
drh2e38c322004-09-03 18:38:44 +00003226 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003227 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003228 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003229 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003230
drh72f82862001-05-24 21:06:34 +00003231page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003232 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003233 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003234 return rc;
drh306dc212001-05-21 13:45:10 +00003235}
3236
drh85ec3b62013-05-14 23:12:06 +00003237#ifndef NDEBUG
3238/*
3239** Return the number of cursors open on pBt. This is for use
3240** in assert() expressions, so it is only compiled if NDEBUG is not
3241** defined.
3242**
3243** Only write cursors are counted if wrOnly is true. If wrOnly is
3244** false then all cursors are counted.
3245**
3246** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003247** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003248** have been tripped into the CURSOR_FAULT state are not counted.
3249*/
3250static int countValidCursors(BtShared *pBt, int wrOnly){
3251 BtCursor *pCur;
3252 int r = 0;
3253 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003254 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3255 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003256 }
3257 return r;
3258}
3259#endif
3260
drh306dc212001-05-21 13:45:10 +00003261/*
drhb8ca3072001-12-05 00:21:20 +00003262** If there are no outstanding cursors and we are not in the middle
3263** of a transaction but there is a read lock on the database, then
3264** this routine unrefs the first page of the database file which
3265** has the effect of releasing the read lock.
3266**
drhb8ca3072001-12-05 00:21:20 +00003267** If there is a transaction in progress, this routine is a no-op.
3268*/
danielk1977aef0bf62005-12-30 16:28:01 +00003269static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003270 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003271 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003272 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003273 MemPage *pPage1 = pBt->pPage1;
3274 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003275 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003276 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003277 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003278 }
3279}
3280
3281/*
drhe39f2f92009-07-23 01:43:59 +00003282** If pBt points to an empty file then convert that empty file
3283** into a new empty database by initializing the first page of
3284** the database.
drh8b2f49b2001-06-08 00:21:52 +00003285*/
danielk1977aef0bf62005-12-30 16:28:01 +00003286static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003287 MemPage *pP1;
3288 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003289 int rc;
drhd677b3d2007-08-20 22:48:41 +00003290
drh1fee73e2007-08-29 04:00:57 +00003291 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003292 if( pBt->nPage>0 ){
3293 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003294 }
drh3aac2dd2004-04-26 14:10:20 +00003295 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003296 assert( pP1!=0 );
3297 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003298 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003299 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003300 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3301 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003302 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3303 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003304 data[18] = 1;
3305 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003306 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3307 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003308 data[21] = 64;
3309 data[22] = 32;
3310 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003311 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003312 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003313 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003314#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003315 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003316 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003317 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003318 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003319#endif
drhdd3cd972010-03-27 17:12:36 +00003320 pBt->nPage = 1;
3321 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003322 return SQLITE_OK;
3323}
3324
3325/*
danb483eba2012-10-13 19:58:11 +00003326** Initialize the first page of the database file (creating a database
3327** consisting of a single page and no schema objects). Return SQLITE_OK
3328** if successful, or an SQLite error code otherwise.
3329*/
3330int sqlite3BtreeNewDb(Btree *p){
3331 int rc;
3332 sqlite3BtreeEnter(p);
3333 p->pBt->nPage = 0;
3334 rc = newDatabase(p->pBt);
3335 sqlite3BtreeLeave(p);
3336 return rc;
3337}
3338
3339/*
danielk1977ee5741e2004-05-31 10:01:34 +00003340** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003341** is started if the second argument is nonzero, otherwise a read-
3342** transaction. If the second argument is 2 or more and exclusive
3343** transaction is started, meaning that no other process is allowed
3344** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003345** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003346** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003347**
danielk1977ee5741e2004-05-31 10:01:34 +00003348** A write-transaction must be started before attempting any
3349** changes to the database. None of the following routines
3350** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003351**
drh23e11ca2004-05-04 17:27:28 +00003352** sqlite3BtreeCreateTable()
3353** sqlite3BtreeCreateIndex()
3354** sqlite3BtreeClearTable()
3355** sqlite3BtreeDropTable()
3356** sqlite3BtreeInsert()
3357** sqlite3BtreeDelete()
3358** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003359**
drhb8ef32c2005-03-14 02:01:49 +00003360** If an initial attempt to acquire the lock fails because of lock contention
3361** and the database was previously unlocked, then invoke the busy handler
3362** if there is one. But if there was previously a read-lock, do not
3363** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3364** returned when there is already a read-lock in order to avoid a deadlock.
3365**
3366** Suppose there are two processes A and B. A has a read lock and B has
3367** a reserved lock. B tries to promote to exclusive but is blocked because
3368** of A's read lock. A tries to promote to reserved but is blocked by B.
3369** One or the other of the two processes must give way or there can be
3370** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3371** when A already has a read lock, we encourage A to give up and let B
3372** proceed.
drha059ad02001-04-17 20:09:11 +00003373*/
drhbb2d9b12018-06-06 16:28:40 +00003374int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003375 BtShared *pBt = p->pBt;
dan7bb8b8a2020-05-06 20:27:18 +00003376 Pager *pPager = pBt->pPager;
danielk1977ee5741e2004-05-31 10:01:34 +00003377 int rc = SQLITE_OK;
3378
drhd677b3d2007-08-20 22:48:41 +00003379 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003380 btreeIntegrity(p);
3381
danielk1977ee5741e2004-05-31 10:01:34 +00003382 /* If the btree is already in a write-transaction, or it
3383 ** is already in a read-transaction and a read-transaction
3384 ** is requested, this is a no-op.
3385 */
danielk1977aef0bf62005-12-30 16:28:01 +00003386 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003387 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003388 }
dan56c517a2013-09-26 11:04:33 +00003389 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003390
danea933f02018-07-19 11:44:02 +00003391 if( (p->db->flags & SQLITE_ResetDatabase)
dan7bb8b8a2020-05-06 20:27:18 +00003392 && sqlite3PagerIsreadonly(pPager)==0
danea933f02018-07-19 11:44:02 +00003393 ){
3394 pBt->btsFlags &= ~BTS_READ_ONLY;
3395 }
3396
drhb8ef32c2005-03-14 02:01:49 +00003397 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003398 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003399 rc = SQLITE_READONLY;
3400 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003401 }
3402
danielk1977404ca072009-03-16 13:19:36 +00003403#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003404 {
3405 sqlite3 *pBlock = 0;
3406 /* If another database handle has already opened a write transaction
3407 ** on this shared-btree structure and a second write transaction is
3408 ** requested, return SQLITE_LOCKED.
3409 */
3410 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3411 || (pBt->btsFlags & BTS_PENDING)!=0
3412 ){
3413 pBlock = pBt->pWriter->db;
3414 }else if( wrflag>1 ){
3415 BtLock *pIter;
3416 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3417 if( pIter->pBtree!=p ){
3418 pBlock = pIter->pBtree->db;
3419 break;
3420 }
danielk1977641b0f42007-12-21 04:47:25 +00003421 }
3422 }
drh5a1fb182016-01-08 19:34:39 +00003423 if( pBlock ){
3424 sqlite3ConnectionBlocked(p->db, pBlock);
3425 rc = SQLITE_LOCKED_SHAREDCACHE;
3426 goto trans_begun;
3427 }
danielk1977404ca072009-03-16 13:19:36 +00003428 }
danielk1977641b0f42007-12-21 04:47:25 +00003429#endif
3430
danielk1977602b4662009-07-02 07:47:33 +00003431 /* Any read-only or read-write transaction implies a read-lock on
3432 ** page 1. So if some other shared-cache client already has a write-lock
3433 ** on page 1, the transaction cannot be opened. */
drh346a70c2020-06-15 20:27:35 +00003434 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
drh4c301aa2009-07-15 17:25:45 +00003435 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003436
drhc9166342012-01-05 23:32:06 +00003437 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3438 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003439 do {
dan11a81822020-05-07 14:26:40 +00003440 sqlite3PagerWalDb(pPager, p->db);
dan58021b22020-05-05 20:30:07 +00003441
3442#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3443 /* If transitioning from no transaction directly to a write transaction,
3444 ** block for the WRITER lock first if possible. */
3445 if( pBt->pPage1==0 && wrflag ){
3446 assert( pBt->inTransaction==TRANS_NONE );
dan861fb1e2020-05-06 19:14:41 +00003447 rc = sqlite3PagerWalWriteLock(pPager, 1);
dan7bb8b8a2020-05-06 20:27:18 +00003448 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
dan58021b22020-05-05 20:30:07 +00003449 }
3450#endif
3451
danielk1977295dc102009-04-01 19:07:03 +00003452 /* Call lockBtree() until either pBt->pPage1 is populated or
3453 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3454 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3455 ** reading page 1 it discovers that the page-size of the database
3456 ** file is not pBt->pageSize. In this case lockBtree() will update
3457 ** pBt->pageSize to the page-size of the file on disk.
3458 */
3459 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003460
drhb8ef32c2005-03-14 02:01:49 +00003461 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003462 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003463 rc = SQLITE_READONLY;
3464 }else{
dan58021b22020-05-05 20:30:07 +00003465 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003466 if( rc==SQLITE_OK ){
3467 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003468 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3469 /* if there was no transaction opened when this function was
3470 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3471 ** code to SQLITE_BUSY. */
3472 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003473 }
drhb8ef32c2005-03-14 02:01:49 +00003474 }
3475 }
3476
danielk1977bd434552009-03-18 10:33:00 +00003477 if( rc!=SQLITE_OK ){
danfc87ab82020-05-06 19:22:59 +00003478 (void)sqlite3PagerWalWriteLock(pPager, 0);
drhb8ef32c2005-03-14 02:01:49 +00003479 unlockBtreeIfUnused(pBt);
3480 }
danf9b76712010-06-01 14:12:45 +00003481 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003482 btreeInvokeBusyHandler(pBt) );
dan7bb8b8a2020-05-06 20:27:18 +00003483 sqlite3PagerWalDb(pPager, 0);
3484#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3485 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3486#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003487
3488 if( rc==SQLITE_OK ){
3489 if( p->inTrans==TRANS_NONE ){
3490 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003491#ifndef SQLITE_OMIT_SHARED_CACHE
3492 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003493 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003494 p->lock.eLock = READ_LOCK;
3495 p->lock.pNext = pBt->pLock;
3496 pBt->pLock = &p->lock;
3497 }
3498#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003499 }
3500 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3501 if( p->inTrans>pBt->inTransaction ){
3502 pBt->inTransaction = p->inTrans;
3503 }
danielk1977404ca072009-03-16 13:19:36 +00003504 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003505 MemPage *pPage1 = pBt->pPage1;
3506#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003507 assert( !pBt->pWriter );
3508 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003509 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3510 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003511#endif
dan59257dc2010-08-04 11:34:31 +00003512
3513 /* If the db-size header field is incorrect (as it may be if an old
3514 ** client has been writing the database file), update it now. Doing
3515 ** this sooner rather than later means the database size can safely
3516 ** re-read the database size from page 1 if a savepoint or transaction
3517 ** rollback occurs within the transaction.
3518 */
3519 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3520 rc = sqlite3PagerWrite(pPage1->pDbPage);
3521 if( rc==SQLITE_OK ){
3522 put4byte(&pPage1->aData[28], pBt->nPage);
3523 }
3524 }
3525 }
danielk1977aef0bf62005-12-30 16:28:01 +00003526 }
3527
drhd677b3d2007-08-20 22:48:41 +00003528trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003529 if( rc==SQLITE_OK ){
3530 if( pSchemaVersion ){
3531 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3532 }
3533 if( wrflag ){
3534 /* This call makes sure that the pager has the correct number of
3535 ** open savepoints. If the second parameter is greater than 0 and
3536 ** the sub-journal is not already open, then it will be opened here.
3537 */
dan7bb8b8a2020-05-06 20:27:18 +00003538 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
drhbb2d9b12018-06-06 16:28:40 +00003539 }
danielk1977fd7f0452008-12-17 17:30:26 +00003540 }
danielk197712dd5492008-12-18 15:45:07 +00003541
danielk1977aef0bf62005-12-30 16:28:01 +00003542 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003543 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003544 return rc;
drha059ad02001-04-17 20:09:11 +00003545}
3546
danielk1977687566d2004-11-02 12:56:41 +00003547#ifndef SQLITE_OMIT_AUTOVACUUM
3548
3549/*
3550** Set the pointer-map entries for all children of page pPage. Also, if
3551** pPage contains cells that point to overflow pages, set the pointer
3552** map entries for the overflow pages as well.
3553*/
3554static int setChildPtrmaps(MemPage *pPage){
3555 int i; /* Counter variable */
3556 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003557 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003558 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003559 Pgno pgno = pPage->pgno;
3560
drh1fee73e2007-08-29 04:00:57 +00003561 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003562 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003563 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003564 nCell = pPage->nCell;
3565
3566 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003567 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003568
drh0f1bf4c2019-01-13 20:17:21 +00003569 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003570
danielk1977687566d2004-11-02 12:56:41 +00003571 if( !pPage->leaf ){
3572 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003573 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003574 }
3575 }
3576
3577 if( !pPage->leaf ){
3578 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003579 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003580 }
3581
danielk1977687566d2004-11-02 12:56:41 +00003582 return rc;
3583}
3584
3585/*
drhf3aed592009-07-08 18:12:49 +00003586** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3587** that it points to iTo. Parameter eType describes the type of pointer to
3588** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003589**
3590** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3591** page of pPage.
3592**
3593** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3594** page pointed to by one of the cells on pPage.
3595**
3596** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3597** overflow page in the list.
3598*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003599static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003600 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003601 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003602 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003603 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003604 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003605 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003606 }
danielk1977f78fc082004-11-02 14:40:32 +00003607 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003608 }else{
danielk1977687566d2004-11-02 12:56:41 +00003609 int i;
3610 int nCell;
drha1f75d92015-05-24 10:18:12 +00003611 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003612
drh14e845a2017-05-25 21:35:56 +00003613 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003614 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003615 nCell = pPage->nCell;
3616
danielk1977687566d2004-11-02 12:56:41 +00003617 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003618 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003619 if( eType==PTRMAP_OVERFLOW1 ){
3620 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003621 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003622 if( info.nLocal<info.nPayload ){
3623 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003624 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003625 }
3626 if( iFrom==get4byte(pCell+info.nSize-4) ){
3627 put4byte(pCell+info.nSize-4, iTo);
3628 break;
3629 }
danielk1977687566d2004-11-02 12:56:41 +00003630 }
3631 }else{
3632 if( get4byte(pCell)==iFrom ){
3633 put4byte(pCell, iTo);
3634 break;
3635 }
3636 }
3637 }
3638
3639 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003640 if( eType!=PTRMAP_BTREE ||
3641 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003642 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003643 }
danielk1977687566d2004-11-02 12:56:41 +00003644 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3645 }
danielk1977687566d2004-11-02 12:56:41 +00003646 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003647 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003648}
3649
danielk1977003ba062004-11-04 02:57:33 +00003650
danielk19777701e812005-01-10 12:59:51 +00003651/*
3652** Move the open database page pDbPage to location iFreePage in the
3653** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003654**
3655** The isCommit flag indicates that there is no need to remember that
3656** the journal needs to be sync()ed before database page pDbPage->pgno
3657** can be written to. The caller has already promised not to write to that
3658** page.
danielk19777701e812005-01-10 12:59:51 +00003659*/
danielk1977003ba062004-11-04 02:57:33 +00003660static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003661 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003662 MemPage *pDbPage, /* Open page to move */
3663 u8 eType, /* Pointer map 'type' entry for pDbPage */
3664 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003665 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003666 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003667){
3668 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3669 Pgno iDbPage = pDbPage->pgno;
3670 Pager *pPager = pBt->pPager;
3671 int rc;
3672
danielk1977a0bf2652004-11-04 14:30:04 +00003673 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3674 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003675 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003676 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003677 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003678
drh85b623f2007-12-13 21:54:09 +00003679 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003680 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3681 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003682 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003683 if( rc!=SQLITE_OK ){
3684 return rc;
3685 }
3686 pDbPage->pgno = iFreePage;
3687
3688 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3689 ** that point to overflow pages. The pointer map entries for all these
3690 ** pages need to be changed.
3691 **
3692 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3693 ** pointer to a subsequent overflow page. If this is the case, then
3694 ** the pointer map needs to be updated for the subsequent overflow page.
3695 */
danielk1977a0bf2652004-11-04 14:30:04 +00003696 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003697 rc = setChildPtrmaps(pDbPage);
3698 if( rc!=SQLITE_OK ){
3699 return rc;
3700 }
3701 }else{
3702 Pgno nextOvfl = get4byte(pDbPage->aData);
3703 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003704 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003705 if( rc!=SQLITE_OK ){
3706 return rc;
3707 }
3708 }
3709 }
3710
3711 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3712 ** that it points at iFreePage. Also fix the pointer map entry for
3713 ** iPtrPage.
3714 */
danielk1977a0bf2652004-11-04 14:30:04 +00003715 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003716 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003717 if( rc!=SQLITE_OK ){
3718 return rc;
3719 }
danielk19773b8a05f2007-03-19 17:44:26 +00003720 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003721 if( rc!=SQLITE_OK ){
3722 releasePage(pPtrPage);
3723 return rc;
3724 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003725 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003726 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003727 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003728 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003729 }
danielk1977003ba062004-11-04 02:57:33 +00003730 }
danielk1977003ba062004-11-04 02:57:33 +00003731 return rc;
3732}
3733
danielk1977dddbcdc2007-04-26 14:42:34 +00003734/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003735static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003736
3737/*
dan51f0b6d2013-02-22 20:16:34 +00003738** Perform a single step of an incremental-vacuum. If successful, return
3739** SQLITE_OK. If there is no work to do (and therefore no point in
3740** calling this function again), return SQLITE_DONE. Or, if an error
3741** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003742**
peter.d.reid60ec9142014-09-06 16:39:46 +00003743** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003744** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003745**
dan51f0b6d2013-02-22 20:16:34 +00003746** Parameter nFin is the number of pages that this database would contain
3747** were this function called until it returns SQLITE_DONE.
3748**
3749** If the bCommit parameter is non-zero, this function assumes that the
3750** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003751** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003752** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003753*/
dan51f0b6d2013-02-22 20:16:34 +00003754static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003755 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003756 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003757
drh1fee73e2007-08-29 04:00:57 +00003758 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003759 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003760
3761 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003762 u8 eType;
3763 Pgno iPtrPage;
3764
3765 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003766 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003767 return SQLITE_DONE;
3768 }
3769
3770 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3771 if( rc!=SQLITE_OK ){
3772 return rc;
3773 }
3774 if( eType==PTRMAP_ROOTPAGE ){
3775 return SQLITE_CORRUPT_BKPT;
3776 }
3777
3778 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003779 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003780 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003781 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003782 ** truncated to zero after this function returns, so it doesn't
3783 ** matter if it still contains some garbage entries.
3784 */
3785 Pgno iFreePg;
3786 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003787 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003788 if( rc!=SQLITE_OK ){
3789 return rc;
3790 }
3791 assert( iFreePg==iLastPg );
3792 releasePage(pFreePg);
3793 }
3794 } else {
3795 Pgno iFreePg; /* Index of free page to move pLastPg to */
3796 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003797 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3798 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003799
drhb00fc3b2013-08-21 23:42:32 +00003800 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003801 if( rc!=SQLITE_OK ){
3802 return rc;
3803 }
3804
dan51f0b6d2013-02-22 20:16:34 +00003805 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003806 ** is swapped with the first free page pulled off the free list.
3807 **
dan51f0b6d2013-02-22 20:16:34 +00003808 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003809 ** looping until a free-page located within the first nFin pages
3810 ** of the file is found.
3811 */
dan51f0b6d2013-02-22 20:16:34 +00003812 if( bCommit==0 ){
3813 eMode = BTALLOC_LE;
3814 iNear = nFin;
3815 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003816 do {
3817 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003818 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003819 if( rc!=SQLITE_OK ){
3820 releasePage(pLastPg);
3821 return rc;
3822 }
3823 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003824 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003825 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003826
dane1df4e32013-03-05 11:27:04 +00003827 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003828 releasePage(pLastPg);
3829 if( rc!=SQLITE_OK ){
3830 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003831 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003832 }
3833 }
3834
dan51f0b6d2013-02-22 20:16:34 +00003835 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003836 do {
danielk19773460d192008-12-27 15:23:13 +00003837 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003838 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3839 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003840 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003841 }
3842 return SQLITE_OK;
3843}
3844
3845/*
dan51f0b6d2013-02-22 20:16:34 +00003846** The database opened by the first argument is an auto-vacuum database
3847** nOrig pages in size containing nFree free pages. Return the expected
3848** size of the database in pages following an auto-vacuum operation.
3849*/
3850static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3851 int nEntry; /* Number of entries on one ptrmap page */
3852 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3853 Pgno nFin; /* Return value */
3854
3855 nEntry = pBt->usableSize/5;
3856 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3857 nFin = nOrig - nFree - nPtrmap;
3858 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3859 nFin--;
3860 }
3861 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3862 nFin--;
3863 }
dan51f0b6d2013-02-22 20:16:34 +00003864
3865 return nFin;
3866}
3867
3868/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003869** A write-transaction must be opened before calling this function.
3870** It performs a single unit of work towards an incremental vacuum.
3871**
3872** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003873** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003874** SQLITE_OK is returned. Otherwise an SQLite error code.
3875*/
3876int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003877 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003878 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003879
3880 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003881 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3882 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003883 rc = SQLITE_DONE;
3884 }else{
dan51f0b6d2013-02-22 20:16:34 +00003885 Pgno nOrig = btreePagecount(pBt);
3886 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3887 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3888
dan91384712013-02-24 11:50:43 +00003889 if( nOrig<nFin ){
3890 rc = SQLITE_CORRUPT_BKPT;
3891 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003892 rc = saveAllCursors(pBt, 0, 0);
3893 if( rc==SQLITE_OK ){
3894 invalidateAllOverflowCache(pBt);
3895 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3896 }
dan51f0b6d2013-02-22 20:16:34 +00003897 if( rc==SQLITE_OK ){
3898 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3899 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3900 }
3901 }else{
3902 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003903 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003904 }
drhd677b3d2007-08-20 22:48:41 +00003905 sqlite3BtreeLeave(p);
3906 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003907}
3908
3909/*
danielk19773b8a05f2007-03-19 17:44:26 +00003910** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003911** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003912**
3913** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3914** the database file should be truncated to during the commit process.
3915** i.e. the database has been reorganized so that only the first *pnTrunc
3916** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003917*/
danielk19773460d192008-12-27 15:23:13 +00003918static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003919 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003920 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003921 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003922
drh1fee73e2007-08-29 04:00:57 +00003923 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003924 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003925 assert(pBt->autoVacuum);
3926 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003927 Pgno nFin; /* Number of pages in database after autovacuuming */
3928 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003929 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003930 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003931
drhb1299152010-03-30 22:58:33 +00003932 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003933 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3934 /* It is not possible to create a database for which the final page
3935 ** is either a pointer-map page or the pending-byte page. If one
3936 ** is encountered, this indicates corruption.
3937 */
danielk19773460d192008-12-27 15:23:13 +00003938 return SQLITE_CORRUPT_BKPT;
3939 }
danielk1977ef165ce2009-04-06 17:50:03 +00003940
danielk19773460d192008-12-27 15:23:13 +00003941 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003942 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003943 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003944 if( nFin<nOrig ){
3945 rc = saveAllCursors(pBt, 0, 0);
3946 }
danielk19773460d192008-12-27 15:23:13 +00003947 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003948 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003949 }
danielk19773460d192008-12-27 15:23:13 +00003950 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003951 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3952 put4byte(&pBt->pPage1->aData[32], 0);
3953 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003954 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003955 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003956 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003957 }
3958 if( rc!=SQLITE_OK ){
3959 sqlite3PagerRollback(pPager);
3960 }
danielk1977687566d2004-11-02 12:56:41 +00003961 }
3962
dan0aed84d2013-03-26 14:16:20 +00003963 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003964 return rc;
3965}
danielk1977dddbcdc2007-04-26 14:42:34 +00003966
danielk1977a50d9aa2009-06-08 14:49:45 +00003967#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3968# define setChildPtrmaps(x) SQLITE_OK
3969#endif
danielk1977687566d2004-11-02 12:56:41 +00003970
3971/*
drh80e35f42007-03-30 14:06:34 +00003972** This routine does the first phase of a two-phase commit. This routine
3973** causes a rollback journal to be created (if it does not already exist)
3974** and populated with enough information so that if a power loss occurs
3975** the database can be restored to its original state by playing back
3976** the journal. Then the contents of the journal are flushed out to
3977** the disk. After the journal is safely on oxide, the changes to the
3978** database are written into the database file and flushed to oxide.
3979** At the end of this call, the rollback journal still exists on the
3980** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003981** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003982** commit process.
3983**
3984** This call is a no-op if no write-transaction is currently active on pBt.
3985**
3986** Otherwise, sync the database file for the btree pBt. zMaster points to
3987** the name of a master journal file that should be written into the
3988** individual journal file, or is NULL, indicating no master journal file
3989** (single database transaction).
3990**
3991** When this is called, the master journal should already have been
3992** created, populated with this journal pointer and synced to disk.
3993**
3994** Once this is routine has returned, the only thing required to commit
3995** the write-transaction for this database file is to delete the journal.
3996*/
3997int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3998 int rc = SQLITE_OK;
3999 if( p->inTrans==TRANS_WRITE ){
4000 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004001 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004002#ifndef SQLITE_OMIT_AUTOVACUUM
4003 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00004004 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00004005 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00004006 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004007 return rc;
4008 }
4009 }
danbc1a3c62013-02-23 16:40:46 +00004010 if( pBt->bDoTruncate ){
4011 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4012 }
drh80e35f42007-03-30 14:06:34 +00004013#endif
drh49b9d332009-01-02 18:10:42 +00004014 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00004015 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004016 }
4017 return rc;
4018}
4019
4020/*
danielk197794b30732009-07-02 17:21:57 +00004021** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4022** at the conclusion of a transaction.
4023*/
4024static void btreeEndTransaction(Btree *p){
4025 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00004026 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004027 assert( sqlite3BtreeHoldsMutex(p) );
4028
danbc1a3c62013-02-23 16:40:46 +00004029#ifndef SQLITE_OMIT_AUTOVACUUM
4030 pBt->bDoTruncate = 0;
4031#endif
danc0537fe2013-06-28 19:41:43 +00004032 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004033 /* If there are other active statements that belong to this database
4034 ** handle, downgrade to a read-only transaction. The other statements
4035 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004036 downgradeAllSharedCacheTableLocks(p);
4037 p->inTrans = TRANS_READ;
4038 }else{
4039 /* If the handle had any kind of transaction open, decrement the
4040 ** transaction count of the shared btree. If the transaction count
4041 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4042 ** call below will unlock the pager. */
4043 if( p->inTrans!=TRANS_NONE ){
4044 clearAllSharedCacheTableLocks(p);
4045 pBt->nTransaction--;
4046 if( 0==pBt->nTransaction ){
4047 pBt->inTransaction = TRANS_NONE;
4048 }
4049 }
4050
4051 /* Set the current transaction state to TRANS_NONE and unlock the
4052 ** pager if this call closed the only read or write transaction. */
4053 p->inTrans = TRANS_NONE;
4054 unlockBtreeIfUnused(pBt);
4055 }
4056
4057 btreeIntegrity(p);
4058}
4059
4060/*
drh2aa679f2001-06-25 02:11:07 +00004061** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004062**
drh6e345992007-03-30 11:12:08 +00004063** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004064** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4065** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4066** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004067** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004068** routine has to do is delete or truncate or zero the header in the
4069** the rollback journal (which causes the transaction to commit) and
4070** drop locks.
drh6e345992007-03-30 11:12:08 +00004071**
dan60939d02011-03-29 15:40:55 +00004072** Normally, if an error occurs while the pager layer is attempting to
4073** finalize the underlying journal file, this function returns an error and
4074** the upper layer will attempt a rollback. However, if the second argument
4075** is non-zero then this b-tree transaction is part of a multi-file
4076** transaction. In this case, the transaction has already been committed
4077** (by deleting a master journal file) and the caller will ignore this
4078** functions return code. So, even if an error occurs in the pager layer,
4079** reset the b-tree objects internal state to indicate that the write
4080** transaction has been closed. This is quite safe, as the pager will have
4081** transitioned to the error state.
4082**
drh5e00f6c2001-09-13 13:46:56 +00004083** This will release the write lock on the database file. If there
4084** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004085*/
dan60939d02011-03-29 15:40:55 +00004086int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004087
drh075ed302010-10-14 01:17:30 +00004088 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004089 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004090 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004091
4092 /* If the handle has a write-transaction open, commit the shared-btrees
4093 ** transaction and set the shared state to TRANS_READ.
4094 */
4095 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004096 int rc;
drh075ed302010-10-14 01:17:30 +00004097 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004098 assert( pBt->inTransaction==TRANS_WRITE );
4099 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004100 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004101 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004102 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004103 return rc;
4104 }
drh3da9c042014-12-22 18:41:21 +00004105 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004106 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004107 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004108 }
danielk1977aef0bf62005-12-30 16:28:01 +00004109
danielk197794b30732009-07-02 17:21:57 +00004110 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004111 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004112 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004113}
4114
drh80e35f42007-03-30 14:06:34 +00004115/*
4116** Do both phases of a commit.
4117*/
4118int sqlite3BtreeCommit(Btree *p){
4119 int rc;
drhd677b3d2007-08-20 22:48:41 +00004120 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004121 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4122 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004123 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004124 }
drhd677b3d2007-08-20 22:48:41 +00004125 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004126 return rc;
4127}
4128
drhc39e0002004-05-07 23:50:57 +00004129/*
drhfb982642007-08-30 01:19:59 +00004130** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004131** code to errCode for every cursor on any BtShared that pBtree
4132** references. Or if the writeOnly flag is set to 1, then only
4133** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004134**
drh47b7fc72014-11-11 01:33:57 +00004135** Every cursor is a candidate to be tripped, including cursors
4136** that belong to other database connections that happen to be
4137** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004138**
dan80231042014-11-12 14:56:02 +00004139** This routine gets called when a rollback occurs. If the writeOnly
4140** flag is true, then only write-cursors need be tripped - read-only
4141** cursors save their current positions so that they may continue
4142** following the rollback. Or, if writeOnly is false, all cursors are
4143** tripped. In general, writeOnly is false if the transaction being
4144** rolled back modified the database schema. In this case b-tree root
4145** pages may be moved or deleted from the database altogether, making
4146** it unsafe for read cursors to continue.
4147**
4148** If the writeOnly flag is true and an error is encountered while
4149** saving the current position of a read-only cursor, all cursors,
4150** including all read-cursors are tripped.
4151**
4152** SQLITE_OK is returned if successful, or if an error occurs while
4153** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004154*/
dan80231042014-11-12 14:56:02 +00004155int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004156 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004157 int rc = SQLITE_OK;
4158
drh47b7fc72014-11-11 01:33:57 +00004159 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004160 if( pBtree ){
4161 sqlite3BtreeEnter(pBtree);
4162 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004163 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004164 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004165 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004166 if( rc!=SQLITE_OK ){
4167 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4168 break;
4169 }
4170 }
4171 }else{
4172 sqlite3BtreeClearCursor(p);
4173 p->eState = CURSOR_FAULT;
4174 p->skipNext = errCode;
4175 }
drh85ef6302017-08-02 15:50:09 +00004176 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004177 }
dan80231042014-11-12 14:56:02 +00004178 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004179 }
dan80231042014-11-12 14:56:02 +00004180 return rc;
drhfb982642007-08-30 01:19:59 +00004181}
4182
4183/*
drh41422652019-05-10 14:34:18 +00004184** Set the pBt->nPage field correctly, according to the current
4185** state of the database. Assume pBt->pPage1 is valid.
4186*/
4187static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4188 int nPage = get4byte(&pPage1->aData[28]);
4189 testcase( nPage==0 );
4190 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4191 testcase( pBt->nPage!=nPage );
4192 pBt->nPage = nPage;
4193}
4194
4195/*
drh47b7fc72014-11-11 01:33:57 +00004196** Rollback the transaction in progress.
4197**
4198** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4199** Only write cursors are tripped if writeOnly is true but all cursors are
4200** tripped if writeOnly is false. Any attempt to use
4201** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004202**
4203** This will release the write lock on the database file. If there
4204** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004205*/
drh47b7fc72014-11-11 01:33:57 +00004206int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004207 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004208 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004209 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004210
drh47b7fc72014-11-11 01:33:57 +00004211 assert( writeOnly==1 || writeOnly==0 );
4212 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004213 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004214 if( tripCode==SQLITE_OK ){
4215 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004216 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004217 }else{
4218 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004219 }
drh0f198a72012-02-13 16:43:16 +00004220 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004221 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4222 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4223 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004224 }
danielk1977aef0bf62005-12-30 16:28:01 +00004225 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004226
4227 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004228 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004229
danielk19778d34dfd2006-01-24 16:37:57 +00004230 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004231 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004232 if( rc2!=SQLITE_OK ){
4233 rc = rc2;
4234 }
4235
drh24cd67e2004-05-10 16:18:47 +00004236 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004237 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004238 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004239 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh41422652019-05-10 14:34:18 +00004240 btreeSetNPage(pBt, pPage1);
drh3908fe92017-09-01 14:50:19 +00004241 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004242 }
drh85ec3b62013-05-14 23:12:06 +00004243 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004244 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004245 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004246 }
danielk1977aef0bf62005-12-30 16:28:01 +00004247
danielk197794b30732009-07-02 17:21:57 +00004248 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004249 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004250 return rc;
4251}
4252
4253/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004254** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004255** back independently of the main transaction. You must start a transaction
4256** before starting a subtransaction. The subtransaction is ended automatically
4257** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004258**
4259** Statement subtransactions are used around individual SQL statements
4260** that are contained within a BEGIN...COMMIT block. If a constraint
4261** error occurs within the statement, the effect of that one statement
4262** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004263**
4264** A statement sub-transaction is implemented as an anonymous savepoint. The
4265** value passed as the second parameter is the total number of savepoints,
4266** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4267** are no active savepoints and no other statement-transactions open,
4268** iStatement is 1. This anonymous savepoint can be released or rolled back
4269** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004270*/
danielk1977bd434552009-03-18 10:33:00 +00004271int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004272 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004273 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004274 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004275 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004276 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004277 assert( iStatement>0 );
4278 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004279 assert( pBt->inTransaction==TRANS_WRITE );
4280 /* At the pager level, a statement transaction is a savepoint with
4281 ** an index greater than all savepoints created explicitly using
4282 ** SQL statements. It is illegal to open, release or rollback any
4283 ** such savepoints while the statement transaction savepoint is active.
4284 */
4285 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004286 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004287 return rc;
4288}
4289
4290/*
danielk1977fd7f0452008-12-17 17:30:26 +00004291** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4292** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004293** savepoint identified by parameter iSavepoint, depending on the value
4294** of op.
4295**
4296** Normally, iSavepoint is greater than or equal to zero. However, if op is
4297** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4298** contents of the entire transaction are rolled back. This is different
4299** from a normal transaction rollback, as no locks are released and the
4300** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004301*/
4302int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4303 int rc = SQLITE_OK;
4304 if( p && p->inTrans==TRANS_WRITE ){
4305 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004306 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4307 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4308 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004309 if( op==SAVEPOINT_ROLLBACK ){
4310 rc = saveAllCursors(pBt, 0, 0);
4311 }
4312 if( rc==SQLITE_OK ){
4313 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4314 }
drh9f0bbf92009-01-02 21:08:09 +00004315 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004316 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4317 pBt->nPage = 0;
4318 }
drh9f0bbf92009-01-02 21:08:09 +00004319 rc = newDatabase(pBt);
drh41422652019-05-10 14:34:18 +00004320 btreeSetNPage(pBt, pBt->pPage1);
drhb9b49bf2010-08-05 03:21:39 +00004321
dana9a54652019-04-22 11:47:40 +00004322 /* pBt->nPage might be zero if the database was corrupt when
4323 ** the transaction was started. Otherwise, it must be at least 1. */
4324 assert( CORRUPT_DB || pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004325 }
danielk1977fd7f0452008-12-17 17:30:26 +00004326 sqlite3BtreeLeave(p);
4327 }
4328 return rc;
4329}
4330
4331/*
drh8b2f49b2001-06-08 00:21:52 +00004332** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004333** iTable. If a read-only cursor is requested, it is assumed that
4334** the caller already has at least a read-only transaction open
4335** on the database already. If a write-cursor is requested, then
4336** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004337**
drhe807bdb2016-01-21 17:06:33 +00004338** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4339** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4340** can be used for reading or for writing if other conditions for writing
4341** are also met. These are the conditions that must be met in order
4342** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004343**
drhe807bdb2016-01-21 17:06:33 +00004344** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004345**
drhfe5d71d2007-03-19 11:54:10 +00004346** 2: Other database connections that share the same pager cache
4347** but which are not in the READ_UNCOMMITTED state may not have
4348** cursors open with wrFlag==0 on the same table. Otherwise
4349** the changes made by this write cursor would be visible to
4350** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004351**
4352** 3: The database must be writable (not on read-only media)
4353**
4354** 4: There must be an active transaction.
4355**
drhe807bdb2016-01-21 17:06:33 +00004356** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4357** is set. If FORDELETE is set, that is a hint to the implementation that
4358** this cursor will only be used to seek to and delete entries of an index
4359** as part of a larger DELETE statement. The FORDELETE hint is not used by
4360** this implementation. But in a hypothetical alternative storage engine
4361** in which index entries are automatically deleted when corresponding table
4362** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4363** operations on this cursor can be no-ops and all READ operations can
4364** return a null row (2-bytes: 0x01 0x00).
4365**
drh6446c4d2001-12-15 14:22:18 +00004366** No checking is done to make sure that page iTable really is the
4367** root page of a b-tree. If it is not, then the cursor acquired
4368** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004369**
drhf25a5072009-11-18 23:01:25 +00004370** It is assumed that the sqlite3BtreeCursorZero() has been called
4371** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004372*/
drhd677b3d2007-08-20 22:48:41 +00004373static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004374 Btree *p, /* The btree */
4375 int iTable, /* Root page of table to open */
4376 int wrFlag, /* 1 to write. 0 read-only */
4377 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4378 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004379){
danielk19773e8add92009-07-04 17:16:00 +00004380 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004381 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004382
drh1fee73e2007-08-29 04:00:57 +00004383 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004384 assert( wrFlag==0
4385 || wrFlag==BTREE_WRCSR
4386 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4387 );
danielk197796d48e92009-06-29 06:00:37 +00004388
danielk1977602b4662009-07-02 07:47:33 +00004389 /* The following assert statements verify that if this is a sharable
4390 ** b-tree database, the connection is holding the required table locks,
4391 ** and that no other connection has any open cursor that conflicts with
drhac801802019-11-17 11:47:50 +00004392 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4393 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4394 || iTable<1 );
danielk197796d48e92009-06-29 06:00:37 +00004395 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4396
danielk19773e8add92009-07-04 17:16:00 +00004397 /* Assert that the caller has opened the required transaction. */
4398 assert( p->inTrans>TRANS_NONE );
4399 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4400 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004401 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004402
drh3fbb0222014-09-24 19:47:27 +00004403 if( wrFlag ){
4404 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004405 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004406 }
drhdb561bc2019-10-25 14:46:05 +00004407 if( iTable<=1 ){
4408 if( iTable<1 ){
4409 return SQLITE_CORRUPT_BKPT;
4410 }else if( btreePagecount(pBt)==0 ){
4411 assert( wrFlag==0 );
4412 iTable = 0;
4413 }
danielk19773e8add92009-07-04 17:16:00 +00004414 }
danielk1977aef0bf62005-12-30 16:28:01 +00004415
danielk1977aef0bf62005-12-30 16:28:01 +00004416 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004417 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004418 pCur->pgnoRoot = (Pgno)iTable;
4419 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004420 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004421 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004422 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004423 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004424 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004425 /* If there are two or more cursors on the same btree, then all such
4426 ** cursors *must* have the BTCF_Multiple flag set. */
4427 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4428 if( pX->pgnoRoot==(Pgno)iTable ){
4429 pX->curFlags |= BTCF_Multiple;
4430 pCur->curFlags |= BTCF_Multiple;
4431 }
drha059ad02001-04-17 20:09:11 +00004432 }
drh27fb7462015-06-30 02:47:36 +00004433 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004434 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004435 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004436 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004437}
drhdb561bc2019-10-25 14:46:05 +00004438static int btreeCursorWithLock(
4439 Btree *p, /* The btree */
4440 int iTable, /* Root page of table to open */
4441 int wrFlag, /* 1 to write. 0 read-only */
4442 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4443 BtCursor *pCur /* Space for new cursor */
4444){
4445 int rc;
4446 sqlite3BtreeEnter(p);
4447 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4448 sqlite3BtreeLeave(p);
4449 return rc;
4450}
drhd677b3d2007-08-20 22:48:41 +00004451int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004452 Btree *p, /* The btree */
4453 int iTable, /* Root page of table to open */
4454 int wrFlag, /* 1 to write. 0 read-only */
4455 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4456 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004457){
drhdb561bc2019-10-25 14:46:05 +00004458 if( p->sharable ){
4459 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004460 }else{
drhdb561bc2019-10-25 14:46:05 +00004461 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004462 }
drhd677b3d2007-08-20 22:48:41 +00004463}
drh7f751222009-03-17 22:33:00 +00004464
4465/*
4466** Return the size of a BtCursor object in bytes.
4467**
4468** This interfaces is needed so that users of cursors can preallocate
4469** sufficient storage to hold a cursor. The BtCursor object is opaque
4470** to users so they cannot do the sizeof() themselves - they must call
4471** this routine.
4472*/
4473int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004474 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004475}
4476
drh7f751222009-03-17 22:33:00 +00004477/*
drhf25a5072009-11-18 23:01:25 +00004478** Initialize memory that will be converted into a BtCursor object.
4479**
4480** The simple approach here would be to memset() the entire object
4481** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4482** do not need to be zeroed and they are large, so we can save a lot
4483** of run-time by skipping the initialization of those elements.
4484*/
4485void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004486 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004487}
4488
4489/*
drh5e00f6c2001-09-13 13:46:56 +00004490** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004491** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004492*/
drh3aac2dd2004-04-26 14:10:20 +00004493int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004494 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004495 if( pBtree ){
4496 BtShared *pBt = pCur->pBt;
4497 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004498 assert( pBt->pCursor!=0 );
4499 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004500 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004501 }else{
4502 BtCursor *pPrev = pBt->pCursor;
4503 do{
4504 if( pPrev->pNext==pCur ){
4505 pPrev->pNext = pCur->pNext;
4506 break;
4507 }
4508 pPrev = pPrev->pNext;
4509 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004510 }
drh352a35a2017-08-15 03:46:47 +00004511 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004512 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004513 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004514 sqlite3_free(pCur->pKey);
danielk1977cd3e8f72008-03-25 09:47:35 +00004515 sqlite3BtreeLeave(pBtree);
dan97c8cb32019-01-01 18:00:17 +00004516 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004517 }
drh8c42ca92001-06-22 19:15:00 +00004518 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004519}
4520
drh5e2f8b92001-05-28 00:41:15 +00004521/*
drh86057612007-06-26 01:04:48 +00004522** Make sure the BtCursor* given in the argument has a valid
4523** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004524** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004525**
4526** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004527** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004528*/
drh9188b382004-05-14 21:12:22 +00004529#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004530 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4531 if( a->nKey!=b->nKey ) return 0;
4532 if( a->pPayload!=b->pPayload ) return 0;
4533 if( a->nPayload!=b->nPayload ) return 0;
4534 if( a->nLocal!=b->nLocal ) return 0;
4535 if( a->nSize!=b->nSize ) return 0;
4536 return 1;
4537 }
danielk19771cc5ed82007-05-16 17:28:43 +00004538 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004539 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004540 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004541 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004542 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004543 }
danielk19771cc5ed82007-05-16 17:28:43 +00004544#else
4545 #define assertCellInfo(x)
4546#endif
drhc5b41ac2015-06-17 02:11:46 +00004547static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4548 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004549 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004550 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004551 }else{
4552 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004553 }
drhc5b41ac2015-06-17 02:11:46 +00004554}
drh9188b382004-05-14 21:12:22 +00004555
drhea8ffdf2009-07-22 00:35:23 +00004556#ifndef NDEBUG /* The next routine used only within assert() statements */
4557/*
4558** Return true if the given BtCursor is valid. A valid cursor is one
4559** that is currently pointing to a row in a (non-empty) table.
4560** This is a verification routine is used only within assert() statements.
4561*/
4562int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4563 return pCur && pCur->eState==CURSOR_VALID;
4564}
4565#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004566int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4567 assert( pCur!=0 );
4568 return pCur->eState==CURSOR_VALID;
4569}
drhea8ffdf2009-07-22 00:35:23 +00004570
drh9188b382004-05-14 21:12:22 +00004571/*
drha7c90c42016-06-04 20:37:10 +00004572** Return the value of the integer key or "rowid" for a table btree.
4573** This routine is only valid for a cursor that is pointing into a
4574** ordinary table btree. If the cursor points to an index btree or
4575** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004576*/
drha7c90c42016-06-04 20:37:10 +00004577i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004578 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004579 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004580 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004581 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004582 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004583}
drh2af926b2001-05-15 00:39:25 +00004584
drh7b14b652019-12-29 22:08:20 +00004585/*
4586** Pin or unpin a cursor.
4587*/
4588void sqlite3BtreeCursorPin(BtCursor *pCur){
4589 assert( (pCur->curFlags & BTCF_Pinned)==0 );
4590 pCur->curFlags |= BTCF_Pinned;
4591}
4592void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4593 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4594 pCur->curFlags &= ~BTCF_Pinned;
4595}
4596
drh092457b2017-12-29 15:04:49 +00004597#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004598/*
drh2fc865c2017-12-16 20:20:37 +00004599** Return the offset into the database file for the start of the
4600** payload to which the cursor is pointing.
4601*/
drh092457b2017-12-29 15:04:49 +00004602i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004603 assert( cursorHoldsMutex(pCur) );
4604 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004605 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004606 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004607 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4608}
drh092457b2017-12-29 15:04:49 +00004609#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004610
4611/*
drha7c90c42016-06-04 20:37:10 +00004612** Return the number of bytes of payload for the entry that pCur is
4613** currently pointing to. For table btrees, this will be the amount
4614** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004615**
4616** The caller must guarantee that the cursor is pointing to a non-NULL
4617** valid entry. In other words, the calling procedure must guarantee
4618** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004619*/
drha7c90c42016-06-04 20:37:10 +00004620u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4621 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004622 assert( pCur->eState==CURSOR_VALID );
4623 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004624 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004625}
4626
4627/*
drh53d30dd2019-02-04 21:10:24 +00004628** Return an upper bound on the size of any record for the table
4629** that the cursor is pointing into.
4630**
4631** This is an optimization. Everything will still work if this
4632** routine always returns 2147483647 (which is the largest record
4633** that SQLite can handle) or more. But returning a smaller value might
4634** prevent large memory allocations when trying to interpret a
4635** corrupt datrabase.
4636**
4637** The current implementation merely returns the size of the underlying
4638** database file.
4639*/
4640sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4641 assert( cursorHoldsMutex(pCur) );
4642 assert( pCur->eState==CURSOR_VALID );
4643 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4644}
4645
4646/*
danielk1977d04417962007-05-02 13:16:30 +00004647** Given the page number of an overflow page in the database (parameter
4648** ovfl), this function finds the page number of the next page in the
4649** linked list of overflow pages. If possible, it uses the auto-vacuum
4650** pointer-map data instead of reading the content of page ovfl to do so.
4651**
4652** If an error occurs an SQLite error code is returned. Otherwise:
4653**
danielk1977bea2a942009-01-20 17:06:27 +00004654** The page number of the next overflow page in the linked list is
4655** written to *pPgnoNext. If page ovfl is the last page in its linked
4656** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004657**
danielk1977bea2a942009-01-20 17:06:27 +00004658** If ppPage is not NULL, and a reference to the MemPage object corresponding
4659** to page number pOvfl was obtained, then *ppPage is set to point to that
4660** reference. It is the responsibility of the caller to call releasePage()
4661** on *ppPage to free the reference. In no reference was obtained (because
4662** the pointer-map was used to obtain the value for *pPgnoNext), then
4663** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004664*/
4665static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004666 BtShared *pBt, /* The database file */
4667 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004668 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004669 Pgno *pPgnoNext /* OUT: Next overflow page number */
4670){
4671 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004672 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004673 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004674
drh1fee73e2007-08-29 04:00:57 +00004675 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004676 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004677
4678#ifndef SQLITE_OMIT_AUTOVACUUM
4679 /* Try to find the next page in the overflow list using the
4680 ** autovacuum pointer-map pages. Guess that the next page in
4681 ** the overflow list is page number (ovfl+1). If that guess turns
4682 ** out to be wrong, fall back to loading the data of page
4683 ** number ovfl to determine the next page number.
4684 */
4685 if( pBt->autoVacuum ){
4686 Pgno pgno;
4687 Pgno iGuess = ovfl+1;
4688 u8 eType;
4689
4690 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4691 iGuess++;
4692 }
4693
drhb1299152010-03-30 22:58:33 +00004694 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004695 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004696 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004697 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004698 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004699 }
4700 }
4701 }
4702#endif
4703
danielk1977d8a3f3d2009-07-11 11:45:23 +00004704 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004705 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004706 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004707 assert( rc==SQLITE_OK || pPage==0 );
4708 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004709 next = get4byte(pPage->aData);
4710 }
danielk1977443c0592009-01-16 15:21:05 +00004711 }
danielk197745d68822009-01-16 16:23:38 +00004712
danielk1977bea2a942009-01-20 17:06:27 +00004713 *pPgnoNext = next;
4714 if( ppPage ){
4715 *ppPage = pPage;
4716 }else{
4717 releasePage(pPage);
4718 }
4719 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004720}
4721
danielk1977da107192007-05-04 08:32:13 +00004722/*
4723** Copy data from a buffer to a page, or from a page to a buffer.
4724**
4725** pPayload is a pointer to data stored on database page pDbPage.
4726** If argument eOp is false, then nByte bytes of data are copied
4727** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4728** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4729** of data are copied from the buffer pBuf to pPayload.
4730**
4731** SQLITE_OK is returned on success, otherwise an error code.
4732*/
4733static int copyPayload(
4734 void *pPayload, /* Pointer to page data */
4735 void *pBuf, /* Pointer to buffer */
4736 int nByte, /* Number of bytes to copy */
4737 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4738 DbPage *pDbPage /* Page containing pPayload */
4739){
4740 if( eOp ){
4741 /* Copy data from buffer to page (a write operation) */
4742 int rc = sqlite3PagerWrite(pDbPage);
4743 if( rc!=SQLITE_OK ){
4744 return rc;
4745 }
4746 memcpy(pPayload, pBuf, nByte);
4747 }else{
4748 /* Copy data from page to buffer (a read operation) */
4749 memcpy(pBuf, pPayload, nByte);
4750 }
4751 return SQLITE_OK;
4752}
danielk1977d04417962007-05-02 13:16:30 +00004753
4754/*
danielk19779f8d6402007-05-02 17:48:45 +00004755** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004756** for the entry that the pCur cursor is pointing to. The eOp
4757** argument is interpreted as follows:
4758**
4759** 0: The operation is a read. Populate the overflow cache.
4760** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004761**
4762** A total of "amt" bytes are read or written beginning at "offset".
4763** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004764**
drh3bcdfd22009-07-12 02:32:21 +00004765** The content being read or written might appear on the main page
4766** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004767**
drh42e28f12017-01-27 00:31:59 +00004768** If the current cursor entry uses one or more overflow pages
4769** this function may allocate space for and lazily populate
4770** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004771** Subsequent calls use this cache to make seeking to the supplied offset
4772** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004773**
drh42e28f12017-01-27 00:31:59 +00004774** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004775** invalidated if some other cursor writes to the same table, or if
4776** the cursor is moved to a different row. Additionally, in auto-vacuum
4777** mode, the following events may invalidate an overflow page-list cache.
4778**
4779** * An incremental vacuum,
4780** * A commit in auto_vacuum="full" mode,
4781** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004782*/
danielk19779f8d6402007-05-02 17:48:45 +00004783static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004784 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004785 u32 offset, /* Begin reading this far into payload */
4786 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004787 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004788 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004789){
4790 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004791 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004792 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004793 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004794 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004795#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004796 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004797#endif
drh3aac2dd2004-04-26 14:10:20 +00004798
danielk1977da107192007-05-04 08:32:13 +00004799 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004800 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004801 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004802 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004803 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004804
drh86057612007-06-26 01:04:48 +00004805 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004806 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004807 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004808
drh0b982072016-03-22 14:10:45 +00004809 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004810 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004811 /* Trying to read or write past the end of the data is an error. The
4812 ** conditional above is really:
4813 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4814 ** but is recast into its current form to avoid integer overflow problems
4815 */
daneebf2f52017-11-18 17:30:08 +00004816 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004817 }
danielk1977da107192007-05-04 08:32:13 +00004818
4819 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004820 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004821 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004822 if( a+offset>pCur->info.nLocal ){
4823 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004824 }
drh42e28f12017-01-27 00:31:59 +00004825 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004826 offset = 0;
drha34b6762004-05-07 13:30:42 +00004827 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004828 amt -= a;
drhdd793422001-06-28 01:54:48 +00004829 }else{
drhfa1a98a2004-05-14 19:08:17 +00004830 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004831 }
danielk1977da107192007-05-04 08:32:13 +00004832
dan85753662014-12-11 16:38:18 +00004833
danielk1977da107192007-05-04 08:32:13 +00004834 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004835 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004836 Pgno nextPage;
4837
drhfa1a98a2004-05-14 19:08:17 +00004838 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004839
drha38c9512014-04-01 01:24:34 +00004840 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004841 **
4842 ** The aOverflow[] array is sized at one entry for each overflow page
4843 ** in the overflow chain. The page number of the first overflow page is
4844 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4845 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004846 */
drh42e28f12017-01-27 00:31:59 +00004847 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004848 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004849 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004850 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004851 ){
dan85753662014-12-11 16:38:18 +00004852 Pgno *aNew = (Pgno*)sqlite3Realloc(
4853 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004854 );
4855 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004856 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004857 }else{
dan5a500af2014-03-11 20:33:04 +00004858 pCur->aOverflow = aNew;
4859 }
4860 }
drhcd645532017-01-20 20:43:14 +00004861 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4862 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004863 }else{
4864 /* If the overflow page-list cache has been allocated and the
4865 ** entry for the first required overflow page is valid, skip
4866 ** directly to it.
4867 */
4868 if( pCur->aOverflow[offset/ovflSize] ){
4869 iIdx = (offset/ovflSize);
4870 nextPage = pCur->aOverflow[iIdx];
4871 offset = (offset%ovflSize);
4872 }
danielk19772dec9702007-05-02 16:48:37 +00004873 }
danielk1977da107192007-05-04 08:32:13 +00004874
drhcd645532017-01-20 20:43:14 +00004875 assert( rc==SQLITE_OK && amt>0 );
4876 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004877 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004878 assert( pCur->aOverflow[iIdx]==0
4879 || pCur->aOverflow[iIdx]==nextPage
4880 || CORRUPT_DB );
4881 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004882
danielk1977d04417962007-05-02 13:16:30 +00004883 if( offset>=ovflSize ){
4884 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004885 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004886 ** data is not required. So first try to lookup the overflow
4887 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004888 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004889 */
drha38c9512014-04-01 01:24:34 +00004890 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004891 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004892 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004893 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004894 }else{
danielk1977da107192007-05-04 08:32:13 +00004895 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004896 }
danielk1977da107192007-05-04 08:32:13 +00004897 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004898 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004899 /* Need to read this page properly. It contains some of the
4900 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004901 */
danielk1977cfe9a692004-06-16 12:00:29 +00004902 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004903 if( a + offset > ovflSize ){
4904 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004905 }
danf4ba1092011-10-08 14:57:07 +00004906
4907#ifdef SQLITE_DIRECT_OVERFLOW_READ
4908 /* If all the following are true:
4909 **
4910 ** 1) this is a read operation, and
4911 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00004912 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00004913 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004914 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004915 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004916 **
4917 ** then data can be read directly from the database file into the
4918 ** output buffer, bypassing the page-cache altogether. This speeds
4919 ** up loading large records that span many overflow pages.
4920 */
drh42e28f12017-01-27 00:31:59 +00004921 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004922 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00004923 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00004924 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004925 ){
dan09236752018-11-22 19:10:14 +00004926 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00004927 u8 aSave[4];
4928 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004929 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004930 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004931 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
drhb9fc4552019-08-15 00:04:44 +00004932 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
danf4ba1092011-10-08 14:57:07 +00004933 nextPage = get4byte(aWrite);
4934 memcpy(aWrite, aSave, 4);
4935 }else
4936#endif
4937
4938 {
4939 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004940 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004941 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004942 );
danf4ba1092011-10-08 14:57:07 +00004943 if( rc==SQLITE_OK ){
4944 aPayload = sqlite3PagerGetData(pDbPage);
4945 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004946 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004947 sqlite3PagerUnref(pDbPage);
4948 offset = 0;
4949 }
4950 }
4951 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004952 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004953 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004954 }
drhcd645532017-01-20 20:43:14 +00004955 if( rc ) break;
4956 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004957 }
drh2af926b2001-05-15 00:39:25 +00004958 }
danielk1977cfe9a692004-06-16 12:00:29 +00004959
danielk1977da107192007-05-04 08:32:13 +00004960 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004961 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00004962 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00004963 }
danielk1977da107192007-05-04 08:32:13 +00004964 return rc;
drh2af926b2001-05-15 00:39:25 +00004965}
4966
drh72f82862001-05-24 21:06:34 +00004967/*
drhcb3cabd2016-11-25 19:18:28 +00004968** Read part of the payload for the row at which that cursor pCur is currently
4969** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004970** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004971**
drhcb3cabd2016-11-25 19:18:28 +00004972** pCur can be pointing to either a table or an index b-tree.
4973** If pointing to a table btree, then the content section is read. If
4974** pCur is pointing to an index b-tree then the key section is read.
4975**
4976** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4977** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4978** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004979**
drh3aac2dd2004-04-26 14:10:20 +00004980** Return SQLITE_OK on success or an error code if anything goes
4981** wrong. An error is returned if "offset+amt" is larger than
4982** the available payload.
drh72f82862001-05-24 21:06:34 +00004983*/
drhcb3cabd2016-11-25 19:18:28 +00004984int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004985 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004986 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00004987 assert( pCur->iPage>=0 && pCur->pPage );
4988 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00004989 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004990}
drh83ec2762017-01-26 16:54:47 +00004991
4992/*
4993** This variant of sqlite3BtreePayload() works even if the cursor has not
4994** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4995** interface.
4996*/
danielk19773588ceb2008-06-10 17:30:26 +00004997#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004998static SQLITE_NOINLINE int accessPayloadChecked(
4999 BtCursor *pCur,
5000 u32 offset,
5001 u32 amt,
5002 void *pBuf
5003){
drhcb3cabd2016-11-25 19:18:28 +00005004 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00005005 if ( pCur->eState==CURSOR_INVALID ){
5006 return SQLITE_ABORT;
5007 }
dan7a2347e2016-01-07 16:43:54 +00005008 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00005009 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00005010 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5011}
5012int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5013 if( pCur->eState==CURSOR_VALID ){
5014 assert( cursorOwnsBtShared(pCur) );
5015 return accessPayload(pCur, offset, amt, pBuf, 0);
5016 }else{
5017 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00005018 }
drh2af926b2001-05-15 00:39:25 +00005019}
drhcb3cabd2016-11-25 19:18:28 +00005020#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00005021
drh72f82862001-05-24 21:06:34 +00005022/*
drh0e1c19e2004-05-11 00:58:56 +00005023** Return a pointer to payload information from the entry that the
5024** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00005025** the key if index btrees (pPage->intKey==0) and is the data for
5026** table btrees (pPage->intKey==1). The number of bytes of available
5027** key/data is written into *pAmt. If *pAmt==0, then the value
5028** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00005029**
5030** This routine is an optimization. It is common for the entire key
5031** and data to fit on the local page and for there to be no overflow
5032** pages. When that is so, this routine can be used to access the
5033** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00005034** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00005035** the key/data and copy it into a preallocated buffer.
5036**
5037** The pointer returned by this routine looks directly into the cached
5038** page of the database. The data might change or move the next time
5039** any btree routine is called.
5040*/
drh2a8d2262013-12-09 20:43:22 +00005041static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00005042 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00005043 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00005044){
danf2f72a02017-10-19 15:17:38 +00005045 int amt;
drh352a35a2017-08-15 03:46:47 +00005046 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00005047 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00005048 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00005049 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00005050 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00005051 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00005052 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5053 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00005054 amt = pCur->info.nLocal;
5055 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5056 /* There is too little space on the page for the expected amount
5057 ** of local content. Database must be corrupt. */
5058 assert( CORRUPT_DB );
5059 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5060 }
5061 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00005062 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00005063}
5064
5065
5066/*
drhe51c44f2004-05-30 20:46:09 +00005067** For the entry that cursor pCur is point to, return as
5068** many bytes of the key or data as are available on the local
5069** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005070**
5071** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005072** or be destroyed on the next call to any Btree routine,
5073** including calls from other threads against the same cache.
5074** Hence, a mutex on the BtShared should be held prior to calling
5075** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005076**
5077** These routines is used to get quick access to key and data
5078** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005079*/
drha7c90c42016-06-04 20:37:10 +00005080const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005081 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005082}
5083
5084
5085/*
drh8178a752003-01-05 21:41:40 +00005086** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005087** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005088**
5089** This function returns SQLITE_CORRUPT if the page-header flags field of
5090** the new child page does not match the flags field of the parent (i.e.
5091** if an intkey page appears to be the parent of a non-intkey page, or
5092** vice-versa).
drh72f82862001-05-24 21:06:34 +00005093*/
drh3aac2dd2004-04-26 14:10:20 +00005094static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005095 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005096
dan7a2347e2016-01-07 16:43:54 +00005097 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005098 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005099 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005100 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005101 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5102 return SQLITE_CORRUPT_BKPT;
5103 }
drh271efa52004-05-30 19:19:05 +00005104 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005105 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005106 pCur->aiIdx[pCur->iPage] = pCur->ix;
5107 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005108 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005109 pCur->iPage++;
5110 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005111}
5112
drhd879e3e2017-02-13 13:35:55 +00005113#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005114/*
5115** Page pParent is an internal (non-leaf) tree page. This function
5116** asserts that page number iChild is the left-child if the iIdx'th
5117** cell in page pParent. Or, if iIdx is equal to the total number of
5118** cells in pParent, that page number iChild is the right-child of
5119** the page.
5120*/
5121static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005122 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5123 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005124 assert( iIdx<=pParent->nCell );
5125 if( iIdx==pParent->nCell ){
5126 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5127 }else{
5128 assert( get4byte(findCell(pParent, iIdx))==iChild );
5129 }
5130}
5131#else
5132# define assertParentIndex(x,y,z)
5133#endif
5134
drh72f82862001-05-24 21:06:34 +00005135/*
drh5e2f8b92001-05-28 00:41:15 +00005136** Move the cursor up to the parent page.
5137**
5138** pCur->idx is set to the cell index that contains the pointer
5139** to the page we are coming from. If we are coming from the
5140** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005141** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005142*/
danielk197730548662009-07-09 05:07:37 +00005143static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005144 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005145 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005146 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005147 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005148 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005149 assertParentIndex(
5150 pCur->apPage[pCur->iPage-1],
5151 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005152 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005153 );
dan6c2688c2012-01-12 15:05:03 +00005154 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005155 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005156 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005157 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005158 pLeaf = pCur->pPage;
5159 pCur->pPage = pCur->apPage[--pCur->iPage];
5160 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005161}
5162
5163/*
danielk19778f880a82009-07-13 09:41:45 +00005164** Move the cursor to point to the root page of its b-tree structure.
5165**
5166** If the table has a virtual root page, then the cursor is moved to point
5167** to the virtual root page instead of the actual root page. A table has a
5168** virtual root page when the actual root page contains no cells and a
5169** single child page. This can only happen with the table rooted at page 1.
5170**
5171** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005172** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5173** the cursor is set to point to the first cell located on the root
5174** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005175**
5176** If this function returns successfully, it may be assumed that the
5177** page-header flags indicate that the [virtual] root-page is the expected
5178** kind of b-tree page (i.e. if when opening the cursor the caller did not
5179** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5180** indicating a table b-tree, or if the caller did specify a KeyInfo
5181** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5182** b-tree).
drh72f82862001-05-24 21:06:34 +00005183*/
drh5e2f8b92001-05-28 00:41:15 +00005184static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005185 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005186 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005187
dan7a2347e2016-01-07 16:43:54 +00005188 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005189 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5190 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5191 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005192 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005193 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005194
5195 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005196 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005197 releasePageNotNull(pCur->pPage);
5198 while( --pCur->iPage ){
5199 releasePageNotNull(pCur->apPage[pCur->iPage]);
5200 }
5201 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005202 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005203 }
dana205a482011-08-27 18:48:57 +00005204 }else if( pCur->pgnoRoot==0 ){
5205 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005206 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005207 }else{
drh28f58dd2015-06-27 19:45:03 +00005208 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005209 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5210 if( pCur->eState==CURSOR_FAULT ){
5211 assert( pCur->skipNext!=SQLITE_OK );
5212 return pCur->skipNext;
5213 }
5214 sqlite3BtreeClearCursor(pCur);
5215 }
drh352a35a2017-08-15 03:46:47 +00005216 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005217 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005218 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005219 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005220 return rc;
drh777e4c42006-01-13 04:31:58 +00005221 }
danielk1977172114a2009-07-07 15:47:12 +00005222 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005223 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005224 }
drh352a35a2017-08-15 03:46:47 +00005225 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005226 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005227
5228 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5229 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5230 ** NULL, the caller expects a table b-tree. If this is not the case,
5231 ** return an SQLITE_CORRUPT error.
5232 **
5233 ** Earlier versions of SQLite assumed that this test could not fail
5234 ** if the root page was already loaded when this function was called (i.e.
5235 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5236 ** in such a way that page pRoot is linked into a second b-tree table
5237 ** (or the freelist). */
5238 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5239 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005240 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005241 }
danielk19778f880a82009-07-13 09:41:45 +00005242
drh7ad3eb62016-10-24 01:01:09 +00005243skip_init:
drh75e96b32017-04-01 00:20:06 +00005244 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005245 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005246 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005247
drh352a35a2017-08-15 03:46:47 +00005248 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005249 if( pRoot->nCell>0 ){
5250 pCur->eState = CURSOR_VALID;
5251 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005252 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005253 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005254 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005255 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005256 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005257 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005258 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005259 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005260 }
5261 return rc;
drh72f82862001-05-24 21:06:34 +00005262}
drh2af926b2001-05-15 00:39:25 +00005263
drh5e2f8b92001-05-28 00:41:15 +00005264/*
5265** Move the cursor down to the left-most leaf entry beneath the
5266** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005267**
5268** The left-most leaf is the one with the smallest key - the first
5269** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005270*/
5271static int moveToLeftmost(BtCursor *pCur){
5272 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005273 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005274 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005275
dan7a2347e2016-01-07 16:43:54 +00005276 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005277 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005278 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005279 assert( pCur->ix<pPage->nCell );
5280 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005281 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005282 }
drhd677b3d2007-08-20 22:48:41 +00005283 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005284}
5285
drh2dcc9aa2002-12-04 13:40:25 +00005286/*
5287** Move the cursor down to the right-most leaf entry beneath the
5288** page to which it is currently pointing. Notice the difference
5289** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5290** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5291** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005292**
5293** The right-most entry is the one with the largest key - the last
5294** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005295*/
5296static int moveToRightmost(BtCursor *pCur){
5297 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005298 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005299 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005300
dan7a2347e2016-01-07 16:43:54 +00005301 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005302 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005303 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005304 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005305 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005306 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005307 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005308 }
drh75e96b32017-04-01 00:20:06 +00005309 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005310 assert( pCur->info.nSize==0 );
5311 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5312 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005313}
5314
drh5e00f6c2001-09-13 13:46:56 +00005315/* Move the cursor to the first entry in the table. Return SQLITE_OK
5316** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005317** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005318*/
drh3aac2dd2004-04-26 14:10:20 +00005319int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005320 int rc;
drhd677b3d2007-08-20 22:48:41 +00005321
dan7a2347e2016-01-07 16:43:54 +00005322 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005323 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005324 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005325 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005326 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005327 *pRes = 0;
5328 rc = moveToLeftmost(pCur);
5329 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005330 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005331 *pRes = 1;
5332 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005333 }
drh5e00f6c2001-09-13 13:46:56 +00005334 return rc;
5335}
drh5e2f8b92001-05-28 00:41:15 +00005336
drh9562b552002-02-19 15:00:07 +00005337/* Move the cursor to the last entry in the table. Return SQLITE_OK
5338** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005339** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005340*/
drh3aac2dd2004-04-26 14:10:20 +00005341int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005342 int rc;
drhd677b3d2007-08-20 22:48:41 +00005343
dan7a2347e2016-01-07 16:43:54 +00005344 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005345 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005346
5347 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005348 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005349#ifdef SQLITE_DEBUG
5350 /* This block serves to assert() that the cursor really does point
5351 ** to the last entry in the b-tree. */
5352 int ii;
5353 for(ii=0; ii<pCur->iPage; ii++){
5354 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5355 }
drh352a35a2017-08-15 03:46:47 +00005356 assert( pCur->ix==pCur->pPage->nCell-1 );
5357 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005358#endif
drheb265342019-05-08 23:55:04 +00005359 *pRes = 0;
danielk19773f632d52009-05-02 10:03:09 +00005360 return SQLITE_OK;
5361 }
5362
drh9562b552002-02-19 15:00:07 +00005363 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005364 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005365 assert( pCur->eState==CURSOR_VALID );
5366 *pRes = 0;
5367 rc = moveToRightmost(pCur);
5368 if( rc==SQLITE_OK ){
5369 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005370 }else{
drh44548e72017-08-14 18:13:52 +00005371 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005372 }
drh44548e72017-08-14 18:13:52 +00005373 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005374 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005375 *pRes = 1;
5376 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005377 }
drh9562b552002-02-19 15:00:07 +00005378 return rc;
5379}
5380
drhe14006d2008-03-25 17:23:32 +00005381/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005382** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005383**
drhe63d9992008-08-13 19:11:48 +00005384** For INTKEY tables, the intKey parameter is used. pIdxKey
5385** must be NULL. For index tables, pIdxKey is used and intKey
5386** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005387**
drh5e2f8b92001-05-28 00:41:15 +00005388** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005389** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005390** were present. The cursor might point to an entry that comes
5391** before or after the key.
5392**
drh64022502009-01-09 14:11:04 +00005393** An integer is written into *pRes which is the result of
5394** comparing the key with the entry to which the cursor is
5395** pointing. The meaning of the integer written into
5396** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005397**
5398** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005399** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005400** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005401**
5402** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005403** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005404**
5405** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005406** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005407**
drhb1d607d2015-11-05 22:30:54 +00005408** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5409** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005410*/
drhe63d9992008-08-13 19:11:48 +00005411int sqlite3BtreeMovetoUnpacked(
5412 BtCursor *pCur, /* The cursor to be moved */
5413 UnpackedRecord *pIdxKey, /* Unpacked index key */
5414 i64 intKey, /* The table key */
5415 int biasRight, /* If true, bias the search to the high end */
5416 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005417){
drh72f82862001-05-24 21:06:34 +00005418 int rc;
dan3b9330f2014-02-27 20:44:18 +00005419 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005420
dan7a2347e2016-01-07 16:43:54 +00005421 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005422 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005423 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005424 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005425 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005426
5427 /* If the cursor is already positioned at the point we are trying
5428 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005429 if( pIdxKey==0
5430 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005431 ){
drhe63d9992008-08-13 19:11:48 +00005432 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005433 *pRes = 0;
5434 return SQLITE_OK;
5435 }
drh451e76d2017-01-21 16:54:19 +00005436 if( pCur->info.nKey<intKey ){
5437 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5438 *pRes = -1;
5439 return SQLITE_OK;
5440 }
drh7f11afa2017-01-21 21:47:54 +00005441 /* If the requested key is one more than the previous key, then
5442 ** try to get there using sqlite3BtreeNext() rather than a full
5443 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005444 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005445 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005446 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005447 rc = sqlite3BtreeNext(pCur, 0);
5448 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005449 getCellInfo(pCur);
5450 if( pCur->info.nKey==intKey ){
5451 return SQLITE_OK;
5452 }
drh2ab792e2017-05-30 18:34:07 +00005453 }else if( rc==SQLITE_DONE ){
5454 rc = SQLITE_OK;
5455 }else{
5456 return rc;
drh451e76d2017-01-21 16:54:19 +00005457 }
5458 }
drha2c20e42008-03-29 16:01:04 +00005459 }
5460 }
5461
dan1fed5da2014-02-25 21:01:25 +00005462 if( pIdxKey ){
5463 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005464 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005465 assert( pIdxKey->default_rc==1
5466 || pIdxKey->default_rc==0
5467 || pIdxKey->default_rc==-1
5468 );
drh13a747e2014-03-03 21:46:55 +00005469 }else{
drhb6e8fd12014-03-06 01:56:33 +00005470 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005471 }
5472
drh5e2f8b92001-05-28 00:41:15 +00005473 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005474 if( rc ){
drh44548e72017-08-14 18:13:52 +00005475 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005476 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005477 *pRes = -1;
5478 return SQLITE_OK;
5479 }
drhd677b3d2007-08-20 22:48:41 +00005480 return rc;
5481 }
drh352a35a2017-08-15 03:46:47 +00005482 assert( pCur->pPage );
5483 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005484 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005485 assert( pCur->pPage->nCell > 0 );
5486 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005487 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005488 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005489 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005490 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005491 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005492 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005493
5494 /* pPage->nCell must be greater than zero. If this is the root-page
5495 ** the cursor would have been INVALID above and this for(;;) loop
5496 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005497 ** would have already detected db corruption. Similarly, pPage must
5498 ** be the right kind (index or table) of b-tree page. Otherwise
5499 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005500 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005501 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005502 lwr = 0;
5503 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005504 assert( biasRight==0 || biasRight==1 );
5505 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005506 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005507 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005508 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005509 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005510 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005511 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005512 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005513 if( pCell>=pPage->aDataEnd ){
daneebf2f52017-11-18 17:30:08 +00005514 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00005515 }
drh9b2fc612013-11-25 20:14:13 +00005516 }
drhd172f862006-01-12 15:01:15 +00005517 }
drha2c20e42008-03-29 16:01:04 +00005518 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005519 if( nCellKey<intKey ){
5520 lwr = idx+1;
5521 if( lwr>upr ){ c = -1; break; }
5522 }else if( nCellKey>intKey ){
5523 upr = idx-1;
5524 if( lwr>upr ){ c = +1; break; }
5525 }else{
5526 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005527 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005528 if( !pPage->leaf ){
5529 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005530 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005531 }else{
drhd95ef5c2016-11-11 18:19:05 +00005532 pCur->curFlags |= BTCF_ValidNKey;
5533 pCur->info.nKey = nCellKey;
5534 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005535 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005536 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005537 }
drhd793f442013-11-25 14:10:15 +00005538 }
drhebf10b12013-11-25 17:38:26 +00005539 assert( lwr+upr>=0 );
5540 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005541 }
5542 }else{
5543 for(;;){
drhc6827502015-05-28 15:14:32 +00005544 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005545 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005546
drhb2eced52010-08-12 02:41:12 +00005547 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005548 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005549 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005550 ** varint. This information is used to attempt to avoid parsing
5551 ** the entire cell by checking for the cases where the record is
5552 ** stored entirely within the b-tree page by inspecting the first
5553 ** 2 bytes of the cell.
5554 */
drhec3e6b12013-11-25 02:38:55 +00005555 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005556 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005557 /* This branch runs if the record-size field of the cell is a
5558 ** single byte varint and the record fits entirely on the main
5559 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005560 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005561 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005562 }else if( !(pCell[1] & 0x80)
5563 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5564 ){
5565 /* The record-size field is a 2 byte varint and the record
5566 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005567 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005568 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005569 }else{
danielk197711c327a2009-05-04 19:01:26 +00005570 /* The record flows over onto one or more overflow pages. In
5571 ** this case the whole cell needs to be parsed, a buffer allocated
5572 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005573 ** buffer before VdbeRecordCompare() can be called.
5574 **
5575 ** If the record is corrupt, the xRecordCompare routine may read
5576 ** up to two varints past the end of the buffer. An extra 18
5577 ** bytes of padding is allocated at the end of the buffer in
5578 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005579 void *pCellKey;
5580 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5c2f2202019-05-16 20:36:07 +00005581 const int nOverrun = 18; /* Size of the overrun padding */
drh5fa60512015-06-19 17:19:34 +00005582 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005583 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005584 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5585 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5586 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5587 testcase( nCell==2 ); /* Minimum legal index key size */
drh87c3ad42019-01-21 23:18:22 +00005588 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
daneebf2f52017-11-18 17:30:08 +00005589 rc = SQLITE_CORRUPT_PAGE(pPage);
dan3548db72015-05-27 14:21:05 +00005590 goto moveto_finish;
5591 }
drh5c2f2202019-05-16 20:36:07 +00005592 pCellKey = sqlite3Malloc( nCell+nOverrun );
danielk19776507ecb2008-03-25 09:56:44 +00005593 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005594 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005595 goto moveto_finish;
5596 }
drh75e96b32017-04-01 00:20:06 +00005597 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005598 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drh5c2f2202019-05-16 20:36:07 +00005599 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
drh42e28f12017-01-27 00:31:59 +00005600 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005601 if( rc ){
5602 sqlite3_free(pCellKey);
5603 goto moveto_finish;
5604 }
drh0a31dc22019-03-05 14:39:00 +00005605 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005606 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005607 }
dan38fdead2014-04-01 10:19:02 +00005608 assert(
5609 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005610 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005611 );
drhbb933ef2013-11-25 15:01:38 +00005612 if( c<0 ){
5613 lwr = idx+1;
5614 }else if( c>0 ){
5615 upr = idx-1;
5616 }else{
5617 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005618 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005619 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005620 pCur->ix = (u16)idx;
mistachkin88a79732017-09-04 19:31:54 +00005621 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
drh1e968a02008-03-25 00:22:21 +00005622 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005623 }
drhebf10b12013-11-25 17:38:26 +00005624 if( lwr>upr ) break;
5625 assert( lwr+upr>=0 );
5626 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005627 }
drh72f82862001-05-24 21:06:34 +00005628 }
drhb07028f2011-10-14 21:49:18 +00005629 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005630 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005631 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005632 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005633 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005634 *pRes = c;
5635 rc = SQLITE_OK;
5636 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005637 }
5638moveto_next_layer:
5639 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005640 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005641 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005642 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005643 }
drh75e96b32017-04-01 00:20:06 +00005644 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005645 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005646 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005647 }
drh1e968a02008-03-25 00:22:21 +00005648moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005649 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005650 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005651 return rc;
5652}
5653
drhd677b3d2007-08-20 22:48:41 +00005654
drh72f82862001-05-24 21:06:34 +00005655/*
drhc39e0002004-05-07 23:50:57 +00005656** Return TRUE if the cursor is not pointing at an entry of the table.
5657**
5658** TRUE will be returned after a call to sqlite3BtreeNext() moves
5659** past the last entry in the table or sqlite3BtreePrev() moves past
5660** the first entry. TRUE is also returned if the table is empty.
5661*/
5662int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005663 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5664 ** have been deleted? This API will need to change to return an error code
5665 ** as well as the boolean result value.
5666 */
5667 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005668}
5669
5670/*
drh5e98e832017-02-17 19:24:06 +00005671** Return an estimate for the number of rows in the table that pCur is
5672** pointing to. Return a negative number if no estimate is currently
5673** available.
5674*/
5675i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5676 i64 n;
5677 u8 i;
5678
5679 assert( cursorOwnsBtShared(pCur) );
5680 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005681
5682 /* Currently this interface is only called by the OP_IfSmaller
5683 ** opcode, and it that case the cursor will always be valid and
5684 ** will always point to a leaf node. */
5685 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005686 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005687
drh352a35a2017-08-15 03:46:47 +00005688 n = pCur->pPage->nCell;
5689 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005690 n *= pCur->apPage[i]->nCell;
5691 }
5692 return n;
5693}
5694
5695/*
drh2ab792e2017-05-30 18:34:07 +00005696** Advance the cursor to the next entry in the database.
5697** Return value:
5698**
5699** SQLITE_OK success
5700** SQLITE_DONE cursor is already pointing at the last element
5701** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005702**
drhee6438d2014-09-01 13:29:32 +00005703** The main entry point is sqlite3BtreeNext(). That routine is optimized
5704** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5705** to the next cell on the current page. The (slower) btreeNext() helper
5706** routine is called when it is necessary to move to a different page or
5707** to restore the cursor.
5708**
drh89997982017-07-11 18:11:33 +00005709** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5710** cursor corresponds to an SQL index and this routine could have been
5711** skipped if the SQL index had been a unique index. The F argument
5712** is a hint to the implement. SQLite btree implementation does not use
5713** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005714*/
drh89997982017-07-11 18:11:33 +00005715static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005716 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005717 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005718 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005719
dan7a2347e2016-01-07 16:43:54 +00005720 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00005721 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005722 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005723 rc = restoreCursorPosition(pCur);
5724 if( rc!=SQLITE_OK ){
5725 return rc;
5726 }
5727 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005728 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005729 }
drh0c873bf2019-01-28 00:42:06 +00005730 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00005731 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005732 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005733 }
danielk1977da184232006-01-05 11:34:32 +00005734 }
danielk1977da184232006-01-05 11:34:32 +00005735
drh352a35a2017-08-15 03:46:47 +00005736 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005737 idx = ++pCur->ix;
drhf3cd0c82018-06-08 19:13:57 +00005738 if( !pPage->isInit ){
5739 /* The only known way for this to happen is for there to be a
5740 ** recursive SQL function that does a DELETE operation as part of a
5741 ** SELECT which deletes content out from under an active cursor
5742 ** in a corrupt database file where the table being DELETE-ed from
5743 ** has pages in common with the table being queried. See TH3
5744 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5745 ** example. */
5746 return SQLITE_CORRUPT_BKPT;
5747 }
danbb246c42012-01-12 14:25:55 +00005748
5749 /* If the database file is corrupt, it is possible for the value of idx
5750 ** to be invalid here. This can only occur if a second cursor modifies
5751 ** the page while cursor pCur is holding a reference to it. Which can
5752 ** only happen if the database is corrupt in such a way as to link the
drha2d50282019-12-23 18:02:15 +00005753 ** page into more than one b-tree structure.
5754 **
5755 ** Update 2019-12-23: appears to long longer be possible after the
5756 ** addition of anotherValidCursor() condition on balance_deeper(). */
5757 harmless( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005758
danielk197771d5d2c2008-09-29 11:49:47 +00005759 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005760 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005761 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005762 if( rc ) return rc;
5763 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005764 }
drh5e2f8b92001-05-28 00:41:15 +00005765 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005766 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005767 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005768 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005769 }
danielk197730548662009-07-09 05:07:37 +00005770 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005771 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005772 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005773 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005774 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005775 }else{
drhee6438d2014-09-01 13:29:32 +00005776 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005777 }
drh8178a752003-01-05 21:41:40 +00005778 }
drh3aac2dd2004-04-26 14:10:20 +00005779 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005780 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005781 }else{
5782 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005783 }
drh72f82862001-05-24 21:06:34 +00005784}
drh2ab792e2017-05-30 18:34:07 +00005785int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005786 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005787 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005788 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005789 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005790 pCur->info.nSize = 0;
5791 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005792 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005793 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005794 if( (++pCur->ix)>=pPage->nCell ){
5795 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005796 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005797 }
5798 if( pPage->leaf ){
5799 return SQLITE_OK;
5800 }else{
5801 return moveToLeftmost(pCur);
5802 }
5803}
drh72f82862001-05-24 21:06:34 +00005804
drh3b7511c2001-05-26 13:15:44 +00005805/*
drh2ab792e2017-05-30 18:34:07 +00005806** Step the cursor to the back to the previous entry in the database.
5807** Return values:
5808**
5809** SQLITE_OK success
5810** SQLITE_DONE the cursor is already on the first element of the table
5811** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005812**
drhee6438d2014-09-01 13:29:32 +00005813** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5814** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005815** to the previous cell on the current page. The (slower) btreePrevious()
5816** helper routine is called when it is necessary to move to a different page
5817** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005818**
drh89997982017-07-11 18:11:33 +00005819** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5820** the cursor corresponds to an SQL index and this routine could have been
5821** skipped if the SQL index had been a unique index. The F argument is a
5822** hint to the implement. The native SQLite btree implementation does not
5823** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005824*/
drh89997982017-07-11 18:11:33 +00005825static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005826 int rc;
drh8178a752003-01-05 21:41:40 +00005827 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005828
dan7a2347e2016-01-07 16:43:54 +00005829 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005830 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5831 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005832 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005833 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005834 if( rc!=SQLITE_OK ){
5835 return rc;
drhf66f26a2013-08-19 20:04:10 +00005836 }
5837 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005838 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005839 }
drh0c873bf2019-01-28 00:42:06 +00005840 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00005841 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005842 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005843 }
danielk1977da184232006-01-05 11:34:32 +00005844 }
danielk1977da184232006-01-05 11:34:32 +00005845
drh352a35a2017-08-15 03:46:47 +00005846 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005847 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005848 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005849 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005850 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005851 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005852 rc = moveToRightmost(pCur);
5853 }else{
drh75e96b32017-04-01 00:20:06 +00005854 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005855 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005856 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005857 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005858 }
danielk197730548662009-07-09 05:07:37 +00005859 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005860 }
drhee6438d2014-09-01 13:29:32 +00005861 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005862 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005863
drh75e96b32017-04-01 00:20:06 +00005864 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005865 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005866 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005867 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005868 }else{
5869 rc = SQLITE_OK;
5870 }
drh2dcc9aa2002-12-04 13:40:25 +00005871 }
drh2dcc9aa2002-12-04 13:40:25 +00005872 return rc;
5873}
drh2ab792e2017-05-30 18:34:07 +00005874int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005875 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005876 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00005877 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005878 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5879 pCur->info.nSize = 0;
5880 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005881 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005882 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005883 ){
drh89997982017-07-11 18:11:33 +00005884 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005885 }
drh75e96b32017-04-01 00:20:06 +00005886 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005887 return SQLITE_OK;
5888}
drh2dcc9aa2002-12-04 13:40:25 +00005889
5890/*
drh3b7511c2001-05-26 13:15:44 +00005891** Allocate a new page from the database file.
5892**
danielk19773b8a05f2007-03-19 17:44:26 +00005893** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005894** has already been called on the new page.) The new page has also
5895** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005896** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005897**
5898** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005899** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005900**
drh82e647d2013-03-02 03:25:55 +00005901** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005902** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005903** attempt to keep related pages close to each other in the database file,
5904** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005905**
drh82e647d2013-03-02 03:25:55 +00005906** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5907** anywhere on the free-list, then it is guaranteed to be returned. If
5908** eMode is BTALLOC_LT then the page returned will be less than or equal
5909** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5910** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005911*/
drh4f0c5872007-03-26 22:05:01 +00005912static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005913 BtShared *pBt, /* The btree */
5914 MemPage **ppPage, /* Store pointer to the allocated page here */
5915 Pgno *pPgno, /* Store the page number here */
5916 Pgno nearby, /* Search for a page near this one */
5917 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005918){
drh3aac2dd2004-04-26 14:10:20 +00005919 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005920 int rc;
drh35cd6432009-06-05 14:17:21 +00005921 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005922 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005923 MemPage *pTrunk = 0;
5924 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005925 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005926
drh1fee73e2007-08-29 04:00:57 +00005927 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005928 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005929 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005930 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005931 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5932 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005933 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005934 testcase( n==mxPage-1 );
5935 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005936 return SQLITE_CORRUPT_BKPT;
5937 }
drh3aac2dd2004-04-26 14:10:20 +00005938 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005939 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005940 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005941 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005942 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005943
drh82e647d2013-03-02 03:25:55 +00005944 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005945 ** shows that the page 'nearby' is somewhere on the free-list, then
5946 ** the entire-list will be searched for that page.
5947 */
5948#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005949 if( eMode==BTALLOC_EXACT ){
5950 if( nearby<=mxPage ){
5951 u8 eType;
5952 assert( nearby>0 );
5953 assert( pBt->autoVacuum );
5954 rc = ptrmapGet(pBt, nearby, &eType, 0);
5955 if( rc ) return rc;
5956 if( eType==PTRMAP_FREEPAGE ){
5957 searchList = 1;
5958 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005959 }
dan51f0b6d2013-02-22 20:16:34 +00005960 }else if( eMode==BTALLOC_LE ){
5961 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005962 }
5963#endif
5964
5965 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5966 ** first free-list trunk page. iPrevTrunk is initially 1.
5967 */
danielk19773b8a05f2007-03-19 17:44:26 +00005968 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005969 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005970 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005971
5972 /* The code within this loop is run only once if the 'searchList' variable
5973 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005974 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5975 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005976 */
5977 do {
5978 pPrevTrunk = pTrunk;
5979 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005980 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5981 ** is the page number of the next freelist trunk page in the list or
5982 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005983 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005984 }else{
drh113762a2014-11-19 16:36:25 +00005985 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5986 ** stores the page number of the first page of the freelist, or zero if
5987 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005988 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005989 }
drhdf35a082009-07-09 02:24:35 +00005990 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005991 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005992 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005993 }else{
drh7e8c6f12015-05-28 03:28:27 +00005994 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005995 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005996 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005997 pTrunk = 0;
5998 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005999 }
drhb07028f2011-10-14 21:49:18 +00006000 assert( pTrunk!=0 );
6001 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00006002 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6003 ** is the number of leaf page pointers to follow. */
6004 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006005 if( k==0 && !searchList ){
6006 /* The trunk has no leaves and the list is not being searched.
6007 ** So extract the trunk page itself and use it as the newly
6008 ** allocated page */
6009 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006010 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006011 if( rc ){
6012 goto end_allocate_page;
6013 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006014 *pPgno = iTrunk;
6015 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6016 *ppPage = pTrunk;
6017 pTrunk = 0;
6018 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00006019 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006020 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00006021 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00006022 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006023#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006024 }else if( searchList
6025 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6026 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006027 /* The list is being searched and this trunk page is the page
6028 ** to allocate, regardless of whether it has leaves.
6029 */
dan51f0b6d2013-02-22 20:16:34 +00006030 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006031 *ppPage = pTrunk;
6032 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006033 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006034 if( rc ){
6035 goto end_allocate_page;
6036 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006037 if( k==0 ){
6038 if( !pPrevTrunk ){
6039 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6040 }else{
danf48c3552010-08-23 15:41:24 +00006041 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6042 if( rc!=SQLITE_OK ){
6043 goto end_allocate_page;
6044 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006045 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6046 }
6047 }else{
6048 /* The trunk page is required by the caller but it contains
6049 ** pointers to free-list leaves. The first leaf becomes a trunk
6050 ** page in this case.
6051 */
6052 MemPage *pNewTrunk;
6053 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00006054 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006055 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006056 goto end_allocate_page;
6057 }
drhdf35a082009-07-09 02:24:35 +00006058 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00006059 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006060 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00006061 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006062 }
danielk19773b8a05f2007-03-19 17:44:26 +00006063 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006064 if( rc!=SQLITE_OK ){
6065 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00006066 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006067 }
6068 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6069 put4byte(&pNewTrunk->aData[4], k-1);
6070 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006071 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006072 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006073 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006074 put4byte(&pPage1->aData[32], iNewTrunk);
6075 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006076 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006077 if( rc ){
6078 goto end_allocate_page;
6079 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006080 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6081 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006082 }
6083 pTrunk = 0;
6084 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6085#endif
danielk1977e5765212009-06-17 11:13:28 +00006086 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006087 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006088 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006089 Pgno iPage;
6090 unsigned char *aData = pTrunk->aData;
6091 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006092 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006093 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006094 if( eMode==BTALLOC_LE ){
6095 for(i=0; i<k; i++){
6096 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006097 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006098 closest = i;
6099 break;
6100 }
6101 }
6102 }else{
6103 int dist;
6104 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6105 for(i=1; i<k; i++){
6106 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6107 if( d2<dist ){
6108 closest = i;
6109 dist = d2;
6110 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006111 }
6112 }
6113 }else{
6114 closest = 0;
6115 }
6116
6117 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006118 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00006119 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006120 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006121 goto end_allocate_page;
6122 }
drhdf35a082009-07-09 02:24:35 +00006123 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006124 if( !searchList
6125 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6126 ){
danielk1977bea2a942009-01-20 17:06:27 +00006127 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006128 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006129 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6130 ": %d more free pages\n",
6131 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006132 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6133 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006134 if( closest<k-1 ){
6135 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6136 }
6137 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006138 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006139 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006140 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006141 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006142 if( rc!=SQLITE_OK ){
6143 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006144 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006145 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006146 }
6147 searchList = 0;
6148 }
drhee696e22004-08-30 16:52:17 +00006149 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006150 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006151 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006152 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006153 }else{
danbc1a3c62013-02-23 16:40:46 +00006154 /* There are no pages on the freelist, so append a new page to the
6155 ** database image.
6156 **
6157 ** Normally, new pages allocated by this block can be requested from the
6158 ** pager layer with the 'no-content' flag set. This prevents the pager
6159 ** from trying to read the pages content from disk. However, if the
6160 ** current transaction has already run one or more incremental-vacuum
6161 ** steps, then the page we are about to allocate may contain content
6162 ** that is required in the event of a rollback. In this case, do
6163 ** not set the no-content flag. This causes the pager to load and journal
6164 ** the current page content before overwriting it.
6165 **
6166 ** Note that the pager will not actually attempt to load or journal
6167 ** content for any page that really does lie past the end of the database
6168 ** file on disk. So the effects of disabling the no-content optimization
6169 ** here are confined to those pages that lie between the end of the
6170 ** database image and the end of the database file.
6171 */
drh3f387402014-09-24 01:23:00 +00006172 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006173
drhdd3cd972010-03-27 17:12:36 +00006174 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6175 if( rc ) return rc;
6176 pBt->nPage++;
6177 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006178
danielk1977afcdd022004-10-31 16:25:42 +00006179#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006180 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006181 /* If *pPgno refers to a pointer-map page, allocate two new pages
6182 ** at the end of the file instead of one. The first allocated page
6183 ** becomes a new pointer-map page, the second is used by the caller.
6184 */
danielk1977ac861692009-03-28 10:54:22 +00006185 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006186 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6187 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006188 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006189 if( rc==SQLITE_OK ){
6190 rc = sqlite3PagerWrite(pPg->pDbPage);
6191 releasePage(pPg);
6192 }
6193 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006194 pBt->nPage++;
6195 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006196 }
6197#endif
drhdd3cd972010-03-27 17:12:36 +00006198 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6199 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006200
danielk1977599fcba2004-11-08 07:13:13 +00006201 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006202 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006203 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006204 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006205 if( rc!=SQLITE_OK ){
6206 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006207 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006208 }
drh3a4c1412004-05-09 20:40:11 +00006209 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006210 }
danielk1977599fcba2004-11-08 07:13:13 +00006211
danba14c692019-01-25 13:42:12 +00006212 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006213
6214end_allocate_page:
6215 releasePage(pTrunk);
6216 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006217 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6218 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006219 return rc;
6220}
6221
6222/*
danielk1977bea2a942009-01-20 17:06:27 +00006223** This function is used to add page iPage to the database file free-list.
6224** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006225**
danielk1977bea2a942009-01-20 17:06:27 +00006226** The value passed as the second argument to this function is optional.
6227** If the caller happens to have a pointer to the MemPage object
6228** corresponding to page iPage handy, it may pass it as the second value.
6229** Otherwise, it may pass NULL.
6230**
6231** If a pointer to a MemPage object is passed as the second argument,
6232** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006233*/
danielk1977bea2a942009-01-20 17:06:27 +00006234static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6235 MemPage *pTrunk = 0; /* Free-list trunk page */
6236 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6237 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6238 MemPage *pPage; /* Page being freed. May be NULL. */
6239 int rc; /* Return Code */
drh25050f22019-04-09 01:26:31 +00006240 u32 nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006241
danielk1977bea2a942009-01-20 17:06:27 +00006242 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006243 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006244 assert( !pMemPage || pMemPage->pgno==iPage );
6245
drh58b42ad2019-03-25 19:50:19 +00006246 if( iPage<2 || iPage>pBt->nPage ){
6247 return SQLITE_CORRUPT_BKPT;
6248 }
danielk1977bea2a942009-01-20 17:06:27 +00006249 if( pMemPage ){
6250 pPage = pMemPage;
6251 sqlite3PagerRef(pPage->pDbPage);
6252 }else{
6253 pPage = btreePageLookup(pBt, iPage);
6254 }
drh3aac2dd2004-04-26 14:10:20 +00006255
drha34b6762004-05-07 13:30:42 +00006256 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006257 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006258 if( rc ) goto freepage_out;
6259 nFree = get4byte(&pPage1->aData[36]);
6260 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006261
drhc9166342012-01-05 23:32:06 +00006262 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006263 /* If the secure_delete option is enabled, then
6264 ** always fully overwrite deleted information with zeros.
6265 */
drhb00fc3b2013-08-21 23:42:32 +00006266 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006267 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006268 ){
6269 goto freepage_out;
6270 }
6271 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006272 }
drhfcce93f2006-02-22 03:08:32 +00006273
danielk1977687566d2004-11-02 12:56:41 +00006274 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006275 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006276 */
danielk197785d90ca2008-07-19 14:25:15 +00006277 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006278 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006279 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006280 }
danielk1977687566d2004-11-02 12:56:41 +00006281
danielk1977bea2a942009-01-20 17:06:27 +00006282 /* Now manipulate the actual database free-list structure. There are two
6283 ** possibilities. If the free-list is currently empty, or if the first
6284 ** trunk page in the free-list is full, then this page will become a
6285 ** new free-list trunk page. Otherwise, it will become a leaf of the
6286 ** first trunk page in the current free-list. This block tests if it
6287 ** is possible to add the page as a new free-list leaf.
6288 */
6289 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006290 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006291
6292 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006293 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006294 if( rc!=SQLITE_OK ){
6295 goto freepage_out;
6296 }
6297
6298 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006299 assert( pBt->usableSize>32 );
6300 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006301 rc = SQLITE_CORRUPT_BKPT;
6302 goto freepage_out;
6303 }
drheeb844a2009-08-08 18:01:07 +00006304 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006305 /* In this case there is room on the trunk page to insert the page
6306 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006307 **
6308 ** Note that the trunk page is not really full until it contains
6309 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6310 ** coded. But due to a coding error in versions of SQLite prior to
6311 ** 3.6.0, databases with freelist trunk pages holding more than
6312 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6313 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006314 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006315 ** for now. At some point in the future (once everyone has upgraded
6316 ** to 3.6.0 or later) we should consider fixing the conditional above
6317 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006318 **
6319 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6320 ** avoid using the last six entries in the freelist trunk page array in
6321 ** order that database files created by newer versions of SQLite can be
6322 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006323 */
danielk19773b8a05f2007-03-19 17:44:26 +00006324 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006325 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006326 put4byte(&pTrunk->aData[4], nLeaf+1);
6327 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006328 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006329 sqlite3PagerDontWrite(pPage->pDbPage);
6330 }
danielk1977bea2a942009-01-20 17:06:27 +00006331 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006332 }
drh3a4c1412004-05-09 20:40:11 +00006333 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006334 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006335 }
drh3b7511c2001-05-26 13:15:44 +00006336 }
danielk1977bea2a942009-01-20 17:06:27 +00006337
6338 /* If control flows to this point, then it was not possible to add the
6339 ** the page being freed as a leaf page of the first trunk in the free-list.
6340 ** Possibly because the free-list is empty, or possibly because the
6341 ** first trunk in the free-list is full. Either way, the page being freed
6342 ** will become the new first trunk page in the free-list.
6343 */
drhb00fc3b2013-08-21 23:42:32 +00006344 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006345 goto freepage_out;
6346 }
6347 rc = sqlite3PagerWrite(pPage->pDbPage);
6348 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006349 goto freepage_out;
6350 }
6351 put4byte(pPage->aData, iTrunk);
6352 put4byte(&pPage->aData[4], 0);
6353 put4byte(&pPage1->aData[32], iPage);
6354 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6355
6356freepage_out:
6357 if( pPage ){
6358 pPage->isInit = 0;
6359 }
6360 releasePage(pPage);
6361 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006362 return rc;
6363}
drhc314dc72009-07-21 11:52:34 +00006364static void freePage(MemPage *pPage, int *pRC){
6365 if( (*pRC)==SQLITE_OK ){
6366 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6367 }
danielk1977bea2a942009-01-20 17:06:27 +00006368}
drh3b7511c2001-05-26 13:15:44 +00006369
6370/*
drh8d7f1632018-01-23 13:30:38 +00006371** Free any overflow pages associated with the given Cell. Store
6372** size information about the cell in pInfo.
drh3b7511c2001-05-26 13:15:44 +00006373*/
drh9bfdc252014-09-24 02:05:41 +00006374static int clearCell(
6375 MemPage *pPage, /* The page that contains the Cell */
6376 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006377 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006378){
drh60172a52017-08-02 18:27:50 +00006379 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006380 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006381 int rc;
drh94440812007-03-06 11:42:19 +00006382 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006383 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006384
drh1fee73e2007-08-29 04:00:57 +00006385 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006386 pPage->xParseCell(pPage, pCell, pInfo);
6387 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006388 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006389 }
drh6fcf83a2018-05-05 01:23:28 +00006390 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6391 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6392 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006393 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006394 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006395 }
drh80159da2016-12-09 17:32:51 +00006396 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006397 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006398 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006399 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006400 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006401 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006402 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006403 );
drh72365832007-03-06 15:53:44 +00006404 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006405 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006406 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006407 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006408 /* 0 is not a legal page number and page 1 cannot be an
6409 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6410 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006411 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006412 }
danielk1977bea2a942009-01-20 17:06:27 +00006413 if( nOvfl ){
6414 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6415 if( rc ) return rc;
6416 }
dan887d4b22010-02-25 12:09:16 +00006417
shaneh1da207e2010-03-09 14:41:12 +00006418 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006419 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6420 ){
6421 /* There is no reason any cursor should have an outstanding reference
6422 ** to an overflow page belonging to a cell that is being deleted/updated.
6423 ** So if there exists more than one reference to this page, then it
6424 ** must not really be an overflow page and the database must be corrupt.
6425 ** It is helpful to detect this before calling freePage2(), as
6426 ** freePage2() may zero the page contents if secure-delete mode is
6427 ** enabled. If this 'overflow' page happens to be a page that the
6428 ** caller is iterating through or using in some other way, this
6429 ** can be problematic.
6430 */
6431 rc = SQLITE_CORRUPT_BKPT;
6432 }else{
6433 rc = freePage2(pBt, pOvfl, ovflPgno);
6434 }
6435
danielk1977bea2a942009-01-20 17:06:27 +00006436 if( pOvfl ){
6437 sqlite3PagerUnref(pOvfl->pDbPage);
6438 }
drh3b7511c2001-05-26 13:15:44 +00006439 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006440 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006441 }
drh5e2f8b92001-05-28 00:41:15 +00006442 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006443}
6444
6445/*
drh91025292004-05-03 19:49:32 +00006446** Create the byte sequence used to represent a cell on page pPage
6447** and write that byte sequence into pCell[]. Overflow pages are
6448** allocated and filled in as necessary. The calling procedure
6449** is responsible for making sure sufficient space has been allocated
6450** for pCell[].
6451**
6452** Note that pCell does not necessary need to point to the pPage->aData
6453** area. pCell might point to some temporary storage. The cell will
6454** be constructed in this temporary area then copied into pPage->aData
6455** later.
drh3b7511c2001-05-26 13:15:44 +00006456*/
6457static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006458 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006459 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006460 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006461 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006462){
drh3b7511c2001-05-26 13:15:44 +00006463 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006464 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006465 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006466 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006467 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006468 unsigned char *pPrior;
6469 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006470 BtShared *pBt;
6471 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006472 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006473
drh1fee73e2007-08-29 04:00:57 +00006474 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006475
drhc5053fb2008-11-27 02:22:10 +00006476 /* pPage is not necessarily writeable since pCell might be auxiliary
6477 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006478 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006479 || sqlite3PagerIswriteable(pPage->pDbPage) );
6480
drh91025292004-05-03 19:49:32 +00006481 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006482 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006483 if( pPage->intKey ){
6484 nPayload = pX->nData + pX->nZero;
6485 pSrc = pX->pData;
6486 nSrc = pX->nData;
6487 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006488 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006489 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006490 }else{
drh8eeb4462016-05-21 20:03:42 +00006491 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6492 nSrc = nPayload = (int)pX->nKey;
6493 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006494 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006495 }
drhdfc2daa2016-05-21 23:25:29 +00006496
6497 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006498 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006499 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006500 /* This is the common case where everything fits on the btree page
6501 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006502 n = nHeader + nPayload;
6503 testcase( n==3 );
6504 testcase( n==4 );
6505 if( n<4 ) n = 4;
6506 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006507 assert( nSrc<=nPayload );
6508 testcase( nSrc<nPayload );
6509 memcpy(pPayload, pSrc, nSrc);
6510 memset(pPayload+nSrc, 0, nPayload-nSrc);
6511 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006512 }
drh5e27e1d2017-08-23 14:45:59 +00006513
6514 /* If we reach this point, it means that some of the content will need
6515 ** to spill onto overflow pages.
6516 */
6517 mn = pPage->minLocal;
6518 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6519 testcase( n==pPage->maxLocal );
6520 testcase( n==pPage->maxLocal+1 );
6521 if( n > pPage->maxLocal ) n = mn;
6522 spaceLeft = n;
6523 *pnSize = n + nHeader + 4;
6524 pPrior = &pCell[nHeader+n];
6525 pToRelease = 0;
6526 pgnoOvfl = 0;
6527 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006528
drh6200c882014-09-23 22:36:25 +00006529 /* At this point variables should be set as follows:
6530 **
6531 ** nPayload Total payload size in bytes
6532 ** pPayload Begin writing payload here
6533 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6534 ** that means content must spill into overflow pages.
6535 ** *pnSize Size of the local cell (not counting overflow pages)
6536 ** pPrior Where to write the pgno of the first overflow page
6537 **
6538 ** Use a call to btreeParseCellPtr() to verify that the values above
6539 ** were computed correctly.
6540 */
drhd879e3e2017-02-13 13:35:55 +00006541#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006542 {
6543 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006544 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006545 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006546 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006547 assert( *pnSize == info.nSize );
6548 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006549 }
6550#endif
6551
6552 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006553 while( 1 ){
6554 n = nPayload;
6555 if( n>spaceLeft ) n = spaceLeft;
6556
6557 /* If pToRelease is not zero than pPayload points into the data area
6558 ** of pToRelease. Make sure pToRelease is still writeable. */
6559 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6560
6561 /* If pPayload is part of the data area of pPage, then make sure pPage
6562 ** is still writeable */
6563 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6564 || sqlite3PagerIswriteable(pPage->pDbPage) );
6565
6566 if( nSrc>=n ){
6567 memcpy(pPayload, pSrc, n);
6568 }else if( nSrc>0 ){
6569 n = nSrc;
6570 memcpy(pPayload, pSrc, n);
6571 }else{
6572 memset(pPayload, 0, n);
6573 }
6574 nPayload -= n;
6575 if( nPayload<=0 ) break;
6576 pPayload += n;
6577 pSrc += n;
6578 nSrc -= n;
6579 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006580 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006581 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006582#ifndef SQLITE_OMIT_AUTOVACUUM
6583 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006584 if( pBt->autoVacuum ){
6585 do{
6586 pgnoOvfl++;
6587 } while(
6588 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6589 );
danielk1977b39f70b2007-05-17 18:28:11 +00006590 }
danielk1977afcdd022004-10-31 16:25:42 +00006591#endif
drhf49661a2008-12-10 16:45:50 +00006592 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006593#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006594 /* If the database supports auto-vacuum, and the second or subsequent
6595 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006596 ** for that page now.
6597 **
6598 ** If this is the first overflow page, then write a partial entry
6599 ** to the pointer-map. If we write nothing to this pointer-map slot,
6600 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006601 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006602 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006603 */
danielk19774ef24492007-05-23 09:52:41 +00006604 if( pBt->autoVacuum && rc==SQLITE_OK ){
6605 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006606 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006607 if( rc ){
6608 releasePage(pOvfl);
6609 }
danielk1977afcdd022004-10-31 16:25:42 +00006610 }
6611#endif
drh3b7511c2001-05-26 13:15:44 +00006612 if( rc ){
drh9b171272004-05-08 02:03:22 +00006613 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006614 return rc;
6615 }
drhc5053fb2008-11-27 02:22:10 +00006616
6617 /* If pToRelease is not zero than pPrior points into the data area
6618 ** of pToRelease. Make sure pToRelease is still writeable. */
6619 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6620
6621 /* If pPrior is part of the data area of pPage, then make sure pPage
6622 ** is still writeable */
6623 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6624 || sqlite3PagerIswriteable(pPage->pDbPage) );
6625
drh3aac2dd2004-04-26 14:10:20 +00006626 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006627 releasePage(pToRelease);
6628 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006629 pPrior = pOvfl->aData;
6630 put4byte(pPrior, 0);
6631 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006632 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006633 }
drhdd793422001-06-28 01:54:48 +00006634 }
drh9b171272004-05-08 02:03:22 +00006635 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006636 return SQLITE_OK;
6637}
6638
drh14acc042001-06-10 19:56:58 +00006639/*
6640** Remove the i-th cell from pPage. This routine effects pPage only.
6641** The cell content is not freed or deallocated. It is assumed that
6642** the cell content has been copied someplace else. This routine just
6643** removes the reference to the cell from pPage.
6644**
6645** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006646*/
drh98add2e2009-07-20 17:11:49 +00006647static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006648 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006649 u8 *data; /* pPage->aData */
6650 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006651 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006652 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006653
drh98add2e2009-07-20 17:11:49 +00006654 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006655 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006656 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006657 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006658 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00006659 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00006660 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006661 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006662 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006663 hdr = pPage->hdrOffset;
6664 testcase( pc==get2byte(&data[hdr+5]) );
6665 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006666 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006667 *pRC = SQLITE_CORRUPT_BKPT;
6668 return;
shane0af3f892008-11-12 04:55:34 +00006669 }
shanedcc50b72008-11-13 18:29:50 +00006670 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006671 if( rc ){
6672 *pRC = rc;
6673 return;
shanedcc50b72008-11-13 18:29:50 +00006674 }
drh14acc042001-06-10 19:56:58 +00006675 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006676 if( pPage->nCell==0 ){
6677 memset(&data[hdr+1], 0, 4);
6678 data[hdr+7] = 0;
6679 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6680 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6681 - pPage->childPtrSize - 8;
6682 }else{
6683 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6684 put2byte(&data[hdr+3], pPage->nCell);
6685 pPage->nFree += 2;
6686 }
drh14acc042001-06-10 19:56:58 +00006687}
6688
6689/*
6690** Insert a new cell on pPage at cell index "i". pCell points to the
6691** content of the cell.
6692**
6693** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006694** will not fit, then make a copy of the cell content into pTemp if
6695** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006696** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006697** in pTemp or the original pCell) and also record its index.
6698** Allocating a new entry in pPage->aCell[] implies that
6699** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006700**
6701** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006702*/
drh98add2e2009-07-20 17:11:49 +00006703static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006704 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006705 int i, /* New cell becomes the i-th cell of the page */
6706 u8 *pCell, /* Content of the new cell */
6707 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006708 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006709 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6710 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006711){
drh383d30f2010-02-26 13:07:37 +00006712 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006713 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006714 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006715 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006716
drhcb89f4a2016-05-21 11:23:26 +00006717 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006718 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006719 assert( MX_CELL(pPage->pBt)<=10921 );
6720 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006721 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6722 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006723 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh996f5cc2019-07-17 16:18:01 +00006724 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00006725 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00006726 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006727 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006728 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006729 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006730 }
danielk19774dbaa892009-06-16 16:50:22 +00006731 if( iChild ){
6732 put4byte(pCell, iChild);
6733 }
drh43605152004-05-29 21:46:49 +00006734 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006735 /* Comparison against ArraySize-1 since we hold back one extra slot
6736 ** as a contingency. In other words, never need more than 3 overflow
6737 ** slots but 4 are allocated, just to be safe. */
6738 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006739 pPage->apOvfl[j] = pCell;
6740 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006741
6742 /* When multiple overflows occur, they are always sequential and in
6743 ** sorted order. This invariants arise because multiple overflows can
6744 ** only occur when inserting divider cells into the parent page during
6745 ** balancing, and the dividers are adjacent and sorted.
6746 */
6747 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6748 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006749 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006750 int rc = sqlite3PagerWrite(pPage->pDbPage);
6751 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006752 *pRC = rc;
6753 return;
danielk19776e465eb2007-08-21 13:11:00 +00006754 }
6755 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006756 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006757 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006758 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006759 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006760 /* The allocateSpace() routine guarantees the following properties
6761 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006762 assert( idx >= 0 );
6763 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006764 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006765 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00006766 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00006767 /* In a corrupt database where an entry in the cell index section of
6768 ** a btree page has a value of 3 or less, the pCell value might point
6769 ** as many as 4 bytes in front of the start of the aData buffer for
6770 ** the source page. Make sure this does not cause problems by not
6771 ** reading the first 4 bytes */
6772 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00006773 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00006774 }else{
6775 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006776 }
drh2c8fb922015-06-25 19:53:48 +00006777 pIns = pPage->aCellIdx + i*2;
6778 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6779 put2byte(pIns, idx);
6780 pPage->nCell++;
6781 /* increment the cell count */
6782 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00006783 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
danielk1977a19df672004-11-03 11:37:07 +00006784#ifndef SQLITE_OMIT_AUTOVACUUM
6785 if( pPage->pBt->autoVacuum ){
6786 /* The cell may contain a pointer to an overflow page. If so, write
6787 ** the entry for the overflow page into the pointer map.
6788 */
drh0f1bf4c2019-01-13 20:17:21 +00006789 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006790 }
6791#endif
drh14acc042001-06-10 19:56:58 +00006792 }
6793}
6794
6795/*
drhe3dadac2019-01-23 19:25:59 +00006796** The following parameters determine how many adjacent pages get involved
6797** in a balancing operation. NN is the number of neighbors on either side
6798** of the page that participate in the balancing operation. NB is the
6799** total number of pages that participate, including the target page and
6800** NN neighbors on either side.
6801**
6802** The minimum value of NN is 1 (of course). Increasing NN above 1
6803** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6804** in exchange for a larger degradation in INSERT and UPDATE performance.
6805** The value of NN appears to give the best results overall.
6806**
6807** (Later:) The description above makes it seem as if these values are
6808** tunable - as if you could change them and recompile and it would all work.
6809** But that is unlikely. NB has been 3 since the inception of SQLite and
6810** we have never tested any other value.
6811*/
6812#define NN 1 /* Number of neighbors on either side of pPage */
6813#define NB 3 /* (NN*2+1): Total pages involved in the balance */
6814
6815/*
drh1ffd2472015-06-23 02:37:30 +00006816** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006817** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00006818**
6819** The cells in this array are the divider cell or cells from the pParent
6820** page plus up to three child pages. There are a total of nCell cells.
6821**
6822** pRef is a pointer to one of the pages that contributes cells. This is
6823** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6824** which should be common to all pages that contribute cells to this array.
6825**
6826** apCell[] and szCell[] hold, respectively, pointers to the start of each
6827** cell and the size of each cell. Some of the apCell[] pointers might refer
6828** to overflow cells. In other words, some apCel[] pointers might not point
6829** to content area of the pages.
6830**
6831** A szCell[] of zero means the size of that cell has not yet been computed.
6832**
6833** The cells come from as many as four different pages:
6834**
6835** -----------
6836** | Parent |
6837** -----------
6838** / | \
6839** / | \
6840** --------- --------- ---------
6841** |Child-1| |Child-2| |Child-3|
6842** --------- --------- ---------
6843**
drh26b7ec82019-02-01 14:50:43 +00006844** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00006845**
6846** 1. All cells from Child-1 in order
6847** 2. The first divider cell from Parent
6848** 3. All cells from Child-2 in order
6849** 4. The second divider cell from Parent
6850** 5. All cells from Child-3 in order
6851**
drh26b7ec82019-02-01 14:50:43 +00006852** For a table-btree (with rowids) the items 2 and 4 are empty because
6853** content exists only in leaves and there are no divider cells.
6854**
6855** For an index btree, the apEnd[] array holds pointer to the end of page
6856** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6857** respectively. The ixNx[] array holds the number of cells contained in
6858** each of these 5 stages, and all stages to the left. Hence:
6859**
drhe3dadac2019-01-23 19:25:59 +00006860** ixNx[0] = Number of cells in Child-1.
6861** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6862** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6863** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6864** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00006865**
6866** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6867** are used and they point to the leaf pages only, and the ixNx value are:
6868**
6869** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00006870** ixNx[1] = Number of cells in Child-1 and Child-2.
6871** ixNx[2] = Total number of cells.
6872**
6873** Sometimes when deleting, a child page can have zero cells. In those
6874** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6875** entries, shift down. The end result is that each ixNx[] entry should
6876** be larger than the previous
drhfa1a98a2004-05-14 19:08:17 +00006877*/
drh1ffd2472015-06-23 02:37:30 +00006878typedef struct CellArray CellArray;
6879struct CellArray {
6880 int nCell; /* Number of cells in apCell[] */
6881 MemPage *pRef; /* Reference page */
6882 u8 **apCell; /* All cells begin balanced */
6883 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00006884 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
6885 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00006886};
drhfa1a98a2004-05-14 19:08:17 +00006887
drh1ffd2472015-06-23 02:37:30 +00006888/*
6889** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6890** computed.
6891*/
6892static void populateCellCache(CellArray *p, int idx, int N){
6893 assert( idx>=0 && idx+N<=p->nCell );
6894 while( N>0 ){
6895 assert( p->apCell[idx]!=0 );
6896 if( p->szCell[idx]==0 ){
6897 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6898 }else{
6899 assert( CORRUPT_DB ||
6900 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6901 }
6902 idx++;
6903 N--;
drhfa1a98a2004-05-14 19:08:17 +00006904 }
drh1ffd2472015-06-23 02:37:30 +00006905}
6906
6907/*
6908** Return the size of the Nth element of the cell array
6909*/
6910static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6911 assert( N>=0 && N<p->nCell );
6912 assert( p->szCell[N]==0 );
6913 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6914 return p->szCell[N];
6915}
6916static u16 cachedCellSize(CellArray *p, int N){
6917 assert( N>=0 && N<p->nCell );
6918 if( p->szCell[N] ) return p->szCell[N];
6919 return computeCellSize(p, N);
6920}
6921
6922/*
dan8e9ba0c2014-10-14 17:27:04 +00006923** Array apCell[] contains pointers to nCell b-tree page cells. The
6924** szCell[] array contains the size in bytes of each cell. This function
6925** replaces the current contents of page pPg with the contents of the cell
6926** array.
6927**
6928** Some of the cells in apCell[] may currently be stored in pPg. This
6929** function works around problems caused by this by making a copy of any
6930** such cells before overwriting the page data.
6931**
6932** The MemPage.nFree field is invalidated by this function. It is the
6933** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006934*/
drh658873b2015-06-22 20:02:04 +00006935static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00006936 CellArray *pCArray, /* Content to be added to page pPg */
6937 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00006938 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00006939 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00006940){
6941 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6942 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6943 const int usableSize = pPg->pBt->usableSize;
6944 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00006945 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00006946 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00006947 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00006948 u8 *pCellptr = pPg->aCellIdx;
6949 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6950 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00006951 int k; /* Current slot in pCArray->apEnd[] */
6952 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00006953
drhe3dadac2019-01-23 19:25:59 +00006954 assert( i<iEnd );
6955 j = get2byte(&aData[hdr+5]);
drh3b76c452020-01-03 17:40:30 +00006956 if( NEVER(j>(u32)usableSize) ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00006957 memcpy(&pTmp[j], &aData[j], usableSize - j);
6958
6959 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6960 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00006961
dan8e9ba0c2014-10-14 17:27:04 +00006962 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00006963 while( 1/*exit by break*/ ){
6964 u8 *pCell = pCArray->apCell[i];
6965 u16 sz = pCArray->szCell[i];
6966 assert( sz>0 );
drh8b0ba7b2015-12-16 13:07:35 +00006967 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
drhb2b61bb2020-01-04 14:50:06 +00006968 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006969 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00006970 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
6971 && (uptr)(pCell)<(uptr)pSrcEnd
6972 ){
6973 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006974 }
drhe3dadac2019-01-23 19:25:59 +00006975
6976 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00006977 put2byte(pCellptr, (pData - aData));
6978 pCellptr += 2;
drhe5cf3e92020-01-04 12:34:44 +00006979 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drhe3dadac2019-01-23 19:25:59 +00006980 memcpy(pData, pCell, sz);
drhe5cf3e92020-01-04 12:34:44 +00006981 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6982 testcase( sz!=pPg->xCellSize(pPg,pCell) )
drhe3dadac2019-01-23 19:25:59 +00006983 i++;
6984 if( i>=iEnd ) break;
6985 if( pCArray->ixNx[k]<=i ){
6986 k++;
6987 pSrcEnd = pCArray->apEnd[k];
6988 }
dan33ea4862014-10-09 19:35:37 +00006989 }
6990
dand7b545b2014-10-13 18:03:27 +00006991 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006992 pPg->nCell = nCell;
6993 pPg->nOverflow = 0;
6994
6995 put2byte(&aData[hdr+1], 0);
6996 put2byte(&aData[hdr+3], pPg->nCell);
6997 put2byte(&aData[hdr+5], pData - aData);
6998 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006999 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00007000}
7001
dan8e9ba0c2014-10-14 17:27:04 +00007002/*
drhe3dadac2019-01-23 19:25:59 +00007003** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7004** This function attempts to add the cells stored in the array to page pPg.
7005** If it cannot (because the page needs to be defragmented before the cells
7006** will fit), non-zero is returned. Otherwise, if the cells are added
7007** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00007008**
7009** Argument pCellptr points to the first entry in the cell-pointer array
7010** (part of page pPg) to populate. After cell apCell[0] is written to the
7011** page body, a 16-bit offset is written to pCellptr. And so on, for each
7012** cell in the array. It is the responsibility of the caller to ensure
7013** that it is safe to overwrite this part of the cell-pointer array.
7014**
7015** When this function is called, *ppData points to the start of the
7016** content area on page pPg. If the size of the content area is extended,
7017** *ppData is updated to point to the new start of the content area
7018** before returning.
7019**
7020** Finally, argument pBegin points to the byte immediately following the
7021** end of the space required by this page for the cell-pointer area (for
7022** all cells - not just those inserted by the current call). If the content
7023** area must be extended to before this point in order to accomodate all
7024** cells in apCell[], then the cells do not fit and non-zero is returned.
7025*/
dand7b545b2014-10-13 18:03:27 +00007026static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00007027 MemPage *pPg, /* Page to add cells to */
7028 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00007029 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00007030 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00007031 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00007032 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00007033 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007034){
drhe3dadac2019-01-23 19:25:59 +00007035 int i = iFirst; /* Loop counter - cell index to insert */
7036 u8 *aData = pPg->aData; /* Complete page */
7037 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7038 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7039 int k; /* Current slot in pCArray->apEnd[] */
7040 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00007041 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00007042 if( iEnd<=iFirst ) return 0;
7043 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7044 pEnd = pCArray->apEnd[k];
7045 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00007046 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00007047 u8 *pSlot;
dan666a42f2019-08-24 21:02:47 +00007048 assert( pCArray->szCell[i]!=0 );
7049 sz = pCArray->szCell[i];
drhb7580e82015-06-25 18:36:13 +00007050 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00007051 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00007052 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00007053 pSlot = pData;
7054 }
drh48310f82015-10-10 16:41:28 +00007055 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7056 ** database. But they might for a corrupt database. Hence use memmove()
7057 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7058 assert( (pSlot+sz)<=pCArray->apCell[i]
7059 || pSlot>=(pCArray->apCell[i]+sz)
7060 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007061 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7062 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7063 ){
7064 assert( CORRUPT_DB );
7065 (void)SQLITE_CORRUPT_BKPT;
7066 return 1;
7067 }
drh48310f82015-10-10 16:41:28 +00007068 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007069 put2byte(pCellptr, (pSlot - aData));
7070 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007071 i++;
7072 if( i>=iEnd ) break;
7073 if( pCArray->ixNx[k]<=i ){
7074 k++;
7075 pEnd = pCArray->apEnd[k];
7076 }
dand7b545b2014-10-13 18:03:27 +00007077 }
7078 *ppData = pData;
7079 return 0;
7080}
7081
dan8e9ba0c2014-10-14 17:27:04 +00007082/*
drhe3dadac2019-01-23 19:25:59 +00007083** The pCArray object contains pointers to b-tree cells and their sizes.
7084**
7085** This function adds the space associated with each cell in the array
7086** that is currently stored within the body of pPg to the pPg free-list.
7087** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007088**
7089** This function returns the total number of cells added to the free-list.
7090*/
dand7b545b2014-10-13 18:03:27 +00007091static int pageFreeArray(
7092 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007093 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007094 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007095 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007096){
7097 u8 * const aData = pPg->aData;
7098 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007099 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007100 int nRet = 0;
7101 int i;
drhf7838932015-06-23 15:36:34 +00007102 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007103 u8 *pFree = 0;
7104 int szFree = 0;
7105
drhf7838932015-06-23 15:36:34 +00007106 for(i=iFirst; i<iEnd; i++){
7107 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007108 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007109 int sz;
7110 /* No need to use cachedCellSize() here. The sizes of all cells that
7111 ** are to be freed have already been computing while deciding which
7112 ** cells need freeing */
7113 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007114 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007115 if( pFree ){
7116 assert( pFree>aData && (pFree - aData)<65536 );
7117 freeSpace(pPg, (u16)(pFree - aData), szFree);
7118 }
dand7b545b2014-10-13 18:03:27 +00007119 pFree = pCell;
7120 szFree = sz;
drh64f7ee02020-01-04 17:55:01 +00007121 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00007122 }else{
7123 pFree = pCell;
7124 szFree += sz;
7125 }
7126 nRet++;
7127 }
7128 }
drhfefa0942014-11-05 21:21:08 +00007129 if( pFree ){
7130 assert( pFree>aData && (pFree - aData)<65536 );
7131 freeSpace(pPg, (u16)(pFree - aData), szFree);
7132 }
dand7b545b2014-10-13 18:03:27 +00007133 return nRet;
7134}
7135
dand7b545b2014-10-13 18:03:27 +00007136/*
drha0466432019-01-29 16:41:13 +00007137** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007138** balanced. The current page, pPg, has pPg->nCell cells starting with
7139** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007140** starting at apCell[iNew].
7141**
7142** This routine makes the necessary adjustments to pPg so that it contains
7143** the correct cells after being balanced.
7144**
dand7b545b2014-10-13 18:03:27 +00007145** The pPg->nFree field is invalid when this function returns. It is the
7146** responsibility of the caller to set it correctly.
7147*/
drh658873b2015-06-22 20:02:04 +00007148static int editPage(
dan09c68402014-10-11 20:00:24 +00007149 MemPage *pPg, /* Edit this page */
7150 int iOld, /* Index of first cell currently on page */
7151 int iNew, /* Index of new first cell on page */
7152 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007153 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007154){
dand7b545b2014-10-13 18:03:27 +00007155 u8 * const aData = pPg->aData;
7156 const int hdr = pPg->hdrOffset;
7157 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7158 int nCell = pPg->nCell; /* Cells stored on pPg */
7159 u8 *pData;
7160 u8 *pCellptr;
7161 int i;
7162 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7163 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007164
7165#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007166 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7167 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007168#endif
7169
dand7b545b2014-10-13 18:03:27 +00007170 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007171 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007172 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007173 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drhfde25922020-05-05 19:54:02 +00007174 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007175 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7176 nCell -= nShift;
7177 }
7178 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007179 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7180 assert( nCell>=nTail );
7181 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007182 }
dan09c68402014-10-11 20:00:24 +00007183
drh5ab63772014-11-27 03:46:04 +00007184 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007185 if( pData<pBegin ) goto editpage_fail;
7186
7187 /* Add cells to the start of the page */
7188 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007189 int nAdd = MIN(nNew,iOld-iNew);
7190 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007191 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007192 pCellptr = pPg->aCellIdx;
7193 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7194 if( pageInsertArray(
7195 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007196 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007197 ) ) goto editpage_fail;
7198 nCell += nAdd;
7199 }
7200
7201 /* Add any overflow cells */
7202 for(i=0; i<pPg->nOverflow; i++){
7203 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7204 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007205 pCellptr = &pPg->aCellIdx[iCell * 2];
drh4b986b22019-03-08 14:02:11 +00007206 if( nCell>iCell ){
7207 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7208 }
dand7b545b2014-10-13 18:03:27 +00007209 nCell++;
dan666a42f2019-08-24 21:02:47 +00007210 cachedCellSize(pCArray, iCell+iNew);
dand7b545b2014-10-13 18:03:27 +00007211 if( pageInsertArray(
7212 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007213 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007214 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007215 }
dand7b545b2014-10-13 18:03:27 +00007216 }
dan09c68402014-10-11 20:00:24 +00007217
dand7b545b2014-10-13 18:03:27 +00007218 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007219 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007220 pCellptr = &pPg->aCellIdx[nCell*2];
7221 if( pageInsertArray(
7222 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007223 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007224 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007225
dand7b545b2014-10-13 18:03:27 +00007226 pPg->nCell = nNew;
7227 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007228
dand7b545b2014-10-13 18:03:27 +00007229 put2byte(&aData[hdr+3], pPg->nCell);
7230 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007231
7232#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007233 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007234 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007235 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007236 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007237 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007238 }
drh1ffd2472015-06-23 02:37:30 +00007239 assert( 0==memcmp(pCell, &aData[iOff],
7240 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007241 }
dan09c68402014-10-11 20:00:24 +00007242#endif
7243
drh658873b2015-06-22 20:02:04 +00007244 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007245 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007246 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007247 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007248 return rebuildPage(pCArray, iNew, nNew, pPg);
drhfa1a98a2004-05-14 19:08:17 +00007249}
7250
danielk1977ac245ec2005-01-14 13:50:11 +00007251
drh615ae552005-01-16 23:21:00 +00007252#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007253/*
7254** This version of balance() handles the common special case where
7255** a new entry is being inserted on the extreme right-end of the
7256** tree, in other words, when the new entry will become the largest
7257** entry in the tree.
7258**
drhc314dc72009-07-21 11:52:34 +00007259** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007260** a new page to the right-hand side and put the one new entry in
7261** that page. This leaves the right side of the tree somewhat
7262** unbalanced. But odds are that we will be inserting new entries
7263** at the end soon afterwards so the nearly empty page will quickly
7264** fill up. On average.
7265**
7266** pPage is the leaf page which is the right-most page in the tree.
7267** pParent is its parent. pPage must have a single overflow entry
7268** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007269**
7270** The pSpace buffer is used to store a temporary copy of the divider
7271** cell that will be inserted into pParent. Such a cell consists of a 4
7272** byte page number followed by a variable length integer. In other
7273** words, at most 13 bytes. Hence the pSpace buffer must be at
7274** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007275*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007276static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7277 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007278 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007279 int rc; /* Return Code */
7280 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007281
drh1fee73e2007-08-29 04:00:57 +00007282 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007283 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007284 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007285
drh6301c432018-12-13 21:52:18 +00007286 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007287 assert( pPage->nFree>=0 );
7288 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007289
danielk1977a50d9aa2009-06-08 14:49:45 +00007290 /* Allocate a new page. This page will become the right-sibling of
7291 ** pPage. Make the parent page writable, so that the new divider cell
7292 ** may be inserted. If both these operations are successful, proceed.
7293 */
drh4f0c5872007-03-26 22:05:01 +00007294 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007295
danielk1977eaa06f62008-09-18 17:34:44 +00007296 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007297
7298 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007299 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007300 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007301 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007302 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007303
drhc5053fb2008-11-27 02:22:10 +00007304 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007305 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007306 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007307 b.nCell = 1;
7308 b.pRef = pPage;
7309 b.apCell = &pCell;
7310 b.szCell = &szCell;
7311 b.apEnd[0] = pPage->aDataEnd;
7312 b.ixNx[0] = 2;
7313 rc = rebuildPage(&b, 0, 1, pNew);
7314 if( NEVER(rc) ){
7315 releasePage(pNew);
7316 return rc;
7317 }
dan8e9ba0c2014-10-14 17:27:04 +00007318 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007319
7320 /* If this is an auto-vacuum database, update the pointer map
7321 ** with entries for the new page, and any pointer from the
7322 ** cell on the page to an overflow page. If either of these
7323 ** operations fails, the return code is set, but the contents
7324 ** of the parent page are still manipulated by thh code below.
7325 ** That is Ok, at this point the parent page is guaranteed to
7326 ** be marked as dirty. Returning an error code will cause a
7327 ** rollback, undoing any changes made to the parent page.
7328 */
7329 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007330 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7331 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007332 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007333 }
7334 }
danielk1977eaa06f62008-09-18 17:34:44 +00007335
danielk19776f235cc2009-06-04 14:46:08 +00007336 /* Create a divider cell to insert into pParent. The divider cell
7337 ** consists of a 4-byte page number (the page number of pPage) and
7338 ** a variable length key value (which must be the same value as the
7339 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007340 **
danielk19776f235cc2009-06-04 14:46:08 +00007341 ** To find the largest key value on pPage, first find the right-most
7342 ** cell on pPage. The first two fields of this cell are the
7343 ** record-length (a variable length integer at most 32-bits in size)
7344 ** and the key value (a variable length integer, may have any value).
7345 ** The first of the while(...) loops below skips over the record-length
7346 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007347 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007348 */
danielk1977eaa06f62008-09-18 17:34:44 +00007349 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007350 pStop = &pCell[9];
7351 while( (*(pCell++)&0x80) && pCell<pStop );
7352 pStop = &pCell[9];
7353 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7354
danielk19774dbaa892009-06-16 16:50:22 +00007355 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007356 if( rc==SQLITE_OK ){
7357 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7358 0, pPage->pgno, &rc);
7359 }
danielk19776f235cc2009-06-04 14:46:08 +00007360
7361 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007362 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7363
danielk1977e08a3c42008-09-18 18:17:03 +00007364 /* Release the reference to the new page. */
7365 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007366 }
7367
danielk1977eaa06f62008-09-18 17:34:44 +00007368 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007369}
drh615ae552005-01-16 23:21:00 +00007370#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007371
danielk19774dbaa892009-06-16 16:50:22 +00007372#if 0
drhc3b70572003-01-04 19:44:07 +00007373/*
danielk19774dbaa892009-06-16 16:50:22 +00007374** This function does not contribute anything to the operation of SQLite.
7375** it is sometimes activated temporarily while debugging code responsible
7376** for setting pointer-map entries.
7377*/
7378static int ptrmapCheckPages(MemPage **apPage, int nPage){
7379 int i, j;
7380 for(i=0; i<nPage; i++){
7381 Pgno n;
7382 u8 e;
7383 MemPage *pPage = apPage[i];
7384 BtShared *pBt = pPage->pBt;
7385 assert( pPage->isInit );
7386
7387 for(j=0; j<pPage->nCell; j++){
7388 CellInfo info;
7389 u8 *z;
7390
7391 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007392 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007393 if( info.nLocal<info.nPayload ){
7394 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007395 ptrmapGet(pBt, ovfl, &e, &n);
7396 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7397 }
7398 if( !pPage->leaf ){
7399 Pgno child = get4byte(z);
7400 ptrmapGet(pBt, child, &e, &n);
7401 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7402 }
7403 }
7404 if( !pPage->leaf ){
7405 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7406 ptrmapGet(pBt, child, &e, &n);
7407 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7408 }
7409 }
7410 return 1;
7411}
7412#endif
7413
danielk1977cd581a72009-06-23 15:43:39 +00007414/*
7415** This function is used to copy the contents of the b-tree node stored
7416** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7417** the pointer-map entries for each child page are updated so that the
7418** parent page stored in the pointer map is page pTo. If pFrom contained
7419** any cells with overflow page pointers, then the corresponding pointer
7420** map entries are also updated so that the parent page is page pTo.
7421**
7422** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007423** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007424**
danielk197730548662009-07-09 05:07:37 +00007425** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007426**
7427** The performance of this function is not critical. It is only used by
7428** the balance_shallower() and balance_deeper() procedures, neither of
7429** which are called often under normal circumstances.
7430*/
drhc314dc72009-07-21 11:52:34 +00007431static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7432 if( (*pRC)==SQLITE_OK ){
7433 BtShared * const pBt = pFrom->pBt;
7434 u8 * const aFrom = pFrom->aData;
7435 u8 * const aTo = pTo->aData;
7436 int const iFromHdr = pFrom->hdrOffset;
7437 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007438 int rc;
drhc314dc72009-07-21 11:52:34 +00007439 int iData;
7440
7441
7442 assert( pFrom->isInit );
7443 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007444 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007445
7446 /* Copy the b-tree node content from page pFrom to page pTo. */
7447 iData = get2byte(&aFrom[iFromHdr+5]);
7448 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7449 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7450
7451 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007452 ** match the new data. The initialization of pTo can actually fail under
7453 ** fairly obscure circumstances, even though it is a copy of initialized
7454 ** page pFrom.
7455 */
drhc314dc72009-07-21 11:52:34 +00007456 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007457 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00007458 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00007459 if( rc!=SQLITE_OK ){
7460 *pRC = rc;
7461 return;
7462 }
drhc314dc72009-07-21 11:52:34 +00007463
7464 /* If this is an auto-vacuum database, update the pointer-map entries
7465 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7466 */
7467 if( ISAUTOVACUUM ){
7468 *pRC = setChildPtrmaps(pTo);
7469 }
danielk1977cd581a72009-06-23 15:43:39 +00007470 }
danielk1977cd581a72009-06-23 15:43:39 +00007471}
7472
7473/*
danielk19774dbaa892009-06-16 16:50:22 +00007474** This routine redistributes cells on the iParentIdx'th child of pParent
7475** (hereafter "the page") and up to 2 siblings so that all pages have about the
7476** same amount of free space. Usually a single sibling on either side of the
7477** page are used in the balancing, though both siblings might come from one
7478** side if the page is the first or last child of its parent. If the page
7479** has fewer than 2 siblings (something which can only happen if the page
7480** is a root page or a child of a root page) then all available siblings
7481** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007482**
danielk19774dbaa892009-06-16 16:50:22 +00007483** The number of siblings of the page might be increased or decreased by
7484** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007485**
danielk19774dbaa892009-06-16 16:50:22 +00007486** Note that when this routine is called, some of the cells on the page
7487** might not actually be stored in MemPage.aData[]. This can happen
7488** if the page is overfull. This routine ensures that all cells allocated
7489** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007490**
danielk19774dbaa892009-06-16 16:50:22 +00007491** In the course of balancing the page and its siblings, cells may be
7492** inserted into or removed from the parent page (pParent). Doing so
7493** may cause the parent page to become overfull or underfull. If this
7494** happens, it is the responsibility of the caller to invoke the correct
7495** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007496**
drh5e00f6c2001-09-13 13:46:56 +00007497** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007498** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007499** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007500**
7501** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007502** buffer big enough to hold one page. If while inserting cells into the parent
7503** page (pParent) the parent page becomes overfull, this buffer is
7504** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007505** a maximum of four divider cells into the parent page, and the maximum
7506** size of a cell stored within an internal node is always less than 1/4
7507** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7508** enough for all overflow cells.
7509**
7510** If aOvflSpace is set to a null pointer, this function returns
7511** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007512*/
danielk19774dbaa892009-06-16 16:50:22 +00007513static int balance_nonroot(
7514 MemPage *pParent, /* Parent page of siblings being balanced */
7515 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007516 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007517 int isRoot, /* True if pParent is a root-page */
7518 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007519){
drh16a9b832007-05-05 18:39:25 +00007520 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007521 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007522 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007523 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007524 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007525 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007526 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007527 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007528 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007529 int usableSpace; /* Bytes in pPage beyond the header */
7530 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007531 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007532 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007533 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007534 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007535 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007536 u8 *pRight; /* Location in parent of right-sibling pointer */
7537 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007538 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7539 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007540 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007541 u8 *aSpace1; /* Space for copies of dividers cells */
7542 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007543 u8 abDone[NB+2]; /* True after i'th new page is populated */
7544 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007545 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007546 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007547 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007548
dan33ea4862014-10-09 19:35:37 +00007549 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007550 b.nCell = 0;
7551 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007552 pBt = pParent->pBt;
7553 assert( sqlite3_mutex_held(pBt->mutex) );
7554 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007555
danielk19774dbaa892009-06-16 16:50:22 +00007556 /* At this point pParent may have at most one overflow cell. And if
7557 ** this overflow cell is present, it must be the cell with
7558 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007559 ** is called (indirectly) from sqlite3BtreeDelete().
7560 */
danielk19774dbaa892009-06-16 16:50:22 +00007561 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007562 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007563
danielk197711a8a862009-06-17 11:49:52 +00007564 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007565 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007566 }
drh68133502019-02-11 17:22:30 +00007567 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00007568
danielk1977a50d9aa2009-06-08 14:49:45 +00007569 /* Find the sibling pages to balance. Also locate the cells in pParent
7570 ** that divide the siblings. An attempt is made to find NN siblings on
7571 ** either side of pPage. More siblings are taken from one side, however,
7572 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007573 ** has NB or fewer children then all children of pParent are taken.
7574 **
7575 ** This loop also drops the divider cells from the parent page. This
7576 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007577 ** overflow cells in the parent page, since if any existed they will
7578 ** have already been removed.
7579 */
danielk19774dbaa892009-06-16 16:50:22 +00007580 i = pParent->nOverflow + pParent->nCell;
7581 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007582 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007583 }else{
dan7d6885a2012-08-08 14:04:56 +00007584 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007585 if( iParentIdx==0 ){
7586 nxDiv = 0;
7587 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007588 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007589 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007590 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007591 }
dan7d6885a2012-08-08 14:04:56 +00007592 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007593 }
dan7d6885a2012-08-08 14:04:56 +00007594 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007595 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7596 pRight = &pParent->aData[pParent->hdrOffset+8];
7597 }else{
7598 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7599 }
7600 pgno = get4byte(pRight);
7601 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007602 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007603 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007604 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007605 goto balance_cleanup;
7606 }
drh85a379b2019-02-09 22:33:44 +00007607 if( apOld[i]->nFree<0 ){
7608 rc = btreeComputeFreeSpace(apOld[i]);
7609 if( rc ){
7610 memset(apOld, 0, (i)*sizeof(MemPage*));
7611 goto balance_cleanup;
7612 }
7613 }
danielk19774dbaa892009-06-16 16:50:22 +00007614 if( (i--)==0 ) break;
7615
drh9cc5b4e2016-12-26 01:41:33 +00007616 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007617 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007618 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007619 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007620 pParent->nOverflow = 0;
7621 }else{
7622 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7623 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007624 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007625
7626 /* Drop the cell from the parent page. apDiv[i] still points to
7627 ** the cell within the parent, even though it has been dropped.
7628 ** This is safe because dropping a cell only overwrites the first
7629 ** four bytes of it, and this function does not need the first
7630 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007631 ** later on.
7632 **
drh8a575d92011-10-12 17:00:28 +00007633 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007634 ** the dropCell() routine will overwrite the entire cell with zeroes.
7635 ** In this case, temporarily copy the cell into the aOvflSpace[]
7636 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7637 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007638 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007639 int iOff;
7640
7641 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007642 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007643 rc = SQLITE_CORRUPT_BKPT;
7644 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7645 goto balance_cleanup;
7646 }else{
7647 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7648 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7649 }
drh5b47efa2010-02-12 18:18:39 +00007650 }
drh98add2e2009-07-20 17:11:49 +00007651 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007652 }
drh8b2f49b2001-06-08 00:21:52 +00007653 }
7654
drha9121e42008-02-19 14:59:35 +00007655 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007656 ** alignment */
drhf012dc42019-03-19 15:36:46 +00007657 nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl));
drha9121e42008-02-19 14:59:35 +00007658 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007659
drh8b2f49b2001-06-08 00:21:52 +00007660 /*
danielk1977634f2982005-03-28 08:44:07 +00007661 ** Allocate space for memory structures
7662 */
drhfacf0302008-06-17 15:12:00 +00007663 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007664 nMaxCells*sizeof(u8*) /* b.apCell */
7665 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007666 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007667
drhf012dc42019-03-19 15:36:46 +00007668 assert( szScratch<=7*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007669 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007670 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007671 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007672 goto balance_cleanup;
7673 }
drh1ffd2472015-06-23 02:37:30 +00007674 b.szCell = (u16*)&b.apCell[nMaxCells];
7675 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007676 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007677
7678 /*
7679 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007680 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007681 ** into space obtained from aSpace1[]. The divider cells have already
7682 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007683 **
7684 ** If the siblings are on leaf pages, then the child pointers of the
7685 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007686 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007687 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007688 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007689 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007690 **
7691 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7692 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007693 */
drh1ffd2472015-06-23 02:37:30 +00007694 b.pRef = apOld[0];
7695 leafCorrection = b.pRef->leaf*4;
7696 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007697 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007698 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007699 int limit = pOld->nCell;
7700 u8 *aData = pOld->aData;
7701 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007702 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007703 u8 *piEnd;
drhe12ca5a2019-05-02 15:56:39 +00007704 VVA_ONLY( int nCellAtStart = b.nCell; )
danielk19774dbaa892009-06-16 16:50:22 +00007705
drh73d340a2015-05-28 11:23:11 +00007706 /* Verify that all sibling pages are of the same "type" (table-leaf,
7707 ** table-interior, index-leaf, or index-interior).
7708 */
7709 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7710 rc = SQLITE_CORRUPT_BKPT;
7711 goto balance_cleanup;
7712 }
7713
drhfe647dc2015-06-23 18:24:25 +00007714 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007715 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007716 ** in the correct spot.
7717 **
7718 ** Note that when there are multiple overflow cells, it is always the
7719 ** case that they are sequential and adjacent. This invariant arises
7720 ** because multiple overflows can only occurs when inserting divider
7721 ** cells into a parent on a prior balance, and divider cells are always
7722 ** adjacent and are inserted in order. There is an assert() tagged
7723 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7724 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007725 **
7726 ** This must be done in advance. Once the balance starts, the cell
7727 ** offset section of the btree page will be overwritten and we will no
7728 ** long be able to find the cells if a pointer to each cell is not saved
7729 ** first.
7730 */
drh36b78ee2016-01-20 01:32:00 +00007731 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007732 if( pOld->nOverflow>0 ){
drh27e80a32019-08-15 13:17:49 +00007733 if( NEVER(limit<pOld->aiOvfl[0]) ){
drhe12ca5a2019-05-02 15:56:39 +00007734 rc = SQLITE_CORRUPT_BKPT;
7735 goto balance_cleanup;
7736 }
drhfe647dc2015-06-23 18:24:25 +00007737 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007738 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007739 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007740 piCell += 2;
7741 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007742 }
drhfe647dc2015-06-23 18:24:25 +00007743 for(k=0; k<pOld->nOverflow; k++){
7744 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007745 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007746 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007747 }
drh1ffd2472015-06-23 02:37:30 +00007748 }
drhfe647dc2015-06-23 18:24:25 +00007749 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7750 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007751 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007752 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007753 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007754 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007755 }
drhe12ca5a2019-05-02 15:56:39 +00007756 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
drh4edfdd32015-06-23 14:49:42 +00007757
drh1ffd2472015-06-23 02:37:30 +00007758 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007759 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007760 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007761 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007762 assert( b.nCell<nMaxCells );
7763 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007764 pTemp = &aSpace1[iSpace1];
7765 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007766 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007767 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007768 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007769 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007770 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007771 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007772 if( !pOld->leaf ){
7773 assert( leafCorrection==0 );
7774 assert( pOld->hdrOffset==0 );
7775 /* The right pointer of the child page pOld becomes the left
7776 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007777 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007778 }else{
7779 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007780 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007781 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7782 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007783 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7784 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007785 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007786 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007787 }
7788 }
drh1ffd2472015-06-23 02:37:30 +00007789 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007790 }
drh8b2f49b2001-06-08 00:21:52 +00007791 }
7792
7793 /*
drh1ffd2472015-06-23 02:37:30 +00007794 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007795 ** Store this number in "k". Also compute szNew[] which is the total
7796 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007797 ** in b.apCell[] of the cell that divides page i from page i+1.
7798 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007799 **
drh96f5b762004-05-16 16:24:36 +00007800 ** Values computed by this block:
7801 **
7802 ** k: The total number of sibling pages
7803 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007804 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007805 ** the right of the i-th sibling page.
7806 ** usableSpace: Number of bytes of space available on each sibling.
7807 **
drh8b2f49b2001-06-08 00:21:52 +00007808 */
drh43605152004-05-29 21:46:49 +00007809 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00007810 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00007811 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00007812 b.apEnd[k] = p->aDataEnd;
7813 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00007814 if( k && b.ixNx[k]==b.ixNx[k-1] ){
7815 k--; /* Omit b.ixNx[] entry for child pages with no cells */
7816 }
drh26b7ec82019-02-01 14:50:43 +00007817 if( !leafData ){
7818 k++;
7819 b.apEnd[k] = pParent->aDataEnd;
7820 b.ixNx[k] = cntOld[i]+1;
7821 }
drhb0ea9432019-02-09 21:06:40 +00007822 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00007823 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007824 for(j=0; j<p->nOverflow; j++){
7825 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7826 }
7827 cntNew[i] = cntOld[i];
7828 }
7829 k = nOld;
7830 for(i=0; i<k; i++){
7831 int sz;
7832 while( szNew[i]>usableSpace ){
7833 if( i+1>=k ){
7834 k = i+2;
7835 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7836 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007837 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007838 }
drh1ffd2472015-06-23 02:37:30 +00007839 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007840 szNew[i] -= sz;
7841 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007842 if( cntNew[i]<b.nCell ){
7843 sz = 2 + cachedCellSize(&b, cntNew[i]);
7844 }else{
7845 sz = 0;
7846 }
drh658873b2015-06-22 20:02:04 +00007847 }
7848 szNew[i+1] += sz;
7849 cntNew[i]--;
7850 }
drh1ffd2472015-06-23 02:37:30 +00007851 while( cntNew[i]<b.nCell ){
7852 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007853 if( szNew[i]+sz>usableSpace ) break;
7854 szNew[i] += sz;
7855 cntNew[i]++;
7856 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007857 if( cntNew[i]<b.nCell ){
7858 sz = 2 + cachedCellSize(&b, cntNew[i]);
7859 }else{
7860 sz = 0;
7861 }
drh658873b2015-06-22 20:02:04 +00007862 }
7863 szNew[i+1] -= sz;
7864 }
drh1ffd2472015-06-23 02:37:30 +00007865 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007866 k = i+1;
drh672073a2015-06-24 12:07:40 +00007867 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007868 rc = SQLITE_CORRUPT_BKPT;
7869 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007870 }
7871 }
drh96f5b762004-05-16 16:24:36 +00007872
7873 /*
7874 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007875 ** on the left side (siblings with smaller keys). The left siblings are
7876 ** always nearly full, while the right-most sibling might be nearly empty.
7877 ** The next block of code attempts to adjust the packing of siblings to
7878 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007879 **
7880 ** This adjustment is more than an optimization. The packing above might
7881 ** be so out of balance as to be illegal. For example, the right-most
7882 ** sibling might be completely empty. This adjustment is not optional.
7883 */
drh6019e162001-07-02 17:51:45 +00007884 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007885 int szRight = szNew[i]; /* Size of sibling on the right */
7886 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7887 int r; /* Index of right-most cell in left sibling */
7888 int d; /* Index of first cell to the left of right sibling */
7889
7890 r = cntNew[i-1] - 1;
7891 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007892 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007893 do{
drh1ffd2472015-06-23 02:37:30 +00007894 assert( d<nMaxCells );
7895 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007896 (void)cachedCellSize(&b, r);
7897 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007898 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007899 break;
7900 }
7901 szRight += b.szCell[d] + 2;
7902 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007903 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007904 r--;
7905 d--;
drh672073a2015-06-24 12:07:40 +00007906 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007907 szNew[i] = szRight;
7908 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007909 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7910 rc = SQLITE_CORRUPT_BKPT;
7911 goto balance_cleanup;
7912 }
drh6019e162001-07-02 17:51:45 +00007913 }
drh09d0deb2005-08-02 17:13:09 +00007914
drh2a0df922014-10-30 23:14:56 +00007915 /* Sanity check: For a non-corrupt database file one of the follwing
7916 ** must be true:
7917 ** (1) We found one or more cells (cntNew[0])>0), or
7918 ** (2) pPage is a virtual root page. A virtual root page is when
7919 ** the real root page is page 1 and we are the only child of
7920 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007921 */
drh2a0df922014-10-30 23:14:56 +00007922 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007923 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7924 apOld[0]->pgno, apOld[0]->nCell,
7925 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7926 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007927 ));
7928
drh8b2f49b2001-06-08 00:21:52 +00007929 /*
drh6b308672002-07-08 02:16:37 +00007930 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007931 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007932 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007933 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007934 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007935 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007936 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007937 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007938 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007939 nNew++;
danielk197728129562005-01-11 10:25:06 +00007940 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007941 }else{
drh7aa8f852006-03-28 00:24:44 +00007942 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007943 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007944 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007945 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007946 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007947 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007948 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007949
7950 /* Set the pointer-map entry for the new sibling page. */
7951 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007952 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007953 if( rc!=SQLITE_OK ){
7954 goto balance_cleanup;
7955 }
7956 }
drh6b308672002-07-08 02:16:37 +00007957 }
drh8b2f49b2001-06-08 00:21:52 +00007958 }
7959
7960 /*
dan33ea4862014-10-09 19:35:37 +00007961 ** Reassign page numbers so that the new pages are in ascending order.
7962 ** This helps to keep entries in the disk file in order so that a scan
7963 ** of the table is closer to a linear scan through the file. That in turn
7964 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007965 **
dan33ea4862014-10-09 19:35:37 +00007966 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7967 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007968 **
dan33ea4862014-10-09 19:35:37 +00007969 ** When NB==3, this one optimization makes the database about 25% faster
7970 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007971 */
dan33ea4862014-10-09 19:35:37 +00007972 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007973 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007974 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007975 for(j=0; j<i; j++){
7976 if( aPgno[j]==aPgno[i] ){
7977 /* This branch is taken if the set of sibling pages somehow contains
7978 ** duplicate entries. This can happen if the database is corrupt.
7979 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007980 ** we do the detection here in order to avoid populating the pager
7981 ** cache with two separate objects associated with the same
7982 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007983 assert( CORRUPT_DB );
7984 rc = SQLITE_CORRUPT_BKPT;
7985 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007986 }
7987 }
dan33ea4862014-10-09 19:35:37 +00007988 }
7989 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007990 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007991 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007992 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007993 }
drh00fe08a2014-10-31 00:05:23 +00007994 pgno = aPgOrder[iBest];
7995 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007996 if( iBest!=i ){
7997 if( iBest>i ){
7998 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7999 }
8000 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8001 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00008002 }
8003 }
dan33ea4862014-10-09 19:35:37 +00008004
8005 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8006 "%d(%d nc=%d) %d(%d nc=%d)\n",
8007 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00008008 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00008009 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008010 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00008011 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008012 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00008013 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8014 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8015 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8016 ));
danielk19774dbaa892009-06-16 16:50:22 +00008017
8018 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh55f66b32019-07-16 19:44:32 +00008019 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8020 assert( apNew[nNew-1]!=0 );
danielk19774dbaa892009-06-16 16:50:22 +00008021 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00008022
dan33ea4862014-10-09 19:35:37 +00008023 /* If the sibling pages are not leaves, ensure that the right-child pointer
8024 ** of the right-most new sibling page is set to the value that was
8025 ** originally in the same field of the right-most old sibling page. */
8026 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8027 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8028 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8029 }
danielk1977ac11ee62005-01-15 12:45:51 +00008030
dan33ea4862014-10-09 19:35:37 +00008031 /* Make any required updates to pointer map entries associated with
8032 ** cells stored on sibling pages following the balance operation. Pointer
8033 ** map entries associated with divider cells are set by the insertCell()
8034 ** routine. The associated pointer map entries are:
8035 **
8036 ** a) if the cell contains a reference to an overflow chain, the
8037 ** entry associated with the first page in the overflow chain, and
8038 **
8039 ** b) if the sibling pages are not leaves, the child page associated
8040 ** with the cell.
8041 **
8042 ** If the sibling pages are not leaves, then the pointer map entry
8043 ** associated with the right-child of each sibling may also need to be
8044 ** updated. This happens below, after the sibling pages have been
8045 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00008046 */
dan33ea4862014-10-09 19:35:37 +00008047 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00008048 MemPage *pOld;
8049 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00008050 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00008051 int iNew = 0;
8052 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00008053
drh1ffd2472015-06-23 02:37:30 +00008054 for(i=0; i<b.nCell; i++){
8055 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00008056 while( i==cntOldNext ){
8057 iOld++;
8058 assert( iOld<nNew || iOld<nOld );
drhdd2d9a32019-05-07 17:47:43 +00008059 assert( iOld>=0 && iOld<NB );
drh9c7e44c2019-02-14 15:27:12 +00008060 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00008061 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
drh4b70f112004-05-02 21:12:19 +00008062 }
dan33ea4862014-10-09 19:35:37 +00008063 if( i==cntNew[iNew] ){
8064 pNew = apNew[++iNew];
8065 if( !leafData ) continue;
8066 }
danielk197785d90ca2008-07-19 14:25:15 +00008067
dan33ea4862014-10-09 19:35:37 +00008068 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00008069 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00008070 ** or else the divider cell to the left of sibling page iOld. So,
8071 ** if sibling page iOld had the same page number as pNew, and if
8072 ** pCell really was a part of sibling page iOld (not a divider or
8073 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008074 if( iOld>=nNew
8075 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008076 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008077 ){
dan33ea4862014-10-09 19:35:37 +00008078 if( !leafCorrection ){
8079 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8080 }
drh1ffd2472015-06-23 02:37:30 +00008081 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008082 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00008083 }
drhea82b372015-06-23 21:35:28 +00008084 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00008085 }
drh14acc042001-06-10 19:56:58 +00008086 }
8087 }
dan33ea4862014-10-09 19:35:37 +00008088
8089 /* Insert new divider cells into pParent. */
8090 for(i=0; i<nNew-1; i++){
8091 u8 *pCell;
8092 u8 *pTemp;
8093 int sz;
8094 MemPage *pNew = apNew[i];
8095 j = cntNew[i];
8096
8097 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008098 assert( b.apCell[j]!=0 );
8099 pCell = b.apCell[j];
8100 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008101 pTemp = &aOvflSpace[iOvflSpace];
8102 if( !pNew->leaf ){
8103 memcpy(&pNew->aData[8], pCell, 4);
8104 }else if( leafData ){
8105 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008106 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008107 ** cell consists of the integer key for the right-most cell of
8108 ** the sibling-page assembled above only.
8109 */
8110 CellInfo info;
8111 j--;
drh1ffd2472015-06-23 02:37:30 +00008112 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008113 pCell = pTemp;
8114 sz = 4 + putVarint(&pCell[4], info.nKey);
8115 pTemp = 0;
8116 }else{
8117 pCell -= 4;
8118 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8119 ** previously stored on a leaf node, and its reported size was 4
8120 ** bytes, then it may actually be smaller than this
8121 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8122 ** any cell). But it is important to pass the correct size to
8123 ** insertCell(), so reparse the cell now.
8124 **
drhc1fb2b82016-03-09 03:29:27 +00008125 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8126 ** and WITHOUT ROWID tables with exactly one column which is the
8127 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008128 */
drh1ffd2472015-06-23 02:37:30 +00008129 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008130 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008131 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008132 }
8133 }
8134 iOvflSpace += sz;
8135 assert( sz<=pBt->maxLocal+23 );
8136 assert( iOvflSpace <= (int)pBt->pageSize );
8137 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
drhd2cfbea2019-05-08 03:34:53 +00008138 if( rc!=SQLITE_OK ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008139 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8140 }
8141
8142 /* Now update the actual sibling pages. The order in which they are updated
8143 ** is important, as this code needs to avoid disrupting any page from which
8144 ** cells may still to be read. In practice, this means:
8145 **
drhd836d422014-10-31 14:26:36 +00008146 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8147 ** then it is not safe to update page apNew[iPg] until after
8148 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008149 **
drhd836d422014-10-31 14:26:36 +00008150 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8151 ** then it is not safe to update page apNew[iPg] until after
8152 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008153 **
8154 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008155 **
8156 ** The iPg value in the following loop starts at nNew-1 goes down
8157 ** to 0, then back up to nNew-1 again, thus making two passes over
8158 ** the pages. On the initial downward pass, only condition (1) above
8159 ** needs to be tested because (2) will always be true from the previous
8160 ** step. On the upward pass, both conditions are always true, so the
8161 ** upwards pass simply processes pages that were missed on the downward
8162 ** pass.
dan33ea4862014-10-09 19:35:37 +00008163 */
drhbec021b2014-10-31 12:22:00 +00008164 for(i=1-nNew; i<nNew; i++){
8165 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008166 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008167 if( abDone[iPg] ) continue; /* Skip pages already processed */
8168 if( i>=0 /* On the upwards pass, or... */
8169 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008170 ){
dan09c68402014-10-11 20:00:24 +00008171 int iNew;
8172 int iOld;
8173 int nNewCell;
8174
drhd836d422014-10-31 14:26:36 +00008175 /* Verify condition (1): If cells are moving left, update iPg
8176 ** only after iPg-1 has already been updated. */
8177 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8178
8179 /* Verify condition (2): If cells are moving right, update iPg
8180 ** only after iPg+1 has already been updated. */
8181 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8182
dan09c68402014-10-11 20:00:24 +00008183 if( iPg==0 ){
8184 iNew = iOld = 0;
8185 nNewCell = cntNew[0];
8186 }else{
drh1ffd2472015-06-23 02:37:30 +00008187 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008188 iNew = cntNew[iPg-1] + !leafData;
8189 nNewCell = cntNew[iPg] - iNew;
8190 }
8191
drh1ffd2472015-06-23 02:37:30 +00008192 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008193 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008194 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008195 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008196 assert( apNew[iPg]->nOverflow==0 );
8197 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008198 }
8199 }
drhd836d422014-10-31 14:26:36 +00008200
8201 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008202 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8203
drh7aa8f852006-03-28 00:24:44 +00008204 assert( nOld>0 );
8205 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008206
danielk197713bd99f2009-06-24 05:40:34 +00008207 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8208 /* The root page of the b-tree now contains no cells. The only sibling
8209 ** page is the right-child of the parent. Copy the contents of the
8210 ** child page into the parent, decreasing the overall height of the
8211 ** b-tree structure by one. This is described as the "balance-shallower"
8212 ** sub-algorithm in some documentation.
8213 **
8214 ** If this is an auto-vacuum database, the call to copyNodeContent()
8215 ** sets all pointer-map entries corresponding to database image pages
8216 ** for which the pointer is stored within the content being copied.
8217 **
drh768f2902014-10-31 02:51:41 +00008218 ** It is critical that the child page be defragmented before being
8219 ** copied into the parent, because if the parent is page 1 then it will
8220 ** by smaller than the child due to the database header, and so all the
8221 ** free space needs to be up front.
8222 */
drh9b5351d2015-09-30 14:19:08 +00008223 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008224 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008225 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00008226 assert( apNew[0]->nFree ==
drh1c960262019-03-25 18:44:08 +00008227 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8228 - apNew[0]->nCell*2)
drh768f2902014-10-31 02:51:41 +00008229 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00008230 );
drhc314dc72009-07-21 11:52:34 +00008231 copyNodeContent(apNew[0], pParent, &rc);
8232 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00008233 }else if( ISAUTOVACUUM && !leafCorrection ){
8234 /* Fix the pointer map entries associated with the right-child of each
8235 ** sibling page. All other pointer map entries have already been taken
8236 ** care of. */
8237 for(i=0; i<nNew; i++){
8238 u32 key = get4byte(&apNew[i]->aData[8]);
8239 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008240 }
dan33ea4862014-10-09 19:35:37 +00008241 }
danielk19774dbaa892009-06-16 16:50:22 +00008242
dan33ea4862014-10-09 19:35:37 +00008243 assert( pParent->isInit );
8244 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008245 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008246
dan33ea4862014-10-09 19:35:37 +00008247 /* Free any old pages that were not reused as new pages.
8248 */
8249 for(i=nNew; i<nOld; i++){
8250 freePage(apOld[i], &rc);
8251 }
danielk19774dbaa892009-06-16 16:50:22 +00008252
8253#if 0
dan33ea4862014-10-09 19:35:37 +00008254 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008255 /* The ptrmapCheckPages() contains assert() statements that verify that
8256 ** all pointer map pages are set correctly. This is helpful while
8257 ** debugging. This is usually disabled because a corrupt database may
8258 ** cause an assert() statement to fail. */
8259 ptrmapCheckPages(apNew, nNew);
8260 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008261 }
dan33ea4862014-10-09 19:35:37 +00008262#endif
danielk1977cd581a72009-06-23 15:43:39 +00008263
drh8b2f49b2001-06-08 00:21:52 +00008264 /*
drh14acc042001-06-10 19:56:58 +00008265 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008266 */
drh14acc042001-06-10 19:56:58 +00008267balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008268 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008269 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008270 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008271 }
drh14acc042001-06-10 19:56:58 +00008272 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008273 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008274 }
danielk1977eaa06f62008-09-18 17:34:44 +00008275
drh8b2f49b2001-06-08 00:21:52 +00008276 return rc;
8277}
8278
drh43605152004-05-29 21:46:49 +00008279
8280/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008281** This function is called when the root page of a b-tree structure is
8282** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008283**
danielk1977a50d9aa2009-06-08 14:49:45 +00008284** A new child page is allocated and the contents of the current root
8285** page, including overflow cells, are copied into the child. The root
8286** page is then overwritten to make it an empty page with the right-child
8287** pointer pointing to the new page.
8288**
8289** Before returning, all pointer-map entries corresponding to pages
8290** that the new child-page now contains pointers to are updated. The
8291** entry corresponding to the new right-child pointer of the root
8292** page is also updated.
8293**
8294** If successful, *ppChild is set to contain a reference to the child
8295** page and SQLITE_OK is returned. In this case the caller is required
8296** to call releasePage() on *ppChild exactly once. If an error occurs,
8297** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008298*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008299static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8300 int rc; /* Return value from subprocedures */
8301 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008302 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008303 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008304
danielk1977a50d9aa2009-06-08 14:49:45 +00008305 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008306 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008307
danielk1977a50d9aa2009-06-08 14:49:45 +00008308 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8309 ** page that will become the new right-child of pPage. Copy the contents
8310 ** of the node stored on pRoot into the new child page.
8311 */
drh98add2e2009-07-20 17:11:49 +00008312 rc = sqlite3PagerWrite(pRoot->pDbPage);
8313 if( rc==SQLITE_OK ){
8314 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008315 copyNodeContent(pRoot, pChild, &rc);
8316 if( ISAUTOVACUUM ){
8317 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008318 }
8319 }
8320 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008321 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008322 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008323 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008324 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008325 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8326 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drh12fe9a02019-02-19 16:42:54 +00008327 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00008328
danielk1977a50d9aa2009-06-08 14:49:45 +00008329 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8330
8331 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008332 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8333 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8334 memcpy(pChild->apOvfl, pRoot->apOvfl,
8335 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008336 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008337
8338 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8339 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8340 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8341
8342 *ppChild = pChild;
8343 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008344}
8345
8346/*
drha2d50282019-12-23 18:02:15 +00008347** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8348** on the same B-tree as pCur.
8349**
8350** This can if a database is corrupt with two or more SQL tables
8351** pointing to the same b-tree. If an insert occurs on one SQL table
8352** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8353** table linked to the same b-tree. If the secondary insert causes a
8354** rebalance, that can change content out from under the cursor on the
8355** first SQL table, violating invariants on the first insert.
8356*/
8357static int anotherValidCursor(BtCursor *pCur){
8358 BtCursor *pOther;
8359 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8360 if( pOther!=pCur
8361 && pOther->eState==CURSOR_VALID
8362 && pOther->pPage==pCur->pPage
8363 ){
8364 return SQLITE_CORRUPT_BKPT;
8365 }
8366 }
8367 return SQLITE_OK;
8368}
8369
8370/*
danielk197771d5d2c2008-09-29 11:49:47 +00008371** The page that pCur currently points to has just been modified in
8372** some way. This function figures out if this modification means the
8373** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008374** routine. Balancing routines are:
8375**
8376** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008377** balance_deeper()
8378** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008379*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008380static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008381 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008382 const int nMin = pCur->pBt->usableSize * 2 / 3;
8383 u8 aBalanceQuickSpace[13];
8384 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008385
drhcc5f8a42016-02-06 22:32:06 +00008386 VVA_ONLY( int balance_quick_called = 0 );
8387 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008388
8389 do {
dan01fd42b2019-07-13 09:55:33 +00008390 int iPage;
drh352a35a2017-08-15 03:46:47 +00008391 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008392
drha941ff72019-02-12 00:58:10 +00008393 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
dan01fd42b2019-07-13 09:55:33 +00008394 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8395 break;
8396 }else if( (iPage = pCur->iPage)==0 ){
drha2d50282019-12-23 18:02:15 +00008397 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008398 /* The root page of the b-tree is overfull. In this case call the
8399 ** balance_deeper() function to create a new child for the root-page
8400 ** and copy the current contents of the root-page to it. The
8401 ** next iteration of the do-loop will balance the child page.
8402 */
drhcc5f8a42016-02-06 22:32:06 +00008403 assert( balance_deeper_called==0 );
8404 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008405 rc = balance_deeper(pPage, &pCur->apPage[1]);
8406 if( rc==SQLITE_OK ){
8407 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008408 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008409 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008410 pCur->apPage[0] = pPage;
8411 pCur->pPage = pCur->apPage[1];
8412 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008413 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008414 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008415 break;
8416 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008417 }else{
8418 MemPage * const pParent = pCur->apPage[iPage-1];
8419 int const iIdx = pCur->aiIdx[iPage-1];
8420
8421 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00008422 if( rc==SQLITE_OK && pParent->nFree<0 ){
8423 rc = btreeComputeFreeSpace(pParent);
8424 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008425 if( rc==SQLITE_OK ){
8426#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008427 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008428 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008429 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008430 && pParent->pgno!=1
8431 && pParent->nCell==iIdx
8432 ){
8433 /* Call balance_quick() to create a new sibling of pPage on which
8434 ** to store the overflow cell. balance_quick() inserts a new cell
8435 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008436 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008437 ** use either balance_nonroot() or balance_deeper(). Until this
8438 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8439 ** buffer.
8440 **
8441 ** The purpose of the following assert() is to check that only a
8442 ** single call to balance_quick() is made for each call to this
8443 ** function. If this were not verified, a subtle bug involving reuse
8444 ** of the aBalanceQuickSpace[] might sneak in.
8445 */
drhcc5f8a42016-02-06 22:32:06 +00008446 assert( balance_quick_called==0 );
8447 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008448 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8449 }else
8450#endif
8451 {
8452 /* In this case, call balance_nonroot() to redistribute cells
8453 ** between pPage and up to 2 of its sibling pages. This involves
8454 ** modifying the contents of pParent, which may cause pParent to
8455 ** become overfull or underfull. The next iteration of the do-loop
8456 ** will balance the parent page to correct this.
8457 **
8458 ** If the parent page becomes overfull, the overflow cell or cells
8459 ** are stored in the pSpace buffer allocated immediately below.
8460 ** A subsequent iteration of the do-loop will deal with this by
8461 ** calling balance_nonroot() (balance_deeper() may be called first,
8462 ** but it doesn't deal with overflow cells - just moves them to a
8463 ** different page). Once this subsequent call to balance_nonroot()
8464 ** has completed, it is safe to release the pSpace buffer used by
8465 ** the previous call, as the overflow cell data will have been
8466 ** copied either into the body of a database page or into the new
8467 ** pSpace buffer passed to the latter call to balance_nonroot().
8468 */
8469 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008470 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8471 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008472 if( pFree ){
8473 /* If pFree is not NULL, it points to the pSpace buffer used
8474 ** by a previous call to balance_nonroot(). Its contents are
8475 ** now stored either on real database pages or within the
8476 ** new pSpace buffer, so it may be safely freed here. */
8477 sqlite3PageFree(pFree);
8478 }
8479
danielk19774dbaa892009-06-16 16:50:22 +00008480 /* The pSpace buffer will be freed after the next call to
8481 ** balance_nonroot(), or just before this function returns, whichever
8482 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008483 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008484 }
8485 }
8486
8487 pPage->nOverflow = 0;
8488
8489 /* The next iteration of the do-loop balances the parent page. */
8490 releasePage(pPage);
8491 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008492 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008493 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008494 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008495 }while( rc==SQLITE_OK );
8496
8497 if( pFree ){
8498 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008499 }
8500 return rc;
8501}
8502
drh3de5d162018-05-03 03:59:02 +00008503/* Overwrite content from pX into pDest. Only do the write if the
8504** content is different from what is already there.
8505*/
8506static int btreeOverwriteContent(
8507 MemPage *pPage, /* MemPage on which writing will occur */
8508 u8 *pDest, /* Pointer to the place to start writing */
8509 const BtreePayload *pX, /* Source of data to write */
8510 int iOffset, /* Offset of first byte to write */
8511 int iAmt /* Number of bytes to be written */
8512){
8513 int nData = pX->nData - iOffset;
8514 if( nData<=0 ){
8515 /* Overwritting with zeros */
8516 int i;
8517 for(i=0; i<iAmt && pDest[i]==0; i++){}
8518 if( i<iAmt ){
8519 int rc = sqlite3PagerWrite(pPage->pDbPage);
8520 if( rc ) return rc;
8521 memset(pDest + i, 0, iAmt - i);
8522 }
8523 }else{
8524 if( nData<iAmt ){
8525 /* Mixed read data and zeros at the end. Make a recursive call
8526 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008527 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8528 iAmt-nData);
8529 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008530 iAmt = nData;
8531 }
8532 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8533 int rc = sqlite3PagerWrite(pPage->pDbPage);
8534 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00008535 /* In a corrupt database, it is possible for the source and destination
8536 ** buffers to overlap. This is harmless since the database is already
8537 ** corrupt but it does cause valgrind and ASAN warnings. So use
8538 ** memmove(). */
8539 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00008540 }
8541 }
8542 return SQLITE_OK;
8543}
8544
8545/*
8546** Overwrite the cell that cursor pCur is pointing to with fresh content
8547** contained in pX.
8548*/
8549static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8550 int iOffset; /* Next byte of pX->pData to write */
8551 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8552 int rc; /* Return code */
8553 MemPage *pPage = pCur->pPage; /* Page being written */
8554 BtShared *pBt; /* Btree */
8555 Pgno ovflPgno; /* Next overflow page to write */
8556 u32 ovflPageSize; /* Size to write on overflow page */
8557
drh27e80a32019-08-15 13:17:49 +00008558 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8559 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8560 ){
drh4f84e9c2018-05-03 13:56:23 +00008561 return SQLITE_CORRUPT_BKPT;
8562 }
drh3de5d162018-05-03 03:59:02 +00008563 /* Overwrite the local portion first */
8564 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8565 0, pCur->info.nLocal);
8566 if( rc ) return rc;
8567 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8568
8569 /* Now overwrite the overflow pages */
8570 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008571 assert( nTotal>=0 );
8572 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008573 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8574 pBt = pPage->pBt;
8575 ovflPageSize = pBt->usableSize - 4;
8576 do{
8577 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8578 if( rc ) return rc;
drh4f84e9c2018-05-03 13:56:23 +00008579 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
drhd5aa9262018-05-03 16:56:06 +00008580 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008581 }else{
drh30f7a252018-05-07 11:29:59 +00008582 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008583 ovflPgno = get4byte(pPage->aData);
8584 }else{
8585 ovflPageSize = nTotal - iOffset;
8586 }
8587 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8588 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008589 }
drhd5aa9262018-05-03 16:56:06 +00008590 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008591 if( rc ) return rc;
8592 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008593 }while( iOffset<nTotal );
8594 return SQLITE_OK;
8595}
8596
drhf74b8d92002-09-01 23:20:45 +00008597
8598/*
drh8eeb4462016-05-21 20:03:42 +00008599** Insert a new record into the BTree. The content of the new record
8600** is described by the pX object. The pCur cursor is used only to
8601** define what table the record should be inserted into, and is left
8602** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008603**
drh8eeb4462016-05-21 20:03:42 +00008604** For a table btree (used for rowid tables), only the pX.nKey value of
8605** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8606** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8607** hold the content of the row.
8608**
8609** For an index btree (used for indexes and WITHOUT ROWID tables), the
8610** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8611** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008612**
8613** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008614** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8615** been performed. In other words, if seekResult!=0 then the cursor
8616** is currently pointing to a cell that will be adjacent to the cell
8617** to be inserted. If seekResult<0 then pCur points to a cell that is
8618** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8619** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008620**
drheaf6ae22016-11-09 20:14:34 +00008621** If seekResult==0, that means pCur is pointing at some unknown location.
8622** In that case, this routine must seek the cursor to the correct insertion
8623** point for (pKey,nKey) before doing the insertion. For index btrees,
8624** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8625** key values and pX->aMem can be used instead of pX->pKey to avoid having
8626** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008627*/
drh3aac2dd2004-04-26 14:10:20 +00008628int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008629 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008630 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008631 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008632 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008633){
drh3b7511c2001-05-26 13:15:44 +00008634 int rc;
drh3e9ca092009-09-08 01:14:48 +00008635 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008636 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008637 int idx;
drh3b7511c2001-05-26 13:15:44 +00008638 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008639 Btree *p = pCur->pBtree;
8640 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008641 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008642 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008643
danf91c1312017-01-10 20:04:38 +00008644 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8645
drh98add2e2009-07-20 17:11:49 +00008646 if( pCur->eState==CURSOR_FAULT ){
8647 assert( pCur->skipNext!=SQLITE_OK );
8648 return pCur->skipNext;
8649 }
8650
dan7a2347e2016-01-07 16:43:54 +00008651 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008652 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8653 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008654 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008655 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8656
danielk197731d31b82009-07-13 13:18:07 +00008657 /* Assert that the caller has been consistent. If this cursor was opened
8658 ** expecting an index b-tree, then the caller should be inserting blob
8659 ** keys with no associated data. If the cursor was opened expecting an
8660 ** intkey table, the caller should be inserting integer keys with a
8661 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008662 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008663
danielk19779c3acf32009-05-02 07:36:49 +00008664 /* Save the positions of any other cursors open on this table.
8665 **
danielk19773509a652009-07-06 18:56:13 +00008666 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008667 ** example, when inserting data into a table with auto-generated integer
8668 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8669 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008670 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008671 ** that the cursor is already where it needs to be and returns without
8672 ** doing any work. To avoid thwarting these optimizations, it is important
8673 ** not to clear the cursor here.
8674 */
drh27fb7462015-06-30 02:47:36 +00008675 if( pCur->curFlags & BTCF_Multiple ){
8676 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8677 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008678 }
8679
danielk197771d5d2c2008-09-29 11:49:47 +00008680 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008681 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008682 /* If this is an insert into a table b-tree, invalidate any incrblob
8683 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008684 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008685
danf91c1312017-01-10 20:04:38 +00008686 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008687 ** to a row with the same key as the new entry being inserted.
8688 */
8689#ifdef SQLITE_DEBUG
8690 if( flags & BTREE_SAVEPOSITION ){
8691 assert( pCur->curFlags & BTCF_ValidNKey );
8692 assert( pX->nKey==pCur->info.nKey );
drhd720d392018-05-07 17:27:04 +00008693 assert( loc==0 );
8694 }
8695#endif
danf91c1312017-01-10 20:04:38 +00008696
drhd720d392018-05-07 17:27:04 +00008697 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8698 ** that the cursor is not pointing to a row to be overwritten.
8699 ** So do a complete check.
8700 */
drh7a1c28d2016-11-10 20:42:08 +00008701 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008702 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008703 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008704 assert( pX->nData>=0 && pX->nZero>=0 );
8705 if( pCur->info.nSize!=0
8706 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8707 ){
drhd720d392018-05-07 17:27:04 +00008708 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008709 return btreeOverwriteCell(pCur, pX);
8710 }
drhd720d392018-05-07 17:27:04 +00008711 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008712 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008713 /* The cursor is *not* pointing to the cell to be overwritten, nor
8714 ** to an adjacent cell. Move the cursor so that it is pointing either
8715 ** to the cell to be overwritten or an adjacent cell.
8716 */
danf91c1312017-01-10 20:04:38 +00008717 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008718 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008719 }
drhd720d392018-05-07 17:27:04 +00008720 }else{
8721 /* This is an index or a WITHOUT ROWID table */
8722
8723 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8724 ** to a row with the same key as the new entry being inserted.
8725 */
8726 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8727
8728 /* If the cursor is not already pointing either to the cell to be
8729 ** overwritten, or if a new cell is being inserted, if the cursor is
8730 ** not pointing to an immediately adjacent cell, then move the cursor
8731 ** so that it does.
8732 */
8733 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8734 if( pX->nMem ){
8735 UnpackedRecord r;
8736 r.pKeyInfo = pCur->pKeyInfo;
8737 r.aMem = pX->aMem;
8738 r.nField = pX->nMem;
8739 r.default_rc = 0;
8740 r.errCode = 0;
8741 r.r1 = 0;
8742 r.r2 = 0;
8743 r.eqSeen = 0;
8744 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8745 }else{
8746 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8747 }
8748 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00008749 }
drh89ee2292018-05-07 18:41:19 +00008750
8751 /* If the cursor is currently pointing to an entry to be overwritten
8752 ** and the new content is the same as as the old, then use the
8753 ** overwrite optimization.
8754 */
8755 if( loc==0 ){
8756 getCellInfo(pCur);
8757 if( pCur->info.nKey==pX->nKey ){
8758 BtreePayload x2;
8759 x2.pData = pX->pKey;
8760 x2.nData = pX->nKey;
8761 x2.nZero = 0;
8762 return btreeOverwriteCell(pCur, &x2);
8763 }
8764 }
8765
danielk1977da184232006-01-05 11:34:32 +00008766 }
drh0e5ce802019-12-20 12:33:17 +00008767 assert( pCur->eState==CURSOR_VALID
8768 || (pCur->eState==CURSOR_INVALID && loc)
8769 || CORRUPT_DB );
danielk1977da184232006-01-05 11:34:32 +00008770
drh352a35a2017-08-15 03:46:47 +00008771 pPage = pCur->pPage;
drh8eeb4462016-05-21 20:03:42 +00008772 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008773 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00008774 if( pPage->nFree<0 ){
8775 rc = btreeComputeFreeSpace(pPage);
8776 if( rc ) return rc;
8777 }
danielk19778f880a82009-07-13 09:41:45 +00008778
drh3a4c1412004-05-09 20:40:11 +00008779 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008780 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008781 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008782 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008783 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008784 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008785 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008786 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008787 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008788 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008789 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008790 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008791 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008792 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008793 rc = sqlite3PagerWrite(pPage->pDbPage);
8794 if( rc ){
8795 goto end_insert;
8796 }
danielk197771d5d2c2008-09-29 11:49:47 +00008797 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008798 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008799 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008800 }
drh80159da2016-12-09 17:32:51 +00008801 rc = clearCell(pPage, oldCell, &info);
drh554a19d2019-08-12 18:26:46 +00008802 testcase( pCur->curFlags & BTCF_ValidOvfl );
8803 invalidateOverflowCache(pCur);
danca66f6c2017-06-08 11:14:08 +00008804 if( info.nSize==szNew && info.nLocal==info.nPayload
8805 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8806 ){
drhf9238252016-12-09 18:09:42 +00008807 /* Overwrite the old cell with the new if they are the same size.
8808 ** We could also try to do this if the old cell is smaller, then add
8809 ** the leftover space to the free list. But experiments show that
8810 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008811 ** calling dropCell() and insertCell().
8812 **
8813 ** This optimization cannot be used on an autovacuum database if the
8814 ** new entry uses overflow pages, as the insertCell() call below is
8815 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008816 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh93788182019-07-22 23:24:01 +00008817 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
8818 return SQLITE_CORRUPT_BKPT;
8819 }
8820 if( oldCell+szNew > pPage->aDataEnd ){
8821 return SQLITE_CORRUPT_BKPT;
8822 }
drh80159da2016-12-09 17:32:51 +00008823 memcpy(oldCell, newCell, szNew);
8824 return SQLITE_OK;
8825 }
8826 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008827 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008828 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008829 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008830 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008831 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008832 }else{
drh4b70f112004-05-02 21:12:19 +00008833 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008834 }
drh98add2e2009-07-20 17:11:49 +00008835 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008836 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008837 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008838
mistachkin48864df2013-03-21 21:20:32 +00008839 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008840 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008841 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008842 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008843 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008844 ** Previous versions of SQLite called moveToRoot() to move the cursor
8845 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008846 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8847 ** set the cursor state to "invalid". This makes common insert operations
8848 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008849 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008850 ** There is a subtle but important optimization here too. When inserting
8851 ** multiple records into an intkey b-tree using a single cursor (as can
8852 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8853 ** is advantageous to leave the cursor pointing to the last entry in
8854 ** the b-tree if possible. If the cursor is left pointing to the last
8855 ** entry in the table, and the next row inserted has an integer key
8856 ** larger than the largest existing key, it is possible to insert the
8857 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008858 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008859 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008860 if( pPage->nOverflow ){
8861 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008862 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008863 rc = balance(pCur);
8864
8865 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008866 ** fails. Internal data structure corruption will result otherwise.
8867 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8868 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00008869 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008870 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008871 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00008872 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00008873 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008874 assert( pCur->pKey==0 );
8875 pCur->pKey = sqlite3Malloc( pX->nKey );
8876 if( pCur->pKey==0 ){
8877 rc = SQLITE_NOMEM;
8878 }else{
8879 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8880 }
8881 }
8882 pCur->eState = CURSOR_REQUIRESEEK;
8883 pCur->nKey = pX->nKey;
8884 }
danielk19773f632d52009-05-02 10:03:09 +00008885 }
drh352a35a2017-08-15 03:46:47 +00008886 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008887
drh2e38c322004-09-03 18:38:44 +00008888end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008889 return rc;
8890}
8891
8892/*
danf0ee1d32015-09-12 19:26:11 +00008893** Delete the entry that the cursor is pointing to.
8894**
drhe807bdb2016-01-21 17:06:33 +00008895** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8896** the cursor is left pointing at an arbitrary location after the delete.
8897** But if that bit is set, then the cursor is left in a state such that
8898** the next call to BtreeNext() or BtreePrev() moves it to the same row
8899** as it would have been on if the call to BtreeDelete() had been omitted.
8900**
drhdef19e32016-01-27 16:26:25 +00008901** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8902** associated with a single table entry and its indexes. Only one of those
8903** deletes is considered the "primary" delete. The primary delete occurs
8904** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8905** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8906** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008907** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008908*/
drhe807bdb2016-01-21 17:06:33 +00008909int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008910 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008911 BtShared *pBt = p->pBt;
8912 int rc; /* Return code */
8913 MemPage *pPage; /* Page to delete cell from */
8914 unsigned char *pCell; /* Pointer to cell to delete */
8915 int iCellIdx; /* Index of cell to delete */
8916 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008917 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008918 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008919 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008920
dan7a2347e2016-01-07 16:43:54 +00008921 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008922 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008923 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008924 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008925 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8926 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drhdef19e32016-01-27 16:26:25 +00008927 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danb560a712019-03-13 15:29:14 +00008928 if( pCur->eState==CURSOR_REQUIRESEEK ){
8929 rc = btreeRestoreCursorPosition(pCur);
8930 if( rc ) return rc;
8931 }
8932 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00008933
danielk19774dbaa892009-06-16 16:50:22 +00008934 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008935 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00008936 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008937 pCell = findCell(pPage, iCellIdx);
drhb0ea9432019-02-09 21:06:40 +00008938 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
danielk19774dbaa892009-06-16 16:50:22 +00008939
drhbfc7a8b2016-04-09 17:04:05 +00008940 /* If the bPreserve flag is set to true, then the cursor position must
8941 ** be preserved following this delete operation. If the current delete
8942 ** will cause a b-tree rebalance, then this is done by saving the cursor
8943 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8944 ** returning.
8945 **
8946 ** Or, if the current delete will not cause a rebalance, then the cursor
8947 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8948 ** before or after the deleted entry. In this case set bSkipnext to true. */
8949 if( bPreserve ){
8950 if( !pPage->leaf
8951 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00008952 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00008953 ){
8954 /* A b-tree rebalance will be required after deleting this entry.
8955 ** Save the cursor key. */
8956 rc = saveCursorKey(pCur);
8957 if( rc ) return rc;
8958 }else{
8959 bSkipnext = 1;
8960 }
8961 }
8962
danielk19774dbaa892009-06-16 16:50:22 +00008963 /* If the page containing the entry to delete is not a leaf page, move
8964 ** the cursor to the largest entry in the tree that is smaller than
8965 ** the entry being deleted. This cell will replace the cell being deleted
8966 ** from the internal node. The 'previous' entry is used for this instead
8967 ** of the 'next' entry, as the previous entry is always a part of the
8968 ** sub-tree headed by the child page of the cell being deleted. This makes
8969 ** balancing the tree following the delete operation easier. */
8970 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008971 rc = sqlite3BtreePrevious(pCur, 0);
8972 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008973 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008974 }
8975
8976 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008977 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008978 if( pCur->curFlags & BTCF_Multiple ){
8979 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8980 if( rc ) return rc;
8981 }
drhd60f4f42012-03-23 14:23:52 +00008982
8983 /* If this is a delete operation to remove a row from a table b-tree,
8984 ** invalidate any incrblob cursors open on the row being deleted. */
8985 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008986 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008987 }
8988
danf0ee1d32015-09-12 19:26:11 +00008989 /* Make the page containing the entry to be deleted writable. Then free any
8990 ** overflow pages associated with the entry and finally remove the cell
8991 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008992 rc = sqlite3PagerWrite(pPage->pDbPage);
8993 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008994 rc = clearCell(pPage, pCell, &info);
8995 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008996 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008997
danielk19774dbaa892009-06-16 16:50:22 +00008998 /* If the cell deleted was not located on a leaf page, then the cursor
8999 ** is currently pointing to the largest entry in the sub-tree headed
9000 ** by the child-page of the cell that was just deleted from an internal
9001 ** node. The cell from the leaf node needs to be moved to the internal
9002 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00009003 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00009004 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00009005 int nCell;
drh352a35a2017-08-15 03:46:47 +00009006 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00009007 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00009008
drhb0ea9432019-02-09 21:06:40 +00009009 if( pLeaf->nFree<0 ){
9010 rc = btreeComputeFreeSpace(pLeaf);
9011 if( rc ) return rc;
9012 }
drh352a35a2017-08-15 03:46:47 +00009013 if( iCellDepth<pCur->iPage-1 ){
9014 n = pCur->apPage[iCellDepth+1]->pgno;
9015 }else{
9016 n = pCur->pPage->pgno;
9017 }
danielk19774dbaa892009-06-16 16:50:22 +00009018 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00009019 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00009020 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00009021 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00009022 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009023 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00009024 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00009025 if( rc==SQLITE_OK ){
9026 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9027 }
drh98add2e2009-07-20 17:11:49 +00009028 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00009029 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00009030 }
danielk19774dbaa892009-06-16 16:50:22 +00009031
9032 /* Balance the tree. If the entry deleted was located on a leaf page,
9033 ** then the cursor still points to that page. In this case the first
9034 ** call to balance() repairs the tree, and the if(...) condition is
9035 ** never true.
9036 **
9037 ** Otherwise, if the entry deleted was on an internal node page, then
9038 ** pCur is pointing to the leaf page from which a cell was removed to
9039 ** replace the cell deleted from the internal node. This is slightly
9040 ** tricky as the leaf node may be underfull, and the internal node may
9041 ** be either under or overfull. In this case run the balancing algorithm
9042 ** on the leaf node first. If the balance proceeds far enough up the
9043 ** tree that we can be sure that any problem in the internal node has
9044 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9045 ** walk the cursor up the tree to the internal node and balance it as
9046 ** well. */
9047 rc = balance(pCur);
9048 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00009049 releasePageNotNull(pCur->pPage);
9050 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00009051 while( pCur->iPage>iCellDepth ){
9052 releasePage(pCur->apPage[pCur->iPage--]);
9053 }
drh352a35a2017-08-15 03:46:47 +00009054 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00009055 rc = balance(pCur);
9056 }
9057
danielk19776b456a22005-03-21 04:04:02 +00009058 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00009059 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00009060 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00009061 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00009062 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00009063 pCur->eState = CURSOR_SKIPNEXT;
9064 if( iCellIdx>=pPage->nCell ){
9065 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00009066 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00009067 }else{
9068 pCur->skipNext = 1;
9069 }
9070 }else{
9071 rc = moveToRoot(pCur);
9072 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00009073 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00009074 pCur->eState = CURSOR_REQUIRESEEK;
9075 }
drh44548e72017-08-14 18:13:52 +00009076 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00009077 }
danielk19776b456a22005-03-21 04:04:02 +00009078 }
drh5e2f8b92001-05-28 00:41:15 +00009079 return rc;
drh3b7511c2001-05-26 13:15:44 +00009080}
drh8b2f49b2001-06-08 00:21:52 +00009081
9082/*
drhc6b52df2002-01-04 03:09:29 +00009083** Create a new BTree table. Write into *piTable the page
9084** number for the root page of the new table.
9085**
drhab01f612004-05-22 02:55:23 +00009086** The type of type is determined by the flags parameter. Only the
9087** following values of flags are currently in use. Other values for
9088** flags might not work:
9089**
9090** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9091** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00009092*/
drhd4187c72010-08-30 22:15:45 +00009093static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00009094 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009095 MemPage *pRoot;
9096 Pgno pgnoRoot;
9097 int rc;
drhd4187c72010-08-30 22:15:45 +00009098 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00009099
drh1fee73e2007-08-29 04:00:57 +00009100 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009101 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009102 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00009103
danielk1977003ba062004-11-04 02:57:33 +00009104#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00009105 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00009106 if( rc ){
9107 return rc;
9108 }
danielk1977003ba062004-11-04 02:57:33 +00009109#else
danielk1977687566d2004-11-02 12:56:41 +00009110 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009111 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9112 MemPage *pPageMove; /* The page to move to. */
9113
danielk197720713f32007-05-03 11:43:33 +00009114 /* Creating a new table may probably require moving an existing database
9115 ** to make room for the new tables root page. In case this page turns
9116 ** out to be an overflow page, delete all overflow page-map caches
9117 ** held by open cursors.
9118 */
danielk197792d4d7a2007-05-04 12:05:56 +00009119 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009120
danielk1977003ba062004-11-04 02:57:33 +00009121 /* Read the value of meta[3] from the database to determine where the
9122 ** root page of the new table should go. meta[3] is the largest root-page
9123 ** created so far, so the new root-page is (meta[3]+1).
9124 */
danielk1977602b4662009-07-02 07:47:33 +00009125 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00009126 pgnoRoot++;
9127
danielk1977599fcba2004-11-08 07:13:13 +00009128 /* The new root-page may not be allocated on a pointer-map page, or the
9129 ** PENDING_BYTE page.
9130 */
drh72190432008-01-31 14:54:43 +00009131 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009132 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009133 pgnoRoot++;
9134 }
drh499e15b2015-05-22 12:37:37 +00009135 assert( pgnoRoot>=3 || CORRUPT_DB );
9136 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00009137
9138 /* Allocate a page. The page that currently resides at pgnoRoot will
9139 ** be moved to the allocated page (unless the allocated page happens
9140 ** to reside at pgnoRoot).
9141 */
dan51f0b6d2013-02-22 20:16:34 +00009142 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009143 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009144 return rc;
9145 }
danielk1977003ba062004-11-04 02:57:33 +00009146
9147 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009148 /* pgnoRoot is the page that will be used for the root-page of
9149 ** the new table (assuming an error did not occur). But we were
9150 ** allocated pgnoMove. If required (i.e. if it was not allocated
9151 ** by extending the file), the current page at position pgnoMove
9152 ** is already journaled.
9153 */
drheeb844a2009-08-08 18:01:07 +00009154 u8 eType = 0;
9155 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009156
danf7679ad2013-04-03 11:38:36 +00009157 /* Save the positions of any open cursors. This is required in
9158 ** case they are holding a reference to an xFetch reference
9159 ** corresponding to page pgnoRoot. */
9160 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009161 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009162 if( rc!=SQLITE_OK ){
9163 return rc;
9164 }
danielk1977f35843b2007-04-07 15:03:17 +00009165
9166 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009167 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009168 if( rc!=SQLITE_OK ){
9169 return rc;
9170 }
9171 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009172 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9173 rc = SQLITE_CORRUPT_BKPT;
9174 }
9175 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009176 releasePage(pRoot);
9177 return rc;
9178 }
drhccae6022005-02-26 17:31:26 +00009179 assert( eType!=PTRMAP_ROOTPAGE );
9180 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009181 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009182 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009183
9184 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009185 if( rc!=SQLITE_OK ){
9186 return rc;
9187 }
drhb00fc3b2013-08-21 23:42:32 +00009188 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009189 if( rc!=SQLITE_OK ){
9190 return rc;
9191 }
danielk19773b8a05f2007-03-19 17:44:26 +00009192 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009193 if( rc!=SQLITE_OK ){
9194 releasePage(pRoot);
9195 return rc;
9196 }
9197 }else{
9198 pRoot = pPageMove;
9199 }
9200
danielk197742741be2005-01-08 12:42:39 +00009201 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009202 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009203 if( rc ){
9204 releasePage(pRoot);
9205 return rc;
9206 }
drhbf592832010-03-30 15:51:12 +00009207
9208 /* When the new root page was allocated, page 1 was made writable in
9209 ** order either to increase the database filesize, or to decrement the
9210 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9211 */
9212 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009213 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009214 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009215 releasePage(pRoot);
9216 return rc;
9217 }
danielk197742741be2005-01-08 12:42:39 +00009218
danielk1977003ba062004-11-04 02:57:33 +00009219 }else{
drh4f0c5872007-03-26 22:05:01 +00009220 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009221 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009222 }
9223#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009224 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009225 if( createTabFlags & BTREE_INTKEY ){
9226 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9227 }else{
9228 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9229 }
9230 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009231 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009232 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00009233 *piTable = (int)pgnoRoot;
9234 return SQLITE_OK;
9235}
drhd677b3d2007-08-20 22:48:41 +00009236int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
9237 int rc;
9238 sqlite3BtreeEnter(p);
9239 rc = btreeCreateTable(p, piTable, flags);
9240 sqlite3BtreeLeave(p);
9241 return rc;
9242}
drh8b2f49b2001-06-08 00:21:52 +00009243
9244/*
9245** Erase the given database page and all its children. Return
9246** the page to the freelist.
9247*/
drh4b70f112004-05-02 21:12:19 +00009248static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00009249 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00009250 Pgno pgno, /* Page number to clear */
9251 int freePageFlag, /* Deallocate page if true */
9252 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00009253){
danielk1977146ba992009-07-22 14:08:13 +00009254 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00009255 int rc;
drh4b70f112004-05-02 21:12:19 +00009256 unsigned char *pCell;
9257 int i;
dan8ce71842014-01-14 20:14:09 +00009258 int hdr;
drh80159da2016-12-09 17:32:51 +00009259 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00009260
drh1fee73e2007-08-29 04:00:57 +00009261 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00009262 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00009263 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00009264 }
drh28f58dd2015-06-27 19:45:03 +00009265 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00009266 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00009267 if( pPage->bBusy ){
9268 rc = SQLITE_CORRUPT_BKPT;
9269 goto cleardatabasepage_out;
9270 }
9271 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00009272 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00009273 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00009274 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00009275 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00009276 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009277 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009278 }
drh80159da2016-12-09 17:32:51 +00009279 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00009280 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009281 }
drha34b6762004-05-07 13:30:42 +00009282 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00009283 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009284 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00009285 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00009286 assert( pPage->intKey || CORRUPT_DB );
9287 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00009288 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00009289 }
9290 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00009291 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00009292 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00009293 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00009294 }
danielk19776b456a22005-03-21 04:04:02 +00009295
9296cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00009297 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00009298 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00009299 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009300}
9301
9302/*
drhab01f612004-05-22 02:55:23 +00009303** Delete all information from a single table in the database. iTable is
9304** the page number of the root of the table. After this routine returns,
9305** the root page is empty, but still exists.
9306**
9307** This routine will fail with SQLITE_LOCKED if there are any open
9308** read cursors on the table. Open write cursors are moved to the
9309** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00009310**
9311** If pnChange is not NULL, then table iTable must be an intkey table. The
9312** integer value pointed to by pnChange is incremented by the number of
9313** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00009314*/
danielk1977c7af4842008-10-27 13:59:33 +00009315int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00009316 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009317 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009318 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009319 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009320
drhc046e3e2009-07-15 11:26:44 +00009321 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009322
drhc046e3e2009-07-15 11:26:44 +00009323 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009324 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9325 ** is the root of a table b-tree - if it is not, the following call is
9326 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00009327 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00009328 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009329 }
drhd677b3d2007-08-20 22:48:41 +00009330 sqlite3BtreeLeave(p);
9331 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009332}
9333
9334/*
drh079a3072014-03-19 14:10:55 +00009335** Delete all information from the single table that pCur is open on.
9336**
9337** This routine only work for pCur on an ephemeral table.
9338*/
9339int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9340 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9341}
9342
9343/*
drh8b2f49b2001-06-08 00:21:52 +00009344** Erase all information in a table and add the root of the table to
9345** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009346** page 1) is never added to the freelist.
9347**
9348** This routine will fail with SQLITE_LOCKED if there are any open
9349** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009350**
9351** If AUTOVACUUM is enabled and the page at iTable is not the last
9352** root page in the database file, then the last root page
9353** in the database file is moved into the slot formerly occupied by
9354** iTable and that last slot formerly occupied by the last root page
9355** is added to the freelist instead of iTable. In this say, all
9356** root pages are kept at the beginning of the database file, which
9357** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9358** page number that used to be the last root page in the file before
9359** the move. If no page gets moved, *piMoved is set to 0.
9360** The last root page is recorded in meta[3] and the value of
9361** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009362*/
danielk197789d40042008-11-17 14:20:56 +00009363static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009364 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009365 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009366 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009367
drh1fee73e2007-08-29 04:00:57 +00009368 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009369 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009370 assert( iTable>=2 );
drh9a518842019-03-08 01:52:30 +00009371 if( iTable>btreePagecount(pBt) ){
9372 return SQLITE_CORRUPT_BKPT;
9373 }
drh055f2982016-01-15 15:06:41 +00009374
drhb00fc3b2013-08-21 23:42:32 +00009375 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00009376 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00009377 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00009378 if( rc ){
9379 releasePage(pPage);
9380 return rc;
9381 }
danielk1977a0bf2652004-11-04 14:30:04 +00009382
drh205f48e2004-11-05 00:43:11 +00009383 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009384
danielk1977a0bf2652004-11-04 14:30:04 +00009385#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009386 freePage(pPage, &rc);
9387 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009388#else
drh055f2982016-01-15 15:06:41 +00009389 if( pBt->autoVacuum ){
9390 Pgno maxRootPgno;
9391 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009392
drh055f2982016-01-15 15:06:41 +00009393 if( iTable==maxRootPgno ){
9394 /* If the table being dropped is the table with the largest root-page
9395 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009396 */
drhc314dc72009-07-21 11:52:34 +00009397 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009398 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009399 if( rc!=SQLITE_OK ){
9400 return rc;
9401 }
9402 }else{
9403 /* The table being dropped does not have the largest root-page
9404 ** number in the database. So move the page that does into the
9405 ** gap left by the deleted root-page.
9406 */
9407 MemPage *pMove;
9408 releasePage(pPage);
9409 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9410 if( rc!=SQLITE_OK ){
9411 return rc;
9412 }
9413 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9414 releasePage(pMove);
9415 if( rc!=SQLITE_OK ){
9416 return rc;
9417 }
9418 pMove = 0;
9419 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9420 freePage(pMove, &rc);
9421 releasePage(pMove);
9422 if( rc!=SQLITE_OK ){
9423 return rc;
9424 }
9425 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009426 }
drh055f2982016-01-15 15:06:41 +00009427
9428 /* Set the new 'max-root-page' value in the database header. This
9429 ** is the old value less one, less one more if that happens to
9430 ** be a root-page number, less one again if that is the
9431 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009432 */
drh055f2982016-01-15 15:06:41 +00009433 maxRootPgno--;
9434 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9435 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9436 maxRootPgno--;
9437 }
9438 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9439
9440 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9441 }else{
9442 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009443 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009444 }
drh055f2982016-01-15 15:06:41 +00009445#endif
drh8b2f49b2001-06-08 00:21:52 +00009446 return rc;
9447}
drhd677b3d2007-08-20 22:48:41 +00009448int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9449 int rc;
9450 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009451 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009452 sqlite3BtreeLeave(p);
9453 return rc;
9454}
drh8b2f49b2001-06-08 00:21:52 +00009455
drh001bbcb2003-03-19 03:14:00 +00009456
drh8b2f49b2001-06-08 00:21:52 +00009457/*
danielk1977602b4662009-07-02 07:47:33 +00009458** This function may only be called if the b-tree connection already
9459** has a read or write transaction open on the database.
9460**
drh23e11ca2004-05-04 17:27:28 +00009461** Read the meta-information out of a database file. Meta[0]
9462** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009463** through meta[15] are available for use by higher layers. Meta[0]
9464** is read-only, the others are read/write.
9465**
9466** The schema layer numbers meta values differently. At the schema
9467** layer (and the SetCookie and ReadCookie opcodes) the number of
9468** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009469**
9470** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9471** of reading the value out of the header, it instead loads the "DataVersion"
9472** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9473** database file. It is a number computed by the pager. But its access
9474** pattern is the same as header meta values, and so it is convenient to
9475** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009476*/
danielk1977602b4662009-07-02 07:47:33 +00009477void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009478 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009479
drhd677b3d2007-08-20 22:48:41 +00009480 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009481 assert( p->inTrans>TRANS_NONE );
drh346a70c2020-06-15 20:27:35 +00009482 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009483 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009484 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009485
drh91618562014-12-19 19:28:02 +00009486 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00009487 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00009488 }else{
9489 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9490 }
drhae157872004-08-14 19:20:09 +00009491
danielk1977602b4662009-07-02 07:47:33 +00009492 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9493 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009494#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009495 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9496 pBt->btsFlags |= BTS_READ_ONLY;
9497 }
danielk1977003ba062004-11-04 02:57:33 +00009498#endif
drhae157872004-08-14 19:20:09 +00009499
drhd677b3d2007-08-20 22:48:41 +00009500 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009501}
9502
9503/*
drh23e11ca2004-05-04 17:27:28 +00009504** Write meta-information back into the database. Meta[0] is
9505** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009506*/
danielk1977aef0bf62005-12-30 16:28:01 +00009507int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9508 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009509 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009510 int rc;
drh23e11ca2004-05-04 17:27:28 +00009511 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009512 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009513 assert( p->inTrans==TRANS_WRITE );
9514 assert( pBt->pPage1!=0 );
9515 pP1 = pBt->pPage1->aData;
9516 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9517 if( rc==SQLITE_OK ){
9518 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009519#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009520 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009521 assert( pBt->autoVacuum || iMeta==0 );
9522 assert( iMeta==0 || iMeta==1 );
9523 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009524 }
drh64022502009-01-09 14:11:04 +00009525#endif
drh5df72a52002-06-06 23:16:05 +00009526 }
drhd677b3d2007-08-20 22:48:41 +00009527 sqlite3BtreeLeave(p);
9528 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009529}
drh8c42ca92001-06-22 19:15:00 +00009530
danielk1977a5533162009-02-24 10:01:51 +00009531/*
9532** The first argument, pCur, is a cursor opened on some b-tree. Count the
9533** number of entries in the b-tree and write the result to *pnEntry.
9534**
9535** SQLITE_OK is returned if the operation is successfully executed.
9536** Otherwise, if an error is encountered (i.e. an IO error or database
9537** corruption) an SQLite error code is returned.
9538*/
drh21f6daa2019-10-11 14:21:48 +00009539int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
danielk1977a5533162009-02-24 10:01:51 +00009540 i64 nEntry = 0; /* Value to return in *pnEntry */
9541 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009542
drh44548e72017-08-14 18:13:52 +00009543 rc = moveToRoot(pCur);
9544 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009545 *pnEntry = 0;
9546 return SQLITE_OK;
9547 }
danielk1977a5533162009-02-24 10:01:51 +00009548
9549 /* Unless an error occurs, the following loop runs one iteration for each
9550 ** page in the B-Tree structure (not including overflow pages).
9551 */
dan892edb62020-03-30 13:35:05 +00009552 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
danielk1977a5533162009-02-24 10:01:51 +00009553 int iIdx; /* Index of child node in parent */
9554 MemPage *pPage; /* Current page of the b-tree */
9555
9556 /* If this is a leaf page or the tree is not an int-key tree, then
9557 ** this page contains countable entries. Increment the entry counter
9558 ** accordingly.
9559 */
drh352a35a2017-08-15 03:46:47 +00009560 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009561 if( pPage->leaf || !pPage->intKey ){
9562 nEntry += pPage->nCell;
9563 }
9564
9565 /* pPage is a leaf node. This loop navigates the cursor so that it
9566 ** points to the first interior cell that it points to the parent of
9567 ** the next page in the tree that has not yet been visited. The
9568 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9569 ** of the page, or to the number of cells in the page if the next page
9570 ** to visit is the right-child of its parent.
9571 **
9572 ** If all pages in the tree have been visited, return SQLITE_OK to the
9573 ** caller.
9574 */
9575 if( pPage->leaf ){
9576 do {
9577 if( pCur->iPage==0 ){
9578 /* All pages of the b-tree have been visited. Return successfully. */
9579 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009580 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009581 }
danielk197730548662009-07-09 05:07:37 +00009582 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009583 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009584
drh75e96b32017-04-01 00:20:06 +00009585 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009586 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009587 }
9588
9589 /* Descend to the child node of the cell that the cursor currently
9590 ** points at. This is the right-child if (iIdx==pPage->nCell).
9591 */
drh75e96b32017-04-01 00:20:06 +00009592 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009593 if( iIdx==pPage->nCell ){
9594 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9595 }else{
9596 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9597 }
9598 }
9599
shanebe217792009-03-05 04:20:31 +00009600 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009601 return rc;
9602}
drhdd793422001-06-28 01:54:48 +00009603
drhdd793422001-06-28 01:54:48 +00009604/*
drh5eddca62001-06-30 21:53:53 +00009605** Return the pager associated with a BTree. This routine is used for
9606** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009607*/
danielk1977aef0bf62005-12-30 16:28:01 +00009608Pager *sqlite3BtreePager(Btree *p){
9609 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009610}
drh5eddca62001-06-30 21:53:53 +00009611
drhb7f91642004-10-31 02:22:47 +00009612#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009613/*
9614** Append a message to the error message string.
9615*/
drh2e38c322004-09-03 18:38:44 +00009616static void checkAppendMsg(
9617 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009618 const char *zFormat,
9619 ...
9620){
9621 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009622 if( !pCheck->mxErr ) return;
9623 pCheck->mxErr--;
9624 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009625 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009626 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +00009627 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009628 }
drh867db832014-09-26 02:41:05 +00009629 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +00009630 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009631 }
drh0cdbe1a2018-05-09 13:46:26 +00009632 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009633 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +00009634 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009635 pCheck->mallocFailed = 1;
9636 }
drh5eddca62001-06-30 21:53:53 +00009637}
drhb7f91642004-10-31 02:22:47 +00009638#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009639
drhb7f91642004-10-31 02:22:47 +00009640#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009641
9642/*
9643** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9644** corresponds to page iPg is already set.
9645*/
9646static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9647 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9648 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9649}
9650
9651/*
9652** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9653*/
9654static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9655 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9656 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9657}
9658
9659
drh5eddca62001-06-30 21:53:53 +00009660/*
9661** Add 1 to the reference count for page iPage. If this is the second
9662** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009663** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009664** if this is the first reference to the page.
9665**
9666** Also check that the page number is in bounds.
9667*/
drh867db832014-09-26 02:41:05 +00009668static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +00009669 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +00009670 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009671 return 1;
9672 }
dan1235bb12012-04-03 17:43:28 +00009673 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009674 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009675 return 1;
9676 }
dan892edb62020-03-30 13:35:05 +00009677 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
dan1235bb12012-04-03 17:43:28 +00009678 setPageReferenced(pCheck, iPage);
9679 return 0;
drh5eddca62001-06-30 21:53:53 +00009680}
9681
danielk1977afcdd022004-10-31 16:25:42 +00009682#ifndef SQLITE_OMIT_AUTOVACUUM
9683/*
9684** Check that the entry in the pointer-map for page iChild maps to
9685** page iParent, pointer type ptrType. If not, append an error message
9686** to pCheck.
9687*/
9688static void checkPtrmap(
9689 IntegrityCk *pCheck, /* Integrity check context */
9690 Pgno iChild, /* Child page number */
9691 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009692 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009693){
9694 int rc;
9695 u8 ePtrmapType;
9696 Pgno iPtrmapParent;
9697
9698 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9699 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009700 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009701 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009702 return;
9703 }
9704
9705 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009706 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009707 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9708 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9709 }
9710}
9711#endif
9712
drh5eddca62001-06-30 21:53:53 +00009713/*
9714** Check the integrity of the freelist or of an overflow page list.
9715** Verify that the number of pages on the list is N.
9716*/
drh30e58752002-03-02 20:41:57 +00009717static void checkList(
9718 IntegrityCk *pCheck, /* Integrity checking context */
9719 int isFreeList, /* True for a freelist. False for overflow page list */
9720 int iPage, /* Page number for first page in the list */
drheaac9992019-02-26 16:17:06 +00009721 u32 N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009722){
9723 int i;
drheaac9992019-02-26 16:17:06 +00009724 u32 expected = N;
drh91d58662018-07-20 13:39:28 +00009725 int nErrAtStart = pCheck->nErr;
9726 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009727 DbPage *pOvflPage;
9728 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +00009729 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +00009730 N--;
drh9584f582015-11-04 20:22:37 +00009731 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009732 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009733 break;
9734 }
danielk19773b8a05f2007-03-19 17:44:26 +00009735 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009736 if( isFreeList ){
drhae104742018-12-14 17:57:01 +00009737 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009738#ifndef SQLITE_OMIT_AUTOVACUUM
9739 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009740 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009741 }
9742#endif
drhae104742018-12-14 17:57:01 +00009743 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009744 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009745 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009746 N--;
9747 }else{
drhae104742018-12-14 17:57:01 +00009748 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009749 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009750#ifndef SQLITE_OMIT_AUTOVACUUM
9751 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009752 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009753 }
9754#endif
drh867db832014-09-26 02:41:05 +00009755 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009756 }
9757 N -= n;
drh30e58752002-03-02 20:41:57 +00009758 }
drh30e58752002-03-02 20:41:57 +00009759 }
danielk1977afcdd022004-10-31 16:25:42 +00009760#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009761 else{
9762 /* If this database supports auto-vacuum and iPage is not the last
9763 ** page in this overflow list, check that the pointer-map entry for
9764 ** the following page matches iPage.
9765 */
9766 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009767 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009768 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009769 }
danielk1977afcdd022004-10-31 16:25:42 +00009770 }
9771#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009772 iPage = get4byte(pOvflData);
9773 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +00009774 }
9775 if( N && nErrAtStart==pCheck->nErr ){
9776 checkAppendMsg(pCheck,
9777 "%s is %d but should be %d",
9778 isFreeList ? "size" : "overflow list length",
9779 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +00009780 }
9781}
drhb7f91642004-10-31 02:22:47 +00009782#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009783
drh67731a92015-04-16 11:56:03 +00009784/*
9785** An implementation of a min-heap.
9786**
9787** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009788** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009789** and aHeap[N*2+1].
9790**
9791** The heap property is this: Every node is less than or equal to both
9792** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009793** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009794**
9795** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9796** the heap, preserving the heap property. The btreeHeapPull() routine
9797** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009798** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009799** property.
9800**
9801** This heap is used for cell overlap and coverage testing. Each u32
9802** entry represents the span of a cell or freeblock on a btree page.
9803** The upper 16 bits are the index of the first byte of a range and the
9804** lower 16 bits are the index of the last byte of that range.
9805*/
9806static void btreeHeapInsert(u32 *aHeap, u32 x){
9807 u32 j, i = ++aHeap[0];
9808 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009809 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009810 x = aHeap[j];
9811 aHeap[j] = aHeap[i];
9812 aHeap[i] = x;
9813 i = j;
9814 }
9815}
9816static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9817 u32 j, i, x;
9818 if( (x = aHeap[0])==0 ) return 0;
9819 *pOut = aHeap[1];
9820 aHeap[1] = aHeap[x];
9821 aHeap[x] = 0xffffffff;
9822 aHeap[0]--;
9823 i = 1;
9824 while( (j = i*2)<=aHeap[0] ){
9825 if( aHeap[j]>aHeap[j+1] ) j++;
9826 if( aHeap[i]<aHeap[j] ) break;
9827 x = aHeap[i];
9828 aHeap[i] = aHeap[j];
9829 aHeap[j] = x;
9830 i = j;
9831 }
9832 return 1;
9833}
9834
drhb7f91642004-10-31 02:22:47 +00009835#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009836/*
9837** Do various sanity checks on a single page of a tree. Return
9838** the tree depth. Root pages return 0. Parents of root pages
9839** return 1, and so forth.
9840**
9841** These checks are done:
9842**
9843** 1. Make sure that cells and freeblocks do not overlap
9844** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009845** 2. Make sure integer cell keys are in order.
9846** 3. Check the integrity of overflow pages.
9847** 4. Recursively call checkTreePage on all children.
9848** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009849*/
9850static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009851 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009852 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009853 i64 *piMinKey, /* Write minimum integer primary key here */
9854 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009855){
drhcbc6b712015-07-02 16:17:30 +00009856 MemPage *pPage = 0; /* The page being analyzed */
9857 int i; /* Loop counter */
9858 int rc; /* Result code from subroutine call */
9859 int depth = -1, d2; /* Depth of a subtree */
9860 int pgno; /* Page number */
9861 int nFrag; /* Number of fragmented bytes on the page */
9862 int hdr; /* Offset to the page header */
9863 int cellStart; /* Offset to the start of the cell pointer array */
9864 int nCell; /* Number of cells */
9865 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9866 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9867 ** False if IPK must be strictly less than maxKey */
9868 u8 *data; /* Page content */
9869 u8 *pCell; /* Cell content */
9870 u8 *pCellIdx; /* Next element of the cell pointer array */
9871 BtShared *pBt; /* The BtShared object that owns pPage */
9872 u32 pc; /* Address of a cell */
9873 u32 usableSize; /* Usable size of the page */
9874 u32 contentOffset; /* Offset to the start of the cell content area */
9875 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009876 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009877 const char *saved_zPfx = pCheck->zPfx;
9878 int saved_v1 = pCheck->v1;
9879 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009880 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009881
drh5eddca62001-06-30 21:53:53 +00009882 /* Check that the page exists
9883 */
drhd9cb6ac2005-10-20 07:28:17 +00009884 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009885 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009886 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009887 if( checkRef(pCheck, iPage) ) return 0;
9888 pCheck->zPfx = "Page %d: ";
9889 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009890 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009891 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009892 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009893 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009894 }
danielk197793caf5a2009-07-11 06:55:33 +00009895
9896 /* Clear MemPage.isInit to make sure the corruption detection code in
9897 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009898 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009899 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009900 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009901 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009902 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009903 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009904 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009905 }
drhb0ea9432019-02-09 21:06:40 +00009906 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
9907 assert( rc==SQLITE_CORRUPT );
9908 checkAppendMsg(pCheck, "free space corruption", rc);
9909 goto end_of_check;
9910 }
drhcbc6b712015-07-02 16:17:30 +00009911 data = pPage->aData;
9912 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009913
drhcbc6b712015-07-02 16:17:30 +00009914 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009915 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009916 contentOffset = get2byteNotZero(&data[hdr+5]);
9917 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9918
9919 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9920 ** number of cells on the page. */
9921 nCell = get2byte(&data[hdr+3]);
9922 assert( pPage->nCell==nCell );
9923
9924 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9925 ** immediately follows the b-tree page header. */
9926 cellStart = hdr + 12 - 4*pPage->leaf;
9927 assert( pPage->aCellIdx==&data[cellStart] );
9928 pCellIdx = &data[cellStart + 2*(nCell-1)];
9929
9930 if( !pPage->leaf ){
9931 /* Analyze the right-child page of internal pages */
9932 pgno = get4byte(&data[hdr+8]);
9933#ifndef SQLITE_OMIT_AUTOVACUUM
9934 if( pBt->autoVacuum ){
9935 pCheck->zPfx = "On page %d at right child: ";
9936 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9937 }
9938#endif
9939 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9940 keyCanBeEqual = 0;
9941 }else{
9942 /* For leaf pages, the coverage check will occur in the same loop
9943 ** as the other cell checks, so initialize the heap. */
9944 heap = pCheck->heap;
9945 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009946 }
9947
drhcbc6b712015-07-02 16:17:30 +00009948 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9949 ** integer offsets to the cell contents. */
9950 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009951 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009952
drhcbc6b712015-07-02 16:17:30 +00009953 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009954 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009955 assert( pCellIdx==&data[cellStart + i*2] );
9956 pc = get2byteAligned(pCellIdx);
9957 pCellIdx -= 2;
9958 if( pc<contentOffset || pc>usableSize-4 ){
9959 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9960 pc, contentOffset, usableSize-4);
9961 doCoverageCheck = 0;
9962 continue;
shaneh195475d2010-02-19 04:28:08 +00009963 }
drhcbc6b712015-07-02 16:17:30 +00009964 pCell = &data[pc];
9965 pPage->xParseCell(pPage, pCell, &info);
9966 if( pc+info.nSize>usableSize ){
9967 checkAppendMsg(pCheck, "Extends off end of page");
9968 doCoverageCheck = 0;
9969 continue;
drh5eddca62001-06-30 21:53:53 +00009970 }
9971
drhcbc6b712015-07-02 16:17:30 +00009972 /* Check for integer primary key out of range */
9973 if( pPage->intKey ){
9974 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9975 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9976 }
9977 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009978 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009979 }
9980
9981 /* Check the content overflow list */
9982 if( info.nPayload>info.nLocal ){
drheaac9992019-02-26 16:17:06 +00009983 u32 nPage; /* Number of pages on the overflow chain */
drhcbc6b712015-07-02 16:17:30 +00009984 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009985 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009986 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009987 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009988#ifndef SQLITE_OMIT_AUTOVACUUM
9989 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009990 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009991 }
9992#endif
drh867db832014-09-26 02:41:05 +00009993 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009994 }
9995
drh5eddca62001-06-30 21:53:53 +00009996 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009997 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009998 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009999#ifndef SQLITE_OMIT_AUTOVACUUM
10000 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010001 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +000010002 }
10003#endif
drhcbc6b712015-07-02 16:17:30 +000010004 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10005 keyCanBeEqual = 0;
10006 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +000010007 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +000010008 depth = d2;
drh5eddca62001-06-30 21:53:53 +000010009 }
drhcbc6b712015-07-02 16:17:30 +000010010 }else{
10011 /* Populate the coverage-checking heap for leaf pages */
10012 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +000010013 }
10014 }
drhcbc6b712015-07-02 16:17:30 +000010015 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +000010016
drh5eddca62001-06-30 21:53:53 +000010017 /* Check for complete coverage of the page
10018 */
drh867db832014-09-26 02:41:05 +000010019 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +000010020 if( doCoverageCheck && pCheck->mxErr>0 ){
10021 /* For leaf pages, the min-heap has already been initialized and the
10022 ** cells have already been inserted. But for internal pages, that has
10023 ** not yet been done, so do it now */
10024 if( !pPage->leaf ){
10025 heap = pCheck->heap;
10026 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +000010027 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +000010028 u32 size;
10029 pc = get2byteAligned(&data[cellStart+i*2]);
10030 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +000010031 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +000010032 }
drh2e38c322004-09-03 18:38:44 +000010033 }
drhcbc6b712015-07-02 16:17:30 +000010034 /* Add the freeblocks to the min-heap
10035 **
10036 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +000010037 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +000010038 ** freeblocks on the page.
10039 */
drh8c2bbb62009-07-10 02:52:20 +000010040 i = get2byte(&data[hdr+1]);
10041 while( i>0 ){
10042 int size, j;
drh5860a612019-02-12 16:58:26 +000010043 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010044 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +000010045 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +000010046 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +000010047 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10048 ** big-endian integer which is the offset in the b-tree page of the next
10049 ** freeblock in the chain, or zero if the freeblock is the last on the
10050 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +000010051 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +000010052 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10053 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +000010054 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10055 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010056 i = j;
drh2e38c322004-09-03 18:38:44 +000010057 }
drhcbc6b712015-07-02 16:17:30 +000010058 /* Analyze the min-heap looking for overlap between cells and/or
10059 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +000010060 **
10061 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10062 ** There is an implied first entry the covers the page header, the cell
10063 ** pointer index, and the gap between the cell pointer index and the start
10064 ** of cell content.
10065 **
10066 ** The loop below pulls entries from the min-heap in order and compares
10067 ** the start_address against the previous end_address. If there is an
10068 ** overlap, that means bytes are used multiple times. If there is a gap,
10069 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +000010070 */
10071 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +000010072 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +000010073 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +000010074 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +000010075 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +000010076 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +000010077 break;
drh67731a92015-04-16 11:56:03 +000010078 }else{
drhcbc6b712015-07-02 16:17:30 +000010079 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +000010080 prev = x;
drh2e38c322004-09-03 18:38:44 +000010081 }
10082 }
drhcbc6b712015-07-02 16:17:30 +000010083 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +000010084 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10085 ** is stored in the fifth field of the b-tree page header.
10086 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10087 ** number of fragmented free bytes within the cell content area.
10088 */
drhcbc6b712015-07-02 16:17:30 +000010089 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +000010090 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +000010091 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +000010092 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +000010093 }
10094 }
drh867db832014-09-26 02:41:05 +000010095
10096end_of_check:
drh72e191e2015-07-04 11:14:20 +000010097 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +000010098 releasePage(pPage);
drh867db832014-09-26 02:41:05 +000010099 pCheck->zPfx = saved_zPfx;
10100 pCheck->v1 = saved_v1;
10101 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +000010102 return depth+1;
drh5eddca62001-06-30 21:53:53 +000010103}
drhb7f91642004-10-31 02:22:47 +000010104#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010105
drhb7f91642004-10-31 02:22:47 +000010106#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010107/*
10108** This routine does a complete check of the given BTree file. aRoot[] is
10109** an array of pages numbers were each page number is the root page of
10110** a table. nRoot is the number of entries in aRoot.
10111**
danielk19773509a652009-07-06 18:56:13 +000010112** A read-only or read-write transaction must be opened before calling
10113** this function.
10114**
drhc890fec2008-08-01 20:10:08 +000010115** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010116** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010117** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010118** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +000010119*/
drh1dcdbc02007-01-27 02:24:54 +000010120char *sqlite3BtreeIntegrityCheck(
drh21f6daa2019-10-11 14:21:48 +000010121 sqlite3 *db, /* Database connection that is running the check */
drh1dcdbc02007-01-27 02:24:54 +000010122 Btree *p, /* The btree to be checked */
10123 int *aRoot, /* An array of root pages numbers for individual trees */
10124 int nRoot, /* Number of entries in aRoot[] */
10125 int mxErr, /* Stop reporting errors after this many */
10126 int *pnErr /* Write number of errors seen to this variable */
10127){
danielk197789d40042008-11-17 14:20:56 +000010128 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010129 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010130 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010131 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010132 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +000010133 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +000010134
drhd677b3d2007-08-20 22:48:41 +000010135 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010136 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010137 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10138 assert( nRef>=0 );
drh21f6daa2019-10-11 14:21:48 +000010139 sCheck.db = db;
drh5eddca62001-06-30 21:53:53 +000010140 sCheck.pBt = pBt;
10141 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010142 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010143 sCheck.mxErr = mxErr;
10144 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +000010145 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +000010146 sCheck.zPfx = 0;
10147 sCheck.v1 = 0;
10148 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010149 sCheck.aPgRef = 0;
10150 sCheck.heap = 0;
10151 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010152 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010153 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010154 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010155 }
dan1235bb12012-04-03 17:43:28 +000010156
10157 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10158 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +000010159 sCheck.mallocFailed = 1;
10160 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010161 }
drhe05b3f82015-07-01 17:53:49 +000010162 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10163 if( sCheck.heap==0 ){
10164 sCheck.mallocFailed = 1;
10165 goto integrity_ck_cleanup;
10166 }
10167
drh42cac6d2004-11-20 20:31:11 +000010168 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010169 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010170
10171 /* Check the integrity of the freelist
10172 */
drh867db832014-09-26 02:41:05 +000010173 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +000010174 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +000010175 get4byte(&pBt->pPage1->aData[36]));
10176 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +000010177
10178 /* Check all the tables.
10179 */
drh040d77a2018-07-20 15:44:09 +000010180#ifndef SQLITE_OMIT_AUTOVACUUM
10181 if( pBt->autoVacuum ){
10182 int mx = 0;
10183 int mxInHdr;
10184 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10185 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10186 if( mx!=mxInHdr ){
10187 checkAppendMsg(&sCheck,
10188 "max rootpage (%d) disagrees with header (%d)",
10189 mx, mxInHdr
10190 );
10191 }
10192 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10193 checkAppendMsg(&sCheck,
10194 "incremental_vacuum enabled with a max rootpage of zero"
10195 );
10196 }
10197#endif
drhcbc6b712015-07-02 16:17:30 +000010198 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010199 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010200 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010201 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010202 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010203#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010204 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +000010205 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010206 }
10207#endif
drhcbc6b712015-07-02 16:17:30 +000010208 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000010209 }
drhcbc6b712015-07-02 16:17:30 +000010210 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000010211
10212 /* Make sure every page in the file is referenced
10213 */
drh1dcdbc02007-01-27 02:24:54 +000010214 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000010215#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +000010216 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +000010217 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +000010218 }
danielk1977afcdd022004-10-31 16:25:42 +000010219#else
10220 /* If the database supports auto-vacuum, make sure no tables contain
10221 ** references to pointer-map pages.
10222 */
dan1235bb12012-04-03 17:43:28 +000010223 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +000010224 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010225 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +000010226 }
dan1235bb12012-04-03 17:43:28 +000010227 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +000010228 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010229 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +000010230 }
10231#endif
drh5eddca62001-06-30 21:53:53 +000010232 }
10233
drh5eddca62001-06-30 21:53:53 +000010234 /* Clean up and report errors.
10235 */
drhe05b3f82015-07-01 17:53:49 +000010236integrity_ck_cleanup:
10237 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000010238 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +000010239 if( sCheck.mallocFailed ){
drh0cdbe1a2018-05-09 13:46:26 +000010240 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010241 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000010242 }
drh1dcdbc02007-01-27 02:24:54 +000010243 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000010244 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010245 /* Make sure this analysis did not leave any unref() pages. */
10246 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10247 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000010248 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000010249}
drhb7f91642004-10-31 02:22:47 +000010250#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000010251
drh73509ee2003-04-06 20:44:45 +000010252/*
drhd4e0bb02012-05-27 01:19:04 +000010253** Return the full pathname of the underlying database file. Return
10254** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000010255**
10256** The pager filename is invariant as long as the pager is
10257** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000010258*/
danielk1977aef0bf62005-12-30 16:28:01 +000010259const char *sqlite3BtreeGetFilename(Btree *p){
10260 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000010261 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000010262}
10263
10264/*
danielk19775865e3d2004-06-14 06:03:57 +000010265** Return the pathname of the journal file for this database. The return
10266** value of this routine is the same regardless of whether the journal file
10267** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000010268**
10269** The pager journal filename is invariant as long as the pager is
10270** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000010271*/
danielk1977aef0bf62005-12-30 16:28:01 +000010272const char *sqlite3BtreeGetJournalname(Btree *p){
10273 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000010274 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000010275}
10276
danielk19771d850a72004-05-31 08:26:49 +000010277/*
10278** Return non-zero if a transaction is active.
10279*/
danielk1977aef0bf62005-12-30 16:28:01 +000010280int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000010281 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +000010282 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +000010283}
10284
dana550f2d2010-08-02 10:47:05 +000010285#ifndef SQLITE_OMIT_WAL
10286/*
10287** Run a checkpoint on the Btree passed as the first argument.
10288**
10289** Return SQLITE_LOCKED if this or any other connection has an open
10290** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000010291**
dancdc1f042010-11-18 12:11:05 +000010292** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000010293*/
dancdc1f042010-11-18 12:11:05 +000010294int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000010295 int rc = SQLITE_OK;
10296 if( p ){
10297 BtShared *pBt = p->pBt;
10298 sqlite3BtreeEnter(p);
10299 if( pBt->inTransaction!=TRANS_NONE ){
10300 rc = SQLITE_LOCKED;
10301 }else{
dan7fb89902016-08-12 16:21:15 +000010302 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000010303 }
10304 sqlite3BtreeLeave(p);
10305 }
10306 return rc;
10307}
10308#endif
10309
danielk19771d850a72004-05-31 08:26:49 +000010310/*
danielk19772372c2b2006-06-27 16:34:56 +000010311** Return non-zero if a read (or write) transaction is active.
10312*/
10313int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +000010314 assert( p );
drhe5fe6902007-12-07 18:55:28 +000010315 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +000010316 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +000010317}
10318
danielk197704103022009-02-03 16:51:24 +000010319int sqlite3BtreeIsInBackup(Btree *p){
10320 assert( p );
10321 assert( sqlite3_mutex_held(p->db->mutex) );
10322 return p->nBackup!=0;
10323}
10324
danielk19772372c2b2006-06-27 16:34:56 +000010325/*
danielk1977da184232006-01-05 11:34:32 +000010326** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010327** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010328** purposes (for example, to store a high-level schema associated with
10329** the shared-btree). The btree layer manages reference counting issues.
10330**
10331** The first time this is called on a shared-btree, nBytes bytes of memory
10332** are allocated, zeroed, and returned to the caller. For each subsequent
10333** call the nBytes parameter is ignored and a pointer to the same blob
10334** of memory returned.
10335**
danielk1977171bfed2008-06-23 09:50:50 +000010336** If the nBytes parameter is 0 and the blob of memory has not yet been
10337** allocated, a null pointer is returned. If the blob has already been
10338** allocated, it is returned as normal.
10339**
danielk1977da184232006-01-05 11:34:32 +000010340** Just before the shared-btree is closed, the function passed as the
10341** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010342** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010343** on the memory, the btree layer does that.
10344*/
10345void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10346 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010347 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010348 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010349 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010350 pBt->xFreeSchema = xFree;
10351 }
drh27641702007-08-22 02:56:42 +000010352 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010353 return pBt->pSchema;
10354}
10355
danielk1977c87d34d2006-01-06 13:00:28 +000010356/*
danielk1977404ca072009-03-16 13:19:36 +000010357** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10358** btree as the argument handle holds an exclusive lock on the
10359** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010360*/
10361int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010362 int rc;
drhe5fe6902007-12-07 18:55:28 +000010363 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010364 sqlite3BtreeEnter(p);
drh346a70c2020-06-15 20:27:35 +000010365 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
danielk1977404ca072009-03-16 13:19:36 +000010366 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010367 sqlite3BtreeLeave(p);
10368 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010369}
10370
drha154dcd2006-03-22 22:10:07 +000010371
10372#ifndef SQLITE_OMIT_SHARED_CACHE
10373/*
10374** Obtain a lock on the table whose root page is iTab. The
10375** lock is a write lock if isWritelock is true or a read lock
10376** if it is false.
10377*/
danielk1977c00da102006-01-07 13:21:04 +000010378int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010379 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010380 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010381 if( p->sharable ){
10382 u8 lockType = READ_LOCK + isWriteLock;
10383 assert( READ_LOCK+1==WRITE_LOCK );
10384 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010385
drh6a9ad3d2008-04-02 16:29:30 +000010386 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010387 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010388 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010389 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010390 }
10391 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010392 }
10393 return rc;
10394}
drha154dcd2006-03-22 22:10:07 +000010395#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010396
danielk1977b4e9af92007-05-01 17:49:49 +000010397#ifndef SQLITE_OMIT_INCRBLOB
10398/*
10399** Argument pCsr must be a cursor opened for writing on an
10400** INTKEY table currently pointing at a valid table entry.
10401** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010402**
10403** Only the data content may only be modified, it is not possible to
10404** change the length of the data stored. If this function is called with
10405** parameters that attempt to write past the end of the existing data,
10406** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010407*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010408int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010409 int rc;
dan7a2347e2016-01-07 16:43:54 +000010410 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010411 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010412 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010413
danielk1977c9000e62009-07-08 13:55:28 +000010414 rc = restoreCursorPosition(pCsr);
10415 if( rc!=SQLITE_OK ){
10416 return rc;
10417 }
danielk19773588ceb2008-06-10 17:30:26 +000010418 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10419 if( pCsr->eState!=CURSOR_VALID ){
10420 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010421 }
10422
dan227a1c42013-04-03 11:17:39 +000010423 /* Save the positions of all other cursors open on this table. This is
10424 ** required in case any of them are holding references to an xFetch
10425 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010426 **
drh3f387402014-09-24 01:23:00 +000010427 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010428 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10429 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010430 */
drh370c9f42013-04-03 20:04:04 +000010431 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10432 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010433
danielk1977c9000e62009-07-08 13:55:28 +000010434 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010435 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010436 ** (b) there is a read/write transaction open,
10437 ** (c) the connection holds a write-lock on the table (if required),
10438 ** (d) there are no conflicting read-locks, and
10439 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010440 */
drh036dbec2014-03-11 23:40:44 +000010441 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010442 return SQLITE_READONLY;
10443 }
drhc9166342012-01-05 23:32:06 +000010444 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10445 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010446 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10447 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010448 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010449
drhfb192682009-07-11 18:26:28 +000010450 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010451}
danielk19772dec9702007-05-02 16:48:37 +000010452
10453/*
dan5a500af2014-03-11 20:33:04 +000010454** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010455*/
dan5a500af2014-03-11 20:33:04 +000010456void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010457 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010458 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010459}
danielk1977b4e9af92007-05-01 17:49:49 +000010460#endif
dane04dc882010-04-20 18:53:15 +000010461
10462/*
10463** Set both the "read version" (single byte at byte offset 18) and
10464** "write version" (single byte at byte offset 19) fields in the database
10465** header to iVersion.
10466*/
10467int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10468 BtShared *pBt = pBtree->pBt;
10469 int rc; /* Return code */
10470
dane04dc882010-04-20 18:53:15 +000010471 assert( iVersion==1 || iVersion==2 );
10472
danb9780022010-04-21 18:37:57 +000010473 /* If setting the version fields to 1, do not automatically open the
10474 ** WAL connection, even if the version fields are currently set to 2.
10475 */
drhc9166342012-01-05 23:32:06 +000010476 pBt->btsFlags &= ~BTS_NO_WAL;
10477 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010478
drhbb2d9b12018-06-06 16:28:40 +000010479 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000010480 if( rc==SQLITE_OK ){
10481 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010482 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000010483 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000010484 if( rc==SQLITE_OK ){
10485 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10486 if( rc==SQLITE_OK ){
10487 aData[18] = (u8)iVersion;
10488 aData[19] = (u8)iVersion;
10489 }
10490 }
10491 }
dane04dc882010-04-20 18:53:15 +000010492 }
10493
drhc9166342012-01-05 23:32:06 +000010494 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010495 return rc;
10496}
dan428c2182012-08-06 18:50:11 +000010497
drhe0997b32015-03-20 14:57:50 +000010498/*
10499** Return true if the cursor has a hint specified. This routine is
10500** only used from within assert() statements
10501*/
10502int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10503 return (pCsr->hints & mask)!=0;
10504}
drhe0997b32015-03-20 14:57:50 +000010505
drh781597f2014-05-21 08:21:07 +000010506/*
10507** Return true if the given Btree is read-only.
10508*/
10509int sqlite3BtreeIsReadonly(Btree *p){
10510 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10511}
drhdef68892014-11-04 12:11:23 +000010512
10513/*
10514** Return the size of the header added to each page by this module.
10515*/
drh37c057b2014-12-30 00:57:29 +000010516int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010517
drh5a1fb182016-01-08 19:34:39 +000010518#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010519/*
10520** Return true if the Btree passed as the only argument is sharable.
10521*/
10522int sqlite3BtreeSharable(Btree *p){
10523 return p->sharable;
10524}
dan272989b2016-07-06 10:12:02 +000010525
10526/*
10527** Return the number of connections to the BtShared object accessed by
10528** the Btree handle passed as the only argument. For private caches
10529** this is always 1. For shared caches it may be 1 or greater.
10530*/
10531int sqlite3BtreeConnectionCount(Btree *p){
10532 testcase( p->sharable );
10533 return p->pBt->nRef;
10534}
drh5a1fb182016-01-08 19:34:39 +000010535#endif