blob: d867a661a8e31bc8de1120751a7a5c53635dd6c6 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
453#endif
454
danielk197792d4d7a2007-05-04 12:05:56 +0000455/*
dan5a500af2014-03-11 20:33:04 +0000456** Invalidate the overflow cache of the cursor passed as the first argument.
457** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000458*/
drh036dbec2014-03-11 23:40:44 +0000459#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000460
461/*
462** Invalidate the overflow page-list cache for all cursors opened
463** on the shared btree structure pBt.
464*/
465static void invalidateAllOverflowCache(BtShared *pBt){
466 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000467 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000468 for(p=pBt->pCursor; p; p=p->pNext){
469 invalidateOverflowCache(p);
470 }
471}
danielk197796d48e92009-06-29 06:00:37 +0000472
dan5a500af2014-03-11 20:33:04 +0000473#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000474/*
475** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000476** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000477** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000478**
479** If argument isClearTable is true, then the entire contents of the
480** table is about to be deleted. In this case invalidate all incrblob
481** cursors open on any row within the table with root-page pgnoRoot.
482**
483** Otherwise, if argument isClearTable is false, then the row with
484** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000485** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000486*/
487static void invalidateIncrblobCursors(
488 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000489 i64 iRow, /* The rowid that might be changing */
490 int isClearTable /* True if all rows are being deleted */
491){
492 BtCursor *p;
493 BtShared *pBt = pBtree->pBt;
494 assert( sqlite3BtreeHoldsMutex(pBtree) );
495 for(p=pBt->pCursor; p; p=p->pNext){
drh3f387402014-09-24 01:23:00 +0000496 if( (p->curFlags & BTCF_Incrblob)!=0
497 && (isClearTable || p->info.nKey==iRow)
498 ){
danielk197796d48e92009-06-29 06:00:37 +0000499 p->eState = CURSOR_INVALID;
500 }
501 }
502}
503
danielk197792d4d7a2007-05-04 12:05:56 +0000504#else
dan5a500af2014-03-11 20:33:04 +0000505 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000506 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000507#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000508
drh980b1a72006-08-16 16:42:48 +0000509/*
danielk1977bea2a942009-01-20 17:06:27 +0000510** Set bit pgno of the BtShared.pHasContent bitvec. This is called
511** when a page that previously contained data becomes a free-list leaf
512** page.
513**
514** The BtShared.pHasContent bitvec exists to work around an obscure
515** bug caused by the interaction of two useful IO optimizations surrounding
516** free-list leaf pages:
517**
518** 1) When all data is deleted from a page and the page becomes
519** a free-list leaf page, the page is not written to the database
520** (as free-list leaf pages contain no meaningful data). Sometimes
521** such a page is not even journalled (as it will not be modified,
522** why bother journalling it?).
523**
524** 2) When a free-list leaf page is reused, its content is not read
525** from the database or written to the journal file (why should it
526** be, if it is not at all meaningful?).
527**
528** By themselves, these optimizations work fine and provide a handy
529** performance boost to bulk delete or insert operations. However, if
530** a page is moved to the free-list and then reused within the same
531** transaction, a problem comes up. If the page is not journalled when
532** it is moved to the free-list and it is also not journalled when it
533** is extracted from the free-list and reused, then the original data
534** may be lost. In the event of a rollback, it may not be possible
535** to restore the database to its original configuration.
536**
537** The solution is the BtShared.pHasContent bitvec. Whenever a page is
538** moved to become a free-list leaf page, the corresponding bit is
539** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000540** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000541** set in BtShared.pHasContent. The contents of the bitvec are cleared
542** at the end of every transaction.
543*/
544static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
545 int rc = SQLITE_OK;
546 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000547 assert( pgno<=pBt->nPage );
548 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000549 if( !pBt->pHasContent ){
550 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000551 }
552 }
553 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
554 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
555 }
556 return rc;
557}
558
559/*
560** Query the BtShared.pHasContent vector.
561**
562** This function is called when a free-list leaf page is removed from the
563** free-list for reuse. It returns false if it is safe to retrieve the
564** page from the pager layer with the 'no-content' flag set. True otherwise.
565*/
566static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
567 Bitvec *p = pBt->pHasContent;
568 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
569}
570
571/*
572** Clear (destroy) the BtShared.pHasContent bitvec. This should be
573** invoked at the conclusion of each write-transaction.
574*/
575static void btreeClearHasContent(BtShared *pBt){
576 sqlite3BitvecDestroy(pBt->pHasContent);
577 pBt->pHasContent = 0;
578}
579
580/*
drh138eeeb2013-03-27 03:15:23 +0000581** Release all of the apPage[] pages for a cursor.
582*/
583static void btreeReleaseAllCursorPages(BtCursor *pCur){
584 int i;
585 for(i=0; i<=pCur->iPage; i++){
586 releasePage(pCur->apPage[i]);
587 pCur->apPage[i] = 0;
588 }
589 pCur->iPage = -1;
590}
591
592
593/*
drh980b1a72006-08-16 16:42:48 +0000594** Save the current cursor position in the variables BtCursor.nKey
595** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000596**
597** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
598** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000599*/
600static int saveCursorPosition(BtCursor *pCur){
601 int rc;
602
drhd2f83132015-03-25 17:35:01 +0000603 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000604 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000605 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000606
drhd2f83132015-03-25 17:35:01 +0000607 if( pCur->eState==CURSOR_SKIPNEXT ){
608 pCur->eState = CURSOR_VALID;
609 }else{
610 pCur->skipNext = 0;
611 }
drh980b1a72006-08-16 16:42:48 +0000612 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000613 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000614
615 /* If this is an intKey table, then the above call to BtreeKeySize()
616 ** stores the integer key in pCur->nKey. In this case this value is
617 ** all that is required. Otherwise, if pCur is not open on an intKey
618 ** table, then malloc space for and store the pCur->nKey bytes of key
619 ** data.
620 */
drh4c301aa2009-07-15 17:25:45 +0000621 if( 0==pCur->apPage[0]->intKey ){
drhda4ca9d2014-09-09 17:27:35 +0000622 void *pKey = sqlite3Malloc( pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000623 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000624 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000625 if( rc==SQLITE_OK ){
626 pCur->pKey = pKey;
627 }else{
drh17435752007-08-16 04:30:38 +0000628 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000629 }
630 }else{
631 rc = SQLITE_NOMEM;
632 }
633 }
danielk197771d5d2c2008-09-29 11:49:47 +0000634 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000635
636 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000637 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000638 pCur->eState = CURSOR_REQUIRESEEK;
639 }
640
danielk197792d4d7a2007-05-04 12:05:56 +0000641 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000642 return rc;
643}
644
drh637f3d82014-08-22 22:26:07 +0000645/* Forward reference */
646static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
647
drh980b1a72006-08-16 16:42:48 +0000648/*
drh0ee3dbe2009-10-16 15:05:18 +0000649** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000650** the table with root-page iRoot. "Saving the cursor position" means that
651** the location in the btree is remembered in such a way that it can be
652** moved back to the same spot after the btree has been modified. This
653** routine is called just before cursor pExcept is used to modify the
654** table, for example in BtreeDelete() or BtreeInsert().
655**
656** Implementation note: This routine merely checks to see if any cursors
657** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
658** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000659*/
660static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000661 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000662 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000663 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000664 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000665 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
666 }
667 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;
668}
669
670/* This helper routine to saveAllCursors does the actual work of saving
671** the cursors if and when a cursor is found that actually requires saving.
672** The common case is that no cursors need to be saved, so this routine is
673** broken out from its caller to avoid unnecessary stack pointer movement.
674*/
675static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000676 BtCursor *p, /* The first cursor that needs saving */
677 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
678 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000679){
680 do{
drh138eeeb2013-03-27 03:15:23 +0000681 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000682 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000683 int rc = saveCursorPosition(p);
684 if( SQLITE_OK!=rc ){
685 return rc;
686 }
687 }else{
688 testcase( p->iPage>0 );
689 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000690 }
691 }
drh637f3d82014-08-22 22:26:07 +0000692 p = p->pNext;
693 }while( p );
drh980b1a72006-08-16 16:42:48 +0000694 return SQLITE_OK;
695}
696
697/*
drhbf700f32007-03-31 02:36:44 +0000698** Clear the current cursor position.
699*/
danielk1977be51a652008-10-08 17:58:48 +0000700void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000701 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000702 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000703 pCur->pKey = 0;
704 pCur->eState = CURSOR_INVALID;
705}
706
707/*
danielk19773509a652009-07-06 18:56:13 +0000708** In this version of BtreeMoveto, pKey is a packed index record
709** such as is generated by the OP_MakeRecord opcode. Unpack the
710** record and then call BtreeMovetoUnpacked() to do the work.
711*/
712static int btreeMoveto(
713 BtCursor *pCur, /* Cursor open on the btree to be searched */
714 const void *pKey, /* Packed key if the btree is an index */
715 i64 nKey, /* Integer key for tables. Size of pKey for indices */
716 int bias, /* Bias search to the high end */
717 int *pRes /* Write search results here */
718){
719 int rc; /* Status code */
720 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000721 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000722 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000723
724 if( pKey ){
725 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000726 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
727 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
728 );
danielk19773509a652009-07-06 18:56:13 +0000729 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000730 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000731 if( pIdxKey->nField==0 ){
732 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
733 return SQLITE_CORRUPT_BKPT;
734 }
danielk19773509a652009-07-06 18:56:13 +0000735 }else{
736 pIdxKey = 0;
737 }
738 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000739 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000740 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000741 }
742 return rc;
743}
744
745/*
drh980b1a72006-08-16 16:42:48 +0000746** Restore the cursor to the position it was in (or as close to as possible)
747** when saveCursorPosition() was called. Note that this call deletes the
748** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000749** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000750** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000751*/
danielk197730548662009-07-09 05:07:37 +0000752static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000753 int rc;
drhd2f83132015-03-25 17:35:01 +0000754 int skipNext;
drh1fee73e2007-08-29 04:00:57 +0000755 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000756 assert( pCur->eState>=CURSOR_REQUIRESEEK );
757 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000758 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000759 }
drh980b1a72006-08-16 16:42:48 +0000760 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000761 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000762 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000763 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000764 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000765 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000766 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000767 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
768 pCur->eState = CURSOR_SKIPNEXT;
769 }
drh980b1a72006-08-16 16:42:48 +0000770 }
771 return rc;
772}
773
drha3460582008-07-11 21:02:53 +0000774#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000775 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000776 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000777 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000778
drha3460582008-07-11 21:02:53 +0000779/*
drh6848dad2014-08-22 23:33:03 +0000780** Determine whether or not a cursor has moved from the position where
781** it was last placed, or has been invalidated for any other reason.
782** Cursors can move when the row they are pointing at is deleted out
783** from under them, for example. Cursor might also move if a btree
784** is rebalanced.
drha3460582008-07-11 21:02:53 +0000785**
drh6848dad2014-08-22 23:33:03 +0000786** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000787**
drh6848dad2014-08-22 23:33:03 +0000788** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
789** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000790*/
drh6848dad2014-08-22 23:33:03 +0000791int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000792 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000793}
794
795/*
796** This routine restores a cursor back to its original position after it
797** has been moved by some outside activity (such as a btree rebalance or
798** a row having been deleted out from under the cursor).
799**
800** On success, the *pDifferentRow parameter is false if the cursor is left
801** pointing at exactly the same row. *pDifferntRow is the row the cursor
802** was pointing to has been deleted, forcing the cursor to point to some
803** nearby row.
804**
805** This routine should only be called for a cursor that just returned
806** TRUE from sqlite3BtreeCursorHasMoved().
807*/
808int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000809 int rc;
810
drh6848dad2014-08-22 23:33:03 +0000811 assert( pCur!=0 );
812 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000813 rc = restoreCursorPosition(pCur);
814 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000815 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000816 return rc;
817 }
drh606a3572015-03-25 18:29:10 +0000818 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000819 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000820 }else{
drh606a3572015-03-25 18:29:10 +0000821 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000822 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000823 }
824 return SQLITE_OK;
825}
826
danielk1977599fcba2004-11-08 07:13:13 +0000827#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000828/*
drha3152892007-05-05 11:48:52 +0000829** Given a page number of a regular database page, return the page
830** number for the pointer-map page that contains the entry for the
831** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000832**
833** Return 0 (not a valid page) for pgno==1 since there is
834** no pointer map associated with page 1. The integrity_check logic
835** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000836*/
danielk1977266664d2006-02-10 08:24:21 +0000837static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000838 int nPagesPerMapPage;
839 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000840 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000841 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000842 nPagesPerMapPage = (pBt->usableSize/5)+1;
843 iPtrMap = (pgno-2)/nPagesPerMapPage;
844 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000845 if( ret==PENDING_BYTE_PAGE(pBt) ){
846 ret++;
847 }
848 return ret;
849}
danielk1977a19df672004-11-03 11:37:07 +0000850
danielk1977afcdd022004-10-31 16:25:42 +0000851/*
danielk1977afcdd022004-10-31 16:25:42 +0000852** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000853**
854** This routine updates the pointer map entry for page number 'key'
855** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000856**
857** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
858** a no-op. If an error occurs, the appropriate error code is written
859** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000860*/
drh98add2e2009-07-20 17:11:49 +0000861static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000862 DbPage *pDbPage; /* The pointer map page */
863 u8 *pPtrmap; /* The pointer map data */
864 Pgno iPtrmap; /* The pointer map page number */
865 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000866 int rc; /* Return code from subfunctions */
867
868 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000869
drh1fee73e2007-08-29 04:00:57 +0000870 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000871 /* The master-journal page number must never be used as a pointer map page */
872 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
873
danielk1977ac11ee62005-01-15 12:45:51 +0000874 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000875 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000876 *pRC = SQLITE_CORRUPT_BKPT;
877 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000878 }
danielk1977266664d2006-02-10 08:24:21 +0000879 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000880 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000881 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000882 *pRC = rc;
883 return;
danielk1977afcdd022004-10-31 16:25:42 +0000884 }
danielk19778c666b12008-07-18 09:34:57 +0000885 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000886 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000887 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000888 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000889 }
drhfc243732011-05-17 15:21:56 +0000890 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000891 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000892
drh615ae552005-01-16 23:21:00 +0000893 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
894 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000895 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000896 if( rc==SQLITE_OK ){
897 pPtrmap[offset] = eType;
898 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000899 }
danielk1977afcdd022004-10-31 16:25:42 +0000900 }
901
drh4925a552009-07-07 11:39:58 +0000902ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000903 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000904}
905
906/*
907** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000908**
909** This routine retrieves the pointer map entry for page 'key', writing
910** the type and parent page number to *pEType and *pPgno respectively.
911** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000912*/
danielk1977aef0bf62005-12-30 16:28:01 +0000913static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000914 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000915 int iPtrmap; /* Pointer map page index */
916 u8 *pPtrmap; /* Pointer map page data */
917 int offset; /* Offset of entry in pointer map */
918 int rc;
919
drh1fee73e2007-08-29 04:00:57 +0000920 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000921
danielk1977266664d2006-02-10 08:24:21 +0000922 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000923 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000924 if( rc!=0 ){
925 return rc;
926 }
danielk19773b8a05f2007-03-19 17:44:26 +0000927 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000928
danielk19778c666b12008-07-18 09:34:57 +0000929 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000930 if( offset<0 ){
931 sqlite3PagerUnref(pDbPage);
932 return SQLITE_CORRUPT_BKPT;
933 }
934 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000935 assert( pEType!=0 );
936 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000937 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000938
danielk19773b8a05f2007-03-19 17:44:26 +0000939 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000940 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000941 return SQLITE_OK;
942}
943
danielk197785d90ca2008-07-19 14:25:15 +0000944#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000945 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000946 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000947 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000948#endif
danielk1977afcdd022004-10-31 16:25:42 +0000949
drh0d316a42002-08-11 20:10:47 +0000950/*
drh271efa52004-05-30 19:19:05 +0000951** Given a btree page and a cell index (0 means the first cell on
952** the page, 1 means the second cell, and so forth) return a pointer
953** to the cell content.
954**
955** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000956*/
drh1688c862008-07-18 02:44:17 +0000957#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000958 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000959
drh43605152004-05-29 21:46:49 +0000960/*
drh5fa60512015-06-19 17:19:34 +0000961** This is common tail processing for btreeParseCellPtr() and
962** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
963** on a single B-tree page. Make necessary adjustments to the CellInfo
964** structure.
drh43605152004-05-29 21:46:49 +0000965*/
drh5fa60512015-06-19 17:19:34 +0000966static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
967 MemPage *pPage, /* Page containing the cell */
968 u8 *pCell, /* Pointer to the cell text. */
969 CellInfo *pInfo /* Fill in this structure */
970){
971 /* If the payload will not fit completely on the local page, we have
972 ** to decide how much to store locally and how much to spill onto
973 ** overflow pages. The strategy is to minimize the amount of unused
974 ** space on overflow pages while keeping the amount of local storage
975 ** in between minLocal and maxLocal.
976 **
977 ** Warning: changing the way overflow payload is distributed in any
978 ** way will result in an incompatible file format.
979 */
980 int minLocal; /* Minimum amount of payload held locally */
981 int maxLocal; /* Maximum amount of payload held locally */
982 int surplus; /* Overflow payload available for local storage */
983
984 minLocal = pPage->minLocal;
985 maxLocal = pPage->maxLocal;
986 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
987 testcase( surplus==maxLocal );
988 testcase( surplus==maxLocal+1 );
989 if( surplus <= maxLocal ){
990 pInfo->nLocal = (u16)surplus;
991 }else{
992 pInfo->nLocal = (u16)minLocal;
993 }
994 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
995 pInfo->nSize = pInfo->iOverflow + 4;
996}
997
998/*
999** The following routines are implementations of the MemPage.xParseCell()
1000** method.
1001**
1002** Parse a cell content block and fill in the CellInfo structure.
1003**
1004** btreeParseCellPtr() => table btree leaf nodes
1005** btreeParseCellNoPayload() => table btree internal nodes
1006** btreeParseCellPtrIndex() => index btree nodes
1007**
1008** There is also a wrapper function btreeParseCell() that works for
1009** all MemPage types and that references the cell by index rather than
1010** by pointer.
1011*/
1012static void btreeParseCellPtrNoPayload(
1013 MemPage *pPage, /* Page containing the cell */
1014 u8 *pCell, /* Pointer to the cell text. */
1015 CellInfo *pInfo /* Fill in this structure */
1016){
1017 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1018 assert( pPage->leaf==0 );
1019 assert( pPage->noPayload );
1020 assert( pPage->childPtrSize==4 );
1021 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1022 pInfo->nPayload = 0;
1023 pInfo->nLocal = 0;
1024 pInfo->iOverflow = 0;
1025 pInfo->pPayload = 0;
1026 return;
1027}
danielk197730548662009-07-09 05:07:37 +00001028static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001029 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001030 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001031 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001032){
drh3e28ff52014-09-24 00:59:08 +00001033 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001034 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001035 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001036
drh1fee73e2007-08-29 04:00:57 +00001037 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001038 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001039 assert( pPage->intKeyLeaf || pPage->noPayload );
1040 assert( pPage->noPayload==0 );
1041 assert( pPage->intKeyLeaf );
1042 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001043 pIter = pCell;
1044
1045 /* The next block of code is equivalent to:
1046 **
1047 ** pIter += getVarint32(pIter, nPayload);
1048 **
1049 ** The code is inlined to avoid a function call.
1050 */
1051 nPayload = *pIter;
1052 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001053 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001054 nPayload &= 0x7f;
1055 do{
1056 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1057 }while( (*pIter)>=0x80 && pIter<pEnd );
1058 }
1059 pIter++;
1060
1061 /* The next block of code is equivalent to:
1062 **
1063 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1064 **
1065 ** The code is inlined to avoid a function call.
1066 */
1067 iKey = *pIter;
1068 if( iKey>=0x80 ){
1069 u8 *pEnd = &pIter[7];
1070 iKey &= 0x7f;
1071 while(1){
1072 iKey = (iKey<<7) | (*++pIter & 0x7f);
1073 if( (*pIter)<0x80 ) break;
1074 if( pIter>=pEnd ){
1075 iKey = (iKey<<8) | *++pIter;
1076 break;
1077 }
1078 }
1079 }
1080 pIter++;
1081
1082 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001083 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001084 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001085 testcase( nPayload==pPage->maxLocal );
1086 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001087 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001088 /* This is the (easy) common case where the entire payload fits
1089 ** on the local page. No overflow is required.
1090 */
drhab1cc582014-09-23 21:25:19 +00001091 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1092 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001093 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001094 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001095 }else{
drh5fa60512015-06-19 17:19:34 +00001096 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1097 }
1098}
1099static void btreeParseCellPtrIndex(
1100 MemPage *pPage, /* Page containing the cell */
1101 u8 *pCell, /* Pointer to the cell text. */
1102 CellInfo *pInfo /* Fill in this structure */
1103){
1104 u8 *pIter; /* For scanning through pCell */
1105 u32 nPayload; /* Number of bytes of cell payload */
drh271efa52004-05-30 19:19:05 +00001106
drh5fa60512015-06-19 17:19:34 +00001107 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1108 assert( pPage->leaf==0 || pPage->leaf==1 );
1109 assert( pPage->intKeyLeaf==0 );
1110 assert( pPage->noPayload==0 );
1111 pIter = pCell + pPage->childPtrSize;
1112 nPayload = *pIter;
1113 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001114 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001115 nPayload &= 0x7f;
1116 do{
1117 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1118 }while( *(pIter)>=0x80 && pIter<pEnd );
1119 }
1120 pIter++;
1121 pInfo->nKey = nPayload;
1122 pInfo->nPayload = nPayload;
1123 pInfo->pPayload = pIter;
1124 testcase( nPayload==pPage->maxLocal );
1125 testcase( nPayload==pPage->maxLocal+1 );
1126 if( nPayload<=pPage->maxLocal ){
1127 /* This is the (easy) common case where the entire payload fits
1128 ** on the local page. No overflow is required.
1129 */
1130 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1131 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1132 pInfo->nLocal = (u16)nPayload;
1133 pInfo->iOverflow = 0;
1134 }else{
1135 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001136 }
drh3aac2dd2004-04-26 14:10:20 +00001137}
danielk197730548662009-07-09 05:07:37 +00001138static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001139 MemPage *pPage, /* Page containing the cell */
1140 int iCell, /* The cell index. First cell is 0 */
1141 CellInfo *pInfo /* Fill in this structure */
1142){
drh5fa60512015-06-19 17:19:34 +00001143 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001144}
drh3aac2dd2004-04-26 14:10:20 +00001145
1146/*
drh5fa60512015-06-19 17:19:34 +00001147** The following routines are implementations of the MemPage.xCellSize
1148** method.
1149**
drh43605152004-05-29 21:46:49 +00001150** Compute the total number of bytes that a Cell needs in the cell
1151** data area of the btree-page. The return number includes the cell
1152** data header and the local payload, but not any overflow page or
1153** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001154**
drh5fa60512015-06-19 17:19:34 +00001155** cellSizePtrNoPayload() => table internal nodes
1156** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001157*/
danielk1977ae5558b2009-04-29 11:31:47 +00001158static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001159 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1160 u8 *pEnd; /* End mark for a varint */
1161 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001162
1163#ifdef SQLITE_DEBUG
1164 /* The value returned by this function should always be the same as
1165 ** the (CellInfo.nSize) value found by doing a full parse of the
1166 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1167 ** this function verifies that this invariant is not violated. */
1168 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001169 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001170#endif
1171
drh25ada072015-06-19 15:07:14 +00001172 assert( pPage->noPayload==0 );
drh3e28ff52014-09-24 00:59:08 +00001173 nSize = *pIter;
1174 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001175 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001176 nSize &= 0x7f;
1177 do{
1178 nSize = (nSize<<7) | (*++pIter & 0x7f);
1179 }while( *(pIter)>=0x80 && pIter<pEnd );
1180 }
1181 pIter++;
drhdc41d602014-09-22 19:51:35 +00001182 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001183 /* pIter now points at the 64-bit integer key value, a variable length
1184 ** integer. The following block moves pIter to point at the first byte
1185 ** past the end of the key value. */
1186 pEnd = &pIter[9];
1187 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001188 }
drh0a45c272009-07-08 01:49:11 +00001189 testcase( nSize==pPage->maxLocal );
1190 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001191 if( nSize<=pPage->maxLocal ){
1192 nSize += (u32)(pIter - pCell);
1193 if( nSize<4 ) nSize = 4;
1194 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001195 int minLocal = pPage->minLocal;
1196 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001197 testcase( nSize==pPage->maxLocal );
1198 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001199 if( nSize>pPage->maxLocal ){
1200 nSize = minLocal;
1201 }
drh3e28ff52014-09-24 00:59:08 +00001202 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001203 }
drhdc41d602014-09-22 19:51:35 +00001204 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001205 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001206}
drh25ada072015-06-19 15:07:14 +00001207static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1208 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1209 u8 *pEnd; /* End mark for a varint */
1210
1211#ifdef SQLITE_DEBUG
1212 /* The value returned by this function should always be the same as
1213 ** the (CellInfo.nSize) value found by doing a full parse of the
1214 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1215 ** this function verifies that this invariant is not violated. */
1216 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001217 pPage->xParseCell(pPage, pCell, &debuginfo);
drh25ada072015-06-19 15:07:14 +00001218#endif
1219
1220 assert( pPage->childPtrSize==4 );
1221 pEnd = pIter + 9;
1222 while( (*pIter++)&0x80 && pIter<pEnd );
1223 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1224 return (u16)(pIter - pCell);
1225}
1226
drh0ee3dbe2009-10-16 15:05:18 +00001227
1228#ifdef SQLITE_DEBUG
1229/* This variation on cellSizePtr() is used inside of assert() statements
1230** only. */
drha9121e42008-02-19 14:59:35 +00001231static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001232 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001233}
danielk1977bc6ada42004-06-30 08:20:16 +00001234#endif
drh3b7511c2001-05-26 13:15:44 +00001235
danielk197779a40da2005-01-16 08:00:01 +00001236#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001237/*
danielk197726836652005-01-17 01:33:13 +00001238** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001239** to an overflow page, insert an entry into the pointer-map
1240** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001241*/
drh98add2e2009-07-20 17:11:49 +00001242static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001243 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001244 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001245 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001246 pPage->xParseCell(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001247 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001248 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001249 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001250 }
danielk1977ac11ee62005-01-15 12:45:51 +00001251}
danielk197779a40da2005-01-16 08:00:01 +00001252#endif
1253
danielk1977ac11ee62005-01-15 12:45:51 +00001254
drhda200cc2004-05-09 11:51:38 +00001255/*
drh72f82862001-05-24 21:06:34 +00001256** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001257** end of the page and all free space is collected into one
1258** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001259** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001260**
1261** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1262** b-tree page so that there are no freeblocks or fragment bytes, all
1263** unused bytes are contained in the unallocated space region, and all
1264** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001265*/
shane0af3f892008-11-12 04:55:34 +00001266static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001267 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001268 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001269 int hdr; /* Offset to the page header */
1270 int size; /* Size of a cell */
1271 int usableSize; /* Number of usable bytes on a page */
1272 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001273 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001274 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001275 unsigned char *data; /* The page data */
1276 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001277 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001278 int iCellFirst; /* First allowable cell index */
1279 int iCellLast; /* Last possible cell index */
1280
drh2af926b2001-05-15 00:39:25 +00001281
danielk19773b8a05f2007-03-19 17:44:26 +00001282 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001283 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001284 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001285 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001286 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001287 temp = 0;
1288 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001289 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001290 cellOffset = pPage->cellOffset;
1291 nCell = pPage->nCell;
1292 assert( nCell==get2byte(&data[hdr+3]) );
1293 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001294 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001295 iCellFirst = cellOffset + 2*nCell;
1296 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001297 for(i=0; i<nCell; i++){
1298 u8 *pAddr; /* The i-th cell pointer */
1299 pAddr = &data[cellOffset + i*2];
1300 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001301 testcase( pc==iCellFirst );
1302 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001303 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001304 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001305 */
1306 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001307 return SQLITE_CORRUPT_BKPT;
1308 }
drh17146622009-07-07 17:38:38 +00001309 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001310 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001311 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001312 if( cbrk<iCellFirst || pc+size>usableSize ){
1313 return SQLITE_CORRUPT_BKPT;
1314 }
drh7157e1d2009-07-09 13:25:32 +00001315 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001316 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001317 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001318 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001319 if( temp==0 ){
1320 int x;
1321 if( cbrk==pc ) continue;
1322 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1323 x = get2byte(&data[hdr+5]);
1324 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1325 src = temp;
1326 }
1327 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001328 }
drh17146622009-07-07 17:38:38 +00001329 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001330 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001331 data[hdr+1] = 0;
1332 data[hdr+2] = 0;
1333 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001334 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001335 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001336 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001337 return SQLITE_CORRUPT_BKPT;
1338 }
shane0af3f892008-11-12 04:55:34 +00001339 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001340}
1341
drha059ad02001-04-17 20:09:11 +00001342/*
dan8e9ba0c2014-10-14 17:27:04 +00001343** Search the free-list on page pPg for space to store a cell nByte bytes in
1344** size. If one can be found, return a pointer to the space and remove it
1345** from the free-list.
1346**
1347** If no suitable space can be found on the free-list, return NULL.
1348**
drhba0f9992014-10-30 20:48:44 +00001349** This function may detect corruption within pPg. If corruption is
1350** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001351**
1352** If a slot of at least nByte bytes is found but cannot be used because
1353** there are already at least 60 fragmented bytes on the page, return NULL.
1354** In this case, if pbDefrag parameter is not NULL, set *pbDefrag to true.
dan8e9ba0c2014-10-14 17:27:04 +00001355*/
dan61e94c92014-10-27 08:02:16 +00001356static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc, int *pbDefrag){
dan8e9ba0c2014-10-14 17:27:04 +00001357 const int hdr = pPg->hdrOffset;
1358 u8 * const aData = pPg->aData;
1359 int iAddr;
1360 int pc;
1361 int usableSize = pPg->pBt->usableSize;
1362
1363 for(iAddr=hdr+1; (pc = get2byte(&aData[iAddr]))>0; iAddr=pc){
1364 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001365 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1366 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001367 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001368 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001369 return 0;
1370 }
drh113762a2014-11-19 16:36:25 +00001371 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1372 ** freeblock form a big-endian integer which is the size of the freeblock
1373 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001374 size = get2byte(&aData[pc+2]);
1375 if( size>=nByte ){
1376 int x = size - nByte;
1377 testcase( x==4 );
1378 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001379 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1380 *pRc = SQLITE_CORRUPT_BKPT;
1381 return 0;
1382 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001383 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1384 ** number of bytes in fragments may not exceed 60. */
dan61e94c92014-10-27 08:02:16 +00001385 if( aData[hdr+7]>=60 ){
1386 if( pbDefrag ) *pbDefrag = 1;
1387 return 0;
1388 }
dan8e9ba0c2014-10-14 17:27:04 +00001389 /* Remove the slot from the free-list. Update the number of
1390 ** fragmented bytes within the page. */
1391 memcpy(&aData[iAddr], &aData[pc], 2);
1392 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001393 }else{
1394 /* The slot remains on the free-list. Reduce its size to account
1395 ** for the portion used by the new allocation. */
1396 put2byte(&aData[pc+2], x);
1397 }
1398 return &aData[pc + x];
1399 }
1400 }
1401
1402 return 0;
1403}
1404
1405/*
danielk19776011a752009-04-01 16:25:32 +00001406** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001407** as the first argument. Write into *pIdx the index into pPage->aData[]
1408** of the first byte of allocated space. Return either SQLITE_OK or
1409** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001410**
drh0a45c272009-07-08 01:49:11 +00001411** The caller guarantees that there is sufficient space to make the
1412** allocation. This routine might need to defragment in order to bring
1413** all the space together, however. This routine will avoid using
1414** the first two bytes past the cell pointer area since presumably this
1415** allocation is being made in order to insert a new cell, so we will
1416** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001417*/
drh0a45c272009-07-08 01:49:11 +00001418static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001419 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1420 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001421 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001422 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001423 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001424
danielk19773b8a05f2007-03-19 17:44:26 +00001425 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001426 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001427 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001428 assert( nByte>=0 ); /* Minimum cell size is 4 */
1429 assert( pPage->nFree>=nByte );
1430 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001431 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001432
drh0a45c272009-07-08 01:49:11 +00001433 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1434 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001435 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001436 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1437 ** and the reserved space is zero (the usual value for reserved space)
1438 ** then the cell content offset of an empty page wants to be 65536.
1439 ** However, that integer is too large to be stored in a 2-byte unsigned
1440 ** integer, so a value of 0 is used in its place. */
1441 top = get2byteNotZero(&data[hdr+5]);
drhe7266222015-05-29 17:51:16 +00001442 if( gap>top || NEVER((u32)top>pPage->pBt->usableSize) ){
1443 /* The NEVER() is because a oversize "top" value will be blocked from
1444 ** reaching this point by btreeInitPage() or btreeGetUnusedPage() */
1445 return SQLITE_CORRUPT_BKPT;
1446 }
drh4c04f3c2014-08-20 11:56:14 +00001447
1448 /* If there is enough space between gap and top for one more cell pointer
1449 ** array entry offset, and if the freelist is not empty, then search the
1450 ** freelist looking for a free slot big enough to satisfy the request.
1451 */
drh0a45c272009-07-08 01:49:11 +00001452 testcase( gap+2==top );
1453 testcase( gap+1==top );
1454 testcase( gap==top );
drh4c04f3c2014-08-20 11:56:14 +00001455 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
dan61e94c92014-10-27 08:02:16 +00001456 int bDefrag = 0;
1457 u8 *pSpace = pageFindSlot(pPage, nByte, &rc, &bDefrag);
dan8e9ba0c2014-10-14 17:27:04 +00001458 if( rc ) return rc;
dan61e94c92014-10-27 08:02:16 +00001459 if( bDefrag ) goto defragment_page;
dan8e9ba0c2014-10-14 17:27:04 +00001460 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001461 assert( pSpace>=data && (pSpace - data)<65536 );
1462 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001463 return SQLITE_OK;
drh9e572e62004-04-23 23:43:10 +00001464 }
1465 }
drh43605152004-05-29 21:46:49 +00001466
drh4c04f3c2014-08-20 11:56:14 +00001467 /* The request could not be fulfilled using a freelist slot. Check
1468 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001469 */
1470 testcase( gap+2+nByte==top );
1471 if( gap+2+nByte>top ){
dan61e94c92014-10-27 08:02:16 +00001472 defragment_page:
drh1fd2d7d2014-12-02 16:16:47 +00001473 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001474 rc = defragmentPage(pPage);
1475 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001476 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001477 assert( gap+nByte<=top );
1478 }
1479
1480
drh43605152004-05-29 21:46:49 +00001481 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001482 ** and the cell content area. The btreeInitPage() call has already
1483 ** validated the freelist. Given that the freelist is valid, there
1484 ** is no way that the allocation can extend off the end of the page.
1485 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001486 */
drh0a45c272009-07-08 01:49:11 +00001487 top -= nByte;
drh43605152004-05-29 21:46:49 +00001488 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001489 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001490 *pIdx = top;
1491 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001492}
1493
1494/*
drh9e572e62004-04-23 23:43:10 +00001495** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001496** The first byte of the new free block is pPage->aData[iStart]
1497** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001498**
drh5f5c7532014-08-20 17:56:27 +00001499** Adjacent freeblocks are coalesced.
1500**
1501** Note that even though the freeblock list was checked by btreeInitPage(),
1502** that routine will not detect overlap between cells or freeblocks. Nor
1503** does it detect cells or freeblocks that encrouch into the reserved bytes
1504** at the end of the page. So do additional corruption checks inside this
1505** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001506*/
drh5f5c7532014-08-20 17:56:27 +00001507static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001508 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001509 u16 iFreeBlk; /* Address of the next freeblock */
1510 u8 hdr; /* Page header size. 0 or 100 */
1511 u8 nFrag = 0; /* Reduction in fragmentation */
1512 u16 iOrigSize = iSize; /* Original value of iSize */
1513 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1514 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001515 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001516
drh9e572e62004-04-23 23:43:10 +00001517 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001518 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001519 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001520 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001521 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001522 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001523 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001524
drh5f5c7532014-08-20 17:56:27 +00001525 /* Overwrite deleted information with zeros when the secure_delete
1526 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001527 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001528 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001529 }
drhfcce93f2006-02-22 03:08:32 +00001530
drh5f5c7532014-08-20 17:56:27 +00001531 /* The list of freeblocks must be in ascending order. Find the
1532 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001533 */
drh43605152004-05-29 21:46:49 +00001534 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001535 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001536 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1537 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1538 }else{
1539 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1540 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1541 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001542 }
drh7bc4c452014-08-20 18:43:44 +00001543 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1544 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1545
1546 /* At this point:
1547 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001548 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001549 **
1550 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1551 */
1552 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1553 nFrag = iFreeBlk - iEnd;
1554 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1555 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhe4d38702015-06-15 12:58:15 +00001556 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001557 iSize = iEnd - iStart;
1558 iFreeBlk = get2byte(&data[iFreeBlk]);
1559 }
1560
drh3f387402014-09-24 01:23:00 +00001561 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1562 ** pointer in the page header) then check to see if iStart should be
1563 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001564 */
1565 if( iPtr>hdr+1 ){
1566 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1567 if( iPtrEnd+3>=iStart ){
1568 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1569 nFrag += iStart - iPtrEnd;
1570 iSize = iEnd - iPtr;
1571 iStart = iPtr;
1572 }
1573 }
1574 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1575 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001576 }
drh7bc4c452014-08-20 18:43:44 +00001577 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001578 /* The new freeblock is at the beginning of the cell content area,
1579 ** so just extend the cell content area rather than create another
1580 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001581 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001582 put2byte(&data[hdr+1], iFreeBlk);
1583 put2byte(&data[hdr+5], iEnd);
1584 }else{
1585 /* Insert the new freeblock into the freelist */
1586 put2byte(&data[iPtr], iStart);
1587 put2byte(&data[iStart], iFreeBlk);
1588 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001589 }
drh5f5c7532014-08-20 17:56:27 +00001590 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001591 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001592}
1593
1594/*
drh271efa52004-05-30 19:19:05 +00001595** Decode the flags byte (the first byte of the header) for a page
1596** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001597**
1598** Only the following combinations are supported. Anything different
1599** indicates a corrupt database files:
1600**
1601** PTF_ZERODATA
1602** PTF_ZERODATA | PTF_LEAF
1603** PTF_LEAFDATA | PTF_INTKEY
1604** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001605*/
drh44845222008-07-17 18:39:57 +00001606static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001607 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001608
1609 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001610 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001611 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001612 flagByte &= ~PTF_LEAF;
1613 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001614 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001615 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001616 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001617 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1618 ** table b-tree page. */
1619 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1620 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1621 ** table b-tree page. */
1622 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001623 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001624 if( pPage->leaf ){
1625 pPage->intKeyLeaf = 1;
1626 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001627 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001628 }else{
1629 pPage->intKeyLeaf = 0;
1630 pPage->noPayload = 1;
1631 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001632 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001633 }
drh271efa52004-05-30 19:19:05 +00001634 pPage->maxLocal = pBt->maxLeaf;
1635 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001636 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001637 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1638 ** index b-tree page. */
1639 assert( (PTF_ZERODATA)==2 );
1640 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1641 ** index b-tree page. */
1642 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001643 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001644 pPage->intKeyLeaf = 0;
1645 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001646 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001647 pPage->maxLocal = pBt->maxLocal;
1648 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001649 }else{
drhfdab0262014-11-20 15:30:50 +00001650 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1651 ** an error. */
drh44845222008-07-17 18:39:57 +00001652 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001653 }
drhc9166342012-01-05 23:32:06 +00001654 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001655 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001656}
1657
1658/*
drh7e3b0a02001-04-28 16:52:40 +00001659** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001660**
1661** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001662** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001663** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1664** guarantee that the page is well-formed. It only shows that
1665** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001666*/
danielk197730548662009-07-09 05:07:37 +00001667static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001668
danielk197771d5d2c2008-09-29 11:49:47 +00001669 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001670 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001671 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001672 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001673 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1674 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001675
1676 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001677 u16 pc; /* Address of a freeblock within pPage->aData[] */
1678 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001679 u8 *data; /* Equal to pPage->aData */
1680 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001681 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001682 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001683 int nFree; /* Number of unused bytes on the page */
1684 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001685 int iCellFirst; /* First allowable cell or freeblock offset */
1686 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001687
1688 pBt = pPage->pBt;
1689
danielk1977eaa06f62008-09-18 17:34:44 +00001690 hdr = pPage->hdrOffset;
1691 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001692 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1693 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001694 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001695 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1696 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001697 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001698 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001699 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001700 pPage->aDataEnd = &data[usableSize];
1701 pPage->aCellIdx = &data[cellOffset];
drhfdab0262014-11-20 15:30:50 +00001702 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1703 ** the start of the cell content area. A zero value for this integer is
1704 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001705 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001706 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1707 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001708 pPage->nCell = get2byte(&data[hdr+3]);
1709 if( pPage->nCell>MX_CELL(pBt) ){
1710 /* To many cells for a single page. The page must be corrupt */
1711 return SQLITE_CORRUPT_BKPT;
1712 }
drhb908d762009-07-08 16:54:40 +00001713 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001714 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1715 ** possible for a root page of a table that contains no rows) then the
1716 ** offset to the cell content area will equal the page size minus the
1717 ** bytes of reserved space. */
1718 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001719
shane5eff7cf2009-08-10 03:57:58 +00001720 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001721 ** of page when parsing a cell.
1722 **
1723 ** The following block of code checks early to see if a cell extends
1724 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1725 ** returned if it does.
1726 */
drh0a45c272009-07-08 01:49:11 +00001727 iCellFirst = cellOffset + 2*pPage->nCell;
1728 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001729 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001730 int i; /* Index into the cell pointer array */
1731 int sz; /* Size of a cell */
1732
drh69e931e2009-06-03 21:04:35 +00001733 if( !pPage->leaf ) iCellLast--;
1734 for(i=0; i<pPage->nCell; i++){
1735 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001736 testcase( pc==iCellFirst );
1737 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001738 if( pc<iCellFirst || pc>iCellLast ){
1739 return SQLITE_CORRUPT_BKPT;
1740 }
drh25ada072015-06-19 15:07:14 +00001741 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001742 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001743 if( pc+sz>usableSize ){
1744 return SQLITE_CORRUPT_BKPT;
1745 }
1746 }
drh0a45c272009-07-08 01:49:11 +00001747 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001748 }
drh69e931e2009-06-03 21:04:35 +00001749
drhfdab0262014-11-20 15:30:50 +00001750 /* Compute the total free space on the page
1751 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1752 ** start of the first freeblock on the page, or is zero if there are no
1753 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001754 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001755 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001756 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001757 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001758 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001759 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1760 ** always be at least one cell before the first freeblock.
1761 **
1762 ** Or, the freeblock is off the end of the page
1763 */
danielk1977eaa06f62008-09-18 17:34:44 +00001764 return SQLITE_CORRUPT_BKPT;
1765 }
1766 next = get2byte(&data[pc]);
1767 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001768 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1769 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001770 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001771 return SQLITE_CORRUPT_BKPT;
1772 }
shane85095702009-06-15 16:27:08 +00001773 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001774 pc = next;
1775 }
danielk197793c829c2009-06-03 17:26:17 +00001776
1777 /* At this point, nFree contains the sum of the offset to the start
1778 ** of the cell-content area plus the number of free bytes within
1779 ** the cell-content area. If this is greater than the usable-size
1780 ** of the page, then the page must be corrupted. This check also
1781 ** serves to verify that the offset to the start of the cell-content
1782 ** area, according to the page header, lies within the page.
1783 */
1784 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001785 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001786 }
shane5eff7cf2009-08-10 03:57:58 +00001787 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001788 pPage->isInit = 1;
1789 }
drh9e572e62004-04-23 23:43:10 +00001790 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001791}
1792
1793/*
drh8b2f49b2001-06-08 00:21:52 +00001794** Set up a raw page so that it looks like a database page holding
1795** no entries.
drhbd03cae2001-06-02 02:40:57 +00001796*/
drh9e572e62004-04-23 23:43:10 +00001797static void zeroPage(MemPage *pPage, int flags){
1798 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001799 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001800 u8 hdr = pPage->hdrOffset;
1801 u16 first;
drh9e572e62004-04-23 23:43:10 +00001802
danielk19773b8a05f2007-03-19 17:44:26 +00001803 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001804 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1805 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001806 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001807 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001808 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001809 memset(&data[hdr], 0, pBt->usableSize - hdr);
1810 }
drh1bd10f82008-12-10 21:19:56 +00001811 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001812 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001813 memset(&data[hdr+1], 0, 4);
1814 data[hdr+7] = 0;
1815 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001816 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001817 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001818 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001819 pPage->aDataEnd = &data[pBt->usableSize];
1820 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001821 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001822 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1823 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001824 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001825 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001826}
1827
drh897a8202008-09-18 01:08:15 +00001828
1829/*
1830** Convert a DbPage obtained from the pager into a MemPage used by
1831** the btree layer.
1832*/
1833static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1834 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1835 pPage->aData = sqlite3PagerGetData(pDbPage);
1836 pPage->pDbPage = pDbPage;
1837 pPage->pBt = pBt;
1838 pPage->pgno = pgno;
1839 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1840 return pPage;
1841}
1842
drhbd03cae2001-06-02 02:40:57 +00001843/*
drh3aac2dd2004-04-26 14:10:20 +00001844** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001845** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001846**
drh7e8c6f12015-05-28 03:28:27 +00001847** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1848** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001849** to fetch the content. Just fill in the content with zeros for now.
1850** If in the future we call sqlite3PagerWrite() on this page, that
1851** means we have started to be concerned about content and the disk
1852** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001853*/
danielk197730548662009-07-09 05:07:37 +00001854static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001855 BtShared *pBt, /* The btree */
1856 Pgno pgno, /* Number of the page to fetch */
1857 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001858 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001859){
drh3aac2dd2004-04-26 14:10:20 +00001860 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001861 DbPage *pDbPage;
1862
drhb00fc3b2013-08-21 23:42:32 +00001863 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001864 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001865 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001866 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001867 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001868 return SQLITE_OK;
1869}
1870
1871/*
danielk1977bea2a942009-01-20 17:06:27 +00001872** Retrieve a page from the pager cache. If the requested page is not
1873** already in the pager cache return NULL. Initialize the MemPage.pBt and
1874** MemPage.aData elements if needed.
1875*/
1876static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1877 DbPage *pDbPage;
1878 assert( sqlite3_mutex_held(pBt->mutex) );
1879 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1880 if( pDbPage ){
1881 return btreePageFromDbPage(pDbPage, pgno, pBt);
1882 }
1883 return 0;
1884}
1885
1886/*
danielk197789d40042008-11-17 14:20:56 +00001887** Return the size of the database file in pages. If there is any kind of
1888** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001889*/
drhb1299152010-03-30 22:58:33 +00001890static Pgno btreePagecount(BtShared *pBt){
1891 return pBt->nPage;
1892}
1893u32 sqlite3BtreeLastPage(Btree *p){
1894 assert( sqlite3BtreeHoldsMutex(p) );
1895 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001896 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001897}
1898
1899/*
danielk197789bc4bc2009-07-21 19:25:24 +00001900** Get a page from the pager and initialize it. This routine is just a
1901** convenience wrapper around separate calls to btreeGetPage() and
1902** btreeInitPage().
1903**
1904** If an error occurs, then the value *ppPage is set to is undefined. It
1905** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001906*/
1907static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001908 BtShared *pBt, /* The database file */
1909 Pgno pgno, /* Number of the page to get */
1910 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001911 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001912){
1913 int rc;
drh1fee73e2007-08-29 04:00:57 +00001914 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001915 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001916
danba3cbf32010-06-30 04:29:03 +00001917 if( pgno>btreePagecount(pBt) ){
1918 rc = SQLITE_CORRUPT_BKPT;
1919 }else{
drhb00fc3b2013-08-21 23:42:32 +00001920 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001921 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001922 rc = btreeInitPage(*ppPage);
1923 if( rc!=SQLITE_OK ){
1924 releasePage(*ppPage);
1925 }
danielk197789bc4bc2009-07-21 19:25:24 +00001926 }
drhee696e22004-08-30 16:52:17 +00001927 }
danba3cbf32010-06-30 04:29:03 +00001928
1929 testcase( pgno==0 );
1930 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001931 return rc;
1932}
1933
1934/*
drh3aac2dd2004-04-26 14:10:20 +00001935** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001936** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001937*/
drh4b70f112004-05-02 21:12:19 +00001938static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001939 if( pPage ){
1940 assert( pPage->aData );
1941 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001942 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001943 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1944 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001945 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001946 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001947 }
1948}
1949
1950/*
drh7e8c6f12015-05-28 03:28:27 +00001951** Get an unused page.
1952**
1953** This works just like btreeGetPage() with the addition:
1954**
1955** * If the page is already in use for some other purpose, immediately
1956** release it and return an SQLITE_CURRUPT error.
1957** * Make sure the isInit flag is clear
1958*/
1959static int btreeGetUnusedPage(
1960 BtShared *pBt, /* The btree */
1961 Pgno pgno, /* Number of the page to fetch */
1962 MemPage **ppPage, /* Return the page in this parameter */
1963 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1964){
1965 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
1966 if( rc==SQLITE_OK ){
1967 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
1968 releasePage(*ppPage);
1969 *ppPage = 0;
1970 return SQLITE_CORRUPT_BKPT;
1971 }
1972 (*ppPage)->isInit = 0;
1973 }else{
1974 *ppPage = 0;
1975 }
1976 return rc;
1977}
1978
1979
1980/*
drha6abd042004-06-09 17:37:22 +00001981** During a rollback, when the pager reloads information into the cache
1982** so that the cache is restored to its original state at the start of
1983** the transaction, for each page restored this routine is called.
1984**
1985** This routine needs to reset the extra data section at the end of the
1986** page to agree with the restored data.
1987*/
danielk1977eaa06f62008-09-18 17:34:44 +00001988static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001989 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001990 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001991 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001992 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001993 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001994 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001995 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001996 /* pPage might not be a btree page; it might be an overflow page
1997 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001998 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001999 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002000 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002001 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002002 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002003 }
drha6abd042004-06-09 17:37:22 +00002004 }
2005}
2006
2007/*
drhe5fe6902007-12-07 18:55:28 +00002008** Invoke the busy handler for a btree.
2009*/
danielk19771ceedd32008-11-19 10:22:33 +00002010static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002011 BtShared *pBt = (BtShared*)pArg;
2012 assert( pBt->db );
2013 assert( sqlite3_mutex_held(pBt->db->mutex) );
2014 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2015}
2016
2017/*
drhad3e0102004-09-03 23:32:18 +00002018** Open a database file.
2019**
drh382c0242001-10-06 16:33:02 +00002020** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002021** then an ephemeral database is created. The ephemeral database might
2022** be exclusively in memory, or it might use a disk-based memory cache.
2023** Either way, the ephemeral database will be automatically deleted
2024** when sqlite3BtreeClose() is called.
2025**
drhe53831d2007-08-17 01:14:38 +00002026** If zFilename is ":memory:" then an in-memory database is created
2027** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002028**
drh33f111d2012-01-17 15:29:14 +00002029** The "flags" parameter is a bitmask that might contain bits like
2030** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002031**
drhc47fd8e2009-04-30 13:30:32 +00002032** If the database is already opened in the same database connection
2033** and we are in shared cache mode, then the open will fail with an
2034** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2035** objects in the same database connection since doing so will lead
2036** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002037*/
drh23e11ca2004-05-04 17:27:28 +00002038int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002039 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002040 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002041 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002042 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002043 int flags, /* Options */
2044 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002045){
drh7555d8e2009-03-20 13:15:30 +00002046 BtShared *pBt = 0; /* Shared part of btree structure */
2047 Btree *p; /* Handle to return */
2048 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2049 int rc = SQLITE_OK; /* Result code from this function */
2050 u8 nReserve; /* Byte of unused space on each page */
2051 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002052
drh75c014c2010-08-30 15:02:28 +00002053 /* True if opening an ephemeral, temporary database */
2054 const int isTempDb = zFilename==0 || zFilename[0]==0;
2055
danielk1977aef0bf62005-12-30 16:28:01 +00002056 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002057 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002058 */
drhb0a7c9c2010-12-06 21:09:59 +00002059#ifdef SQLITE_OMIT_MEMORYDB
2060 const int isMemdb = 0;
2061#else
2062 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002063 || (isTempDb && sqlite3TempInMemory(db))
2064 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002065#endif
2066
drhe5fe6902007-12-07 18:55:28 +00002067 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002068 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002069 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002070 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2071
2072 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2073 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2074
2075 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2076 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002077
drh75c014c2010-08-30 15:02:28 +00002078 if( isMemdb ){
2079 flags |= BTREE_MEMORY;
2080 }
2081 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2082 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2083 }
drh17435752007-08-16 04:30:38 +00002084 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002085 if( !p ){
2086 return SQLITE_NOMEM;
2087 }
2088 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002089 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002090#ifndef SQLITE_OMIT_SHARED_CACHE
2091 p->lock.pBtree = p;
2092 p->lock.iTable = 1;
2093#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002094
drh198bf392006-01-06 21:52:49 +00002095#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002096 /*
2097 ** If this Btree is a candidate for shared cache, try to find an
2098 ** existing BtShared object that we can share with
2099 */
drh4ab9d252012-05-26 20:08:49 +00002100 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002101 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002102 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002103 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002104 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002105 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002106
drhff0587c2007-08-29 17:43:19 +00002107 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002108 if( !zFullPathname ){
2109 sqlite3_free(p);
2110 return SQLITE_NOMEM;
2111 }
drhafc8b7f2012-05-26 18:06:38 +00002112 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002113 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002114 }else{
2115 rc = sqlite3OsFullPathname(pVfs, zFilename,
2116 nFullPathname, zFullPathname);
2117 if( rc ){
2118 sqlite3_free(zFullPathname);
2119 sqlite3_free(p);
2120 return rc;
2121 }
drh070ad6b2011-11-17 11:43:19 +00002122 }
drh30ddce62011-10-15 00:16:30 +00002123#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002124 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2125 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002126 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002127 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002128#endif
drh78f82d12008-09-02 00:52:52 +00002129 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002130 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002131 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002132 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002133 int iDb;
2134 for(iDb=db->nDb-1; iDb>=0; iDb--){
2135 Btree *pExisting = db->aDb[iDb].pBt;
2136 if( pExisting && pExisting->pBt==pBt ){
2137 sqlite3_mutex_leave(mutexShared);
2138 sqlite3_mutex_leave(mutexOpen);
2139 sqlite3_free(zFullPathname);
2140 sqlite3_free(p);
2141 return SQLITE_CONSTRAINT;
2142 }
2143 }
drhff0587c2007-08-29 17:43:19 +00002144 p->pBt = pBt;
2145 pBt->nRef++;
2146 break;
2147 }
2148 }
2149 sqlite3_mutex_leave(mutexShared);
2150 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002151 }
drhff0587c2007-08-29 17:43:19 +00002152#ifdef SQLITE_DEBUG
2153 else{
2154 /* In debug mode, we mark all persistent databases as sharable
2155 ** even when they are not. This exercises the locking code and
2156 ** gives more opportunity for asserts(sqlite3_mutex_held())
2157 ** statements to find locking problems.
2158 */
2159 p->sharable = 1;
2160 }
2161#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002162 }
2163#endif
drha059ad02001-04-17 20:09:11 +00002164 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002165 /*
2166 ** The following asserts make sure that structures used by the btree are
2167 ** the right size. This is to guard against size changes that result
2168 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002169 */
drh062cf272015-03-23 19:03:51 +00002170 assert( sizeof(i64)==8 );
2171 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002172 assert( sizeof(u32)==4 );
2173 assert( sizeof(u16)==2 );
2174 assert( sizeof(Pgno)==4 );
2175
2176 pBt = sqlite3MallocZero( sizeof(*pBt) );
2177 if( pBt==0 ){
2178 rc = SQLITE_NOMEM;
2179 goto btree_open_out;
2180 }
danielk197771d5d2c2008-09-29 11:49:47 +00002181 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002182 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002183 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002184 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002185 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2186 }
2187 if( rc!=SQLITE_OK ){
2188 goto btree_open_out;
2189 }
shanehbd2aaf92010-09-01 02:38:21 +00002190 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002191 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002192 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002193 p->pBt = pBt;
2194
drhe53831d2007-08-17 01:14:38 +00002195 pBt->pCursor = 0;
2196 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002197 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002198#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002199 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002200#endif
drh113762a2014-11-19 16:36:25 +00002201 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2202 ** determined by the 2-byte integer located at an offset of 16 bytes from
2203 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002204 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002205 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2206 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002207 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002208#ifndef SQLITE_OMIT_AUTOVACUUM
2209 /* If the magic name ":memory:" will create an in-memory database, then
2210 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2211 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2212 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2213 ** regular file-name. In this case the auto-vacuum applies as per normal.
2214 */
2215 if( zFilename && !isMemdb ){
2216 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2217 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2218 }
2219#endif
2220 nReserve = 0;
2221 }else{
drh113762a2014-11-19 16:36:25 +00002222 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2223 ** determined by the one-byte unsigned integer found at an offset of 20
2224 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002225 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002226 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002227#ifndef SQLITE_OMIT_AUTOVACUUM
2228 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2229 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2230#endif
2231 }
drhfa9601a2009-06-18 17:22:39 +00002232 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002233 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002234 pBt->usableSize = pBt->pageSize - nReserve;
2235 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002236
2237#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2238 /* Add the new BtShared object to the linked list sharable BtShareds.
2239 */
2240 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002241 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002242 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002243 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002244 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002245 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002246 if( pBt->mutex==0 ){
2247 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002248 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002249 goto btree_open_out;
2250 }
drhff0587c2007-08-29 17:43:19 +00002251 }
drhe53831d2007-08-17 01:14:38 +00002252 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002253 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2254 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002255 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002256 }
drheee46cf2004-11-06 00:02:48 +00002257#endif
drh90f5ecb2004-07-22 01:19:35 +00002258 }
danielk1977aef0bf62005-12-30 16:28:01 +00002259
drhcfed7bc2006-03-13 14:28:05 +00002260#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002261 /* If the new Btree uses a sharable pBtShared, then link the new
2262 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002263 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002264 */
drhe53831d2007-08-17 01:14:38 +00002265 if( p->sharable ){
2266 int i;
2267 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002268 for(i=0; i<db->nDb; i++){
2269 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002270 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2271 if( p->pBt<pSib->pBt ){
2272 p->pNext = pSib;
2273 p->pPrev = 0;
2274 pSib->pPrev = p;
2275 }else{
drhabddb0c2007-08-20 13:14:28 +00002276 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002277 pSib = pSib->pNext;
2278 }
2279 p->pNext = pSib->pNext;
2280 p->pPrev = pSib;
2281 if( p->pNext ){
2282 p->pNext->pPrev = p;
2283 }
2284 pSib->pNext = p;
2285 }
2286 break;
2287 }
2288 }
danielk1977aef0bf62005-12-30 16:28:01 +00002289 }
danielk1977aef0bf62005-12-30 16:28:01 +00002290#endif
2291 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002292
2293btree_open_out:
2294 if( rc!=SQLITE_OK ){
2295 if( pBt && pBt->pPager ){
2296 sqlite3PagerClose(pBt->pPager);
2297 }
drh17435752007-08-16 04:30:38 +00002298 sqlite3_free(pBt);
2299 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002300 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002301 }else{
2302 /* If the B-Tree was successfully opened, set the pager-cache size to the
2303 ** default value. Except, when opening on an existing shared pager-cache,
2304 ** do not change the pager-cache size.
2305 */
2306 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2307 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2308 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002309 }
drh7555d8e2009-03-20 13:15:30 +00002310 if( mutexOpen ){
2311 assert( sqlite3_mutex_held(mutexOpen) );
2312 sqlite3_mutex_leave(mutexOpen);
2313 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002314 return rc;
drha059ad02001-04-17 20:09:11 +00002315}
2316
2317/*
drhe53831d2007-08-17 01:14:38 +00002318** Decrement the BtShared.nRef counter. When it reaches zero,
2319** remove the BtShared structure from the sharing list. Return
2320** true if the BtShared.nRef counter reaches zero and return
2321** false if it is still positive.
2322*/
2323static int removeFromSharingList(BtShared *pBt){
2324#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002325 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002326 BtShared *pList;
2327 int removed = 0;
2328
drhd677b3d2007-08-20 22:48:41 +00002329 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002330 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002331 sqlite3_mutex_enter(pMaster);
2332 pBt->nRef--;
2333 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002334 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2335 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002336 }else{
drh78f82d12008-09-02 00:52:52 +00002337 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002338 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002339 pList=pList->pNext;
2340 }
drh34004ce2008-07-11 16:15:17 +00002341 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002342 pList->pNext = pBt->pNext;
2343 }
2344 }
drh3285db22007-09-03 22:00:39 +00002345 if( SQLITE_THREADSAFE ){
2346 sqlite3_mutex_free(pBt->mutex);
2347 }
drhe53831d2007-08-17 01:14:38 +00002348 removed = 1;
2349 }
2350 sqlite3_mutex_leave(pMaster);
2351 return removed;
2352#else
2353 return 1;
2354#endif
2355}
2356
2357/*
drhf7141992008-06-19 00:16:08 +00002358** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002359** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2360** pointer.
drhf7141992008-06-19 00:16:08 +00002361*/
2362static void allocateTempSpace(BtShared *pBt){
2363 if( !pBt->pTmpSpace ){
2364 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002365
2366 /* One of the uses of pBt->pTmpSpace is to format cells before
2367 ** inserting them into a leaf page (function fillInCell()). If
2368 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2369 ** by the various routines that manipulate binary cells. Which
2370 ** can mean that fillInCell() only initializes the first 2 or 3
2371 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2372 ** it into a database page. This is not actually a problem, but it
2373 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2374 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002375 ** zero the first 4 bytes of temp space here.
2376 **
2377 ** Also: Provide four bytes of initialized space before the
2378 ** beginning of pTmpSpace as an area available to prepend the
2379 ** left-child pointer to the beginning of a cell.
2380 */
2381 if( pBt->pTmpSpace ){
2382 memset(pBt->pTmpSpace, 0, 8);
2383 pBt->pTmpSpace += 4;
2384 }
drhf7141992008-06-19 00:16:08 +00002385 }
2386}
2387
2388/*
2389** Free the pBt->pTmpSpace allocation
2390*/
2391static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002392 if( pBt->pTmpSpace ){
2393 pBt->pTmpSpace -= 4;
2394 sqlite3PageFree(pBt->pTmpSpace);
2395 pBt->pTmpSpace = 0;
2396 }
drhf7141992008-06-19 00:16:08 +00002397}
2398
2399/*
drha059ad02001-04-17 20:09:11 +00002400** Close an open database and invalidate all cursors.
2401*/
danielk1977aef0bf62005-12-30 16:28:01 +00002402int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002403 BtShared *pBt = p->pBt;
2404 BtCursor *pCur;
2405
danielk1977aef0bf62005-12-30 16:28:01 +00002406 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002407 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002408 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002409 pCur = pBt->pCursor;
2410 while( pCur ){
2411 BtCursor *pTmp = pCur;
2412 pCur = pCur->pNext;
2413 if( pTmp->pBtree==p ){
2414 sqlite3BtreeCloseCursor(pTmp);
2415 }
drha059ad02001-04-17 20:09:11 +00002416 }
danielk1977aef0bf62005-12-30 16:28:01 +00002417
danielk19778d34dfd2006-01-24 16:37:57 +00002418 /* Rollback any active transaction and free the handle structure.
2419 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2420 ** this handle.
2421 */
drh47b7fc72014-11-11 01:33:57 +00002422 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002423 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002424
danielk1977aef0bf62005-12-30 16:28:01 +00002425 /* If there are still other outstanding references to the shared-btree
2426 ** structure, return now. The remainder of this procedure cleans
2427 ** up the shared-btree.
2428 */
drhe53831d2007-08-17 01:14:38 +00002429 assert( p->wantToLock==0 && p->locked==0 );
2430 if( !p->sharable || removeFromSharingList(pBt) ){
2431 /* The pBt is no longer on the sharing list, so we can access
2432 ** it without having to hold the mutex.
2433 **
2434 ** Clean out and delete the BtShared object.
2435 */
2436 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002437 sqlite3PagerClose(pBt->pPager);
2438 if( pBt->xFreeSchema && pBt->pSchema ){
2439 pBt->xFreeSchema(pBt->pSchema);
2440 }
drhb9755982010-07-24 16:34:37 +00002441 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002442 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002443 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002444 }
2445
drhe53831d2007-08-17 01:14:38 +00002446#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002447 assert( p->wantToLock==0 );
2448 assert( p->locked==0 );
2449 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2450 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002451#endif
2452
drhe53831d2007-08-17 01:14:38 +00002453 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002454 return SQLITE_OK;
2455}
2456
2457/*
drhda47d772002-12-02 04:25:19 +00002458** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002459**
2460** The maximum number of cache pages is set to the absolute
2461** value of mxPage. If mxPage is negative, the pager will
2462** operate asynchronously - it will not stop to do fsync()s
2463** to insure data is written to the disk surface before
2464** continuing. Transactions still work if synchronous is off,
2465** and the database cannot be corrupted if this program
2466** crashes. But if the operating system crashes or there is
2467** an abrupt power failure when synchronous is off, the database
2468** could be left in an inconsistent and unrecoverable state.
2469** Synchronous is on by default so database corruption is not
2470** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002471*/
danielk1977aef0bf62005-12-30 16:28:01 +00002472int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2473 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002474 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002475 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002476 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002477 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002478 return SQLITE_OK;
2479}
2480
drh18c7e402014-03-14 11:46:10 +00002481#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002482/*
dan5d8a1372013-03-19 19:28:06 +00002483** Change the limit on the amount of the database file that may be
2484** memory mapped.
2485*/
drh9b4c59f2013-04-15 17:03:42 +00002486int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002487 BtShared *pBt = p->pBt;
2488 assert( sqlite3_mutex_held(p->db->mutex) );
2489 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002490 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002491 sqlite3BtreeLeave(p);
2492 return SQLITE_OK;
2493}
drh18c7e402014-03-14 11:46:10 +00002494#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002495
2496/*
drh973b6e32003-02-12 14:09:42 +00002497** Change the way data is synced to disk in order to increase or decrease
2498** how well the database resists damage due to OS crashes and power
2499** failures. Level 1 is the same as asynchronous (no syncs() occur and
2500** there is a high probability of damage) Level 2 is the default. There
2501** is a very low but non-zero probability of damage. Level 3 reduces the
2502** probability of damage to near zero but with a write performance reduction.
2503*/
danielk197793758c82005-01-21 08:13:14 +00002504#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002505int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002506 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002507 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002508){
danielk1977aef0bf62005-12-30 16:28:01 +00002509 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002510 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002511 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002512 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002513 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002514 return SQLITE_OK;
2515}
danielk197793758c82005-01-21 08:13:14 +00002516#endif
drh973b6e32003-02-12 14:09:42 +00002517
drh2c8997b2005-08-27 16:36:48 +00002518/*
2519** Return TRUE if the given btree is set to safety level 1. In other
2520** words, return TRUE if no sync() occurs on the disk files.
2521*/
danielk1977aef0bf62005-12-30 16:28:01 +00002522int sqlite3BtreeSyncDisabled(Btree *p){
2523 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002524 int rc;
drhe5fe6902007-12-07 18:55:28 +00002525 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002526 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002527 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002528 rc = sqlite3PagerNosync(pBt->pPager);
2529 sqlite3BtreeLeave(p);
2530 return rc;
drh2c8997b2005-08-27 16:36:48 +00002531}
2532
drh973b6e32003-02-12 14:09:42 +00002533/*
drh90f5ecb2004-07-22 01:19:35 +00002534** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002535** Or, if the page size has already been fixed, return SQLITE_READONLY
2536** without changing anything.
drh06f50212004-11-02 14:24:33 +00002537**
2538** The page size must be a power of 2 between 512 and 65536. If the page
2539** size supplied does not meet this constraint then the page size is not
2540** changed.
2541**
2542** Page sizes are constrained to be a power of two so that the region
2543** of the database file used for locking (beginning at PENDING_BYTE,
2544** the first byte past the 1GB boundary, 0x40000000) needs to occur
2545** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002546**
2547** If parameter nReserve is less than zero, then the number of reserved
2548** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002549**
drhc9166342012-01-05 23:32:06 +00002550** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002551** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002552*/
drhce4869f2009-04-02 20:16:58 +00002553int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002554 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002555 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002556 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002557 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002558#if SQLITE_HAS_CODEC
2559 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2560#endif
drhc9166342012-01-05 23:32:06 +00002561 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002562 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002563 return SQLITE_READONLY;
2564 }
2565 if( nReserve<0 ){
2566 nReserve = pBt->pageSize - pBt->usableSize;
2567 }
drhf49661a2008-12-10 16:45:50 +00002568 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002569 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2570 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002571 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002572 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002573 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002574 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002575 }
drhfa9601a2009-06-18 17:22:39 +00002576 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002577 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002578 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002579 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002580 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002581}
2582
2583/*
2584** Return the currently defined page size
2585*/
danielk1977aef0bf62005-12-30 16:28:01 +00002586int sqlite3BtreeGetPageSize(Btree *p){
2587 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002588}
drh7f751222009-03-17 22:33:00 +00002589
dan0094f372012-09-28 20:23:42 +00002590/*
2591** This function is similar to sqlite3BtreeGetReserve(), except that it
2592** may only be called if it is guaranteed that the b-tree mutex is already
2593** held.
2594**
2595** This is useful in one special case in the backup API code where it is
2596** known that the shared b-tree mutex is held, but the mutex on the
2597** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2598** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002599** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002600*/
2601int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002602 int n;
dan0094f372012-09-28 20:23:42 +00002603 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002604 n = p->pBt->pageSize - p->pBt->usableSize;
2605 return n;
dan0094f372012-09-28 20:23:42 +00002606}
2607
drh7f751222009-03-17 22:33:00 +00002608/*
2609** Return the number of bytes of space at the end of every page that
2610** are intentually left unused. This is the "reserved" space that is
2611** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002612**
2613** If SQLITE_HAS_MUTEX is defined then the number returned is the
2614** greater of the current reserved space and the maximum requested
2615** reserve space.
drh7f751222009-03-17 22:33:00 +00002616*/
drhad0961b2015-02-21 00:19:25 +00002617int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002618 int n;
2619 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002620 n = sqlite3BtreeGetReserveNoMutex(p);
2621#ifdef SQLITE_HAS_CODEC
2622 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2623#endif
drhd677b3d2007-08-20 22:48:41 +00002624 sqlite3BtreeLeave(p);
2625 return n;
drh2011d5f2004-07-22 02:40:37 +00002626}
drhf8e632b2007-05-08 14:51:36 +00002627
drhad0961b2015-02-21 00:19:25 +00002628
drhf8e632b2007-05-08 14:51:36 +00002629/*
2630** Set the maximum page count for a database if mxPage is positive.
2631** No changes are made if mxPage is 0 or negative.
2632** Regardless of the value of mxPage, return the maximum page count.
2633*/
2634int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002635 int n;
2636 sqlite3BtreeEnter(p);
2637 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2638 sqlite3BtreeLeave(p);
2639 return n;
drhf8e632b2007-05-08 14:51:36 +00002640}
drh5b47efa2010-02-12 18:18:39 +00002641
2642/*
drhc9166342012-01-05 23:32:06 +00002643** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2644** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002645** setting after the change.
2646*/
2647int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2648 int b;
drhaf034ed2010-02-12 19:46:26 +00002649 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002650 sqlite3BtreeEnter(p);
2651 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002652 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2653 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002654 }
drhc9166342012-01-05 23:32:06 +00002655 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002656 sqlite3BtreeLeave(p);
2657 return b;
2658}
drh90f5ecb2004-07-22 01:19:35 +00002659
2660/*
danielk1977951af802004-11-05 15:45:09 +00002661** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2662** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2663** is disabled. The default value for the auto-vacuum property is
2664** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2665*/
danielk1977aef0bf62005-12-30 16:28:01 +00002666int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002667#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002668 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002669#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002670 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002671 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002672 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002673
2674 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002675 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002676 rc = SQLITE_READONLY;
2677 }else{
drh076d4662009-02-18 20:31:18 +00002678 pBt->autoVacuum = av ?1:0;
2679 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002680 }
drhd677b3d2007-08-20 22:48:41 +00002681 sqlite3BtreeLeave(p);
2682 return rc;
danielk1977951af802004-11-05 15:45:09 +00002683#endif
2684}
2685
2686/*
2687** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2688** enabled 1 is returned. Otherwise 0.
2689*/
danielk1977aef0bf62005-12-30 16:28:01 +00002690int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002691#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002692 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002693#else
drhd677b3d2007-08-20 22:48:41 +00002694 int rc;
2695 sqlite3BtreeEnter(p);
2696 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002697 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2698 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2699 BTREE_AUTOVACUUM_INCR
2700 );
drhd677b3d2007-08-20 22:48:41 +00002701 sqlite3BtreeLeave(p);
2702 return rc;
danielk1977951af802004-11-05 15:45:09 +00002703#endif
2704}
2705
2706
2707/*
drha34b6762004-05-07 13:30:42 +00002708** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002709** also acquire a readlock on that file.
2710**
2711** SQLITE_OK is returned on success. If the file is not a
2712** well-formed database file, then SQLITE_CORRUPT is returned.
2713** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002714** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002715*/
danielk1977aef0bf62005-12-30 16:28:01 +00002716static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002717 int rc; /* Result code from subfunctions */
2718 MemPage *pPage1; /* Page 1 of the database file */
2719 int nPage; /* Number of pages in the database */
2720 int nPageFile = 0; /* Number of pages in the database file */
2721 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002722
drh1fee73e2007-08-29 04:00:57 +00002723 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002724 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002725 rc = sqlite3PagerSharedLock(pBt->pPager);
2726 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002727 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002728 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002729
2730 /* Do some checking to help insure the file we opened really is
2731 ** a valid database file.
2732 */
drhc2a4bab2010-04-02 12:46:45 +00002733 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002734 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002735 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002736 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002737 }
2738 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002739 u32 pageSize;
2740 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002741 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002742 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002743 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2744 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2745 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002746 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002747 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002748 }
dan5cf53532010-05-01 16:40:20 +00002749
2750#ifdef SQLITE_OMIT_WAL
2751 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002752 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002753 }
2754 if( page1[19]>1 ){
2755 goto page1_init_failed;
2756 }
2757#else
dane04dc882010-04-20 18:53:15 +00002758 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002759 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002760 }
dane04dc882010-04-20 18:53:15 +00002761 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002762 goto page1_init_failed;
2763 }
drhe5ae5732008-06-15 02:51:47 +00002764
dana470aeb2010-04-21 11:43:38 +00002765 /* If the write version is set to 2, this database should be accessed
2766 ** in WAL mode. If the log is not already open, open it now. Then
2767 ** return SQLITE_OK and return without populating BtShared.pPage1.
2768 ** The caller detects this and calls this function again. This is
2769 ** required as the version of page 1 currently in the page1 buffer
2770 ** may not be the latest version - there may be a newer one in the log
2771 ** file.
2772 */
drhc9166342012-01-05 23:32:06 +00002773 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002774 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002775 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002776 if( rc!=SQLITE_OK ){
2777 goto page1_init_failed;
2778 }else if( isOpen==0 ){
2779 releasePage(pPage1);
2780 return SQLITE_OK;
2781 }
dan8b5444b2010-04-27 14:37:47 +00002782 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002783 }
dan5cf53532010-05-01 16:40:20 +00002784#endif
dane04dc882010-04-20 18:53:15 +00002785
drh113762a2014-11-19 16:36:25 +00002786 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2787 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2788 **
drhe5ae5732008-06-15 02:51:47 +00002789 ** The original design allowed these amounts to vary, but as of
2790 ** version 3.6.0, we require them to be fixed.
2791 */
2792 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2793 goto page1_init_failed;
2794 }
drh113762a2014-11-19 16:36:25 +00002795 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2796 ** determined by the 2-byte integer located at an offset of 16 bytes from
2797 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002798 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002799 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2800 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002801 if( ((pageSize-1)&pageSize)!=0
2802 || pageSize>SQLITE_MAX_PAGE_SIZE
2803 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002804 ){
drh07d183d2005-05-01 22:52:42 +00002805 goto page1_init_failed;
2806 }
2807 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002808 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2809 ** integer at offset 20 is the number of bytes of space at the end of
2810 ** each page to reserve for extensions.
2811 **
2812 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2813 ** determined by the one-byte unsigned integer found at an offset of 20
2814 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002815 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002816 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002817 /* After reading the first page of the database assuming a page size
2818 ** of BtShared.pageSize, we have discovered that the page-size is
2819 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2820 ** zero and return SQLITE_OK. The caller will call this function
2821 ** again with the correct page-size.
2822 */
2823 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002824 pBt->usableSize = usableSize;
2825 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002826 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002827 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2828 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002829 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002830 }
danecac6702011-02-09 18:19:20 +00002831 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002832 rc = SQLITE_CORRUPT_BKPT;
2833 goto page1_init_failed;
2834 }
drh113762a2014-11-19 16:36:25 +00002835 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2836 ** be less than 480. In other words, if the page size is 512, then the
2837 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002838 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002839 goto page1_init_failed;
2840 }
drh43b18e12010-08-17 19:40:08 +00002841 pBt->pageSize = pageSize;
2842 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002843#ifndef SQLITE_OMIT_AUTOVACUUM
2844 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002845 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002846#endif
drh306dc212001-05-21 13:45:10 +00002847 }
drhb6f41482004-05-14 01:58:11 +00002848
2849 /* maxLocal is the maximum amount of payload to store locally for
2850 ** a cell. Make sure it is small enough so that at least minFanout
2851 ** cells can will fit on one page. We assume a 10-byte page header.
2852 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002853 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002854 ** 4-byte child pointer
2855 ** 9-byte nKey value
2856 ** 4-byte nData value
2857 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002858 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002859 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2860 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002861 */
shaneh1df2db72010-08-18 02:28:48 +00002862 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2863 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2864 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2865 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002866 if( pBt->maxLocal>127 ){
2867 pBt->max1bytePayload = 127;
2868 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002869 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002870 }
drh2e38c322004-09-03 18:38:44 +00002871 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002872 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002873 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002874 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002875
drh72f82862001-05-24 21:06:34 +00002876page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002877 releasePage(pPage1);
2878 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002879 return rc;
drh306dc212001-05-21 13:45:10 +00002880}
2881
drh85ec3b62013-05-14 23:12:06 +00002882#ifndef NDEBUG
2883/*
2884** Return the number of cursors open on pBt. This is for use
2885** in assert() expressions, so it is only compiled if NDEBUG is not
2886** defined.
2887**
2888** Only write cursors are counted if wrOnly is true. If wrOnly is
2889** false then all cursors are counted.
2890**
2891** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002892** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002893** have been tripped into the CURSOR_FAULT state are not counted.
2894*/
2895static int countValidCursors(BtShared *pBt, int wrOnly){
2896 BtCursor *pCur;
2897 int r = 0;
2898 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002899 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2900 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002901 }
2902 return r;
2903}
2904#endif
2905
drh306dc212001-05-21 13:45:10 +00002906/*
drhb8ca3072001-12-05 00:21:20 +00002907** If there are no outstanding cursors and we are not in the middle
2908** of a transaction but there is a read lock on the database, then
2909** this routine unrefs the first page of the database file which
2910** has the effect of releasing the read lock.
2911**
drhb8ca3072001-12-05 00:21:20 +00002912** If there is a transaction in progress, this routine is a no-op.
2913*/
danielk1977aef0bf62005-12-30 16:28:01 +00002914static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002915 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002916 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002917 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00002918 MemPage *pPage1 = pBt->pPage1;
2919 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00002920 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00002921 pBt->pPage1 = 0;
drhb2325b72014-09-24 18:31:07 +00002922 releasePage(pPage1);
drhb8ca3072001-12-05 00:21:20 +00002923 }
2924}
2925
2926/*
drhe39f2f92009-07-23 01:43:59 +00002927** If pBt points to an empty file then convert that empty file
2928** into a new empty database by initializing the first page of
2929** the database.
drh8b2f49b2001-06-08 00:21:52 +00002930*/
danielk1977aef0bf62005-12-30 16:28:01 +00002931static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002932 MemPage *pP1;
2933 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002934 int rc;
drhd677b3d2007-08-20 22:48:41 +00002935
drh1fee73e2007-08-29 04:00:57 +00002936 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002937 if( pBt->nPage>0 ){
2938 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002939 }
drh3aac2dd2004-04-26 14:10:20 +00002940 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002941 assert( pP1!=0 );
2942 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002943 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002944 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002945 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2946 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002947 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2948 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002949 data[18] = 1;
2950 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002951 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2952 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002953 data[21] = 64;
2954 data[22] = 32;
2955 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002956 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002957 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002958 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002959#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002960 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002961 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002962 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002963 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002964#endif
drhdd3cd972010-03-27 17:12:36 +00002965 pBt->nPage = 1;
2966 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002967 return SQLITE_OK;
2968}
2969
2970/*
danb483eba2012-10-13 19:58:11 +00002971** Initialize the first page of the database file (creating a database
2972** consisting of a single page and no schema objects). Return SQLITE_OK
2973** if successful, or an SQLite error code otherwise.
2974*/
2975int sqlite3BtreeNewDb(Btree *p){
2976 int rc;
2977 sqlite3BtreeEnter(p);
2978 p->pBt->nPage = 0;
2979 rc = newDatabase(p->pBt);
2980 sqlite3BtreeLeave(p);
2981 return rc;
2982}
2983
2984/*
danielk1977ee5741e2004-05-31 10:01:34 +00002985** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002986** is started if the second argument is nonzero, otherwise a read-
2987** transaction. If the second argument is 2 or more and exclusive
2988** transaction is started, meaning that no other process is allowed
2989** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002990** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002991** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002992**
danielk1977ee5741e2004-05-31 10:01:34 +00002993** A write-transaction must be started before attempting any
2994** changes to the database. None of the following routines
2995** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002996**
drh23e11ca2004-05-04 17:27:28 +00002997** sqlite3BtreeCreateTable()
2998** sqlite3BtreeCreateIndex()
2999** sqlite3BtreeClearTable()
3000** sqlite3BtreeDropTable()
3001** sqlite3BtreeInsert()
3002** sqlite3BtreeDelete()
3003** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003004**
drhb8ef32c2005-03-14 02:01:49 +00003005** If an initial attempt to acquire the lock fails because of lock contention
3006** and the database was previously unlocked, then invoke the busy handler
3007** if there is one. But if there was previously a read-lock, do not
3008** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3009** returned when there is already a read-lock in order to avoid a deadlock.
3010**
3011** Suppose there are two processes A and B. A has a read lock and B has
3012** a reserved lock. B tries to promote to exclusive but is blocked because
3013** of A's read lock. A tries to promote to reserved but is blocked by B.
3014** One or the other of the two processes must give way or there can be
3015** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3016** when A already has a read lock, we encourage A to give up and let B
3017** proceed.
drha059ad02001-04-17 20:09:11 +00003018*/
danielk1977aef0bf62005-12-30 16:28:01 +00003019int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00003020 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003021 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003022 int rc = SQLITE_OK;
3023
drhd677b3d2007-08-20 22:48:41 +00003024 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003025 btreeIntegrity(p);
3026
danielk1977ee5741e2004-05-31 10:01:34 +00003027 /* If the btree is already in a write-transaction, or it
3028 ** is already in a read-transaction and a read-transaction
3029 ** is requested, this is a no-op.
3030 */
danielk1977aef0bf62005-12-30 16:28:01 +00003031 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003032 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003033 }
dan56c517a2013-09-26 11:04:33 +00003034 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003035
3036 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003037 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003038 rc = SQLITE_READONLY;
3039 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003040 }
3041
danielk1977404ca072009-03-16 13:19:36 +00003042#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00003043 /* If another database handle has already opened a write transaction
3044 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00003045 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00003046 */
drhc9166342012-01-05 23:32:06 +00003047 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3048 || (pBt->btsFlags & BTS_PENDING)!=0
3049 ){
danielk1977404ca072009-03-16 13:19:36 +00003050 pBlock = pBt->pWriter->db;
3051 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00003052 BtLock *pIter;
3053 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3054 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00003055 pBlock = pIter->pBtree->db;
3056 break;
danielk1977641b0f42007-12-21 04:47:25 +00003057 }
3058 }
3059 }
danielk1977404ca072009-03-16 13:19:36 +00003060 if( pBlock ){
3061 sqlite3ConnectionBlocked(p->db, pBlock);
3062 rc = SQLITE_LOCKED_SHAREDCACHE;
3063 goto trans_begun;
3064 }
danielk1977641b0f42007-12-21 04:47:25 +00003065#endif
3066
danielk1977602b4662009-07-02 07:47:33 +00003067 /* Any read-only or read-write transaction implies a read-lock on
3068 ** page 1. So if some other shared-cache client already has a write-lock
3069 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003070 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3071 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003072
drhc9166342012-01-05 23:32:06 +00003073 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3074 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003075 do {
danielk1977295dc102009-04-01 19:07:03 +00003076 /* Call lockBtree() until either pBt->pPage1 is populated or
3077 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3078 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3079 ** reading page 1 it discovers that the page-size of the database
3080 ** file is not pBt->pageSize. In this case lockBtree() will update
3081 ** pBt->pageSize to the page-size of the file on disk.
3082 */
3083 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003084
drhb8ef32c2005-03-14 02:01:49 +00003085 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003086 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003087 rc = SQLITE_READONLY;
3088 }else{
danielk1977d8293352009-04-30 09:10:37 +00003089 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003090 if( rc==SQLITE_OK ){
3091 rc = newDatabase(pBt);
3092 }
drhb8ef32c2005-03-14 02:01:49 +00003093 }
3094 }
3095
danielk1977bd434552009-03-18 10:33:00 +00003096 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003097 unlockBtreeIfUnused(pBt);
3098 }
danf9b76712010-06-01 14:12:45 +00003099 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003100 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003101
3102 if( rc==SQLITE_OK ){
3103 if( p->inTrans==TRANS_NONE ){
3104 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003105#ifndef SQLITE_OMIT_SHARED_CACHE
3106 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003107 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003108 p->lock.eLock = READ_LOCK;
3109 p->lock.pNext = pBt->pLock;
3110 pBt->pLock = &p->lock;
3111 }
3112#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003113 }
3114 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3115 if( p->inTrans>pBt->inTransaction ){
3116 pBt->inTransaction = p->inTrans;
3117 }
danielk1977404ca072009-03-16 13:19:36 +00003118 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003119 MemPage *pPage1 = pBt->pPage1;
3120#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003121 assert( !pBt->pWriter );
3122 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003123 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3124 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003125#endif
dan59257dc2010-08-04 11:34:31 +00003126
3127 /* If the db-size header field is incorrect (as it may be if an old
3128 ** client has been writing the database file), update it now. Doing
3129 ** this sooner rather than later means the database size can safely
3130 ** re-read the database size from page 1 if a savepoint or transaction
3131 ** rollback occurs within the transaction.
3132 */
3133 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3134 rc = sqlite3PagerWrite(pPage1->pDbPage);
3135 if( rc==SQLITE_OK ){
3136 put4byte(&pPage1->aData[28], pBt->nPage);
3137 }
3138 }
3139 }
danielk1977aef0bf62005-12-30 16:28:01 +00003140 }
3141
drhd677b3d2007-08-20 22:48:41 +00003142
3143trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003144 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003145 /* This call makes sure that the pager has the correct number of
3146 ** open savepoints. If the second parameter is greater than 0 and
3147 ** the sub-journal is not already open, then it will be opened here.
3148 */
danielk1977fd7f0452008-12-17 17:30:26 +00003149 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3150 }
danielk197712dd5492008-12-18 15:45:07 +00003151
danielk1977aef0bf62005-12-30 16:28:01 +00003152 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003153 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003154 return rc;
drha059ad02001-04-17 20:09:11 +00003155}
3156
danielk1977687566d2004-11-02 12:56:41 +00003157#ifndef SQLITE_OMIT_AUTOVACUUM
3158
3159/*
3160** Set the pointer-map entries for all children of page pPage. Also, if
3161** pPage contains cells that point to overflow pages, set the pointer
3162** map entries for the overflow pages as well.
3163*/
3164static int setChildPtrmaps(MemPage *pPage){
3165 int i; /* Counter variable */
3166 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003167 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003168 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003169 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003170 Pgno pgno = pPage->pgno;
3171
drh1fee73e2007-08-29 04:00:57 +00003172 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003173 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003174 if( rc!=SQLITE_OK ){
3175 goto set_child_ptrmaps_out;
3176 }
danielk1977687566d2004-11-02 12:56:41 +00003177 nCell = pPage->nCell;
3178
3179 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003180 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003181
drh98add2e2009-07-20 17:11:49 +00003182 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003183
danielk1977687566d2004-11-02 12:56:41 +00003184 if( !pPage->leaf ){
3185 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003186 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
drh658873b2015-06-22 20:02:04 +00003187 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003188 }
3189 }
3190
3191 if( !pPage->leaf ){
3192 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003193 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003194 }
3195
3196set_child_ptrmaps_out:
3197 pPage->isInit = isInitOrig;
3198 return rc;
3199}
3200
3201/*
drhf3aed592009-07-08 18:12:49 +00003202** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3203** that it points to iTo. Parameter eType describes the type of pointer to
3204** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003205**
3206** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3207** page of pPage.
3208**
3209** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3210** page pointed to by one of the cells on pPage.
3211**
3212** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3213** overflow page in the list.
3214*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003215static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003216 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003217 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003218 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003219 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003220 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003221 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003222 }
danielk1977f78fc082004-11-02 14:40:32 +00003223 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003224 }else{
drhf49661a2008-12-10 16:45:50 +00003225 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003226 int i;
3227 int nCell;
drha1f75d92015-05-24 10:18:12 +00003228 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003229
drha1f75d92015-05-24 10:18:12 +00003230 rc = btreeInitPage(pPage);
3231 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003232 nCell = pPage->nCell;
3233
danielk1977687566d2004-11-02 12:56:41 +00003234 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003235 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003236 if( eType==PTRMAP_OVERFLOW1 ){
3237 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003238 pPage->xParseCell(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00003239 if( info.iOverflow
3240 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3241 && iFrom==get4byte(&pCell[info.iOverflow])
3242 ){
3243 put4byte(&pCell[info.iOverflow], iTo);
3244 break;
danielk1977687566d2004-11-02 12:56:41 +00003245 }
3246 }else{
3247 if( get4byte(pCell)==iFrom ){
3248 put4byte(pCell, iTo);
3249 break;
3250 }
3251 }
3252 }
3253
3254 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003255 if( eType!=PTRMAP_BTREE ||
3256 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003257 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003258 }
danielk1977687566d2004-11-02 12:56:41 +00003259 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3260 }
3261
3262 pPage->isInit = isInitOrig;
3263 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003264 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003265}
3266
danielk1977003ba062004-11-04 02:57:33 +00003267
danielk19777701e812005-01-10 12:59:51 +00003268/*
3269** Move the open database page pDbPage to location iFreePage in the
3270** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003271**
3272** The isCommit flag indicates that there is no need to remember that
3273** the journal needs to be sync()ed before database page pDbPage->pgno
3274** can be written to. The caller has already promised not to write to that
3275** page.
danielk19777701e812005-01-10 12:59:51 +00003276*/
danielk1977003ba062004-11-04 02:57:33 +00003277static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003278 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003279 MemPage *pDbPage, /* Open page to move */
3280 u8 eType, /* Pointer map 'type' entry for pDbPage */
3281 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003282 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003283 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003284){
3285 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3286 Pgno iDbPage = pDbPage->pgno;
3287 Pager *pPager = pBt->pPager;
3288 int rc;
3289
danielk1977a0bf2652004-11-04 14:30:04 +00003290 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3291 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003292 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003293 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003294
drh85b623f2007-12-13 21:54:09 +00003295 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003296 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3297 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003298 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003299 if( rc!=SQLITE_OK ){
3300 return rc;
3301 }
3302 pDbPage->pgno = iFreePage;
3303
3304 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3305 ** that point to overflow pages. The pointer map entries for all these
3306 ** pages need to be changed.
3307 **
3308 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3309 ** pointer to a subsequent overflow page. If this is the case, then
3310 ** the pointer map needs to be updated for the subsequent overflow page.
3311 */
danielk1977a0bf2652004-11-04 14:30:04 +00003312 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003313 rc = setChildPtrmaps(pDbPage);
3314 if( rc!=SQLITE_OK ){
3315 return rc;
3316 }
3317 }else{
3318 Pgno nextOvfl = get4byte(pDbPage->aData);
3319 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003320 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003321 if( rc!=SQLITE_OK ){
3322 return rc;
3323 }
3324 }
3325 }
3326
3327 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3328 ** that it points at iFreePage. Also fix the pointer map entry for
3329 ** iPtrPage.
3330 */
danielk1977a0bf2652004-11-04 14:30:04 +00003331 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003332 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003333 if( rc!=SQLITE_OK ){
3334 return rc;
3335 }
danielk19773b8a05f2007-03-19 17:44:26 +00003336 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003337 if( rc!=SQLITE_OK ){
3338 releasePage(pPtrPage);
3339 return rc;
3340 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003341 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003342 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003343 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003344 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003345 }
danielk1977003ba062004-11-04 02:57:33 +00003346 }
danielk1977003ba062004-11-04 02:57:33 +00003347 return rc;
3348}
3349
danielk1977dddbcdc2007-04-26 14:42:34 +00003350/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003351static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003352
3353/*
dan51f0b6d2013-02-22 20:16:34 +00003354** Perform a single step of an incremental-vacuum. If successful, return
3355** SQLITE_OK. If there is no work to do (and therefore no point in
3356** calling this function again), return SQLITE_DONE. Or, if an error
3357** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003358**
peter.d.reid60ec9142014-09-06 16:39:46 +00003359** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003360** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003361**
dan51f0b6d2013-02-22 20:16:34 +00003362** Parameter nFin is the number of pages that this database would contain
3363** were this function called until it returns SQLITE_DONE.
3364**
3365** If the bCommit parameter is non-zero, this function assumes that the
3366** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003367** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003368** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003369*/
dan51f0b6d2013-02-22 20:16:34 +00003370static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003371 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003372 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003373
drh1fee73e2007-08-29 04:00:57 +00003374 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003375 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003376
3377 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003378 u8 eType;
3379 Pgno iPtrPage;
3380
3381 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003382 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003383 return SQLITE_DONE;
3384 }
3385
3386 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3387 if( rc!=SQLITE_OK ){
3388 return rc;
3389 }
3390 if( eType==PTRMAP_ROOTPAGE ){
3391 return SQLITE_CORRUPT_BKPT;
3392 }
3393
3394 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003395 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003396 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003397 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003398 ** truncated to zero after this function returns, so it doesn't
3399 ** matter if it still contains some garbage entries.
3400 */
3401 Pgno iFreePg;
3402 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003403 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003404 if( rc!=SQLITE_OK ){
3405 return rc;
3406 }
3407 assert( iFreePg==iLastPg );
3408 releasePage(pFreePg);
3409 }
3410 } else {
3411 Pgno iFreePg; /* Index of free page to move pLastPg to */
3412 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003413 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3414 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003415
drhb00fc3b2013-08-21 23:42:32 +00003416 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003417 if( rc!=SQLITE_OK ){
3418 return rc;
3419 }
3420
dan51f0b6d2013-02-22 20:16:34 +00003421 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003422 ** is swapped with the first free page pulled off the free list.
3423 **
dan51f0b6d2013-02-22 20:16:34 +00003424 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003425 ** looping until a free-page located within the first nFin pages
3426 ** of the file is found.
3427 */
dan51f0b6d2013-02-22 20:16:34 +00003428 if( bCommit==0 ){
3429 eMode = BTALLOC_LE;
3430 iNear = nFin;
3431 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003432 do {
3433 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003434 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003435 if( rc!=SQLITE_OK ){
3436 releasePage(pLastPg);
3437 return rc;
3438 }
3439 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003440 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003441 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003442
dane1df4e32013-03-05 11:27:04 +00003443 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003444 releasePage(pLastPg);
3445 if( rc!=SQLITE_OK ){
3446 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003447 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003448 }
3449 }
3450
dan51f0b6d2013-02-22 20:16:34 +00003451 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003452 do {
danielk19773460d192008-12-27 15:23:13 +00003453 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003454 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3455 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003456 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003457 }
3458 return SQLITE_OK;
3459}
3460
3461/*
dan51f0b6d2013-02-22 20:16:34 +00003462** The database opened by the first argument is an auto-vacuum database
3463** nOrig pages in size containing nFree free pages. Return the expected
3464** size of the database in pages following an auto-vacuum operation.
3465*/
3466static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3467 int nEntry; /* Number of entries on one ptrmap page */
3468 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3469 Pgno nFin; /* Return value */
3470
3471 nEntry = pBt->usableSize/5;
3472 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3473 nFin = nOrig - nFree - nPtrmap;
3474 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3475 nFin--;
3476 }
3477 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3478 nFin--;
3479 }
dan51f0b6d2013-02-22 20:16:34 +00003480
3481 return nFin;
3482}
3483
3484/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003485** A write-transaction must be opened before calling this function.
3486** It performs a single unit of work towards an incremental vacuum.
3487**
3488** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003489** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003490** SQLITE_OK is returned. Otherwise an SQLite error code.
3491*/
3492int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003493 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003494 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003495
3496 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003497 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3498 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003499 rc = SQLITE_DONE;
3500 }else{
dan51f0b6d2013-02-22 20:16:34 +00003501 Pgno nOrig = btreePagecount(pBt);
3502 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3503 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3504
dan91384712013-02-24 11:50:43 +00003505 if( nOrig<nFin ){
3506 rc = SQLITE_CORRUPT_BKPT;
3507 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003508 rc = saveAllCursors(pBt, 0, 0);
3509 if( rc==SQLITE_OK ){
3510 invalidateAllOverflowCache(pBt);
3511 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3512 }
dan51f0b6d2013-02-22 20:16:34 +00003513 if( rc==SQLITE_OK ){
3514 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3515 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3516 }
3517 }else{
3518 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003519 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003520 }
drhd677b3d2007-08-20 22:48:41 +00003521 sqlite3BtreeLeave(p);
3522 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003523}
3524
3525/*
danielk19773b8a05f2007-03-19 17:44:26 +00003526** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003527** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003528**
3529** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3530** the database file should be truncated to during the commit process.
3531** i.e. the database has been reorganized so that only the first *pnTrunc
3532** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003533*/
danielk19773460d192008-12-27 15:23:13 +00003534static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003535 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003536 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003537 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003538
drh1fee73e2007-08-29 04:00:57 +00003539 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003540 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003541 assert(pBt->autoVacuum);
3542 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003543 Pgno nFin; /* Number of pages in database after autovacuuming */
3544 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003545 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003546 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003547
drhb1299152010-03-30 22:58:33 +00003548 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003549 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3550 /* It is not possible to create a database for which the final page
3551 ** is either a pointer-map page or the pending-byte page. If one
3552 ** is encountered, this indicates corruption.
3553 */
danielk19773460d192008-12-27 15:23:13 +00003554 return SQLITE_CORRUPT_BKPT;
3555 }
danielk1977ef165ce2009-04-06 17:50:03 +00003556
danielk19773460d192008-12-27 15:23:13 +00003557 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003558 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003559 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003560 if( nFin<nOrig ){
3561 rc = saveAllCursors(pBt, 0, 0);
3562 }
danielk19773460d192008-12-27 15:23:13 +00003563 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003564 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003565 }
danielk19773460d192008-12-27 15:23:13 +00003566 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003567 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3568 put4byte(&pBt->pPage1->aData[32], 0);
3569 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003570 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003571 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003572 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003573 }
3574 if( rc!=SQLITE_OK ){
3575 sqlite3PagerRollback(pPager);
3576 }
danielk1977687566d2004-11-02 12:56:41 +00003577 }
3578
dan0aed84d2013-03-26 14:16:20 +00003579 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003580 return rc;
3581}
danielk1977dddbcdc2007-04-26 14:42:34 +00003582
danielk1977a50d9aa2009-06-08 14:49:45 +00003583#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3584# define setChildPtrmaps(x) SQLITE_OK
3585#endif
danielk1977687566d2004-11-02 12:56:41 +00003586
3587/*
drh80e35f42007-03-30 14:06:34 +00003588** This routine does the first phase of a two-phase commit. This routine
3589** causes a rollback journal to be created (if it does not already exist)
3590** and populated with enough information so that if a power loss occurs
3591** the database can be restored to its original state by playing back
3592** the journal. Then the contents of the journal are flushed out to
3593** the disk. After the journal is safely on oxide, the changes to the
3594** database are written into the database file and flushed to oxide.
3595** At the end of this call, the rollback journal still exists on the
3596** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003597** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003598** commit process.
3599**
3600** This call is a no-op if no write-transaction is currently active on pBt.
3601**
3602** Otherwise, sync the database file for the btree pBt. zMaster points to
3603** the name of a master journal file that should be written into the
3604** individual journal file, or is NULL, indicating no master journal file
3605** (single database transaction).
3606**
3607** When this is called, the master journal should already have been
3608** created, populated with this journal pointer and synced to disk.
3609**
3610** Once this is routine has returned, the only thing required to commit
3611** the write-transaction for this database file is to delete the journal.
3612*/
3613int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3614 int rc = SQLITE_OK;
3615 if( p->inTrans==TRANS_WRITE ){
3616 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003617 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003618#ifndef SQLITE_OMIT_AUTOVACUUM
3619 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003620 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003621 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003622 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003623 return rc;
3624 }
3625 }
danbc1a3c62013-02-23 16:40:46 +00003626 if( pBt->bDoTruncate ){
3627 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3628 }
drh80e35f42007-03-30 14:06:34 +00003629#endif
drh49b9d332009-01-02 18:10:42 +00003630 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003631 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003632 }
3633 return rc;
3634}
3635
3636/*
danielk197794b30732009-07-02 17:21:57 +00003637** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3638** at the conclusion of a transaction.
3639*/
3640static void btreeEndTransaction(Btree *p){
3641 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003642 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003643 assert( sqlite3BtreeHoldsMutex(p) );
3644
danbc1a3c62013-02-23 16:40:46 +00003645#ifndef SQLITE_OMIT_AUTOVACUUM
3646 pBt->bDoTruncate = 0;
3647#endif
danc0537fe2013-06-28 19:41:43 +00003648 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003649 /* If there are other active statements that belong to this database
3650 ** handle, downgrade to a read-only transaction. The other statements
3651 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003652 downgradeAllSharedCacheTableLocks(p);
3653 p->inTrans = TRANS_READ;
3654 }else{
3655 /* If the handle had any kind of transaction open, decrement the
3656 ** transaction count of the shared btree. If the transaction count
3657 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3658 ** call below will unlock the pager. */
3659 if( p->inTrans!=TRANS_NONE ){
3660 clearAllSharedCacheTableLocks(p);
3661 pBt->nTransaction--;
3662 if( 0==pBt->nTransaction ){
3663 pBt->inTransaction = TRANS_NONE;
3664 }
3665 }
3666
3667 /* Set the current transaction state to TRANS_NONE and unlock the
3668 ** pager if this call closed the only read or write transaction. */
3669 p->inTrans = TRANS_NONE;
3670 unlockBtreeIfUnused(pBt);
3671 }
3672
3673 btreeIntegrity(p);
3674}
3675
3676/*
drh2aa679f2001-06-25 02:11:07 +00003677** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003678**
drh6e345992007-03-30 11:12:08 +00003679** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003680** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3681** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3682** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003683** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003684** routine has to do is delete or truncate or zero the header in the
3685** the rollback journal (which causes the transaction to commit) and
3686** drop locks.
drh6e345992007-03-30 11:12:08 +00003687**
dan60939d02011-03-29 15:40:55 +00003688** Normally, if an error occurs while the pager layer is attempting to
3689** finalize the underlying journal file, this function returns an error and
3690** the upper layer will attempt a rollback. However, if the second argument
3691** is non-zero then this b-tree transaction is part of a multi-file
3692** transaction. In this case, the transaction has already been committed
3693** (by deleting a master journal file) and the caller will ignore this
3694** functions return code. So, even if an error occurs in the pager layer,
3695** reset the b-tree objects internal state to indicate that the write
3696** transaction has been closed. This is quite safe, as the pager will have
3697** transitioned to the error state.
3698**
drh5e00f6c2001-09-13 13:46:56 +00003699** This will release the write lock on the database file. If there
3700** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003701*/
dan60939d02011-03-29 15:40:55 +00003702int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003703
drh075ed302010-10-14 01:17:30 +00003704 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003705 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003706 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003707
3708 /* If the handle has a write-transaction open, commit the shared-btrees
3709 ** transaction and set the shared state to TRANS_READ.
3710 */
3711 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003712 int rc;
drh075ed302010-10-14 01:17:30 +00003713 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003714 assert( pBt->inTransaction==TRANS_WRITE );
3715 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003716 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003717 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003718 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003719 return rc;
3720 }
drh3da9c042014-12-22 18:41:21 +00003721 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003722 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003723 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003724 }
danielk1977aef0bf62005-12-30 16:28:01 +00003725
danielk197794b30732009-07-02 17:21:57 +00003726 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003727 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003728 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003729}
3730
drh80e35f42007-03-30 14:06:34 +00003731/*
3732** Do both phases of a commit.
3733*/
3734int sqlite3BtreeCommit(Btree *p){
3735 int rc;
drhd677b3d2007-08-20 22:48:41 +00003736 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003737 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3738 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003739 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003740 }
drhd677b3d2007-08-20 22:48:41 +00003741 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003742 return rc;
3743}
3744
drhc39e0002004-05-07 23:50:57 +00003745/*
drhfb982642007-08-30 01:19:59 +00003746** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003747** code to errCode for every cursor on any BtShared that pBtree
3748** references. Or if the writeOnly flag is set to 1, then only
3749** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003750**
drh47b7fc72014-11-11 01:33:57 +00003751** Every cursor is a candidate to be tripped, including cursors
3752** that belong to other database connections that happen to be
3753** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003754**
dan80231042014-11-12 14:56:02 +00003755** This routine gets called when a rollback occurs. If the writeOnly
3756** flag is true, then only write-cursors need be tripped - read-only
3757** cursors save their current positions so that they may continue
3758** following the rollback. Or, if writeOnly is false, all cursors are
3759** tripped. In general, writeOnly is false if the transaction being
3760** rolled back modified the database schema. In this case b-tree root
3761** pages may be moved or deleted from the database altogether, making
3762** it unsafe for read cursors to continue.
3763**
3764** If the writeOnly flag is true and an error is encountered while
3765** saving the current position of a read-only cursor, all cursors,
3766** including all read-cursors are tripped.
3767**
3768** SQLITE_OK is returned if successful, or if an error occurs while
3769** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003770*/
dan80231042014-11-12 14:56:02 +00003771int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003772 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003773 int rc = SQLITE_OK;
3774
drh47b7fc72014-11-11 01:33:57 +00003775 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003776 if( pBtree ){
3777 sqlite3BtreeEnter(pBtree);
3778 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3779 int i;
3780 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003781 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003782 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003783 if( rc!=SQLITE_OK ){
3784 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3785 break;
3786 }
3787 }
3788 }else{
3789 sqlite3BtreeClearCursor(p);
3790 p->eState = CURSOR_FAULT;
3791 p->skipNext = errCode;
3792 }
3793 for(i=0; i<=p->iPage; i++){
3794 releasePage(p->apPage[i]);
3795 p->apPage[i] = 0;
3796 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003797 }
dan80231042014-11-12 14:56:02 +00003798 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003799 }
dan80231042014-11-12 14:56:02 +00003800 return rc;
drhfb982642007-08-30 01:19:59 +00003801}
3802
3803/*
drh47b7fc72014-11-11 01:33:57 +00003804** Rollback the transaction in progress.
3805**
3806** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3807** Only write cursors are tripped if writeOnly is true but all cursors are
3808** tripped if writeOnly is false. Any attempt to use
3809** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003810**
3811** This will release the write lock on the database file. If there
3812** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003813*/
drh47b7fc72014-11-11 01:33:57 +00003814int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003815 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003816 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003817 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003818
drh47b7fc72014-11-11 01:33:57 +00003819 assert( writeOnly==1 || writeOnly==0 );
3820 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003821 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003822 if( tripCode==SQLITE_OK ){
3823 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003824 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003825 }else{
3826 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003827 }
drh0f198a72012-02-13 16:43:16 +00003828 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003829 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3830 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3831 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003832 }
danielk1977aef0bf62005-12-30 16:28:01 +00003833 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003834
3835 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003836 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003837
danielk19778d34dfd2006-01-24 16:37:57 +00003838 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003839 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003840 if( rc2!=SQLITE_OK ){
3841 rc = rc2;
3842 }
3843
drh24cd67e2004-05-10 16:18:47 +00003844 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003845 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003846 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003847 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003848 int nPage = get4byte(28+(u8*)pPage1->aData);
3849 testcase( nPage==0 );
3850 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3851 testcase( pBt->nPage!=nPage );
3852 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003853 releasePage(pPage1);
3854 }
drh85ec3b62013-05-14 23:12:06 +00003855 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003856 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003857 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003858 }
danielk1977aef0bf62005-12-30 16:28:01 +00003859
danielk197794b30732009-07-02 17:21:57 +00003860 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003861 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003862 return rc;
3863}
3864
3865/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003866** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003867** back independently of the main transaction. You must start a transaction
3868** before starting a subtransaction. The subtransaction is ended automatically
3869** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003870**
3871** Statement subtransactions are used around individual SQL statements
3872** that are contained within a BEGIN...COMMIT block. If a constraint
3873** error occurs within the statement, the effect of that one statement
3874** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003875**
3876** A statement sub-transaction is implemented as an anonymous savepoint. The
3877** value passed as the second parameter is the total number of savepoints,
3878** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3879** are no active savepoints and no other statement-transactions open,
3880** iStatement is 1. This anonymous savepoint can be released or rolled back
3881** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003882*/
danielk1977bd434552009-03-18 10:33:00 +00003883int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003884 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003885 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003886 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003887 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003888 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003889 assert( iStatement>0 );
3890 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003891 assert( pBt->inTransaction==TRANS_WRITE );
3892 /* At the pager level, a statement transaction is a savepoint with
3893 ** an index greater than all savepoints created explicitly using
3894 ** SQL statements. It is illegal to open, release or rollback any
3895 ** such savepoints while the statement transaction savepoint is active.
3896 */
3897 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003898 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003899 return rc;
3900}
3901
3902/*
danielk1977fd7f0452008-12-17 17:30:26 +00003903** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3904** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003905** savepoint identified by parameter iSavepoint, depending on the value
3906** of op.
3907**
3908** Normally, iSavepoint is greater than or equal to zero. However, if op is
3909** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3910** contents of the entire transaction are rolled back. This is different
3911** from a normal transaction rollback, as no locks are released and the
3912** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003913*/
3914int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3915 int rc = SQLITE_OK;
3916 if( p && p->inTrans==TRANS_WRITE ){
3917 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003918 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3919 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3920 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003921 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003922 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003923 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3924 pBt->nPage = 0;
3925 }
drh9f0bbf92009-01-02 21:08:09 +00003926 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003927 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003928
3929 /* The database size was written into the offset 28 of the header
3930 ** when the transaction started, so we know that the value at offset
3931 ** 28 is nonzero. */
3932 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003933 }
danielk1977fd7f0452008-12-17 17:30:26 +00003934 sqlite3BtreeLeave(p);
3935 }
3936 return rc;
3937}
3938
3939/*
drh8b2f49b2001-06-08 00:21:52 +00003940** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003941** iTable. If a read-only cursor is requested, it is assumed that
3942** the caller already has at least a read-only transaction open
3943** on the database already. If a write-cursor is requested, then
3944** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003945**
3946** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003947** If wrFlag==1, then the cursor can be used for reading or for
3948** writing if other conditions for writing are also met. These
3949** are the conditions that must be met in order for writing to
3950** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003951**
drhf74b8d92002-09-01 23:20:45 +00003952** 1: The cursor must have been opened with wrFlag==1
3953**
drhfe5d71d2007-03-19 11:54:10 +00003954** 2: Other database connections that share the same pager cache
3955** but which are not in the READ_UNCOMMITTED state may not have
3956** cursors open with wrFlag==0 on the same table. Otherwise
3957** the changes made by this write cursor would be visible to
3958** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003959**
3960** 3: The database must be writable (not on read-only media)
3961**
3962** 4: There must be an active transaction.
3963**
drh6446c4d2001-12-15 14:22:18 +00003964** No checking is done to make sure that page iTable really is the
3965** root page of a b-tree. If it is not, then the cursor acquired
3966** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003967**
drhf25a5072009-11-18 23:01:25 +00003968** It is assumed that the sqlite3BtreeCursorZero() has been called
3969** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003970*/
drhd677b3d2007-08-20 22:48:41 +00003971static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003972 Btree *p, /* The btree */
3973 int iTable, /* Root page of table to open */
3974 int wrFlag, /* 1 to write. 0 read-only */
3975 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3976 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003977){
danielk19773e8add92009-07-04 17:16:00 +00003978 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003979
drh1fee73e2007-08-29 04:00:57 +00003980 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003981 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003982
danielk1977602b4662009-07-02 07:47:33 +00003983 /* The following assert statements verify that if this is a sharable
3984 ** b-tree database, the connection is holding the required table locks,
3985 ** and that no other connection has any open cursor that conflicts with
3986 ** this lock. */
3987 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003988 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3989
danielk19773e8add92009-07-04 17:16:00 +00003990 /* Assert that the caller has opened the required transaction. */
3991 assert( p->inTrans>TRANS_NONE );
3992 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3993 assert( pBt->pPage1 && pBt->pPage1->aData );
3994
drhc9166342012-01-05 23:32:06 +00003995 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003996 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003997 }
drh3fbb0222014-09-24 19:47:27 +00003998 if( wrFlag ){
3999 allocateTempSpace(pBt);
4000 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
4001 }
drhb1299152010-03-30 22:58:33 +00004002 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004003 assert( wrFlag==0 );
4004 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004005 }
danielk1977aef0bf62005-12-30 16:28:01 +00004006
danielk1977aef0bf62005-12-30 16:28:01 +00004007 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004008 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004009 pCur->pgnoRoot = (Pgno)iTable;
4010 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004011 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004012 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004013 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00004014 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
4015 pCur->curFlags = wrFlag;
drha059ad02001-04-17 20:09:11 +00004016 pCur->pNext = pBt->pCursor;
4017 if( pCur->pNext ){
4018 pCur->pNext->pPrev = pCur;
4019 }
4020 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004021 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004022 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004023}
drhd677b3d2007-08-20 22:48:41 +00004024int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004025 Btree *p, /* The btree */
4026 int iTable, /* Root page of table to open */
4027 int wrFlag, /* 1 to write. 0 read-only */
4028 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4029 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004030){
4031 int rc;
dan08f901b2015-05-25 19:24:36 +00004032 if( iTable<1 ){
4033 rc = SQLITE_CORRUPT_BKPT;
4034 }else{
4035 sqlite3BtreeEnter(p);
4036 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4037 sqlite3BtreeLeave(p);
4038 }
drhd677b3d2007-08-20 22:48:41 +00004039 return rc;
4040}
drh7f751222009-03-17 22:33:00 +00004041
4042/*
4043** Return the size of a BtCursor object in bytes.
4044**
4045** This interfaces is needed so that users of cursors can preallocate
4046** sufficient storage to hold a cursor. The BtCursor object is opaque
4047** to users so they cannot do the sizeof() themselves - they must call
4048** this routine.
4049*/
4050int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004051 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004052}
4053
drh7f751222009-03-17 22:33:00 +00004054/*
drhf25a5072009-11-18 23:01:25 +00004055** Initialize memory that will be converted into a BtCursor object.
4056**
4057** The simple approach here would be to memset() the entire object
4058** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4059** do not need to be zeroed and they are large, so we can save a lot
4060** of run-time by skipping the initialization of those elements.
4061*/
4062void sqlite3BtreeCursorZero(BtCursor *p){
4063 memset(p, 0, offsetof(BtCursor, iPage));
4064}
4065
4066/*
drh5e00f6c2001-09-13 13:46:56 +00004067** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004068** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004069*/
drh3aac2dd2004-04-26 14:10:20 +00004070int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004071 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004072 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004073 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004074 BtShared *pBt = pCur->pBt;
4075 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004076 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004077 if( pCur->pPrev ){
4078 pCur->pPrev->pNext = pCur->pNext;
4079 }else{
4080 pBt->pCursor = pCur->pNext;
4081 }
4082 if( pCur->pNext ){
4083 pCur->pNext->pPrev = pCur->pPrev;
4084 }
danielk197771d5d2c2008-09-29 11:49:47 +00004085 for(i=0; i<=pCur->iPage; i++){
4086 releasePage(pCur->apPage[i]);
4087 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004088 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004089 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004090 /* sqlite3_free(pCur); */
4091 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004092 }
drh8c42ca92001-06-22 19:15:00 +00004093 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004094}
4095
drh5e2f8b92001-05-28 00:41:15 +00004096/*
drh86057612007-06-26 01:04:48 +00004097** Make sure the BtCursor* given in the argument has a valid
4098** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004099** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004100**
4101** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004102** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004103*/
drh9188b382004-05-14 21:12:22 +00004104#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004105 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004106 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004107 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004108 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004109 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004110 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004111 }
danielk19771cc5ed82007-05-16 17:28:43 +00004112#else
4113 #define assertCellInfo(x)
4114#endif
drhc5b41ac2015-06-17 02:11:46 +00004115static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4116 if( pCur->info.nSize==0 ){
4117 int iPage = pCur->iPage;
4118 pCur->curFlags |= BTCF_ValidNKey;
4119 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4120 }else{
4121 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004122 }
drhc5b41ac2015-06-17 02:11:46 +00004123}
drh9188b382004-05-14 21:12:22 +00004124
drhea8ffdf2009-07-22 00:35:23 +00004125#ifndef NDEBUG /* The next routine used only within assert() statements */
4126/*
4127** Return true if the given BtCursor is valid. A valid cursor is one
4128** that is currently pointing to a row in a (non-empty) table.
4129** This is a verification routine is used only within assert() statements.
4130*/
4131int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4132 return pCur && pCur->eState==CURSOR_VALID;
4133}
4134#endif /* NDEBUG */
4135
drh9188b382004-05-14 21:12:22 +00004136/*
drh3aac2dd2004-04-26 14:10:20 +00004137** Set *pSize to the size of the buffer needed to hold the value of
4138** the key for the current entry. If the cursor is not pointing
4139** to a valid entry, *pSize is set to 0.
4140**
drh4b70f112004-05-02 21:12:19 +00004141** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004142** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004143**
4144** The caller must position the cursor prior to invoking this routine.
4145**
4146** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004147*/
drh4a1c3802004-05-12 15:15:47 +00004148int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004149 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004150 assert( pCur->eState==CURSOR_VALID );
4151 getCellInfo(pCur);
4152 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004153 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004154}
drh2af926b2001-05-15 00:39:25 +00004155
drh72f82862001-05-24 21:06:34 +00004156/*
drh0e1c19e2004-05-11 00:58:56 +00004157** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004158** cursor currently points to.
4159**
4160** The caller must guarantee that the cursor is pointing to a non-NULL
4161** valid entry. In other words, the calling procedure must guarantee
4162** that the cursor has Cursor.eState==CURSOR_VALID.
4163**
4164** Failure is not possible. This function always returns SQLITE_OK.
4165** It might just as well be a procedure (returning void) but we continue
4166** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004167*/
4168int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004169 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004170 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004171 assert( pCur->iPage>=0 );
4172 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004173 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004174 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004175 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004176 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004177}
4178
4179/*
danielk1977d04417962007-05-02 13:16:30 +00004180** Given the page number of an overflow page in the database (parameter
4181** ovfl), this function finds the page number of the next page in the
4182** linked list of overflow pages. If possible, it uses the auto-vacuum
4183** pointer-map data instead of reading the content of page ovfl to do so.
4184**
4185** If an error occurs an SQLite error code is returned. Otherwise:
4186**
danielk1977bea2a942009-01-20 17:06:27 +00004187** The page number of the next overflow page in the linked list is
4188** written to *pPgnoNext. If page ovfl is the last page in its linked
4189** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004190**
danielk1977bea2a942009-01-20 17:06:27 +00004191** If ppPage is not NULL, and a reference to the MemPage object corresponding
4192** to page number pOvfl was obtained, then *ppPage is set to point to that
4193** reference. It is the responsibility of the caller to call releasePage()
4194** on *ppPage to free the reference. In no reference was obtained (because
4195** the pointer-map was used to obtain the value for *pPgnoNext), then
4196** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004197*/
4198static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004199 BtShared *pBt, /* The database file */
4200 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004201 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004202 Pgno *pPgnoNext /* OUT: Next overflow page number */
4203){
4204 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004205 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004206 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004207
drh1fee73e2007-08-29 04:00:57 +00004208 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004209 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004210
4211#ifndef SQLITE_OMIT_AUTOVACUUM
4212 /* Try to find the next page in the overflow list using the
4213 ** autovacuum pointer-map pages. Guess that the next page in
4214 ** the overflow list is page number (ovfl+1). If that guess turns
4215 ** out to be wrong, fall back to loading the data of page
4216 ** number ovfl to determine the next page number.
4217 */
4218 if( pBt->autoVacuum ){
4219 Pgno pgno;
4220 Pgno iGuess = ovfl+1;
4221 u8 eType;
4222
4223 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4224 iGuess++;
4225 }
4226
drhb1299152010-03-30 22:58:33 +00004227 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004228 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004229 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004230 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004231 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004232 }
4233 }
4234 }
4235#endif
4236
danielk1977d8a3f3d2009-07-11 11:45:23 +00004237 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004238 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004239 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004240 assert( rc==SQLITE_OK || pPage==0 );
4241 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004242 next = get4byte(pPage->aData);
4243 }
danielk1977443c0592009-01-16 15:21:05 +00004244 }
danielk197745d68822009-01-16 16:23:38 +00004245
danielk1977bea2a942009-01-20 17:06:27 +00004246 *pPgnoNext = next;
4247 if( ppPage ){
4248 *ppPage = pPage;
4249 }else{
4250 releasePage(pPage);
4251 }
4252 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004253}
4254
danielk1977da107192007-05-04 08:32:13 +00004255/*
4256** Copy data from a buffer to a page, or from a page to a buffer.
4257**
4258** pPayload is a pointer to data stored on database page pDbPage.
4259** If argument eOp is false, then nByte bytes of data are copied
4260** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4261** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4262** of data are copied from the buffer pBuf to pPayload.
4263**
4264** SQLITE_OK is returned on success, otherwise an error code.
4265*/
4266static int copyPayload(
4267 void *pPayload, /* Pointer to page data */
4268 void *pBuf, /* Pointer to buffer */
4269 int nByte, /* Number of bytes to copy */
4270 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4271 DbPage *pDbPage /* Page containing pPayload */
4272){
4273 if( eOp ){
4274 /* Copy data from buffer to page (a write operation) */
4275 int rc = sqlite3PagerWrite(pDbPage);
4276 if( rc!=SQLITE_OK ){
4277 return rc;
4278 }
4279 memcpy(pPayload, pBuf, nByte);
4280 }else{
4281 /* Copy data from page to buffer (a read operation) */
4282 memcpy(pBuf, pPayload, nByte);
4283 }
4284 return SQLITE_OK;
4285}
danielk1977d04417962007-05-02 13:16:30 +00004286
4287/*
danielk19779f8d6402007-05-02 17:48:45 +00004288** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004289** for the entry that the pCur cursor is pointing to. The eOp
4290** argument is interpreted as follows:
4291**
4292** 0: The operation is a read. Populate the overflow cache.
4293** 1: The operation is a write. Populate the overflow cache.
4294** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004295**
4296** A total of "amt" bytes are read or written beginning at "offset".
4297** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004298**
drh3bcdfd22009-07-12 02:32:21 +00004299** The content being read or written might appear on the main page
4300** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004301**
dan5a500af2014-03-11 20:33:04 +00004302** If the current cursor entry uses one or more overflow pages and the
4303** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004304** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004305** Subsequent calls use this cache to make seeking to the supplied offset
4306** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004307**
4308** Once an overflow page-list cache has been allocated, it may be
4309** invalidated if some other cursor writes to the same table, or if
4310** the cursor is moved to a different row. Additionally, in auto-vacuum
4311** mode, the following events may invalidate an overflow page-list cache.
4312**
4313** * An incremental vacuum,
4314** * A commit in auto_vacuum="full" mode,
4315** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004316*/
danielk19779f8d6402007-05-02 17:48:45 +00004317static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004318 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004319 u32 offset, /* Begin reading this far into payload */
4320 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004321 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004322 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004323){
4324 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004325 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004326 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004327 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004328 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004329#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004330 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004331 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004332#endif
drh3aac2dd2004-04-26 14:10:20 +00004333
danielk1977da107192007-05-04 08:32:13 +00004334 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004335 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004336 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004337 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004338 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004339
drh86057612007-06-26 01:04:48 +00004340 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004341 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004342#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004343 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004344#endif
drhab1cc582014-09-23 21:25:19 +00004345 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004346
drhab1cc582014-09-23 21:25:19 +00004347 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004348 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004349 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004350 }
danielk1977da107192007-05-04 08:32:13 +00004351
4352 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004353 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004354 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004355 if( a+offset>pCur->info.nLocal ){
4356 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004357 }
dan5a500af2014-03-11 20:33:04 +00004358 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004359 offset = 0;
drha34b6762004-05-07 13:30:42 +00004360 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004361 amt -= a;
drhdd793422001-06-28 01:54:48 +00004362 }else{
drhfa1a98a2004-05-14 19:08:17 +00004363 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004364 }
danielk1977da107192007-05-04 08:32:13 +00004365
dan85753662014-12-11 16:38:18 +00004366
danielk1977da107192007-05-04 08:32:13 +00004367 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004368 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004369 Pgno nextPage;
4370
drhfa1a98a2004-05-14 19:08:17 +00004371 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004372
drha38c9512014-04-01 01:24:34 +00004373 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4374 ** Except, do not allocate aOverflow[] for eOp==2.
4375 **
4376 ** The aOverflow[] array is sized at one entry for each overflow page
4377 ** in the overflow chain. The page number of the first overflow page is
4378 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4379 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004380 */
drh036dbec2014-03-11 23:40:44 +00004381 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004382 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004383 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004384 Pgno *aNew = (Pgno*)sqlite3Realloc(
4385 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004386 );
4387 if( aNew==0 ){
4388 rc = SQLITE_NOMEM;
4389 }else{
4390 pCur->nOvflAlloc = nOvfl*2;
4391 pCur->aOverflow = aNew;
4392 }
4393 }
4394 if( rc==SQLITE_OK ){
4395 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004396 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004397 }
4398 }
danielk1977da107192007-05-04 08:32:13 +00004399
4400 /* If the overflow page-list cache has been allocated and the
4401 ** entry for the first required overflow page is valid, skip
4402 ** directly to it.
4403 */
drh3f387402014-09-24 01:23:00 +00004404 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4405 && pCur->aOverflow[offset/ovflSize]
4406 ){
danielk19772dec9702007-05-02 16:48:37 +00004407 iIdx = (offset/ovflSize);
4408 nextPage = pCur->aOverflow[iIdx];
4409 offset = (offset%ovflSize);
4410 }
danielk1977da107192007-05-04 08:32:13 +00004411
4412 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4413
danielk1977da107192007-05-04 08:32:13 +00004414 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004415 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004416 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4417 pCur->aOverflow[iIdx] = nextPage;
4418 }
danielk1977da107192007-05-04 08:32:13 +00004419
danielk1977d04417962007-05-02 13:16:30 +00004420 if( offset>=ovflSize ){
4421 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004422 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004423 ** data is not required. So first try to lookup the overflow
4424 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004425 ** function.
drha38c9512014-04-01 01:24:34 +00004426 **
4427 ** Note that the aOverflow[] array must be allocated because eOp!=2
4428 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004429 */
drha38c9512014-04-01 01:24:34 +00004430 assert( eOp!=2 );
4431 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004432 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004433 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004434 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004435 }else{
danielk1977da107192007-05-04 08:32:13 +00004436 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004437 }
danielk1977da107192007-05-04 08:32:13 +00004438 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004439 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004440 /* Need to read this page properly. It contains some of the
4441 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004442 */
danf4ba1092011-10-08 14:57:07 +00004443#ifdef SQLITE_DIRECT_OVERFLOW_READ
4444 sqlite3_file *fd;
4445#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004446 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004447 if( a + offset > ovflSize ){
4448 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004449 }
danf4ba1092011-10-08 14:57:07 +00004450
4451#ifdef SQLITE_DIRECT_OVERFLOW_READ
4452 /* If all the following are true:
4453 **
4454 ** 1) this is a read operation, and
4455 ** 2) data is required from the start of this overflow page, and
4456 ** 3) the database is file-backed, and
4457 ** 4) there is no open write-transaction, and
4458 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004459 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004460 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004461 **
4462 ** then data can be read directly from the database file into the
4463 ** output buffer, bypassing the page-cache altogether. This speeds
4464 ** up loading large records that span many overflow pages.
4465 */
dan5a500af2014-03-11 20:33:04 +00004466 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004467 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004468 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004469 && pBt->inTransaction==TRANS_READ /* (4) */
4470 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4471 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004472 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004473 ){
4474 u8 aSave[4];
4475 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004476 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004477 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004478 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004479 nextPage = get4byte(aWrite);
4480 memcpy(aWrite, aSave, 4);
4481 }else
4482#endif
4483
4484 {
4485 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004486 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004487 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004488 );
danf4ba1092011-10-08 14:57:07 +00004489 if( rc==SQLITE_OK ){
4490 aPayload = sqlite3PagerGetData(pDbPage);
4491 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004492 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004493 sqlite3PagerUnref(pDbPage);
4494 offset = 0;
4495 }
4496 }
4497 amt -= a;
4498 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004499 }
drh2af926b2001-05-15 00:39:25 +00004500 }
drh2af926b2001-05-15 00:39:25 +00004501 }
danielk1977cfe9a692004-06-16 12:00:29 +00004502
danielk1977da107192007-05-04 08:32:13 +00004503 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004504 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004505 }
danielk1977da107192007-05-04 08:32:13 +00004506 return rc;
drh2af926b2001-05-15 00:39:25 +00004507}
4508
drh72f82862001-05-24 21:06:34 +00004509/*
drh3aac2dd2004-04-26 14:10:20 +00004510** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004511** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004512** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004513**
drh5d1a8722009-07-22 18:07:40 +00004514** The caller must ensure that pCur is pointing to a valid row
4515** in the table.
4516**
drh3aac2dd2004-04-26 14:10:20 +00004517** Return SQLITE_OK on success or an error code if anything goes
4518** wrong. An error is returned if "offset+amt" is larger than
4519** the available payload.
drh72f82862001-05-24 21:06:34 +00004520*/
drha34b6762004-05-07 13:30:42 +00004521int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004522 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004523 assert( pCur->eState==CURSOR_VALID );
4524 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4525 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4526 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004527}
4528
4529/*
drh3aac2dd2004-04-26 14:10:20 +00004530** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004531** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004532** begins at "offset".
4533**
4534** Return SQLITE_OK on success or an error code if anything goes
4535** wrong. An error is returned if "offset+amt" is larger than
4536** the available payload.
drh72f82862001-05-24 21:06:34 +00004537*/
drh3aac2dd2004-04-26 14:10:20 +00004538int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004539 int rc;
4540
danielk19773588ceb2008-06-10 17:30:26 +00004541#ifndef SQLITE_OMIT_INCRBLOB
4542 if ( pCur->eState==CURSOR_INVALID ){
4543 return SQLITE_ABORT;
4544 }
4545#endif
4546
drh1fee73e2007-08-29 04:00:57 +00004547 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004548 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004549 if( rc==SQLITE_OK ){
4550 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004551 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4552 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004553 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004554 }
4555 return rc;
drh2af926b2001-05-15 00:39:25 +00004556}
4557
drh72f82862001-05-24 21:06:34 +00004558/*
drh0e1c19e2004-05-11 00:58:56 +00004559** Return a pointer to payload information from the entry that the
4560** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004561** the key if index btrees (pPage->intKey==0) and is the data for
4562** table btrees (pPage->intKey==1). The number of bytes of available
4563** key/data is written into *pAmt. If *pAmt==0, then the value
4564** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004565**
4566** This routine is an optimization. It is common for the entire key
4567** and data to fit on the local page and for there to be no overflow
4568** pages. When that is so, this routine can be used to access the
4569** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004570** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004571** the key/data and copy it into a preallocated buffer.
4572**
4573** The pointer returned by this routine looks directly into the cached
4574** page of the database. The data might change or move the next time
4575** any btree routine is called.
4576*/
drh2a8d2262013-12-09 20:43:22 +00004577static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004578 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004579 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004580){
drhf3392e32015-04-15 17:26:55 +00004581 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004582 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004583 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004584 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004585 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004586 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004587 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004588 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4589 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4590 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4591 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4592 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004593 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004594}
4595
4596
4597/*
drhe51c44f2004-05-30 20:46:09 +00004598** For the entry that cursor pCur is point to, return as
4599** many bytes of the key or data as are available on the local
4600** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004601**
4602** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004603** or be destroyed on the next call to any Btree routine,
4604** including calls from other threads against the same cache.
4605** Hence, a mutex on the BtShared should be held prior to calling
4606** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004607**
4608** These routines is used to get quick access to key and data
4609** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004610*/
drh501932c2013-11-21 21:59:53 +00004611const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004612 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004613}
drh501932c2013-11-21 21:59:53 +00004614const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004615 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004616}
4617
4618
4619/*
drh8178a752003-01-05 21:41:40 +00004620** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004621** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004622**
4623** This function returns SQLITE_CORRUPT if the page-header flags field of
4624** the new child page does not match the flags field of the parent (i.e.
4625** if an intkey page appears to be the parent of a non-intkey page, or
4626** vice-versa).
drh72f82862001-05-24 21:06:34 +00004627*/
drh3aac2dd2004-04-26 14:10:20 +00004628static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004629 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004630 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004631 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004632 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004633
drh1fee73e2007-08-29 04:00:57 +00004634 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004635 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004636 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004637 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004638 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4639 return SQLITE_CORRUPT_BKPT;
4640 }
drhb00fc3b2013-08-21 23:42:32 +00004641 rc = getAndInitPage(pBt, newPgno, &pNewPage,
drh036dbec2014-03-11 23:40:44 +00004642 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004643 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004644 pCur->apPage[i+1] = pNewPage;
4645 pCur->aiIdx[i+1] = 0;
4646 pCur->iPage++;
4647
drh271efa52004-05-30 19:19:05 +00004648 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004649 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk1977bd5969a2009-07-11 17:39:42 +00004650 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004651 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004652 }
drh72f82862001-05-24 21:06:34 +00004653 return SQLITE_OK;
4654}
4655
drhcbd33492015-03-25 13:06:54 +00004656#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004657/*
4658** Page pParent is an internal (non-leaf) tree page. This function
4659** asserts that page number iChild is the left-child if the iIdx'th
4660** cell in page pParent. Or, if iIdx is equal to the total number of
4661** cells in pParent, that page number iChild is the right-child of
4662** the page.
4663*/
4664static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004665 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4666 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004667 assert( iIdx<=pParent->nCell );
4668 if( iIdx==pParent->nCell ){
4669 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4670 }else{
4671 assert( get4byte(findCell(pParent, iIdx))==iChild );
4672 }
4673}
4674#else
4675# define assertParentIndex(x,y,z)
4676#endif
4677
drh72f82862001-05-24 21:06:34 +00004678/*
drh5e2f8b92001-05-28 00:41:15 +00004679** Move the cursor up to the parent page.
4680**
4681** pCur->idx is set to the cell index that contains the pointer
4682** to the page we are coming from. If we are coming from the
4683** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004684** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004685*/
danielk197730548662009-07-09 05:07:37 +00004686static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004687 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004688 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004689 assert( pCur->iPage>0 );
4690 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004691 assertParentIndex(
4692 pCur->apPage[pCur->iPage-1],
4693 pCur->aiIdx[pCur->iPage-1],
4694 pCur->apPage[pCur->iPage]->pgno
4695 );
dan6c2688c2012-01-12 15:05:03 +00004696 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004697
danielk197771d5d2c2008-09-29 11:49:47 +00004698 releasePage(pCur->apPage[pCur->iPage]);
4699 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004700 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004701 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh72f82862001-05-24 21:06:34 +00004702}
4703
4704/*
danielk19778f880a82009-07-13 09:41:45 +00004705** Move the cursor to point to the root page of its b-tree structure.
4706**
4707** If the table has a virtual root page, then the cursor is moved to point
4708** to the virtual root page instead of the actual root page. A table has a
4709** virtual root page when the actual root page contains no cells and a
4710** single child page. This can only happen with the table rooted at page 1.
4711**
4712** If the b-tree structure is empty, the cursor state is set to
4713** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4714** cell located on the root (or virtual root) page and the cursor state
4715** is set to CURSOR_VALID.
4716**
4717** If this function returns successfully, it may be assumed that the
4718** page-header flags indicate that the [virtual] root-page is the expected
4719** kind of b-tree page (i.e. if when opening the cursor the caller did not
4720** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4721** indicating a table b-tree, or if the caller did specify a KeyInfo
4722** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4723** b-tree).
drh72f82862001-05-24 21:06:34 +00004724*/
drh5e2f8b92001-05-28 00:41:15 +00004725static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004726 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004727 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004728
drh1fee73e2007-08-29 04:00:57 +00004729 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004730 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4731 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4732 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4733 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4734 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004735 assert( pCur->skipNext!=SQLITE_OK );
4736 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004737 }
danielk1977be51a652008-10-08 17:58:48 +00004738 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004739 }
danielk197771d5d2c2008-09-29 11:49:47 +00004740
4741 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004742 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004743 }else if( pCur->pgnoRoot==0 ){
4744 pCur->eState = CURSOR_INVALID;
4745 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004746 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004747 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh036dbec2014-03-11 23:40:44 +00004748 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004749 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004750 pCur->eState = CURSOR_INVALID;
4751 return rc;
4752 }
danielk1977172114a2009-07-07 15:47:12 +00004753 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004754 }
danielk197771d5d2c2008-09-29 11:49:47 +00004755 pRoot = pCur->apPage[0];
4756 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004757
4758 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4759 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4760 ** NULL, the caller expects a table b-tree. If this is not the case,
4761 ** return an SQLITE_CORRUPT error.
4762 **
4763 ** Earlier versions of SQLite assumed that this test could not fail
4764 ** if the root page was already loaded when this function was called (i.e.
4765 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4766 ** in such a way that page pRoot is linked into a second b-tree table
4767 ** (or the freelist). */
4768 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4769 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4770 return SQLITE_CORRUPT_BKPT;
4771 }
danielk19778f880a82009-07-13 09:41:45 +00004772
danielk197771d5d2c2008-09-29 11:49:47 +00004773 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004774 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004775 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004776
drh4e8fe3f2013-12-06 23:25:27 +00004777 if( pRoot->nCell>0 ){
4778 pCur->eState = CURSOR_VALID;
4779 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004780 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004781 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004782 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004783 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004784 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004785 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004786 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004787 }
4788 return rc;
drh72f82862001-05-24 21:06:34 +00004789}
drh2af926b2001-05-15 00:39:25 +00004790
drh5e2f8b92001-05-28 00:41:15 +00004791/*
4792** Move the cursor down to the left-most leaf entry beneath the
4793** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004794**
4795** The left-most leaf is the one with the smallest key - the first
4796** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004797*/
4798static int moveToLeftmost(BtCursor *pCur){
4799 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004800 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004801 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004802
drh1fee73e2007-08-29 04:00:57 +00004803 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004804 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004805 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4806 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4807 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004808 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004809 }
drhd677b3d2007-08-20 22:48:41 +00004810 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004811}
4812
drh2dcc9aa2002-12-04 13:40:25 +00004813/*
4814** Move the cursor down to the right-most leaf entry beneath the
4815** page to which it is currently pointing. Notice the difference
4816** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4817** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4818** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004819**
4820** The right-most entry is the one with the largest key - the last
4821** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004822*/
4823static int moveToRightmost(BtCursor *pCur){
4824 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004825 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004826 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004827
drh1fee73e2007-08-29 04:00:57 +00004828 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004829 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004830 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004831 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004832 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004833 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004834 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004835 }
drhee6438d2014-09-01 13:29:32 +00004836 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4837 assert( pCur->info.nSize==0 );
4838 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4839 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004840}
4841
drh5e00f6c2001-09-13 13:46:56 +00004842/* Move the cursor to the first entry in the table. Return SQLITE_OK
4843** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004844** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004845*/
drh3aac2dd2004-04-26 14:10:20 +00004846int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004847 int rc;
drhd677b3d2007-08-20 22:48:41 +00004848
drh1fee73e2007-08-29 04:00:57 +00004849 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004850 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004851 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004852 if( rc==SQLITE_OK ){
4853 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004854 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004855 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004856 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004857 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004858 *pRes = 0;
4859 rc = moveToLeftmost(pCur);
4860 }
drh5e00f6c2001-09-13 13:46:56 +00004861 }
drh5e00f6c2001-09-13 13:46:56 +00004862 return rc;
4863}
drh5e2f8b92001-05-28 00:41:15 +00004864
drh9562b552002-02-19 15:00:07 +00004865/* Move the cursor to the last entry in the table. Return SQLITE_OK
4866** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004867** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004868*/
drh3aac2dd2004-04-26 14:10:20 +00004869int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004870 int rc;
drhd677b3d2007-08-20 22:48:41 +00004871
drh1fee73e2007-08-29 04:00:57 +00004872 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004873 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004874
4875 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004876 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004877#ifdef SQLITE_DEBUG
4878 /* This block serves to assert() that the cursor really does point
4879 ** to the last entry in the b-tree. */
4880 int ii;
4881 for(ii=0; ii<pCur->iPage; ii++){
4882 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4883 }
4884 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4885 assert( pCur->apPage[pCur->iPage]->leaf );
4886#endif
4887 return SQLITE_OK;
4888 }
4889
drh9562b552002-02-19 15:00:07 +00004890 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004891 if( rc==SQLITE_OK ){
4892 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004893 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004894 *pRes = 1;
4895 }else{
4896 assert( pCur->eState==CURSOR_VALID );
4897 *pRes = 0;
4898 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004899 if( rc==SQLITE_OK ){
4900 pCur->curFlags |= BTCF_AtLast;
4901 }else{
4902 pCur->curFlags &= ~BTCF_AtLast;
4903 }
4904
drhd677b3d2007-08-20 22:48:41 +00004905 }
drh9562b552002-02-19 15:00:07 +00004906 }
drh9562b552002-02-19 15:00:07 +00004907 return rc;
4908}
4909
drhe14006d2008-03-25 17:23:32 +00004910/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004911** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004912**
drhe63d9992008-08-13 19:11:48 +00004913** For INTKEY tables, the intKey parameter is used. pIdxKey
4914** must be NULL. For index tables, pIdxKey is used and intKey
4915** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004916**
drh5e2f8b92001-05-28 00:41:15 +00004917** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004918** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004919** were present. The cursor might point to an entry that comes
4920** before or after the key.
4921**
drh64022502009-01-09 14:11:04 +00004922** An integer is written into *pRes which is the result of
4923** comparing the key with the entry to which the cursor is
4924** pointing. The meaning of the integer written into
4925** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004926**
4927** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004928** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004929** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004930**
4931** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004932** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004933**
4934** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004935** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004936**
drha059ad02001-04-17 20:09:11 +00004937*/
drhe63d9992008-08-13 19:11:48 +00004938int sqlite3BtreeMovetoUnpacked(
4939 BtCursor *pCur, /* The cursor to be moved */
4940 UnpackedRecord *pIdxKey, /* Unpacked index key */
4941 i64 intKey, /* The table key */
4942 int biasRight, /* If true, bias the search to the high end */
4943 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004944){
drh72f82862001-05-24 21:06:34 +00004945 int rc;
dan3b9330f2014-02-27 20:44:18 +00004946 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004947
drh1fee73e2007-08-29 04:00:57 +00004948 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004949 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004950 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004951 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004952
4953 /* If the cursor is already positioned at the point we are trying
4954 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00004955 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00004956 && pCur->apPage[0]->intKey
4957 ){
drhe63d9992008-08-13 19:11:48 +00004958 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004959 *pRes = 0;
4960 return SQLITE_OK;
4961 }
drh036dbec2014-03-11 23:40:44 +00004962 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004963 *pRes = -1;
4964 return SQLITE_OK;
4965 }
4966 }
4967
dan1fed5da2014-02-25 21:01:25 +00004968 if( pIdxKey ){
4969 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00004970 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00004971 assert( pIdxKey->default_rc==1
4972 || pIdxKey->default_rc==0
4973 || pIdxKey->default_rc==-1
4974 );
drh13a747e2014-03-03 21:46:55 +00004975 }else{
drhb6e8fd12014-03-06 01:56:33 +00004976 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004977 }
4978
drh5e2f8b92001-05-28 00:41:15 +00004979 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004980 if( rc ){
4981 return rc;
4982 }
dana205a482011-08-27 18:48:57 +00004983 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4984 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4985 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004986 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004987 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004988 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004989 return SQLITE_OK;
4990 }
danielk197771d5d2c2008-09-29 11:49:47 +00004991 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004992 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004993 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004994 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004995 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004996 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004997
4998 /* pPage->nCell must be greater than zero. If this is the root-page
4999 ** the cursor would have been INVALID above and this for(;;) loop
5000 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005001 ** would have already detected db corruption. Similarly, pPage must
5002 ** be the right kind (index or table) of b-tree page. Otherwise
5003 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005004 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005005 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005006 lwr = 0;
5007 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005008 assert( biasRight==0 || biasRight==1 );
5009 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005010 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005011 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005012 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005013 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00005014 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3e28ff52014-09-24 00:59:08 +00005015 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005016 while( 0x80 <= *(pCell++) ){
5017 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5018 }
drhd172f862006-01-12 15:01:15 +00005019 }
drha2c20e42008-03-29 16:01:04 +00005020 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005021 if( nCellKey<intKey ){
5022 lwr = idx+1;
5023 if( lwr>upr ){ c = -1; break; }
5024 }else if( nCellKey>intKey ){
5025 upr = idx-1;
5026 if( lwr>upr ){ c = +1; break; }
5027 }else{
5028 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005029 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005030 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005031 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005032 if( !pPage->leaf ){
5033 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005034 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005035 }else{
5036 *pRes = 0;
5037 rc = SQLITE_OK;
5038 goto moveto_finish;
5039 }
drhd793f442013-11-25 14:10:15 +00005040 }
drhebf10b12013-11-25 17:38:26 +00005041 assert( lwr+upr>=0 );
5042 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005043 }
5044 }else{
5045 for(;;){
drhc6827502015-05-28 15:14:32 +00005046 int nCell; /* Size of the pCell cell in bytes */
drhec3e6b12013-11-25 02:38:55 +00005047 pCell = findCell(pPage, idx) + pPage->childPtrSize;
5048
drhb2eced52010-08-12 02:41:12 +00005049 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005050 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005051 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005052 ** varint. This information is used to attempt to avoid parsing
5053 ** the entire cell by checking for the cases where the record is
5054 ** stored entirely within the b-tree page by inspecting the first
5055 ** 2 bytes of the cell.
5056 */
drhec3e6b12013-11-25 02:38:55 +00005057 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005058 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005059 /* This branch runs if the record-size field of the cell is a
5060 ** single byte varint and the record fits entirely on the main
5061 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005062 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005063 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005064 }else if( !(pCell[1] & 0x80)
5065 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5066 ){
5067 /* The record-size field is a 2 byte varint and the record
5068 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005069 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005070 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005071 }else{
danielk197711c327a2009-05-04 19:01:26 +00005072 /* The record flows over onto one or more overflow pages. In
5073 ** this case the whole cell needs to be parsed, a buffer allocated
5074 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005075 ** buffer before VdbeRecordCompare() can be called.
5076 **
5077 ** If the record is corrupt, the xRecordCompare routine may read
5078 ** up to two varints past the end of the buffer. An extra 18
5079 ** bytes of padding is allocated at the end of the buffer in
5080 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005081 void *pCellKey;
5082 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005083 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005084 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005085 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5086 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5087 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5088 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005089 if( nCell<2 ){
5090 rc = SQLITE_CORRUPT_BKPT;
5091 goto moveto_finish;
5092 }
5093 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005094 if( pCellKey==0 ){
5095 rc = SQLITE_NOMEM;
5096 goto moveto_finish;
5097 }
drhd793f442013-11-25 14:10:15 +00005098 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005099 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005100 if( rc ){
5101 sqlite3_free(pCellKey);
5102 goto moveto_finish;
5103 }
drh75179de2014-09-16 14:37:35 +00005104 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005105 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005106 }
dan38fdead2014-04-01 10:19:02 +00005107 assert(
5108 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005109 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005110 );
drhbb933ef2013-11-25 15:01:38 +00005111 if( c<0 ){
5112 lwr = idx+1;
5113 }else if( c>0 ){
5114 upr = idx-1;
5115 }else{
5116 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005117 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005118 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005119 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005120 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005121 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005122 }
drhebf10b12013-11-25 17:38:26 +00005123 if( lwr>upr ) break;
5124 assert( lwr+upr>=0 );
5125 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005126 }
drh72f82862001-05-24 21:06:34 +00005127 }
drhb07028f2011-10-14 21:49:18 +00005128 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005129 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005130 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005131 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005132 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005133 *pRes = c;
5134 rc = SQLITE_OK;
5135 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005136 }
5137moveto_next_layer:
5138 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005139 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005140 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005141 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005142 }
drhf49661a2008-12-10 16:45:50 +00005143 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005144 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005145 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005146 }
drh1e968a02008-03-25 00:22:21 +00005147moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005148 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005149 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005150 return rc;
5151}
5152
drhd677b3d2007-08-20 22:48:41 +00005153
drh72f82862001-05-24 21:06:34 +00005154/*
drhc39e0002004-05-07 23:50:57 +00005155** Return TRUE if the cursor is not pointing at an entry of the table.
5156**
5157** TRUE will be returned after a call to sqlite3BtreeNext() moves
5158** past the last entry in the table or sqlite3BtreePrev() moves past
5159** the first entry. TRUE is also returned if the table is empty.
5160*/
5161int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005162 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5163 ** have been deleted? This API will need to change to return an error code
5164 ** as well as the boolean result value.
5165 */
5166 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005167}
5168
5169/*
drhbd03cae2001-06-02 02:40:57 +00005170** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005171** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005172** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005173** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005174**
drhee6438d2014-09-01 13:29:32 +00005175** The main entry point is sqlite3BtreeNext(). That routine is optimized
5176** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5177** to the next cell on the current page. The (slower) btreeNext() helper
5178** routine is called when it is necessary to move to a different page or
5179** to restore the cursor.
5180**
drhe39a7322014-02-03 14:04:11 +00005181** The calling function will set *pRes to 0 or 1. The initial *pRes value
5182** will be 1 if the cursor being stepped corresponds to an SQL index and
5183** if this routine could have been skipped if that SQL index had been
5184** a unique index. Otherwise the caller will have set *pRes to zero.
5185** Zero is the common case. The btree implementation is free to use the
5186** initial *pRes value as a hint to improve performance, but the current
5187** SQLite btree implementation does not. (Note that the comdb2 btree
5188** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005189*/
drhee6438d2014-09-01 13:29:32 +00005190static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005191 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005192 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005193 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005194
drh1fee73e2007-08-29 04:00:57 +00005195 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005196 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005197 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005198 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005199 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005200 rc = restoreCursorPosition(pCur);
5201 if( rc!=SQLITE_OK ){
5202 return rc;
5203 }
5204 if( CURSOR_INVALID==pCur->eState ){
5205 *pRes = 1;
5206 return SQLITE_OK;
5207 }
drh9b47ee32013-08-20 03:13:51 +00005208 if( pCur->skipNext ){
5209 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5210 pCur->eState = CURSOR_VALID;
5211 if( pCur->skipNext>0 ){
5212 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005213 return SQLITE_OK;
5214 }
drhf66f26a2013-08-19 20:04:10 +00005215 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005216 }
danielk1977da184232006-01-05 11:34:32 +00005217 }
danielk1977da184232006-01-05 11:34:32 +00005218
danielk197771d5d2c2008-09-29 11:49:47 +00005219 pPage = pCur->apPage[pCur->iPage];
5220 idx = ++pCur->aiIdx[pCur->iPage];
5221 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005222
5223 /* If the database file is corrupt, it is possible for the value of idx
5224 ** to be invalid here. This can only occur if a second cursor modifies
5225 ** the page while cursor pCur is holding a reference to it. Which can
5226 ** only happen if the database is corrupt in such a way as to link the
5227 ** page into more than one b-tree structure. */
5228 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005229
danielk197771d5d2c2008-09-29 11:49:47 +00005230 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005231 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005232 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005233 if( rc ) return rc;
5234 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005235 }
drh5e2f8b92001-05-28 00:41:15 +00005236 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005237 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005238 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005239 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005240 return SQLITE_OK;
5241 }
danielk197730548662009-07-09 05:07:37 +00005242 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005243 pPage = pCur->apPage[pCur->iPage];
5244 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005245 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005246 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005247 }else{
drhee6438d2014-09-01 13:29:32 +00005248 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005249 }
drh8178a752003-01-05 21:41:40 +00005250 }
drh3aac2dd2004-04-26 14:10:20 +00005251 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005252 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005253 }else{
5254 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005255 }
drh72f82862001-05-24 21:06:34 +00005256}
drhee6438d2014-09-01 13:29:32 +00005257int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5258 MemPage *pPage;
5259 assert( cursorHoldsMutex(pCur) );
5260 assert( pRes!=0 );
5261 assert( *pRes==0 || *pRes==1 );
5262 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5263 pCur->info.nSize = 0;
5264 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5265 *pRes = 0;
5266 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5267 pPage = pCur->apPage[pCur->iPage];
5268 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5269 pCur->aiIdx[pCur->iPage]--;
5270 return btreeNext(pCur, pRes);
5271 }
5272 if( pPage->leaf ){
5273 return SQLITE_OK;
5274 }else{
5275 return moveToLeftmost(pCur);
5276 }
5277}
drh72f82862001-05-24 21:06:34 +00005278
drh3b7511c2001-05-26 13:15:44 +00005279/*
drh2dcc9aa2002-12-04 13:40:25 +00005280** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005281** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005282** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005283** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005284**
drhee6438d2014-09-01 13:29:32 +00005285** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5286** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005287** to the previous cell on the current page. The (slower) btreePrevious()
5288** helper routine is called when it is necessary to move to a different page
5289** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005290**
drhe39a7322014-02-03 14:04:11 +00005291** The calling function will set *pRes to 0 or 1. The initial *pRes value
5292** will be 1 if the cursor being stepped corresponds to an SQL index and
5293** if this routine could have been skipped if that SQL index had been
5294** a unique index. Otherwise the caller will have set *pRes to zero.
5295** Zero is the common case. The btree implementation is free to use the
5296** initial *pRes value as a hint to improve performance, but the current
5297** SQLite btree implementation does not. (Note that the comdb2 btree
5298** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005299*/
drhee6438d2014-09-01 13:29:32 +00005300static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005301 int rc;
drh8178a752003-01-05 21:41:40 +00005302 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005303
drh1fee73e2007-08-29 04:00:57 +00005304 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005305 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005306 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005307 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005308 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5309 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005310 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005311 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005312 if( rc!=SQLITE_OK ){
5313 return rc;
drhf66f26a2013-08-19 20:04:10 +00005314 }
5315 if( CURSOR_INVALID==pCur->eState ){
5316 *pRes = 1;
5317 return SQLITE_OK;
5318 }
drh9b47ee32013-08-20 03:13:51 +00005319 if( pCur->skipNext ){
5320 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5321 pCur->eState = CURSOR_VALID;
5322 if( pCur->skipNext<0 ){
5323 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005324 return SQLITE_OK;
5325 }
drhf66f26a2013-08-19 20:04:10 +00005326 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005327 }
danielk1977da184232006-01-05 11:34:32 +00005328 }
danielk1977da184232006-01-05 11:34:32 +00005329
danielk197771d5d2c2008-09-29 11:49:47 +00005330 pPage = pCur->apPage[pCur->iPage];
5331 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005332 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005333 int idx = pCur->aiIdx[pCur->iPage];
5334 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005335 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005336 rc = moveToRightmost(pCur);
5337 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005338 while( pCur->aiIdx[pCur->iPage]==0 ){
5339 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005340 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005341 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005342 return SQLITE_OK;
5343 }
danielk197730548662009-07-09 05:07:37 +00005344 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005345 }
drhee6438d2014-09-01 13:29:32 +00005346 assert( pCur->info.nSize==0 );
5347 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005348
5349 pCur->aiIdx[pCur->iPage]--;
5350 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005351 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005352 rc = sqlite3BtreePrevious(pCur, pRes);
5353 }else{
5354 rc = SQLITE_OK;
5355 }
drh2dcc9aa2002-12-04 13:40:25 +00005356 }
drh2dcc9aa2002-12-04 13:40:25 +00005357 return rc;
5358}
drhee6438d2014-09-01 13:29:32 +00005359int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5360 assert( cursorHoldsMutex(pCur) );
5361 assert( pRes!=0 );
5362 assert( *pRes==0 || *pRes==1 );
5363 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5364 *pRes = 0;
5365 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5366 pCur->info.nSize = 0;
5367 if( pCur->eState!=CURSOR_VALID
5368 || pCur->aiIdx[pCur->iPage]==0
5369 || pCur->apPage[pCur->iPage]->leaf==0
5370 ){
5371 return btreePrevious(pCur, pRes);
5372 }
5373 pCur->aiIdx[pCur->iPage]--;
5374 return SQLITE_OK;
5375}
drh2dcc9aa2002-12-04 13:40:25 +00005376
5377/*
drh3b7511c2001-05-26 13:15:44 +00005378** Allocate a new page from the database file.
5379**
danielk19773b8a05f2007-03-19 17:44:26 +00005380** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005381** has already been called on the new page.) The new page has also
5382** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005383** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005384**
5385** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005386** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005387**
drh82e647d2013-03-02 03:25:55 +00005388** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005389** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005390** attempt to keep related pages close to each other in the database file,
5391** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005392**
drh82e647d2013-03-02 03:25:55 +00005393** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5394** anywhere on the free-list, then it is guaranteed to be returned. If
5395** eMode is BTALLOC_LT then the page returned will be less than or equal
5396** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5397** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005398*/
drh4f0c5872007-03-26 22:05:01 +00005399static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005400 BtShared *pBt, /* The btree */
5401 MemPage **ppPage, /* Store pointer to the allocated page here */
5402 Pgno *pPgno, /* Store the page number here */
5403 Pgno nearby, /* Search for a page near this one */
5404 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005405){
drh3aac2dd2004-04-26 14:10:20 +00005406 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005407 int rc;
drh35cd6432009-06-05 14:17:21 +00005408 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005409 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005410 MemPage *pTrunk = 0;
5411 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005412 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005413
drh1fee73e2007-08-29 04:00:57 +00005414 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005415 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005416 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005417 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005418 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5419 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005420 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005421 testcase( n==mxPage-1 );
5422 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005423 return SQLITE_CORRUPT_BKPT;
5424 }
drh3aac2dd2004-04-26 14:10:20 +00005425 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005426 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005427 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005428 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5429
drh82e647d2013-03-02 03:25:55 +00005430 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005431 ** shows that the page 'nearby' is somewhere on the free-list, then
5432 ** the entire-list will be searched for that page.
5433 */
5434#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005435 if( eMode==BTALLOC_EXACT ){
5436 if( nearby<=mxPage ){
5437 u8 eType;
5438 assert( nearby>0 );
5439 assert( pBt->autoVacuum );
5440 rc = ptrmapGet(pBt, nearby, &eType, 0);
5441 if( rc ) return rc;
5442 if( eType==PTRMAP_FREEPAGE ){
5443 searchList = 1;
5444 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005445 }
dan51f0b6d2013-02-22 20:16:34 +00005446 }else if( eMode==BTALLOC_LE ){
5447 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005448 }
5449#endif
5450
5451 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5452 ** first free-list trunk page. iPrevTrunk is initially 1.
5453 */
danielk19773b8a05f2007-03-19 17:44:26 +00005454 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005455 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005456 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005457
5458 /* The code within this loop is run only once if the 'searchList' variable
5459 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005460 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5461 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005462 */
5463 do {
5464 pPrevTrunk = pTrunk;
5465 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005466 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5467 ** is the page number of the next freelist trunk page in the list or
5468 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005469 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005470 }else{
drh113762a2014-11-19 16:36:25 +00005471 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5472 ** stores the page number of the first page of the freelist, or zero if
5473 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005474 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005475 }
drhdf35a082009-07-09 02:24:35 +00005476 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005477 if( iTrunk>mxPage ){
5478 rc = SQLITE_CORRUPT_BKPT;
5479 }else{
drh7e8c6f12015-05-28 03:28:27 +00005480 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005481 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005482 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005483 pTrunk = 0;
5484 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005485 }
drhb07028f2011-10-14 21:49:18 +00005486 assert( pTrunk!=0 );
5487 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005488 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5489 ** is the number of leaf page pointers to follow. */
5490 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005491 if( k==0 && !searchList ){
5492 /* The trunk has no leaves and the list is not being searched.
5493 ** So extract the trunk page itself and use it as the newly
5494 ** allocated page */
5495 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005496 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005497 if( rc ){
5498 goto end_allocate_page;
5499 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005500 *pPgno = iTrunk;
5501 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5502 *ppPage = pTrunk;
5503 pTrunk = 0;
5504 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005505 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005506 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005507 rc = SQLITE_CORRUPT_BKPT;
5508 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005509#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005510 }else if( searchList
5511 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5512 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005513 /* The list is being searched and this trunk page is the page
5514 ** to allocate, regardless of whether it has leaves.
5515 */
dan51f0b6d2013-02-22 20:16:34 +00005516 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005517 *ppPage = pTrunk;
5518 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005519 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005520 if( rc ){
5521 goto end_allocate_page;
5522 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005523 if( k==0 ){
5524 if( !pPrevTrunk ){
5525 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5526 }else{
danf48c3552010-08-23 15:41:24 +00005527 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5528 if( rc!=SQLITE_OK ){
5529 goto end_allocate_page;
5530 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005531 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5532 }
5533 }else{
5534 /* The trunk page is required by the caller but it contains
5535 ** pointers to free-list leaves. The first leaf becomes a trunk
5536 ** page in this case.
5537 */
5538 MemPage *pNewTrunk;
5539 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005540 if( iNewTrunk>mxPage ){
5541 rc = SQLITE_CORRUPT_BKPT;
5542 goto end_allocate_page;
5543 }
drhdf35a082009-07-09 02:24:35 +00005544 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005545 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005546 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005547 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005548 }
danielk19773b8a05f2007-03-19 17:44:26 +00005549 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005550 if( rc!=SQLITE_OK ){
5551 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005552 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005553 }
5554 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5555 put4byte(&pNewTrunk->aData[4], k-1);
5556 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005557 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005558 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005559 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005560 put4byte(&pPage1->aData[32], iNewTrunk);
5561 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005562 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005563 if( rc ){
5564 goto end_allocate_page;
5565 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005566 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5567 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005568 }
5569 pTrunk = 0;
5570 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5571#endif
danielk1977e5765212009-06-17 11:13:28 +00005572 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005573 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005574 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005575 Pgno iPage;
5576 unsigned char *aData = pTrunk->aData;
5577 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005578 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005579 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005580 if( eMode==BTALLOC_LE ){
5581 for(i=0; i<k; i++){
5582 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005583 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005584 closest = i;
5585 break;
5586 }
5587 }
5588 }else{
5589 int dist;
5590 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5591 for(i=1; i<k; i++){
5592 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5593 if( d2<dist ){
5594 closest = i;
5595 dist = d2;
5596 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005597 }
5598 }
5599 }else{
5600 closest = 0;
5601 }
5602
5603 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005604 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005605 if( iPage>mxPage ){
5606 rc = SQLITE_CORRUPT_BKPT;
5607 goto end_allocate_page;
5608 }
drhdf35a082009-07-09 02:24:35 +00005609 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005610 if( !searchList
5611 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5612 ){
danielk1977bea2a942009-01-20 17:06:27 +00005613 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005614 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005615 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5616 ": %d more free pages\n",
5617 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005618 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5619 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005620 if( closest<k-1 ){
5621 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5622 }
5623 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005624 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005625 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005626 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005627 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005628 if( rc!=SQLITE_OK ){
5629 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005630 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005631 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005632 }
5633 searchList = 0;
5634 }
drhee696e22004-08-30 16:52:17 +00005635 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005636 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005637 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005638 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005639 }else{
danbc1a3c62013-02-23 16:40:46 +00005640 /* There are no pages on the freelist, so append a new page to the
5641 ** database image.
5642 **
5643 ** Normally, new pages allocated by this block can be requested from the
5644 ** pager layer with the 'no-content' flag set. This prevents the pager
5645 ** from trying to read the pages content from disk. However, if the
5646 ** current transaction has already run one or more incremental-vacuum
5647 ** steps, then the page we are about to allocate may contain content
5648 ** that is required in the event of a rollback. In this case, do
5649 ** not set the no-content flag. This causes the pager to load and journal
5650 ** the current page content before overwriting it.
5651 **
5652 ** Note that the pager will not actually attempt to load or journal
5653 ** content for any page that really does lie past the end of the database
5654 ** file on disk. So the effects of disabling the no-content optimization
5655 ** here are confined to those pages that lie between the end of the
5656 ** database image and the end of the database file.
5657 */
drh3f387402014-09-24 01:23:00 +00005658 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005659
drhdd3cd972010-03-27 17:12:36 +00005660 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5661 if( rc ) return rc;
5662 pBt->nPage++;
5663 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005664
danielk1977afcdd022004-10-31 16:25:42 +00005665#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005666 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005667 /* If *pPgno refers to a pointer-map page, allocate two new pages
5668 ** at the end of the file instead of one. The first allocated page
5669 ** becomes a new pointer-map page, the second is used by the caller.
5670 */
danielk1977ac861692009-03-28 10:54:22 +00005671 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005672 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5673 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005674 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005675 if( rc==SQLITE_OK ){
5676 rc = sqlite3PagerWrite(pPg->pDbPage);
5677 releasePage(pPg);
5678 }
5679 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005680 pBt->nPage++;
5681 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005682 }
5683#endif
drhdd3cd972010-03-27 17:12:36 +00005684 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5685 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005686
danielk1977599fcba2004-11-08 07:13:13 +00005687 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005688 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005689 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005690 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005691 if( rc!=SQLITE_OK ){
5692 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005693 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005694 }
drh3a4c1412004-05-09 20:40:11 +00005695 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005696 }
danielk1977599fcba2004-11-08 07:13:13 +00005697
5698 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005699
5700end_allocate_page:
5701 releasePage(pTrunk);
5702 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005703 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5704 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005705 return rc;
5706}
5707
5708/*
danielk1977bea2a942009-01-20 17:06:27 +00005709** This function is used to add page iPage to the database file free-list.
5710** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005711**
danielk1977bea2a942009-01-20 17:06:27 +00005712** The value passed as the second argument to this function is optional.
5713** If the caller happens to have a pointer to the MemPage object
5714** corresponding to page iPage handy, it may pass it as the second value.
5715** Otherwise, it may pass NULL.
5716**
5717** If a pointer to a MemPage object is passed as the second argument,
5718** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005719*/
danielk1977bea2a942009-01-20 17:06:27 +00005720static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5721 MemPage *pTrunk = 0; /* Free-list trunk page */
5722 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5723 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5724 MemPage *pPage; /* Page being freed. May be NULL. */
5725 int rc; /* Return Code */
5726 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005727
danielk1977bea2a942009-01-20 17:06:27 +00005728 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005729 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005730 assert( !pMemPage || pMemPage->pgno==iPage );
5731
danfb0246b2015-05-26 12:18:17 +00005732 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005733 if( pMemPage ){
5734 pPage = pMemPage;
5735 sqlite3PagerRef(pPage->pDbPage);
5736 }else{
5737 pPage = btreePageLookup(pBt, iPage);
5738 }
drh3aac2dd2004-04-26 14:10:20 +00005739
drha34b6762004-05-07 13:30:42 +00005740 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005741 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005742 if( rc ) goto freepage_out;
5743 nFree = get4byte(&pPage1->aData[36]);
5744 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005745
drhc9166342012-01-05 23:32:06 +00005746 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005747 /* If the secure_delete option is enabled, then
5748 ** always fully overwrite deleted information with zeros.
5749 */
drhb00fc3b2013-08-21 23:42:32 +00005750 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005751 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005752 ){
5753 goto freepage_out;
5754 }
5755 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005756 }
drhfcce93f2006-02-22 03:08:32 +00005757
danielk1977687566d2004-11-02 12:56:41 +00005758 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005759 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005760 */
danielk197785d90ca2008-07-19 14:25:15 +00005761 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005762 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005763 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005764 }
danielk1977687566d2004-11-02 12:56:41 +00005765
danielk1977bea2a942009-01-20 17:06:27 +00005766 /* Now manipulate the actual database free-list structure. There are two
5767 ** possibilities. If the free-list is currently empty, or if the first
5768 ** trunk page in the free-list is full, then this page will become a
5769 ** new free-list trunk page. Otherwise, it will become a leaf of the
5770 ** first trunk page in the current free-list. This block tests if it
5771 ** is possible to add the page as a new free-list leaf.
5772 */
5773 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005774 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005775
5776 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005777 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005778 if( rc!=SQLITE_OK ){
5779 goto freepage_out;
5780 }
5781
5782 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005783 assert( pBt->usableSize>32 );
5784 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005785 rc = SQLITE_CORRUPT_BKPT;
5786 goto freepage_out;
5787 }
drheeb844a2009-08-08 18:01:07 +00005788 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005789 /* In this case there is room on the trunk page to insert the page
5790 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005791 **
5792 ** Note that the trunk page is not really full until it contains
5793 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5794 ** coded. But due to a coding error in versions of SQLite prior to
5795 ** 3.6.0, databases with freelist trunk pages holding more than
5796 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5797 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005798 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005799 ** for now. At some point in the future (once everyone has upgraded
5800 ** to 3.6.0 or later) we should consider fixing the conditional above
5801 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005802 **
5803 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5804 ** avoid using the last six entries in the freelist trunk page array in
5805 ** order that database files created by newer versions of SQLite can be
5806 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005807 */
danielk19773b8a05f2007-03-19 17:44:26 +00005808 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005809 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005810 put4byte(&pTrunk->aData[4], nLeaf+1);
5811 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005812 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005813 sqlite3PagerDontWrite(pPage->pDbPage);
5814 }
danielk1977bea2a942009-01-20 17:06:27 +00005815 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005816 }
drh3a4c1412004-05-09 20:40:11 +00005817 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005818 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005819 }
drh3b7511c2001-05-26 13:15:44 +00005820 }
danielk1977bea2a942009-01-20 17:06:27 +00005821
5822 /* If control flows to this point, then it was not possible to add the
5823 ** the page being freed as a leaf page of the first trunk in the free-list.
5824 ** Possibly because the free-list is empty, or possibly because the
5825 ** first trunk in the free-list is full. Either way, the page being freed
5826 ** will become the new first trunk page in the free-list.
5827 */
drhb00fc3b2013-08-21 23:42:32 +00005828 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005829 goto freepage_out;
5830 }
5831 rc = sqlite3PagerWrite(pPage->pDbPage);
5832 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005833 goto freepage_out;
5834 }
5835 put4byte(pPage->aData, iTrunk);
5836 put4byte(&pPage->aData[4], 0);
5837 put4byte(&pPage1->aData[32], iPage);
5838 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5839
5840freepage_out:
5841 if( pPage ){
5842 pPage->isInit = 0;
5843 }
5844 releasePage(pPage);
5845 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005846 return rc;
5847}
drhc314dc72009-07-21 11:52:34 +00005848static void freePage(MemPage *pPage, int *pRC){
5849 if( (*pRC)==SQLITE_OK ){
5850 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5851 }
danielk1977bea2a942009-01-20 17:06:27 +00005852}
drh3b7511c2001-05-26 13:15:44 +00005853
5854/*
drh9bfdc252014-09-24 02:05:41 +00005855** Free any overflow pages associated with the given Cell. Write the
5856** local Cell size (the number of bytes on the original page, omitting
5857** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005858*/
drh9bfdc252014-09-24 02:05:41 +00005859static int clearCell(
5860 MemPage *pPage, /* The page that contains the Cell */
5861 unsigned char *pCell, /* First byte of the Cell */
5862 u16 *pnSize /* Write the size of the Cell here */
5863){
danielk1977aef0bf62005-12-30 16:28:01 +00005864 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005865 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005866 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005867 int rc;
drh94440812007-03-06 11:42:19 +00005868 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005869 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005870
drh1fee73e2007-08-29 04:00:57 +00005871 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00005872 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005873 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005874 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005875 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005876 }
drhe42a9b42011-08-31 13:27:19 +00005877 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005878 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005879 }
drh6f11bef2004-05-13 01:12:56 +00005880 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005881 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005882 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005883 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00005884 assert( nOvfl>0 ||
5885 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
5886 );
drh72365832007-03-06 15:53:44 +00005887 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005888 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005889 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005890 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005891 /* 0 is not a legal page number and page 1 cannot be an
5892 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5893 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005894 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005895 }
danielk1977bea2a942009-01-20 17:06:27 +00005896 if( nOvfl ){
5897 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5898 if( rc ) return rc;
5899 }
dan887d4b22010-02-25 12:09:16 +00005900
shaneh1da207e2010-03-09 14:41:12 +00005901 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005902 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5903 ){
5904 /* There is no reason any cursor should have an outstanding reference
5905 ** to an overflow page belonging to a cell that is being deleted/updated.
5906 ** So if there exists more than one reference to this page, then it
5907 ** must not really be an overflow page and the database must be corrupt.
5908 ** It is helpful to detect this before calling freePage2(), as
5909 ** freePage2() may zero the page contents if secure-delete mode is
5910 ** enabled. If this 'overflow' page happens to be a page that the
5911 ** caller is iterating through or using in some other way, this
5912 ** can be problematic.
5913 */
5914 rc = SQLITE_CORRUPT_BKPT;
5915 }else{
5916 rc = freePage2(pBt, pOvfl, ovflPgno);
5917 }
5918
danielk1977bea2a942009-01-20 17:06:27 +00005919 if( pOvfl ){
5920 sqlite3PagerUnref(pOvfl->pDbPage);
5921 }
drh3b7511c2001-05-26 13:15:44 +00005922 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005923 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005924 }
drh5e2f8b92001-05-28 00:41:15 +00005925 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005926}
5927
5928/*
drh91025292004-05-03 19:49:32 +00005929** Create the byte sequence used to represent a cell on page pPage
5930** and write that byte sequence into pCell[]. Overflow pages are
5931** allocated and filled in as necessary. The calling procedure
5932** is responsible for making sure sufficient space has been allocated
5933** for pCell[].
5934**
5935** Note that pCell does not necessary need to point to the pPage->aData
5936** area. pCell might point to some temporary storage. The cell will
5937** be constructed in this temporary area then copied into pPage->aData
5938** later.
drh3b7511c2001-05-26 13:15:44 +00005939*/
5940static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005941 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005942 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005943 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005944 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005945 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005946 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005947){
drh3b7511c2001-05-26 13:15:44 +00005948 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005949 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005950 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005951 int spaceLeft;
5952 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005953 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005954 unsigned char *pPrior;
5955 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005956 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005957 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005958 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00005959
drh1fee73e2007-08-29 04:00:57 +00005960 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005961
drhc5053fb2008-11-27 02:22:10 +00005962 /* pPage is not necessarily writeable since pCell might be auxiliary
5963 ** buffer space that is separate from the pPage buffer area */
5964 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5965 || sqlite3PagerIswriteable(pPage->pDbPage) );
5966
drh91025292004-05-03 19:49:32 +00005967 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00005968 nHeader = pPage->childPtrSize;
5969 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00005970 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00005971 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00005972 }else{
drh6200c882014-09-23 22:36:25 +00005973 assert( nData==0 );
5974 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00005975 }
drh6f11bef2004-05-13 01:12:56 +00005976 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00005977
drh6200c882014-09-23 22:36:25 +00005978 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00005979 if( pPage->intKey ){
5980 pSrc = pData;
5981 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005982 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005983 }else{
danielk197731d31b82009-07-13 13:18:07 +00005984 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5985 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005986 }
drh6200c882014-09-23 22:36:25 +00005987 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005988 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005989 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005990 }
drh6200c882014-09-23 22:36:25 +00005991 if( nPayload<=pPage->maxLocal ){
5992 n = nHeader + nPayload;
5993 testcase( n==3 );
5994 testcase( n==4 );
5995 if( n<4 ) n = 4;
5996 *pnSize = n;
5997 spaceLeft = nPayload;
5998 pPrior = pCell;
5999 }else{
6000 int mn = pPage->minLocal;
6001 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6002 testcase( n==pPage->maxLocal );
6003 testcase( n==pPage->maxLocal+1 );
6004 if( n > pPage->maxLocal ) n = mn;
6005 spaceLeft = n;
6006 *pnSize = n + nHeader + 4;
6007 pPrior = &pCell[nHeader+n];
6008 }
drh3aac2dd2004-04-26 14:10:20 +00006009 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006010
drh6200c882014-09-23 22:36:25 +00006011 /* At this point variables should be set as follows:
6012 **
6013 ** nPayload Total payload size in bytes
6014 ** pPayload Begin writing payload here
6015 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6016 ** that means content must spill into overflow pages.
6017 ** *pnSize Size of the local cell (not counting overflow pages)
6018 ** pPrior Where to write the pgno of the first overflow page
6019 **
6020 ** Use a call to btreeParseCellPtr() to verify that the values above
6021 ** were computed correctly.
6022 */
6023#if SQLITE_DEBUG
6024 {
6025 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006026 pPage->xParseCell(pPage, pCell, &info);
drh6200c882014-09-23 22:36:25 +00006027 assert( nHeader=(int)(info.pPayload - pCell) );
6028 assert( info.nKey==nKey );
6029 assert( *pnSize == info.nSize );
6030 assert( spaceLeft == info.nLocal );
6031 assert( pPrior == &pCell[info.iOverflow] );
6032 }
6033#endif
6034
6035 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006036 while( nPayload>0 ){
6037 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006038#ifndef SQLITE_OMIT_AUTOVACUUM
6039 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006040 if( pBt->autoVacuum ){
6041 do{
6042 pgnoOvfl++;
6043 } while(
6044 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6045 );
danielk1977b39f70b2007-05-17 18:28:11 +00006046 }
danielk1977afcdd022004-10-31 16:25:42 +00006047#endif
drhf49661a2008-12-10 16:45:50 +00006048 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006049#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006050 /* If the database supports auto-vacuum, and the second or subsequent
6051 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006052 ** for that page now.
6053 **
6054 ** If this is the first overflow page, then write a partial entry
6055 ** to the pointer-map. If we write nothing to this pointer-map slot,
6056 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006057 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006058 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006059 */
danielk19774ef24492007-05-23 09:52:41 +00006060 if( pBt->autoVacuum && rc==SQLITE_OK ){
6061 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006062 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006063 if( rc ){
6064 releasePage(pOvfl);
6065 }
danielk1977afcdd022004-10-31 16:25:42 +00006066 }
6067#endif
drh3b7511c2001-05-26 13:15:44 +00006068 if( rc ){
drh9b171272004-05-08 02:03:22 +00006069 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006070 return rc;
6071 }
drhc5053fb2008-11-27 02:22:10 +00006072
6073 /* If pToRelease is not zero than pPrior points into the data area
6074 ** of pToRelease. Make sure pToRelease is still writeable. */
6075 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6076
6077 /* If pPrior is part of the data area of pPage, then make sure pPage
6078 ** is still writeable */
6079 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6080 || sqlite3PagerIswriteable(pPage->pDbPage) );
6081
drh3aac2dd2004-04-26 14:10:20 +00006082 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006083 releasePage(pToRelease);
6084 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006085 pPrior = pOvfl->aData;
6086 put4byte(pPrior, 0);
6087 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006088 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006089 }
6090 n = nPayload;
6091 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006092
6093 /* If pToRelease is not zero than pPayload points into the data area
6094 ** of pToRelease. Make sure pToRelease is still writeable. */
6095 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6096
6097 /* If pPayload is part of the data area of pPage, then make sure pPage
6098 ** is still writeable */
6099 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6100 || sqlite3PagerIswriteable(pPage->pDbPage) );
6101
drhb026e052007-05-02 01:34:31 +00006102 if( nSrc>0 ){
6103 if( n>nSrc ) n = nSrc;
6104 assert( pSrc );
6105 memcpy(pPayload, pSrc, n);
6106 }else{
6107 memset(pPayload, 0, n);
6108 }
drh3b7511c2001-05-26 13:15:44 +00006109 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006110 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006111 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006112 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006113 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00006114 if( nSrc==0 ){
6115 nSrc = nData;
6116 pSrc = pData;
6117 }
drhdd793422001-06-28 01:54:48 +00006118 }
drh9b171272004-05-08 02:03:22 +00006119 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006120 return SQLITE_OK;
6121}
6122
drh14acc042001-06-10 19:56:58 +00006123/*
6124** Remove the i-th cell from pPage. This routine effects pPage only.
6125** The cell content is not freed or deallocated. It is assumed that
6126** the cell content has been copied someplace else. This routine just
6127** removes the reference to the cell from pPage.
6128**
6129** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006130*/
drh98add2e2009-07-20 17:11:49 +00006131static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006132 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006133 u8 *data; /* pPage->aData */
6134 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006135 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006136 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006137
drh98add2e2009-07-20 17:11:49 +00006138 if( *pRC ) return;
6139
drh8c42ca92001-06-22 19:15:00 +00006140 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006141 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006142 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006143 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006144 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006145 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006146 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006147 hdr = pPage->hdrOffset;
6148 testcase( pc==get2byte(&data[hdr+5]) );
6149 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006150 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006151 *pRC = SQLITE_CORRUPT_BKPT;
6152 return;
shane0af3f892008-11-12 04:55:34 +00006153 }
shanedcc50b72008-11-13 18:29:50 +00006154 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006155 if( rc ){
6156 *pRC = rc;
6157 return;
shanedcc50b72008-11-13 18:29:50 +00006158 }
drh14acc042001-06-10 19:56:58 +00006159 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006160 if( pPage->nCell==0 ){
6161 memset(&data[hdr+1], 0, 4);
6162 data[hdr+7] = 0;
6163 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6164 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6165 - pPage->childPtrSize - 8;
6166 }else{
6167 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6168 put2byte(&data[hdr+3], pPage->nCell);
6169 pPage->nFree += 2;
6170 }
drh14acc042001-06-10 19:56:58 +00006171}
6172
6173/*
6174** Insert a new cell on pPage at cell index "i". pCell points to the
6175** content of the cell.
6176**
6177** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006178** will not fit, then make a copy of the cell content into pTemp if
6179** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006180** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006181** in pTemp or the original pCell) and also record its index.
6182** Allocating a new entry in pPage->aCell[] implies that
6183** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006184*/
drh98add2e2009-07-20 17:11:49 +00006185static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006186 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006187 int i, /* New cell becomes the i-th cell of the page */
6188 u8 *pCell, /* Content of the new cell */
6189 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006190 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006191 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6192 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006193){
drh383d30f2010-02-26 13:07:37 +00006194 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006195 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006196 int end; /* First byte past the last cell pointer in data[] */
6197 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00006198 int cellOffset; /* Address of first cell pointer in data[] */
6199 u8 *data; /* The content of the whole page */
danielk19774dbaa892009-06-16 16:50:22 +00006200
drh98add2e2009-07-20 17:11:49 +00006201 if( *pRC ) return;
6202
drh43605152004-05-29 21:46:49 +00006203 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006204 assert( MX_CELL(pPage->pBt)<=10921 );
6205 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006206 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6207 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006208 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006209 /* The cell should normally be sized correctly. However, when moving a
6210 ** malformed cell from a leaf page to an interior page, if the cell size
6211 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6212 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6213 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006214 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006215 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006216 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006217 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006218 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006219 }
danielk19774dbaa892009-06-16 16:50:22 +00006220 if( iChild ){
6221 put4byte(pCell, iChild);
6222 }
drh43605152004-05-29 21:46:49 +00006223 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006224 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6225 pPage->apOvfl[j] = pCell;
6226 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006227
6228 /* When multiple overflows occur, they are always sequential and in
6229 ** sorted order. This invariants arise because multiple overflows can
6230 ** only occur when inserting divider cells into the parent page during
6231 ** balancing, and the dividers are adjacent and sorted.
6232 */
6233 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6234 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006235 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006236 int rc = sqlite3PagerWrite(pPage->pDbPage);
6237 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006238 *pRC = rc;
6239 return;
danielk19776e465eb2007-08-21 13:11:00 +00006240 }
6241 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006242 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00006243 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00006244 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00006245 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00006246 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006247 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006248 /* The allocateSpace() routine guarantees the following properties
6249 ** if it returns successfully */
6250 assert( idx >= 0 && (idx >= end+2 || CORRUPT_DB) );
drhfcd71b62011-04-05 22:08:24 +00006251 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00006252 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00006253 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006254 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006255 if( iChild ){
6256 put4byte(&data[idx], iChild);
6257 }
drh8f518832013-12-09 02:32:19 +00006258 memmove(&data[ins+2], &data[ins], end-ins);
drh43605152004-05-29 21:46:49 +00006259 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00006260 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00006261#ifndef SQLITE_OMIT_AUTOVACUUM
6262 if( pPage->pBt->autoVacuum ){
6263 /* The cell may contain a pointer to an overflow page. If so, write
6264 ** the entry for the overflow page into the pointer map.
6265 */
drh98add2e2009-07-20 17:11:49 +00006266 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006267 }
6268#endif
drh14acc042001-06-10 19:56:58 +00006269 }
6270}
6271
6272/*
drh1ffd2472015-06-23 02:37:30 +00006273** A CellArray object contains a cache of pointers and sizes for a
6274** consecutive sequence of cells that might be held multiple pages.
6275*/
6276typedef struct CellArray CellArray;
6277struct CellArray {
6278 int nCell; /* Number of cells in apCell[] */
6279 MemPage *pRef; /* Reference page */
6280 u8 **apCell; /* All cells begin balanced */
6281 u16 *szCell; /* Local size of all cells in apCell[] */
6282};
6283
6284/*
6285** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6286** computed.
6287*/
6288static void populateCellCache(CellArray *p, int idx, int N){
6289 assert( idx>=0 && idx+N<=p->nCell );
6290 while( N>0 ){
6291 assert( p->apCell[idx]!=0 );
6292 if( p->szCell[idx]==0 ){
6293 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6294 }else{
6295 assert( CORRUPT_DB ||
6296 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6297 }
6298 idx++;
6299 N--;
6300 }
6301}
6302
6303/*
6304** Return the size of the Nth element of the cell array
6305*/
6306static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6307 assert( N>=0 && N<p->nCell );
6308 assert( p->szCell[N]==0 );
6309 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6310 return p->szCell[N];
6311}
6312static u16 cachedCellSize(CellArray *p, int N){
6313 assert( N>=0 && N<p->nCell );
6314 if( p->szCell[N] ) return p->szCell[N];
6315 return computeCellSize(p, N);
6316}
6317
6318/*
dan8e9ba0c2014-10-14 17:27:04 +00006319** Array apCell[] contains pointers to nCell b-tree page cells. The
6320** szCell[] array contains the size in bytes of each cell. This function
6321** replaces the current contents of page pPg with the contents of the cell
6322** array.
6323**
6324** Some of the cells in apCell[] may currently be stored in pPg. This
6325** function works around problems caused by this by making a copy of any
6326** such cells before overwriting the page data.
6327**
6328** The MemPage.nFree field is invalidated by this function. It is the
6329** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006330*/
drh658873b2015-06-22 20:02:04 +00006331static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006332 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006333 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006334 u8 **apCell, /* Array of cells */
6335 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006336){
6337 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6338 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6339 const int usableSize = pPg->pBt->usableSize;
6340 u8 * const pEnd = &aData[usableSize];
6341 int i;
6342 u8 *pCellptr = pPg->aCellIdx;
6343 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6344 u8 *pData;
6345
6346 i = get2byte(&aData[hdr+5]);
6347 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006348
dan8e9ba0c2014-10-14 17:27:04 +00006349 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006350 for(i=0; i<nCell; i++){
6351 u8 *pCell = apCell[i];
6352 if( pCell>aData && pCell<pEnd ){
6353 pCell = &pTmp[pCell - aData];
6354 }
6355 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006356 put2byte(pCellptr, (pData - aData));
6357 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006358 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6359 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006360 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6361 testcase( szCell[i]==pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006362 }
6363
dand7b545b2014-10-13 18:03:27 +00006364 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006365 pPg->nCell = nCell;
6366 pPg->nOverflow = 0;
6367
6368 put2byte(&aData[hdr+1], 0);
6369 put2byte(&aData[hdr+3], pPg->nCell);
6370 put2byte(&aData[hdr+5], pData - aData);
6371 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006372 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006373}
6374
dan8e9ba0c2014-10-14 17:27:04 +00006375/*
6376** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6377** contains the size in bytes of each such cell. This function attempts to
6378** add the cells stored in the array to page pPg. If it cannot (because
6379** the page needs to be defragmented before the cells will fit), non-zero
6380** is returned. Otherwise, if the cells are added successfully, zero is
6381** returned.
6382**
6383** Argument pCellptr points to the first entry in the cell-pointer array
6384** (part of page pPg) to populate. After cell apCell[0] is written to the
6385** page body, a 16-bit offset is written to pCellptr. And so on, for each
6386** cell in the array. It is the responsibility of the caller to ensure
6387** that it is safe to overwrite this part of the cell-pointer array.
6388**
6389** When this function is called, *ppData points to the start of the
6390** content area on page pPg. If the size of the content area is extended,
6391** *ppData is updated to point to the new start of the content area
6392** before returning.
6393**
6394** Finally, argument pBegin points to the byte immediately following the
6395** end of the space required by this page for the cell-pointer area (for
6396** all cells - not just those inserted by the current call). If the content
6397** area must be extended to before this point in order to accomodate all
6398** cells in apCell[], then the cells do not fit and non-zero is returned.
6399*/
dand7b545b2014-10-13 18:03:27 +00006400static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006401 MemPage *pPg, /* Page to add cells to */
6402 u8 *pBegin, /* End of cell-pointer array */
6403 u8 **ppData, /* IN/OUT: Page content -area pointer */
6404 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006405 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006406 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006407 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006408){
6409 int i;
6410 u8 *aData = pPg->aData;
6411 u8 *pData = *ppData;
dan8e9ba0c2014-10-14 17:27:04 +00006412 const int bFreelist = aData[1] || aData[2];
drhf7838932015-06-23 15:36:34 +00006413 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006414 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006415 for(i=iFirst; i<iEnd; i++){
6416 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006417 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006418 sz = cachedCellSize(pCArray, i);
drhba0f9992014-10-30 20:48:44 +00006419 if( bFreelist==0 || (pSlot = pageFindSlot(pPg, sz, &rc, 0))==0 ){
dand7b545b2014-10-13 18:03:27 +00006420 pData -= sz;
6421 if( pData<pBegin ) return 1;
6422 pSlot = pData;
6423 }
drhf7838932015-06-23 15:36:34 +00006424 memcpy(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006425 put2byte(pCellptr, (pSlot - aData));
6426 pCellptr += 2;
6427 }
6428 *ppData = pData;
6429 return 0;
6430}
6431
dan8e9ba0c2014-10-14 17:27:04 +00006432/*
6433** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6434** contains the size in bytes of each such cell. This function adds the
6435** space associated with each cell in the array that is currently stored
6436** within the body of pPg to the pPg free-list. The cell-pointers and other
6437** fields of the page are not updated.
6438**
6439** This function returns the total number of cells added to the free-list.
6440*/
dand7b545b2014-10-13 18:03:27 +00006441static int pageFreeArray(
6442 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006443 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006444 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006445 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006446){
6447 u8 * const aData = pPg->aData;
6448 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006449 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006450 int nRet = 0;
6451 int i;
drhf7838932015-06-23 15:36:34 +00006452 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006453 u8 *pFree = 0;
6454 int szFree = 0;
6455
drhf7838932015-06-23 15:36:34 +00006456 for(i=iFirst; i<iEnd; i++){
6457 u8 *pCell = pCArray->apCell[i];
dan89ca0b32014-10-25 20:36:28 +00006458 if( pCell>=pStart && pCell<pEnd ){
drhf7838932015-06-23 15:36:34 +00006459 int sz;
6460 /* No need to use cachedCellSize() here. The sizes of all cells that
6461 ** are to be freed have already been computing while deciding which
6462 ** cells need freeing */
6463 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006464 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006465 if( pFree ){
6466 assert( pFree>aData && (pFree - aData)<65536 );
6467 freeSpace(pPg, (u16)(pFree - aData), szFree);
6468 }
dand7b545b2014-10-13 18:03:27 +00006469 pFree = pCell;
6470 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006471 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006472 }else{
6473 pFree = pCell;
6474 szFree += sz;
6475 }
6476 nRet++;
6477 }
6478 }
drhfefa0942014-11-05 21:21:08 +00006479 if( pFree ){
6480 assert( pFree>aData && (pFree - aData)<65536 );
6481 freeSpace(pPg, (u16)(pFree - aData), szFree);
6482 }
dand7b545b2014-10-13 18:03:27 +00006483 return nRet;
6484}
6485
dand7b545b2014-10-13 18:03:27 +00006486/*
drh5ab63772014-11-27 03:46:04 +00006487** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6488** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6489** with apCell[iOld]. After balancing, this page should hold nNew cells
6490** starting at apCell[iNew].
6491**
6492** This routine makes the necessary adjustments to pPg so that it contains
6493** the correct cells after being balanced.
6494**
dand7b545b2014-10-13 18:03:27 +00006495** The pPg->nFree field is invalid when this function returns. It is the
6496** responsibility of the caller to set it correctly.
6497*/
drh658873b2015-06-22 20:02:04 +00006498static int editPage(
dan09c68402014-10-11 20:00:24 +00006499 MemPage *pPg, /* Edit this page */
6500 int iOld, /* Index of first cell currently on page */
6501 int iNew, /* Index of new first cell on page */
6502 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006503 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006504){
dand7b545b2014-10-13 18:03:27 +00006505 u8 * const aData = pPg->aData;
6506 const int hdr = pPg->hdrOffset;
6507 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6508 int nCell = pPg->nCell; /* Cells stored on pPg */
6509 u8 *pData;
6510 u8 *pCellptr;
6511 int i;
6512 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6513 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006514
6515#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006516 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6517 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006518#endif
6519
dand7b545b2014-10-13 18:03:27 +00006520 /* Remove cells from the start and end of the page */
6521 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006522 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006523 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6524 nCell -= nShift;
6525 }
6526 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006527 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006528 }
dan09c68402014-10-11 20:00:24 +00006529
drh5ab63772014-11-27 03:46:04 +00006530 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006531 if( pData<pBegin ) goto editpage_fail;
6532
6533 /* Add cells to the start of the page */
6534 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006535 int nAdd = MIN(nNew,iOld-iNew);
6536 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006537 pCellptr = pPg->aCellIdx;
6538 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6539 if( pageInsertArray(
6540 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006541 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006542 ) ) goto editpage_fail;
6543 nCell += nAdd;
6544 }
6545
6546 /* Add any overflow cells */
6547 for(i=0; i<pPg->nOverflow; i++){
6548 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6549 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006550 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006551 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6552 nCell++;
6553 if( pageInsertArray(
6554 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006555 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006556 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006557 }
dand7b545b2014-10-13 18:03:27 +00006558 }
dan09c68402014-10-11 20:00:24 +00006559
dand7b545b2014-10-13 18:03:27 +00006560 /* Append cells to the end of the page */
6561 pCellptr = &pPg->aCellIdx[nCell*2];
6562 if( pageInsertArray(
6563 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006564 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006565 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006566
dand7b545b2014-10-13 18:03:27 +00006567 pPg->nCell = nNew;
6568 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006569
dand7b545b2014-10-13 18:03:27 +00006570 put2byte(&aData[hdr+3], pPg->nCell);
6571 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006572
6573#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006574 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006575 u8 *pCell = pCArray->apCell[i+iNew];
dand7b545b2014-10-13 18:03:27 +00006576 int iOff = get2byte(&pPg->aCellIdx[i*2]);
6577 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6578 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006579 }
drh1ffd2472015-06-23 02:37:30 +00006580 assert( 0==memcmp(pCell, &aData[iOff],
6581 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006582 }
dan09c68402014-10-11 20:00:24 +00006583#endif
6584
drh658873b2015-06-22 20:02:04 +00006585 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006586 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006587 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006588 populateCellCache(pCArray, iNew, nNew);
6589 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
dan09c68402014-10-11 20:00:24 +00006590}
6591
drh14acc042001-06-10 19:56:58 +00006592/*
drhc3b70572003-01-04 19:44:07 +00006593** The following parameters determine how many adjacent pages get involved
6594** in a balancing operation. NN is the number of neighbors on either side
6595** of the page that participate in the balancing operation. NB is the
6596** total number of pages that participate, including the target page and
6597** NN neighbors on either side.
6598**
6599** The minimum value of NN is 1 (of course). Increasing NN above 1
6600** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6601** in exchange for a larger degradation in INSERT and UPDATE performance.
6602** The value of NN appears to give the best results overall.
6603*/
6604#define NN 1 /* Number of neighbors on either side of pPage */
6605#define NB (NN*2+1) /* Total pages involved in the balance */
6606
danielk1977ac245ec2005-01-14 13:50:11 +00006607
drh615ae552005-01-16 23:21:00 +00006608#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006609/*
6610** This version of balance() handles the common special case where
6611** a new entry is being inserted on the extreme right-end of the
6612** tree, in other words, when the new entry will become the largest
6613** entry in the tree.
6614**
drhc314dc72009-07-21 11:52:34 +00006615** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006616** a new page to the right-hand side and put the one new entry in
6617** that page. This leaves the right side of the tree somewhat
6618** unbalanced. But odds are that we will be inserting new entries
6619** at the end soon afterwards so the nearly empty page will quickly
6620** fill up. On average.
6621**
6622** pPage is the leaf page which is the right-most page in the tree.
6623** pParent is its parent. pPage must have a single overflow entry
6624** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006625**
6626** The pSpace buffer is used to store a temporary copy of the divider
6627** cell that will be inserted into pParent. Such a cell consists of a 4
6628** byte page number followed by a variable length integer. In other
6629** words, at most 13 bytes. Hence the pSpace buffer must be at
6630** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006631*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006632static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6633 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006634 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006635 int rc; /* Return Code */
6636 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006637
drh1fee73e2007-08-29 04:00:57 +00006638 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006639 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006640 assert( pPage->nOverflow==1 );
6641
drh5d433ce2010-08-14 16:02:52 +00006642 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006643 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006644
danielk1977a50d9aa2009-06-08 14:49:45 +00006645 /* Allocate a new page. This page will become the right-sibling of
6646 ** pPage. Make the parent page writable, so that the new divider cell
6647 ** may be inserted. If both these operations are successful, proceed.
6648 */
drh4f0c5872007-03-26 22:05:01 +00006649 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006650
danielk1977eaa06f62008-09-18 17:34:44 +00006651 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006652
6653 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006654 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006655 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006656 u8 *pStop;
6657
drhc5053fb2008-11-27 02:22:10 +00006658 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006659 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6660 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006661 rc = rebuildPage(pNew, 1, &pCell, &szCell);
6662 if( rc ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006663 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006664
6665 /* If this is an auto-vacuum database, update the pointer map
6666 ** with entries for the new page, and any pointer from the
6667 ** cell on the page to an overflow page. If either of these
6668 ** operations fails, the return code is set, but the contents
6669 ** of the parent page are still manipulated by thh code below.
6670 ** That is Ok, at this point the parent page is guaranteed to
6671 ** be marked as dirty. Returning an error code will cause a
6672 ** rollback, undoing any changes made to the parent page.
6673 */
6674 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006675 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6676 if( szCell>pNew->minLocal ){
6677 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006678 }
6679 }
danielk1977eaa06f62008-09-18 17:34:44 +00006680
danielk19776f235cc2009-06-04 14:46:08 +00006681 /* Create a divider cell to insert into pParent. The divider cell
6682 ** consists of a 4-byte page number (the page number of pPage) and
6683 ** a variable length key value (which must be the same value as the
6684 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006685 **
danielk19776f235cc2009-06-04 14:46:08 +00006686 ** To find the largest key value on pPage, first find the right-most
6687 ** cell on pPage. The first two fields of this cell are the
6688 ** record-length (a variable length integer at most 32-bits in size)
6689 ** and the key value (a variable length integer, may have any value).
6690 ** The first of the while(...) loops below skips over the record-length
6691 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006692 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006693 */
danielk1977eaa06f62008-09-18 17:34:44 +00006694 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006695 pStop = &pCell[9];
6696 while( (*(pCell++)&0x80) && pCell<pStop );
6697 pStop = &pCell[9];
6698 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6699
danielk19774dbaa892009-06-16 16:50:22 +00006700 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006701 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6702 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006703
6704 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006705 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6706
danielk1977e08a3c42008-09-18 18:17:03 +00006707 /* Release the reference to the new page. */
6708 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006709 }
6710
danielk1977eaa06f62008-09-18 17:34:44 +00006711 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006712}
drh615ae552005-01-16 23:21:00 +00006713#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006714
dane6593d82014-10-24 16:40:49 +00006715#if 0
drhc3b70572003-01-04 19:44:07 +00006716/*
danielk19774dbaa892009-06-16 16:50:22 +00006717** This function does not contribute anything to the operation of SQLite.
6718** it is sometimes activated temporarily while debugging code responsible
6719** for setting pointer-map entries.
6720*/
6721static int ptrmapCheckPages(MemPage **apPage, int nPage){
6722 int i, j;
6723 for(i=0; i<nPage; i++){
6724 Pgno n;
6725 u8 e;
6726 MemPage *pPage = apPage[i];
6727 BtShared *pBt = pPage->pBt;
6728 assert( pPage->isInit );
6729
6730 for(j=0; j<pPage->nCell; j++){
6731 CellInfo info;
6732 u8 *z;
6733
6734 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006735 pPage->xParseCell(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006736 if( info.iOverflow ){
6737 Pgno ovfl = get4byte(&z[info.iOverflow]);
6738 ptrmapGet(pBt, ovfl, &e, &n);
6739 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6740 }
6741 if( !pPage->leaf ){
6742 Pgno child = get4byte(z);
6743 ptrmapGet(pBt, child, &e, &n);
6744 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6745 }
6746 }
6747 if( !pPage->leaf ){
6748 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6749 ptrmapGet(pBt, child, &e, &n);
6750 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6751 }
6752 }
6753 return 1;
6754}
6755#endif
6756
danielk1977cd581a72009-06-23 15:43:39 +00006757/*
6758** This function is used to copy the contents of the b-tree node stored
6759** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6760** the pointer-map entries for each child page are updated so that the
6761** parent page stored in the pointer map is page pTo. If pFrom contained
6762** any cells with overflow page pointers, then the corresponding pointer
6763** map entries are also updated so that the parent page is page pTo.
6764**
6765** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006766** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006767**
danielk197730548662009-07-09 05:07:37 +00006768** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006769**
6770** The performance of this function is not critical. It is only used by
6771** the balance_shallower() and balance_deeper() procedures, neither of
6772** which are called often under normal circumstances.
6773*/
drhc314dc72009-07-21 11:52:34 +00006774static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6775 if( (*pRC)==SQLITE_OK ){
6776 BtShared * const pBt = pFrom->pBt;
6777 u8 * const aFrom = pFrom->aData;
6778 u8 * const aTo = pTo->aData;
6779 int const iFromHdr = pFrom->hdrOffset;
6780 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006781 int rc;
drhc314dc72009-07-21 11:52:34 +00006782 int iData;
6783
6784
6785 assert( pFrom->isInit );
6786 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006787 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006788
6789 /* Copy the b-tree node content from page pFrom to page pTo. */
6790 iData = get2byte(&aFrom[iFromHdr+5]);
6791 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6792 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6793
6794 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006795 ** match the new data. The initialization of pTo can actually fail under
6796 ** fairly obscure circumstances, even though it is a copy of initialized
6797 ** page pFrom.
6798 */
drhc314dc72009-07-21 11:52:34 +00006799 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006800 rc = btreeInitPage(pTo);
6801 if( rc!=SQLITE_OK ){
6802 *pRC = rc;
6803 return;
6804 }
drhc314dc72009-07-21 11:52:34 +00006805
6806 /* If this is an auto-vacuum database, update the pointer-map entries
6807 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6808 */
6809 if( ISAUTOVACUUM ){
6810 *pRC = setChildPtrmaps(pTo);
6811 }
danielk1977cd581a72009-06-23 15:43:39 +00006812 }
danielk1977cd581a72009-06-23 15:43:39 +00006813}
6814
6815/*
danielk19774dbaa892009-06-16 16:50:22 +00006816** This routine redistributes cells on the iParentIdx'th child of pParent
6817** (hereafter "the page") and up to 2 siblings so that all pages have about the
6818** same amount of free space. Usually a single sibling on either side of the
6819** page are used in the balancing, though both siblings might come from one
6820** side if the page is the first or last child of its parent. If the page
6821** has fewer than 2 siblings (something which can only happen if the page
6822** is a root page or a child of a root page) then all available siblings
6823** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006824**
danielk19774dbaa892009-06-16 16:50:22 +00006825** The number of siblings of the page might be increased or decreased by
6826** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006827**
danielk19774dbaa892009-06-16 16:50:22 +00006828** Note that when this routine is called, some of the cells on the page
6829** might not actually be stored in MemPage.aData[]. This can happen
6830** if the page is overfull. This routine ensures that all cells allocated
6831** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006832**
danielk19774dbaa892009-06-16 16:50:22 +00006833** In the course of balancing the page and its siblings, cells may be
6834** inserted into or removed from the parent page (pParent). Doing so
6835** may cause the parent page to become overfull or underfull. If this
6836** happens, it is the responsibility of the caller to invoke the correct
6837** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006838**
drh5e00f6c2001-09-13 13:46:56 +00006839** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006840** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006841** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006842**
6843** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006844** buffer big enough to hold one page. If while inserting cells into the parent
6845** page (pParent) the parent page becomes overfull, this buffer is
6846** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006847** a maximum of four divider cells into the parent page, and the maximum
6848** size of a cell stored within an internal node is always less than 1/4
6849** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6850** enough for all overflow cells.
6851**
6852** If aOvflSpace is set to a null pointer, this function returns
6853** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006854*/
mistachkine7c54162012-10-02 22:54:27 +00006855#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6856#pragma optimize("", off)
6857#endif
danielk19774dbaa892009-06-16 16:50:22 +00006858static int balance_nonroot(
6859 MemPage *pParent, /* Parent page of siblings being balanced */
6860 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006861 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006862 int isRoot, /* True if pParent is a root-page */
6863 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006864){
drh16a9b832007-05-05 18:39:25 +00006865 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006866 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006867 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006868 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006869 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006870 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006871 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006872 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006873 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006874 int usableSpace; /* Bytes in pPage beyond the header */
6875 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00006876 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006877 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006878 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006879 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00006880 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006881 u8 *pRight; /* Location in parent of right-sibling pointer */
6882 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00006883 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
6884 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00006885 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00006886 u8 *aSpace1; /* Space for copies of dividers cells */
6887 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00006888 u8 abDone[NB+2]; /* True after i'th new page is populated */
6889 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00006890 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00006891 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00006892 CellArray b; /* Parsed information on cells being balanced */
dan33ea4862014-10-09 19:35:37 +00006893
6894 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00006895 b.nCell = 0;
6896 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00006897 pBt = pParent->pBt;
6898 assert( sqlite3_mutex_held(pBt->mutex) );
6899 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006900
danielk1977e5765212009-06-17 11:13:28 +00006901#if 0
drh43605152004-05-29 21:46:49 +00006902 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006903#endif
drh2e38c322004-09-03 18:38:44 +00006904
danielk19774dbaa892009-06-16 16:50:22 +00006905 /* At this point pParent may have at most one overflow cell. And if
6906 ** this overflow cell is present, it must be the cell with
6907 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006908 ** is called (indirectly) from sqlite3BtreeDelete().
6909 */
danielk19774dbaa892009-06-16 16:50:22 +00006910 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006911 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006912
danielk197711a8a862009-06-17 11:49:52 +00006913 if( !aOvflSpace ){
6914 return SQLITE_NOMEM;
6915 }
6916
danielk1977a50d9aa2009-06-08 14:49:45 +00006917 /* Find the sibling pages to balance. Also locate the cells in pParent
6918 ** that divide the siblings. An attempt is made to find NN siblings on
6919 ** either side of pPage. More siblings are taken from one side, however,
6920 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006921 ** has NB or fewer children then all children of pParent are taken.
6922 **
6923 ** This loop also drops the divider cells from the parent page. This
6924 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006925 ** overflow cells in the parent page, since if any existed they will
6926 ** have already been removed.
6927 */
danielk19774dbaa892009-06-16 16:50:22 +00006928 i = pParent->nOverflow + pParent->nCell;
6929 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006930 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006931 }else{
dan7d6885a2012-08-08 14:04:56 +00006932 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006933 if( iParentIdx==0 ){
6934 nxDiv = 0;
6935 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006936 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006937 }else{
danielk19774dbaa892009-06-16 16:50:22 +00006938 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006939 }
dan7d6885a2012-08-08 14:04:56 +00006940 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006941 }
dan7d6885a2012-08-08 14:04:56 +00006942 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006943 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6944 pRight = &pParent->aData[pParent->hdrOffset+8];
6945 }else{
6946 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6947 }
6948 pgno = get4byte(pRight);
6949 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006950 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006951 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006952 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006953 goto balance_cleanup;
6954 }
danielk1977634f2982005-03-28 08:44:07 +00006955 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006956 if( (i--)==0 ) break;
6957
drh2cbd78b2012-02-02 19:37:18 +00006958 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6959 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006960 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00006961 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00006962 pParent->nOverflow = 0;
6963 }else{
6964 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6965 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00006966 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00006967
6968 /* Drop the cell from the parent page. apDiv[i] still points to
6969 ** the cell within the parent, even though it has been dropped.
6970 ** This is safe because dropping a cell only overwrites the first
6971 ** four bytes of it, and this function does not need the first
6972 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006973 ** later on.
6974 **
drh8a575d92011-10-12 17:00:28 +00006975 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006976 ** the dropCell() routine will overwrite the entire cell with zeroes.
6977 ** In this case, temporarily copy the cell into the aOvflSpace[]
6978 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6979 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006980 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006981 int iOff;
6982
6983 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006984 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006985 rc = SQLITE_CORRUPT_BKPT;
6986 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6987 goto balance_cleanup;
6988 }else{
6989 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6990 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6991 }
drh5b47efa2010-02-12 18:18:39 +00006992 }
drh98add2e2009-07-20 17:11:49 +00006993 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006994 }
drh8b2f49b2001-06-08 00:21:52 +00006995 }
6996
drha9121e42008-02-19 14:59:35 +00006997 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006998 ** alignment */
drha9121e42008-02-19 14:59:35 +00006999 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007000
drh8b2f49b2001-06-08 00:21:52 +00007001 /*
danielk1977634f2982005-03-28 08:44:07 +00007002 ** Allocate space for memory structures
7003 */
drhfacf0302008-06-17 15:12:00 +00007004 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007005 nMaxCells*sizeof(u8*) /* b.apCell */
7006 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007007 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007008
drhcbd55b02014-11-04 14:22:27 +00007009 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7010 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007011 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007012 b.apCell = sqlite3ScratchMalloc( szScratch );
7013 if( b.apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00007014 rc = SQLITE_NOMEM;
7015 goto balance_cleanup;
7016 }
drh1ffd2472015-06-23 02:37:30 +00007017 b.szCell = (u16*)&b.apCell[nMaxCells];
7018 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007019 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007020
7021 /*
7022 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007023 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007024 ** into space obtained from aSpace1[]. The divider cells have already
7025 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007026 **
7027 ** If the siblings are on leaf pages, then the child pointers of the
7028 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007029 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007030 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007031 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007032 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007033 **
7034 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7035 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007036 */
drh1ffd2472015-06-23 02:37:30 +00007037 b.pRef = apOld[0];
7038 leafCorrection = b.pRef->leaf*4;
7039 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007040 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007041 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007042 int limit = pOld->nCell;
7043 u8 *aData = pOld->aData;
7044 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007045 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007046 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007047
drh73d340a2015-05-28 11:23:11 +00007048 /* Verify that all sibling pages are of the same "type" (table-leaf,
7049 ** table-interior, index-leaf, or index-interior).
7050 */
7051 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7052 rc = SQLITE_CORRUPT_BKPT;
7053 goto balance_cleanup;
7054 }
7055
drhfe647dc2015-06-23 18:24:25 +00007056 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7057 ** constains overflow cells, include them in the b.apCell[] array
7058 ** in the correct spot.
7059 **
7060 ** Note that when there are multiple overflow cells, it is always the
7061 ** case that they are sequential and adjacent. This invariant arises
7062 ** because multiple overflows can only occurs when inserting divider
7063 ** cells into a parent on a prior balance, and divider cells are always
7064 ** adjacent and are inserted in order. There is an assert() tagged
7065 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7066 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007067 **
7068 ** This must be done in advance. Once the balance starts, the cell
7069 ** offset section of the btree page will be overwritten and we will no
7070 ** long be able to find the cells if a pointer to each cell is not saved
7071 ** first.
7072 */
drh1ffd2472015-06-23 02:37:30 +00007073 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
drh68f2a572011-06-03 17:50:49 +00007074 if( pOld->nOverflow>0 ){
drh4edfdd32015-06-23 14:49:42 +00007075 memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
drhfe647dc2015-06-23 18:24:25 +00007076 limit = pOld->aiOvfl[0];
7077 for(j=0; j<limit; j++){
7078 b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
7079 piCell += 2;
7080 b.nCell++;
7081 }
7082 for(k=0; k<pOld->nOverflow; k++){
7083 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007084 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007085 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007086 }
drhfe647dc2015-06-23 18:24:25 +00007087 limit = pOld->nCell - pOld->aiOvfl[0];
drh1ffd2472015-06-23 02:37:30 +00007088 }
drhfe647dc2015-06-23 18:24:25 +00007089 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7090 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007091 assert( b.nCell<nMaxCells );
drh4f4bf772015-06-23 17:09:53 +00007092 b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
7093 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007094 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007095 }
7096
drh1ffd2472015-06-23 02:37:30 +00007097 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007098 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007099 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007100 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007101 assert( b.nCell<nMaxCells );
7102 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007103 pTemp = &aSpace1[iSpace1];
7104 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007105 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007106 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007107 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007108 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007109 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007110 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007111 if( !pOld->leaf ){
7112 assert( leafCorrection==0 );
7113 assert( pOld->hdrOffset==0 );
7114 /* The right pointer of the child page pOld becomes the left
7115 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007116 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007117 }else{
7118 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007119 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007120 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7121 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007122 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7123 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007124 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007125 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007126 }
7127 }
drh1ffd2472015-06-23 02:37:30 +00007128 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007129 }
drh8b2f49b2001-06-08 00:21:52 +00007130 }
7131
7132 /*
drh1ffd2472015-06-23 02:37:30 +00007133 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007134 ** Store this number in "k". Also compute szNew[] which is the total
7135 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007136 ** in b.apCell[] of the cell that divides page i from page i+1.
7137 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007138 **
drh96f5b762004-05-16 16:24:36 +00007139 ** Values computed by this block:
7140 **
7141 ** k: The total number of sibling pages
7142 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007143 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007144 ** the right of the i-th sibling page.
7145 ** usableSpace: Number of bytes of space available on each sibling.
7146 **
drh8b2f49b2001-06-08 00:21:52 +00007147 */
drh43605152004-05-29 21:46:49 +00007148 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007149 for(i=0; i<nOld; i++){
7150 MemPage *p = apOld[i];
7151 szNew[i] = usableSpace - p->nFree;
7152 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7153 for(j=0; j<p->nOverflow; j++){
7154 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7155 }
7156 cntNew[i] = cntOld[i];
7157 }
7158 k = nOld;
7159 for(i=0; i<k; i++){
7160 int sz;
7161 while( szNew[i]>usableSpace ){
7162 if( i+1>=k ){
7163 k = i+2;
7164 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7165 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007166 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007167 }
drh1ffd2472015-06-23 02:37:30 +00007168 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007169 szNew[i] -= sz;
7170 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007171 if( cntNew[i]<b.nCell ){
7172 sz = 2 + cachedCellSize(&b, cntNew[i]);
7173 }else{
7174 sz = 0;
7175 }
drh658873b2015-06-22 20:02:04 +00007176 }
7177 szNew[i+1] += sz;
7178 cntNew[i]--;
7179 }
drh1ffd2472015-06-23 02:37:30 +00007180 while( cntNew[i]<b.nCell ){
7181 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007182 if( szNew[i]+sz>usableSpace ) break;
7183 szNew[i] += sz;
7184 cntNew[i]++;
7185 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007186 if( cntNew[i]<b.nCell ){
7187 sz = 2 + cachedCellSize(&b, cntNew[i]);
7188 }else{
7189 sz = 0;
7190 }
drh658873b2015-06-22 20:02:04 +00007191 }
7192 szNew[i+1] -= sz;
7193 }
drh1ffd2472015-06-23 02:37:30 +00007194 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007195 k = i+1;
7196 }else if( cntNew[i] - (i>0 ? cntNew[i-1] : 0) <= 0 ){
7197 rc = SQLITE_CORRUPT_BKPT;
7198 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007199 }
7200 }
drh96f5b762004-05-16 16:24:36 +00007201
7202 /*
7203 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007204 ** on the left side (siblings with smaller keys). The left siblings are
7205 ** always nearly full, while the right-most sibling might be nearly empty.
7206 ** The next block of code attempts to adjust the packing of siblings to
7207 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007208 **
7209 ** This adjustment is more than an optimization. The packing above might
7210 ** be so out of balance as to be illegal. For example, the right-most
7211 ** sibling might be completely empty. This adjustment is not optional.
7212 */
drh6019e162001-07-02 17:51:45 +00007213 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007214 int szRight = szNew[i]; /* Size of sibling on the right */
7215 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7216 int r; /* Index of right-most cell in left sibling */
7217 int d; /* Index of first cell to the left of right sibling */
7218
drh008d64c2015-06-23 16:00:24 +00007219 r = cntNew[i-1] - 1;
7220 d = r + 1 - leafData;
7221 (void)cachedCellSize(&b, d);
drh1ffd2472015-06-23 02:37:30 +00007222 while(1){
drh1ffd2472015-06-23 02:37:30 +00007223 assert( d<nMaxCells );
7224 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007225 (void)cachedCellSize(&b, r);
7226 if( szRight!=0
7227 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7228 break;
7229 }
7230 szRight += b.szCell[d] + 2;
7231 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007232 cntNew[i-1] = r;
drh658873b2015-06-22 20:02:04 +00007233 if( cntNew[i-1] <= 0 ){
7234 rc = SQLITE_CORRUPT_BKPT;
7235 goto balance_cleanup;
7236 }
drh008d64c2015-06-23 16:00:24 +00007237 r--;
7238 d--;
drh6019e162001-07-02 17:51:45 +00007239 }
drh96f5b762004-05-16 16:24:36 +00007240 szNew[i] = szRight;
7241 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00007242 }
drh09d0deb2005-08-02 17:13:09 +00007243
drh2a0df922014-10-30 23:14:56 +00007244 /* Sanity check: For a non-corrupt database file one of the follwing
7245 ** must be true:
7246 ** (1) We found one or more cells (cntNew[0])>0), or
7247 ** (2) pPage is a virtual root page. A virtual root page is when
7248 ** the real root page is page 1 and we are the only child of
7249 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007250 */
drh2a0df922014-10-30 23:14:56 +00007251 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007252 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7253 apOld[0]->pgno, apOld[0]->nCell,
7254 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7255 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007256 ));
7257
drh8b2f49b2001-06-08 00:21:52 +00007258 /*
drh6b308672002-07-08 02:16:37 +00007259 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007260 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007261 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007262 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007263 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007264 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007265 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007266 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007267 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007268 nNew++;
danielk197728129562005-01-11 10:25:06 +00007269 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007270 }else{
drh7aa8f852006-03-28 00:24:44 +00007271 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007272 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007273 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007274 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007275 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007276 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007277 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007278
7279 /* Set the pointer-map entry for the new sibling page. */
7280 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007281 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007282 if( rc!=SQLITE_OK ){
7283 goto balance_cleanup;
7284 }
7285 }
drh6b308672002-07-08 02:16:37 +00007286 }
drh8b2f49b2001-06-08 00:21:52 +00007287 }
7288
7289 /*
dan33ea4862014-10-09 19:35:37 +00007290 ** Reassign page numbers so that the new pages are in ascending order.
7291 ** This helps to keep entries in the disk file in order so that a scan
7292 ** of the table is closer to a linear scan through the file. That in turn
7293 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007294 **
dan33ea4862014-10-09 19:35:37 +00007295 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7296 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007297 **
dan33ea4862014-10-09 19:35:37 +00007298 ** When NB==3, this one optimization makes the database about 25% faster
7299 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007300 */
dan33ea4862014-10-09 19:35:37 +00007301 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007302 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007303 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007304 for(j=0; j<i; j++){
7305 if( aPgno[j]==aPgno[i] ){
7306 /* This branch is taken if the set of sibling pages somehow contains
7307 ** duplicate entries. This can happen if the database is corrupt.
7308 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007309 ** we do the detection here in order to avoid populating the pager
7310 ** cache with two separate objects associated with the same
7311 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007312 assert( CORRUPT_DB );
7313 rc = SQLITE_CORRUPT_BKPT;
7314 goto balance_cleanup;
7315 }
7316 }
dan33ea4862014-10-09 19:35:37 +00007317 }
7318 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007319 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007320 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007321 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007322 }
drh00fe08a2014-10-31 00:05:23 +00007323 pgno = aPgOrder[iBest];
7324 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007325 if( iBest!=i ){
7326 if( iBest>i ){
7327 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7328 }
7329 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7330 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007331 }
7332 }
dan33ea4862014-10-09 19:35:37 +00007333
7334 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7335 "%d(%d nc=%d) %d(%d nc=%d)\n",
7336 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007337 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007338 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007339 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007340 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007341 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007342 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7343 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7344 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7345 ));
danielk19774dbaa892009-06-16 16:50:22 +00007346
7347 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7348 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007349
dan33ea4862014-10-09 19:35:37 +00007350 /* If the sibling pages are not leaves, ensure that the right-child pointer
7351 ** of the right-most new sibling page is set to the value that was
7352 ** originally in the same field of the right-most old sibling page. */
7353 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7354 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7355 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7356 }
danielk1977ac11ee62005-01-15 12:45:51 +00007357
dan33ea4862014-10-09 19:35:37 +00007358 /* Make any required updates to pointer map entries associated with
7359 ** cells stored on sibling pages following the balance operation. Pointer
7360 ** map entries associated with divider cells are set by the insertCell()
7361 ** routine. The associated pointer map entries are:
7362 **
7363 ** a) if the cell contains a reference to an overflow chain, the
7364 ** entry associated with the first page in the overflow chain, and
7365 **
7366 ** b) if the sibling pages are not leaves, the child page associated
7367 ** with the cell.
7368 **
7369 ** If the sibling pages are not leaves, then the pointer map entry
7370 ** associated with the right-child of each sibling may also need to be
7371 ** updated. This happens below, after the sibling pages have been
7372 ** populated, not here.
7373 */
7374 if( ISAUTOVACUUM ){
7375 MemPage *pNew = apNew[0];
7376 u8 *aOld = pNew->aData;
7377 int cntOldNext = pNew->nCell + pNew->nOverflow;
7378 int usableSize = pBt->usableSize;
7379 int iNew = 0;
7380 int iOld = 0;
danielk1977634f2982005-03-28 08:44:07 +00007381
drh1ffd2472015-06-23 02:37:30 +00007382 for(i=0; i<b.nCell; i++){
7383 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007384 if( i==cntOldNext ){
7385 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7386 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7387 aOld = pOld->aData;
7388 }
7389 if( i==cntNew[iNew] ){
7390 pNew = apNew[++iNew];
7391 if( !leafData ) continue;
7392 }
7393
7394 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007395 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007396 ** or else the divider cell to the left of sibling page iOld. So,
7397 ** if sibling page iOld had the same page number as pNew, and if
7398 ** pCell really was a part of sibling page iOld (not a divider or
7399 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007400 if( iOld>=nNew
7401 || pNew->pgno!=aPgno[iOld]
7402 || pCell<aOld
7403 || pCell>=&aOld[usableSize]
7404 ){
dan33ea4862014-10-09 19:35:37 +00007405 if( !leafCorrection ){
7406 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
drh658873b2015-06-22 20:02:04 +00007407 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007408 }
drh1ffd2472015-06-23 02:37:30 +00007409 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007410 ptrmapPutOvflPtr(pNew, pCell, &rc);
drh658873b2015-06-22 20:02:04 +00007411 if( rc ) goto balance_cleanup;
danielk19774aeff622007-05-12 09:30:47 +00007412 }
drh4b70f112004-05-02 21:12:19 +00007413 }
drh14acc042001-06-10 19:56:58 +00007414 }
7415 }
dan33ea4862014-10-09 19:35:37 +00007416
7417 /* Insert new divider cells into pParent. */
7418 for(i=0; i<nNew-1; i++){
7419 u8 *pCell;
7420 u8 *pTemp;
7421 int sz;
7422 MemPage *pNew = apNew[i];
7423 j = cntNew[i];
7424
7425 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007426 assert( b.apCell[j]!=0 );
7427 pCell = b.apCell[j];
7428 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007429 pTemp = &aOvflSpace[iOvflSpace];
7430 if( !pNew->leaf ){
7431 memcpy(&pNew->aData[8], pCell, 4);
7432 }else if( leafData ){
7433 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007434 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007435 ** cell consists of the integer key for the right-most cell of
7436 ** the sibling-page assembled above only.
7437 */
7438 CellInfo info;
7439 j--;
drh1ffd2472015-06-23 02:37:30 +00007440 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007441 pCell = pTemp;
7442 sz = 4 + putVarint(&pCell[4], info.nKey);
7443 pTemp = 0;
7444 }else{
7445 pCell -= 4;
7446 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7447 ** previously stored on a leaf node, and its reported size was 4
7448 ** bytes, then it may actually be smaller than this
7449 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7450 ** any cell). But it is important to pass the correct size to
7451 ** insertCell(), so reparse the cell now.
7452 **
7453 ** Note that this can never happen in an SQLite data file, as all
7454 ** cells are at least 4 bytes. It only happens in b-trees used
7455 ** to evaluate "IN (SELECT ...)" and similar clauses.
7456 */
drh1ffd2472015-06-23 02:37:30 +00007457 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007458 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007459 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007460 }
7461 }
7462 iOvflSpace += sz;
7463 assert( sz<=pBt->maxLocal+23 );
7464 assert( iOvflSpace <= (int)pBt->pageSize );
7465 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7466 if( rc!=SQLITE_OK ) goto balance_cleanup;
7467 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7468 }
7469
7470 /* Now update the actual sibling pages. The order in which they are updated
7471 ** is important, as this code needs to avoid disrupting any page from which
7472 ** cells may still to be read. In practice, this means:
7473 **
drhd836d422014-10-31 14:26:36 +00007474 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7475 ** then it is not safe to update page apNew[iPg] until after
7476 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007477 **
drhd836d422014-10-31 14:26:36 +00007478 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7479 ** then it is not safe to update page apNew[iPg] until after
7480 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007481 **
7482 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007483 **
7484 ** The iPg value in the following loop starts at nNew-1 goes down
7485 ** to 0, then back up to nNew-1 again, thus making two passes over
7486 ** the pages. On the initial downward pass, only condition (1) above
7487 ** needs to be tested because (2) will always be true from the previous
7488 ** step. On the upward pass, both conditions are always true, so the
7489 ** upwards pass simply processes pages that were missed on the downward
7490 ** pass.
dan33ea4862014-10-09 19:35:37 +00007491 */
drhbec021b2014-10-31 12:22:00 +00007492 for(i=1-nNew; i<nNew; i++){
7493 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007494 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007495 if( abDone[iPg] ) continue; /* Skip pages already processed */
7496 if( i>=0 /* On the upwards pass, or... */
7497 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007498 ){
dan09c68402014-10-11 20:00:24 +00007499 int iNew;
7500 int iOld;
7501 int nNewCell;
7502
drhd836d422014-10-31 14:26:36 +00007503 /* Verify condition (1): If cells are moving left, update iPg
7504 ** only after iPg-1 has already been updated. */
7505 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7506
7507 /* Verify condition (2): If cells are moving right, update iPg
7508 ** only after iPg+1 has already been updated. */
7509 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7510
dan09c68402014-10-11 20:00:24 +00007511 if( iPg==0 ){
7512 iNew = iOld = 0;
7513 nNewCell = cntNew[0];
7514 }else{
drh1ffd2472015-06-23 02:37:30 +00007515 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007516 iNew = cntNew[iPg-1] + !leafData;
7517 nNewCell = cntNew[iPg] - iNew;
7518 }
7519
drh1ffd2472015-06-23 02:37:30 +00007520 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007521 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007522 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007523 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007524 assert( apNew[iPg]->nOverflow==0 );
7525 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007526 }
7527 }
drhd836d422014-10-31 14:26:36 +00007528
7529 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007530 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7531
drh7aa8f852006-03-28 00:24:44 +00007532 assert( nOld>0 );
7533 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007534
danielk197713bd99f2009-06-24 05:40:34 +00007535 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7536 /* The root page of the b-tree now contains no cells. The only sibling
7537 ** page is the right-child of the parent. Copy the contents of the
7538 ** child page into the parent, decreasing the overall height of the
7539 ** b-tree structure by one. This is described as the "balance-shallower"
7540 ** sub-algorithm in some documentation.
7541 **
7542 ** If this is an auto-vacuum database, the call to copyNodeContent()
7543 ** sets all pointer-map entries corresponding to database image pages
7544 ** for which the pointer is stored within the content being copied.
7545 **
drh768f2902014-10-31 02:51:41 +00007546 ** It is critical that the child page be defragmented before being
7547 ** copied into the parent, because if the parent is page 1 then it will
7548 ** by smaller than the child due to the database header, and so all the
7549 ** free space needs to be up front.
7550 */
danielk197713bd99f2009-06-24 05:40:34 +00007551 assert( nNew==1 );
dan89ca0b32014-10-25 20:36:28 +00007552 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007553 testcase( rc!=SQLITE_OK );
7554 assert( apNew[0]->nFree ==
7555 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7556 || rc!=SQLITE_OK
7557 );
7558 copyNodeContent(apNew[0], pParent, &rc);
7559 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007560 }else if( ISAUTOVACUUM && !leafCorrection ){
7561 /* Fix the pointer map entries associated with the right-child of each
7562 ** sibling page. All other pointer map entries have already been taken
7563 ** care of. */
7564 for(i=0; i<nNew; i++){
7565 u32 key = get4byte(&apNew[i]->aData[8]);
7566 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007567 }
dan33ea4862014-10-09 19:35:37 +00007568 }
danielk19774dbaa892009-06-16 16:50:22 +00007569
dan33ea4862014-10-09 19:35:37 +00007570 assert( pParent->isInit );
7571 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007572 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007573
dan33ea4862014-10-09 19:35:37 +00007574 /* Free any old pages that were not reused as new pages.
7575 */
7576 for(i=nNew; i<nOld; i++){
7577 freePage(apOld[i], &rc);
7578 }
7579
dane6593d82014-10-24 16:40:49 +00007580#if 0
dan33ea4862014-10-09 19:35:37 +00007581 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007582 /* The ptrmapCheckPages() contains assert() statements that verify that
7583 ** all pointer map pages are set correctly. This is helpful while
7584 ** debugging. This is usually disabled because a corrupt database may
7585 ** cause an assert() statement to fail. */
7586 ptrmapCheckPages(apNew, nNew);
7587 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007588 }
dan33ea4862014-10-09 19:35:37 +00007589#endif
danielk1977cd581a72009-06-23 15:43:39 +00007590
drh8b2f49b2001-06-08 00:21:52 +00007591 /*
drh14acc042001-06-10 19:56:58 +00007592 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007593 */
drh14acc042001-06-10 19:56:58 +00007594balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007595 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007596 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007597 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007598 }
drh14acc042001-06-10 19:56:58 +00007599 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007600 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007601 }
danielk1977eaa06f62008-09-18 17:34:44 +00007602
drh8b2f49b2001-06-08 00:21:52 +00007603 return rc;
7604}
mistachkine7c54162012-10-02 22:54:27 +00007605#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
7606#pragma optimize("", on)
7607#endif
drh8b2f49b2001-06-08 00:21:52 +00007608
drh43605152004-05-29 21:46:49 +00007609
7610/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007611** This function is called when the root page of a b-tree structure is
7612** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007613**
danielk1977a50d9aa2009-06-08 14:49:45 +00007614** A new child page is allocated and the contents of the current root
7615** page, including overflow cells, are copied into the child. The root
7616** page is then overwritten to make it an empty page with the right-child
7617** pointer pointing to the new page.
7618**
7619** Before returning, all pointer-map entries corresponding to pages
7620** that the new child-page now contains pointers to are updated. The
7621** entry corresponding to the new right-child pointer of the root
7622** page is also updated.
7623**
7624** If successful, *ppChild is set to contain a reference to the child
7625** page and SQLITE_OK is returned. In this case the caller is required
7626** to call releasePage() on *ppChild exactly once. If an error occurs,
7627** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007628*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007629static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7630 int rc; /* Return value from subprocedures */
7631 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007632 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007633 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007634
danielk1977a50d9aa2009-06-08 14:49:45 +00007635 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007636 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007637
danielk1977a50d9aa2009-06-08 14:49:45 +00007638 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7639 ** page that will become the new right-child of pPage. Copy the contents
7640 ** of the node stored on pRoot into the new child page.
7641 */
drh98add2e2009-07-20 17:11:49 +00007642 rc = sqlite3PagerWrite(pRoot->pDbPage);
7643 if( rc==SQLITE_OK ){
7644 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007645 copyNodeContent(pRoot, pChild, &rc);
7646 if( ISAUTOVACUUM ){
7647 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007648 }
7649 }
7650 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007651 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007652 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007653 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007654 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007655 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7656 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7657 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007658
danielk1977a50d9aa2009-06-08 14:49:45 +00007659 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7660
7661 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007662 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7663 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7664 memcpy(pChild->apOvfl, pRoot->apOvfl,
7665 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007666 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007667
7668 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7669 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7670 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7671
7672 *ppChild = pChild;
7673 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007674}
7675
7676/*
danielk197771d5d2c2008-09-29 11:49:47 +00007677** The page that pCur currently points to has just been modified in
7678** some way. This function figures out if this modification means the
7679** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007680** routine. Balancing routines are:
7681**
7682** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007683** balance_deeper()
7684** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007685*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007686static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007687 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007688 const int nMin = pCur->pBt->usableSize * 2 / 3;
7689 u8 aBalanceQuickSpace[13];
7690 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007691
shane75ac1de2009-06-09 18:58:52 +00007692 TESTONLY( int balance_quick_called = 0 );
7693 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007694
7695 do {
7696 int iPage = pCur->iPage;
7697 MemPage *pPage = pCur->apPage[iPage];
7698
7699 if( iPage==0 ){
7700 if( pPage->nOverflow ){
7701 /* The root page of the b-tree is overfull. In this case call the
7702 ** balance_deeper() function to create a new child for the root-page
7703 ** and copy the current contents of the root-page to it. The
7704 ** next iteration of the do-loop will balance the child page.
7705 */
7706 assert( (balance_deeper_called++)==0 );
7707 rc = balance_deeper(pPage, &pCur->apPage[1]);
7708 if( rc==SQLITE_OK ){
7709 pCur->iPage = 1;
7710 pCur->aiIdx[0] = 0;
7711 pCur->aiIdx[1] = 0;
7712 assert( pCur->apPage[1]->nOverflow );
7713 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007714 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007715 break;
7716 }
7717 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7718 break;
7719 }else{
7720 MemPage * const pParent = pCur->apPage[iPage-1];
7721 int const iIdx = pCur->aiIdx[iPage-1];
7722
7723 rc = sqlite3PagerWrite(pParent->pDbPage);
7724 if( rc==SQLITE_OK ){
7725#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007726 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007727 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007728 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007729 && pParent->pgno!=1
7730 && pParent->nCell==iIdx
7731 ){
7732 /* Call balance_quick() to create a new sibling of pPage on which
7733 ** to store the overflow cell. balance_quick() inserts a new cell
7734 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007735 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007736 ** use either balance_nonroot() or balance_deeper(). Until this
7737 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7738 ** buffer.
7739 **
7740 ** The purpose of the following assert() is to check that only a
7741 ** single call to balance_quick() is made for each call to this
7742 ** function. If this were not verified, a subtle bug involving reuse
7743 ** of the aBalanceQuickSpace[] might sneak in.
7744 */
7745 assert( (balance_quick_called++)==0 );
7746 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7747 }else
7748#endif
7749 {
7750 /* In this case, call balance_nonroot() to redistribute cells
7751 ** between pPage and up to 2 of its sibling pages. This involves
7752 ** modifying the contents of pParent, which may cause pParent to
7753 ** become overfull or underfull. The next iteration of the do-loop
7754 ** will balance the parent page to correct this.
7755 **
7756 ** If the parent page becomes overfull, the overflow cell or cells
7757 ** are stored in the pSpace buffer allocated immediately below.
7758 ** A subsequent iteration of the do-loop will deal with this by
7759 ** calling balance_nonroot() (balance_deeper() may be called first,
7760 ** but it doesn't deal with overflow cells - just moves them to a
7761 ** different page). Once this subsequent call to balance_nonroot()
7762 ** has completed, it is safe to release the pSpace buffer used by
7763 ** the previous call, as the overflow cell data will have been
7764 ** copied either into the body of a database page or into the new
7765 ** pSpace buffer passed to the latter call to balance_nonroot().
7766 */
7767 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007768 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7769 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007770 if( pFree ){
7771 /* If pFree is not NULL, it points to the pSpace buffer used
7772 ** by a previous call to balance_nonroot(). Its contents are
7773 ** now stored either on real database pages or within the
7774 ** new pSpace buffer, so it may be safely freed here. */
7775 sqlite3PageFree(pFree);
7776 }
7777
danielk19774dbaa892009-06-16 16:50:22 +00007778 /* The pSpace buffer will be freed after the next call to
7779 ** balance_nonroot(), or just before this function returns, whichever
7780 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007781 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007782 }
7783 }
7784
7785 pPage->nOverflow = 0;
7786
7787 /* The next iteration of the do-loop balances the parent page. */
7788 releasePage(pPage);
7789 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007790 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007791 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007792 }while( rc==SQLITE_OK );
7793
7794 if( pFree ){
7795 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007796 }
7797 return rc;
7798}
7799
drhf74b8d92002-09-01 23:20:45 +00007800
7801/*
drh3b7511c2001-05-26 13:15:44 +00007802** Insert a new record into the BTree. The key is given by (pKey,nKey)
7803** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007804** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007805** is left pointing at a random location.
7806**
7807** For an INTKEY table, only the nKey value of the key is used. pKey is
7808** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007809**
7810** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007811** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007812** been performed. seekResult is the search result returned (a negative
7813** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007814** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007815** (pKey, nKey)).
7816**
drh3e9ca092009-09-08 01:14:48 +00007817** If the seekResult parameter is non-zero, then the caller guarantees that
7818** cursor pCur is pointing at the existing copy of a row that is to be
7819** overwritten. If the seekResult parameter is 0, then cursor pCur may
7820** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007821** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007822*/
drh3aac2dd2004-04-26 14:10:20 +00007823int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007824 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007825 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007826 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007827 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007828 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007829 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007830){
drh3b7511c2001-05-26 13:15:44 +00007831 int rc;
drh3e9ca092009-09-08 01:14:48 +00007832 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007833 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007834 int idx;
drh3b7511c2001-05-26 13:15:44 +00007835 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007836 Btree *p = pCur->pBtree;
7837 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007838 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007839 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007840
drh98add2e2009-07-20 17:11:49 +00007841 if( pCur->eState==CURSOR_FAULT ){
7842 assert( pCur->skipNext!=SQLITE_OK );
7843 return pCur->skipNext;
7844 }
7845
drh1fee73e2007-08-29 04:00:57 +00007846 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007847 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7848 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007849 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007850 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7851
danielk197731d31b82009-07-13 13:18:07 +00007852 /* Assert that the caller has been consistent. If this cursor was opened
7853 ** expecting an index b-tree, then the caller should be inserting blob
7854 ** keys with no associated data. If the cursor was opened expecting an
7855 ** intkey table, the caller should be inserting integer keys with a
7856 ** blob of associated data. */
7857 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7858
danielk19779c3acf32009-05-02 07:36:49 +00007859 /* Save the positions of any other cursors open on this table.
7860 **
danielk19773509a652009-07-06 18:56:13 +00007861 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007862 ** example, when inserting data into a table with auto-generated integer
7863 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7864 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007865 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007866 ** that the cursor is already where it needs to be and returns without
7867 ** doing any work. To avoid thwarting these optimizations, it is important
7868 ** not to clear the cursor here.
7869 */
drh4c301aa2009-07-15 17:25:45 +00007870 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7871 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007872
drhd60f4f42012-03-23 14:23:52 +00007873 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00007874 /* If this is an insert into a table b-tree, invalidate any incrblob
7875 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007876 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007877
7878 /* If the cursor is currently on the last row and we are appending a
7879 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7880 ** call */
drh3f387402014-09-24 01:23:00 +00007881 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7882 && pCur->info.nKey==nKey-1 ){
drhe0670b62014-02-12 21:31:12 +00007883 loc = -1;
7884 }
drhd60f4f42012-03-23 14:23:52 +00007885 }
7886
drh4c301aa2009-07-15 17:25:45 +00007887 if( !loc ){
7888 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7889 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007890 }
danielk1977b980d2212009-06-22 18:03:51 +00007891 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007892
danielk197771d5d2c2008-09-29 11:49:47 +00007893 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007894 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007895 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007896
drh3a4c1412004-05-09 20:40:11 +00007897 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7898 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7899 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007900 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007901 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007902 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00007903 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007904 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00007905 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007906 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007907 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007908 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007909 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007910 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007911 rc = sqlite3PagerWrite(pPage->pDbPage);
7912 if( rc ){
7913 goto end_insert;
7914 }
danielk197771d5d2c2008-09-29 11:49:47 +00007915 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007916 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007917 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007918 }
drh9bfdc252014-09-24 02:05:41 +00007919 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00007920 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007921 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007922 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007923 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007924 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007925 }else{
drh4b70f112004-05-02 21:12:19 +00007926 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007927 }
drh98add2e2009-07-20 17:11:49 +00007928 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007929 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007930
mistachkin48864df2013-03-21 21:20:32 +00007931 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007932 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007933 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007934 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007935 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007936 ** Previous versions of SQLite called moveToRoot() to move the cursor
7937 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007938 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7939 ** set the cursor state to "invalid". This makes common insert operations
7940 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007941 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007942 ** There is a subtle but important optimization here too. When inserting
7943 ** multiple records into an intkey b-tree using a single cursor (as can
7944 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7945 ** is advantageous to leave the cursor pointing to the last entry in
7946 ** the b-tree if possible. If the cursor is left pointing to the last
7947 ** entry in the table, and the next row inserted has an integer key
7948 ** larger than the largest existing key, it is possible to insert the
7949 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007950 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007951 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007952 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00007953 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00007954 rc = balance(pCur);
7955
7956 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007957 ** fails. Internal data structure corruption will result otherwise.
7958 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7959 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007960 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007961 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007962 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007963 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007964
drh2e38c322004-09-03 18:38:44 +00007965end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007966 return rc;
7967}
7968
7969/*
drh4b70f112004-05-02 21:12:19 +00007970** Delete the entry that the cursor is pointing to. The cursor
peter.d.reid60ec9142014-09-06 16:39:46 +00007971** is left pointing at an arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007972*/
drh3aac2dd2004-04-26 14:10:20 +00007973int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007974 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007975 BtShared *pBt = p->pBt;
7976 int rc; /* Return code */
7977 MemPage *pPage; /* Page to delete cell from */
7978 unsigned char *pCell; /* Pointer to cell to delete */
7979 int iCellIdx; /* Index of cell to delete */
7980 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00007981 u16 szCell; /* Size of the cell being deleted */
drh8b2f49b2001-06-08 00:21:52 +00007982
drh1fee73e2007-08-29 04:00:57 +00007983 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007984 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007985 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00007986 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00007987 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7988 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7989
danielk19774dbaa892009-06-16 16:50:22 +00007990 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7991 || NEVER(pCur->eState!=CURSOR_VALID)
7992 ){
7993 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007994 }
danielk1977da184232006-01-05 11:34:32 +00007995
danielk19774dbaa892009-06-16 16:50:22 +00007996 iCellDepth = pCur->iPage;
7997 iCellIdx = pCur->aiIdx[iCellDepth];
7998 pPage = pCur->apPage[iCellDepth];
7999 pCell = findCell(pPage, iCellIdx);
8000
8001 /* If the page containing the entry to delete is not a leaf page, move
8002 ** the cursor to the largest entry in the tree that is smaller than
8003 ** the entry being deleted. This cell will replace the cell being deleted
8004 ** from the internal node. The 'previous' entry is used for this instead
8005 ** of the 'next' entry, as the previous entry is always a part of the
8006 ** sub-tree headed by the child page of the cell being deleted. This makes
8007 ** balancing the tree following the delete operation easier. */
8008 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008009 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008010 rc = sqlite3BtreePrevious(pCur, &notUsed);
8011 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008012 }
8013
8014 /* Save the positions of any other cursors open on this table before
8015 ** making any modifications. Make the page containing the entry to be
8016 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00008017 ** entry and finally remove the cell itself from within the page.
8018 */
8019 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8020 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008021
8022 /* If this is a delete operation to remove a row from a table b-tree,
8023 ** invalidate any incrblob cursors open on the row being deleted. */
8024 if( pCur->pKeyInfo==0 ){
8025 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8026 }
8027
drha4ec1d42009-07-11 13:13:11 +00008028 rc = sqlite3PagerWrite(pPage->pDbPage);
8029 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008030 rc = clearCell(pPage, pCell, &szCell);
8031 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008032 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008033
danielk19774dbaa892009-06-16 16:50:22 +00008034 /* If the cell deleted was not located on a leaf page, then the cursor
8035 ** is currently pointing to the largest entry in the sub-tree headed
8036 ** by the child-page of the cell that was just deleted from an internal
8037 ** node. The cell from the leaf node needs to be moved to the internal
8038 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008039 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008040 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8041 int nCell;
8042 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8043 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008044
danielk19774dbaa892009-06-16 16:50:22 +00008045 pCell = findCell(pLeaf, pLeaf->nCell-1);
danc3e8ef12015-05-25 20:04:15 +00008046 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008047 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008048 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008049 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008050 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008051 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00008052 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8053 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008054 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008055 }
danielk19774dbaa892009-06-16 16:50:22 +00008056
8057 /* Balance the tree. If the entry deleted was located on a leaf page,
8058 ** then the cursor still points to that page. In this case the first
8059 ** call to balance() repairs the tree, and the if(...) condition is
8060 ** never true.
8061 **
8062 ** Otherwise, if the entry deleted was on an internal node page, then
8063 ** pCur is pointing to the leaf page from which a cell was removed to
8064 ** replace the cell deleted from the internal node. This is slightly
8065 ** tricky as the leaf node may be underfull, and the internal node may
8066 ** be either under or overfull. In this case run the balancing algorithm
8067 ** on the leaf node first. If the balance proceeds far enough up the
8068 ** tree that we can be sure that any problem in the internal node has
8069 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8070 ** walk the cursor up the tree to the internal node and balance it as
8071 ** well. */
8072 rc = balance(pCur);
8073 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8074 while( pCur->iPage>iCellDepth ){
8075 releasePage(pCur->apPage[pCur->iPage--]);
8076 }
8077 rc = balance(pCur);
8078 }
8079
danielk19776b456a22005-03-21 04:04:02 +00008080 if( rc==SQLITE_OK ){
8081 moveToRoot(pCur);
8082 }
drh5e2f8b92001-05-28 00:41:15 +00008083 return rc;
drh3b7511c2001-05-26 13:15:44 +00008084}
drh8b2f49b2001-06-08 00:21:52 +00008085
8086/*
drhc6b52df2002-01-04 03:09:29 +00008087** Create a new BTree table. Write into *piTable the page
8088** number for the root page of the new table.
8089**
drhab01f612004-05-22 02:55:23 +00008090** The type of type is determined by the flags parameter. Only the
8091** following values of flags are currently in use. Other values for
8092** flags might not work:
8093**
8094** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8095** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008096*/
drhd4187c72010-08-30 22:15:45 +00008097static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008098 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008099 MemPage *pRoot;
8100 Pgno pgnoRoot;
8101 int rc;
drhd4187c72010-08-30 22:15:45 +00008102 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008103
drh1fee73e2007-08-29 04:00:57 +00008104 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008105 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008106 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008107
danielk1977003ba062004-11-04 02:57:33 +00008108#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008109 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008110 if( rc ){
8111 return rc;
8112 }
danielk1977003ba062004-11-04 02:57:33 +00008113#else
danielk1977687566d2004-11-02 12:56:41 +00008114 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008115 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8116 MemPage *pPageMove; /* The page to move to. */
8117
danielk197720713f32007-05-03 11:43:33 +00008118 /* Creating a new table may probably require moving an existing database
8119 ** to make room for the new tables root page. In case this page turns
8120 ** out to be an overflow page, delete all overflow page-map caches
8121 ** held by open cursors.
8122 */
danielk197792d4d7a2007-05-04 12:05:56 +00008123 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008124
danielk1977003ba062004-11-04 02:57:33 +00008125 /* Read the value of meta[3] from the database to determine where the
8126 ** root page of the new table should go. meta[3] is the largest root-page
8127 ** created so far, so the new root-page is (meta[3]+1).
8128 */
danielk1977602b4662009-07-02 07:47:33 +00008129 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008130 pgnoRoot++;
8131
danielk1977599fcba2004-11-08 07:13:13 +00008132 /* The new root-page may not be allocated on a pointer-map page, or the
8133 ** PENDING_BYTE page.
8134 */
drh72190432008-01-31 14:54:43 +00008135 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008136 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008137 pgnoRoot++;
8138 }
drh499e15b2015-05-22 12:37:37 +00008139 assert( pgnoRoot>=3 || CORRUPT_DB );
8140 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008141
8142 /* Allocate a page. The page that currently resides at pgnoRoot will
8143 ** be moved to the allocated page (unless the allocated page happens
8144 ** to reside at pgnoRoot).
8145 */
dan51f0b6d2013-02-22 20:16:34 +00008146 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008147 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008148 return rc;
8149 }
danielk1977003ba062004-11-04 02:57:33 +00008150
8151 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008152 /* pgnoRoot is the page that will be used for the root-page of
8153 ** the new table (assuming an error did not occur). But we were
8154 ** allocated pgnoMove. If required (i.e. if it was not allocated
8155 ** by extending the file), the current page at position pgnoMove
8156 ** is already journaled.
8157 */
drheeb844a2009-08-08 18:01:07 +00008158 u8 eType = 0;
8159 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008160
danf7679ad2013-04-03 11:38:36 +00008161 /* Save the positions of any open cursors. This is required in
8162 ** case they are holding a reference to an xFetch reference
8163 ** corresponding to page pgnoRoot. */
8164 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008165 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008166 if( rc!=SQLITE_OK ){
8167 return rc;
8168 }
danielk1977f35843b2007-04-07 15:03:17 +00008169
8170 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008171 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008172 if( rc!=SQLITE_OK ){
8173 return rc;
8174 }
8175 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008176 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8177 rc = SQLITE_CORRUPT_BKPT;
8178 }
8179 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008180 releasePage(pRoot);
8181 return rc;
8182 }
drhccae6022005-02-26 17:31:26 +00008183 assert( eType!=PTRMAP_ROOTPAGE );
8184 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008185 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008186 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008187
8188 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008189 if( rc!=SQLITE_OK ){
8190 return rc;
8191 }
drhb00fc3b2013-08-21 23:42:32 +00008192 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008193 if( rc!=SQLITE_OK ){
8194 return rc;
8195 }
danielk19773b8a05f2007-03-19 17:44:26 +00008196 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008197 if( rc!=SQLITE_OK ){
8198 releasePage(pRoot);
8199 return rc;
8200 }
8201 }else{
8202 pRoot = pPageMove;
8203 }
8204
danielk197742741be2005-01-08 12:42:39 +00008205 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008206 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008207 if( rc ){
8208 releasePage(pRoot);
8209 return rc;
8210 }
drhbf592832010-03-30 15:51:12 +00008211
8212 /* When the new root page was allocated, page 1 was made writable in
8213 ** order either to increase the database filesize, or to decrement the
8214 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8215 */
8216 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008217 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008218 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008219 releasePage(pRoot);
8220 return rc;
8221 }
danielk197742741be2005-01-08 12:42:39 +00008222
danielk1977003ba062004-11-04 02:57:33 +00008223 }else{
drh4f0c5872007-03-26 22:05:01 +00008224 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008225 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008226 }
8227#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008228 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008229 if( createTabFlags & BTREE_INTKEY ){
8230 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8231 }else{
8232 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8233 }
8234 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008235 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008236 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008237 *piTable = (int)pgnoRoot;
8238 return SQLITE_OK;
8239}
drhd677b3d2007-08-20 22:48:41 +00008240int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8241 int rc;
8242 sqlite3BtreeEnter(p);
8243 rc = btreeCreateTable(p, piTable, flags);
8244 sqlite3BtreeLeave(p);
8245 return rc;
8246}
drh8b2f49b2001-06-08 00:21:52 +00008247
8248/*
8249** Erase the given database page and all its children. Return
8250** the page to the freelist.
8251*/
drh4b70f112004-05-02 21:12:19 +00008252static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008253 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008254 Pgno pgno, /* Page number to clear */
8255 int freePageFlag, /* Deallocate page if true */
8256 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008257){
danielk1977146ba992009-07-22 14:08:13 +00008258 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008259 int rc;
drh4b70f112004-05-02 21:12:19 +00008260 unsigned char *pCell;
8261 int i;
dan8ce71842014-01-14 20:14:09 +00008262 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008263 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008264
drh1fee73e2007-08-29 04:00:57 +00008265 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008266 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008267 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008268 }
dan11dcd112013-03-15 18:29:18 +00008269 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00008270 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008271 if( pPage->bBusy ){
8272 rc = SQLITE_CORRUPT_BKPT;
8273 goto cleardatabasepage_out;
8274 }
8275 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008276 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008277 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008278 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +00008279 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008280 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008281 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008282 }
drh9bfdc252014-09-24 02:05:41 +00008283 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008284 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008285 }
drhccf46d02015-04-01 13:21:33 +00008286 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008287 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008288 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008289 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008290 assert( pPage->intKey || CORRUPT_DB );
8291 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008292 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008293 }
8294 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008295 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008296 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008297 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008298 }
danielk19776b456a22005-03-21 04:04:02 +00008299
8300cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008301 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008302 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008303 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008304}
8305
8306/*
drhab01f612004-05-22 02:55:23 +00008307** Delete all information from a single table in the database. iTable is
8308** the page number of the root of the table. After this routine returns,
8309** the root page is empty, but still exists.
8310**
8311** This routine will fail with SQLITE_LOCKED if there are any open
8312** read cursors on the table. Open write cursors are moved to the
8313** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008314**
8315** If pnChange is not NULL, then table iTable must be an intkey table. The
8316** integer value pointed to by pnChange is incremented by the number of
8317** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008318*/
danielk1977c7af4842008-10-27 13:59:33 +00008319int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008320 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008321 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008322 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008323 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008324
drhc046e3e2009-07-15 11:26:44 +00008325 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008326
drhc046e3e2009-07-15 11:26:44 +00008327 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008328 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8329 ** is the root of a table b-tree - if it is not, the following call is
8330 ** a no-op). */
8331 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008332 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008333 }
drhd677b3d2007-08-20 22:48:41 +00008334 sqlite3BtreeLeave(p);
8335 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008336}
8337
8338/*
drh079a3072014-03-19 14:10:55 +00008339** Delete all information from the single table that pCur is open on.
8340**
8341** This routine only work for pCur on an ephemeral table.
8342*/
8343int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8344 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8345}
8346
8347/*
drh8b2f49b2001-06-08 00:21:52 +00008348** Erase all information in a table and add the root of the table to
8349** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008350** page 1) is never added to the freelist.
8351**
8352** This routine will fail with SQLITE_LOCKED if there are any open
8353** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008354**
8355** If AUTOVACUUM is enabled and the page at iTable is not the last
8356** root page in the database file, then the last root page
8357** in the database file is moved into the slot formerly occupied by
8358** iTable and that last slot formerly occupied by the last root page
8359** is added to the freelist instead of iTable. In this say, all
8360** root pages are kept at the beginning of the database file, which
8361** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8362** page number that used to be the last root page in the file before
8363** the move. If no page gets moved, *piMoved is set to 0.
8364** The last root page is recorded in meta[3] and the value of
8365** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008366*/
danielk197789d40042008-11-17 14:20:56 +00008367static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008368 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008369 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008370 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008371
drh1fee73e2007-08-29 04:00:57 +00008372 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008373 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008374
danielk1977e6efa742004-11-10 11:55:10 +00008375 /* It is illegal to drop a table if any cursors are open on the
8376 ** database. This is because in auto-vacuum mode the backend may
8377 ** need to move another root-page to fill a gap left by the deleted
8378 ** root page. If an open cursor was using this page a problem would
8379 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008380 **
8381 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008382 */
drhc046e3e2009-07-15 11:26:44 +00008383 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008384 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8385 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008386 }
danielk1977a0bf2652004-11-04 14:30:04 +00008387
drhb00fc3b2013-08-21 23:42:32 +00008388 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008389 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008390 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008391 if( rc ){
8392 releasePage(pPage);
8393 return rc;
8394 }
danielk1977a0bf2652004-11-04 14:30:04 +00008395
drh205f48e2004-11-05 00:43:11 +00008396 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008397
drh4b70f112004-05-02 21:12:19 +00008398 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008399#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008400 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008401 releasePage(pPage);
8402#else
8403 if( pBt->autoVacuum ){
8404 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008405 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008406
8407 if( iTable==maxRootPgno ){
8408 /* If the table being dropped is the table with the largest root-page
8409 ** number in the database, put the root page on the free list.
8410 */
drhc314dc72009-07-21 11:52:34 +00008411 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008412 releasePage(pPage);
8413 if( rc!=SQLITE_OK ){
8414 return rc;
8415 }
8416 }else{
8417 /* The table being dropped does not have the largest root-page
8418 ** number in the database. So move the page that does into the
8419 ** gap left by the deleted root-page.
8420 */
8421 MemPage *pMove;
8422 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008423 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008424 if( rc!=SQLITE_OK ){
8425 return rc;
8426 }
danielk19774c999992008-07-16 18:17:55 +00008427 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008428 releasePage(pMove);
8429 if( rc!=SQLITE_OK ){
8430 return rc;
8431 }
drhfe3313f2009-07-21 19:02:20 +00008432 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008433 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008434 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008435 releasePage(pMove);
8436 if( rc!=SQLITE_OK ){
8437 return rc;
8438 }
8439 *piMoved = maxRootPgno;
8440 }
8441
danielk1977599fcba2004-11-08 07:13:13 +00008442 /* Set the new 'max-root-page' value in the database header. This
8443 ** is the old value less one, less one more if that happens to
8444 ** be a root-page number, less one again if that is the
8445 ** PENDING_BYTE_PAGE.
8446 */
danielk197787a6e732004-11-05 12:58:25 +00008447 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008448 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8449 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008450 maxRootPgno--;
8451 }
danielk1977599fcba2004-11-08 07:13:13 +00008452 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8453
danielk1977aef0bf62005-12-30 16:28:01 +00008454 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008455 }else{
drhc314dc72009-07-21 11:52:34 +00008456 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008457 releasePage(pPage);
8458 }
8459#endif
drh2aa679f2001-06-25 02:11:07 +00008460 }else{
drhc046e3e2009-07-15 11:26:44 +00008461 /* If sqlite3BtreeDropTable was called on page 1.
8462 ** This really never should happen except in a corrupt
8463 ** database.
8464 */
drha34b6762004-05-07 13:30:42 +00008465 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008466 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008467 }
drh8b2f49b2001-06-08 00:21:52 +00008468 return rc;
8469}
drhd677b3d2007-08-20 22:48:41 +00008470int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8471 int rc;
8472 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008473 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008474 sqlite3BtreeLeave(p);
8475 return rc;
8476}
drh8b2f49b2001-06-08 00:21:52 +00008477
drh001bbcb2003-03-19 03:14:00 +00008478
drh8b2f49b2001-06-08 00:21:52 +00008479/*
danielk1977602b4662009-07-02 07:47:33 +00008480** This function may only be called if the b-tree connection already
8481** has a read or write transaction open on the database.
8482**
drh23e11ca2004-05-04 17:27:28 +00008483** Read the meta-information out of a database file. Meta[0]
8484** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008485** through meta[15] are available for use by higher layers. Meta[0]
8486** is read-only, the others are read/write.
8487**
8488** The schema layer numbers meta values differently. At the schema
8489** layer (and the SetCookie and ReadCookie opcodes) the number of
8490** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008491**
8492** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8493** of reading the value out of the header, it instead loads the "DataVersion"
8494** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8495** database file. It is a number computed by the pager. But its access
8496** pattern is the same as header meta values, and so it is convenient to
8497** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008498*/
danielk1977602b4662009-07-02 07:47:33 +00008499void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008500 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008501
drhd677b3d2007-08-20 22:48:41 +00008502 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008503 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008504 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008505 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008506 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008507
drh91618562014-12-19 19:28:02 +00008508 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008509 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008510 }else{
8511 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8512 }
drhae157872004-08-14 19:20:09 +00008513
danielk1977602b4662009-07-02 07:47:33 +00008514 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8515 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008516#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008517 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8518 pBt->btsFlags |= BTS_READ_ONLY;
8519 }
danielk1977003ba062004-11-04 02:57:33 +00008520#endif
drhae157872004-08-14 19:20:09 +00008521
drhd677b3d2007-08-20 22:48:41 +00008522 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008523}
8524
8525/*
drh23e11ca2004-05-04 17:27:28 +00008526** Write meta-information back into the database. Meta[0] is
8527** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008528*/
danielk1977aef0bf62005-12-30 16:28:01 +00008529int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8530 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008531 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008532 int rc;
drh23e11ca2004-05-04 17:27:28 +00008533 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008534 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008535 assert( p->inTrans==TRANS_WRITE );
8536 assert( pBt->pPage1!=0 );
8537 pP1 = pBt->pPage1->aData;
8538 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8539 if( rc==SQLITE_OK ){
8540 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008541#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008542 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008543 assert( pBt->autoVacuum || iMeta==0 );
8544 assert( iMeta==0 || iMeta==1 );
8545 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008546 }
drh64022502009-01-09 14:11:04 +00008547#endif
drh5df72a52002-06-06 23:16:05 +00008548 }
drhd677b3d2007-08-20 22:48:41 +00008549 sqlite3BtreeLeave(p);
8550 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008551}
drh8c42ca92001-06-22 19:15:00 +00008552
danielk1977a5533162009-02-24 10:01:51 +00008553#ifndef SQLITE_OMIT_BTREECOUNT
8554/*
8555** The first argument, pCur, is a cursor opened on some b-tree. Count the
8556** number of entries in the b-tree and write the result to *pnEntry.
8557**
8558** SQLITE_OK is returned if the operation is successfully executed.
8559** Otherwise, if an error is encountered (i.e. an IO error or database
8560** corruption) an SQLite error code is returned.
8561*/
8562int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8563 i64 nEntry = 0; /* Value to return in *pnEntry */
8564 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008565
8566 if( pCur->pgnoRoot==0 ){
8567 *pnEntry = 0;
8568 return SQLITE_OK;
8569 }
danielk1977a5533162009-02-24 10:01:51 +00008570 rc = moveToRoot(pCur);
8571
8572 /* Unless an error occurs, the following loop runs one iteration for each
8573 ** page in the B-Tree structure (not including overflow pages).
8574 */
8575 while( rc==SQLITE_OK ){
8576 int iIdx; /* Index of child node in parent */
8577 MemPage *pPage; /* Current page of the b-tree */
8578
8579 /* If this is a leaf page or the tree is not an int-key tree, then
8580 ** this page contains countable entries. Increment the entry counter
8581 ** accordingly.
8582 */
8583 pPage = pCur->apPage[pCur->iPage];
8584 if( pPage->leaf || !pPage->intKey ){
8585 nEntry += pPage->nCell;
8586 }
8587
8588 /* pPage is a leaf node. This loop navigates the cursor so that it
8589 ** points to the first interior cell that it points to the parent of
8590 ** the next page in the tree that has not yet been visited. The
8591 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8592 ** of the page, or to the number of cells in the page if the next page
8593 ** to visit is the right-child of its parent.
8594 **
8595 ** If all pages in the tree have been visited, return SQLITE_OK to the
8596 ** caller.
8597 */
8598 if( pPage->leaf ){
8599 do {
8600 if( pCur->iPage==0 ){
8601 /* All pages of the b-tree have been visited. Return successfully. */
8602 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008603 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008604 }
danielk197730548662009-07-09 05:07:37 +00008605 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008606 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8607
8608 pCur->aiIdx[pCur->iPage]++;
8609 pPage = pCur->apPage[pCur->iPage];
8610 }
8611
8612 /* Descend to the child node of the cell that the cursor currently
8613 ** points at. This is the right-child if (iIdx==pPage->nCell).
8614 */
8615 iIdx = pCur->aiIdx[pCur->iPage];
8616 if( iIdx==pPage->nCell ){
8617 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8618 }else{
8619 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8620 }
8621 }
8622
shanebe217792009-03-05 04:20:31 +00008623 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008624 return rc;
8625}
8626#endif
drhdd793422001-06-28 01:54:48 +00008627
drhdd793422001-06-28 01:54:48 +00008628/*
drh5eddca62001-06-30 21:53:53 +00008629** Return the pager associated with a BTree. This routine is used for
8630** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008631*/
danielk1977aef0bf62005-12-30 16:28:01 +00008632Pager *sqlite3BtreePager(Btree *p){
8633 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008634}
drh5eddca62001-06-30 21:53:53 +00008635
drhb7f91642004-10-31 02:22:47 +00008636#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008637/*
8638** Append a message to the error message string.
8639*/
drh2e38c322004-09-03 18:38:44 +00008640static void checkAppendMsg(
8641 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008642 const char *zFormat,
8643 ...
8644){
8645 va_list ap;
drh867db832014-09-26 02:41:05 +00008646 char zBuf[200];
drh1dcdbc02007-01-27 02:24:54 +00008647 if( !pCheck->mxErr ) return;
8648 pCheck->mxErr--;
8649 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008650 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008651 if( pCheck->errMsg.nChar ){
8652 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008653 }
drh867db832014-09-26 02:41:05 +00008654 if( pCheck->zPfx ){
8655 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
8656 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
drhf089aa42008-07-08 19:34:06 +00008657 }
8658 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8659 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008660 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008661 pCheck->mallocFailed = 1;
8662 }
drh5eddca62001-06-30 21:53:53 +00008663}
drhb7f91642004-10-31 02:22:47 +00008664#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008665
drhb7f91642004-10-31 02:22:47 +00008666#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008667
8668/*
8669** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8670** corresponds to page iPg is already set.
8671*/
8672static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8673 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8674 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8675}
8676
8677/*
8678** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8679*/
8680static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8681 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8682 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8683}
8684
8685
drh5eddca62001-06-30 21:53:53 +00008686/*
8687** Add 1 to the reference count for page iPage. If this is the second
8688** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008689** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008690** if this is the first reference to the page.
8691**
8692** Also check that the page number is in bounds.
8693*/
drh867db832014-09-26 02:41:05 +00008694static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008695 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008696 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008697 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008698 return 1;
8699 }
dan1235bb12012-04-03 17:43:28 +00008700 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008701 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008702 return 1;
8703 }
dan1235bb12012-04-03 17:43:28 +00008704 setPageReferenced(pCheck, iPage);
8705 return 0;
drh5eddca62001-06-30 21:53:53 +00008706}
8707
danielk1977afcdd022004-10-31 16:25:42 +00008708#ifndef SQLITE_OMIT_AUTOVACUUM
8709/*
8710** Check that the entry in the pointer-map for page iChild maps to
8711** page iParent, pointer type ptrType. If not, append an error message
8712** to pCheck.
8713*/
8714static void checkPtrmap(
8715 IntegrityCk *pCheck, /* Integrity check context */
8716 Pgno iChild, /* Child page number */
8717 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008718 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008719){
8720 int rc;
8721 u8 ePtrmapType;
8722 Pgno iPtrmapParent;
8723
8724 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8725 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008726 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008727 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008728 return;
8729 }
8730
8731 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008732 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008733 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8734 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8735 }
8736}
8737#endif
8738
drh5eddca62001-06-30 21:53:53 +00008739/*
8740** Check the integrity of the freelist or of an overflow page list.
8741** Verify that the number of pages on the list is N.
8742*/
drh30e58752002-03-02 20:41:57 +00008743static void checkList(
8744 IntegrityCk *pCheck, /* Integrity checking context */
8745 int isFreeList, /* True for a freelist. False for overflow page list */
8746 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008747 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008748){
8749 int i;
drh3a4c1412004-05-09 20:40:11 +00008750 int expected = N;
8751 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008752 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008753 DbPage *pOvflPage;
8754 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008755 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008756 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008757 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008758 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008759 break;
8760 }
drh867db832014-09-26 02:41:05 +00008761 if( checkRef(pCheck, iPage) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00008762 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh867db832014-09-26 02:41:05 +00008763 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008764 break;
8765 }
danielk19773b8a05f2007-03-19 17:44:26 +00008766 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008767 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008768 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008769#ifndef SQLITE_OMIT_AUTOVACUUM
8770 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008771 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008772 }
8773#endif
drh43b18e12010-08-17 19:40:08 +00008774 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008775 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008776 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008777 N--;
8778 }else{
8779 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008780 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008781#ifndef SQLITE_OMIT_AUTOVACUUM
8782 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008783 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008784 }
8785#endif
drh867db832014-09-26 02:41:05 +00008786 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008787 }
8788 N -= n;
drh30e58752002-03-02 20:41:57 +00008789 }
drh30e58752002-03-02 20:41:57 +00008790 }
danielk1977afcdd022004-10-31 16:25:42 +00008791#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008792 else{
8793 /* If this database supports auto-vacuum and iPage is not the last
8794 ** page in this overflow list, check that the pointer-map entry for
8795 ** the following page matches iPage.
8796 */
8797 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008798 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008799 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008800 }
danielk1977afcdd022004-10-31 16:25:42 +00008801 }
8802#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008803 iPage = get4byte(pOvflData);
8804 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00008805 }
8806}
drhb7f91642004-10-31 02:22:47 +00008807#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008808
drh67731a92015-04-16 11:56:03 +00008809/*
8810** An implementation of a min-heap.
8811**
8812** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008813** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008814** and aHeap[N*2+1].
8815**
8816** The heap property is this: Every node is less than or equal to both
8817** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008818** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008819**
8820** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8821** the heap, preserving the heap property. The btreeHeapPull() routine
8822** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00008823** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00008824** property.
8825**
8826** This heap is used for cell overlap and coverage testing. Each u32
8827** entry represents the span of a cell or freeblock on a btree page.
8828** The upper 16 bits are the index of the first byte of a range and the
8829** lower 16 bits are the index of the last byte of that range.
8830*/
8831static void btreeHeapInsert(u32 *aHeap, u32 x){
8832 u32 j, i = ++aHeap[0];
8833 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00008834 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00008835 x = aHeap[j];
8836 aHeap[j] = aHeap[i];
8837 aHeap[i] = x;
8838 i = j;
8839 }
8840}
8841static int btreeHeapPull(u32 *aHeap, u32 *pOut){
8842 u32 j, i, x;
8843 if( (x = aHeap[0])==0 ) return 0;
8844 *pOut = aHeap[1];
8845 aHeap[1] = aHeap[x];
8846 aHeap[x] = 0xffffffff;
8847 aHeap[0]--;
8848 i = 1;
8849 while( (j = i*2)<=aHeap[0] ){
8850 if( aHeap[j]>aHeap[j+1] ) j++;
8851 if( aHeap[i]<aHeap[j] ) break;
8852 x = aHeap[i];
8853 aHeap[i] = aHeap[j];
8854 aHeap[j] = x;
8855 i = j;
8856 }
8857 return 1;
8858}
8859
drhb7f91642004-10-31 02:22:47 +00008860#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008861/*
8862** Do various sanity checks on a single page of a tree. Return
8863** the tree depth. Root pages return 0. Parents of root pages
8864** return 1, and so forth.
8865**
8866** These checks are done:
8867**
8868** 1. Make sure that cells and freeblocks do not overlap
8869** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00008870** NO 2. Make sure cell keys are in order.
8871** NO 3. Make sure no key is less than or equal to zLowerBound.
8872** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00008873** 5. Check the integrity of overflow pages.
8874** 6. Recursively call checkTreePage on all children.
8875** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00008876** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00008877** the root of the tree.
8878*/
8879static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00008880 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00008881 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00008882 i64 *pnParentMinKey,
8883 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00008884){
8885 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00008886 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00008887 int hdr, cellStart;
8888 int nCell;
drhda200cc2004-05-09 11:51:38 +00008889 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00008890 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00008891 int usableSize;
drh67731a92015-04-16 11:56:03 +00008892 u32 *heap = 0;
drha33b6832015-04-16 21:57:37 +00008893 u32 x, prev = 0;
shaneh195475d2010-02-19 04:28:08 +00008894 i64 nMinKey = 0;
8895 i64 nMaxKey = 0;
drh867db832014-09-26 02:41:05 +00008896 const char *saved_zPfx = pCheck->zPfx;
8897 int saved_v1 = pCheck->v1;
8898 int saved_v2 = pCheck->v2;
danielk1977ef73ee92004-11-06 12:26:07 +00008899
drh5eddca62001-06-30 21:53:53 +00008900 /* Check that the page exists
8901 */
drhd9cb6ac2005-10-20 07:28:17 +00008902 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00008903 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00008904 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00008905 if( checkRef(pCheck, iPage) ) return 0;
8906 pCheck->zPfx = "Page %d: ";
8907 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00008908 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00008909 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008910 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00008911 depth = -1;
8912 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008913 }
danielk197793caf5a2009-07-11 06:55:33 +00008914
8915 /* Clear MemPage.isInit to make sure the corruption detection code in
8916 ** btreeInitPage() is executed. */
8917 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00008918 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00008919 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00008920 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00008921 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00008922 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008923 depth = -1;
8924 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008925 }
8926
8927 /* Check out all the cells.
8928 */
8929 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00008930 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00008931 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00008932 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00008933 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00008934
8935 /* Check payload overflow pages
8936 */
drh867db832014-09-26 02:41:05 +00008937 pCheck->zPfx = "On tree page %d cell %d: ";
8938 pCheck->v1 = iPage;
8939 pCheck->v2 = i;
danielk19771cc5ed82007-05-16 17:28:43 +00008940 pCell = findCell(pPage,i);
drh5fa60512015-06-19 17:19:34 +00008941 pPage->xParseCell(pPage, pCell, &info);
drhab1cc582014-09-23 21:25:19 +00008942 sz = info.nPayload;
shaneh195475d2010-02-19 04:28:08 +00008943 /* For intKey pages, check that the keys are in order.
8944 */
drhab1cc582014-09-23 21:25:19 +00008945 if( pPage->intKey ){
8946 if( i==0 ){
8947 nMinKey = nMaxKey = info.nKey;
8948 }else if( info.nKey <= nMaxKey ){
drh867db832014-09-26 02:41:05 +00008949 checkAppendMsg(pCheck,
drhab1cc582014-09-23 21:25:19 +00008950 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
shaneh195475d2010-02-19 04:28:08 +00008951 }
8952 nMaxKey = info.nKey;
8953 }
danielk19775be31f52009-03-30 13:53:43 +00008954 if( (sz>info.nLocal)
8955 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8956 ){
drhb6f41482004-05-14 01:58:11 +00008957 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008958 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8959#ifndef SQLITE_OMIT_AUTOVACUUM
8960 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008961 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008962 }
8963#endif
drh867db832014-09-26 02:41:05 +00008964 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00008965 }
8966
8967 /* Check sanity of left child page.
8968 */
drhda200cc2004-05-09 11:51:38 +00008969 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008970 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008971#ifndef SQLITE_OMIT_AUTOVACUUM
8972 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008973 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008974 }
8975#endif
drh867db832014-09-26 02:41:05 +00008976 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008977 if( i>0 && d2!=depth ){
drh867db832014-09-26 02:41:05 +00008978 checkAppendMsg(pCheck, "Child page depth differs");
drhda200cc2004-05-09 11:51:38 +00008979 }
8980 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008981 }
drh5eddca62001-06-30 21:53:53 +00008982 }
shaneh195475d2010-02-19 04:28:08 +00008983
drhda200cc2004-05-09 11:51:38 +00008984 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008985 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh867db832014-09-26 02:41:05 +00008986 pCheck->zPfx = "On page %d at right child: ";
8987 pCheck->v1 = iPage;
danielk1977afcdd022004-10-31 16:25:42 +00008988#ifndef SQLITE_OMIT_AUTOVACUUM
8989 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008990 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008991 }
8992#endif
drh867db832014-09-26 02:41:05 +00008993 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008994 }
drh5eddca62001-06-30 21:53:53 +00008995
shaneh195475d2010-02-19 04:28:08 +00008996 /* For intKey leaf pages, check that the min/max keys are in order
8997 ** with any left/parent/right pages.
8998 */
drh867db832014-09-26 02:41:05 +00008999 pCheck->zPfx = "Page %d: ";
9000 pCheck->v1 = iPage;
shaneh195475d2010-02-19 04:28:08 +00009001 if( pPage->leaf && pPage->intKey ){
9002 /* if we are a left child page */
9003 if( pnParentMinKey ){
9004 /* if we are the left most child page */
9005 if( !pnParentMaxKey ){
9006 if( nMaxKey > *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00009007 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009008 "Rowid %lld out of order (max larger than parent min of %lld)",
9009 nMaxKey, *pnParentMinKey);
9010 }
9011 }else{
9012 if( nMinKey <= *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00009013 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009014 "Rowid %lld out of order (min less than parent min of %lld)",
9015 nMinKey, *pnParentMinKey);
9016 }
9017 if( nMaxKey > *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00009018 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009019 "Rowid %lld out of order (max larger than parent max of %lld)",
9020 nMaxKey, *pnParentMaxKey);
9021 }
9022 *pnParentMinKey = nMaxKey;
9023 }
9024 /* else if we're a right child page */
9025 } else if( pnParentMaxKey ){
9026 if( nMinKey <= *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00009027 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009028 "Rowid %lld out of order (min less than parent max of %lld)",
9029 nMinKey, *pnParentMaxKey);
9030 }
9031 }
9032 }
9033
drh5eddca62001-06-30 21:53:53 +00009034 /* Check for complete coverage of the page
9035 */
drhda200cc2004-05-09 11:51:38 +00009036 data = pPage->aData;
9037 hdr = pPage->hdrOffset;
drh67731a92015-04-16 11:56:03 +00009038 heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
drh867db832014-09-26 02:41:05 +00009039 pCheck->zPfx = 0;
drh67731a92015-04-16 11:56:03 +00009040 if( heap==0 ){
drhc890fec2008-08-01 20:10:08 +00009041 pCheck->mallocFailed = 1;
9042 }else{
drh5d433ce2010-08-14 16:02:52 +00009043 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00009044 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
drh67731a92015-04-16 11:56:03 +00009045 heap[0] = 0;
9046 btreeHeapInsert(heap, contentOffset-1);
drhfdab0262014-11-20 15:30:50 +00009047 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9048 ** number of cells on the page. */
drh2e38c322004-09-03 18:38:44 +00009049 nCell = get2byte(&data[hdr+3]);
drhfdab0262014-11-20 15:30:50 +00009050 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9051 ** immediately follows the b-tree page header. */
drh2e38c322004-09-03 18:38:44 +00009052 cellStart = hdr + 12 - 4*pPage->leaf;
drhfdab0262014-11-20 15:30:50 +00009053 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9054 ** integer offsets to the cell contents. */
drh2e38c322004-09-03 18:38:44 +00009055 for(i=0; i<nCell; i++){
9056 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00009057 u32 size = 65536;
drh8c2bbb62009-07-10 02:52:20 +00009058 if( pc<=usableSize-4 ){
drh25ada072015-06-19 15:07:14 +00009059 size = pPage->xCellSize(pPage, &data[pc]);
danielk1977daca5432008-08-25 11:57:16 +00009060 }
drh43b18e12010-08-17 19:40:08 +00009061 if( (int)(pc+size-1)>=usableSize ){
drh867db832014-09-26 02:41:05 +00009062 pCheck->zPfx = 0;
9063 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009064 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00009065 }else{
drh67731a92015-04-16 11:56:03 +00009066 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009067 }
drh2e38c322004-09-03 18:38:44 +00009068 }
drhfdab0262014-11-20 15:30:50 +00009069 /* EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9070 ** is the offset of the first freeblock, or zero if there are no
9071 ** freeblocks on the page. */
drh8c2bbb62009-07-10 02:52:20 +00009072 i = get2byte(&data[hdr+1]);
9073 while( i>0 ){
9074 int size, j;
9075 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
9076 size = get2byte(&data[i+2]);
9077 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
drh67731a92015-04-16 11:56:03 +00009078 btreeHeapInsert(heap, (i<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009079 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9080 ** big-endian integer which is the offset in the b-tree page of the next
9081 ** freeblock in the chain, or zero if the freeblock is the last on the
9082 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009083 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009084 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9085 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009086 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
9087 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
9088 i = j;
drh2e38c322004-09-03 18:38:44 +00009089 }
drh67731a92015-04-16 11:56:03 +00009090 cnt = 0;
9091 assert( heap[0]>0 );
9092 assert( (heap[1]>>16)==0 );
9093 btreeHeapPull(heap,&prev);
9094 while( btreeHeapPull(heap,&x) ){
9095 if( (prev&0xffff)+1>(x>>16) ){
drh867db832014-09-26 02:41:05 +00009096 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009097 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009098 break;
drh67731a92015-04-16 11:56:03 +00009099 }else{
9100 cnt += (x>>16) - (prev&0xffff) - 1;
9101 prev = x;
drh2e38c322004-09-03 18:38:44 +00009102 }
9103 }
drh67731a92015-04-16 11:56:03 +00009104 cnt += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009105 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9106 ** is stored in the fifth field of the b-tree page header.
9107 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9108 ** number of fragmented free bytes within the cell content area.
9109 */
drha33b6832015-04-16 21:57:37 +00009110 if( heap[0]==0 && cnt!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009111 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009112 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00009113 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009114 }
9115 }
drh67731a92015-04-16 11:56:03 +00009116 sqlite3PageFree(heap);
drh4b70f112004-05-02 21:12:19 +00009117 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009118
9119end_of_check:
9120 pCheck->zPfx = saved_zPfx;
9121 pCheck->v1 = saved_v1;
9122 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009123 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009124}
drhb7f91642004-10-31 02:22:47 +00009125#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009126
drhb7f91642004-10-31 02:22:47 +00009127#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009128/*
9129** This routine does a complete check of the given BTree file. aRoot[] is
9130** an array of pages numbers were each page number is the root page of
9131** a table. nRoot is the number of entries in aRoot.
9132**
danielk19773509a652009-07-06 18:56:13 +00009133** A read-only or read-write transaction must be opened before calling
9134** this function.
9135**
drhc890fec2008-08-01 20:10:08 +00009136** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009137** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009138** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009139** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009140*/
drh1dcdbc02007-01-27 02:24:54 +00009141char *sqlite3BtreeIntegrityCheck(
9142 Btree *p, /* The btree to be checked */
9143 int *aRoot, /* An array of root pages numbers for individual trees */
9144 int nRoot, /* Number of entries in aRoot[] */
9145 int mxErr, /* Stop reporting errors after this many */
9146 int *pnErr /* Write number of errors seen to this variable */
9147){
danielk197789d40042008-11-17 14:20:56 +00009148 Pgno i;
drh5eddca62001-06-30 21:53:53 +00009149 int nRef;
drhaaab5722002-02-19 13:39:21 +00009150 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009151 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00009152 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00009153
drhd677b3d2007-08-20 22:48:41 +00009154 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009155 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00009156 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00009157 sCheck.pBt = pBt;
9158 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009159 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009160 sCheck.mxErr = mxErr;
9161 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009162 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009163 sCheck.zPfx = 0;
9164 sCheck.v1 = 0;
9165 sCheck.v2 = 0;
drh1dcdbc02007-01-27 02:24:54 +00009166 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00009167 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00009168 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00009169 return 0;
9170 }
dan1235bb12012-04-03 17:43:28 +00009171
9172 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9173 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00009174 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00009175 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00009176 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00009177 }
drh42cac6d2004-11-20 20:31:11 +00009178 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009179 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drhc0490572015-05-02 11:45:53 +00009180 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5eddca62001-06-30 21:53:53 +00009181
9182 /* Check the integrity of the freelist
9183 */
drh867db832014-09-26 02:41:05 +00009184 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009185 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009186 get4byte(&pBt->pPage1->aData[36]));
9187 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009188
9189 /* Check all the tables.
9190 */
danielk197789d40042008-11-17 14:20:56 +00009191 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00009192 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009193#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009194 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009195 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009196 }
9197#endif
drh867db832014-09-26 02:41:05 +00009198 sCheck.zPfx = "List of tree roots: ";
9199 checkTreePage(&sCheck, aRoot[i], NULL, NULL);
9200 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009201 }
9202
9203 /* Make sure every page in the file is referenced
9204 */
drh1dcdbc02007-01-27 02:24:54 +00009205 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009206#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009207 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009208 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009209 }
danielk1977afcdd022004-10-31 16:25:42 +00009210#else
9211 /* If the database supports auto-vacuum, make sure no tables contain
9212 ** references to pointer-map pages.
9213 */
dan1235bb12012-04-03 17:43:28 +00009214 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009215 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009216 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009217 }
dan1235bb12012-04-03 17:43:28 +00009218 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009219 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009220 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009221 }
9222#endif
drh5eddca62001-06-30 21:53:53 +00009223 }
9224
drh64022502009-01-09 14:11:04 +00009225 /* Make sure this analysis did not leave any unref() pages.
9226 ** This is an internal consistency check; an integrity check
9227 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00009228 */
drh64022502009-01-09 14:11:04 +00009229 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh867db832014-09-26 02:41:05 +00009230 checkAppendMsg(&sCheck,
drh5eddca62001-06-30 21:53:53 +00009231 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00009232 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00009233 );
drh5eddca62001-06-30 21:53:53 +00009234 }
9235
9236 /* Clean up and report errors.
9237 */
drhd677b3d2007-08-20 22:48:41 +00009238 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00009239 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009240 if( sCheck.mallocFailed ){
9241 sqlite3StrAccumReset(&sCheck.errMsg);
9242 *pnErr = sCheck.nErr+1;
9243 return 0;
9244 }
drh1dcdbc02007-01-27 02:24:54 +00009245 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009246 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
9247 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009248}
drhb7f91642004-10-31 02:22:47 +00009249#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009250
drh73509ee2003-04-06 20:44:45 +00009251/*
drhd4e0bb02012-05-27 01:19:04 +00009252** Return the full pathname of the underlying database file. Return
9253** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009254**
9255** The pager filename is invariant as long as the pager is
9256** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009257*/
danielk1977aef0bf62005-12-30 16:28:01 +00009258const char *sqlite3BtreeGetFilename(Btree *p){
9259 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009260 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009261}
9262
9263/*
danielk19775865e3d2004-06-14 06:03:57 +00009264** Return the pathname of the journal file for this database. The return
9265** value of this routine is the same regardless of whether the journal file
9266** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009267**
9268** The pager journal filename is invariant as long as the pager is
9269** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009270*/
danielk1977aef0bf62005-12-30 16:28:01 +00009271const char *sqlite3BtreeGetJournalname(Btree *p){
9272 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009273 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009274}
9275
danielk19771d850a72004-05-31 08:26:49 +00009276/*
9277** Return non-zero if a transaction is active.
9278*/
danielk1977aef0bf62005-12-30 16:28:01 +00009279int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009280 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009281 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009282}
9283
dana550f2d2010-08-02 10:47:05 +00009284#ifndef SQLITE_OMIT_WAL
9285/*
9286** Run a checkpoint on the Btree passed as the first argument.
9287**
9288** Return SQLITE_LOCKED if this or any other connection has an open
9289** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009290**
dancdc1f042010-11-18 12:11:05 +00009291** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009292*/
dancdc1f042010-11-18 12:11:05 +00009293int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009294 int rc = SQLITE_OK;
9295 if( p ){
9296 BtShared *pBt = p->pBt;
9297 sqlite3BtreeEnter(p);
9298 if( pBt->inTransaction!=TRANS_NONE ){
9299 rc = SQLITE_LOCKED;
9300 }else{
dancdc1f042010-11-18 12:11:05 +00009301 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009302 }
9303 sqlite3BtreeLeave(p);
9304 }
9305 return rc;
9306}
9307#endif
9308
danielk19771d850a72004-05-31 08:26:49 +00009309/*
danielk19772372c2b2006-06-27 16:34:56 +00009310** Return non-zero if a read (or write) transaction is active.
9311*/
9312int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009313 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009314 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009315 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009316}
9317
danielk197704103022009-02-03 16:51:24 +00009318int sqlite3BtreeIsInBackup(Btree *p){
9319 assert( p );
9320 assert( sqlite3_mutex_held(p->db->mutex) );
9321 return p->nBackup!=0;
9322}
9323
danielk19772372c2b2006-06-27 16:34:56 +00009324/*
danielk1977da184232006-01-05 11:34:32 +00009325** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009326** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009327** purposes (for example, to store a high-level schema associated with
9328** the shared-btree). The btree layer manages reference counting issues.
9329**
9330** The first time this is called on a shared-btree, nBytes bytes of memory
9331** are allocated, zeroed, and returned to the caller. For each subsequent
9332** call the nBytes parameter is ignored and a pointer to the same blob
9333** of memory returned.
9334**
danielk1977171bfed2008-06-23 09:50:50 +00009335** If the nBytes parameter is 0 and the blob of memory has not yet been
9336** allocated, a null pointer is returned. If the blob has already been
9337** allocated, it is returned as normal.
9338**
danielk1977da184232006-01-05 11:34:32 +00009339** Just before the shared-btree is closed, the function passed as the
9340** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009341** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009342** on the memory, the btree layer does that.
9343*/
9344void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9345 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009346 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009347 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009348 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009349 pBt->xFreeSchema = xFree;
9350 }
drh27641702007-08-22 02:56:42 +00009351 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009352 return pBt->pSchema;
9353}
9354
danielk1977c87d34d2006-01-06 13:00:28 +00009355/*
danielk1977404ca072009-03-16 13:19:36 +00009356** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9357** btree as the argument handle holds an exclusive lock on the
9358** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009359*/
9360int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009361 int rc;
drhe5fe6902007-12-07 18:55:28 +00009362 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009363 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009364 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9365 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009366 sqlite3BtreeLeave(p);
9367 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009368}
9369
drha154dcd2006-03-22 22:10:07 +00009370
9371#ifndef SQLITE_OMIT_SHARED_CACHE
9372/*
9373** Obtain a lock on the table whose root page is iTab. The
9374** lock is a write lock if isWritelock is true or a read lock
9375** if it is false.
9376*/
danielk1977c00da102006-01-07 13:21:04 +00009377int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009378 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009379 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009380 if( p->sharable ){
9381 u8 lockType = READ_LOCK + isWriteLock;
9382 assert( READ_LOCK+1==WRITE_LOCK );
9383 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009384
drh6a9ad3d2008-04-02 16:29:30 +00009385 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009386 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009387 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009388 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009389 }
9390 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009391 }
9392 return rc;
9393}
drha154dcd2006-03-22 22:10:07 +00009394#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009395
danielk1977b4e9af92007-05-01 17:49:49 +00009396#ifndef SQLITE_OMIT_INCRBLOB
9397/*
9398** Argument pCsr must be a cursor opened for writing on an
9399** INTKEY table currently pointing at a valid table entry.
9400** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009401**
9402** Only the data content may only be modified, it is not possible to
9403** change the length of the data stored. If this function is called with
9404** parameters that attempt to write past the end of the existing data,
9405** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009406*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009407int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009408 int rc;
drh1fee73e2007-08-29 04:00:57 +00009409 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009410 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009411 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009412
danielk1977c9000e62009-07-08 13:55:28 +00009413 rc = restoreCursorPosition(pCsr);
9414 if( rc!=SQLITE_OK ){
9415 return rc;
9416 }
danielk19773588ceb2008-06-10 17:30:26 +00009417 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9418 if( pCsr->eState!=CURSOR_VALID ){
9419 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009420 }
9421
dan227a1c42013-04-03 11:17:39 +00009422 /* Save the positions of all other cursors open on this table. This is
9423 ** required in case any of them are holding references to an xFetch
9424 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009425 **
drh3f387402014-09-24 01:23:00 +00009426 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009427 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9428 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009429 */
drh370c9f42013-04-03 20:04:04 +00009430 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9431 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009432
danielk1977c9000e62009-07-08 13:55:28 +00009433 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009434 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009435 ** (b) there is a read/write transaction open,
9436 ** (c) the connection holds a write-lock on the table (if required),
9437 ** (d) there are no conflicting read-locks, and
9438 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009439 */
drh036dbec2014-03-11 23:40:44 +00009440 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009441 return SQLITE_READONLY;
9442 }
drhc9166342012-01-05 23:32:06 +00009443 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9444 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009445 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9446 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009447 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009448
drhfb192682009-07-11 18:26:28 +00009449 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009450}
danielk19772dec9702007-05-02 16:48:37 +00009451
9452/*
dan5a500af2014-03-11 20:33:04 +00009453** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009454*/
dan5a500af2014-03-11 20:33:04 +00009455void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009456 pCur->curFlags |= BTCF_Incrblob;
danielk19772dec9702007-05-02 16:48:37 +00009457}
danielk1977b4e9af92007-05-01 17:49:49 +00009458#endif
dane04dc882010-04-20 18:53:15 +00009459
9460/*
9461** Set both the "read version" (single byte at byte offset 18) and
9462** "write version" (single byte at byte offset 19) fields in the database
9463** header to iVersion.
9464*/
9465int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9466 BtShared *pBt = pBtree->pBt;
9467 int rc; /* Return code */
9468
dane04dc882010-04-20 18:53:15 +00009469 assert( iVersion==1 || iVersion==2 );
9470
danb9780022010-04-21 18:37:57 +00009471 /* If setting the version fields to 1, do not automatically open the
9472 ** WAL connection, even if the version fields are currently set to 2.
9473 */
drhc9166342012-01-05 23:32:06 +00009474 pBt->btsFlags &= ~BTS_NO_WAL;
9475 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009476
9477 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009478 if( rc==SQLITE_OK ){
9479 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009480 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009481 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009482 if( rc==SQLITE_OK ){
9483 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9484 if( rc==SQLITE_OK ){
9485 aData[18] = (u8)iVersion;
9486 aData[19] = (u8)iVersion;
9487 }
9488 }
9489 }
dane04dc882010-04-20 18:53:15 +00009490 }
9491
drhc9166342012-01-05 23:32:06 +00009492 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009493 return rc;
9494}
dan428c2182012-08-06 18:50:11 +00009495
9496/*
drhe0997b32015-03-20 14:57:50 +00009497** set the mask of hint flags for cursor pCsr.
dan428c2182012-08-06 18:50:11 +00009498*/
9499void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
drhe0997b32015-03-20 14:57:50 +00009500 assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 );
dan428c2182012-08-06 18:50:11 +00009501 pCsr->hints = mask;
9502}
drh781597f2014-05-21 08:21:07 +00009503
drhe0997b32015-03-20 14:57:50 +00009504#ifdef SQLITE_DEBUG
9505/*
9506** Return true if the cursor has a hint specified. This routine is
9507** only used from within assert() statements
9508*/
9509int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9510 return (pCsr->hints & mask)!=0;
9511}
9512#endif
9513
drh781597f2014-05-21 08:21:07 +00009514/*
9515** Return true if the given Btree is read-only.
9516*/
9517int sqlite3BtreeIsReadonly(Btree *p){
9518 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9519}
drhdef68892014-11-04 12:11:23 +00009520
9521/*
9522** Return the size of the header added to each page by this module.
9523*/
drh37c057b2014-12-30 00:57:29 +00009524int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }