blob: abd47124d3dc5019c490fa8dccf404f14e6f0eb5 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh980b1a72006-08-16 16:42:48 +000012** $Id: btree.c,v 1.328 2006/08/16 16:42:48 drh Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
15** For a detailed discussion of BTrees, refer to
16**
17** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
18** "Sorting And Searching", pages 473-480. Addison-Wesley
19** Publishing Company, Reading, Massachusetts.
20**
21** The basic idea is that each page of the file contains N database
22** entries and N+1 pointers to subpages.
23**
24** ----------------------------------------------------------------
25** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
26** ----------------------------------------------------------------
27**
28** All of the keys on the page that Ptr(0) points to have values less
29** than Key(0). All of the keys on page Ptr(1) and its subpages have
30** values greater than Key(0) and less than Key(1). All of the keys
31** on Ptr(N+1) and its subpages have values greater than Key(N). And
32** so forth.
33**
drh5e00f6c2001-09-13 13:46:56 +000034** Finding a particular key requires reading O(log(M)) pages from the
35** disk where M is the number of entries in the tree.
drh8b2f49b2001-06-08 00:21:52 +000036**
37** In this implementation, a single file can hold one or more separate
38** BTrees. Each BTree is identified by the index of its root page. The
drh9e572e62004-04-23 23:43:10 +000039** key and data for any entry are combined to form the "payload". A
40** fixed amount of payload can be carried directly on the database
41** page. If the payload is larger than the preset amount then surplus
42** bytes are stored on overflow pages. The payload for an entry
43** and the preceding pointer are combined to form a "Cell". Each
44** page has a small header which contains the Ptr(N+1) pointer and other
45** information such as the size of key and data.
drh8b2f49b2001-06-08 00:21:52 +000046**
drh9e572e62004-04-23 23:43:10 +000047** FORMAT DETAILS
48**
49** The file is divided into pages. The first page is called page 1,
50** the second is page 2, and so forth. A page number of zero indicates
51** "no such page". The page size can be anything between 512 and 65536.
52** Each page can be either a btree page, a freelist page or an overflow
53** page.
54**
55** The first page is always a btree page. The first 100 bytes of the first
drh271efa52004-05-30 19:19:05 +000056** page contain a special header (the "file header") that describes the file.
57** The format of the file header is as follows:
drh9e572e62004-04-23 23:43:10 +000058**
59** OFFSET SIZE DESCRIPTION
drhde647132004-05-07 17:57:49 +000060** 0 16 Header string: "SQLite format 3\000"
drh9e572e62004-04-23 23:43:10 +000061** 16 2 Page size in bytes.
62** 18 1 File format write version
63** 19 1 File format read version
drh6f11bef2004-05-13 01:12:56 +000064** 20 1 Bytes of unused space at the end of each page
65** 21 1 Max embedded payload fraction
66** 22 1 Min embedded payload fraction
67** 23 1 Min leaf payload fraction
68** 24 4 File change counter
69** 28 4 Reserved for future use
drh9e572e62004-04-23 23:43:10 +000070** 32 4 First freelist page
71** 36 4 Number of freelist pages in the file
72** 40 60 15 4-byte meta values passed to higher layers
73**
74** All of the integer values are big-endian (most significant byte first).
drh6f11bef2004-05-13 01:12:56 +000075**
drhab01f612004-05-22 02:55:23 +000076** The file change counter is incremented when the database is changed more
drh6f11bef2004-05-13 01:12:56 +000077** than once within the same second. This counter, together with the
78** modification time of the file, allows other processes to know
79** when the file has changed and thus when they need to flush their
80** cache.
81**
82** The max embedded payload fraction is the amount of the total usable
83** space in a page that can be consumed by a single cell for standard
84** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
85** is to limit the maximum cell size so that at least 4 cells will fit
drhab01f612004-05-22 02:55:23 +000086** on one page. Thus the default max embedded payload fraction is 64.
drh6f11bef2004-05-13 01:12:56 +000087**
88** If the payload for a cell is larger than the max payload, then extra
89** payload is spilled to overflow pages. Once an overflow page is allocated,
90** as many bytes as possible are moved into the overflow pages without letting
91** the cell size drop below the min embedded payload fraction.
92**
93** The min leaf payload fraction is like the min embedded payload fraction
94** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
95** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
96** not specified in the header.
drh9e572e62004-04-23 23:43:10 +000097**
drh43605152004-05-29 21:46:49 +000098** Each btree pages is divided into three sections: The header, the
99** cell pointer array, and the cell area area. Page 1 also has a 100-byte
drh271efa52004-05-30 19:19:05 +0000100** file header that occurs before the page header.
101**
102** |----------------|
103** | file header | 100 bytes. Page 1 only.
104** |----------------|
105** | page header | 8 bytes for leaves. 12 bytes for interior nodes
106** |----------------|
107** | cell pointer | | 2 bytes per cell. Sorted order.
108** | array | | Grows downward
109** | | v
110** |----------------|
111** | unallocated |
112** | space |
113** |----------------| ^ Grows upwards
114** | cell content | | Arbitrary order interspersed with freeblocks.
115** | area | | and free space fragments.
116** |----------------|
drh43605152004-05-29 21:46:49 +0000117**
118** The page headers looks like this:
drh9e572e62004-04-23 23:43:10 +0000119**
120** OFFSET SIZE DESCRIPTION
drh6f11bef2004-05-13 01:12:56 +0000121** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
drh9e572e62004-04-23 23:43:10 +0000122** 1 2 byte offset to the first freeblock
drh43605152004-05-29 21:46:49 +0000123** 3 2 number of cells on this page
drh271efa52004-05-30 19:19:05 +0000124** 5 2 first byte of the cell content area
drh43605152004-05-29 21:46:49 +0000125** 7 1 number of fragmented free bytes
drh271efa52004-05-30 19:19:05 +0000126** 8 4 Right child (the Ptr(N+1) value). Omitted on leaves.
drh9e572e62004-04-23 23:43:10 +0000127**
128** The flags define the format of this btree page. The leaf flag means that
129** this page has no children. The zerodata flag means that this page carries
drh44f87bd2004-09-27 13:19:51 +0000130** only keys and no data. The intkey flag means that the key is a integer
131** which is stored in the key size entry of the cell header rather than in
132** the payload area.
drh9e572e62004-04-23 23:43:10 +0000133**
drh43605152004-05-29 21:46:49 +0000134** The cell pointer array begins on the first byte after the page header.
135** The cell pointer array contains zero or more 2-byte numbers which are
136** offsets from the beginning of the page to the cell content in the cell
137** content area. The cell pointers occur in sorted order. The system strives
138** to keep free space after the last cell pointer so that new cells can
drh44f87bd2004-09-27 13:19:51 +0000139** be easily added without having to defragment the page.
drh43605152004-05-29 21:46:49 +0000140**
141** Cell content is stored at the very end of the page and grows toward the
142** beginning of the page.
143**
144** Unused space within the cell content area is collected into a linked list of
145** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
146** to the first freeblock is given in the header. Freeblocks occur in
147** increasing order. Because a freeblock must be at least 4 bytes in size,
148** any group of 3 or fewer unused bytes in the cell content area cannot
149** exist on the freeblock chain. A group of 3 or fewer free bytes is called
150** a fragment. The total number of bytes in all fragments is recorded.
151** in the page header at offset 7.
152**
153** SIZE DESCRIPTION
154** 2 Byte offset of the next freeblock
155** 2 Bytes in this freeblock
156**
157** Cells are of variable length. Cells are stored in the cell content area at
158** the end of the page. Pointers to the cells are in the cell pointer array
159** that immediately follows the page header. Cells is not necessarily
160** contiguous or in order, but cell pointers are contiguous and in order.
161**
162** Cell content makes use of variable length integers. A variable
163** length integer is 1 to 9 bytes where the lower 7 bits of each
drh9e572e62004-04-23 23:43:10 +0000164** byte are used. The integer consists of all bytes that have bit 8 set and
drh6f11bef2004-05-13 01:12:56 +0000165** the first byte with bit 8 clear. The most significant byte of the integer
drhab01f612004-05-22 02:55:23 +0000166** appears first. A variable-length integer may not be more than 9 bytes long.
167** As a special case, all 8 bytes of the 9th byte are used as data. This
168** allows a 64-bit integer to be encoded in 9 bytes.
drh9e572e62004-04-23 23:43:10 +0000169**
170** 0x00 becomes 0x00000000
drh6f11bef2004-05-13 01:12:56 +0000171** 0x7f becomes 0x0000007f
172** 0x81 0x00 becomes 0x00000080
173** 0x82 0x00 becomes 0x00000100
174** 0x80 0x7f becomes 0x0000007f
175** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
drh9e572e62004-04-23 23:43:10 +0000176** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
177**
178** Variable length integers are used for rowids and to hold the number of
179** bytes of key and data in a btree cell.
180**
drh43605152004-05-29 21:46:49 +0000181** The content of a cell looks like this:
drh9e572e62004-04-23 23:43:10 +0000182**
183** SIZE DESCRIPTION
drh3aac2dd2004-04-26 14:10:20 +0000184** 4 Page number of the left child. Omitted if leaf flag is set.
185** var Number of bytes of data. Omitted if the zerodata flag is set.
186** var Number of bytes of key. Or the key itself if intkey flag is set.
drh9e572e62004-04-23 23:43:10 +0000187** * Payload
188** 4 First page of the overflow chain. Omitted if no overflow
189**
190** Overflow pages form a linked list. Each page except the last is completely
191** filled with data (pagesize - 4 bytes). The last page can have as little
192** as 1 byte of data.
193**
194** SIZE DESCRIPTION
195** 4 Page number of next overflow page
196** * Data
197**
198** Freelist pages come in two subtypes: trunk pages and leaf pages. The
199** file header points to first in a linked list of trunk page. Each trunk
200** page points to multiple leaf pages. The content of a leaf page is
201** unspecified. A trunk page looks like this:
202**
203** SIZE DESCRIPTION
204** 4 Page number of next trunk page
205** 4 Number of leaf pointers on this page
206** * zero or more pages numbers of leaves
drha059ad02001-04-17 20:09:11 +0000207*/
208#include "sqliteInt.h"
209#include "pager.h"
210#include "btree.h"
drh1f595712004-06-15 01:40:29 +0000211#include "os.h"
drha059ad02001-04-17 20:09:11 +0000212#include <assert.h>
213
drhc96d8532005-05-03 12:30:33 +0000214/* Round up a number to the next larger multiple of 8. This is used
215** to force 8-byte alignment on 64-bit architectures.
216*/
217#define ROUND8(x) ((x+7)&~7)
218
219
drh4b70f112004-05-02 21:12:19 +0000220/* The following value is the maximum cell size assuming a maximum page
221** size give above.
222*/
drh2e38c322004-09-03 18:38:44 +0000223#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
drh4b70f112004-05-02 21:12:19 +0000224
225/* The maximum number of cells on a single page of the database. This
226** assumes a minimum cell size of 3 bytes. Such small cells will be
227** exceedingly rare, but they are possible.
228*/
drh2e38c322004-09-03 18:38:44 +0000229#define MX_CELL(pBt) ((pBt->pageSize-8)/3)
drh4b70f112004-05-02 21:12:19 +0000230
paulb95a8862003-04-01 21:16:41 +0000231/* Forward declarations */
drh3aac2dd2004-04-26 14:10:20 +0000232typedef struct MemPage MemPage;
danielk1977aef0bf62005-12-30 16:28:01 +0000233typedef struct BtLock BtLock;
paulb95a8862003-04-01 21:16:41 +0000234
drh8c42ca92001-06-22 19:15:00 +0000235/*
drhbd03cae2001-06-02 02:40:57 +0000236** This is a magic string that appears at the beginning of every
drh8c42ca92001-06-22 19:15:00 +0000237** SQLite database in order to identify the file as a real database.
drh556b2a22005-06-14 16:04:05 +0000238**
239** You can change this value at compile-time by specifying a
240** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
241** header must be exactly 16 bytes including the zero-terminator so
242** the string itself should be 15 characters long. If you change
243** the header, then your custom library will not be able to read
244** databases generated by the standard tools and the standard tools
245** will not be able to read databases created by your custom library.
246*/
247#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
248# define SQLITE_FILE_HEADER "SQLite format 3"
249#endif
250static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +0000251
252/*
drh4b70f112004-05-02 21:12:19 +0000253** Page type flags. An ORed combination of these flags appear as the
254** first byte of every BTree page.
drh8c42ca92001-06-22 19:15:00 +0000255*/
drhde647132004-05-07 17:57:49 +0000256#define PTF_INTKEY 0x01
drh9e572e62004-04-23 23:43:10 +0000257#define PTF_ZERODATA 0x02
drh8b18dd42004-05-12 19:18:15 +0000258#define PTF_LEAFDATA 0x04
259#define PTF_LEAF 0x08
drh8c42ca92001-06-22 19:15:00 +0000260
261/*
drh9e572e62004-04-23 23:43:10 +0000262** As each page of the file is loaded into memory, an instance of the following
263** structure is appended and initialized to zero. This structure stores
264** information about the page that is decoded from the raw file page.
drh14acc042001-06-10 19:56:58 +0000265**
drh72f82862001-05-24 21:06:34 +0000266** The pParent field points back to the parent page. This allows us to
267** walk up the BTree from any leaf to the root. Care must be taken to
268** unref() the parent page pointer when this page is no longer referenced.
drhbd03cae2001-06-02 02:40:57 +0000269** The pageDestructor() routine handles that chore.
drh7e3b0a02001-04-28 16:52:40 +0000270*/
271struct MemPage {
drha6abd042004-06-09 17:37:22 +0000272 u8 isInit; /* True if previously initialized. MUST BE FIRST! */
drh43605152004-05-29 21:46:49 +0000273 u8 idxShift; /* True if Cell indices have changed */
274 u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
275 u8 intKey; /* True if intkey flag is set */
276 u8 leaf; /* True if leaf flag is set */
277 u8 zeroData; /* True if table stores keys only */
278 u8 leafData; /* True if tables stores data on leaves only */
279 u8 hasData; /* True if this page stores data */
280 u8 hdrOffset; /* 100 for page 1. 0 otherwise */
drh271efa52004-05-30 19:19:05 +0000281 u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
drha2fce642004-06-05 00:01:44 +0000282 u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */
283 u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */
drh43605152004-05-29 21:46:49 +0000284 u16 cellOffset; /* Index in aData of first cell pointer */
285 u16 idxParent; /* Index in parent of this node */
286 u16 nFree; /* Number of free bytes on the page */
287 u16 nCell; /* Number of cells on this page, local and ovfl */
288 struct _OvflCell { /* Cells that will not fit on aData[] */
danielk1977aef0bf62005-12-30 16:28:01 +0000289 u8 *pCell; /* Pointers to the body of the overflow cell */
290 u16 idx; /* Insert this cell before idx-th non-overflow cell */
drha2fce642004-06-05 00:01:44 +0000291 } aOvfl[5];
drh47ded162006-01-06 01:42:58 +0000292 BtShared *pBt; /* Pointer back to BTree structure */
293 u8 *aData; /* Pointer back to the start of the page */
294 Pgno pgno; /* Page number for this page */
295 MemPage *pParent; /* The parent of this page. NULL for root */
drh8c42ca92001-06-22 19:15:00 +0000296};
drh7e3b0a02001-04-28 16:52:40 +0000297
298/*
drh3b7511c2001-05-26 13:15:44 +0000299** The in-memory image of a disk page has the auxiliary information appended
300** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
301** that extra information.
302*/
drh3aac2dd2004-04-26 14:10:20 +0000303#define EXTRA_SIZE sizeof(MemPage)
drh3b7511c2001-05-26 13:15:44 +0000304
danielk1977aef0bf62005-12-30 16:28:01 +0000305/* Btree handle */
306struct Btree {
307 sqlite3 *pSqlite;
308 BtShared *pBt;
309 u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
310};
311
312/*
313** Btree.inTrans may take one of the following values.
314**
315** If the shared-data extension is enabled, there may be multiple users
316** of the Btree structure. At most one of these may open a write transaction,
317** but any number may have active read transactions. Variable Btree.pDb
318** points to the handle that owns any current write-transaction.
319*/
320#define TRANS_NONE 0
321#define TRANS_READ 1
322#define TRANS_WRITE 2
323
drh3b7511c2001-05-26 13:15:44 +0000324/*
drha059ad02001-04-17 20:09:11 +0000325** Everything we need to know about an open database
326*/
danielk1977aef0bf62005-12-30 16:28:01 +0000327struct BtShared {
drha059ad02001-04-17 20:09:11 +0000328 Pager *pPager; /* The page cache */
drh306dc212001-05-21 13:45:10 +0000329 BtCursor *pCursor; /* A list of all open cursors */
drh3aac2dd2004-04-26 14:10:20 +0000330 MemPage *pPage1; /* First page of the database */
drhab01f612004-05-22 02:55:23 +0000331 u8 inStmt; /* True if we are in a statement subtransaction */
drh5df72a52002-06-06 23:16:05 +0000332 u8 readOnly; /* True if the underlying file is readonly */
drhab01f612004-05-22 02:55:23 +0000333 u8 maxEmbedFrac; /* Maximum payload as % of total page size */
334 u8 minEmbedFrac; /* Minimum payload as % of total page size */
335 u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
drh90f5ecb2004-07-22 01:19:35 +0000336 u8 pageSizeFixed; /* True if the page size can no longer be changed */
drh057cd3a2005-02-15 16:23:02 +0000337#ifndef SQLITE_OMIT_AUTOVACUUM
338 u8 autoVacuum; /* True if database supports auto-vacuum */
339#endif
drha2fce642004-06-05 00:01:44 +0000340 u16 pageSize; /* Total number of bytes on a page */
341 u16 usableSize; /* Number of usable bytes on each page */
drh6f11bef2004-05-13 01:12:56 +0000342 int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
343 int minLocal; /* Minimum local payload in non-LEAFDATA tables */
344 int maxLeaf; /* Maximum local payload in a LEAFDATA table */
345 int minLeaf; /* Minimum local payload in a LEAFDATA table */
drhb8ef32c2005-03-14 02:01:49 +0000346 BusyHandler *pBusyHandler; /* Callback for when there is lock contention */
danielk1977aef0bf62005-12-30 16:28:01 +0000347 u8 inTransaction; /* Transaction state */
danielk1977aef0bf62005-12-30 16:28:01 +0000348 int nRef; /* Number of references to this structure */
349 int nTransaction; /* Number of open transactions (read + write) */
danielk19772e94d4d2006-01-09 05:36:27 +0000350 void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
351 void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
352#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000353 BtLock *pLock; /* List of locks held on this shared-btree struct */
danielk1977e501b892006-01-09 06:29:47 +0000354 BtShared *pNext; /* Next in ThreadData.pBtree linked list */
danielk19772e94d4d2006-01-09 05:36:27 +0000355#endif
drha059ad02001-04-17 20:09:11 +0000356};
danielk1977ee5741e2004-05-31 10:01:34 +0000357
358/*
drhfa1a98a2004-05-14 19:08:17 +0000359** An instance of the following structure is used to hold information
drh271efa52004-05-30 19:19:05 +0000360** about a cell. The parseCellPtr() function fills in this structure
drhab01f612004-05-22 02:55:23 +0000361** based on information extract from the raw disk page.
drhfa1a98a2004-05-14 19:08:17 +0000362*/
363typedef struct CellInfo CellInfo;
364struct CellInfo {
drh43605152004-05-29 21:46:49 +0000365 u8 *pCell; /* Pointer to the start of cell content */
drhfa1a98a2004-05-14 19:08:17 +0000366 i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
367 u32 nData; /* Number of bytes of data */
drh271efa52004-05-30 19:19:05 +0000368 u16 nHeader; /* Size of the cell content header in bytes */
drhfa1a98a2004-05-14 19:08:17 +0000369 u16 nLocal; /* Amount of payload held locally */
drhab01f612004-05-22 02:55:23 +0000370 u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
drh271efa52004-05-30 19:19:05 +0000371 u16 nSize; /* Size of the cell content on the main b-tree page */
drhfa1a98a2004-05-14 19:08:17 +0000372};
373
374/*
drh365d68f2001-05-11 11:02:46 +0000375** A cursor is a pointer to a particular entry in the BTree.
376** The entry is identified by its MemPage and the index in
drha34b6762004-05-07 13:30:42 +0000377** MemPage.aCell[] of the entry.
drh365d68f2001-05-11 11:02:46 +0000378*/
drh72f82862001-05-24 21:06:34 +0000379struct BtCursor {
danielk1977aef0bf62005-12-30 16:28:01 +0000380 Btree *pBtree; /* The Btree to which this cursor belongs */
drh14acc042001-06-10 19:56:58 +0000381 BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
drh3aac2dd2004-04-26 14:10:20 +0000382 int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
383 void *pArg; /* First arg to xCompare() */
drh8b2f49b2001-06-08 00:21:52 +0000384 Pgno pgnoRoot; /* The root page of this tree */
drh5e2f8b92001-05-28 00:41:15 +0000385 MemPage *pPage; /* Page that contains the entry */
drh3aac2dd2004-04-26 14:10:20 +0000386 int idx; /* Index of the entry in pPage->aCell[] */
drhfa1a98a2004-05-14 19:08:17 +0000387 CellInfo info; /* A parse of the cell we are pointing at */
drhecdc7532001-09-23 02:35:53 +0000388 u8 wrFlag; /* True if writable */
danielk1977da184232006-01-05 11:34:32 +0000389 u8 eState; /* One of the CURSOR_XXX constants (see below) */
drh4eeb1ff2006-03-23 14:03:00 +0000390 void *pKey; /* Saved key that was cursor's last known position */
391 i64 nKey; /* Size of pKey, or last integer key */
danielk1977da184232006-01-05 11:34:32 +0000392 int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
drh365d68f2001-05-11 11:02:46 +0000393};
drh7e3b0a02001-04-28 16:52:40 +0000394
drha059ad02001-04-17 20:09:11 +0000395/*
drh980b1a72006-08-16 16:42:48 +0000396** Potential values for BtCursor.eState.
danielk1977da184232006-01-05 11:34:32 +0000397**
398** CURSOR_VALID:
399** Cursor points to a valid entry. getPayload() etc. may be called.
400**
401** CURSOR_INVALID:
402** Cursor does not point to a valid entry. This can happen (for example)
403** because the table is empty or because BtreeCursorFirst() has not been
404** called.
405**
406** CURSOR_REQUIRESEEK:
407** The table that this cursor was opened on still exists, but has been
408** modified since the cursor was last used. The cursor position is saved
409** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
danielk1977955de522006-02-10 02:27:42 +0000410** this state, restoreOrClearCursorPosition() can be called to attempt to
411** seek the cursor to the saved position.
danielk1977da184232006-01-05 11:34:32 +0000412*/
413#define CURSOR_INVALID 0
414#define CURSOR_VALID 1
415#define CURSOR_REQUIRESEEK 2
416
417/*
drh615ae552005-01-16 23:21:00 +0000418** The TRACE macro will print high-level status information about the
419** btree operation when the global variable sqlite3_btree_trace is
420** enabled.
421*/
422#if SQLITE_TEST
423# define TRACE(X) if( sqlite3_btree_trace )\
424 { sqlite3DebugPrintf X; fflush(stdout); }
drh0f7eb612006-08-08 13:51:43 +0000425int sqlite3_btree_trace=0; /* True to enable tracing */
drh615ae552005-01-16 23:21:00 +0000426#else
427# define TRACE(X)
428#endif
drh615ae552005-01-16 23:21:00 +0000429
430/*
drh66cbd152004-09-01 16:12:25 +0000431** Forward declaration
432*/
drh980b1a72006-08-16 16:42:48 +0000433static int checkReadLocks(Btree*,Pgno,BtCursor*);
drh66cbd152004-09-01 16:12:25 +0000434
drh66cbd152004-09-01 16:12:25 +0000435/*
drhab01f612004-05-22 02:55:23 +0000436** Read or write a two- and four-byte big-endian integer values.
drh0d316a42002-08-11 20:10:47 +0000437*/
drh9e572e62004-04-23 23:43:10 +0000438static u32 get2byte(unsigned char *p){
439 return (p[0]<<8) | p[1];
drh0d316a42002-08-11 20:10:47 +0000440}
drh9e572e62004-04-23 23:43:10 +0000441static u32 get4byte(unsigned char *p){
442 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
443}
drh9e572e62004-04-23 23:43:10 +0000444static void put2byte(unsigned char *p, u32 v){
445 p[0] = v>>8;
446 p[1] = v;
447}
448static void put4byte(unsigned char *p, u32 v){
449 p[0] = v>>24;
450 p[1] = v>>16;
451 p[2] = v>>8;
452 p[3] = v;
453}
drh6f11bef2004-05-13 01:12:56 +0000454
drh9e572e62004-04-23 23:43:10 +0000455/*
drhab01f612004-05-22 02:55:23 +0000456** Routines to read and write variable-length integers. These used to
457** be defined locally, but now we use the varint routines in the util.c
458** file.
drh9e572e62004-04-23 23:43:10 +0000459*/
drh6d2fb152004-05-14 16:50:06 +0000460#define getVarint sqlite3GetVarint
drh504b6982006-01-22 21:52:56 +0000461/* #define getVarint32 sqlite3GetVarint32 */
462#define getVarint32(A,B) ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B))
drh6d2fb152004-05-14 16:50:06 +0000463#define putVarint sqlite3PutVarint
drh0d316a42002-08-11 20:10:47 +0000464
danielk1977599fcba2004-11-08 07:13:13 +0000465/* The database page the PENDING_BYTE occupies. This page is never used.
466** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
467** should possibly be consolidated (presumably in pager.h).
drhfe9a9142006-03-14 12:59:10 +0000468**
469** If disk I/O is omitted (meaning that the database is stored purely
470** in memory) then there is no pending byte.
danielk1977599fcba2004-11-08 07:13:13 +0000471*/
drhfe9a9142006-03-14 12:59:10 +0000472#ifdef SQLITE_OMIT_DISKIO
473# define PENDING_BYTE_PAGE(pBt) 0x7fffffff
474#else
475# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
476#endif
danielk1977afcdd022004-10-31 16:25:42 +0000477
danielk1977aef0bf62005-12-30 16:28:01 +0000478/*
479** A linked list of the following structures is stored at BtShared.pLock.
480** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
481** is opened on the table with root page BtShared.iTable. Locks are removed
482** from this list when a transaction is committed or rolled back, or when
483** a btree handle is closed.
484*/
485struct BtLock {
486 Btree *pBtree; /* Btree handle holding this lock */
487 Pgno iTable; /* Root page of table */
488 u8 eLock; /* READ_LOCK or WRITE_LOCK */
489 BtLock *pNext; /* Next in BtShared.pLock list */
490};
491
492/* Candidate values for BtLock.eLock */
493#define READ_LOCK 1
494#define WRITE_LOCK 2
495
496#ifdef SQLITE_OMIT_SHARED_CACHE
497 /*
498 ** The functions queryTableLock(), lockTable() and unlockAllTables()
499 ** manipulate entries in the BtShared.pLock linked list used to store
500 ** shared-cache table level locks. If the library is compiled with the
501 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000502 ** of each BtShared structure and so this locking is not necessary.
503 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000504 */
505 #define queryTableLock(a,b,c) SQLITE_OK
506 #define lockTable(a,b,c) SQLITE_OK
danielk1977da184232006-01-05 11:34:32 +0000507 #define unlockAllTables(a)
danielk1977aef0bf62005-12-30 16:28:01 +0000508#else
509
danielk1977e7259292006-01-13 06:33:23 +0000510
danielk1977da184232006-01-05 11:34:32 +0000511/*
danielk1977aef0bf62005-12-30 16:28:01 +0000512** Query to see if btree handle p may obtain a lock of type eLock
513** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
514** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
danielk1977c87d34d2006-01-06 13:00:28 +0000515** SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000516*/
517static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
518 BtShared *pBt = p->pBt;
519 BtLock *pIter;
520
danielk1977da184232006-01-05 11:34:32 +0000521 /* This is a no-op if the shared-cache is not enabled */
drh6f7adc82006-01-11 21:41:20 +0000522 if( 0==sqlite3ThreadDataReadOnly()->useSharedData ){
danielk1977da184232006-01-05 11:34:32 +0000523 return SQLITE_OK;
524 }
525
526 /* This (along with lockTable()) is where the ReadUncommitted flag is
527 ** dealt with. If the caller is querying for a read-lock and the flag is
528 ** set, it is unconditionally granted - even if there are write-locks
529 ** on the table. If a write-lock is requested, the ReadUncommitted flag
530 ** is not considered.
531 **
532 ** In function lockTable(), if a read-lock is demanded and the
533 ** ReadUncommitted flag is set, no entry is added to the locks list
534 ** (BtShared.pLock).
535 **
536 ** To summarize: If the ReadUncommitted flag is set, then read cursors do
537 ** not create or respect table locks. The locking procedure for a
538 ** write-cursor does not change.
539 */
540 if(
541 !p->pSqlite ||
542 0==(p->pSqlite->flags&SQLITE_ReadUncommitted) ||
543 eLock==WRITE_LOCK ||
drh47ded162006-01-06 01:42:58 +0000544 iTab==MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000545 ){
546 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
547 if( pIter->pBtree!=p && pIter->iTable==iTab &&
548 (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
danielk1977c87d34d2006-01-06 13:00:28 +0000549 return SQLITE_LOCKED;
danielk1977da184232006-01-05 11:34:32 +0000550 }
danielk1977aef0bf62005-12-30 16:28:01 +0000551 }
552 }
553 return SQLITE_OK;
554}
555
556/*
557** Add a lock on the table with root-page iTable to the shared-btree used
558** by Btree handle p. Parameter eLock must be either READ_LOCK or
559** WRITE_LOCK.
560**
561** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
562** SQLITE_NOMEM may also be returned.
563*/
564static int lockTable(Btree *p, Pgno iTable, u8 eLock){
565 BtShared *pBt = p->pBt;
566 BtLock *pLock = 0;
567 BtLock *pIter;
568
danielk1977da184232006-01-05 11:34:32 +0000569 /* This is a no-op if the shared-cache is not enabled */
drh6f7adc82006-01-11 21:41:20 +0000570 if( 0==sqlite3ThreadDataReadOnly()->useSharedData ){
danielk1977da184232006-01-05 11:34:32 +0000571 return SQLITE_OK;
572 }
573
danielk1977aef0bf62005-12-30 16:28:01 +0000574 assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
575
danielk1977da184232006-01-05 11:34:32 +0000576 /* If the read-uncommitted flag is set and a read-lock is requested,
577 ** return early without adding an entry to the BtShared.pLock list. See
578 ** comment in function queryTableLock() for more info on handling
579 ** the ReadUncommitted flag.
580 */
581 if(
582 (p->pSqlite) &&
583 (p->pSqlite->flags&SQLITE_ReadUncommitted) &&
584 (eLock==READ_LOCK) &&
drh47ded162006-01-06 01:42:58 +0000585 iTable!=MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000586 ){
587 return SQLITE_OK;
588 }
589
danielk1977aef0bf62005-12-30 16:28:01 +0000590 /* First search the list for an existing lock on this table. */
591 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
592 if( pIter->iTable==iTable && pIter->pBtree==p ){
593 pLock = pIter;
594 break;
595 }
596 }
597
598 /* If the above search did not find a BtLock struct associating Btree p
599 ** with table iTable, allocate one and link it into the list.
600 */
601 if( !pLock ){
602 pLock = (BtLock *)sqliteMalloc(sizeof(BtLock));
603 if( !pLock ){
604 return SQLITE_NOMEM;
605 }
606 pLock->iTable = iTable;
607 pLock->pBtree = p;
608 pLock->pNext = pBt->pLock;
609 pBt->pLock = pLock;
610 }
611
612 /* Set the BtLock.eLock variable to the maximum of the current lock
613 ** and the requested lock. This means if a write-lock was already held
614 ** and a read-lock requested, we don't incorrectly downgrade the lock.
615 */
616 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000617 if( eLock>pLock->eLock ){
618 pLock->eLock = eLock;
619 }
danielk1977aef0bf62005-12-30 16:28:01 +0000620
621 return SQLITE_OK;
622}
623
624/*
625** Release all the table locks (locks obtained via calls to the lockTable()
626** procedure) held by Btree handle p.
627*/
628static void unlockAllTables(Btree *p){
629 BtLock **ppIter = &p->pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000630
631 /* If the shared-cache extension is not enabled, there should be no
632 ** locks in the BtShared.pLock list, making this procedure a no-op. Assert
633 ** that this is the case.
634 */
drh6f7adc82006-01-11 21:41:20 +0000635 assert( sqlite3ThreadDataReadOnly()->useSharedData || 0==*ppIter );
danielk1977da184232006-01-05 11:34:32 +0000636
danielk1977aef0bf62005-12-30 16:28:01 +0000637 while( *ppIter ){
638 BtLock *pLock = *ppIter;
639 if( pLock->pBtree==p ){
640 *ppIter = pLock->pNext;
641 sqliteFree(pLock);
642 }else{
643 ppIter = &pLock->pNext;
644 }
645 }
646}
647#endif /* SQLITE_OMIT_SHARED_CACHE */
648
drh980b1a72006-08-16 16:42:48 +0000649static void releasePage(MemPage *pPage); /* Forward reference */
650
651/*
652** Save the current cursor position in the variables BtCursor.nKey
653** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
654*/
655static int saveCursorPosition(BtCursor *pCur){
656 int rc;
657
658 assert( CURSOR_VALID==pCur->eState );
659 assert( 0==pCur->pKey );
660
661 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
662
663 /* If this is an intKey table, then the above call to BtreeKeySize()
664 ** stores the integer key in pCur->nKey. In this case this value is
665 ** all that is required. Otherwise, if pCur is not open on an intKey
666 ** table, then malloc space for and store the pCur->nKey bytes of key
667 ** data.
668 */
669 if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
670 void *pKey = sqliteMalloc(pCur->nKey);
671 if( pKey ){
672 rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
673 if( rc==SQLITE_OK ){
674 pCur->pKey = pKey;
675 }else{
676 sqliteFree(pKey);
677 }
678 }else{
679 rc = SQLITE_NOMEM;
680 }
681 }
682 assert( !pCur->pPage->intKey || !pCur->pKey );
683
684 if( rc==SQLITE_OK ){
685 releasePage(pCur->pPage);
686 pCur->pPage = 0;
687 pCur->eState = CURSOR_REQUIRESEEK;
688 }
689
690 return rc;
691}
692
693/*
694** Save the positions of all cursors except pExcept open on the table
695** with root-page iRoot. Usually, this is called just before cursor
696** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
697*/
698static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
699 BtCursor *p;
700 for(p=pBt->pCursor; p; p=p->pNext){
701 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
702 p->eState==CURSOR_VALID ){
703 int rc = saveCursorPosition(p);
704 if( SQLITE_OK!=rc ){
705 return rc;
706 }
707 }
708 }
709 return SQLITE_OK;
710}
711
712/*
713** Restore the cursor to the position it was in (or as close to as possible)
714** when saveCursorPosition() was called. Note that this call deletes the
715** saved position info stored by saveCursorPosition(), so there can be
716** at most one effective restoreOrClearCursorPosition() call after each
717** saveCursorPosition().
718**
719** If the second argument argument - doSeek - is false, then instead of
720** returning the cursor to it's saved position, any saved position is deleted
721** and the cursor state set to CURSOR_INVALID.
722*/
723static int restoreOrClearCursorPositionX(BtCursor *pCur, int doSeek){
724 int rc = SQLITE_OK;
725 assert( pCur->eState==CURSOR_REQUIRESEEK );
726 pCur->eState = CURSOR_INVALID;
727 if( doSeek ){
728 rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, &pCur->skip);
729 }
730 if( rc==SQLITE_OK ){
731 sqliteFree(pCur->pKey);
732 pCur->pKey = 0;
733 assert( CURSOR_VALID==pCur->eState || CURSOR_INVALID==pCur->eState );
734 }
735 return rc;
736}
737
738#define restoreOrClearCursorPosition(p,x) \
739 (p->eState==CURSOR_REQUIRESEEK?restoreOrClearCursorPositionX(p,x):SQLITE_OK)
740
danielk1977599fcba2004-11-08 07:13:13 +0000741#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000742/*
drh42cac6d2004-11-20 20:31:11 +0000743** These macros define the location of the pointer-map entry for a
744** database page. The first argument to each is the number of usable
745** bytes on each page of the database (often 1024). The second is the
746** page number to look up in the pointer map.
danielk1977afcdd022004-10-31 16:25:42 +0000747**
748** PTRMAP_PAGENO returns the database page number of the pointer-map
749** page that stores the required pointer. PTRMAP_PTROFFSET returns
750** the offset of the requested map entry.
751**
752** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
753** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
danielk1977599fcba2004-11-08 07:13:13 +0000754** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
755** this test.
danielk1977afcdd022004-10-31 16:25:42 +0000756*/
danielk1977266664d2006-02-10 08:24:21 +0000757#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
758#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
759#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
760
761static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
762 int nPagesPerMapPage = (pBt->usableSize/5)+1;
763 int iPtrMap = (pgno-2)/nPagesPerMapPage;
764 int ret = (iPtrMap*nPagesPerMapPage) + 2;
765 if( ret==PENDING_BYTE_PAGE(pBt) ){
766 ret++;
767 }
768 return ret;
769}
danielk1977a19df672004-11-03 11:37:07 +0000770
danielk1977afcdd022004-10-31 16:25:42 +0000771/*
drh615ae552005-01-16 23:21:00 +0000772** The pointer map is a lookup table that identifies the parent page for
773** each child page in the database file. The parent page is the page that
774** contains a pointer to the child. Every page in the database contains
775** 0 or 1 parent pages. (In this context 'database page' refers
776** to any page that is not part of the pointer map itself.) Each pointer map
777** entry consists of a single byte 'type' and a 4 byte parent page number.
778** The PTRMAP_XXX identifiers below are the valid types.
779**
780** The purpose of the pointer map is to facility moving pages from one
781** position in the file to another as part of autovacuum. When a page
782** is moved, the pointer in its parent must be updated to point to the
783** new location. The pointer map is used to locate the parent page quickly.
danielk1977afcdd022004-10-31 16:25:42 +0000784**
danielk1977687566d2004-11-02 12:56:41 +0000785** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
786** used in this case.
danielk1977afcdd022004-10-31 16:25:42 +0000787**
danielk1977687566d2004-11-02 12:56:41 +0000788** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
789** is not used in this case.
790**
791** PTRMAP_OVERFLOW1: The database page is the first page in a list of
792** overflow pages. The page number identifies the page that
793** contains the cell with a pointer to this overflow page.
794**
795** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
796** overflow pages. The page-number identifies the previous
797** page in the overflow page list.
798**
799** PTRMAP_BTREE: The database page is a non-root btree page. The page number
800** identifies the parent page in the btree.
danielk1977afcdd022004-10-31 16:25:42 +0000801*/
danielk1977687566d2004-11-02 12:56:41 +0000802#define PTRMAP_ROOTPAGE 1
803#define PTRMAP_FREEPAGE 2
804#define PTRMAP_OVERFLOW1 3
805#define PTRMAP_OVERFLOW2 4
806#define PTRMAP_BTREE 5
danielk1977afcdd022004-10-31 16:25:42 +0000807
808/*
809** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000810**
811** This routine updates the pointer map entry for page number 'key'
812** so that it maps to type 'eType' and parent page number 'pgno'.
813** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000814*/
danielk1977aef0bf62005-12-30 16:28:01 +0000815static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk1977afcdd022004-10-31 16:25:42 +0000816 u8 *pPtrmap; /* The pointer map page */
817 Pgno iPtrmap; /* The pointer map page number */
818 int offset; /* Offset in pointer map page */
819 int rc;
820
danielk1977266664d2006-02-10 08:24:21 +0000821 /* The master-journal page number must never be used as a pointer map page */
822 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
823
danielk1977ac11ee62005-01-15 12:45:51 +0000824 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000825 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000826 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000827 }
danielk1977266664d2006-02-10 08:24:21 +0000828 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk1977afcdd022004-10-31 16:25:42 +0000829 rc = sqlite3pager_get(pBt->pPager, iPtrmap, (void **)&pPtrmap);
danielk1977687566d2004-11-02 12:56:41 +0000830 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000831 return rc;
832 }
danielk1977266664d2006-02-10 08:24:21 +0000833 offset = PTRMAP_PTROFFSET(pBt, key);
danielk1977afcdd022004-10-31 16:25:42 +0000834
drh615ae552005-01-16 23:21:00 +0000835 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
836 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk1977afcdd022004-10-31 16:25:42 +0000837 rc = sqlite3pager_write(pPtrmap);
danielk19775558a8a2005-01-17 07:53:44 +0000838 if( rc==SQLITE_OK ){
839 pPtrmap[offset] = eType;
840 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000841 }
danielk1977afcdd022004-10-31 16:25:42 +0000842 }
843
844 sqlite3pager_unref(pPtrmap);
danielk19775558a8a2005-01-17 07:53:44 +0000845 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000846}
847
848/*
849** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000850**
851** This routine retrieves the pointer map entry for page 'key', writing
852** the type and parent page number to *pEType and *pPgno respectively.
853** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000854*/
danielk1977aef0bf62005-12-30 16:28:01 +0000855static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk1977afcdd022004-10-31 16:25:42 +0000856 int iPtrmap; /* Pointer map page index */
857 u8 *pPtrmap; /* Pointer map page data */
858 int offset; /* Offset of entry in pointer map */
859 int rc;
860
danielk1977266664d2006-02-10 08:24:21 +0000861 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk1977afcdd022004-10-31 16:25:42 +0000862 rc = sqlite3pager_get(pBt->pPager, iPtrmap, (void **)&pPtrmap);
863 if( rc!=0 ){
864 return rc;
865 }
866
danielk1977266664d2006-02-10 08:24:21 +0000867 offset = PTRMAP_PTROFFSET(pBt, key);
drh43617e92006-03-06 20:55:46 +0000868 assert( pEType!=0 );
869 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000870 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000871
872 sqlite3pager_unref(pPtrmap);
drh49285702005-09-17 15:20:26 +0000873 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000874 return SQLITE_OK;
875}
876
877#endif /* SQLITE_OMIT_AUTOVACUUM */
878
drh0d316a42002-08-11 20:10:47 +0000879/*
drh271efa52004-05-30 19:19:05 +0000880** Given a btree page and a cell index (0 means the first cell on
881** the page, 1 means the second cell, and so forth) return a pointer
882** to the cell content.
883**
884** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000885*/
drh43605152004-05-29 21:46:49 +0000886static u8 *findCell(MemPage *pPage, int iCell){
887 u8 *data = pPage->aData;
888 assert( iCell>=0 );
889 assert( iCell<get2byte(&data[pPage->hdrOffset+3]) );
890 return data + get2byte(&data[pPage->cellOffset+2*iCell]);
891}
892
893/*
894** This a more complex version of findCell() that works for
895** pages that do contain overflow cells. See insert
896*/
897static u8 *findOverflowCell(MemPage *pPage, int iCell){
898 int i;
899 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000900 int k;
901 struct _OvflCell *pOvfl;
902 pOvfl = &pPage->aOvfl[i];
903 k = pOvfl->idx;
904 if( k<=iCell ){
905 if( k==iCell ){
906 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000907 }
908 iCell--;
909 }
910 }
911 return findCell(pPage, iCell);
912}
913
914/*
915** Parse a cell content block and fill in the CellInfo structure. There
916** are two versions of this function. parseCell() takes a cell index
917** as the second argument and parseCellPtr() takes a pointer to the
918** body of the cell as its second argument.
919*/
920static void parseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000921 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000922 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000923 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000924){
drh271efa52004-05-30 19:19:05 +0000925 int n; /* Number bytes in cell content header */
926 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000927
928 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000929 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000930 n = pPage->childPtrSize;
931 assert( n==4-4*pPage->leaf );
drh8b18dd42004-05-12 19:18:15 +0000932 if( pPage->hasData ){
drh271efa52004-05-30 19:19:05 +0000933 n += getVarint32(&pCell[n], &nPayload);
drh8b18dd42004-05-12 19:18:15 +0000934 }else{
drh271efa52004-05-30 19:19:05 +0000935 nPayload = 0;
drh3aac2dd2004-04-26 14:10:20 +0000936 }
drh271efa52004-05-30 19:19:05 +0000937 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000938 if( pPage->intKey ){
939 n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
940 }else{
941 u32 x;
942 n += getVarint32(&pCell[n], &x);
943 pInfo->nKey = x;
944 nPayload += x;
drh6f11bef2004-05-13 01:12:56 +0000945 }
drh504b6982006-01-22 21:52:56 +0000946 pInfo->nHeader = n;
drh271efa52004-05-30 19:19:05 +0000947 if( nPayload<=pPage->maxLocal ){
948 /* This is the (easy) common case where the entire payload fits
949 ** on the local page. No overflow is required.
950 */
951 int nSize; /* Total size of cell content in bytes */
drh6f11bef2004-05-13 01:12:56 +0000952 pInfo->nLocal = nPayload;
953 pInfo->iOverflow = 0;
drh271efa52004-05-30 19:19:05 +0000954 nSize = nPayload + n;
955 if( nSize<4 ){
956 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000957 }
drh271efa52004-05-30 19:19:05 +0000958 pInfo->nSize = nSize;
drh6f11bef2004-05-13 01:12:56 +0000959 }else{
drh271efa52004-05-30 19:19:05 +0000960 /* If the payload will not fit completely on the local page, we have
961 ** to decide how much to store locally and how much to spill onto
962 ** overflow pages. The strategy is to minimize the amount of unused
963 ** space on overflow pages while keeping the amount of local storage
964 ** in between minLocal and maxLocal.
965 **
966 ** Warning: changing the way overflow payload is distributed in any
967 ** way will result in an incompatible file format.
968 */
969 int minLocal; /* Minimum amount of payload held locally */
970 int maxLocal; /* Maximum amount of payload held locally */
971 int surplus; /* Overflow payload available for local storage */
972
973 minLocal = pPage->minLocal;
974 maxLocal = pPage->maxLocal;
975 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000976 if( surplus <= maxLocal ){
977 pInfo->nLocal = surplus;
978 }else{
979 pInfo->nLocal = minLocal;
980 }
981 pInfo->iOverflow = pInfo->nLocal + n;
982 pInfo->nSize = pInfo->iOverflow + 4;
983 }
drh3aac2dd2004-04-26 14:10:20 +0000984}
drh43605152004-05-29 21:46:49 +0000985static void parseCell(
986 MemPage *pPage, /* Page containing the cell */
987 int iCell, /* The cell index. First cell is 0 */
988 CellInfo *pInfo /* Fill in this structure */
989){
990 parseCellPtr(pPage, findCell(pPage, iCell), pInfo);
991}
drh3aac2dd2004-04-26 14:10:20 +0000992
993/*
drh43605152004-05-29 21:46:49 +0000994** Compute the total number of bytes that a Cell needs in the cell
995** data area of the btree-page. The return number includes the cell
996** data header and the local payload, but not any overflow page or
997** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000998*/
danielk1977bc6ada42004-06-30 08:20:16 +0000999#ifndef NDEBUG
drh43605152004-05-29 21:46:49 +00001000static int cellSize(MemPage *pPage, int iCell){
drh6f11bef2004-05-13 01:12:56 +00001001 CellInfo info;
drh43605152004-05-29 21:46:49 +00001002 parseCell(pPage, iCell, &info);
1003 return info.nSize;
1004}
danielk1977bc6ada42004-06-30 08:20:16 +00001005#endif
drh43605152004-05-29 21:46:49 +00001006static int cellSizePtr(MemPage *pPage, u8 *pCell){
1007 CellInfo info;
1008 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00001009 return info.nSize;
drh3b7511c2001-05-26 13:15:44 +00001010}
1011
danielk197779a40da2005-01-16 08:00:01 +00001012#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001013/*
danielk197726836652005-01-17 01:33:13 +00001014** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001015** to an overflow page, insert an entry into the pointer-map
1016** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001017*/
danielk197726836652005-01-17 01:33:13 +00001018static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
danielk197779a40da2005-01-16 08:00:01 +00001019 if( pCell ){
1020 CellInfo info;
1021 parseCellPtr(pPage, pCell, &info);
1022 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
1023 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
1024 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
1025 }
danielk1977ac11ee62005-01-15 12:45:51 +00001026 }
danielk197779a40da2005-01-16 08:00:01 +00001027 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +00001028}
danielk197726836652005-01-17 01:33:13 +00001029/*
1030** If the cell with index iCell on page pPage contains a pointer
1031** to an overflow page, insert an entry into the pointer-map
1032** for the overflow page.
1033*/
1034static int ptrmapPutOvfl(MemPage *pPage, int iCell){
1035 u8 *pCell;
1036 pCell = findOverflowCell(pPage, iCell);
1037 return ptrmapPutOvflPtr(pPage, pCell);
1038}
danielk197779a40da2005-01-16 08:00:01 +00001039#endif
1040
danielk1977ac11ee62005-01-15 12:45:51 +00001041
1042/*
drhda200cc2004-05-09 11:51:38 +00001043** Do sanity checking on a page. Throw an exception if anything is
1044** not right.
1045**
1046** This routine is used for internal error checking only. It is omitted
1047** from most builds.
1048*/
1049#if defined(BTREE_DEBUG) && !defined(NDEBUG) && 0
1050static void _pageIntegrity(MemPage *pPage){
drhb6f41482004-05-14 01:58:11 +00001051 int usableSize;
drhda200cc2004-05-09 11:51:38 +00001052 u8 *data;
drh43605152004-05-29 21:46:49 +00001053 int i, j, idx, c, pc, hdr, nFree;
1054 int cellOffset;
1055 int nCell, cellLimit;
drh2e38c322004-09-03 18:38:44 +00001056 u8 *used;
drhda200cc2004-05-09 11:51:38 +00001057
drh2e38c322004-09-03 18:38:44 +00001058 used = sqliteMallocRaw( pPage->pBt->pageSize );
1059 if( used==0 ) return;
drhb6f41482004-05-14 01:58:11 +00001060 usableSize = pPage->pBt->usableSize;
drh07d183d2005-05-01 22:52:42 +00001061 assert( pPage->aData==&((unsigned char*)pPage)[-pPage->pBt->pageSize] );
drhda200cc2004-05-09 11:51:38 +00001062 hdr = pPage->hdrOffset;
1063 assert( hdr==(pPage->pgno==1 ? 100 : 0) );
1064 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
1065 c = pPage->aData[hdr];
1066 if( pPage->isInit ){
1067 assert( pPage->leaf == ((c & PTF_LEAF)!=0) );
1068 assert( pPage->zeroData == ((c & PTF_ZERODATA)!=0) );
drh8b18dd42004-05-12 19:18:15 +00001069 assert( pPage->leafData == ((c & PTF_LEAFDATA)!=0) );
1070 assert( pPage->intKey == ((c & (PTF_INTKEY|PTF_LEAFDATA))!=0) );
1071 assert( pPage->hasData ==
1072 !(pPage->zeroData || (!pPage->leaf && pPage->leafData)) );
drh43605152004-05-29 21:46:49 +00001073 assert( pPage->cellOffset==pPage->hdrOffset+12-4*pPage->leaf );
1074 assert( pPage->nCell = get2byte(&pPage->aData[hdr+3]) );
drhda200cc2004-05-09 11:51:38 +00001075 }
1076 data = pPage->aData;
drhb6f41482004-05-14 01:58:11 +00001077 memset(used, 0, usableSize);
drhda200cc2004-05-09 11:51:38 +00001078 for(i=0; i<hdr+10-pPage->leaf*4; i++) used[i] = 1;
1079 nFree = 0;
1080 pc = get2byte(&data[hdr+1]);
1081 while( pc ){
1082 int size;
drhb6f41482004-05-14 01:58:11 +00001083 assert( pc>0 && pc<usableSize-4 );
drhda200cc2004-05-09 11:51:38 +00001084 size = get2byte(&data[pc+2]);
drhb6f41482004-05-14 01:58:11 +00001085 assert( pc+size<=usableSize );
drhda200cc2004-05-09 11:51:38 +00001086 nFree += size;
1087 for(i=pc; i<pc+size; i++){
1088 assert( used[i]==0 );
1089 used[i] = 1;
1090 }
1091 pc = get2byte(&data[pc]);
1092 }
drhda200cc2004-05-09 11:51:38 +00001093 idx = 0;
drh43605152004-05-29 21:46:49 +00001094 nCell = get2byte(&data[hdr+3]);
1095 cellLimit = get2byte(&data[hdr+5]);
1096 assert( pPage->isInit==0
1097 || pPage->nFree==nFree+data[hdr+7]+cellLimit-(cellOffset+2*nCell) );
1098 cellOffset = pPage->cellOffset;
1099 for(i=0; i<nCell; i++){
drhda200cc2004-05-09 11:51:38 +00001100 int size;
drh43605152004-05-29 21:46:49 +00001101 pc = get2byte(&data[cellOffset+2*i]);
drhb6f41482004-05-14 01:58:11 +00001102 assert( pc>0 && pc<usableSize-4 );
drhda200cc2004-05-09 11:51:38 +00001103 size = cellSize(pPage, &data[pc]);
drhb6f41482004-05-14 01:58:11 +00001104 assert( pc+size<=usableSize );
drh43605152004-05-29 21:46:49 +00001105 for(j=pc; j<pc+size; j++){
1106 assert( used[j]==0 );
1107 used[j] = 1;
drhda200cc2004-05-09 11:51:38 +00001108 }
drhda200cc2004-05-09 11:51:38 +00001109 }
drh43605152004-05-29 21:46:49 +00001110 for(i=cellOffset+2*nCell; i<cellimit; i++){
1111 assert( used[i]==0 );
1112 used[i] = 1;
1113 }
drhda200cc2004-05-09 11:51:38 +00001114 nFree = 0;
drhb6f41482004-05-14 01:58:11 +00001115 for(i=0; i<usableSize; i++){
drhda200cc2004-05-09 11:51:38 +00001116 assert( used[i]<=1 );
1117 if( used[i]==0 ) nFree++;
1118 }
drh43605152004-05-29 21:46:49 +00001119 assert( nFree==data[hdr+7] );
drh2e38c322004-09-03 18:38:44 +00001120 sqliteFree(used);
drhda200cc2004-05-09 11:51:38 +00001121}
1122#define pageIntegrity(X) _pageIntegrity(X)
1123#else
1124# define pageIntegrity(X)
1125#endif
1126
danielk1977aef0bf62005-12-30 16:28:01 +00001127/* A bunch of assert() statements to check the transaction state variables
1128** of handle p (type Btree*) are internally consistent.
1129*/
1130#define btreeIntegrity(p) \
1131 assert( p->inTrans!=TRANS_NONE || p->pBt->nTransaction<p->pBt->nRef ); \
1132 assert( p->pBt->nTransaction<=p->pBt->nRef ); \
1133 assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
1134 assert( p->pBt->inTransaction>=p->inTrans );
1135
drhda200cc2004-05-09 11:51:38 +00001136/*
drh72f82862001-05-24 21:06:34 +00001137** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001138** end of the page and all free space is collected into one
1139** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001140** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001141*/
drh2e38c322004-09-03 18:38:44 +00001142static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001143 int i; /* Loop counter */
1144 int pc; /* Address of a i-th cell */
1145 int addr; /* Offset of first byte after cell pointer array */
1146 int hdr; /* Offset to the page header */
1147 int size; /* Size of a cell */
1148 int usableSize; /* Number of usable bytes on a page */
1149 int cellOffset; /* Offset to the cell pointer array */
1150 int brk; /* Offset to the cell content area */
1151 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001152 unsigned char *data; /* The page data */
1153 unsigned char *temp; /* Temp area for cell content */
drh2af926b2001-05-15 00:39:25 +00001154
drha34b6762004-05-07 13:30:42 +00001155 assert( sqlite3pager_iswriteable(pPage->aData) );
drh9e572e62004-04-23 23:43:10 +00001156 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001157 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001158 assert( pPage->nOverflow==0 );
drh2e38c322004-09-03 18:38:44 +00001159 temp = sqliteMalloc( pPage->pBt->pageSize );
1160 if( temp==0 ) return SQLITE_NOMEM;
drh43605152004-05-29 21:46:49 +00001161 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001162 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001163 cellOffset = pPage->cellOffset;
1164 nCell = pPage->nCell;
1165 assert( nCell==get2byte(&data[hdr+3]) );
1166 usableSize = pPage->pBt->usableSize;
1167 brk = get2byte(&data[hdr+5]);
1168 memcpy(&temp[brk], &data[brk], usableSize - brk);
1169 brk = usableSize;
1170 for(i=0; i<nCell; i++){
1171 u8 *pAddr; /* The i-th cell pointer */
1172 pAddr = &data[cellOffset + i*2];
1173 pc = get2byte(pAddr);
1174 assert( pc<pPage->pBt->usableSize );
1175 size = cellSizePtr(pPage, &temp[pc]);
1176 brk -= size;
1177 memcpy(&data[brk], &temp[pc], size);
1178 put2byte(pAddr, brk);
drh2af926b2001-05-15 00:39:25 +00001179 }
drh43605152004-05-29 21:46:49 +00001180 assert( brk>=cellOffset+2*nCell );
1181 put2byte(&data[hdr+5], brk);
1182 data[hdr+1] = 0;
1183 data[hdr+2] = 0;
1184 data[hdr+7] = 0;
1185 addr = cellOffset+2*nCell;
1186 memset(&data[addr], 0, brk-addr);
drh2e38c322004-09-03 18:38:44 +00001187 sqliteFree(temp);
1188 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001189}
1190
drha059ad02001-04-17 20:09:11 +00001191/*
drh43605152004-05-29 21:46:49 +00001192** Allocate nByte bytes of space on a page.
drhbd03cae2001-06-02 02:40:57 +00001193**
drh9e572e62004-04-23 23:43:10 +00001194** Return the index into pPage->aData[] of the first byte of
drhbd03cae2001-06-02 02:40:57 +00001195** the new allocation. Or return 0 if there is not enough free
1196** space on the page to satisfy the allocation request.
drh2af926b2001-05-15 00:39:25 +00001197**
drh72f82862001-05-24 21:06:34 +00001198** If the page contains nBytes of free space but does not contain
drh8b2f49b2001-06-08 00:21:52 +00001199** nBytes of contiguous free space, then this routine automatically
1200** calls defragementPage() to consolidate all free space before
1201** allocating the new chunk.
drh7e3b0a02001-04-28 16:52:40 +00001202*/
drh9e572e62004-04-23 23:43:10 +00001203static int allocateSpace(MemPage *pPage, int nByte){
drh3aac2dd2004-04-26 14:10:20 +00001204 int addr, pc, hdr;
drh9e572e62004-04-23 23:43:10 +00001205 int size;
drh24cd67e2004-05-10 16:18:47 +00001206 int nFrag;
drh43605152004-05-29 21:46:49 +00001207 int top;
1208 int nCell;
1209 int cellOffset;
drh9e572e62004-04-23 23:43:10 +00001210 unsigned char *data;
drh43605152004-05-29 21:46:49 +00001211
drh9e572e62004-04-23 23:43:10 +00001212 data = pPage->aData;
drha34b6762004-05-07 13:30:42 +00001213 assert( sqlite3pager_iswriteable(data) );
drh9e572e62004-04-23 23:43:10 +00001214 assert( pPage->pBt );
1215 if( nByte<4 ) nByte = 4;
drh43605152004-05-29 21:46:49 +00001216 if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
1217 pPage->nFree -= nByte;
drh9e572e62004-04-23 23:43:10 +00001218 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001219
1220 nFrag = data[hdr+7];
1221 if( nFrag<60 ){
1222 /* Search the freelist looking for a slot big enough to satisfy the
1223 ** space request. */
1224 addr = hdr+1;
1225 while( (pc = get2byte(&data[addr]))>0 ){
1226 size = get2byte(&data[pc+2]);
1227 if( size>=nByte ){
1228 if( size<nByte+4 ){
1229 memcpy(&data[addr], &data[pc], 2);
1230 data[hdr+7] = nFrag + size - nByte;
1231 return pc;
1232 }else{
1233 put2byte(&data[pc+2], size-nByte);
1234 return pc + size - nByte;
1235 }
1236 }
1237 addr = pc;
drh9e572e62004-04-23 23:43:10 +00001238 }
1239 }
drh43605152004-05-29 21:46:49 +00001240
1241 /* Allocate memory from the gap in between the cell pointer array
1242 ** and the cell content area.
1243 */
1244 top = get2byte(&data[hdr+5]);
1245 nCell = get2byte(&data[hdr+3]);
1246 cellOffset = pPage->cellOffset;
1247 if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
drh2e38c322004-09-03 18:38:44 +00001248 if( defragmentPage(pPage) ) return 0;
drh43605152004-05-29 21:46:49 +00001249 top = get2byte(&data[hdr+5]);
drh2af926b2001-05-15 00:39:25 +00001250 }
drh43605152004-05-29 21:46:49 +00001251 top -= nByte;
1252 assert( cellOffset + 2*nCell <= top );
1253 put2byte(&data[hdr+5], top);
1254 return top;
drh7e3b0a02001-04-28 16:52:40 +00001255}
1256
1257/*
drh9e572e62004-04-23 23:43:10 +00001258** Return a section of the pPage->aData to the freelist.
1259** The first byte of the new free block is pPage->aDisk[start]
1260** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001261**
1262** Most of the effort here is involved in coalesing adjacent
1263** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001264*/
drh9e572e62004-04-23 23:43:10 +00001265static void freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001266 int addr, pbegin, hdr;
drh9e572e62004-04-23 23:43:10 +00001267 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001268
drh9e572e62004-04-23 23:43:10 +00001269 assert( pPage->pBt!=0 );
drha34b6762004-05-07 13:30:42 +00001270 assert( sqlite3pager_iswriteable(data) );
drh9e572e62004-04-23 23:43:10 +00001271 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +00001272 assert( (start + size)<=pPage->pBt->usableSize );
drh9e572e62004-04-23 23:43:10 +00001273 if( size<4 ) size = 4;
1274
drhfcce93f2006-02-22 03:08:32 +00001275#ifdef SQLITE_SECURE_DELETE
1276 /* Overwrite deleted information with zeros when the SECURE_DELETE
1277 ** option is enabled at compile-time */
1278 memset(&data[start], 0, size);
1279#endif
1280
drh9e572e62004-04-23 23:43:10 +00001281 /* Add the space back into the linked list of freeblocks */
drh43605152004-05-29 21:46:49 +00001282 hdr = pPage->hdrOffset;
1283 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001284 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +00001285 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +00001286 assert( pbegin>addr );
1287 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001288 }
drhb6f41482004-05-14 01:58:11 +00001289 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +00001290 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001291 put2byte(&data[addr], start);
1292 put2byte(&data[start], pbegin);
1293 put2byte(&data[start+2], size);
drh2af926b2001-05-15 00:39:25 +00001294 pPage->nFree += size;
drh9e572e62004-04-23 23:43:10 +00001295
1296 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +00001297 addr = pPage->hdrOffset + 1;
1298 while( (pbegin = get2byte(&data[addr]))>0 ){
drh9e572e62004-04-23 23:43:10 +00001299 int pnext, psize;
drh3aac2dd2004-04-26 14:10:20 +00001300 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001301 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001302 pnext = get2byte(&data[pbegin]);
1303 psize = get2byte(&data[pbegin+2]);
1304 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1305 int frag = pnext - (pbegin+psize);
drh43605152004-05-29 21:46:49 +00001306 assert( frag<=data[pPage->hdrOffset+7] );
1307 data[pPage->hdrOffset+7] -= frag;
drh9e572e62004-04-23 23:43:10 +00001308 put2byte(&data[pbegin], get2byte(&data[pnext]));
1309 put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
1310 }else{
drh3aac2dd2004-04-26 14:10:20 +00001311 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001312 }
1313 }
drh7e3b0a02001-04-28 16:52:40 +00001314
drh43605152004-05-29 21:46:49 +00001315 /* If the cell content area begins with a freeblock, remove it. */
1316 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1317 int top;
1318 pbegin = get2byte(&data[hdr+1]);
1319 memcpy(&data[hdr+1], &data[pbegin], 2);
1320 top = get2byte(&data[hdr+5]);
1321 put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
drh4b70f112004-05-02 21:12:19 +00001322 }
drh4b70f112004-05-02 21:12:19 +00001323}
1324
1325/*
drh271efa52004-05-30 19:19:05 +00001326** Decode the flags byte (the first byte of the header) for a page
1327** and initialize fields of the MemPage structure accordingly.
1328*/
1329static void decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001330 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001331
1332 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1333 pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
1334 pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
1335 pPage->leaf = (flagByte & PTF_LEAF)!=0;
1336 pPage->childPtrSize = 4*(pPage->leaf==0);
1337 pBt = pPage->pBt;
1338 if( flagByte & PTF_LEAFDATA ){
1339 pPage->leafData = 1;
1340 pPage->maxLocal = pBt->maxLeaf;
1341 pPage->minLocal = pBt->minLeaf;
1342 }else{
1343 pPage->leafData = 0;
1344 pPage->maxLocal = pBt->maxLocal;
1345 pPage->minLocal = pBt->minLocal;
1346 }
1347 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
1348}
1349
1350/*
drh7e3b0a02001-04-28 16:52:40 +00001351** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001352**
drhbd03cae2001-06-02 02:40:57 +00001353** The pParent parameter must be a pointer to the MemPage which
drh9e572e62004-04-23 23:43:10 +00001354** is the parent of the page being initialized. The root of a
1355** BTree has no parent and so for that page, pParent==NULL.
drh5e2f8b92001-05-28 00:41:15 +00001356**
drh72f82862001-05-24 21:06:34 +00001357** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001358** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001359** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1360** guarantee that the page is well-formed. It only shows that
1361** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001362*/
drh9e572e62004-04-23 23:43:10 +00001363static int initPage(
drh3aac2dd2004-04-26 14:10:20 +00001364 MemPage *pPage, /* The page to be initialized */
drh9e572e62004-04-23 23:43:10 +00001365 MemPage *pParent /* The parent. Might be NULL */
1366){
drh271efa52004-05-30 19:19:05 +00001367 int pc; /* Address of a freeblock within pPage->aData[] */
drh271efa52004-05-30 19:19:05 +00001368 int hdr; /* Offset to beginning of page header */
1369 u8 *data; /* Equal to pPage->aData */
danielk1977aef0bf62005-12-30 16:28:01 +00001370 BtShared *pBt; /* The main btree structure */
drh271efa52004-05-30 19:19:05 +00001371 int usableSize; /* Amount of usable space on each page */
1372 int cellOffset; /* Offset from start of page to first cell pointer */
1373 int nFree; /* Number of unused bytes on the page */
1374 int top; /* First byte of the cell content area */
drh2af926b2001-05-15 00:39:25 +00001375
drh2e38c322004-09-03 18:38:44 +00001376 pBt = pPage->pBt;
1377 assert( pBt!=0 );
1378 assert( pParent==0 || pParent->pBt==pBt );
drha34b6762004-05-07 13:30:42 +00001379 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
drh07d183d2005-05-01 22:52:42 +00001380 assert( pPage->aData == &((unsigned char*)pPage)[-pBt->pageSize] );
drhee696e22004-08-30 16:52:17 +00001381 if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
1382 /* The parent page should never change unless the file is corrupt */
drh49285702005-09-17 15:20:26 +00001383 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001384 }
drh10617cd2004-05-14 15:27:27 +00001385 if( pPage->isInit ) return SQLITE_OK;
drhda200cc2004-05-09 11:51:38 +00001386 if( pPage->pParent==0 && pParent!=0 ){
1387 pPage->pParent = pParent;
drha34b6762004-05-07 13:30:42 +00001388 sqlite3pager_ref(pParent->aData);
drh5e2f8b92001-05-28 00:41:15 +00001389 }
drhde647132004-05-07 17:57:49 +00001390 hdr = pPage->hdrOffset;
drha34b6762004-05-07 13:30:42 +00001391 data = pPage->aData;
drh271efa52004-05-30 19:19:05 +00001392 decodeFlags(pPage, data[hdr]);
drh43605152004-05-29 21:46:49 +00001393 pPage->nOverflow = 0;
drhc8629a12004-05-08 20:07:40 +00001394 pPage->idxShift = 0;
drh2e38c322004-09-03 18:38:44 +00001395 usableSize = pBt->usableSize;
drh43605152004-05-29 21:46:49 +00001396 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1397 top = get2byte(&data[hdr+5]);
1398 pPage->nCell = get2byte(&data[hdr+3]);
drh2e38c322004-09-03 18:38:44 +00001399 if( pPage->nCell>MX_CELL(pBt) ){
drhee696e22004-08-30 16:52:17 +00001400 /* To many cells for a single page. The page must be corrupt */
drh49285702005-09-17 15:20:26 +00001401 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001402 }
1403 if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
1404 /* All pages must have at least one cell, except for root pages */
drh49285702005-09-17 15:20:26 +00001405 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001406 }
drh9e572e62004-04-23 23:43:10 +00001407
1408 /* Compute the total free space on the page */
drh9e572e62004-04-23 23:43:10 +00001409 pc = get2byte(&data[hdr+1]);
drh43605152004-05-29 21:46:49 +00001410 nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
drh9e572e62004-04-23 23:43:10 +00001411 while( pc>0 ){
1412 int next, size;
drhee696e22004-08-30 16:52:17 +00001413 if( pc>usableSize-4 ){
1414 /* Free block is off the page */
drh49285702005-09-17 15:20:26 +00001415 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001416 }
drh9e572e62004-04-23 23:43:10 +00001417 next = get2byte(&data[pc]);
1418 size = get2byte(&data[pc+2]);
drhee696e22004-08-30 16:52:17 +00001419 if( next>0 && next<=pc+size+3 ){
1420 /* Free blocks must be in accending order */
drh49285702005-09-17 15:20:26 +00001421 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001422 }
drh3add3672004-05-15 00:29:24 +00001423 nFree += size;
drh9e572e62004-04-23 23:43:10 +00001424 pc = next;
1425 }
drh3add3672004-05-15 00:29:24 +00001426 pPage->nFree = nFree;
drhee696e22004-08-30 16:52:17 +00001427 if( nFree>=usableSize ){
1428 /* Free space cannot exceed total page size */
drh49285702005-09-17 15:20:26 +00001429 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001430 }
drh9e572e62004-04-23 23:43:10 +00001431
drhde647132004-05-07 17:57:49 +00001432 pPage->isInit = 1;
drhda200cc2004-05-09 11:51:38 +00001433 pageIntegrity(pPage);
drh9e572e62004-04-23 23:43:10 +00001434 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001435}
1436
1437/*
drh8b2f49b2001-06-08 00:21:52 +00001438** Set up a raw page so that it looks like a database page holding
1439** no entries.
drhbd03cae2001-06-02 02:40:57 +00001440*/
drh9e572e62004-04-23 23:43:10 +00001441static void zeroPage(MemPage *pPage, int flags){
1442 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001443 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00001444 int hdr = pPage->hdrOffset;
drh9e572e62004-04-23 23:43:10 +00001445 int first;
1446
drhda200cc2004-05-09 11:51:38 +00001447 assert( sqlite3pager_pagenumber(data)==pPage->pgno );
drh07d183d2005-05-01 22:52:42 +00001448 assert( &data[pBt->pageSize] == (unsigned char*)pPage );
drha34b6762004-05-07 13:30:42 +00001449 assert( sqlite3pager_iswriteable(data) );
drhb6f41482004-05-14 01:58:11 +00001450 memset(&data[hdr], 0, pBt->usableSize - hdr);
drh9e572e62004-04-23 23:43:10 +00001451 data[hdr] = flags;
drh43605152004-05-29 21:46:49 +00001452 first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
1453 memset(&data[hdr+1], 0, 4);
1454 data[hdr+7] = 0;
1455 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001456 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001457 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001458 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001459 pPage->cellOffset = first;
1460 pPage->nOverflow = 0;
drhda200cc2004-05-09 11:51:38 +00001461 pPage->idxShift = 0;
drh43605152004-05-29 21:46:49 +00001462 pPage->nCell = 0;
drhda200cc2004-05-09 11:51:38 +00001463 pPage->isInit = 1;
1464 pageIntegrity(pPage);
drhbd03cae2001-06-02 02:40:57 +00001465}
1466
1467/*
drh3aac2dd2004-04-26 14:10:20 +00001468** Get a page from the pager. Initialize the MemPage.pBt and
1469** MemPage.aData elements if needed.
1470*/
danielk1977aef0bf62005-12-30 16:28:01 +00001471static int getPage(BtShared *pBt, Pgno pgno, MemPage **ppPage){
drh3aac2dd2004-04-26 14:10:20 +00001472 int rc;
1473 unsigned char *aData;
1474 MemPage *pPage;
drha34b6762004-05-07 13:30:42 +00001475 rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData);
drh3aac2dd2004-04-26 14:10:20 +00001476 if( rc ) return rc;
drh07d183d2005-05-01 22:52:42 +00001477 pPage = (MemPage*)&aData[pBt->pageSize];
drh3aac2dd2004-04-26 14:10:20 +00001478 pPage->aData = aData;
1479 pPage->pBt = pBt;
1480 pPage->pgno = pgno;
drhde647132004-05-07 17:57:49 +00001481 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
drh3aac2dd2004-04-26 14:10:20 +00001482 *ppPage = pPage;
1483 return SQLITE_OK;
1484}
1485
1486/*
drhde647132004-05-07 17:57:49 +00001487** Get a page from the pager and initialize it. This routine
1488** is just a convenience wrapper around separate calls to
1489** getPage() and initPage().
1490*/
1491static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001492 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001493 Pgno pgno, /* Number of the page to get */
1494 MemPage **ppPage, /* Write the page pointer here */
1495 MemPage *pParent /* Parent of the page */
1496){
1497 int rc;
drhee696e22004-08-30 16:52:17 +00001498 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001499 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001500 }
drhde647132004-05-07 17:57:49 +00001501 rc = getPage(pBt, pgno, ppPage);
drh10617cd2004-05-14 15:27:27 +00001502 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
drhde647132004-05-07 17:57:49 +00001503 rc = initPage(*ppPage, pParent);
1504 }
1505 return rc;
1506}
1507
1508/*
drh3aac2dd2004-04-26 14:10:20 +00001509** Release a MemPage. This should be called once for each prior
1510** call to getPage.
1511*/
drh4b70f112004-05-02 21:12:19 +00001512static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001513 if( pPage ){
1514 assert( pPage->aData );
1515 assert( pPage->pBt );
drh07d183d2005-05-01 22:52:42 +00001516 assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage );
drha34b6762004-05-07 13:30:42 +00001517 sqlite3pager_unref(pPage->aData);
drh3aac2dd2004-04-26 14:10:20 +00001518 }
1519}
1520
1521/*
drh72f82862001-05-24 21:06:34 +00001522** This routine is called when the reference count for a page
1523** reaches zero. We need to unref the pParent pointer when that
1524** happens.
1525*/
drhb6f41482004-05-14 01:58:11 +00001526static void pageDestructor(void *pData, int pageSize){
drh07d183d2005-05-01 22:52:42 +00001527 MemPage *pPage;
1528 assert( (pageSize & 7)==0 );
1529 pPage = (MemPage*)&((char*)pData)[pageSize];
drh72f82862001-05-24 21:06:34 +00001530 if( pPage->pParent ){
1531 MemPage *pParent = pPage->pParent;
1532 pPage->pParent = 0;
drha34b6762004-05-07 13:30:42 +00001533 releasePage(pParent);
drh72f82862001-05-24 21:06:34 +00001534 }
drh3aac2dd2004-04-26 14:10:20 +00001535 pPage->isInit = 0;
drh72f82862001-05-24 21:06:34 +00001536}
1537
1538/*
drha6abd042004-06-09 17:37:22 +00001539** During a rollback, when the pager reloads information into the cache
1540** so that the cache is restored to its original state at the start of
1541** the transaction, for each page restored this routine is called.
1542**
1543** This routine needs to reset the extra data section at the end of the
1544** page to agree with the restored data.
1545*/
1546static void pageReinit(void *pData, int pageSize){
drh07d183d2005-05-01 22:52:42 +00001547 MemPage *pPage;
1548 assert( (pageSize & 7)==0 );
1549 pPage = (MemPage*)&((char*)pData)[pageSize];
drha6abd042004-06-09 17:37:22 +00001550 if( pPage->isInit ){
1551 pPage->isInit = 0;
1552 initPage(pPage, pPage->pParent);
1553 }
1554}
1555
1556/*
drhad3e0102004-09-03 23:32:18 +00001557** Open a database file.
1558**
drh382c0242001-10-06 16:33:02 +00001559** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001560** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001561** database file will be deleted when sqlite3BtreeClose() is called.
drha059ad02001-04-17 20:09:11 +00001562*/
drh23e11ca2004-05-04 17:27:28 +00001563int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001564 const char *zFilename, /* Name of the file containing the BTree database */
danielk1977aef0bf62005-12-30 16:28:01 +00001565 sqlite3 *pSqlite, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001566 Btree **ppBtree, /* Pointer to new Btree object written here */
drh90f5ecb2004-07-22 01:19:35 +00001567 int flags /* Options */
drh6019e162001-07-02 17:51:45 +00001568){
danielk1977aef0bf62005-12-30 16:28:01 +00001569 BtShared *pBt; /* Shared part of btree structure */
1570 Btree *p; /* Handle to return */
drha34b6762004-05-07 13:30:42 +00001571 int rc;
drh90f5ecb2004-07-22 01:19:35 +00001572 int nReserve;
1573 unsigned char zDbHeader[100];
drh6f7adc82006-01-11 21:41:20 +00001574#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1575 const ThreadData *pTsdro;
danielk1977da184232006-01-05 11:34:32 +00001576#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001577
1578 /* Set the variable isMemdb to true for an in-memory database, or
1579 ** false for a file-based database. This symbol is only required if
1580 ** either of the shared-data or autovacuum features are compiled
1581 ** into the library.
1582 */
1583#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1584 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001585 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001586 #else
drh980b1a72006-08-16 16:42:48 +00001587 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001588 #endif
1589#endif
1590
1591 p = sqliteMalloc(sizeof(Btree));
1592 if( !p ){
1593 return SQLITE_NOMEM;
1594 }
1595 p->inTrans = TRANS_NONE;
1596 p->pSqlite = pSqlite;
1597
1598 /* Try to find an existing Btree structure opened on zFilename. */
drh198bf392006-01-06 21:52:49 +00001599#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drh6f7adc82006-01-11 21:41:20 +00001600 pTsdro = sqlite3ThreadDataReadOnly();
1601 if( pTsdro->useSharedData && zFilename && !isMemdb ){
drh66560ad2006-01-06 14:32:19 +00001602 char *zFullPathname = sqlite3OsFullPathname(zFilename);
danielk1977aef0bf62005-12-30 16:28:01 +00001603 if( !zFullPathname ){
1604 sqliteFree(p);
1605 return SQLITE_NOMEM;
1606 }
drh6f7adc82006-01-11 21:41:20 +00001607 for(pBt=pTsdro->pBtree; pBt; pBt=pBt->pNext){
danielk1977b82e7ed2006-01-11 14:09:31 +00001608 assert( pBt->nRef>0 );
danielk1977aef0bf62005-12-30 16:28:01 +00001609 if( 0==strcmp(zFullPathname, sqlite3pager_filename(pBt->pPager)) ){
1610 p->pBt = pBt;
1611 *ppBtree = p;
1612 pBt->nRef++;
1613 sqliteFree(zFullPathname);
1614 return SQLITE_OK;
1615 }
1616 }
1617 sqliteFree(zFullPathname);
1618 }
1619#endif
drha059ad02001-04-17 20:09:11 +00001620
drhd62d3d02003-01-24 12:14:20 +00001621 /*
1622 ** The following asserts make sure that structures used by the btree are
1623 ** the right size. This is to guard against size changes that result
1624 ** when compiling on a different architecture.
1625 */
drh9b8f4472006-04-04 01:54:55 +00001626 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1627 assert( sizeof(u64)==8 || sizeof(u64)==4 );
drhd62d3d02003-01-24 12:14:20 +00001628 assert( sizeof(u32)==4 );
1629 assert( sizeof(u16)==2 );
1630 assert( sizeof(Pgno)==4 );
drhd62d3d02003-01-24 12:14:20 +00001631
drha059ad02001-04-17 20:09:11 +00001632 pBt = sqliteMalloc( sizeof(*pBt) );
1633 if( pBt==0 ){
drh8c42ca92001-06-22 19:15:00 +00001634 *ppBtree = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001635 sqliteFree(p);
drha059ad02001-04-17 20:09:11 +00001636 return SQLITE_NOMEM;
1637 }
drh7bec5052005-02-06 02:45:41 +00001638 rc = sqlite3pager_open(&pBt->pPager, zFilename, EXTRA_SIZE, flags);
drha059ad02001-04-17 20:09:11 +00001639 if( rc!=SQLITE_OK ){
drha34b6762004-05-07 13:30:42 +00001640 if( pBt->pPager ) sqlite3pager_close(pBt->pPager);
drha059ad02001-04-17 20:09:11 +00001641 sqliteFree(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001642 sqliteFree(p);
drha059ad02001-04-17 20:09:11 +00001643 *ppBtree = 0;
1644 return rc;
1645 }
danielk1977aef0bf62005-12-30 16:28:01 +00001646 p->pBt = pBt;
1647
drha34b6762004-05-07 13:30:42 +00001648 sqlite3pager_set_destructor(pBt->pPager, pageDestructor);
drha6abd042004-06-09 17:37:22 +00001649 sqlite3pager_set_reiniter(pBt->pPager, pageReinit);
drha059ad02001-04-17 20:09:11 +00001650 pBt->pCursor = 0;
drha34b6762004-05-07 13:30:42 +00001651 pBt->pPage1 = 0;
1652 pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager);
drh90f5ecb2004-07-22 01:19:35 +00001653 sqlite3pager_read_fileheader(pBt->pPager, sizeof(zDbHeader), zDbHeader);
1654 pBt->pageSize = get2byte(&zDbHeader[16]);
drh07d183d2005-05-01 22:52:42 +00001655 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1656 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
drh90f5ecb2004-07-22 01:19:35 +00001657 pBt->pageSize = SQLITE_DEFAULT_PAGE_SIZE;
1658 pBt->maxEmbedFrac = 64; /* 25% */
1659 pBt->minEmbedFrac = 32; /* 12.5% */
1660 pBt->minLeafFrac = 32; /* 12.5% */
drheee46cf2004-11-06 00:02:48 +00001661#ifndef SQLITE_OMIT_AUTOVACUUM
danielk197703aded42004-11-22 05:26:27 +00001662 /* If the magic name ":memory:" will create an in-memory database, then
1663 ** do not set the auto-vacuum flag, even if SQLITE_DEFAULT_AUTOVACUUM
1664 ** is true. On the other hand, if SQLITE_OMIT_MEMORYDB has been defined,
1665 ** then ":memory:" is just a regular file-name. Respect the auto-vacuum
1666 ** default in this case.
1667 */
danielk1977aef0bf62005-12-30 16:28:01 +00001668 if( zFilename && !isMemdb ){
danielk1977951af802004-11-05 15:45:09 +00001669 pBt->autoVacuum = SQLITE_DEFAULT_AUTOVACUUM;
1670 }
drheee46cf2004-11-06 00:02:48 +00001671#endif
drh90f5ecb2004-07-22 01:19:35 +00001672 nReserve = 0;
1673 }else{
1674 nReserve = zDbHeader[20];
1675 pBt->maxEmbedFrac = zDbHeader[21];
1676 pBt->minEmbedFrac = zDbHeader[22];
1677 pBt->minLeafFrac = zDbHeader[23];
1678 pBt->pageSizeFixed = 1;
danielk1977951af802004-11-05 15:45:09 +00001679#ifndef SQLITE_OMIT_AUTOVACUUM
1680 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1681#endif
drh90f5ecb2004-07-22 01:19:35 +00001682 }
1683 pBt->usableSize = pBt->pageSize - nReserve;
drh07d183d2005-05-01 22:52:42 +00001684 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drh90f5ecb2004-07-22 01:19:35 +00001685 sqlite3pager_set_pagesize(pBt->pPager, pBt->pageSize);
danielk1977aef0bf62005-12-30 16:28:01 +00001686
drhcfed7bc2006-03-13 14:28:05 +00001687#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
danielk197754f01982006-01-18 15:25:17 +00001688 /* Add the new btree to the linked list starting at ThreadData.pBtree.
1689 ** There is no chance that a malloc() may fail inside of the
1690 ** sqlite3ThreadData() call, as the ThreadData structure must have already
1691 ** been allocated for pTsdro->useSharedData to be non-zero.
1692 */
drh6f7adc82006-01-11 21:41:20 +00001693 if( pTsdro->useSharedData && zFilename && !isMemdb ){
1694 pBt->pNext = pTsdro->pBtree;
1695 sqlite3ThreadData()->pBtree = pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00001696 }
danielk1977aef0bf62005-12-30 16:28:01 +00001697#endif
danielk1977da184232006-01-05 11:34:32 +00001698 pBt->nRef = 1;
danielk1977aef0bf62005-12-30 16:28:01 +00001699 *ppBtree = p;
drha059ad02001-04-17 20:09:11 +00001700 return SQLITE_OK;
1701}
1702
1703/*
1704** Close an open database and invalidate all cursors.
1705*/
danielk1977aef0bf62005-12-30 16:28:01 +00001706int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001707 BtShared *pBt = p->pBt;
1708 BtCursor *pCur;
1709
danielk1977da184232006-01-05 11:34:32 +00001710#ifndef SQLITE_OMIT_SHARED_CACHE
drh6f7adc82006-01-11 21:41:20 +00001711 ThreadData *pTsd;
danielk1977da184232006-01-05 11:34:32 +00001712#endif
1713
danielk1977aef0bf62005-12-30 16:28:01 +00001714 /* Close all cursors opened via this handle. */
1715 pCur = pBt->pCursor;
1716 while( pCur ){
1717 BtCursor *pTmp = pCur;
1718 pCur = pCur->pNext;
1719 if( pTmp->pBtree==p ){
1720 sqlite3BtreeCloseCursor(pTmp);
1721 }
drha059ad02001-04-17 20:09:11 +00001722 }
danielk1977aef0bf62005-12-30 16:28:01 +00001723
danielk19778d34dfd2006-01-24 16:37:57 +00001724 /* Rollback any active transaction and free the handle structure.
1725 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1726 ** this handle.
1727 */
danielk1977b597f742006-01-15 11:39:18 +00001728 sqlite3BtreeRollback(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001729 sqliteFree(p);
1730
1731#ifndef SQLITE_OMIT_SHARED_CACHE
1732 /* If there are still other outstanding references to the shared-btree
1733 ** structure, return now. The remainder of this procedure cleans
1734 ** up the shared-btree.
1735 */
1736 assert( pBt->nRef>0 );
1737 pBt->nRef--;
1738 if( pBt->nRef ){
1739 return SQLITE_OK;
1740 }
1741
danielk197754f01982006-01-18 15:25:17 +00001742 /* Remove the shared-btree from the thread wide list. Call
1743 ** ThreadDataReadOnly() and then cast away the const property of the
1744 ** pointer to avoid allocating thread data if it is not really required.
1745 */
1746 pTsd = (ThreadData *)sqlite3ThreadDataReadOnly();
danielk1977aef0bf62005-12-30 16:28:01 +00001747 if( pTsd->pBtree==pBt ){
danielk197754f01982006-01-18 15:25:17 +00001748 assert( pTsd==sqlite3ThreadData() );
danielk1977aef0bf62005-12-30 16:28:01 +00001749 pTsd->pBtree = pBt->pNext;
1750 }else{
1751 BtShared *pPrev;
drh74161702006-02-24 02:53:49 +00001752 for(pPrev=pTsd->pBtree; pPrev && pPrev->pNext!=pBt; pPrev=pPrev->pNext){}
danielk1977aef0bf62005-12-30 16:28:01 +00001753 if( pPrev ){
danielk197754f01982006-01-18 15:25:17 +00001754 assert( pTsd==sqlite3ThreadData() );
danielk1977aef0bf62005-12-30 16:28:01 +00001755 pPrev->pNext = pBt->pNext;
1756 }
1757 }
1758#endif
1759
1760 /* Close the pager and free the shared-btree structure */
1761 assert( !pBt->pCursor );
drha34b6762004-05-07 13:30:42 +00001762 sqlite3pager_close(pBt->pPager);
danielk1977da184232006-01-05 11:34:32 +00001763 if( pBt->xFreeSchema && pBt->pSchema ){
1764 pBt->xFreeSchema(pBt->pSchema);
1765 }
danielk1977de0fe3e2006-01-06 06:33:12 +00001766 sqliteFree(pBt->pSchema);
drha059ad02001-04-17 20:09:11 +00001767 sqliteFree(pBt);
1768 return SQLITE_OK;
1769}
1770
1771/*
drh90f5ecb2004-07-22 01:19:35 +00001772** Change the busy handler callback function.
1773*/
danielk1977aef0bf62005-12-30 16:28:01 +00001774int sqlite3BtreeSetBusyHandler(Btree *p, BusyHandler *pHandler){
1775 BtShared *pBt = p->pBt;
drhb8ef32c2005-03-14 02:01:49 +00001776 pBt->pBusyHandler = pHandler;
drh90f5ecb2004-07-22 01:19:35 +00001777 sqlite3pager_set_busyhandler(pBt->pPager, pHandler);
1778 return SQLITE_OK;
1779}
1780
1781/*
drhda47d772002-12-02 04:25:19 +00001782** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001783**
1784** The maximum number of cache pages is set to the absolute
1785** value of mxPage. If mxPage is negative, the pager will
1786** operate asynchronously - it will not stop to do fsync()s
1787** to insure data is written to the disk surface before
1788** continuing. Transactions still work if synchronous is off,
1789** and the database cannot be corrupted if this program
1790** crashes. But if the operating system crashes or there is
1791** an abrupt power failure when synchronous is off, the database
1792** could be left in an inconsistent and unrecoverable state.
1793** Synchronous is on by default so database corruption is not
1794** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001795*/
danielk1977aef0bf62005-12-30 16:28:01 +00001796int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
1797 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00001798 sqlite3pager_set_cachesize(pBt->pPager, mxPage);
drhf57b14a2001-09-14 18:54:08 +00001799 return SQLITE_OK;
1800}
1801
1802/*
drh973b6e32003-02-12 14:09:42 +00001803** Change the way data is synced to disk in order to increase or decrease
1804** how well the database resists damage due to OS crashes and power
1805** failures. Level 1 is the same as asynchronous (no syncs() occur and
1806** there is a high probability of damage) Level 2 is the default. There
1807** is a very low but non-zero probability of damage. Level 3 reduces the
1808** probability of damage to near zero but with a write performance reduction.
1809*/
danielk197793758c82005-01-21 08:13:14 +00001810#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00001811int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00001812 BtShared *pBt = p->pBt;
drhac530b12006-02-11 01:25:50 +00001813 sqlite3pager_set_safety_level(pBt->pPager, level, fullSync);
drh973b6e32003-02-12 14:09:42 +00001814 return SQLITE_OK;
1815}
danielk197793758c82005-01-21 08:13:14 +00001816#endif
drh973b6e32003-02-12 14:09:42 +00001817
drh2c8997b2005-08-27 16:36:48 +00001818/*
1819** Return TRUE if the given btree is set to safety level 1. In other
1820** words, return TRUE if no sync() occurs on the disk files.
1821*/
danielk1977aef0bf62005-12-30 16:28:01 +00001822int sqlite3BtreeSyncDisabled(Btree *p){
1823 BtShared *pBt = p->pBt;
drh2c8997b2005-08-27 16:36:48 +00001824 assert( pBt && pBt->pPager );
1825 return sqlite3pager_nosync(pBt->pPager);
1826}
1827
danielk1977576ec6b2005-01-21 11:55:25 +00001828#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00001829/*
drh90f5ecb2004-07-22 01:19:35 +00001830** Change the default pages size and the number of reserved bytes per page.
drh06f50212004-11-02 14:24:33 +00001831**
1832** The page size must be a power of 2 between 512 and 65536. If the page
1833** size supplied does not meet this constraint then the page size is not
1834** changed.
1835**
1836** Page sizes are constrained to be a power of two so that the region
1837** of the database file used for locking (beginning at PENDING_BYTE,
1838** the first byte past the 1GB boundary, 0x40000000) needs to occur
1839** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00001840**
1841** If parameter nReserve is less than zero, then the number of reserved
1842** bytes per page is left unchanged.
drh90f5ecb2004-07-22 01:19:35 +00001843*/
danielk1977aef0bf62005-12-30 16:28:01 +00001844int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
1845 BtShared *pBt = p->pBt;
drh90f5ecb2004-07-22 01:19:35 +00001846 if( pBt->pageSizeFixed ){
1847 return SQLITE_READONLY;
1848 }
1849 if( nReserve<0 ){
1850 nReserve = pBt->pageSize - pBt->usableSize;
1851 }
drh06f50212004-11-02 14:24:33 +00001852 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
1853 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00001854 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00001855 assert( !pBt->pPage1 && !pBt->pCursor );
drh1c7880e2005-05-20 20:01:55 +00001856 pBt->pageSize = sqlite3pager_set_pagesize(pBt->pPager, pageSize);
drh90f5ecb2004-07-22 01:19:35 +00001857 }
1858 pBt->usableSize = pBt->pageSize - nReserve;
1859 return SQLITE_OK;
1860}
1861
1862/*
1863** Return the currently defined page size
1864*/
danielk1977aef0bf62005-12-30 16:28:01 +00001865int sqlite3BtreeGetPageSize(Btree *p){
1866 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00001867}
danielk1977aef0bf62005-12-30 16:28:01 +00001868int sqlite3BtreeGetReserve(Btree *p){
1869 return p->pBt->pageSize - p->pBt->usableSize;
drh2011d5f2004-07-22 02:40:37 +00001870}
danielk1977576ec6b2005-01-21 11:55:25 +00001871#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00001872
1873/*
danielk1977951af802004-11-05 15:45:09 +00001874** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
1875** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
1876** is disabled. The default value for the auto-vacuum property is
1877** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
1878*/
danielk1977aef0bf62005-12-30 16:28:01 +00001879int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
1880 BtShared *pBt = p->pBt;;
danielk1977951af802004-11-05 15:45:09 +00001881#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00001882 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00001883#else
1884 if( pBt->pageSizeFixed ){
1885 return SQLITE_READONLY;
1886 }
1887 pBt->autoVacuum = (autoVacuum?1:0);
1888 return SQLITE_OK;
1889#endif
1890}
1891
1892/*
1893** Return the value of the 'auto-vacuum' property. If auto-vacuum is
1894** enabled 1 is returned. Otherwise 0.
1895*/
danielk1977aef0bf62005-12-30 16:28:01 +00001896int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00001897#ifdef SQLITE_OMIT_AUTOVACUUM
1898 return 0;
1899#else
danielk1977aef0bf62005-12-30 16:28:01 +00001900 return p->pBt->autoVacuum;
danielk1977951af802004-11-05 15:45:09 +00001901#endif
1902}
1903
1904
1905/*
drha34b6762004-05-07 13:30:42 +00001906** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00001907** also acquire a readlock on that file.
1908**
1909** SQLITE_OK is returned on success. If the file is not a
1910** well-formed database file, then SQLITE_CORRUPT is returned.
1911** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
1912** is returned if we run out of memory. SQLITE_PROTOCOL is returned
1913** if there is a locking protocol violation.
1914*/
danielk1977aef0bf62005-12-30 16:28:01 +00001915static int lockBtree(BtShared *pBt){
drh07d183d2005-05-01 22:52:42 +00001916 int rc, pageSize;
drh3aac2dd2004-04-26 14:10:20 +00001917 MemPage *pPage1;
drha34b6762004-05-07 13:30:42 +00001918 if( pBt->pPage1 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001919 rc = getPage(pBt, 1, &pPage1);
drh306dc212001-05-21 13:45:10 +00001920 if( rc!=SQLITE_OK ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00001921
drh306dc212001-05-21 13:45:10 +00001922
1923 /* Do some checking to help insure the file we opened really is
1924 ** a valid database file.
1925 */
drhb6f41482004-05-14 01:58:11 +00001926 rc = SQLITE_NOTADB;
drha34b6762004-05-07 13:30:42 +00001927 if( sqlite3pager_pagecount(pBt->pPager)>0 ){
drhb6f41482004-05-14 01:58:11 +00001928 u8 *page1 = pPage1->aData;
1929 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00001930 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00001931 }
drhb6f41482004-05-14 01:58:11 +00001932 if( page1[18]>1 || page1[19]>1 ){
1933 goto page1_init_failed;
1934 }
drh07d183d2005-05-01 22:52:42 +00001935 pageSize = get2byte(&page1[16]);
1936 if( ((pageSize-1)&pageSize)!=0 ){
1937 goto page1_init_failed;
1938 }
1939 assert( (pageSize & 7)==0 );
1940 pBt->pageSize = pageSize;
1941 pBt->usableSize = pageSize - page1[20];
drhb6f41482004-05-14 01:58:11 +00001942 if( pBt->usableSize<500 ){
1943 goto page1_init_failed;
1944 }
1945 pBt->maxEmbedFrac = page1[21];
1946 pBt->minEmbedFrac = page1[22];
1947 pBt->minLeafFrac = page1[23];
drh057cd3a2005-02-15 16:23:02 +00001948#ifndef SQLITE_OMIT_AUTOVACUUM
1949 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
1950#endif
drh306dc212001-05-21 13:45:10 +00001951 }
drhb6f41482004-05-14 01:58:11 +00001952
1953 /* maxLocal is the maximum amount of payload to store locally for
1954 ** a cell. Make sure it is small enough so that at least minFanout
1955 ** cells can will fit on one page. We assume a 10-byte page header.
1956 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00001957 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00001958 ** 4-byte child pointer
1959 ** 9-byte nKey value
1960 ** 4-byte nData value
1961 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00001962 ** So a cell consists of a 2-byte poiner, a header which is as much as
1963 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
1964 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00001965 */
drh43605152004-05-29 21:46:49 +00001966 pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
1967 pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
1968 pBt->maxLeaf = pBt->usableSize - 35;
1969 pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
drhb6f41482004-05-14 01:58:11 +00001970 if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
1971 goto page1_init_failed;
1972 }
drh2e38c322004-09-03 18:38:44 +00001973 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00001974 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00001975 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00001976
drh72f82862001-05-24 21:06:34 +00001977page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00001978 releasePage(pPage1);
1979 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00001980 return rc;
drh306dc212001-05-21 13:45:10 +00001981}
1982
1983/*
drhb8ef32c2005-03-14 02:01:49 +00001984** This routine works like lockBtree() except that it also invokes the
1985** busy callback if there is lock contention.
1986*/
danielk1977aef0bf62005-12-30 16:28:01 +00001987static int lockBtreeWithRetry(Btree *pRef){
drhb8ef32c2005-03-14 02:01:49 +00001988 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00001989 if( pRef->inTrans==TRANS_NONE ){
1990 u8 inTransaction = pRef->pBt->inTransaction;
1991 btreeIntegrity(pRef);
1992 rc = sqlite3BtreeBeginTrans(pRef, 0);
1993 pRef->pBt->inTransaction = inTransaction;
1994 pRef->inTrans = TRANS_NONE;
1995 if( rc==SQLITE_OK ){
1996 pRef->pBt->nTransaction--;
1997 }
1998 btreeIntegrity(pRef);
drhb8ef32c2005-03-14 02:01:49 +00001999 }
2000 return rc;
2001}
2002
2003
2004/*
drhb8ca3072001-12-05 00:21:20 +00002005** If there are no outstanding cursors and we are not in the middle
2006** of a transaction but there is a read lock on the database, then
2007** this routine unrefs the first page of the database file which
2008** has the effect of releasing the read lock.
2009**
2010** If there are any outstanding cursors, this routine is a no-op.
2011**
2012** If there is a transaction in progress, this routine is a no-op.
2013*/
danielk1977aef0bf62005-12-30 16:28:01 +00002014static void unlockBtreeIfUnused(BtShared *pBt){
2015 if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
drh51c6d962004-06-06 00:42:25 +00002016 if( pBt->pPage1->aData==0 ){
2017 MemPage *pPage = pBt->pPage1;
drh2646da72005-12-09 20:02:05 +00002018 pPage->aData = &((u8*)pPage)[-pBt->pageSize];
drh51c6d962004-06-06 00:42:25 +00002019 pPage->pBt = pBt;
2020 pPage->pgno = 1;
2021 }
drh3aac2dd2004-04-26 14:10:20 +00002022 releasePage(pBt->pPage1);
2023 pBt->pPage1 = 0;
drh3aac2dd2004-04-26 14:10:20 +00002024 pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00002025 }
2026}
2027
2028/*
drh9e572e62004-04-23 23:43:10 +00002029** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00002030** file.
drh8b2f49b2001-06-08 00:21:52 +00002031*/
danielk1977aef0bf62005-12-30 16:28:01 +00002032static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002033 MemPage *pP1;
2034 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002035 int rc;
drhde647132004-05-07 17:57:49 +00002036 if( sqlite3pager_pagecount(pBt->pPager)>0 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00002037 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002038 assert( pP1!=0 );
2039 data = pP1->aData;
drha34b6762004-05-07 13:30:42 +00002040 rc = sqlite3pager_write(data);
drh8b2f49b2001-06-08 00:21:52 +00002041 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002042 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2043 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002044 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002045 data[18] = 1;
2046 data[19] = 1;
drhb6f41482004-05-14 01:58:11 +00002047 data[20] = pBt->pageSize - pBt->usableSize;
2048 data[21] = pBt->maxEmbedFrac;
2049 data[22] = pBt->minEmbedFrac;
2050 data[23] = pBt->minLeafFrac;
2051 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002052 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002053 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002054#ifndef SQLITE_OMIT_AUTOVACUUM
2055 if( pBt->autoVacuum ){
2056 put4byte(&data[36 + 4*4], 1);
2057 }
2058#endif
drh8b2f49b2001-06-08 00:21:52 +00002059 return SQLITE_OK;
2060}
2061
2062/*
danielk1977ee5741e2004-05-31 10:01:34 +00002063** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002064** is started if the second argument is nonzero, otherwise a read-
2065** transaction. If the second argument is 2 or more and exclusive
2066** transaction is started, meaning that no other process is allowed
2067** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002068** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002069** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002070**
danielk1977ee5741e2004-05-31 10:01:34 +00002071** A write-transaction must be started before attempting any
2072** changes to the database. None of the following routines
2073** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002074**
drh23e11ca2004-05-04 17:27:28 +00002075** sqlite3BtreeCreateTable()
2076** sqlite3BtreeCreateIndex()
2077** sqlite3BtreeClearTable()
2078** sqlite3BtreeDropTable()
2079** sqlite3BtreeInsert()
2080** sqlite3BtreeDelete()
2081** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002082**
drhb8ef32c2005-03-14 02:01:49 +00002083** If an initial attempt to acquire the lock fails because of lock contention
2084** and the database was previously unlocked, then invoke the busy handler
2085** if there is one. But if there was previously a read-lock, do not
2086** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2087** returned when there is already a read-lock in order to avoid a deadlock.
2088**
2089** Suppose there are two processes A and B. A has a read lock and B has
2090** a reserved lock. B tries to promote to exclusive but is blocked because
2091** of A's read lock. A tries to promote to reserved but is blocked by B.
2092** One or the other of the two processes must give way or there can be
2093** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2094** when A already has a read lock, we encourage A to give up and let B
2095** proceed.
drha059ad02001-04-17 20:09:11 +00002096*/
danielk1977aef0bf62005-12-30 16:28:01 +00002097int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
2098 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002099 int rc = SQLITE_OK;
2100
danielk1977aef0bf62005-12-30 16:28:01 +00002101 btreeIntegrity(p);
2102
danielk1977ee5741e2004-05-31 10:01:34 +00002103 /* If the btree is already in a write-transaction, or it
2104 ** is already in a read-transaction and a read-transaction
2105 ** is requested, this is a no-op.
2106 */
danielk1977aef0bf62005-12-30 16:28:01 +00002107 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
danielk1977ee5741e2004-05-31 10:01:34 +00002108 return SQLITE_OK;
2109 }
drhb8ef32c2005-03-14 02:01:49 +00002110
2111 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002112 if( pBt->readOnly && wrflag ){
2113 return SQLITE_READONLY;
2114 }
2115
danielk1977aef0bf62005-12-30 16:28:01 +00002116 /* If another database handle has already opened a write transaction
2117 ** on this shared-btree structure and a second write transaction is
2118 ** requested, return SQLITE_BUSY.
2119 */
2120 if( pBt->inTransaction==TRANS_WRITE && wrflag ){
2121 return SQLITE_BUSY;
2122 }
2123
drhb8ef32c2005-03-14 02:01:49 +00002124 do {
2125 if( pBt->pPage1==0 ){
2126 rc = lockBtree(pBt);
drh8c42ca92001-06-22 19:15:00 +00002127 }
drhb8ef32c2005-03-14 02:01:49 +00002128
2129 if( rc==SQLITE_OK && wrflag ){
2130 rc = sqlite3pager_begin(pBt->pPage1->aData, wrflag>1);
2131 if( rc==SQLITE_OK ){
2132 rc = newDatabase(pBt);
2133 }
2134 }
2135
2136 if( rc==SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002137 if( wrflag ) pBt->inStmt = 0;
2138 }else{
2139 unlockBtreeIfUnused(pBt);
2140 }
danielk1977aef0bf62005-12-30 16:28:01 +00002141 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
drha4afb652005-07-09 02:16:02 +00002142 sqlite3InvokeBusyHandler(pBt->pBusyHandler) );
danielk1977aef0bf62005-12-30 16:28:01 +00002143
2144 if( rc==SQLITE_OK ){
2145 if( p->inTrans==TRANS_NONE ){
2146 pBt->nTransaction++;
2147 }
2148 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2149 if( p->inTrans>pBt->inTransaction ){
2150 pBt->inTransaction = p->inTrans;
2151 }
2152 }
2153
2154 btreeIntegrity(p);
drhb8ca3072001-12-05 00:21:20 +00002155 return rc;
drha059ad02001-04-17 20:09:11 +00002156}
2157
danielk1977687566d2004-11-02 12:56:41 +00002158#ifndef SQLITE_OMIT_AUTOVACUUM
2159
2160/*
2161** Set the pointer-map entries for all children of page pPage. Also, if
2162** pPage contains cells that point to overflow pages, set the pointer
2163** map entries for the overflow pages as well.
2164*/
2165static int setChildPtrmaps(MemPage *pPage){
2166 int i; /* Counter variable */
2167 int nCell; /* Number of cells in page pPage */
2168 int rc = SQLITE_OK; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002169 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00002170 int isInitOrig = pPage->isInit;
2171 Pgno pgno = pPage->pgno;
2172
2173 initPage(pPage, 0);
2174 nCell = pPage->nCell;
2175
2176 for(i=0; i<nCell; i++){
danielk1977687566d2004-11-02 12:56:41 +00002177 u8 *pCell = findCell(pPage, i);
2178
danielk197726836652005-01-17 01:33:13 +00002179 rc = ptrmapPutOvflPtr(pPage, pCell);
2180 if( rc!=SQLITE_OK ){
2181 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002182 }
danielk197726836652005-01-17 01:33:13 +00002183
danielk1977687566d2004-11-02 12:56:41 +00002184 if( !pPage->leaf ){
2185 Pgno childPgno = get4byte(pCell);
2186 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2187 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
2188 }
2189 }
2190
2191 if( !pPage->leaf ){
2192 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2193 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2194 }
2195
2196set_child_ptrmaps_out:
2197 pPage->isInit = isInitOrig;
2198 return rc;
2199}
2200
2201/*
2202** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
2203** page, is a pointer to page iFrom. Modify this pointer so that it points to
2204** iTo. Parameter eType describes the type of pointer to be modified, as
2205** follows:
2206**
2207** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2208** page of pPage.
2209**
2210** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2211** page pointed to by one of the cells on pPage.
2212**
2213** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2214** overflow page in the list.
2215*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002216static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
danielk1977687566d2004-11-02 12:56:41 +00002217 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002218 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002219 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002220 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002221 }
danielk1977f78fc082004-11-02 14:40:32 +00002222 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002223 }else{
2224 int isInitOrig = pPage->isInit;
2225 int i;
2226 int nCell;
2227
2228 initPage(pPage, 0);
2229 nCell = pPage->nCell;
2230
danielk1977687566d2004-11-02 12:56:41 +00002231 for(i=0; i<nCell; i++){
2232 u8 *pCell = findCell(pPage, i);
2233 if( eType==PTRMAP_OVERFLOW1 ){
2234 CellInfo info;
2235 parseCellPtr(pPage, pCell, &info);
2236 if( info.iOverflow ){
2237 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2238 put4byte(&pCell[info.iOverflow], iTo);
2239 break;
2240 }
2241 }
2242 }else{
2243 if( get4byte(pCell)==iFrom ){
2244 put4byte(pCell, iTo);
2245 break;
2246 }
2247 }
2248 }
2249
2250 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002251 if( eType!=PTRMAP_BTREE ||
2252 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002253 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002254 }
danielk1977687566d2004-11-02 12:56:41 +00002255 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2256 }
2257
2258 pPage->isInit = isInitOrig;
2259 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002260 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002261}
2262
danielk1977003ba062004-11-04 02:57:33 +00002263
danielk19777701e812005-01-10 12:59:51 +00002264/*
2265** Move the open database page pDbPage to location iFreePage in the
2266** database. The pDbPage reference remains valid.
2267*/
danielk1977003ba062004-11-04 02:57:33 +00002268static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002269 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002270 MemPage *pDbPage, /* Open page to move */
2271 u8 eType, /* Pointer map 'type' entry for pDbPage */
2272 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
2273 Pgno iFreePage /* The location to move pDbPage to */
danielk1977003ba062004-11-04 02:57:33 +00002274){
2275 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2276 Pgno iDbPage = pDbPage->pgno;
2277 Pager *pPager = pBt->pPager;
2278 int rc;
2279
danielk1977a0bf2652004-11-04 14:30:04 +00002280 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2281 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
danielk1977003ba062004-11-04 02:57:33 +00002282
2283 /* Move page iDbPage from it's current location to page number iFreePage */
2284 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2285 iDbPage, iFreePage, iPtrPage, eType));
2286 rc = sqlite3pager_movepage(pPager, pDbPage->aData, iFreePage);
2287 if( rc!=SQLITE_OK ){
2288 return rc;
2289 }
2290 pDbPage->pgno = iFreePage;
2291
2292 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2293 ** that point to overflow pages. The pointer map entries for all these
2294 ** pages need to be changed.
2295 **
2296 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2297 ** pointer to a subsequent overflow page. If this is the case, then
2298 ** the pointer map needs to be updated for the subsequent overflow page.
2299 */
danielk1977a0bf2652004-11-04 14:30:04 +00002300 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002301 rc = setChildPtrmaps(pDbPage);
2302 if( rc!=SQLITE_OK ){
2303 return rc;
2304 }
2305 }else{
2306 Pgno nextOvfl = get4byte(pDbPage->aData);
2307 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002308 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2309 if( rc!=SQLITE_OK ){
2310 return rc;
2311 }
2312 }
2313 }
2314
2315 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2316 ** that it points at iFreePage. Also fix the pointer map entry for
2317 ** iPtrPage.
2318 */
danielk1977a0bf2652004-11-04 14:30:04 +00002319 if( eType!=PTRMAP_ROOTPAGE ){
2320 rc = getPage(pBt, iPtrPage, &pPtrPage);
2321 if( rc!=SQLITE_OK ){
2322 return rc;
2323 }
2324 rc = sqlite3pager_write(pPtrPage->aData);
2325 if( rc!=SQLITE_OK ){
2326 releasePage(pPtrPage);
2327 return rc;
2328 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002329 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002330 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002331 if( rc==SQLITE_OK ){
2332 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2333 }
danielk1977003ba062004-11-04 02:57:33 +00002334 }
danielk1977003ba062004-11-04 02:57:33 +00002335 return rc;
2336}
2337
danielk1977687566d2004-11-02 12:56:41 +00002338/* Forward declaration required by autoVacuumCommit(). */
danielk1977aef0bf62005-12-30 16:28:01 +00002339static int allocatePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002340
2341/*
2342** This routine is called prior to sqlite3pager_commit when a transaction
2343** is commited for an auto-vacuum database.
2344*/
danielk1977aef0bf62005-12-30 16:28:01 +00002345static int autoVacuumCommit(BtShared *pBt, Pgno *nTrunc){
danielk1977687566d2004-11-02 12:56:41 +00002346 Pager *pPager = pBt->pPager;
danielk1977e501b892006-01-09 06:29:47 +00002347 Pgno nFreeList; /* Number of pages remaining on the free-list. */
2348 int nPtrMap; /* Number of pointer-map pages deallocated */
2349 Pgno origSize; /* Pages in the database file */
2350 Pgno finSize; /* Pages in the database file after truncation */
2351 int rc; /* Return code */
danielk1977687566d2004-11-02 12:56:41 +00002352 u8 eType;
danielk1977a19df672004-11-03 11:37:07 +00002353 int pgsz = pBt->pageSize; /* Page size for this database */
danielk1977687566d2004-11-02 12:56:41 +00002354 Pgno iDbPage; /* The database page to move */
danielk1977687566d2004-11-02 12:56:41 +00002355 MemPage *pDbMemPage = 0; /* "" */
2356 Pgno iPtrPage; /* The page that contains a pointer to iDbPage */
danielk1977687566d2004-11-02 12:56:41 +00002357 Pgno iFreePage; /* The free-list page to move iDbPage to */
2358 MemPage *pFreeMemPage = 0; /* "" */
2359
2360#ifndef NDEBUG
drh0f7eb612006-08-08 13:51:43 +00002361 int nRef = sqlite3pager_refcount(pPager);
danielk1977687566d2004-11-02 12:56:41 +00002362#endif
2363
2364 assert( pBt->autoVacuum );
danielk1977266664d2006-02-10 08:24:21 +00002365 if( PTRMAP_ISPAGE(pBt, sqlite3pager_pagecount(pPager)) ){
drh49285702005-09-17 15:20:26 +00002366 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002367 }
danielk1977687566d2004-11-02 12:56:41 +00002368
2369 /* Figure out how many free-pages are in the database. If there are no
2370 ** free pages, then auto-vacuum is a no-op.
2371 */
2372 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977a19df672004-11-03 11:37:07 +00002373 if( nFreeList==0 ){
danielk1977d761c0c2004-11-05 16:37:02 +00002374 *nTrunc = 0;
danielk1977a19df672004-11-03 11:37:07 +00002375 return SQLITE_OK;
2376 }
danielk1977687566d2004-11-02 12:56:41 +00002377
danielk1977266664d2006-02-10 08:24:21 +00002378 /* This block figures out how many pages there are in the database
2379 ** now (variable origSize), and how many there will be after the
2380 ** truncation (variable finSize).
2381 **
2382 ** The final size is the original size, less the number of free pages
2383 ** in the database, less any pointer-map pages that will no longer
2384 ** be required, less 1 if the pending-byte page was part of the database
2385 ** but is not after the truncation.
2386 **/
danielk1977a19df672004-11-03 11:37:07 +00002387 origSize = sqlite3pager_pagecount(pPager);
danielk1977266664d2006-02-10 08:24:21 +00002388 if( origSize==PENDING_BYTE_PAGE(pBt) ){
2389 origSize--;
2390 }
2391 nPtrMap = (nFreeList-origSize+PTRMAP_PAGENO(pBt, origSize)+pgsz/5)/(pgsz/5);
danielk1977a19df672004-11-03 11:37:07 +00002392 finSize = origSize - nFreeList - nPtrMap;
danielk1977266664d2006-02-10 08:24:21 +00002393 if( origSize>PENDING_BYTE_PAGE(pBt) && finSize<=PENDING_BYTE_PAGE(pBt) ){
danielk1977599fcba2004-11-08 07:13:13 +00002394 finSize--;
danielk1977266664d2006-02-10 08:24:21 +00002395 }
2396 while( PTRMAP_ISPAGE(pBt, finSize) || finSize==PENDING_BYTE_PAGE(pBt) ){
2397 finSize--;
danielk1977599fcba2004-11-08 07:13:13 +00002398 }
danielk1977a19df672004-11-03 11:37:07 +00002399 TRACE(("AUTOVACUUM: Begin (db size %d->%d)\n", origSize, finSize));
danielk1977687566d2004-11-02 12:56:41 +00002400
danielk1977a19df672004-11-03 11:37:07 +00002401 /* Variable 'finSize' will be the size of the file in pages after
danielk1977687566d2004-11-02 12:56:41 +00002402 ** the auto-vacuum has completed (the current file size minus the number
2403 ** of pages on the free list). Loop through the pages that lie beyond
2404 ** this mark, and if they are not already on the free list, move them
danielk1977a19df672004-11-03 11:37:07 +00002405 ** to a free page earlier in the file (somewhere before finSize).
danielk1977687566d2004-11-02 12:56:41 +00002406 */
danielk1977a19df672004-11-03 11:37:07 +00002407 for( iDbPage=finSize+1; iDbPage<=origSize; iDbPage++ ){
danielk1977599fcba2004-11-08 07:13:13 +00002408 /* If iDbPage is a pointer map page, or the pending-byte page, skip it. */
danielk1977266664d2006-02-10 08:24:21 +00002409 if( PTRMAP_ISPAGE(pBt, iDbPage) || iDbPage==PENDING_BYTE_PAGE(pBt) ){
danielk1977599fcba2004-11-08 07:13:13 +00002410 continue;
2411 }
2412
danielk1977687566d2004-11-02 12:56:41 +00002413 rc = ptrmapGet(pBt, iDbPage, &eType, &iPtrPage);
2414 if( rc!=SQLITE_OK ) goto autovacuum_out;
drhccae6022005-02-26 17:31:26 +00002415 if( eType==PTRMAP_ROOTPAGE ){
drh49285702005-09-17 15:20:26 +00002416 rc = SQLITE_CORRUPT_BKPT;
drhccae6022005-02-26 17:31:26 +00002417 goto autovacuum_out;
2418 }
danielk1977687566d2004-11-02 12:56:41 +00002419
danielk1977599fcba2004-11-08 07:13:13 +00002420 /* If iDbPage is free, do not swap it. */
2421 if( eType==PTRMAP_FREEPAGE ){
danielk1977687566d2004-11-02 12:56:41 +00002422 continue;
2423 }
2424 rc = getPage(pBt, iDbPage, &pDbMemPage);
2425 if( rc!=SQLITE_OK ) goto autovacuum_out;
danielk1977687566d2004-11-02 12:56:41 +00002426
2427 /* Find the next page in the free-list that is not already at the end
2428 ** of the file. A page can be pulled off the free list using the
2429 ** allocatePage() routine.
2430 */
2431 do{
2432 if( pFreeMemPage ){
2433 releasePage(pFreeMemPage);
2434 pFreeMemPage = 0;
2435 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00002436 rc = allocatePage(pBt, &pFreeMemPage, &iFreePage, 0, 0);
danielk1977ac11ee62005-01-15 12:45:51 +00002437 if( rc!=SQLITE_OK ){
2438 releasePage(pDbMemPage);
2439 goto autovacuum_out;
2440 }
danielk1977a19df672004-11-03 11:37:07 +00002441 assert( iFreePage<=origSize );
2442 }while( iFreePage>finSize );
danielk1977687566d2004-11-02 12:56:41 +00002443 releasePage(pFreeMemPage);
2444 pFreeMemPage = 0;
danielk1977687566d2004-11-02 12:56:41 +00002445
danielk1977e501b892006-01-09 06:29:47 +00002446 /* Relocate the page into the body of the file. Note that although the
2447 ** page has moved within the database file, the pDbMemPage pointer
2448 ** remains valid. This means that this function can run without
2449 ** invalidating cursors open on the btree. This is important in
2450 ** shared-cache mode.
2451 */
danielk1977003ba062004-11-04 02:57:33 +00002452 rc = relocatePage(pBt, pDbMemPage, eType, iPtrPage, iFreePage);
danielk1977687566d2004-11-02 12:56:41 +00002453 releasePage(pDbMemPage);
danielk1977687566d2004-11-02 12:56:41 +00002454 if( rc!=SQLITE_OK ) goto autovacuum_out;
danielk1977687566d2004-11-02 12:56:41 +00002455 }
2456
2457 /* The entire free-list has been swapped to the end of the file. So
danielk1977a19df672004-11-03 11:37:07 +00002458 ** truncate the database file to finSize pages and consider the
danielk1977687566d2004-11-02 12:56:41 +00002459 ** free-list empty.
2460 */
2461 rc = sqlite3pager_write(pBt->pPage1->aData);
2462 if( rc!=SQLITE_OK ) goto autovacuum_out;
2463 put4byte(&pBt->pPage1->aData[32], 0);
2464 put4byte(&pBt->pPage1->aData[36], 0);
danielk1977d761c0c2004-11-05 16:37:02 +00002465 *nTrunc = finSize;
danielk1977266664d2006-02-10 08:24:21 +00002466 assert( finSize!=PENDING_BYTE_PAGE(pBt) );
danielk1977687566d2004-11-02 12:56:41 +00002467
2468autovacuum_out:
drh0f7eb612006-08-08 13:51:43 +00002469 assert( nRef==sqlite3pager_refcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002470 if( rc!=SQLITE_OK ){
2471 sqlite3pager_rollback(pPager);
2472 }
2473 return rc;
2474}
2475#endif
2476
2477/*
drh2aa679f2001-06-25 02:11:07 +00002478** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002479**
2480** This will release the write lock on the database file. If there
2481** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002482*/
danielk1977aef0bf62005-12-30 16:28:01 +00002483int sqlite3BtreeCommit(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002484 BtShared *pBt = p->pBt;
2485
2486 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002487
2488 /* If the handle has a write-transaction open, commit the shared-btrees
2489 ** transaction and set the shared state to TRANS_READ.
2490 */
2491 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00002492 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002493 assert( pBt->inTransaction==TRANS_WRITE );
2494 assert( pBt->nTransaction>0 );
danielk1977ee5741e2004-05-31 10:01:34 +00002495 rc = sqlite3pager_commit(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00002496 if( rc!=SQLITE_OK ){
2497 return rc;
2498 }
danielk1977aef0bf62005-12-30 16:28:01 +00002499 pBt->inTransaction = TRANS_READ;
2500 pBt->inStmt = 0;
danielk1977ee5741e2004-05-31 10:01:34 +00002501 }
danielk19777f7bc662006-01-23 13:47:47 +00002502 unlockAllTables(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002503
2504 /* If the handle has any kind of transaction open, decrement the transaction
2505 ** count of the shared btree. If the transaction count reaches 0, set
2506 ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
2507 ** will unlock the pager.
2508 */
2509 if( p->inTrans!=TRANS_NONE ){
2510 pBt->nTransaction--;
2511 if( 0==pBt->nTransaction ){
2512 pBt->inTransaction = TRANS_NONE;
2513 }
2514 }
2515
2516 /* Set the handles current transaction state to TRANS_NONE and unlock
2517 ** the pager if this call closed the only read or write transaction.
2518 */
2519 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002520 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002521
2522 btreeIntegrity(p);
danielk19777f7bc662006-01-23 13:47:47 +00002523 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002524}
2525
danielk1977fbcd5852004-06-15 02:44:18 +00002526#ifndef NDEBUG
2527/*
2528** Return the number of write-cursors open on this handle. This is for use
2529** in assert() expressions, so it is only compiled if NDEBUG is not
2530** defined.
2531*/
danielk1977aef0bf62005-12-30 16:28:01 +00002532static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00002533 BtCursor *pCur;
2534 int r = 0;
2535 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
danielk1977aef0bf62005-12-30 16:28:01 +00002536 if( pCur->wrFlag ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00002537 }
2538 return r;
2539}
2540#endif
2541
drh77bba592006-08-13 18:39:26 +00002542#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
drhda200cc2004-05-09 11:51:38 +00002543/*
2544** Print debugging information about all cursors to standard output.
2545*/
danielk1977aef0bf62005-12-30 16:28:01 +00002546void sqlite3BtreeCursorList(Btree *p){
drhda200cc2004-05-09 11:51:38 +00002547 BtCursor *pCur;
danielk1977aef0bf62005-12-30 16:28:01 +00002548 BtShared *pBt = p->pBt;
drhda200cc2004-05-09 11:51:38 +00002549 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
2550 MemPage *pPage = pCur->pPage;
2551 char *zMode = pCur->wrFlag ? "rw" : "ro";
drhfe63d1c2004-09-08 20:13:04 +00002552 sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n",
2553 pCur, pCur->pgnoRoot, zMode,
drhda200cc2004-05-09 11:51:38 +00002554 pPage ? pPage->pgno : 0, pCur->idx,
danielk1977da184232006-01-05 11:34:32 +00002555 (pCur->eState==CURSOR_VALID) ? "" : " eof"
drhda200cc2004-05-09 11:51:38 +00002556 );
2557 }
2558}
2559#endif
2560
drhc39e0002004-05-07 23:50:57 +00002561/*
drhecdc7532001-09-23 02:35:53 +00002562** Rollback the transaction in progress. All cursors will be
2563** invalided by this operation. Any attempt to use a cursor
2564** that was open at the beginning of this operation will result
2565** in an error.
drh5e00f6c2001-09-13 13:46:56 +00002566**
2567** This will release the write lock on the database file. If there
2568** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002569*/
danielk1977aef0bf62005-12-30 16:28:01 +00002570int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00002571 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002572 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00002573 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00002574
danielk19772b8c13e2006-01-24 14:21:24 +00002575 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00002576#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00002577 if( rc!=SQLITE_OK ){
danielk19778d34dfd2006-01-24 16:37:57 +00002578 /* This is a horrible situation. An IO or malloc() error occured whilst
2579 ** trying to save cursor positions. If this is an automatic rollback (as
2580 ** the result of a constraint, malloc() failure or IO error) then
2581 ** the cache may be internally inconsistent (not contain valid trees) so
2582 ** we cannot simply return the error to the caller. Instead, abort
2583 ** all queries that may be using any of the cursors that failed to save.
2584 */
2585 while( pBt->pCursor ){
2586 sqlite3 *db = pBt->pCursor->pBtree->pSqlite;
2587 if( db ){
2588 sqlite3AbortOtherActiveVdbes(db, 0);
2589 }
2590 }
danielk19772b8c13e2006-01-24 14:21:24 +00002591 }
danielk19778d34dfd2006-01-24 16:37:57 +00002592#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002593 btreeIntegrity(p);
2594 unlockAllTables(p);
2595
2596 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00002597 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00002598
danielk19778d34dfd2006-01-24 16:37:57 +00002599 assert( TRANS_WRITE==pBt->inTransaction );
2600 rc2 = sqlite3pager_rollback(pBt->pPager);
2601 if( rc2!=SQLITE_OK ){
2602 rc = rc2;
2603 }
2604
drh24cd67e2004-05-10 16:18:47 +00002605 /* The rollback may have destroyed the pPage1->aData value. So
2606 ** call getPage() on page 1 again to make sure pPage1->aData is
2607 ** set correctly. */
2608 if( getPage(pBt, 1, &pPage1)==SQLITE_OK ){
2609 releasePage(pPage1);
2610 }
danielk1977fbcd5852004-06-15 02:44:18 +00002611 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002612 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00002613 }
danielk1977aef0bf62005-12-30 16:28:01 +00002614
2615 if( p->inTrans!=TRANS_NONE ){
2616 assert( pBt->nTransaction>0 );
2617 pBt->nTransaction--;
2618 if( 0==pBt->nTransaction ){
2619 pBt->inTransaction = TRANS_NONE;
2620 }
2621 }
2622
2623 p->inTrans = TRANS_NONE;
danielk1977ee5741e2004-05-31 10:01:34 +00002624 pBt->inStmt = 0;
drh5e00f6c2001-09-13 13:46:56 +00002625 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002626
2627 btreeIntegrity(p);
drha059ad02001-04-17 20:09:11 +00002628 return rc;
2629}
2630
2631/*
drhab01f612004-05-22 02:55:23 +00002632** Start a statement subtransaction. The subtransaction can
2633** can be rolled back independently of the main transaction.
2634** You must start a transaction before starting a subtransaction.
2635** The subtransaction is ended automatically if the main transaction
drh663fc632002-02-02 18:49:19 +00002636** commits or rolls back.
2637**
drhab01f612004-05-22 02:55:23 +00002638** Only one subtransaction may be active at a time. It is an error to try
2639** to start a new subtransaction if another subtransaction is already active.
2640**
2641** Statement subtransactions are used around individual SQL statements
2642** that are contained within a BEGIN...COMMIT block. If a constraint
2643** error occurs within the statement, the effect of that one statement
2644** can be rolled back without having to rollback the entire transaction.
drh663fc632002-02-02 18:49:19 +00002645*/
danielk1977aef0bf62005-12-30 16:28:01 +00002646int sqlite3BtreeBeginStmt(Btree *p){
drh663fc632002-02-02 18:49:19 +00002647 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002648 BtShared *pBt = p->pBt;
2649 if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
drhf74b8d92002-09-01 23:20:45 +00002650 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh0d65dc02002-02-03 00:56:09 +00002651 }
danielk1977aef0bf62005-12-30 16:28:01 +00002652 assert( pBt->inTransaction==TRANS_WRITE );
drha34b6762004-05-07 13:30:42 +00002653 rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager);
drh3aac2dd2004-04-26 14:10:20 +00002654 pBt->inStmt = 1;
drh663fc632002-02-02 18:49:19 +00002655 return rc;
2656}
2657
2658
2659/*
drhab01f612004-05-22 02:55:23 +00002660** Commit the statment subtransaction currently in progress. If no
2661** subtransaction is active, this is a no-op.
drh663fc632002-02-02 18:49:19 +00002662*/
danielk1977aef0bf62005-12-30 16:28:01 +00002663int sqlite3BtreeCommitStmt(Btree *p){
drh663fc632002-02-02 18:49:19 +00002664 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002665 BtShared *pBt = p->pBt;
drh3aac2dd2004-04-26 14:10:20 +00002666 if( pBt->inStmt && !pBt->readOnly ){
drha34b6762004-05-07 13:30:42 +00002667 rc = sqlite3pager_stmt_commit(pBt->pPager);
drh663fc632002-02-02 18:49:19 +00002668 }else{
2669 rc = SQLITE_OK;
2670 }
drh3aac2dd2004-04-26 14:10:20 +00002671 pBt->inStmt = 0;
drh663fc632002-02-02 18:49:19 +00002672 return rc;
2673}
2674
2675/*
drhab01f612004-05-22 02:55:23 +00002676** Rollback the active statement subtransaction. If no subtransaction
2677** is active this routine is a no-op.
drh663fc632002-02-02 18:49:19 +00002678**
drhab01f612004-05-22 02:55:23 +00002679** All cursors will be invalidated by this operation. Any attempt
drh663fc632002-02-02 18:49:19 +00002680** to use a cursor that was open at the beginning of this operation
2681** will result in an error.
2682*/
danielk1977aef0bf62005-12-30 16:28:01 +00002683int sqlite3BtreeRollbackStmt(Btree *p){
danielk197797a227c2006-01-20 16:32:04 +00002684 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002685 BtShared *pBt = p->pBt;
danielk197797a227c2006-01-20 16:32:04 +00002686 sqlite3MallocDisallow();
2687 if( pBt->inStmt && !pBt->readOnly ){
2688 rc = sqlite3pager_stmt_rollback(pBt->pPager);
2689 assert( countWriteCursors(pBt)==0 );
2690 pBt->inStmt = 0;
2691 }
2692 sqlite3MallocAllow();
drh663fc632002-02-02 18:49:19 +00002693 return rc;
2694}
2695
2696/*
drh3aac2dd2004-04-26 14:10:20 +00002697** Default key comparison function to be used if no comparison function
2698** is specified on the sqlite3BtreeCursor() call.
2699*/
2700static int dfltCompare(
2701 void *NotUsed, /* User data is not used */
2702 int n1, const void *p1, /* First key to compare */
2703 int n2, const void *p2 /* Second key to compare */
2704){
2705 int c;
2706 c = memcmp(p1, p2, n1<n2 ? n1 : n2);
2707 if( c==0 ){
2708 c = n1 - n2;
2709 }
2710 return c;
2711}
2712
2713/*
drh8b2f49b2001-06-08 00:21:52 +00002714** Create a new cursor for the BTree whose root is on the page
2715** iTable. The act of acquiring a cursor gets a read lock on
2716** the database file.
drh1bee3d72001-10-15 00:44:35 +00002717**
2718** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00002719** If wrFlag==1, then the cursor can be used for reading or for
2720** writing if other conditions for writing are also met. These
2721** are the conditions that must be met in order for writing to
2722** be allowed:
drh6446c4d2001-12-15 14:22:18 +00002723**
drhf74b8d92002-09-01 23:20:45 +00002724** 1: The cursor must have been opened with wrFlag==1
2725**
2726** 2: No other cursors may be open with wrFlag==0 on the same table
2727**
2728** 3: The database must be writable (not on read-only media)
2729**
2730** 4: There must be an active transaction.
2731**
2732** Condition 2 warrants further discussion. If any cursor is opened
2733** on a table with wrFlag==0, that prevents all other cursors from
2734** writing to that table. This is a kind of "read-lock". When a cursor
2735** is opened with wrFlag==0 it is guaranteed that the table will not
2736** change as long as the cursor is open. This allows the cursor to
2737** do a sequential scan of the table without having to worry about
2738** entries being inserted or deleted during the scan. Cursors should
2739** be opened with wrFlag==0 only if this read-lock property is needed.
2740** That is to say, cursors should be opened with wrFlag==0 only if they
drh23e11ca2004-05-04 17:27:28 +00002741** intend to use the sqlite3BtreeNext() system call. All other cursors
drhf74b8d92002-09-01 23:20:45 +00002742** should be opened with wrFlag==1 even if they never really intend
2743** to write.
2744**
drh6446c4d2001-12-15 14:22:18 +00002745** No checking is done to make sure that page iTable really is the
2746** root page of a b-tree. If it is not, then the cursor acquired
2747** will not work correctly.
drh3aac2dd2004-04-26 14:10:20 +00002748**
2749** The comparison function must be logically the same for every cursor
2750** on a particular table. Changing the comparison function will result
2751** in incorrect operations. If the comparison function is NULL, a
2752** default comparison function is used. The comparison function is
2753** always ignored for INTKEY tables.
drha059ad02001-04-17 20:09:11 +00002754*/
drh3aac2dd2004-04-26 14:10:20 +00002755int sqlite3BtreeCursor(
danielk1977aef0bf62005-12-30 16:28:01 +00002756 Btree *p, /* The btree */
drh3aac2dd2004-04-26 14:10:20 +00002757 int iTable, /* Root page of table to open */
2758 int wrFlag, /* 1 to write. 0 read-only */
2759 int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
2760 void *pArg, /* First arg to xCompare() */
2761 BtCursor **ppCur /* Write new cursor here */
2762){
drha059ad02001-04-17 20:09:11 +00002763 int rc;
drh8dcd7ca2004-08-08 19:43:29 +00002764 BtCursor *pCur;
danielk1977aef0bf62005-12-30 16:28:01 +00002765 BtShared *pBt = p->pBt;
drhecdc7532001-09-23 02:35:53 +00002766
drh8dcd7ca2004-08-08 19:43:29 +00002767 *ppCur = 0;
2768 if( wrFlag ){
drh8dcd7ca2004-08-08 19:43:29 +00002769 if( pBt->readOnly ){
2770 return SQLITE_READONLY;
2771 }
drh980b1a72006-08-16 16:42:48 +00002772 if( checkReadLocks(p, iTable, 0) ){
drh8dcd7ca2004-08-08 19:43:29 +00002773 return SQLITE_LOCKED;
2774 }
drha0c9a112004-03-10 13:42:37 +00002775 }
danielk1977aef0bf62005-12-30 16:28:01 +00002776
drh4b70f112004-05-02 21:12:19 +00002777 if( pBt->pPage1==0 ){
danielk1977aef0bf62005-12-30 16:28:01 +00002778 rc = lockBtreeWithRetry(p);
drha059ad02001-04-17 20:09:11 +00002779 if( rc!=SQLITE_OK ){
drha059ad02001-04-17 20:09:11 +00002780 return rc;
2781 }
2782 }
danielk1977da184232006-01-05 11:34:32 +00002783 pCur = sqliteMalloc( sizeof(*pCur) );
drha059ad02001-04-17 20:09:11 +00002784 if( pCur==0 ){
drhbd03cae2001-06-02 02:40:57 +00002785 rc = SQLITE_NOMEM;
2786 goto create_cursor_exception;
2787 }
drh8b2f49b2001-06-08 00:21:52 +00002788 pCur->pgnoRoot = (Pgno)iTable;
drh24cd67e2004-05-10 16:18:47 +00002789 if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){
2790 rc = SQLITE_EMPTY;
2791 goto create_cursor_exception;
2792 }
drhde647132004-05-07 17:57:49 +00002793 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
drhbd03cae2001-06-02 02:40:57 +00002794 if( rc!=SQLITE_OK ){
2795 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00002796 }
danielk1977aef0bf62005-12-30 16:28:01 +00002797
danielk1977aef0bf62005-12-30 16:28:01 +00002798 /* Now that no other errors can occur, finish filling in the BtCursor
2799 ** variables, link the cursor into the BtShared list and set *ppCur (the
2800 ** output argument to this function).
2801 */
drh3aac2dd2004-04-26 14:10:20 +00002802 pCur->xCompare = xCmp ? xCmp : dfltCompare;
2803 pCur->pArg = pArg;
danielk1977aef0bf62005-12-30 16:28:01 +00002804 pCur->pBtree = p;
drhecdc7532001-09-23 02:35:53 +00002805 pCur->wrFlag = wrFlag;
drha059ad02001-04-17 20:09:11 +00002806 pCur->pNext = pBt->pCursor;
2807 if( pCur->pNext ){
2808 pCur->pNext->pPrev = pCur;
2809 }
2810 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00002811 pCur->eState = CURSOR_INVALID;
drh2af926b2001-05-15 00:39:25 +00002812 *ppCur = pCur;
drhbd03cae2001-06-02 02:40:57 +00002813
danielk1977aef0bf62005-12-30 16:28:01 +00002814 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00002815create_cursor_exception:
drhbd03cae2001-06-02 02:40:57 +00002816 if( pCur ){
drh3aac2dd2004-04-26 14:10:20 +00002817 releasePage(pCur->pPage);
drhbd03cae2001-06-02 02:40:57 +00002818 sqliteFree(pCur);
2819 }
drh5e00f6c2001-09-13 13:46:56 +00002820 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00002821 return rc;
drha059ad02001-04-17 20:09:11 +00002822}
2823
drh7a224de2004-06-02 01:22:02 +00002824#if 0 /* Not Used */
drhd3d39e92004-05-20 22:16:29 +00002825/*
2826** Change the value of the comparison function used by a cursor.
2827*/
danielk1977bf3b7212004-05-18 10:06:24 +00002828void sqlite3BtreeSetCompare(
drhd3d39e92004-05-20 22:16:29 +00002829 BtCursor *pCur, /* The cursor to whose comparison function is changed */
2830 int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */
2831 void *pArg /* First argument to xCmp() */
danielk1977bf3b7212004-05-18 10:06:24 +00002832){
2833 pCur->xCompare = xCmp ? xCmp : dfltCompare;
2834 pCur->pArg = pArg;
2835}
drh7a224de2004-06-02 01:22:02 +00002836#endif
danielk1977bf3b7212004-05-18 10:06:24 +00002837
drha059ad02001-04-17 20:09:11 +00002838/*
drh5e00f6c2001-09-13 13:46:56 +00002839** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00002840** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00002841*/
drh3aac2dd2004-04-26 14:10:20 +00002842int sqlite3BtreeCloseCursor(BtCursor *pCur){
danielk1977aef0bf62005-12-30 16:28:01 +00002843 BtShared *pBt = pCur->pBtree->pBt;
drh777e4c42006-01-13 04:31:58 +00002844 restoreOrClearCursorPosition(pCur, 0);
drha059ad02001-04-17 20:09:11 +00002845 if( pCur->pPrev ){
2846 pCur->pPrev->pNext = pCur->pNext;
2847 }else{
2848 pBt->pCursor = pCur->pNext;
2849 }
2850 if( pCur->pNext ){
2851 pCur->pNext->pPrev = pCur->pPrev;
2852 }
drh3aac2dd2004-04-26 14:10:20 +00002853 releasePage(pCur->pPage);
drh5e00f6c2001-09-13 13:46:56 +00002854 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00002855 sqliteFree(pCur);
drh8c42ca92001-06-22 19:15:00 +00002856 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002857}
2858
drh7e3b0a02001-04-28 16:52:40 +00002859/*
drh5e2f8b92001-05-28 00:41:15 +00002860** Make a temporary cursor by filling in the fields of pTempCur.
2861** The temporary cursor is not on the cursor list for the Btree.
2862*/
drh14acc042001-06-10 19:56:58 +00002863static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
drh5e2f8b92001-05-28 00:41:15 +00002864 memcpy(pTempCur, pCur, sizeof(*pCur));
2865 pTempCur->pNext = 0;
2866 pTempCur->pPrev = 0;
drhecdc7532001-09-23 02:35:53 +00002867 if( pTempCur->pPage ){
drha34b6762004-05-07 13:30:42 +00002868 sqlite3pager_ref(pTempCur->pPage->aData);
drhecdc7532001-09-23 02:35:53 +00002869 }
drh5e2f8b92001-05-28 00:41:15 +00002870}
2871
2872/*
drhbd03cae2001-06-02 02:40:57 +00002873** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00002874** function above.
2875*/
drh14acc042001-06-10 19:56:58 +00002876static void releaseTempCursor(BtCursor *pCur){
drhecdc7532001-09-23 02:35:53 +00002877 if( pCur->pPage ){
drha34b6762004-05-07 13:30:42 +00002878 sqlite3pager_unref(pCur->pPage->aData);
drhecdc7532001-09-23 02:35:53 +00002879 }
drh5e2f8b92001-05-28 00:41:15 +00002880}
2881
2882/*
drh9188b382004-05-14 21:12:22 +00002883** Make sure the BtCursor.info field of the given cursor is valid.
drhab01f612004-05-22 02:55:23 +00002884** If it is not already valid, call parseCell() to fill it in.
2885**
2886** BtCursor.info is a cache of the information in the current cell.
2887** Using this cache reduces the number of calls to parseCell().
drh9188b382004-05-14 21:12:22 +00002888*/
2889static void getCellInfo(BtCursor *pCur){
drh271efa52004-05-30 19:19:05 +00002890 if( pCur->info.nSize==0 ){
drh3a41a3f2004-05-30 02:14:17 +00002891 parseCell(pCur->pPage, pCur->idx, &pCur->info);
drh9188b382004-05-14 21:12:22 +00002892 }else{
2893#ifndef NDEBUG
2894 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00002895 memset(&info, 0, sizeof(info));
drh3a41a3f2004-05-30 02:14:17 +00002896 parseCell(pCur->pPage, pCur->idx, &info);
drh9188b382004-05-14 21:12:22 +00002897 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
2898#endif
2899 }
2900}
2901
2902/*
drh3aac2dd2004-04-26 14:10:20 +00002903** Set *pSize to the size of the buffer needed to hold the value of
2904** the key for the current entry. If the cursor is not pointing
2905** to a valid entry, *pSize is set to 0.
2906**
drh4b70f112004-05-02 21:12:19 +00002907** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00002908** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00002909*/
drh4a1c3802004-05-12 15:15:47 +00002910int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh777e4c42006-01-13 04:31:58 +00002911 int rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00002912 if( rc==SQLITE_OK ){
2913 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
2914 if( pCur->eState==CURSOR_INVALID ){
2915 *pSize = 0;
2916 }else{
2917 getCellInfo(pCur);
2918 *pSize = pCur->info.nKey;
2919 }
drh72f82862001-05-24 21:06:34 +00002920 }
danielk1977da184232006-01-05 11:34:32 +00002921 return rc;
drha059ad02001-04-17 20:09:11 +00002922}
drh2af926b2001-05-15 00:39:25 +00002923
drh72f82862001-05-24 21:06:34 +00002924/*
drh0e1c19e2004-05-11 00:58:56 +00002925** Set *pSize to the number of bytes of data in the entry the
2926** cursor currently points to. Always return SQLITE_OK.
2927** Failure is not possible. If the cursor is not currently
2928** pointing to an entry (which can happen, for example, if
2929** the database is empty) then *pSize is set to 0.
2930*/
2931int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh777e4c42006-01-13 04:31:58 +00002932 int rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00002933 if( rc==SQLITE_OK ){
2934 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
2935 if( pCur->eState==CURSOR_INVALID ){
2936 /* Not pointing at a valid entry - set *pSize to 0. */
2937 *pSize = 0;
2938 }else{
2939 getCellInfo(pCur);
2940 *pSize = pCur->info.nData;
2941 }
drh0e1c19e2004-05-11 00:58:56 +00002942 }
danielk1977da184232006-01-05 11:34:32 +00002943 return rc;
drh0e1c19e2004-05-11 00:58:56 +00002944}
2945
2946/*
drh72f82862001-05-24 21:06:34 +00002947** Read payload information from the entry that the pCur cursor is
2948** pointing to. Begin reading the payload at "offset" and read
2949** a total of "amt" bytes. Put the result in zBuf.
2950**
2951** This routine does not make a distinction between key and data.
drhab01f612004-05-22 02:55:23 +00002952** It just reads bytes from the payload area. Data might appear
2953** on the main page or be scattered out on multiple overflow pages.
drh72f82862001-05-24 21:06:34 +00002954*/
drh3aac2dd2004-04-26 14:10:20 +00002955static int getPayload(
2956 BtCursor *pCur, /* Cursor pointing to entry to read from */
2957 int offset, /* Begin reading this far into payload */
2958 int amt, /* Read this many bytes */
2959 unsigned char *pBuf, /* Write the bytes into this buffer */
2960 int skipKey /* offset begins at data if this is true */
2961){
2962 unsigned char *aPayload;
drh2af926b2001-05-15 00:39:25 +00002963 Pgno nextPage;
drh8c42ca92001-06-22 19:15:00 +00002964 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002965 MemPage *pPage;
danielk1977aef0bf62005-12-30 16:28:01 +00002966 BtShared *pBt;
drh6f11bef2004-05-13 01:12:56 +00002967 int ovflSize;
drhfa1a98a2004-05-14 19:08:17 +00002968 u32 nKey;
drh3aac2dd2004-04-26 14:10:20 +00002969
drh72f82862001-05-24 21:06:34 +00002970 assert( pCur!=0 && pCur->pPage!=0 );
danielk1977da184232006-01-05 11:34:32 +00002971 assert( pCur->eState==CURSOR_VALID );
danielk1977aef0bf62005-12-30 16:28:01 +00002972 pBt = pCur->pBtree->pBt;
drh3aac2dd2004-04-26 14:10:20 +00002973 pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00002974 pageIntegrity(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002975 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh9188b382004-05-14 21:12:22 +00002976 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00002977 aPayload = pCur->info.pCell + pCur->info.nHeader;
drh3aac2dd2004-04-26 14:10:20 +00002978 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00002979 nKey = 0;
2980 }else{
2981 nKey = pCur->info.nKey;
drh3aac2dd2004-04-26 14:10:20 +00002982 }
2983 assert( offset>=0 );
2984 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00002985 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00002986 }
drhfa1a98a2004-05-14 19:08:17 +00002987 if( offset+amt > nKey+pCur->info.nData ){
drha34b6762004-05-07 13:30:42 +00002988 return SQLITE_ERROR;
drh3aac2dd2004-04-26 14:10:20 +00002989 }
drhfa1a98a2004-05-14 19:08:17 +00002990 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00002991 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00002992 if( a+offset>pCur->info.nLocal ){
2993 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00002994 }
drha34b6762004-05-07 13:30:42 +00002995 memcpy(pBuf, &aPayload[offset], a);
drh2af926b2001-05-15 00:39:25 +00002996 if( a==amt ){
2997 return SQLITE_OK;
2998 }
drh2aa679f2001-06-25 02:11:07 +00002999 offset = 0;
drha34b6762004-05-07 13:30:42 +00003000 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003001 amt -= a;
drhdd793422001-06-28 01:54:48 +00003002 }else{
drhfa1a98a2004-05-14 19:08:17 +00003003 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003004 }
danielk1977cfe9a692004-06-16 12:00:29 +00003005 ovflSize = pBt->usableSize - 4;
drhbd03cae2001-06-02 02:40:57 +00003006 if( amt>0 ){
drhfa1a98a2004-05-14 19:08:17 +00003007 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977cfe9a692004-06-16 12:00:29 +00003008 while( amt>0 && nextPage ){
3009 rc = sqlite3pager_get(pBt->pPager, nextPage, (void**)&aPayload);
3010 if( rc!=0 ){
3011 return rc;
drh2af926b2001-05-15 00:39:25 +00003012 }
danielk1977cfe9a692004-06-16 12:00:29 +00003013 nextPage = get4byte(aPayload);
3014 if( offset<ovflSize ){
3015 int a = amt;
3016 if( a + offset > ovflSize ){
3017 a = ovflSize - offset;
3018 }
3019 memcpy(pBuf, &aPayload[offset+4], a);
3020 offset = 0;
3021 amt -= a;
3022 pBuf += a;
3023 }else{
3024 offset -= ovflSize;
3025 }
3026 sqlite3pager_unref(aPayload);
drh2af926b2001-05-15 00:39:25 +00003027 }
drh2af926b2001-05-15 00:39:25 +00003028 }
danielk1977cfe9a692004-06-16 12:00:29 +00003029
drha7fcb052001-12-14 15:09:55 +00003030 if( amt>0 ){
drh49285702005-09-17 15:20:26 +00003031 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003032 }
3033 return SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +00003034}
3035
drh72f82862001-05-24 21:06:34 +00003036/*
drh3aac2dd2004-04-26 14:10:20 +00003037** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003038** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003039** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003040**
drh3aac2dd2004-04-26 14:10:20 +00003041** Return SQLITE_OK on success or an error code if anything goes
3042** wrong. An error is returned if "offset+amt" is larger than
3043** the available payload.
drh72f82862001-05-24 21:06:34 +00003044*/
drha34b6762004-05-07 13:30:42 +00003045int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh777e4c42006-01-13 04:31:58 +00003046 int rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00003047 if( rc==SQLITE_OK ){
3048 assert( pCur->eState==CURSOR_VALID );
3049 assert( pCur->pPage!=0 );
3050 if( pCur->pPage->intKey ){
3051 return SQLITE_CORRUPT_BKPT;
3052 }
3053 assert( pCur->pPage->intKey==0 );
3054 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
3055 rc = getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh6575a222005-03-10 17:06:34 +00003056 }
danielk1977da184232006-01-05 11:34:32 +00003057 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003058}
3059
3060/*
drh3aac2dd2004-04-26 14:10:20 +00003061** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003062** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003063** begins at "offset".
3064**
3065** Return SQLITE_OK on success or an error code if anything goes
3066** wrong. An error is returned if "offset+amt" is larger than
3067** the available payload.
drh72f82862001-05-24 21:06:34 +00003068*/
drh3aac2dd2004-04-26 14:10:20 +00003069int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh777e4c42006-01-13 04:31:58 +00003070 int rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00003071 if( rc==SQLITE_OK ){
3072 assert( pCur->eState==CURSOR_VALID );
3073 assert( pCur->pPage!=0 );
3074 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
3075 rc = getPayload(pCur, offset, amt, pBuf, 1);
3076 }
3077 return rc;
drh2af926b2001-05-15 00:39:25 +00003078}
3079
drh72f82862001-05-24 21:06:34 +00003080/*
drh0e1c19e2004-05-11 00:58:56 +00003081** Return a pointer to payload information from the entry that the
3082** pCur cursor is pointing to. The pointer is to the beginning of
3083** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003084** skipKey==1. The number of bytes of available key/data is written
3085** into *pAmt. If *pAmt==0, then the value returned will not be
3086** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003087**
3088** This routine is an optimization. It is common for the entire key
3089** and data to fit on the local page and for there to be no overflow
3090** pages. When that is so, this routine can be used to access the
3091** key and data without making a copy. If the key and/or data spills
3092** onto overflow pages, then getPayload() must be used to reassembly
3093** the key/data and copy it into a preallocated buffer.
3094**
3095** The pointer returned by this routine looks directly into the cached
3096** page of the database. The data might change or move the next time
3097** any btree routine is called.
3098*/
3099static const unsigned char *fetchPayload(
3100 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003101 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003102 int skipKey /* read beginning at data if this is true */
3103){
3104 unsigned char *aPayload;
3105 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003106 u32 nKey;
3107 int nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003108
3109 assert( pCur!=0 && pCur->pPage!=0 );
danielk1977da184232006-01-05 11:34:32 +00003110 assert( pCur->eState==CURSOR_VALID );
drh0e1c19e2004-05-11 00:58:56 +00003111 pPage = pCur->pPage;
3112 pageIntegrity(pPage);
3113 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh9188b382004-05-14 21:12:22 +00003114 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003115 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003116 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003117 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003118 nKey = 0;
3119 }else{
3120 nKey = pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003121 }
drh0e1c19e2004-05-11 00:58:56 +00003122 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003123 aPayload += nKey;
3124 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003125 }else{
drhfa1a98a2004-05-14 19:08:17 +00003126 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003127 if( nLocal>nKey ){
3128 nLocal = nKey;
3129 }
drh0e1c19e2004-05-11 00:58:56 +00003130 }
drhe51c44f2004-05-30 20:46:09 +00003131 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003132 return aPayload;
3133}
3134
3135
3136/*
drhe51c44f2004-05-30 20:46:09 +00003137** For the entry that cursor pCur is point to, return as
3138** many bytes of the key or data as are available on the local
3139** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003140**
3141** The pointer returned is ephemeral. The key/data may move
3142** or be destroyed on the next call to any Btree routine.
3143**
3144** These routines is used to get quick access to key and data
3145** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003146*/
drhe51c44f2004-05-30 20:46:09 +00003147const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
danielk1977da184232006-01-05 11:34:32 +00003148 if( pCur->eState==CURSOR_VALID ){
3149 return (const void*)fetchPayload(pCur, pAmt, 0);
3150 }
3151 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003152}
drhe51c44f2004-05-30 20:46:09 +00003153const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
danielk1977da184232006-01-05 11:34:32 +00003154 if( pCur->eState==CURSOR_VALID ){
3155 return (const void*)fetchPayload(pCur, pAmt, 1);
3156 }
3157 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003158}
3159
3160
3161/*
drh8178a752003-01-05 21:41:40 +00003162** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003163** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003164*/
drh3aac2dd2004-04-26 14:10:20 +00003165static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003166 int rc;
3167 MemPage *pNewPage;
drh3aac2dd2004-04-26 14:10:20 +00003168 MemPage *pOldPage;
danielk1977aef0bf62005-12-30 16:28:01 +00003169 BtShared *pBt = pCur->pBtree->pBt;
drh72f82862001-05-24 21:06:34 +00003170
danielk1977da184232006-01-05 11:34:32 +00003171 assert( pCur->eState==CURSOR_VALID );
drhde647132004-05-07 17:57:49 +00003172 rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
drh6019e162001-07-02 17:51:45 +00003173 if( rc ) return rc;
drhda200cc2004-05-09 11:51:38 +00003174 pageIntegrity(pNewPage);
drh428ae8c2003-01-04 16:48:09 +00003175 pNewPage->idxParent = pCur->idx;
drh3aac2dd2004-04-26 14:10:20 +00003176 pOldPage = pCur->pPage;
3177 pOldPage->idxShift = 0;
3178 releasePage(pOldPage);
drh72f82862001-05-24 21:06:34 +00003179 pCur->pPage = pNewPage;
3180 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00003181 pCur->info.nSize = 0;
drh4be295b2003-12-16 03:44:47 +00003182 if( pNewPage->nCell<1 ){
drh49285702005-09-17 15:20:26 +00003183 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003184 }
drh72f82862001-05-24 21:06:34 +00003185 return SQLITE_OK;
3186}
3187
3188/*
drh8856d6a2004-04-29 14:42:46 +00003189** Return true if the page is the virtual root of its table.
3190**
3191** The virtual root page is the root page for most tables. But
3192** for the table rooted on page 1, sometime the real root page
3193** is empty except for the right-pointer. In such cases the
3194** virtual root page is the page that the right-pointer of page
3195** 1 is pointing to.
3196*/
3197static int isRootPage(MemPage *pPage){
3198 MemPage *pParent = pPage->pParent;
drhda200cc2004-05-09 11:51:38 +00003199 if( pParent==0 ) return 1;
3200 if( pParent->pgno>1 ) return 0;
3201 if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
drh8856d6a2004-04-29 14:42:46 +00003202 return 0;
3203}
3204
3205/*
drh5e2f8b92001-05-28 00:41:15 +00003206** Move the cursor up to the parent page.
3207**
3208** pCur->idx is set to the cell index that contains the pointer
3209** to the page we are coming from. If we are coming from the
3210** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003211** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003212*/
drh8178a752003-01-05 21:41:40 +00003213static void moveToParent(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00003214 MemPage *pParent;
drh8178a752003-01-05 21:41:40 +00003215 MemPage *pPage;
drh428ae8c2003-01-04 16:48:09 +00003216 int idxParent;
drh3aac2dd2004-04-26 14:10:20 +00003217
danielk1977da184232006-01-05 11:34:32 +00003218 assert( pCur->eState==CURSOR_VALID );
drh8178a752003-01-05 21:41:40 +00003219 pPage = pCur->pPage;
3220 assert( pPage!=0 );
drh8856d6a2004-04-29 14:42:46 +00003221 assert( !isRootPage(pPage) );
drhda200cc2004-05-09 11:51:38 +00003222 pageIntegrity(pPage);
drh8178a752003-01-05 21:41:40 +00003223 pParent = pPage->pParent;
3224 assert( pParent!=0 );
drhda200cc2004-05-09 11:51:38 +00003225 pageIntegrity(pParent);
drh8178a752003-01-05 21:41:40 +00003226 idxParent = pPage->idxParent;
drha34b6762004-05-07 13:30:42 +00003227 sqlite3pager_ref(pParent->aData);
drh3aac2dd2004-04-26 14:10:20 +00003228 releasePage(pPage);
drh72f82862001-05-24 21:06:34 +00003229 pCur->pPage = pParent;
drh271efa52004-05-30 19:19:05 +00003230 pCur->info.nSize = 0;
drh428ae8c2003-01-04 16:48:09 +00003231 assert( pParent->idxShift==0 );
drh43605152004-05-29 21:46:49 +00003232 pCur->idx = idxParent;
drh72f82862001-05-24 21:06:34 +00003233}
3234
3235/*
3236** Move the cursor to the root page
3237*/
drh5e2f8b92001-05-28 00:41:15 +00003238static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00003239 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00003240 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00003241 BtShared *pBt = pCur->pBtree->pBt;
drhbd03cae2001-06-02 02:40:57 +00003242
drh777e4c42006-01-13 04:31:58 +00003243 restoreOrClearCursorPosition(pCur, 0);
drh777e4c42006-01-13 04:31:58 +00003244 pRoot = pCur->pPage;
danielk197797a227c2006-01-20 16:32:04 +00003245 if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
drh777e4c42006-01-13 04:31:58 +00003246 assert( pRoot->isInit );
3247 }else{
3248 if(
3249 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
3250 ){
3251 pCur->eState = CURSOR_INVALID;
3252 return rc;
3253 }
3254 releasePage(pCur->pPage);
3255 pageIntegrity(pRoot);
3256 pCur->pPage = pRoot;
drhc39e0002004-05-07 23:50:57 +00003257 }
drh72f82862001-05-24 21:06:34 +00003258 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00003259 pCur->info.nSize = 0;
drh8856d6a2004-04-29 14:42:46 +00003260 if( pRoot->nCell==0 && !pRoot->leaf ){
3261 Pgno subpage;
3262 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00003263 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00003264 assert( subpage>0 );
danielk1977da184232006-01-05 11:34:32 +00003265 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00003266 rc = moveToChild(pCur, subpage);
drh8856d6a2004-04-29 14:42:46 +00003267 }
danielk1977da184232006-01-05 11:34:32 +00003268 pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00003269 return rc;
drh72f82862001-05-24 21:06:34 +00003270}
drh2af926b2001-05-15 00:39:25 +00003271
drh5e2f8b92001-05-28 00:41:15 +00003272/*
3273** Move the cursor down to the left-most leaf entry beneath the
3274** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00003275**
3276** The left-most leaf is the one with the smallest key - the first
3277** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00003278*/
3279static int moveToLeftmost(BtCursor *pCur){
3280 Pgno pgno;
3281 int rc;
drh3aac2dd2004-04-26 14:10:20 +00003282 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00003283
danielk1977da184232006-01-05 11:34:32 +00003284 assert( pCur->eState==CURSOR_VALID );
drh3aac2dd2004-04-26 14:10:20 +00003285 while( !(pPage = pCur->pPage)->leaf ){
drha34b6762004-05-07 13:30:42 +00003286 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00003287 pgno = get4byte(findCell(pPage, pCur->idx));
drh8178a752003-01-05 21:41:40 +00003288 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00003289 if( rc ) return rc;
3290 }
3291 return SQLITE_OK;
3292}
3293
drh2dcc9aa2002-12-04 13:40:25 +00003294/*
3295** Move the cursor down to the right-most leaf entry beneath the
3296** page to which it is currently pointing. Notice the difference
3297** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
3298** finds the left-most entry beneath the *entry* whereas moveToRightmost()
3299** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00003300**
3301** The right-most entry is the one with the largest key - the last
3302** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00003303*/
3304static int moveToRightmost(BtCursor *pCur){
3305 Pgno pgno;
3306 int rc;
drh3aac2dd2004-04-26 14:10:20 +00003307 MemPage *pPage;
drh2dcc9aa2002-12-04 13:40:25 +00003308
danielk1977da184232006-01-05 11:34:32 +00003309 assert( pCur->eState==CURSOR_VALID );
drh3aac2dd2004-04-26 14:10:20 +00003310 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00003311 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh3aac2dd2004-04-26 14:10:20 +00003312 pCur->idx = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00003313 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00003314 if( rc ) return rc;
3315 }
drh3aac2dd2004-04-26 14:10:20 +00003316 pCur->idx = pPage->nCell - 1;
drh271efa52004-05-30 19:19:05 +00003317 pCur->info.nSize = 0;
drh2dcc9aa2002-12-04 13:40:25 +00003318 return SQLITE_OK;
3319}
3320
drh5e00f6c2001-09-13 13:46:56 +00003321/* Move the cursor to the first entry in the table. Return SQLITE_OK
3322** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003323** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00003324*/
drh3aac2dd2004-04-26 14:10:20 +00003325int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00003326 int rc;
3327 rc = moveToRoot(pCur);
3328 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00003329 if( pCur->eState==CURSOR_INVALID ){
drhc39e0002004-05-07 23:50:57 +00003330 assert( pCur->pPage->nCell==0 );
drh5e00f6c2001-09-13 13:46:56 +00003331 *pRes = 1;
3332 return SQLITE_OK;
3333 }
drhc39e0002004-05-07 23:50:57 +00003334 assert( pCur->pPage->nCell>0 );
drh5e00f6c2001-09-13 13:46:56 +00003335 *pRes = 0;
3336 rc = moveToLeftmost(pCur);
3337 return rc;
3338}
drh5e2f8b92001-05-28 00:41:15 +00003339
drh9562b552002-02-19 15:00:07 +00003340/* Move the cursor to the last entry in the table. Return SQLITE_OK
3341** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003342** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00003343*/
drh3aac2dd2004-04-26 14:10:20 +00003344int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00003345 int rc;
drh9562b552002-02-19 15:00:07 +00003346 rc = moveToRoot(pCur);
3347 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00003348 if( CURSOR_INVALID==pCur->eState ){
drhc39e0002004-05-07 23:50:57 +00003349 assert( pCur->pPage->nCell==0 );
drh9562b552002-02-19 15:00:07 +00003350 *pRes = 1;
3351 return SQLITE_OK;
3352 }
danielk1977da184232006-01-05 11:34:32 +00003353 assert( pCur->eState==CURSOR_VALID );
drh9562b552002-02-19 15:00:07 +00003354 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00003355 rc = moveToRightmost(pCur);
drh9562b552002-02-19 15:00:07 +00003356 return rc;
3357}
3358
drh3aac2dd2004-04-26 14:10:20 +00003359/* Move the cursor so that it points to an entry near pKey/nKey.
drh72f82862001-05-24 21:06:34 +00003360** Return a success code.
3361**
drh3aac2dd2004-04-26 14:10:20 +00003362** For INTKEY tables, only the nKey parameter is used. pKey is
3363** ignored. For other tables, nKey is the number of bytes of data
drh0b2f3162005-12-21 18:36:45 +00003364** in pKey. The comparison function specified when the cursor was
drh3aac2dd2004-04-26 14:10:20 +00003365** created is used to compare keys.
3366**
drh5e2f8b92001-05-28 00:41:15 +00003367** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00003368** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00003369** were present. The cursor might point to an entry that comes
3370** before or after the key.
3371**
drhbd03cae2001-06-02 02:40:57 +00003372** The result of comparing the key with the entry to which the
drhab01f612004-05-22 02:55:23 +00003373** cursor is written to *pRes if pRes!=NULL. The meaning of
drhbd03cae2001-06-02 02:40:57 +00003374** this value is as follows:
3375**
3376** *pRes<0 The cursor is left pointing at an entry that
drh1a844c32002-12-04 22:29:28 +00003377** is smaller than pKey or if the table is empty
3378** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00003379**
3380** *pRes==0 The cursor is left pointing at an entry that
3381** exactly matches pKey.
3382**
3383** *pRes>0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00003384** is larger than pKey.
drha059ad02001-04-17 20:09:11 +00003385*/
drh4a1c3802004-05-12 15:15:47 +00003386int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){
drh72f82862001-05-24 21:06:34 +00003387 int rc;
drh777e4c42006-01-13 04:31:58 +00003388 int tryRightmost;
drh5e2f8b92001-05-28 00:41:15 +00003389 rc = moveToRoot(pCur);
drh72f82862001-05-24 21:06:34 +00003390 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00003391 assert( pCur->pPage );
3392 assert( pCur->pPage->isInit );
drh777e4c42006-01-13 04:31:58 +00003393 tryRightmost = pCur->pPage->intKey;
danielk1977da184232006-01-05 11:34:32 +00003394 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00003395 *pRes = -1;
drhc39e0002004-05-07 23:50:57 +00003396 assert( pCur->pPage->nCell==0 );
3397 return SQLITE_OK;
3398 }
drh4eec4c12005-01-21 00:22:37 +00003399 for(;;){
drh72f82862001-05-24 21:06:34 +00003400 int lwr, upr;
3401 Pgno chldPg;
3402 MemPage *pPage = pCur->pPage;
drh1a844c32002-12-04 22:29:28 +00003403 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00003404 lwr = 0;
3405 upr = pPage->nCell-1;
drh4eec4c12005-01-21 00:22:37 +00003406 if( !pPage->intKey && pKey==0 ){
drh49285702005-09-17 15:20:26 +00003407 return SQLITE_CORRUPT_BKPT;
drh4eec4c12005-01-21 00:22:37 +00003408 }
drhda200cc2004-05-09 11:51:38 +00003409 pageIntegrity(pPage);
drh72f82862001-05-24 21:06:34 +00003410 while( lwr<=upr ){
danielk197713adf8a2004-06-03 16:08:41 +00003411 void *pCellKey;
drh4a1c3802004-05-12 15:15:47 +00003412 i64 nCellKey;
drh72f82862001-05-24 21:06:34 +00003413 pCur->idx = (lwr+upr)/2;
drh366fda62006-01-13 02:35:09 +00003414 pCur->info.nSize = 0;
drh3aac2dd2004-04-26 14:10:20 +00003415 if( pPage->intKey ){
drh777e4c42006-01-13 04:31:58 +00003416 u8 *pCell;
3417 if( tryRightmost ){
3418 pCur->idx = upr;
3419 }
3420 pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
drhd172f862006-01-12 15:01:15 +00003421 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00003422 u32 dummy;
drhd172f862006-01-12 15:01:15 +00003423 pCell += getVarint32(pCell, &dummy);
3424 }
danielk1977bab45c62006-01-16 15:14:27 +00003425 getVarint(pCell, (u64 *)&nCellKey);
drh3aac2dd2004-04-26 14:10:20 +00003426 if( nCellKey<nKey ){
3427 c = -1;
3428 }else if( nCellKey>nKey ){
3429 c = +1;
drh777e4c42006-01-13 04:31:58 +00003430 tryRightmost = 0;
drh3aac2dd2004-04-26 14:10:20 +00003431 }else{
3432 c = 0;
3433 }
drh3aac2dd2004-04-26 14:10:20 +00003434 }else{
drhe51c44f2004-05-30 20:46:09 +00003435 int available;
danielk197713adf8a2004-06-03 16:08:41 +00003436 pCellKey = (void *)fetchPayload(pCur, &available, 0);
drh366fda62006-01-13 02:35:09 +00003437 nCellKey = pCur->info.nKey;
drhe51c44f2004-05-30 20:46:09 +00003438 if( available>=nCellKey ){
3439 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
3440 }else{
3441 pCellKey = sqliteMallocRaw( nCellKey );
3442 if( pCellKey==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00003443 rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
drhe51c44f2004-05-30 20:46:09 +00003444 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
3445 sqliteFree(pCellKey);
3446 if( rc ) return rc;
3447 }
drh3aac2dd2004-04-26 14:10:20 +00003448 }
drh72f82862001-05-24 21:06:34 +00003449 if( c==0 ){
drh8b18dd42004-05-12 19:18:15 +00003450 if( pPage->leafData && !pPage->leaf ){
drhfc70e6f2004-05-12 21:11:27 +00003451 lwr = pCur->idx;
3452 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00003453 break;
3454 }else{
drh8b18dd42004-05-12 19:18:15 +00003455 if( pRes ) *pRes = 0;
3456 return SQLITE_OK;
3457 }
drh72f82862001-05-24 21:06:34 +00003458 }
3459 if( c<0 ){
3460 lwr = pCur->idx+1;
3461 }else{
3462 upr = pCur->idx-1;
3463 }
3464 }
3465 assert( lwr==upr+1 );
drh7aa128d2002-06-21 13:09:16 +00003466 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00003467 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00003468 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00003469 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00003470 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00003471 }else{
drh43605152004-05-29 21:46:49 +00003472 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00003473 }
3474 if( chldPg==0 ){
drhc39e0002004-05-07 23:50:57 +00003475 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh72f82862001-05-24 21:06:34 +00003476 if( pRes ) *pRes = c;
3477 return SQLITE_OK;
3478 }
drh428ae8c2003-01-04 16:48:09 +00003479 pCur->idx = lwr;
drh271efa52004-05-30 19:19:05 +00003480 pCur->info.nSize = 0;
drh8178a752003-01-05 21:41:40 +00003481 rc = moveToChild(pCur, chldPg);
drhc39e0002004-05-07 23:50:57 +00003482 if( rc ){
3483 return rc;
3484 }
drh72f82862001-05-24 21:06:34 +00003485 }
drhbd03cae2001-06-02 02:40:57 +00003486 /* NOT REACHED */
drh72f82862001-05-24 21:06:34 +00003487}
3488
3489/*
drhc39e0002004-05-07 23:50:57 +00003490** Return TRUE if the cursor is not pointing at an entry of the table.
3491**
3492** TRUE will be returned after a call to sqlite3BtreeNext() moves
3493** past the last entry in the table or sqlite3BtreePrev() moves past
3494** the first entry. TRUE is also returned if the table is empty.
3495*/
3496int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00003497 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
3498 ** have been deleted? This API will need to change to return an error code
3499 ** as well as the boolean result value.
3500 */
3501 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00003502}
3503
3504/*
drhbd03cae2001-06-02 02:40:57 +00003505** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00003506** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00003507** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00003508** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00003509*/
drh3aac2dd2004-04-26 14:10:20 +00003510int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00003511 int rc;
danielk197797a227c2006-01-20 16:32:04 +00003512 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00003513
danielk1977da184232006-01-05 11:34:32 +00003514#ifndef SQLITE_OMIT_SHARED_CACHE
drh777e4c42006-01-13 04:31:58 +00003515 rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00003516 if( rc!=SQLITE_OK ){
3517 return rc;
3518 }
3519 if( pCur->skip>0 ){
3520 pCur->skip = 0;
3521 *pRes = 0;
3522 return SQLITE_OK;
3523 }
3524 pCur->skip = 0;
danielk197797a227c2006-01-20 16:32:04 +00003525#endif
danielk1977da184232006-01-05 11:34:32 +00003526
drh8c1238a2003-01-02 14:43:55 +00003527 assert( pRes!=0 );
danielk197797a227c2006-01-20 16:32:04 +00003528 pPage = pCur->pPage;
danielk1977da184232006-01-05 11:34:32 +00003529 if( CURSOR_INVALID==pCur->eState ){
drh8c1238a2003-01-02 14:43:55 +00003530 *pRes = 1;
drhc39e0002004-05-07 23:50:57 +00003531 return SQLITE_OK;
drhecdc7532001-09-23 02:35:53 +00003532 }
drh8178a752003-01-05 21:41:40 +00003533 assert( pPage->isInit );
drh8178a752003-01-05 21:41:40 +00003534 assert( pCur->idx<pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00003535
drh72f82862001-05-24 21:06:34 +00003536 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00003537 pCur->info.nSize = 0;
drh8178a752003-01-05 21:41:40 +00003538 if( pCur->idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00003539 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003540 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00003541 if( rc ) return rc;
3542 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00003543 *pRes = 0;
3544 return rc;
drh72f82862001-05-24 21:06:34 +00003545 }
drh5e2f8b92001-05-28 00:41:15 +00003546 do{
drh8856d6a2004-04-29 14:42:46 +00003547 if( isRootPage(pPage) ){
drh8c1238a2003-01-02 14:43:55 +00003548 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00003549 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00003550 return SQLITE_OK;
3551 }
drh8178a752003-01-05 21:41:40 +00003552 moveToParent(pCur);
3553 pPage = pCur->pPage;
3554 }while( pCur->idx>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00003555 *pRes = 0;
drh8b18dd42004-05-12 19:18:15 +00003556 if( pPage->leafData ){
3557 rc = sqlite3BtreeNext(pCur, pRes);
3558 }else{
3559 rc = SQLITE_OK;
3560 }
3561 return rc;
drh8178a752003-01-05 21:41:40 +00003562 }
3563 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00003564 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00003565 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00003566 }
drh5e2f8b92001-05-28 00:41:15 +00003567 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00003568 return rc;
drh72f82862001-05-24 21:06:34 +00003569}
3570
drh3b7511c2001-05-26 13:15:44 +00003571/*
drh2dcc9aa2002-12-04 13:40:25 +00003572** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00003573** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00003574** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00003575** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00003576*/
drh3aac2dd2004-04-26 14:10:20 +00003577int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00003578 int rc;
3579 Pgno pgno;
drh8178a752003-01-05 21:41:40 +00003580 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00003581
3582#ifndef SQLITE_OMIT_SHARED_CACHE
drh777e4c42006-01-13 04:31:58 +00003583 rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00003584 if( rc!=SQLITE_OK ){
3585 return rc;
3586 }
3587 if( pCur->skip<0 ){
3588 pCur->skip = 0;
3589 *pRes = 0;
3590 return SQLITE_OK;
3591 }
3592 pCur->skip = 0;
3593#endif
3594
3595 if( CURSOR_INVALID==pCur->eState ){
drhc39e0002004-05-07 23:50:57 +00003596 *pRes = 1;
3597 return SQLITE_OK;
3598 }
danielk19776a43f9b2004-11-16 04:57:24 +00003599
drh8178a752003-01-05 21:41:40 +00003600 pPage = pCur->pPage;
drh8178a752003-01-05 21:41:40 +00003601 assert( pPage->isInit );
drh2dcc9aa2002-12-04 13:40:25 +00003602 assert( pCur->idx>=0 );
drha34b6762004-05-07 13:30:42 +00003603 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003604 pgno = get4byte( findCell(pPage, pCur->idx) );
drh8178a752003-01-05 21:41:40 +00003605 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00003606 if( rc ) return rc;
3607 rc = moveToRightmost(pCur);
3608 }else{
3609 while( pCur->idx==0 ){
drh8856d6a2004-04-29 14:42:46 +00003610 if( isRootPage(pPage) ){
danielk1977da184232006-01-05 11:34:32 +00003611 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00003612 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00003613 return SQLITE_OK;
3614 }
drh8178a752003-01-05 21:41:40 +00003615 moveToParent(pCur);
3616 pPage = pCur->pPage;
drh2dcc9aa2002-12-04 13:40:25 +00003617 }
3618 pCur->idx--;
drh271efa52004-05-30 19:19:05 +00003619 pCur->info.nSize = 0;
drh8237d452004-11-22 19:07:09 +00003620 if( pPage->leafData && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00003621 rc = sqlite3BtreePrevious(pCur, pRes);
3622 }else{
3623 rc = SQLITE_OK;
3624 }
drh2dcc9aa2002-12-04 13:40:25 +00003625 }
drh8178a752003-01-05 21:41:40 +00003626 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00003627 return rc;
3628}
3629
3630/*
drh3b7511c2001-05-26 13:15:44 +00003631** Allocate a new page from the database file.
3632**
drha34b6762004-05-07 13:30:42 +00003633** The new page is marked as dirty. (In other words, sqlite3pager_write()
drh3b7511c2001-05-26 13:15:44 +00003634** has already been called on the new page.) The new page has also
3635** been referenced and the calling routine is responsible for calling
drha34b6762004-05-07 13:30:42 +00003636** sqlite3pager_unref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00003637**
3638** SQLITE_OK is returned on success. Any other return value indicates
3639** an error. *ppPage and *pPgno are undefined in the event of an error.
drha34b6762004-05-07 13:30:42 +00003640** Do not invoke sqlite3pager_unref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00003641**
drh199e3cf2002-07-18 11:01:47 +00003642** If the "nearby" parameter is not 0, then a (feeble) effort is made to
3643** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00003644** attempt to keep related pages close to each other in the database file,
3645** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00003646**
3647** If the "exact" parameter is not 0, and the page-number nearby exists
3648** anywhere on the free-list, then it is guarenteed to be returned. This
3649** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00003650*/
danielk1977cb1a7eb2004-11-05 12:27:02 +00003651static int allocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003652 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00003653 MemPage **ppPage,
3654 Pgno *pPgno,
3655 Pgno nearby,
3656 u8 exact
3657){
drh3aac2dd2004-04-26 14:10:20 +00003658 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00003659 int rc;
drh3aac2dd2004-04-26 14:10:20 +00003660 int n; /* Number of pages on the freelist */
3661 int k; /* Number of leaves on the trunk of the freelist */
drh30e58752002-03-02 20:41:57 +00003662
drh3aac2dd2004-04-26 14:10:20 +00003663 pPage1 = pBt->pPage1;
3664 n = get4byte(&pPage1->aData[36]);
3665 if( n>0 ){
drh91025292004-05-03 19:49:32 +00003666 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00003667 MemPage *pTrunk = 0;
3668 Pgno iTrunk;
3669 MemPage *pPrevTrunk = 0;
3670 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
3671
3672 /* If the 'exact' parameter was true and a query of the pointer-map
3673 ** shows that the page 'nearby' is somewhere on the free-list, then
3674 ** the entire-list will be searched for that page.
3675 */
3676#ifndef SQLITE_OMIT_AUTOVACUUM
3677 if( exact ){
3678 u8 eType;
3679 assert( nearby>0 );
3680 assert( pBt->autoVacuum );
3681 rc = ptrmapGet(pBt, nearby, &eType, 0);
3682 if( rc ) return rc;
3683 if( eType==PTRMAP_FREEPAGE ){
3684 searchList = 1;
3685 }
3686 *pPgno = nearby;
3687 }
3688#endif
3689
3690 /* Decrement the free-list count by 1. Set iTrunk to the index of the
3691 ** first free-list trunk page. iPrevTrunk is initially 1.
3692 */
drha34b6762004-05-07 13:30:42 +00003693 rc = sqlite3pager_write(pPage1->aData);
drh3b7511c2001-05-26 13:15:44 +00003694 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003695 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00003696
3697 /* The code within this loop is run only once if the 'searchList' variable
3698 ** is not true. Otherwise, it runs once for each trunk-page on the
3699 ** free-list until the page 'nearby' is located.
3700 */
3701 do {
3702 pPrevTrunk = pTrunk;
3703 if( pPrevTrunk ){
3704 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00003705 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00003706 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00003707 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003708 rc = getPage(pBt, iTrunk, &pTrunk);
3709 if( rc ){
3710 releasePage(pPrevTrunk);
3711 return rc;
3712 }
3713
3714 /* TODO: This should move to after the loop? */
3715 rc = sqlite3pager_write(pTrunk->aData);
3716 if( rc ){
3717 releasePage(pTrunk);
3718 releasePage(pPrevTrunk);
3719 return rc;
3720 }
3721
3722 k = get4byte(&pTrunk->aData[4]);
3723 if( k==0 && !searchList ){
3724 /* The trunk has no leaves and the list is not being searched.
3725 ** So extract the trunk page itself and use it as the newly
3726 ** allocated page */
3727 assert( pPrevTrunk==0 );
3728 *pPgno = iTrunk;
3729 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
3730 *ppPage = pTrunk;
3731 pTrunk = 0;
3732 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
3733 }else if( k>pBt->usableSize/4 - 8 ){
3734 /* Value of k is out of range. Database corruption */
drh49285702005-09-17 15:20:26 +00003735 return SQLITE_CORRUPT_BKPT;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003736#ifndef SQLITE_OMIT_AUTOVACUUM
3737 }else if( searchList && nearby==iTrunk ){
3738 /* The list is being searched and this trunk page is the page
3739 ** to allocate, regardless of whether it has leaves.
3740 */
3741 assert( *pPgno==iTrunk );
3742 *ppPage = pTrunk;
3743 searchList = 0;
3744 if( k==0 ){
3745 if( !pPrevTrunk ){
3746 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
3747 }else{
3748 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
3749 }
3750 }else{
3751 /* The trunk page is required by the caller but it contains
3752 ** pointers to free-list leaves. The first leaf becomes a trunk
3753 ** page in this case.
3754 */
3755 MemPage *pNewTrunk;
3756 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
3757 rc = getPage(pBt, iNewTrunk, &pNewTrunk);
3758 if( rc!=SQLITE_OK ){
3759 releasePage(pTrunk);
3760 releasePage(pPrevTrunk);
3761 return rc;
3762 }
3763 rc = sqlite3pager_write(pNewTrunk->aData);
3764 if( rc!=SQLITE_OK ){
3765 releasePage(pNewTrunk);
3766 releasePage(pTrunk);
3767 releasePage(pPrevTrunk);
3768 return rc;
3769 }
3770 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
3771 put4byte(&pNewTrunk->aData[4], k-1);
3772 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
3773 if( !pPrevTrunk ){
3774 put4byte(&pPage1->aData[32], iNewTrunk);
3775 }else{
3776 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
3777 }
3778 releasePage(pNewTrunk);
3779 }
3780 pTrunk = 0;
3781 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
3782#endif
3783 }else{
3784 /* Extract a leaf from the trunk */
3785 int closest;
3786 Pgno iPage;
3787 unsigned char *aData = pTrunk->aData;
3788 if( nearby>0 ){
3789 int i, dist;
3790 closest = 0;
3791 dist = get4byte(&aData[8]) - nearby;
3792 if( dist<0 ) dist = -dist;
3793 for(i=1; i<k; i++){
3794 int d2 = get4byte(&aData[8+i*4]) - nearby;
3795 if( d2<0 ) d2 = -d2;
3796 if( d2<dist ){
3797 closest = i;
3798 dist = d2;
3799 }
3800 }
3801 }else{
3802 closest = 0;
3803 }
3804
3805 iPage = get4byte(&aData[8+closest*4]);
3806 if( !searchList || iPage==nearby ){
3807 *pPgno = iPage;
3808 if( *pPgno>sqlite3pager_pagecount(pBt->pPager) ){
3809 /* Free page off the end of the file */
drh49285702005-09-17 15:20:26 +00003810 return SQLITE_CORRUPT_BKPT;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003811 }
3812 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
3813 ": %d more free pages\n",
3814 *pPgno, closest+1, k, pTrunk->pgno, n-1));
3815 if( closest<k-1 ){
3816 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
3817 }
3818 put4byte(&aData[4], k-1);
3819 rc = getPage(pBt, *pPgno, ppPage);
3820 if( rc==SQLITE_OK ){
3821 sqlite3pager_dont_rollback((*ppPage)->aData);
3822 rc = sqlite3pager_write((*ppPage)->aData);
danielk1977aac0a382005-01-16 11:07:06 +00003823 if( rc!=SQLITE_OK ){
3824 releasePage(*ppPage);
3825 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003826 }
3827 searchList = 0;
3828 }
drhee696e22004-08-30 16:52:17 +00003829 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003830 releasePage(pPrevTrunk);
3831 }while( searchList );
3832 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00003833 }else{
drh3aac2dd2004-04-26 14:10:20 +00003834 /* There are no pages on the freelist, so create a new page at the
3835 ** end of the file */
drha34b6762004-05-07 13:30:42 +00003836 *pPgno = sqlite3pager_pagecount(pBt->pPager) + 1;
danielk1977afcdd022004-10-31 16:25:42 +00003837
3838#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00003839 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00003840 /* If *pPgno refers to a pointer-map page, allocate two new pages
3841 ** at the end of the file instead of one. The first allocated page
3842 ** becomes a new pointer-map page, the second is used by the caller.
3843 */
3844 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00003845 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk1977afcdd022004-10-31 16:25:42 +00003846 (*pPgno)++;
3847 }
3848#endif
3849
danielk1977599fcba2004-11-08 07:13:13 +00003850 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003851 rc = getPage(pBt, *pPgno, ppPage);
drh3b7511c2001-05-26 13:15:44 +00003852 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003853 rc = sqlite3pager_write((*ppPage)->aData);
danielk1977aac0a382005-01-16 11:07:06 +00003854 if( rc!=SQLITE_OK ){
3855 releasePage(*ppPage);
3856 }
drh3a4c1412004-05-09 20:40:11 +00003857 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00003858 }
danielk1977599fcba2004-11-08 07:13:13 +00003859
3860 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh3b7511c2001-05-26 13:15:44 +00003861 return rc;
3862}
3863
3864/*
drh3aac2dd2004-04-26 14:10:20 +00003865** Add a page of the database file to the freelist.
drh5e2f8b92001-05-28 00:41:15 +00003866**
drha34b6762004-05-07 13:30:42 +00003867** sqlite3pager_unref() is NOT called for pPage.
drh3b7511c2001-05-26 13:15:44 +00003868*/
drh3aac2dd2004-04-26 14:10:20 +00003869static int freePage(MemPage *pPage){
danielk1977aef0bf62005-12-30 16:28:01 +00003870 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00003871 MemPage *pPage1 = pBt->pPage1;
3872 int rc, n, k;
drh8b2f49b2001-06-08 00:21:52 +00003873
drh3aac2dd2004-04-26 14:10:20 +00003874 /* Prepare the page for freeing */
3875 assert( pPage->pgno>1 );
3876 pPage->isInit = 0;
3877 releasePage(pPage->pParent);
3878 pPage->pParent = 0;
3879
drha34b6762004-05-07 13:30:42 +00003880 /* Increment the free page count on pPage1 */
3881 rc = sqlite3pager_write(pPage1->aData);
drh3aac2dd2004-04-26 14:10:20 +00003882 if( rc ) return rc;
3883 n = get4byte(&pPage1->aData[36]);
3884 put4byte(&pPage1->aData[36], n+1);
3885
drhfcce93f2006-02-22 03:08:32 +00003886#ifdef SQLITE_SECURE_DELETE
3887 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
3888 ** always fully overwrite deleted information with zeros.
3889 */
3890 rc = sqlite3pager_write(pPage->aData);
3891 if( rc ) return rc;
3892 memset(pPage->aData, 0, pPage->pBt->pageSize);
3893#endif
3894
danielk1977687566d2004-11-02 12:56:41 +00003895#ifndef SQLITE_OMIT_AUTOVACUUM
3896 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00003897 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00003898 */
3899 if( pBt->autoVacuum ){
3900 rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
danielk1977a64a0352004-11-05 01:45:13 +00003901 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003902 }
3903#endif
3904
drh3aac2dd2004-04-26 14:10:20 +00003905 if( n==0 ){
3906 /* This is the first free page */
drhda200cc2004-05-09 11:51:38 +00003907 rc = sqlite3pager_write(pPage->aData);
3908 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003909 memset(pPage->aData, 0, 8);
drha34b6762004-05-07 13:30:42 +00003910 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00003911 TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
drh3aac2dd2004-04-26 14:10:20 +00003912 }else{
3913 /* Other free pages already exist. Retrive the first trunk page
3914 ** of the freelist and find out how many leaves it has. */
drha34b6762004-05-07 13:30:42 +00003915 MemPage *pTrunk;
3916 rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk);
drh3b7511c2001-05-26 13:15:44 +00003917 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003918 k = get4byte(&pTrunk->aData[4]);
drhee696e22004-08-30 16:52:17 +00003919 if( k>=pBt->usableSize/4 - 8 ){
drh3aac2dd2004-04-26 14:10:20 +00003920 /* The trunk is full. Turn the page being freed into a new
3921 ** trunk page with no leaves. */
drha34b6762004-05-07 13:30:42 +00003922 rc = sqlite3pager_write(pPage->aData);
drh3aac2dd2004-04-26 14:10:20 +00003923 if( rc ) return rc;
3924 put4byte(pPage->aData, pTrunk->pgno);
3925 put4byte(&pPage->aData[4], 0);
3926 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00003927 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
3928 pPage->pgno, pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00003929 }else{
3930 /* Add the newly freed page as a leaf on the current trunk */
drha34b6762004-05-07 13:30:42 +00003931 rc = sqlite3pager_write(pTrunk->aData);
drh3aac2dd2004-04-26 14:10:20 +00003932 if( rc ) return rc;
3933 put4byte(&pTrunk->aData[4], k+1);
3934 put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
drhfcce93f2006-02-22 03:08:32 +00003935#ifndef SQLITE_SECURE_DELETE
drha34b6762004-05-07 13:30:42 +00003936 sqlite3pager_dont_write(pBt->pPager, pPage->pgno);
drhfcce93f2006-02-22 03:08:32 +00003937#endif
drh3a4c1412004-05-09 20:40:11 +00003938 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00003939 }
3940 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00003941 }
drh3b7511c2001-05-26 13:15:44 +00003942 return rc;
3943}
3944
3945/*
drh3aac2dd2004-04-26 14:10:20 +00003946** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00003947*/
drh3aac2dd2004-04-26 14:10:20 +00003948static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00003949 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00003950 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00003951 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00003952 int rc;
drh3b7511c2001-05-26 13:15:44 +00003953
drh43605152004-05-29 21:46:49 +00003954 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00003955 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00003956 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00003957 }
drh6f11bef2004-05-13 01:12:56 +00003958 ovflPgno = get4byte(&pCell[info.iOverflow]);
drh3aac2dd2004-04-26 14:10:20 +00003959 while( ovflPgno!=0 ){
3960 MemPage *pOvfl;
danielk1977a1cb1832005-02-12 08:59:55 +00003961 if( ovflPgno>sqlite3pager_pagecount(pBt->pPager) ){
drh49285702005-09-17 15:20:26 +00003962 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00003963 }
drh3aac2dd2004-04-26 14:10:20 +00003964 rc = getPage(pBt, ovflPgno, &pOvfl);
drh3b7511c2001-05-26 13:15:44 +00003965 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003966 ovflPgno = get4byte(pOvfl->aData);
drha34b6762004-05-07 13:30:42 +00003967 rc = freePage(pOvfl);
drha34b6762004-05-07 13:30:42 +00003968 sqlite3pager_unref(pOvfl->aData);
danielk19776b456a22005-03-21 04:04:02 +00003969 if( rc ) return rc;
drh3b7511c2001-05-26 13:15:44 +00003970 }
drh5e2f8b92001-05-28 00:41:15 +00003971 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00003972}
3973
3974/*
drh91025292004-05-03 19:49:32 +00003975** Create the byte sequence used to represent a cell on page pPage
3976** and write that byte sequence into pCell[]. Overflow pages are
3977** allocated and filled in as necessary. The calling procedure
3978** is responsible for making sure sufficient space has been allocated
3979** for pCell[].
3980**
3981** Note that pCell does not necessary need to point to the pPage->aData
3982** area. pCell might point to some temporary storage. The cell will
3983** be constructed in this temporary area then copied into pPage->aData
3984** later.
drh3b7511c2001-05-26 13:15:44 +00003985*/
3986static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00003987 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00003988 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00003989 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00003990 const void *pData,int nData, /* The data */
3991 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00003992){
drh3b7511c2001-05-26 13:15:44 +00003993 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00003994 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00003995 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00003996 int spaceLeft;
3997 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00003998 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00003999 unsigned char *pPrior;
4000 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00004001 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00004002 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00004003 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00004004 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00004005
drh91025292004-05-03 19:49:32 +00004006 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00004007 nHeader = 0;
drh91025292004-05-03 19:49:32 +00004008 if( !pPage->leaf ){
4009 nHeader += 4;
4010 }
drh8b18dd42004-05-12 19:18:15 +00004011 if( pPage->hasData ){
drh91025292004-05-03 19:49:32 +00004012 nHeader += putVarint(&pCell[nHeader], nData);
drh6f11bef2004-05-13 01:12:56 +00004013 }else{
drh91025292004-05-03 19:49:32 +00004014 nData = 0;
4015 }
drh6f11bef2004-05-13 01:12:56 +00004016 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh43605152004-05-29 21:46:49 +00004017 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004018 assert( info.nHeader==nHeader );
4019 assert( info.nKey==nKey );
4020 assert( info.nData==nData );
4021
4022 /* Fill in the payload */
drh3aac2dd2004-04-26 14:10:20 +00004023 nPayload = nData;
4024 if( pPage->intKey ){
4025 pSrc = pData;
4026 nSrc = nData;
drh91025292004-05-03 19:49:32 +00004027 nData = 0;
drh3aac2dd2004-04-26 14:10:20 +00004028 }else{
4029 nPayload += nKey;
4030 pSrc = pKey;
4031 nSrc = nKey;
4032 }
drh6f11bef2004-05-13 01:12:56 +00004033 *pnSize = info.nSize;
4034 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00004035 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00004036 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00004037
drh3b7511c2001-05-26 13:15:44 +00004038 while( nPayload>0 ){
4039 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00004040#ifndef SQLITE_OMIT_AUTOVACUUM
4041 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
4042#endif
danielk1977cb1a7eb2004-11-05 12:27:02 +00004043 rc = allocatePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00004044#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00004045 /* If the database supports auto-vacuum, and the second or subsequent
4046 ** overflow page is being allocated, add an entry to the pointer-map
4047 ** for that page now. The entry for the first overflow page will be
4048 ** added later, by the insertCell() routine.
danielk1977afcdd022004-10-31 16:25:42 +00004049 */
danielk1977a19df672004-11-03 11:37:07 +00004050 if( pBt->autoVacuum && pgnoPtrmap!=0 && rc==SQLITE_OK ){
4051 rc = ptrmapPut(pBt, pgnoOvfl, PTRMAP_OVERFLOW2, pgnoPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00004052 }
4053#endif
drh3b7511c2001-05-26 13:15:44 +00004054 if( rc ){
drh9b171272004-05-08 02:03:22 +00004055 releasePage(pToRelease);
danielk197728129562005-01-11 10:25:06 +00004056 /* clearCell(pPage, pCell); */
drh3b7511c2001-05-26 13:15:44 +00004057 return rc;
4058 }
drh3aac2dd2004-04-26 14:10:20 +00004059 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00004060 releasePage(pToRelease);
4061 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00004062 pPrior = pOvfl->aData;
4063 put4byte(pPrior, 0);
4064 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00004065 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00004066 }
4067 n = nPayload;
4068 if( n>spaceLeft ) n = spaceLeft;
drh3aac2dd2004-04-26 14:10:20 +00004069 if( n>nSrc ) n = nSrc;
drhff3b1702006-03-11 12:04:18 +00004070 assert( pSrc );
drh3aac2dd2004-04-26 14:10:20 +00004071 memcpy(pPayload, pSrc, n);
drh3b7511c2001-05-26 13:15:44 +00004072 nPayload -= n;
drhde647132004-05-07 17:57:49 +00004073 pPayload += n;
drh9b171272004-05-08 02:03:22 +00004074 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00004075 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00004076 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00004077 if( nSrc==0 ){
4078 nSrc = nData;
4079 pSrc = pData;
4080 }
drhdd793422001-06-28 01:54:48 +00004081 }
drh9b171272004-05-08 02:03:22 +00004082 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004083 return SQLITE_OK;
4084}
4085
4086/*
drhbd03cae2001-06-02 02:40:57 +00004087** Change the MemPage.pParent pointer on the page whose number is
drh8b2f49b2001-06-08 00:21:52 +00004088** given in the second argument so that MemPage.pParent holds the
drhbd03cae2001-06-02 02:40:57 +00004089** pointer in the third argument.
4090*/
danielk1977aef0bf62005-12-30 16:28:01 +00004091static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){
drhbd03cae2001-06-02 02:40:57 +00004092 MemPage *pThis;
drh4b70f112004-05-02 21:12:19 +00004093 unsigned char *aData;
drhbd03cae2001-06-02 02:40:57 +00004094
drh43617e92006-03-06 20:55:46 +00004095 assert( pNewParent!=0 );
danielk1977afcdd022004-10-31 16:25:42 +00004096 if( pgno==0 ) return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00004097 assert( pBt->pPager!=0 );
drha34b6762004-05-07 13:30:42 +00004098 aData = sqlite3pager_lookup(pBt->pPager, pgno);
drhda200cc2004-05-09 11:51:38 +00004099 if( aData ){
drh07d183d2005-05-01 22:52:42 +00004100 pThis = (MemPage*)&aData[pBt->pageSize];
drh31276532004-09-27 12:20:52 +00004101 assert( pThis->aData==aData );
drhda200cc2004-05-09 11:51:38 +00004102 if( pThis->isInit ){
4103 if( pThis->pParent!=pNewParent ){
4104 if( pThis->pParent ) sqlite3pager_unref(pThis->pParent->aData);
4105 pThis->pParent = pNewParent;
drh43617e92006-03-06 20:55:46 +00004106 sqlite3pager_ref(pNewParent->aData);
drhda200cc2004-05-09 11:51:38 +00004107 }
4108 pThis->idxParent = idx;
drhdd793422001-06-28 01:54:48 +00004109 }
drha34b6762004-05-07 13:30:42 +00004110 sqlite3pager_unref(aData);
drhbd03cae2001-06-02 02:40:57 +00004111 }
danielk1977afcdd022004-10-31 16:25:42 +00004112
4113#ifndef SQLITE_OMIT_AUTOVACUUM
4114 if( pBt->autoVacuum ){
4115 return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
4116 }
4117#endif
4118 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004119}
4120
danielk1977ac11ee62005-01-15 12:45:51 +00004121
4122
drhbd03cae2001-06-02 02:40:57 +00004123/*
drh4b70f112004-05-02 21:12:19 +00004124** Change the pParent pointer of all children of pPage to point back
4125** to pPage.
4126**
drhbd03cae2001-06-02 02:40:57 +00004127** In other words, for every child of pPage, invoke reparentPage()
drh5e00f6c2001-09-13 13:46:56 +00004128** to make sure that each child knows that pPage is its parent.
drhbd03cae2001-06-02 02:40:57 +00004129**
4130** This routine gets called after you memcpy() one page into
4131** another.
4132*/
danielk1977afcdd022004-10-31 16:25:42 +00004133static int reparentChildPages(MemPage *pPage){
drhbd03cae2001-06-02 02:40:57 +00004134 int i;
danielk1977aef0bf62005-12-30 16:28:01 +00004135 BtShared *pBt = pPage->pBt;
danielk1977afcdd022004-10-31 16:25:42 +00004136 int rc = SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00004137
danielk1977afcdd022004-10-31 16:25:42 +00004138 if( pPage->leaf ) return SQLITE_OK;
danielk1977afcdd022004-10-31 16:25:42 +00004139
drhbd03cae2001-06-02 02:40:57 +00004140 for(i=0; i<pPage->nCell; i++){
danielk1977afcdd022004-10-31 16:25:42 +00004141 u8 *pCell = findCell(pPage, i);
4142 if( !pPage->leaf ){
4143 rc = reparentPage(pBt, get4byte(pCell), pPage, i);
4144 if( rc!=SQLITE_OK ) return rc;
4145 }
drhbd03cae2001-06-02 02:40:57 +00004146 }
danielk1977afcdd022004-10-31 16:25:42 +00004147 if( !pPage->leaf ){
4148 rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]),
4149 pPage, i);
4150 pPage->idxShift = 0;
4151 }
4152 return rc;
drh14acc042001-06-10 19:56:58 +00004153}
4154
4155/*
4156** Remove the i-th cell from pPage. This routine effects pPage only.
4157** The cell content is not freed or deallocated. It is assumed that
4158** the cell content has been copied someplace else. This routine just
4159** removes the reference to the cell from pPage.
4160**
4161** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00004162*/
drh4b70f112004-05-02 21:12:19 +00004163static void dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00004164 int i; /* Loop counter */
4165 int pc; /* Offset to cell content of cell being deleted */
4166 u8 *data; /* pPage->aData */
4167 u8 *ptr; /* Used to move bytes around within data[] */
4168
drh8c42ca92001-06-22 19:15:00 +00004169 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00004170 assert( sz==cellSize(pPage, idx) );
drha34b6762004-05-07 13:30:42 +00004171 assert( sqlite3pager_iswriteable(pPage->aData) );
drhda200cc2004-05-09 11:51:38 +00004172 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00004173 ptr = &data[pPage->cellOffset + 2*idx];
4174 pc = get2byte(ptr);
4175 assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
drhde647132004-05-07 17:57:49 +00004176 freeSpace(pPage, pc, sz);
drh43605152004-05-29 21:46:49 +00004177 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
4178 ptr[0] = ptr[2];
4179 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00004180 }
4181 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00004182 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
4183 pPage->nFree += 2;
drh428ae8c2003-01-04 16:48:09 +00004184 pPage->idxShift = 1;
drh14acc042001-06-10 19:56:58 +00004185}
4186
4187/*
4188** Insert a new cell on pPage at cell index "i". pCell points to the
4189** content of the cell.
4190**
4191** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00004192** will not fit, then make a copy of the cell content into pTemp if
4193** pTemp is not null. Regardless of pTemp, allocate a new entry
4194** in pPage->aOvfl[] and make it point to the cell content (either
4195** in pTemp or the original pCell) and also record its index.
4196** Allocating a new entry in pPage->aCell[] implies that
4197** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00004198**
4199** If nSkip is non-zero, then do not copy the first nSkip bytes of the
4200** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00004201** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00004202** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00004203*/
danielk1977e80463b2004-11-03 03:01:16 +00004204static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00004205 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00004206 int i, /* New cell becomes the i-th cell of the page */
4207 u8 *pCell, /* Content of the new cell */
4208 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00004209 u8 *pTemp, /* Temp storage space for pCell, if needed */
4210 u8 nSkip /* Do not write the first nSkip bytes of the cell */
drh24cd67e2004-05-10 16:18:47 +00004211){
drh43605152004-05-29 21:46:49 +00004212 int idx; /* Where to write new cell content in data[] */
4213 int j; /* Loop counter */
4214 int top; /* First byte of content for any cell in data[] */
4215 int end; /* First byte past the last cell pointer in data[] */
4216 int ins; /* Index in data[] where new cell pointer is inserted */
4217 int hdr; /* Offset into data[] of the page header */
4218 int cellOffset; /* Address of first cell pointer in data[] */
4219 u8 *data; /* The content of the whole page */
4220 u8 *ptr; /* Used for moving information around in data[] */
4221
4222 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
4223 assert( sz==cellSizePtr(pPage, pCell) );
drha34b6762004-05-07 13:30:42 +00004224 assert( sqlite3pager_iswriteable(pPage->aData) );
drh43605152004-05-29 21:46:49 +00004225 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00004226 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00004227 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00004228 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00004229 }
drh43605152004-05-29 21:46:49 +00004230 j = pPage->nOverflow++;
4231 assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
4232 pPage->aOvfl[j].pCell = pCell;
4233 pPage->aOvfl[j].idx = i;
4234 pPage->nFree = 0;
drh14acc042001-06-10 19:56:58 +00004235 }else{
drh43605152004-05-29 21:46:49 +00004236 data = pPage->aData;
4237 hdr = pPage->hdrOffset;
4238 top = get2byte(&data[hdr+5]);
4239 cellOffset = pPage->cellOffset;
4240 end = cellOffset + 2*pPage->nCell + 2;
4241 ins = cellOffset + 2*i;
4242 if( end > top - sz ){
danielk19776b456a22005-03-21 04:04:02 +00004243 int rc = defragmentPage(pPage);
4244 if( rc!=SQLITE_OK ) return rc;
drh43605152004-05-29 21:46:49 +00004245 top = get2byte(&data[hdr+5]);
4246 assert( end + sz <= top );
4247 }
4248 idx = allocateSpace(pPage, sz);
4249 assert( idx>0 );
4250 assert( end <= get2byte(&data[hdr+5]) );
4251 pPage->nCell++;
4252 pPage->nFree -= 2;
danielk1977a3ad5e72005-01-07 08:56:44 +00004253 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00004254 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
4255 ptr[0] = ptr[-2];
4256 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00004257 }
drh43605152004-05-29 21:46:49 +00004258 put2byte(&data[ins], idx);
4259 put2byte(&data[hdr+3], pPage->nCell);
4260 pPage->idxShift = 1;
drhda200cc2004-05-09 11:51:38 +00004261 pageIntegrity(pPage);
danielk1977a19df672004-11-03 11:37:07 +00004262#ifndef SQLITE_OMIT_AUTOVACUUM
4263 if( pPage->pBt->autoVacuum ){
4264 /* The cell may contain a pointer to an overflow page. If so, write
4265 ** the entry for the overflow page into the pointer map.
4266 */
4267 CellInfo info;
4268 parseCellPtr(pPage, pCell, &info);
4269 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
4270 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
4271 int rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
4272 if( rc!=SQLITE_OK ) return rc;
4273 }
4274 }
4275#endif
drh14acc042001-06-10 19:56:58 +00004276 }
danielk1977e80463b2004-11-03 03:01:16 +00004277
danielk1977e80463b2004-11-03 03:01:16 +00004278 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00004279}
4280
4281/*
drhfa1a98a2004-05-14 19:08:17 +00004282** Add a list of cells to a page. The page should be initially empty.
4283** The cells are guaranteed to fit on the page.
4284*/
4285static void assemblePage(
4286 MemPage *pPage, /* The page to be assemblied */
4287 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00004288 u8 **apCell, /* Pointers to cell bodies */
drhfa1a98a2004-05-14 19:08:17 +00004289 int *aSize /* Sizes of the cells */
4290){
4291 int i; /* Loop counter */
4292 int totalSize; /* Total size of all cells */
4293 int hdr; /* Index of page header */
drh43605152004-05-29 21:46:49 +00004294 int cellptr; /* Address of next cell pointer */
4295 int cellbody; /* Address of next cell body */
drhfa1a98a2004-05-14 19:08:17 +00004296 u8 *data; /* Data for the page */
4297
drh43605152004-05-29 21:46:49 +00004298 assert( pPage->nOverflow==0 );
drhfa1a98a2004-05-14 19:08:17 +00004299 totalSize = 0;
4300 for(i=0; i<nCell; i++){
4301 totalSize += aSize[i];
4302 }
drh43605152004-05-29 21:46:49 +00004303 assert( totalSize+2*nCell<=pPage->nFree );
drhfa1a98a2004-05-14 19:08:17 +00004304 assert( pPage->nCell==0 );
drh43605152004-05-29 21:46:49 +00004305 cellptr = pPage->cellOffset;
drhfa1a98a2004-05-14 19:08:17 +00004306 data = pPage->aData;
4307 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00004308 put2byte(&data[hdr+3], nCell);
drh09d0deb2005-08-02 17:13:09 +00004309 if( nCell ){
4310 cellbody = allocateSpace(pPage, totalSize);
4311 assert( cellbody>0 );
4312 assert( pPage->nFree >= 2*nCell );
4313 pPage->nFree -= 2*nCell;
4314 for(i=0; i<nCell; i++){
4315 put2byte(&data[cellptr], cellbody);
4316 memcpy(&data[cellbody], apCell[i], aSize[i]);
4317 cellptr += 2;
4318 cellbody += aSize[i];
4319 }
4320 assert( cellbody==pPage->pBt->usableSize );
drhfa1a98a2004-05-14 19:08:17 +00004321 }
4322 pPage->nCell = nCell;
drhfa1a98a2004-05-14 19:08:17 +00004323}
4324
drh14acc042001-06-10 19:56:58 +00004325/*
drhc3b70572003-01-04 19:44:07 +00004326** The following parameters determine how many adjacent pages get involved
4327** in a balancing operation. NN is the number of neighbors on either side
4328** of the page that participate in the balancing operation. NB is the
4329** total number of pages that participate, including the target page and
4330** NN neighbors on either side.
4331**
4332** The minimum value of NN is 1 (of course). Increasing NN above 1
4333** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
4334** in exchange for a larger degradation in INSERT and UPDATE performance.
4335** The value of NN appears to give the best results overall.
4336*/
4337#define NN 1 /* Number of neighbors on either side of pPage */
4338#define NB (NN*2+1) /* Total pages involved in the balance */
4339
drh43605152004-05-29 21:46:49 +00004340/* Forward reference */
danielk1977ac245ec2005-01-14 13:50:11 +00004341static int balance(MemPage*, int);
4342
drh615ae552005-01-16 23:21:00 +00004343#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00004344/*
4345** This version of balance() handles the common special case where
4346** a new entry is being inserted on the extreme right-end of the
4347** tree, in other words, when the new entry will become the largest
4348** entry in the tree.
4349**
4350** Instead of trying balance the 3 right-most leaf pages, just add
4351** a new page to the right-hand side and put the one new entry in
4352** that page. This leaves the right side of the tree somewhat
4353** unbalanced. But odds are that we will be inserting new entries
4354** at the end soon afterwards so the nearly empty page will quickly
4355** fill up. On average.
4356**
4357** pPage is the leaf page which is the right-most page in the tree.
4358** pParent is its parent. pPage must have a single overflow entry
4359** which is also the right-most entry on the page.
4360*/
danielk1977ac245ec2005-01-14 13:50:11 +00004361static int balance_quick(MemPage *pPage, MemPage *pParent){
4362 int rc;
4363 MemPage *pNew;
4364 Pgno pgnoNew;
4365 u8 *pCell;
4366 int szCell;
4367 CellInfo info;
danielk1977aef0bf62005-12-30 16:28:01 +00004368 BtShared *pBt = pPage->pBt;
danielk197779a40da2005-01-16 08:00:01 +00004369 int parentIdx = pParent->nCell; /* pParent new divider cell index */
4370 int parentSize; /* Size of new divider cell */
4371 u8 parentCell[64]; /* Space for the new divider cell */
danielk1977ac245ec2005-01-14 13:50:11 +00004372
4373 /* Allocate a new page. Insert the overflow cell from pPage
4374 ** into it. Then remove the overflow cell from pPage.
4375 */
danielk1977ac11ee62005-01-15 12:45:51 +00004376 rc = allocatePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk1977ac245ec2005-01-14 13:50:11 +00004377 if( rc!=SQLITE_OK ){
4378 return rc;
4379 }
4380 pCell = pPage->aOvfl[0].pCell;
4381 szCell = cellSizePtr(pPage, pCell);
4382 zeroPage(pNew, pPage->aData[0]);
4383 assemblePage(pNew, 1, &pCell, &szCell);
4384 pPage->nOverflow = 0;
4385
danielk197779a40da2005-01-16 08:00:01 +00004386 /* Set the parent of the newly allocated page to pParent. */
4387 pNew->pParent = pParent;
4388 sqlite3pager_ref(pParent->aData);
4389
danielk1977ac245ec2005-01-14 13:50:11 +00004390 /* pPage is currently the right-child of pParent. Change this
4391 ** so that the right-child is the new page allocated above and
danielk197779a40da2005-01-16 08:00:01 +00004392 ** pPage is the next-to-right child.
danielk1977ac245ec2005-01-14 13:50:11 +00004393 */
danielk1977ac11ee62005-01-15 12:45:51 +00004394 assert( pPage->nCell>0 );
danielk1977ac245ec2005-01-14 13:50:11 +00004395 parseCellPtr(pPage, findCell(pPage, pPage->nCell-1), &info);
4396 rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, &parentSize);
4397 if( rc!=SQLITE_OK ){
danielk197779a40da2005-01-16 08:00:01 +00004398 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00004399 }
4400 assert( parentSize<64 );
4401 rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
4402 if( rc!=SQLITE_OK ){
danielk197779a40da2005-01-16 08:00:01 +00004403 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00004404 }
4405 put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
4406 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
4407
danielk197779a40da2005-01-16 08:00:01 +00004408#ifndef SQLITE_OMIT_AUTOVACUUM
4409 /* If this is an auto-vacuum database, update the pointer map
4410 ** with entries for the new page, and any pointer from the
4411 ** cell on the page to an overflow page.
4412 */
danielk1977ac11ee62005-01-15 12:45:51 +00004413 if( pBt->autoVacuum ){
4414 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
4415 if( rc!=SQLITE_OK ){
4416 return rc;
4417 }
danielk197779a40da2005-01-16 08:00:01 +00004418 rc = ptrmapPutOvfl(pNew, 0);
4419 if( rc!=SQLITE_OK ){
4420 return rc;
danielk1977ac11ee62005-01-15 12:45:51 +00004421 }
4422 }
danielk197779a40da2005-01-16 08:00:01 +00004423#endif
danielk1977ac11ee62005-01-15 12:45:51 +00004424
danielk197779a40da2005-01-16 08:00:01 +00004425 /* Release the reference to the new page and balance the parent page,
4426 ** in case the divider cell inserted caused it to become overfull.
4427 */
danielk1977ac245ec2005-01-14 13:50:11 +00004428 releasePage(pNew);
4429 return balance(pParent, 0);
4430}
drh615ae552005-01-16 23:21:00 +00004431#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00004432
drhc3b70572003-01-04 19:44:07 +00004433/*
danielk1977ac11ee62005-01-15 12:45:51 +00004434** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
4435** if the database supports auto-vacuum or not. Because it is used
4436** within an expression that is an argument to another macro
4437** (sqliteMallocRaw), it is not possible to use conditional compilation.
4438** So, this macro is defined instead.
4439*/
4440#ifndef SQLITE_OMIT_AUTOVACUUM
4441#define ISAUTOVACUUM (pBt->autoVacuum)
4442#else
4443#define ISAUTOVACUUM 0
4444#endif
4445
4446/*
drhab01f612004-05-22 02:55:23 +00004447** This routine redistributes Cells on pPage and up to NN*2 siblings
drh8b2f49b2001-06-08 00:21:52 +00004448** of pPage so that all pages have about the same amount of free space.
drh0c6cc4e2004-06-15 02:13:26 +00004449** Usually NN siblings on either side of pPage is used in the balancing,
4450** though more siblings might come from one side if pPage is the first
drhab01f612004-05-22 02:55:23 +00004451** or last child of its parent. If pPage has fewer than 2*NN siblings
drh8b2f49b2001-06-08 00:21:52 +00004452** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00004453** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00004454**
drh0c6cc4e2004-06-15 02:13:26 +00004455** The number of siblings of pPage might be increased or decreased by one or
4456** two in an effort to keep pages nearly full but not over full. The root page
drhab01f612004-05-22 02:55:23 +00004457** is special and is allowed to be nearly empty. If pPage is
drh8c42ca92001-06-22 19:15:00 +00004458** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00004459** or decreased by one, as necessary, to keep the root page from being
drhab01f612004-05-22 02:55:23 +00004460** overfull or completely empty.
drh14acc042001-06-10 19:56:58 +00004461**
drh8b2f49b2001-06-08 00:21:52 +00004462** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00004463** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00004464** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00004465** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00004466**
drh8c42ca92001-06-22 19:15:00 +00004467** In the course of balancing the siblings of pPage, the parent of pPage
4468** might become overfull or underfull. If that happens, then this routine
4469** is called recursively on the parent.
4470**
drh5e00f6c2001-09-13 13:46:56 +00004471** If this routine fails for any reason, it might leave the database
4472** in a corrupted state. So if this routine fails, the database should
4473** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00004474*/
drh43605152004-05-29 21:46:49 +00004475static int balance_nonroot(MemPage *pPage){
drh8b2f49b2001-06-08 00:21:52 +00004476 MemPage *pParent; /* The parent of pPage */
danielk1977aef0bf62005-12-30 16:28:01 +00004477 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00004478 int nCell = 0; /* Number of cells in apCell[] */
4479 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
drh8b2f49b2001-06-08 00:21:52 +00004480 int nOld; /* Number of pages in apOld[] */
4481 int nNew; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00004482 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00004483 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00004484 int idx; /* Index of pPage in pParent->aCell[] */
4485 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00004486 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00004487 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00004488 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00004489 int usableSpace; /* Bytes in pPage beyond the header */
4490 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00004491 int subtotal; /* Subtotal of bytes in cells on one page */
drhb6f41482004-05-14 01:58:11 +00004492 int iSpace = 0; /* First unused byte of aSpace[] */
drhc3b70572003-01-04 19:44:07 +00004493 MemPage *apOld[NB]; /* pPage and up to two siblings */
4494 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00004495 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00004496 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
4497 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
drh4b70f112004-05-02 21:12:19 +00004498 u8 *apDiv[NB]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00004499 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
4500 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00004501 u8 **apCell = 0; /* All cells begin balanced */
drh2e38c322004-09-03 18:38:44 +00004502 int *szCell; /* Local size of all cells in apCell[] */
4503 u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
4504 u8 *aSpace; /* Space to hold copies of dividers cells */
danielk19774e17d142005-01-16 09:06:33 +00004505#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977ac11ee62005-01-15 12:45:51 +00004506 u8 *aFrom = 0;
4507#endif
drh8b2f49b2001-06-08 00:21:52 +00004508
drh14acc042001-06-10 19:56:58 +00004509 /*
drh43605152004-05-29 21:46:49 +00004510 ** Find the parent page.
drh8b2f49b2001-06-08 00:21:52 +00004511 */
drh3a4c1412004-05-09 20:40:11 +00004512 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004513 assert( sqlite3pager_iswriteable(pPage->aData) );
drh4b70f112004-05-02 21:12:19 +00004514 pBt = pPage->pBt;
drh14acc042001-06-10 19:56:58 +00004515 pParent = pPage->pParent;
drh43605152004-05-29 21:46:49 +00004516 assert( pParent );
danielk197707cb5602006-01-20 10:55:05 +00004517 if( SQLITE_OK!=(rc = sqlite3pager_write(pParent->aData)) ){
4518 return rc;
4519 }
drh43605152004-05-29 21:46:49 +00004520 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
drh2e38c322004-09-03 18:38:44 +00004521
drh615ae552005-01-16 23:21:00 +00004522#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00004523 /*
4524 ** A special case: If a new entry has just been inserted into a
4525 ** table (that is, a btree with integer keys and all data at the leaves)
drh09d0deb2005-08-02 17:13:09 +00004526 ** and the new entry is the right-most entry in the tree (it has the
drhf222e712005-01-14 22:55:49 +00004527 ** largest key) then use the special balance_quick() routine for
4528 ** balancing. balance_quick() is much faster and results in a tighter
4529 ** packing of data in the common case.
4530 */
danielk1977ac245ec2005-01-14 13:50:11 +00004531 if( pPage->leaf &&
4532 pPage->intKey &&
4533 pPage->leafData &&
4534 pPage->nOverflow==1 &&
4535 pPage->aOvfl[0].idx==pPage->nCell &&
danielk1977ac11ee62005-01-15 12:45:51 +00004536 pPage->pParent->pgno!=1 &&
danielk1977ac245ec2005-01-14 13:50:11 +00004537 get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
4538 ){
danielk1977ac11ee62005-01-15 12:45:51 +00004539 /*
4540 ** TODO: Check the siblings to the left of pPage. It may be that
4541 ** they are not full and no new page is required.
4542 */
danielk1977ac245ec2005-01-14 13:50:11 +00004543 return balance_quick(pPage, pParent);
4544 }
4545#endif
4546
drh2e38c322004-09-03 18:38:44 +00004547 /*
drh4b70f112004-05-02 21:12:19 +00004548 ** Find the cell in the parent page whose left child points back
drh14acc042001-06-10 19:56:58 +00004549 ** to pPage. The "idx" variable is the index of that cell. If pPage
4550 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00004551 */
drhbb49aba2003-01-04 18:53:27 +00004552 if( pParent->idxShift ){
drha34b6762004-05-07 13:30:42 +00004553 Pgno pgno;
drh4b70f112004-05-02 21:12:19 +00004554 pgno = pPage->pgno;
drha34b6762004-05-07 13:30:42 +00004555 assert( pgno==sqlite3pager_pagenumber(pPage->aData) );
drhbb49aba2003-01-04 18:53:27 +00004556 for(idx=0; idx<pParent->nCell; idx++){
drh43605152004-05-29 21:46:49 +00004557 if( get4byte(findCell(pParent, idx))==pgno ){
drhbb49aba2003-01-04 18:53:27 +00004558 break;
4559 }
drh8b2f49b2001-06-08 00:21:52 +00004560 }
drh4b70f112004-05-02 21:12:19 +00004561 assert( idx<pParent->nCell
drh43605152004-05-29 21:46:49 +00004562 || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
drhbb49aba2003-01-04 18:53:27 +00004563 }else{
4564 idx = pPage->idxParent;
drh8b2f49b2001-06-08 00:21:52 +00004565 }
drh8b2f49b2001-06-08 00:21:52 +00004566
4567 /*
drh14acc042001-06-10 19:56:58 +00004568 ** Initialize variables so that it will be safe to jump
drh5edc3122001-09-13 21:53:09 +00004569 ** directly to balance_cleanup at any moment.
drh8b2f49b2001-06-08 00:21:52 +00004570 */
drh14acc042001-06-10 19:56:58 +00004571 nOld = nNew = 0;
drha34b6762004-05-07 13:30:42 +00004572 sqlite3pager_ref(pParent->aData);
drh14acc042001-06-10 19:56:58 +00004573
4574 /*
drh4b70f112004-05-02 21:12:19 +00004575 ** Find sibling pages to pPage and the cells in pParent that divide
drhc3b70572003-01-04 19:44:07 +00004576 ** the siblings. An attempt is made to find NN siblings on either
4577 ** side of pPage. More siblings are taken from one side, however, if
4578 ** pPage there are fewer than NN siblings on the other side. If pParent
4579 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00004580 */
drhc3b70572003-01-04 19:44:07 +00004581 nxDiv = idx - NN;
4582 if( nxDiv + NB > pParent->nCell ){
4583 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00004584 }
drhc3b70572003-01-04 19:44:07 +00004585 if( nxDiv<0 ){
4586 nxDiv = 0;
4587 }
drh8b2f49b2001-06-08 00:21:52 +00004588 nDiv = 0;
drhc3b70572003-01-04 19:44:07 +00004589 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00004590 if( k<pParent->nCell ){
drh43605152004-05-29 21:46:49 +00004591 apDiv[i] = findCell(pParent, k);
drh8b2f49b2001-06-08 00:21:52 +00004592 nDiv++;
drha34b6762004-05-07 13:30:42 +00004593 assert( !pParent->leaf );
drh43605152004-05-29 21:46:49 +00004594 pgnoOld[i] = get4byte(apDiv[i]);
drh14acc042001-06-10 19:56:58 +00004595 }else if( k==pParent->nCell ){
drh43605152004-05-29 21:46:49 +00004596 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
drh14acc042001-06-10 19:56:58 +00004597 }else{
4598 break;
drh8b2f49b2001-06-08 00:21:52 +00004599 }
drhde647132004-05-07 17:57:49 +00004600 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
drh6019e162001-07-02 17:51:45 +00004601 if( rc ) goto balance_cleanup;
drh428ae8c2003-01-04 16:48:09 +00004602 apOld[i]->idxParent = k;
drh91025292004-05-03 19:49:32 +00004603 apCopy[i] = 0;
4604 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00004605 nOld++;
danielk1977634f2982005-03-28 08:44:07 +00004606 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
drh8b2f49b2001-06-08 00:21:52 +00004607 }
4608
drh8d97f1f2005-05-05 18:14:13 +00004609 /* Make nMaxCells a multiple of 2 in order to preserve 8-byte
4610 ** alignment */
4611 nMaxCells = (nMaxCells + 1)&~1;
4612
drh8b2f49b2001-06-08 00:21:52 +00004613 /*
danielk1977634f2982005-03-28 08:44:07 +00004614 ** Allocate space for memory structures
4615 */
4616 apCell = sqliteMallocRaw(
4617 nMaxCells*sizeof(u8*) /* apCell */
4618 + nMaxCells*sizeof(int) /* szCell */
drhc96d8532005-05-03 12:30:33 +00004619 + ROUND8(sizeof(MemPage))*NB /* aCopy */
drh07d183d2005-05-01 22:52:42 +00004620 + pBt->pageSize*(5+NB) /* aSpace */
drhc96d8532005-05-03 12:30:33 +00004621 + (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */
danielk1977634f2982005-03-28 08:44:07 +00004622 );
4623 if( apCell==0 ){
4624 rc = SQLITE_NOMEM;
4625 goto balance_cleanup;
4626 }
4627 szCell = (int*)&apCell[nMaxCells];
4628 aCopy[0] = (u8*)&szCell[nMaxCells];
drhc96d8532005-05-03 12:30:33 +00004629 assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00004630 for(i=1; i<NB; i++){
drhc96d8532005-05-03 12:30:33 +00004631 aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
4632 assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00004633 }
drhc96d8532005-05-03 12:30:33 +00004634 aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
4635 assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00004636#ifndef SQLITE_OMIT_AUTOVACUUM
4637 if( pBt->autoVacuum ){
drh07d183d2005-05-01 22:52:42 +00004638 aFrom = &aSpace[5*pBt->pageSize];
danielk1977634f2982005-03-28 08:44:07 +00004639 }
4640#endif
4641
4642 /*
drh14acc042001-06-10 19:56:58 +00004643 ** Make copies of the content of pPage and its siblings into aOld[].
4644 ** The rest of this function will use data from the copies rather
4645 ** that the original pages since the original pages will be in the
4646 ** process of being overwritten.
4647 */
4648 for(i=0; i<nOld; i++){
drh07d183d2005-05-01 22:52:42 +00004649 MemPage *p = apCopy[i] = (MemPage*)&aCopy[i][pBt->pageSize];
drh07d183d2005-05-01 22:52:42 +00004650 p->aData = &((u8*)p)[-pBt->pageSize];
4651 memcpy(p->aData, apOld[i]->aData, pBt->pageSize + sizeof(MemPage));
4652 /* The memcpy() above changes the value of p->aData so we have to
4653 ** set it again. */
drh07d183d2005-05-01 22:52:42 +00004654 p->aData = &((u8*)p)[-pBt->pageSize];
drh14acc042001-06-10 19:56:58 +00004655 }
4656
4657 /*
4658 ** Load pointers to all cells on sibling pages and the divider cells
4659 ** into the local apCell[] array. Make copies of the divider cells
drhb6f41482004-05-14 01:58:11 +00004660 ** into space obtained form aSpace[] and remove the the divider Cells
4661 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00004662 **
4663 ** If the siblings are on leaf pages, then the child pointers of the
4664 ** divider cells are stripped from the cells before they are copied
drh96f5b762004-05-16 16:24:36 +00004665 ** into aSpace[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00004666 ** child pointers. If siblings are not leaves, then all cell in
4667 ** apCell[] include child pointers. Either way, all cells in apCell[]
4668 ** are alike.
drh96f5b762004-05-16 16:24:36 +00004669 **
4670 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
4671 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00004672 */
4673 nCell = 0;
drh4b70f112004-05-02 21:12:19 +00004674 leafCorrection = pPage->leaf*4;
drh8b18dd42004-05-12 19:18:15 +00004675 leafData = pPage->leafData && pPage->leaf;
drh8b2f49b2001-06-08 00:21:52 +00004676 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00004677 MemPage *pOld = apCopy[i];
drh43605152004-05-29 21:46:49 +00004678 int limit = pOld->nCell+pOld->nOverflow;
4679 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00004680 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00004681 apCell[nCell] = findOverflowCell(pOld, j);
4682 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk1977ac11ee62005-01-15 12:45:51 +00004683#ifndef SQLITE_OMIT_AUTOVACUUM
4684 if( pBt->autoVacuum ){
4685 int a;
4686 aFrom[nCell] = i;
4687 for(a=0; a<pOld->nOverflow; a++){
4688 if( pOld->aOvfl[a].pCell==apCell[nCell] ){
4689 aFrom[nCell] = 0xFF;
4690 break;
4691 }
4692 }
4693 }
4694#endif
drh14acc042001-06-10 19:56:58 +00004695 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00004696 }
4697 if( i<nOld-1 ){
drh43605152004-05-29 21:46:49 +00004698 int sz = cellSizePtr(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00004699 if( leafData ){
drh96f5b762004-05-16 16:24:36 +00004700 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
4701 ** are duplicates of keys on the child pages. We need to remove
4702 ** the divider cells from pParent, but the dividers cells are not
4703 ** added to apCell[] because they are duplicates of child cells.
4704 */
drh8b18dd42004-05-12 19:18:15 +00004705 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00004706 }else{
drhb6f41482004-05-14 01:58:11 +00004707 u8 *pTemp;
danielk1977634f2982005-03-28 08:44:07 +00004708 assert( nCell<nMaxCells );
drhb6f41482004-05-14 01:58:11 +00004709 szCell[nCell] = sz;
4710 pTemp = &aSpace[iSpace];
4711 iSpace += sz;
drh07d183d2005-05-01 22:52:42 +00004712 assert( iSpace<=pBt->pageSize*5 );
drhb6f41482004-05-14 01:58:11 +00004713 memcpy(pTemp, apDiv[i], sz);
4714 apCell[nCell] = pTemp+leafCorrection;
danielk1977ac11ee62005-01-15 12:45:51 +00004715#ifndef SQLITE_OMIT_AUTOVACUUM
4716 if( pBt->autoVacuum ){
4717 aFrom[nCell] = 0xFF;
4718 }
4719#endif
drhb6f41482004-05-14 01:58:11 +00004720 dropCell(pParent, nxDiv, sz);
drh8b18dd42004-05-12 19:18:15 +00004721 szCell[nCell] -= leafCorrection;
drh43605152004-05-29 21:46:49 +00004722 assert( get4byte(pTemp)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00004723 if( !pOld->leaf ){
4724 assert( leafCorrection==0 );
4725 /* The right pointer of the child page pOld becomes the left
4726 ** pointer of the divider cell */
drh43605152004-05-29 21:46:49 +00004727 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
drh8b18dd42004-05-12 19:18:15 +00004728 }else{
4729 assert( leafCorrection==4 );
4730 }
4731 nCell++;
drh4b70f112004-05-02 21:12:19 +00004732 }
drh8b2f49b2001-06-08 00:21:52 +00004733 }
4734 }
4735
4736 /*
drh6019e162001-07-02 17:51:45 +00004737 ** Figure out the number of pages needed to hold all nCell cells.
4738 ** Store this number in "k". Also compute szNew[] which is the total
4739 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00004740 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00004741 ** cntNew[k] should equal nCell.
4742 **
drh96f5b762004-05-16 16:24:36 +00004743 ** Values computed by this block:
4744 **
4745 ** k: The total number of sibling pages
4746 ** szNew[i]: Spaced used on the i-th sibling page.
4747 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
4748 ** the right of the i-th sibling page.
4749 ** usableSpace: Number of bytes of space available on each sibling.
4750 **
drh8b2f49b2001-06-08 00:21:52 +00004751 */
drh43605152004-05-29 21:46:49 +00004752 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00004753 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00004754 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00004755 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00004756 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00004757 szNew[k] = subtotal - szCell[i];
4758 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00004759 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00004760 subtotal = 0;
4761 k++;
4762 }
4763 }
4764 szNew[k] = subtotal;
4765 cntNew[k] = nCell;
4766 k++;
drh96f5b762004-05-16 16:24:36 +00004767
4768 /*
4769 ** The packing computed by the previous block is biased toward the siblings
4770 ** on the left side. The left siblings are always nearly full, while the
4771 ** right-most sibling might be nearly empty. This block of code attempts
4772 ** to adjust the packing of siblings to get a better balance.
4773 **
4774 ** This adjustment is more than an optimization. The packing above might
4775 ** be so out of balance as to be illegal. For example, the right-most
4776 ** sibling might be completely empty. This adjustment is not optional.
4777 */
drh6019e162001-07-02 17:51:45 +00004778 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00004779 int szRight = szNew[i]; /* Size of sibling on the right */
4780 int szLeft = szNew[i-1]; /* Size of sibling on the left */
4781 int r; /* Index of right-most cell in left sibling */
4782 int d; /* Index of first cell to the left of right sibling */
4783
4784 r = cntNew[i-1] - 1;
4785 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00004786 assert( d<nMaxCells );
4787 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00004788 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
4789 szRight += szCell[d] + 2;
4790 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00004791 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00004792 r = cntNew[i-1] - 1;
4793 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00004794 }
drh96f5b762004-05-16 16:24:36 +00004795 szNew[i] = szRight;
4796 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00004797 }
drh09d0deb2005-08-02 17:13:09 +00004798
4799 /* Either we found one or more cells (cntnew[0])>0) or we are the
4800 ** a virtual root page. A virtual root page is when the real root
4801 ** page is page 1 and we are the only child of that page.
4802 */
4803 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00004804
4805 /*
drh6b308672002-07-08 02:16:37 +00004806 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00004807 */
drh4b70f112004-05-02 21:12:19 +00004808 assert( pPage->pgno>1 );
4809 pageFlags = pPage->aData[0];
drh14acc042001-06-10 19:56:58 +00004810 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00004811 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00004812 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00004813 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00004814 pgnoNew[i] = pgnoOld[i];
4815 apOld[i] = 0;
danielk197728129562005-01-11 10:25:06 +00004816 rc = sqlite3pager_write(pNew->aData);
4817 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00004818 }else{
drh7aa8f852006-03-28 00:24:44 +00004819 assert( i>0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004820 rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
drh6b308672002-07-08 02:16:37 +00004821 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00004822 apNew[i] = pNew;
drh6b308672002-07-08 02:16:37 +00004823 }
drh14acc042001-06-10 19:56:58 +00004824 nNew++;
drhda200cc2004-05-09 11:51:38 +00004825 zeroPage(pNew, pageFlags);
drh8b2f49b2001-06-08 00:21:52 +00004826 }
4827
danielk1977299b1872004-11-22 10:02:10 +00004828 /* Free any old pages that were not reused as new pages.
4829 */
4830 while( i<nOld ){
4831 rc = freePage(apOld[i]);
4832 if( rc ) goto balance_cleanup;
4833 releasePage(apOld[i]);
4834 apOld[i] = 0;
4835 i++;
4836 }
4837
drh8b2f49b2001-06-08 00:21:52 +00004838 /*
drhf9ffac92002-03-02 19:00:31 +00004839 ** Put the new pages in accending order. This helps to
4840 ** keep entries in the disk file in order so that a scan
4841 ** of the table is a linear scan through the file. That
4842 ** in turn helps the operating system to deliver pages
4843 ** from the disk more rapidly.
4844 **
4845 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00004846 ** n is never more than NB (a small constant), that should
4847 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00004848 **
drhc3b70572003-01-04 19:44:07 +00004849 ** When NB==3, this one optimization makes the database
4850 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00004851 */
4852 for(i=0; i<k-1; i++){
4853 int minV = pgnoNew[i];
4854 int minI = i;
4855 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00004856 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00004857 minI = j;
4858 minV = pgnoNew[j];
4859 }
4860 }
4861 if( minI>i ){
4862 int t;
4863 MemPage *pT;
4864 t = pgnoNew[i];
4865 pT = apNew[i];
4866 pgnoNew[i] = pgnoNew[minI];
4867 apNew[i] = apNew[minI];
4868 pgnoNew[minI] = t;
4869 apNew[minI] = pT;
4870 }
4871 }
drha2fce642004-06-05 00:01:44 +00004872 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
drh24cd67e2004-05-10 16:18:47 +00004873 pgnoOld[0],
4874 nOld>=2 ? pgnoOld[1] : 0,
4875 nOld>=3 ? pgnoOld[2] : 0,
drh10c0fa62004-05-18 12:50:17 +00004876 pgnoNew[0], szNew[0],
4877 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
4878 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
drha2fce642004-06-05 00:01:44 +00004879 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
4880 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
drh24cd67e2004-05-10 16:18:47 +00004881
drhf9ffac92002-03-02 19:00:31 +00004882 /*
drh14acc042001-06-10 19:56:58 +00004883 ** Evenly distribute the data in apCell[] across the new pages.
4884 ** Insert divider cells into pParent as necessary.
4885 */
4886 j = 0;
4887 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00004888 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00004889 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00004890 assert( j<nMaxCells );
drh4b70f112004-05-02 21:12:19 +00004891 assert( pNew->pgno==pgnoNew[i] );
drhfa1a98a2004-05-14 19:08:17 +00004892 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00004893 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00004894 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00004895
4896#ifndef SQLITE_OMIT_AUTOVACUUM
4897 /* If this is an auto-vacuum database, update the pointer map entries
4898 ** that point to the siblings that were rearranged. These can be: left
4899 ** children of cells, the right-child of the page, or overflow pages
4900 ** pointed to by cells.
4901 */
4902 if( pBt->autoVacuum ){
4903 for(k=j; k<cntNew[i]; k++){
danielk1977634f2982005-03-28 08:44:07 +00004904 assert( k<nMaxCells );
danielk1977ac11ee62005-01-15 12:45:51 +00004905 if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
danielk197779a40da2005-01-16 08:00:01 +00004906 rc = ptrmapPutOvfl(pNew, k-j);
4907 if( rc!=SQLITE_OK ){
4908 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00004909 }
4910 }
4911 }
4912 }
4913#endif
4914
4915 j = cntNew[i];
4916
4917 /* If the sibling page assembled above was not the right-most sibling,
4918 ** insert a divider cell into the parent page.
4919 */
drh14acc042001-06-10 19:56:58 +00004920 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00004921 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00004922 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00004923 int sz;
danielk1977634f2982005-03-28 08:44:07 +00004924
4925 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00004926 pCell = apCell[j];
4927 sz = szCell[j] + leafCorrection;
drh4b70f112004-05-02 21:12:19 +00004928 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00004929 memcpy(&pNew->aData[8], pCell, 4);
drh24cd67e2004-05-10 16:18:47 +00004930 pTemp = 0;
drh8b18dd42004-05-12 19:18:15 +00004931 }else if( leafData ){
danielk1977ac11ee62005-01-15 12:45:51 +00004932 /* If the tree is a leaf-data tree, and the siblings are leaves,
4933 ** then there is no divider cell in apCell[]. Instead, the divider
4934 ** cell consists of the integer key for the right-most cell of
4935 ** the sibling-page assembled above only.
4936 */
drh6f11bef2004-05-13 01:12:56 +00004937 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00004938 j--;
drh43605152004-05-29 21:46:49 +00004939 parseCellPtr(pNew, apCell[j], &info);
drhb6f41482004-05-14 01:58:11 +00004940 pCell = &aSpace[iSpace];
drh6f11bef2004-05-13 01:12:56 +00004941 fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz);
drhb6f41482004-05-14 01:58:11 +00004942 iSpace += sz;
drh07d183d2005-05-01 22:52:42 +00004943 assert( iSpace<=pBt->pageSize*5 );
drh8b18dd42004-05-12 19:18:15 +00004944 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00004945 }else{
4946 pCell -= 4;
drhb6f41482004-05-14 01:58:11 +00004947 pTemp = &aSpace[iSpace];
4948 iSpace += sz;
drh07d183d2005-05-01 22:52:42 +00004949 assert( iSpace<=pBt->pageSize*5 );
drh4b70f112004-05-02 21:12:19 +00004950 }
danielk1977a3ad5e72005-01-07 08:56:44 +00004951 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
danielk1977e80463b2004-11-03 03:01:16 +00004952 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00004953 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +00004954#ifndef SQLITE_OMIT_AUTOVACUUM
4955 /* If this is an auto-vacuum database, and not a leaf-data tree,
4956 ** then update the pointer map with an entry for the overflow page
4957 ** that the cell just inserted points to (if any).
4958 */
4959 if( pBt->autoVacuum && !leafData ){
danielk197779a40da2005-01-16 08:00:01 +00004960 rc = ptrmapPutOvfl(pParent, nxDiv);
4961 if( rc!=SQLITE_OK ){
4962 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00004963 }
4964 }
4965#endif
drh14acc042001-06-10 19:56:58 +00004966 j++;
4967 nxDiv++;
4968 }
4969 }
drh6019e162001-07-02 17:51:45 +00004970 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00004971 assert( nOld>0 );
4972 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00004973 if( (pageFlags & PTF_LEAF)==0 ){
drh43605152004-05-29 21:46:49 +00004974 memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
drh14acc042001-06-10 19:56:58 +00004975 }
drh43605152004-05-29 21:46:49 +00004976 if( nxDiv==pParent->nCell+pParent->nOverflow ){
drh4b70f112004-05-02 21:12:19 +00004977 /* Right-most sibling is the right-most child of pParent */
drh43605152004-05-29 21:46:49 +00004978 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
drh4b70f112004-05-02 21:12:19 +00004979 }else{
4980 /* Right-most sibling is the left child of the first entry in pParent
4981 ** past the right-most divider entry */
drh43605152004-05-29 21:46:49 +00004982 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00004983 }
4984
4985 /*
4986 ** Reparent children of all cells.
drh8b2f49b2001-06-08 00:21:52 +00004987 */
4988 for(i=0; i<nNew; i++){
danielk1977afcdd022004-10-31 16:25:42 +00004989 rc = reparentChildPages(apNew[i]);
4990 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh8b2f49b2001-06-08 00:21:52 +00004991 }
danielk1977afcdd022004-10-31 16:25:42 +00004992 rc = reparentChildPages(pParent);
4993 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh8b2f49b2001-06-08 00:21:52 +00004994
4995 /*
drh3a4c1412004-05-09 20:40:11 +00004996 ** Balance the parent page. Note that the current page (pPage) might
danielk1977ac11ee62005-01-15 12:45:51 +00004997 ** have been added to the freelist so it might no longer be initialized.
drh3a4c1412004-05-09 20:40:11 +00004998 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00004999 */
drhda200cc2004-05-09 11:51:38 +00005000 assert( pParent->isInit );
drh3a4c1412004-05-09 20:40:11 +00005001 /* assert( pPage->isInit ); // No! pPage might have been added to freelist */
5002 /* pageIntegrity(pPage); // No! pPage might have been added to freelist */
danielk1977ac245ec2005-01-14 13:50:11 +00005003 rc = balance(pParent, 0);
drhda200cc2004-05-09 11:51:38 +00005004
drh8b2f49b2001-06-08 00:21:52 +00005005 /*
drh14acc042001-06-10 19:56:58 +00005006 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00005007 */
drh14acc042001-06-10 19:56:58 +00005008balance_cleanup:
drh2e38c322004-09-03 18:38:44 +00005009 sqliteFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00005010 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00005011 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00005012 }
drh14acc042001-06-10 19:56:58 +00005013 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00005014 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00005015 }
drh91025292004-05-03 19:49:32 +00005016 releasePage(pParent);
drh3a4c1412004-05-09 20:40:11 +00005017 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
5018 pPage->pgno, nOld, nNew, nCell));
drh8b2f49b2001-06-08 00:21:52 +00005019 return rc;
5020}
5021
5022/*
drh43605152004-05-29 21:46:49 +00005023** This routine is called for the root page of a btree when the root
5024** page contains no cells. This is an opportunity to make the tree
5025** shallower by one level.
5026*/
5027static int balance_shallower(MemPage *pPage){
5028 MemPage *pChild; /* The only child page of pPage */
5029 Pgno pgnoChild; /* Page number for pChild */
drh2e38c322004-09-03 18:38:44 +00005030 int rc = SQLITE_OK; /* Return code from subprocedures */
danielk1977aef0bf62005-12-30 16:28:01 +00005031 BtShared *pBt; /* The main BTree structure */
drh2e38c322004-09-03 18:38:44 +00005032 int mxCellPerPage; /* Maximum number of cells per page */
5033 u8 **apCell; /* All cells from pages being balanced */
5034 int *szCell; /* Local size of all cells */
drh43605152004-05-29 21:46:49 +00005035
5036 assert( pPage->pParent==0 );
5037 assert( pPage->nCell==0 );
drh2e38c322004-09-03 18:38:44 +00005038 pBt = pPage->pBt;
5039 mxCellPerPage = MX_CELL(pBt);
5040 apCell = sqliteMallocRaw( mxCellPerPage*(sizeof(u8*)+sizeof(int)) );
5041 if( apCell==0 ) return SQLITE_NOMEM;
5042 szCell = (int*)&apCell[mxCellPerPage];
drh43605152004-05-29 21:46:49 +00005043 if( pPage->leaf ){
5044 /* The table is completely empty */
5045 TRACE(("BALANCE: empty table %d\n", pPage->pgno));
5046 }else{
5047 /* The root page is empty but has one child. Transfer the
5048 ** information from that one child into the root page if it
5049 ** will fit. This reduces the depth of the tree by one.
5050 **
5051 ** If the root page is page 1, it has less space available than
5052 ** its child (due to the 100 byte header that occurs at the beginning
5053 ** of the database fle), so it might not be able to hold all of the
5054 ** information currently contained in the child. If this is the
5055 ** case, then do not do the transfer. Leave page 1 empty except
5056 ** for the right-pointer to the child page. The child page becomes
5057 ** the virtual root of the tree.
5058 */
5059 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5060 assert( pgnoChild>0 );
5061 assert( pgnoChild<=sqlite3pager_pagecount(pPage->pBt->pPager) );
5062 rc = getPage(pPage->pBt, pgnoChild, &pChild);
drh2e38c322004-09-03 18:38:44 +00005063 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005064 if( pPage->pgno==1 ){
5065 rc = initPage(pChild, pPage);
drh2e38c322004-09-03 18:38:44 +00005066 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005067 assert( pChild->nOverflow==0 );
5068 if( pChild->nFree>=100 ){
5069 /* The child information will fit on the root page, so do the
5070 ** copy */
5071 int i;
5072 zeroPage(pPage, pChild->aData[0]);
5073 for(i=0; i<pChild->nCell; i++){
5074 apCell[i] = findCell(pChild,i);
5075 szCell[i] = cellSizePtr(pChild, apCell[i]);
5076 }
5077 assemblePage(pPage, pChild->nCell, apCell, szCell);
danielk1977ae825582004-11-23 09:06:55 +00005078 /* Copy the right-pointer of the child to the parent. */
5079 put4byte(&pPage->aData[pPage->hdrOffset+8],
5080 get4byte(&pChild->aData[pChild->hdrOffset+8]));
drh43605152004-05-29 21:46:49 +00005081 freePage(pChild);
5082 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
5083 }else{
5084 /* The child has more information that will fit on the root.
5085 ** The tree is already balanced. Do nothing. */
5086 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
5087 }
5088 }else{
5089 memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
5090 pPage->isInit = 0;
5091 pPage->pParent = 0;
5092 rc = initPage(pPage, 0);
5093 assert( rc==SQLITE_OK );
5094 freePage(pChild);
5095 TRACE(("BALANCE: transfer child %d into root %d\n",
5096 pChild->pgno, pPage->pgno));
5097 }
danielk1977afcdd022004-10-31 16:25:42 +00005098 rc = reparentChildPages(pPage);
danielk1977ac11ee62005-01-15 12:45:51 +00005099 assert( pPage->nOverflow==0 );
5100#ifndef SQLITE_OMIT_AUTOVACUUM
5101 if( pBt->autoVacuum ){
danielk1977aac0a382005-01-16 11:07:06 +00005102 int i;
danielk1977ac11ee62005-01-15 12:45:51 +00005103 for(i=0; i<pPage->nCell; i++){
danielk197779a40da2005-01-16 08:00:01 +00005104 rc = ptrmapPutOvfl(pPage, i);
5105 if( rc!=SQLITE_OK ){
5106 goto end_shallow_balance;
danielk1977ac11ee62005-01-15 12:45:51 +00005107 }
5108 }
5109 }
5110#endif
danielk1977afcdd022004-10-31 16:25:42 +00005111 if( rc!=SQLITE_OK ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005112 releasePage(pChild);
5113 }
drh2e38c322004-09-03 18:38:44 +00005114end_shallow_balance:
5115 sqliteFree(apCell);
5116 return rc;
drh43605152004-05-29 21:46:49 +00005117}
5118
5119
5120/*
5121** The root page is overfull
5122**
5123** When this happens, Create a new child page and copy the
5124** contents of the root into the child. Then make the root
5125** page an empty page with rightChild pointing to the new
5126** child. Finally, call balance_internal() on the new child
5127** to cause it to split.
5128*/
5129static int balance_deeper(MemPage *pPage){
5130 int rc; /* Return value from subprocedures */
5131 MemPage *pChild; /* Pointer to a new child page */
5132 Pgno pgnoChild; /* Page number of the new child page */
danielk1977aef0bf62005-12-30 16:28:01 +00005133 BtShared *pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00005134 int usableSize; /* Total usable size of a page */
5135 u8 *data; /* Content of the parent page */
5136 u8 *cdata; /* Content of the child page */
5137 int hdr; /* Offset to page header in parent */
5138 int brk; /* Offset to content of first cell in parent */
5139
5140 assert( pPage->pParent==0 );
5141 assert( pPage->nOverflow>0 );
5142 pBt = pPage->pBt;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005143 rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
drh43605152004-05-29 21:46:49 +00005144 if( rc ) return rc;
5145 assert( sqlite3pager_iswriteable(pChild->aData) );
5146 usableSize = pBt->usableSize;
5147 data = pPage->aData;
5148 hdr = pPage->hdrOffset;
5149 brk = get2byte(&data[hdr+5]);
5150 cdata = pChild->aData;
5151 memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
5152 memcpy(&cdata[brk], &data[brk], usableSize-brk);
danielk1977c7dc7532004-11-17 10:22:03 +00005153 assert( pChild->isInit==0 );
drh43605152004-05-29 21:46:49 +00005154 rc = initPage(pChild, pPage);
danielk19776b456a22005-03-21 04:04:02 +00005155 if( rc ) goto balancedeeper_out;
drh43605152004-05-29 21:46:49 +00005156 memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
5157 pChild->nOverflow = pPage->nOverflow;
5158 if( pChild->nOverflow ){
5159 pChild->nFree = 0;
5160 }
5161 assert( pChild->nCell==pPage->nCell );
5162 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
5163 put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
5164 TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
danielk19774e17d142005-01-16 09:06:33 +00005165#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977ac11ee62005-01-15 12:45:51 +00005166 if( pBt->autoVacuum ){
5167 int i;
5168 rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
danielk19776b456a22005-03-21 04:04:02 +00005169 if( rc ) goto balancedeeper_out;
danielk1977ac11ee62005-01-15 12:45:51 +00005170 for(i=0; i<pChild->nCell; i++){
danielk197779a40da2005-01-16 08:00:01 +00005171 rc = ptrmapPutOvfl(pChild, i);
5172 if( rc!=SQLITE_OK ){
5173 return rc;
danielk1977ac11ee62005-01-15 12:45:51 +00005174 }
5175 }
5176 }
danielk19774e17d142005-01-16 09:06:33 +00005177#endif
drh43605152004-05-29 21:46:49 +00005178 rc = balance_nonroot(pChild);
danielk19776b456a22005-03-21 04:04:02 +00005179
5180balancedeeper_out:
drh43605152004-05-29 21:46:49 +00005181 releasePage(pChild);
5182 return rc;
5183}
5184
5185/*
5186** Decide if the page pPage needs to be balanced. If balancing is
5187** required, call the appropriate balancing routine.
5188*/
danielk1977ac245ec2005-01-14 13:50:11 +00005189static int balance(MemPage *pPage, int insert){
drh43605152004-05-29 21:46:49 +00005190 int rc = SQLITE_OK;
5191 if( pPage->pParent==0 ){
5192 if( pPage->nOverflow>0 ){
5193 rc = balance_deeper(pPage);
5194 }
danielk1977687566d2004-11-02 12:56:41 +00005195 if( rc==SQLITE_OK && pPage->nCell==0 ){
drh43605152004-05-29 21:46:49 +00005196 rc = balance_shallower(pPage);
5197 }
5198 }else{
danielk1977ac245ec2005-01-14 13:50:11 +00005199 if( pPage->nOverflow>0 ||
5200 (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
drh43605152004-05-29 21:46:49 +00005201 rc = balance_nonroot(pPage);
5202 }
5203 }
5204 return rc;
5205}
5206
5207/*
drh8dcd7ca2004-08-08 19:43:29 +00005208** This routine checks all cursors that point to table pgnoRoot.
drh980b1a72006-08-16 16:42:48 +00005209** If any of those cursors were opened with wrFlag==0 in a different
5210** database connection (a database connection that shares the pager
5211** cache with the current connection) and that other connection
5212** is not in the ReadUncommmitted state, then this routine returns
5213** SQLITE_LOCKED.
danielk1977299b1872004-11-22 10:02:10 +00005214**
5215** In addition to checking for read-locks (where a read-lock
5216** means a cursor opened with wrFlag==0) this routine also moves
drh980b1a72006-08-16 16:42:48 +00005217** all cursors write cursors so that they are pointing to the
5218** first Cell on the root page. This is necessary because an insert
danielk1977299b1872004-11-22 10:02:10 +00005219** or delete might change the number of cells on a page or delete
5220** a page entirely and we do not want to leave any cursors
5221** pointing to non-existant pages or cells.
drhf74b8d92002-09-01 23:20:45 +00005222*/
drh980b1a72006-08-16 16:42:48 +00005223static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
danielk1977299b1872004-11-22 10:02:10 +00005224 BtCursor *p;
drh980b1a72006-08-16 16:42:48 +00005225 BtShared *pBt = pBtree->pBt;
5226 sqlite3 *db = pBtree->pSqlite;
danielk1977299b1872004-11-22 10:02:10 +00005227 for(p=pBt->pCursor; p; p=p->pNext){
drh980b1a72006-08-16 16:42:48 +00005228 if( p==pExclude ) continue;
5229 if( p->eState!=CURSOR_VALID ) continue;
5230 if( p->pgnoRoot!=pgnoRoot ) continue;
5231 if( p->wrFlag==0 ){
5232 sqlite3 *dbOther = p->pBtree->pSqlite;
5233 if( dbOther==0 ||
5234 (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
5235 return SQLITE_LOCKED;
5236 }
5237 }else if( p->pPage->pgno!=p->pgnoRoot ){
danielk1977299b1872004-11-22 10:02:10 +00005238 moveToRoot(p);
5239 }
5240 }
drhf74b8d92002-09-01 23:20:45 +00005241 return SQLITE_OK;
5242}
5243
5244/*
drh3b7511c2001-05-26 13:15:44 +00005245** Insert a new record into the BTree. The key is given by (pKey,nKey)
5246** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00005247** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00005248** is left pointing at a random location.
5249**
5250** For an INTKEY table, only the nKey value of the key is used. pKey is
5251** ignored. For a ZERODATA table, the pData and nData are both ignored.
drh3b7511c2001-05-26 13:15:44 +00005252*/
drh3aac2dd2004-04-26 14:10:20 +00005253int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00005254 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00005255 const void *pKey, i64 nKey, /* The key of the new record */
drh5c4d9702001-08-20 00:33:58 +00005256 const void *pData, int nData /* The data of the new record */
drh3b7511c2001-05-26 13:15:44 +00005257){
drh3b7511c2001-05-26 13:15:44 +00005258 int rc;
5259 int loc;
drh14acc042001-06-10 19:56:58 +00005260 int szNew;
drh3b7511c2001-05-26 13:15:44 +00005261 MemPage *pPage;
danielk1977aef0bf62005-12-30 16:28:01 +00005262 BtShared *pBt = pCur->pBtree->pBt;
drha34b6762004-05-07 13:30:42 +00005263 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00005264 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00005265
danielk1977aef0bf62005-12-30 16:28:01 +00005266 if( pBt->inTransaction!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005267 /* Must start a transaction before doing an insert */
5268 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00005269 }
drhf74b8d92002-09-01 23:20:45 +00005270 assert( !pBt->readOnly );
drhecdc7532001-09-23 02:35:53 +00005271 if( !pCur->wrFlag ){
5272 return SQLITE_PERM; /* Cursor not open for writing */
5273 }
drh980b1a72006-08-16 16:42:48 +00005274 if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
drhf74b8d92002-09-01 23:20:45 +00005275 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
5276 }
danielk1977da184232006-01-05 11:34:32 +00005277
5278 /* Save the positions of any other cursors open on this table */
drh777e4c42006-01-13 04:31:58 +00005279 restoreOrClearCursorPosition(pCur, 0);
danielk19772e94d4d2006-01-09 05:36:27 +00005280 if(
danielk19772e94d4d2006-01-09 05:36:27 +00005281 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
5282 SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc))
5283 ){
danielk1977da184232006-01-05 11:34:32 +00005284 return rc;
5285 }
5286
drh14acc042001-06-10 19:56:58 +00005287 pPage = pCur->pPage;
drh4a1c3802004-05-12 15:15:47 +00005288 assert( pPage->intKey || nKey>=0 );
drh8b18dd42004-05-12 19:18:15 +00005289 assert( pPage->leaf || !pPage->leafData );
drh3a4c1412004-05-09 20:40:11 +00005290 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
5291 pCur->pgnoRoot, nKey, nData, pPage->pgno,
5292 loc==0 ? "overwrite" : "new entry"));
drh7aa128d2002-06-21 13:09:16 +00005293 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005294 rc = sqlite3pager_write(pPage->aData);
drhbd03cae2001-06-02 02:40:57 +00005295 if( rc ) return rc;
drh2e38c322004-09-03 18:38:44 +00005296 newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) );
5297 if( newCell==0 ) return SQLITE_NOMEM;
drha34b6762004-05-07 13:30:42 +00005298 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew);
drh2e38c322004-09-03 18:38:44 +00005299 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00005300 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00005301 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk1977da184232006-01-05 11:34:32 +00005302 if( loc==0 && CURSOR_VALID==pCur->eState ){
drha34b6762004-05-07 13:30:42 +00005303 int szOld;
5304 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005305 oldCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00005306 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005307 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00005308 }
drh43605152004-05-29 21:46:49 +00005309 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00005310 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00005311 if( rc ) goto end_insert;
drh4b70f112004-05-02 21:12:19 +00005312 dropCell(pPage, pCur->idx, szOld);
drh7c717f72001-06-24 20:39:41 +00005313 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00005314 assert( pPage->leaf );
drh14acc042001-06-10 19:56:58 +00005315 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00005316 pCur->info.nSize = 0;
drh14acc042001-06-10 19:56:58 +00005317 }else{
drh4b70f112004-05-02 21:12:19 +00005318 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00005319 }
danielk1977a3ad5e72005-01-07 08:56:44 +00005320 rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
danielk1977e80463b2004-11-03 03:01:16 +00005321 if( rc!=SQLITE_OK ) goto end_insert;
danielk1977ac245ec2005-01-14 13:50:11 +00005322 rc = balance(pPage, 1);
drh23e11ca2004-05-04 17:27:28 +00005323 /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
drh3fc190c2001-09-14 03:24:23 +00005324 /* fflush(stdout); */
danielk1977299b1872004-11-22 10:02:10 +00005325 if( rc==SQLITE_OK ){
5326 moveToRoot(pCur);
5327 }
drh2e38c322004-09-03 18:38:44 +00005328end_insert:
5329 sqliteFree(newCell);
drh5e2f8b92001-05-28 00:41:15 +00005330 return rc;
5331}
5332
5333/*
drh4b70f112004-05-02 21:12:19 +00005334** Delete the entry that the cursor is pointing to. The cursor
5335** is left pointing at a random location.
drh3b7511c2001-05-26 13:15:44 +00005336*/
drh3aac2dd2004-04-26 14:10:20 +00005337int sqlite3BtreeDelete(BtCursor *pCur){
drh5e2f8b92001-05-28 00:41:15 +00005338 MemPage *pPage = pCur->pPage;
drh4b70f112004-05-02 21:12:19 +00005339 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00005340 int rc;
danielk1977cfe9a692004-06-16 12:00:29 +00005341 Pgno pgnoChild = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00005342 BtShared *pBt = pCur->pBtree->pBt;
drh8b2f49b2001-06-08 00:21:52 +00005343
drh7aa128d2002-06-21 13:09:16 +00005344 assert( pPage->isInit );
danielk1977aef0bf62005-12-30 16:28:01 +00005345 if( pBt->inTransaction!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005346 /* Must start a transaction before doing a delete */
5347 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00005348 }
drhf74b8d92002-09-01 23:20:45 +00005349 assert( !pBt->readOnly );
drhbd03cae2001-06-02 02:40:57 +00005350 if( pCur->idx >= pPage->nCell ){
5351 return SQLITE_ERROR; /* The cursor is not pointing to anything */
5352 }
drhecdc7532001-09-23 02:35:53 +00005353 if( !pCur->wrFlag ){
5354 return SQLITE_PERM; /* Did not open this cursor for writing */
5355 }
drh980b1a72006-08-16 16:42:48 +00005356 if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
drhf74b8d92002-09-01 23:20:45 +00005357 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
5358 }
danielk1977da184232006-01-05 11:34:32 +00005359
5360 /* Restore the current cursor position (a no-op if the cursor is not in
5361 ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
5362 ** open on the same table. Then call sqlite3pager_write() on the page
5363 ** that the entry will be deleted from.
5364 */
5365 if(
drhd1167392006-01-23 13:00:35 +00005366 (rc = restoreOrClearCursorPosition(pCur, 1))!=0 ||
5367 (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
5368 (rc = sqlite3pager_write(pPage->aData))!=0
danielk1977da184232006-01-05 11:34:32 +00005369 ){
5370 return rc;
5371 }
danielk1977e6efa742004-11-10 11:55:10 +00005372
5373 /* Locate the cell within it's page and leave pCell pointing to the
5374 ** data. The clearCell() call frees any overflow pages associated with the
5375 ** cell. The cell itself is still intact.
5376 */
danielk1977299b1872004-11-22 10:02:10 +00005377 pCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00005378 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005379 pgnoChild = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00005380 }
danielk197728129562005-01-11 10:25:06 +00005381 rc = clearCell(pPage, pCell);
5382 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00005383
drh4b70f112004-05-02 21:12:19 +00005384 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00005385 /*
drh5e00f6c2001-09-13 13:46:56 +00005386 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00005387 ** do something we will leave a hole on an internal page.
5388 ** We have to fill the hole by moving in a cell from a leaf. The
5389 ** next Cell after the one to be deleted is guaranteed to exist and
danielk1977299b1872004-11-22 10:02:10 +00005390 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00005391 */
drh14acc042001-06-10 19:56:58 +00005392 BtCursor leafCur;
drh4b70f112004-05-02 21:12:19 +00005393 unsigned char *pNext;
drh02afc862006-01-20 18:10:57 +00005394 int szNext; /* The compiler warning is wrong: szNext is always
5395 ** initialized before use. Adding an extra initialization
5396 ** to silence the compiler slows down the code. */
danielk1977299b1872004-11-22 10:02:10 +00005397 int notUsed;
danielk19776b456a22005-03-21 04:04:02 +00005398 unsigned char *tempCell = 0;
drh8b18dd42004-05-12 19:18:15 +00005399 assert( !pPage->leafData );
drh14acc042001-06-10 19:56:58 +00005400 getTempCursor(pCur, &leafCur);
danielk1977299b1872004-11-22 10:02:10 +00005401 rc = sqlite3BtreeNext(&leafCur, &notUsed);
drh14acc042001-06-10 19:56:58 +00005402 if( rc!=SQLITE_OK ){
drhee696e22004-08-30 16:52:17 +00005403 if( rc!=SQLITE_NOMEM ){
drh49285702005-09-17 15:20:26 +00005404 rc = SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00005405 }
drh5e2f8b92001-05-28 00:41:15 +00005406 }
danielk19776b456a22005-03-21 04:04:02 +00005407 if( rc==SQLITE_OK ){
5408 rc = sqlite3pager_write(leafCur.pPage->aData);
5409 }
5410 if( rc==SQLITE_OK ){
5411 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
5412 pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
5413 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
5414 pNext = findCell(leafCur.pPage, leafCur.idx);
5415 szNext = cellSizePtr(leafCur.pPage, pNext);
5416 assert( MX_CELL_SIZE(pBt)>=szNext+4 );
5417 tempCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) );
5418 if( tempCell==0 ){
5419 rc = SQLITE_NOMEM;
5420 }
5421 }
5422 if( rc==SQLITE_OK ){
5423 rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
5424 }
5425 if( rc==SQLITE_OK ){
5426 put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
5427 rc = balance(pPage, 0);
5428 }
5429 if( rc==SQLITE_OK ){
5430 dropCell(leafCur.pPage, leafCur.idx, szNext);
5431 rc = balance(leafCur.pPage, 0);
5432 }
drh2e38c322004-09-03 18:38:44 +00005433 sqliteFree(tempCell);
drh8c42ca92001-06-22 19:15:00 +00005434 releaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00005435 }else{
danielk1977299b1872004-11-22 10:02:10 +00005436 TRACE(("DELETE: table=%d delete from leaf %d\n",
5437 pCur->pgnoRoot, pPage->pgno));
5438 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
danielk1977ac245ec2005-01-14 13:50:11 +00005439 rc = balance(pPage, 0);
drh5e2f8b92001-05-28 00:41:15 +00005440 }
danielk19776b456a22005-03-21 04:04:02 +00005441 if( rc==SQLITE_OK ){
5442 moveToRoot(pCur);
5443 }
drh5e2f8b92001-05-28 00:41:15 +00005444 return rc;
drh3b7511c2001-05-26 13:15:44 +00005445}
drh8b2f49b2001-06-08 00:21:52 +00005446
5447/*
drhc6b52df2002-01-04 03:09:29 +00005448** Create a new BTree table. Write into *piTable the page
5449** number for the root page of the new table.
5450**
drhab01f612004-05-22 02:55:23 +00005451** The type of type is determined by the flags parameter. Only the
5452** following values of flags are currently in use. Other values for
5453** flags might not work:
5454**
5455** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
5456** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00005457*/
danielk1977aef0bf62005-12-30 16:28:01 +00005458int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
5459 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00005460 MemPage *pRoot;
5461 Pgno pgnoRoot;
5462 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00005463 if( pBt->inTransaction!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005464 /* Must start a transaction first */
5465 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00005466 }
danielk197728129562005-01-11 10:25:06 +00005467 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00005468
5469 /* It is illegal to create a table if any cursors are open on the
5470 ** database. This is because in auto-vacuum mode the backend may
5471 ** need to move a database page to make room for the new root-page.
5472 ** If an open cursor was using the page a problem would occur.
5473 */
5474 if( pBt->pCursor ){
5475 return SQLITE_LOCKED;
5476 }
5477
danielk1977003ba062004-11-04 02:57:33 +00005478#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977cb1a7eb2004-11-05 12:27:02 +00005479 rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drh8b2f49b2001-06-08 00:21:52 +00005480 if( rc ) return rc;
danielk1977003ba062004-11-04 02:57:33 +00005481#else
danielk1977687566d2004-11-02 12:56:41 +00005482 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00005483 Pgno pgnoMove; /* Move a page here to make room for the root-page */
5484 MemPage *pPageMove; /* The page to move to. */
5485
danielk1977003ba062004-11-04 02:57:33 +00005486 /* Read the value of meta[3] from the database to determine where the
5487 ** root page of the new table should go. meta[3] is the largest root-page
5488 ** created so far, so the new root-page is (meta[3]+1).
5489 */
danielk1977aef0bf62005-12-30 16:28:01 +00005490 rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00005491 if( rc!=SQLITE_OK ) return rc;
5492 pgnoRoot++;
5493
danielk1977599fcba2004-11-08 07:13:13 +00005494 /* The new root-page may not be allocated on a pointer-map page, or the
5495 ** PENDING_BYTE page.
5496 */
danielk1977266664d2006-02-10 08:24:21 +00005497 if( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00005498 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00005499 pgnoRoot++;
5500 }
5501 assert( pgnoRoot>=3 );
5502
5503 /* Allocate a page. The page that currently resides at pgnoRoot will
5504 ** be moved to the allocated page (unless the allocated page happens
5505 ** to reside at pgnoRoot).
5506 */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005507 rc = allocatePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00005508 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00005509 return rc;
5510 }
danielk1977003ba062004-11-04 02:57:33 +00005511
5512 if( pgnoMove!=pgnoRoot ){
5513 u8 eType;
5514 Pgno iPtrPage;
5515
5516 releasePage(pPageMove);
5517 rc = getPage(pBt, pgnoRoot, &pRoot);
5518 if( rc!=SQLITE_OK ){
5519 return rc;
5520 }
5521 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drhccae6022005-02-26 17:31:26 +00005522 if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00005523 releasePage(pRoot);
5524 return rc;
5525 }
drhccae6022005-02-26 17:31:26 +00005526 assert( eType!=PTRMAP_ROOTPAGE );
5527 assert( eType!=PTRMAP_FREEPAGE );
danielk19775fd057a2005-03-09 13:09:43 +00005528 rc = sqlite3pager_write(pRoot->aData);
5529 if( rc!=SQLITE_OK ){
5530 releasePage(pRoot);
5531 return rc;
5532 }
danielk1977003ba062004-11-04 02:57:33 +00005533 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
5534 releasePage(pRoot);
5535 if( rc!=SQLITE_OK ){
5536 return rc;
5537 }
5538 rc = getPage(pBt, pgnoRoot, &pRoot);
5539 if( rc!=SQLITE_OK ){
5540 return rc;
5541 }
5542 rc = sqlite3pager_write(pRoot->aData);
5543 if( rc!=SQLITE_OK ){
5544 releasePage(pRoot);
5545 return rc;
5546 }
5547 }else{
5548 pRoot = pPageMove;
5549 }
5550
danielk197742741be2005-01-08 12:42:39 +00005551 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00005552 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
5553 if( rc ){
5554 releasePage(pRoot);
5555 return rc;
5556 }
danielk1977aef0bf62005-12-30 16:28:01 +00005557 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00005558 if( rc ){
5559 releasePage(pRoot);
5560 return rc;
5561 }
danielk197742741be2005-01-08 12:42:39 +00005562
danielk1977003ba062004-11-04 02:57:33 +00005563 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00005564 rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00005565 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00005566 }
5567#endif
drha34b6762004-05-07 13:30:42 +00005568 assert( sqlite3pager_iswriteable(pRoot->aData) );
drhde647132004-05-07 17:57:49 +00005569 zeroPage(pRoot, flags | PTF_LEAF);
drha34b6762004-05-07 13:30:42 +00005570 sqlite3pager_unref(pRoot->aData);
drh8b2f49b2001-06-08 00:21:52 +00005571 *piTable = (int)pgnoRoot;
5572 return SQLITE_OK;
5573}
5574
5575/*
5576** Erase the given database page and all its children. Return
5577** the page to the freelist.
5578*/
drh4b70f112004-05-02 21:12:19 +00005579static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00005580 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00005581 Pgno pgno, /* Page number to clear */
5582 MemPage *pParent, /* Parent page. NULL for the root */
5583 int freePageFlag /* Deallocate page if true */
5584){
danielk19776b456a22005-03-21 04:04:02 +00005585 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00005586 int rc;
drh4b70f112004-05-02 21:12:19 +00005587 unsigned char *pCell;
5588 int i;
drh8b2f49b2001-06-08 00:21:52 +00005589
danielk1977a1cb1832005-02-12 08:59:55 +00005590 if( pgno>sqlite3pager_pagecount(pBt->pPager) ){
drh49285702005-09-17 15:20:26 +00005591 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005592 }
5593
drhde647132004-05-07 17:57:49 +00005594 rc = getAndInitPage(pBt, pgno, &pPage, pParent);
danielk19776b456a22005-03-21 04:04:02 +00005595 if( rc ) goto cleardatabasepage_out;
drha34b6762004-05-07 13:30:42 +00005596 rc = sqlite3pager_write(pPage->aData);
danielk19776b456a22005-03-21 04:04:02 +00005597 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00005598 for(i=0; i<pPage->nCell; i++){
drh43605152004-05-29 21:46:49 +00005599 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00005600 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005601 rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
danielk19776b456a22005-03-21 04:04:02 +00005602 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00005603 }
drh4b70f112004-05-02 21:12:19 +00005604 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00005605 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00005606 }
drha34b6762004-05-07 13:30:42 +00005607 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005608 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
danielk19776b456a22005-03-21 04:04:02 +00005609 if( rc ) goto cleardatabasepage_out;
drh2aa679f2001-06-25 02:11:07 +00005610 }
5611 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00005612 rc = freePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00005613 }else{
drh3a4c1412004-05-09 20:40:11 +00005614 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00005615 }
danielk19776b456a22005-03-21 04:04:02 +00005616
5617cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00005618 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00005619 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005620}
5621
5622/*
drhab01f612004-05-22 02:55:23 +00005623** Delete all information from a single table in the database. iTable is
5624** the page number of the root of the table. After this routine returns,
5625** the root page is empty, but still exists.
5626**
5627** This routine will fail with SQLITE_LOCKED if there are any open
5628** read cursors on the table. Open write cursors are moved to the
5629** root of the table.
drh8b2f49b2001-06-08 00:21:52 +00005630*/
danielk1977aef0bf62005-12-30 16:28:01 +00005631int sqlite3BtreeClearTable(Btree *p, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00005632 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00005633 BtShared *pBt = p->pBt;
5634 if( p->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005635 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00005636 }
drh980b1a72006-08-16 16:42:48 +00005637 rc = checkReadLocks(p, iTable, 0);
5638 if( rc ){
5639 return rc;
drhecdc7532001-09-23 02:35:53 +00005640 }
danielk1977ed429312006-01-19 08:43:31 +00005641
5642 /* Save the position of all cursors open on this table */
5643 if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
5644 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005645 }
danielk1977ed429312006-01-19 08:43:31 +00005646
5647 return clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
drh8b2f49b2001-06-08 00:21:52 +00005648}
5649
5650/*
5651** Erase all information in a table and add the root of the table to
5652** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00005653** page 1) is never added to the freelist.
5654**
5655** This routine will fail with SQLITE_LOCKED if there are any open
5656** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00005657**
5658** If AUTOVACUUM is enabled and the page at iTable is not the last
5659** root page in the database file, then the last root page
5660** in the database file is moved into the slot formerly occupied by
5661** iTable and that last slot formerly occupied by the last root page
5662** is added to the freelist instead of iTable. In this say, all
5663** root pages are kept at the beginning of the database file, which
5664** is necessary for AUTOVACUUM to work right. *piMoved is set to the
5665** page number that used to be the last root page in the file before
5666** the move. If no page gets moved, *piMoved is set to 0.
5667** The last root page is recorded in meta[3] and the value of
5668** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00005669*/
danielk1977aef0bf62005-12-30 16:28:01 +00005670int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00005671 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00005672 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00005673 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00005674
danielk1977aef0bf62005-12-30 16:28:01 +00005675 if( p->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005676 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00005677 }
danielk1977a0bf2652004-11-04 14:30:04 +00005678
danielk1977e6efa742004-11-10 11:55:10 +00005679 /* It is illegal to drop a table if any cursors are open on the
5680 ** database. This is because in auto-vacuum mode the backend may
5681 ** need to move another root-page to fill a gap left by the deleted
5682 ** root page. If an open cursor was using this page a problem would
5683 ** occur.
5684 */
5685 if( pBt->pCursor ){
5686 return SQLITE_LOCKED;
drh5df72a52002-06-06 23:16:05 +00005687 }
danielk1977a0bf2652004-11-04 14:30:04 +00005688
drha34b6762004-05-07 13:30:42 +00005689 rc = getPage(pBt, (Pgno)iTable, &pPage);
drh2aa679f2001-06-25 02:11:07 +00005690 if( rc ) return rc;
danielk1977aef0bf62005-12-30 16:28:01 +00005691 rc = sqlite3BtreeClearTable(p, iTable);
danielk19776b456a22005-03-21 04:04:02 +00005692 if( rc ){
5693 releasePage(pPage);
5694 return rc;
5695 }
danielk1977a0bf2652004-11-04 14:30:04 +00005696
drh205f48e2004-11-05 00:43:11 +00005697 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00005698
drh4b70f112004-05-02 21:12:19 +00005699 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00005700#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00005701 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00005702 releasePage(pPage);
5703#else
5704 if( pBt->autoVacuum ){
5705 Pgno maxRootPgno;
danielk1977aef0bf62005-12-30 16:28:01 +00005706 rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00005707 if( rc!=SQLITE_OK ){
5708 releasePage(pPage);
5709 return rc;
5710 }
5711
5712 if( iTable==maxRootPgno ){
5713 /* If the table being dropped is the table with the largest root-page
5714 ** number in the database, put the root page on the free list.
5715 */
5716 rc = freePage(pPage);
5717 releasePage(pPage);
5718 if( rc!=SQLITE_OK ){
5719 return rc;
5720 }
5721 }else{
5722 /* The table being dropped does not have the largest root-page
5723 ** number in the database. So move the page that does into the
5724 ** gap left by the deleted root-page.
5725 */
5726 MemPage *pMove;
5727 releasePage(pPage);
5728 rc = getPage(pBt, maxRootPgno, &pMove);
5729 if( rc!=SQLITE_OK ){
5730 return rc;
5731 }
5732 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
5733 releasePage(pMove);
5734 if( rc!=SQLITE_OK ){
5735 return rc;
5736 }
5737 rc = getPage(pBt, maxRootPgno, &pMove);
5738 if( rc!=SQLITE_OK ){
5739 return rc;
5740 }
5741 rc = freePage(pMove);
5742 releasePage(pMove);
5743 if( rc!=SQLITE_OK ){
5744 return rc;
5745 }
5746 *piMoved = maxRootPgno;
5747 }
5748
danielk1977599fcba2004-11-08 07:13:13 +00005749 /* Set the new 'max-root-page' value in the database header. This
5750 ** is the old value less one, less one more if that happens to
5751 ** be a root-page number, less one again if that is the
5752 ** PENDING_BYTE_PAGE.
5753 */
danielk197787a6e732004-11-05 12:58:25 +00005754 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00005755 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
5756 maxRootPgno--;
5757 }
danielk1977266664d2006-02-10 08:24:21 +00005758 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00005759 maxRootPgno--;
5760 }
danielk1977599fcba2004-11-08 07:13:13 +00005761 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
5762
danielk1977aef0bf62005-12-30 16:28:01 +00005763 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00005764 }else{
5765 rc = freePage(pPage);
5766 releasePage(pPage);
5767 }
5768#endif
drh2aa679f2001-06-25 02:11:07 +00005769 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00005770 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00005771 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00005772 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00005773 }
drh8b2f49b2001-06-08 00:21:52 +00005774 return rc;
5775}
5776
drh001bbcb2003-03-19 03:14:00 +00005777
drh8b2f49b2001-06-08 00:21:52 +00005778/*
drh23e11ca2004-05-04 17:27:28 +00005779** Read the meta-information out of a database file. Meta[0]
5780** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00005781** through meta[15] are available for use by higher layers. Meta[0]
5782** is read-only, the others are read/write.
5783**
5784** The schema layer numbers meta values differently. At the schema
5785** layer (and the SetCookie and ReadCookie opcodes) the number of
5786** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00005787*/
danielk1977aef0bf62005-12-30 16:28:01 +00005788int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
drh8b2f49b2001-06-08 00:21:52 +00005789 int rc;
drh4b70f112004-05-02 21:12:19 +00005790 unsigned char *pP1;
danielk1977aef0bf62005-12-30 16:28:01 +00005791 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00005792
danielk1977da184232006-01-05 11:34:32 +00005793 /* Reading a meta-data value requires a read-lock on page 1 (and hence
5794 ** the sqlite_master table. We grab this lock regardless of whether or
5795 ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
5796 ** 1 is treated as a special case by queryTableLock() and lockTable()).
5797 */
5798 rc = queryTableLock(p, 1, READ_LOCK);
5799 if( rc!=SQLITE_OK ){
5800 return rc;
5801 }
5802
drh23e11ca2004-05-04 17:27:28 +00005803 assert( idx>=0 && idx<=15 );
drha34b6762004-05-07 13:30:42 +00005804 rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1);
drh8b2f49b2001-06-08 00:21:52 +00005805 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00005806 *pMeta = get4byte(&pP1[36 + idx*4]);
drha34b6762004-05-07 13:30:42 +00005807 sqlite3pager_unref(pP1);
drhae157872004-08-14 19:20:09 +00005808
danielk1977599fcba2004-11-08 07:13:13 +00005809 /* If autovacuumed is disabled in this build but we are trying to
5810 ** access an autovacuumed database, then make the database readonly.
5811 */
danielk1977003ba062004-11-04 02:57:33 +00005812#ifdef SQLITE_OMIT_AUTOVACUUM
drhae157872004-08-14 19:20:09 +00005813 if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00005814#endif
drhae157872004-08-14 19:20:09 +00005815
danielk1977da184232006-01-05 11:34:32 +00005816 /* Grab the read-lock on page 1. */
5817 rc = lockTable(p, 1, READ_LOCK);
5818 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005819}
5820
5821/*
drh23e11ca2004-05-04 17:27:28 +00005822** Write meta-information back into the database. Meta[0] is
5823** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00005824*/
danielk1977aef0bf62005-12-30 16:28:01 +00005825int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
5826 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00005827 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00005828 int rc;
drh23e11ca2004-05-04 17:27:28 +00005829 assert( idx>=1 && idx<=15 );
danielk1977aef0bf62005-12-30 16:28:01 +00005830 if( p->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005831 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh5df72a52002-06-06 23:16:05 +00005832 }
drhde647132004-05-07 17:57:49 +00005833 assert( pBt->pPage1!=0 );
5834 pP1 = pBt->pPage1->aData;
drha34b6762004-05-07 13:30:42 +00005835 rc = sqlite3pager_write(pP1);
drh4b70f112004-05-02 21:12:19 +00005836 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00005837 put4byte(&pP1[36 + idx*4], iMeta);
drh8b2f49b2001-06-08 00:21:52 +00005838 return SQLITE_OK;
5839}
drh8c42ca92001-06-22 19:15:00 +00005840
drhf328bc82004-05-10 23:29:49 +00005841/*
5842** Return the flag byte at the beginning of the page that the cursor
5843** is currently pointing to.
5844*/
5845int sqlite3BtreeFlags(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005846 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
drh777e4c42006-01-13 04:31:58 +00005847 ** restoreOrClearCursorPosition() here.
danielk1977da184232006-01-05 11:34:32 +00005848 */
drhf328bc82004-05-10 23:29:49 +00005849 MemPage *pPage = pCur->pPage;
5850 return pPage ? pPage->aData[pPage->hdrOffset] : 0;
5851}
5852
danielk1977b5402fb2005-01-12 07:15:04 +00005853#ifdef SQLITE_DEBUG
drh8c42ca92001-06-22 19:15:00 +00005854/*
5855** Print a disassembly of the given page on standard output. This routine
5856** is used for debugging and testing only.
5857*/
danielk1977aef0bf62005-12-30 16:28:01 +00005858static int btreePageDump(BtShared *pBt, int pgno, int recursive, MemPage *pParent){
drh8c42ca92001-06-22 19:15:00 +00005859 int rc;
5860 MemPage *pPage;
drhc8629a12004-05-08 20:07:40 +00005861 int i, j, c;
drh8c42ca92001-06-22 19:15:00 +00005862 int nFree;
5863 u16 idx;
drhab9f7f12004-05-08 10:56:11 +00005864 int hdr;
drh43605152004-05-29 21:46:49 +00005865 int nCell;
drha2fce642004-06-05 00:01:44 +00005866 int isInit;
drhab9f7f12004-05-08 10:56:11 +00005867 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00005868 char range[20];
5869 unsigned char payload[20];
drhab9f7f12004-05-08 10:56:11 +00005870
drh4b70f112004-05-02 21:12:19 +00005871 rc = getPage(pBt, (Pgno)pgno, &pPage);
drha2fce642004-06-05 00:01:44 +00005872 isInit = pPage->isInit;
5873 if( pPage->isInit==0 ){
danielk1977c7dc7532004-11-17 10:22:03 +00005874 initPage(pPage, pParent);
drha2fce642004-06-05 00:01:44 +00005875 }
drh8c42ca92001-06-22 19:15:00 +00005876 if( rc ){
5877 return rc;
5878 }
drhab9f7f12004-05-08 10:56:11 +00005879 hdr = pPage->hdrOffset;
5880 data = pPage->aData;
drhc8629a12004-05-08 20:07:40 +00005881 c = data[hdr];
drh8b18dd42004-05-12 19:18:15 +00005882 pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0;
drhc8629a12004-05-08 20:07:40 +00005883 pPage->zeroData = (c & PTF_ZERODATA)!=0;
drh8b18dd42004-05-12 19:18:15 +00005884 pPage->leafData = (c & PTF_LEAFDATA)!=0;
drhc8629a12004-05-08 20:07:40 +00005885 pPage->leaf = (c & PTF_LEAF)!=0;
drh8b18dd42004-05-12 19:18:15 +00005886 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
drh43605152004-05-29 21:46:49 +00005887 nCell = get2byte(&data[hdr+3]);
drhfe63d1c2004-09-08 20:13:04 +00005888 sqlite3DebugPrintf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno,
drh43605152004-05-29 21:46:49 +00005889 data[hdr], data[hdr+7],
drhda200cc2004-05-09 11:51:38 +00005890 (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0);
drhab9f7f12004-05-08 10:56:11 +00005891 assert( hdr == (pgno==1 ? 100 : 0) );
drh43605152004-05-29 21:46:49 +00005892 idx = hdr + 12 - pPage->leaf*4;
5893 for(i=0; i<nCell; i++){
drh6f11bef2004-05-13 01:12:56 +00005894 CellInfo info;
drh4b70f112004-05-02 21:12:19 +00005895 Pgno child;
drh43605152004-05-29 21:46:49 +00005896 unsigned char *pCell;
drh6f11bef2004-05-13 01:12:56 +00005897 int sz;
drh43605152004-05-29 21:46:49 +00005898 int addr;
drh6f11bef2004-05-13 01:12:56 +00005899
drh43605152004-05-29 21:46:49 +00005900 addr = get2byte(&data[idx + 2*i]);
5901 pCell = &data[addr];
5902 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005903 sz = info.nSize;
drh43605152004-05-29 21:46:49 +00005904 sprintf(range,"%d..%d", addr, addr+sz-1);
drh4b70f112004-05-02 21:12:19 +00005905 if( pPage->leaf ){
5906 child = 0;
5907 }else{
drh43605152004-05-29 21:46:49 +00005908 child = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00005909 }
drh6f11bef2004-05-13 01:12:56 +00005910 sz = info.nData;
5911 if( !pPage->intKey ) sz += info.nKey;
drh8c42ca92001-06-22 19:15:00 +00005912 if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
drh6f11bef2004-05-13 01:12:56 +00005913 memcpy(payload, &pCell[info.nHeader], sz);
drh8c42ca92001-06-22 19:15:00 +00005914 for(j=0; j<sz; j++){
5915 if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
5916 }
5917 payload[sz] = 0;
drhfe63d1c2004-09-08 20:13:04 +00005918 sqlite3DebugPrintf(
drh6f11bef2004-05-13 01:12:56 +00005919 "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n",
5920 i, range, child, info.nKey, info.nData, payload
drh8c42ca92001-06-22 19:15:00 +00005921 );
drh8c42ca92001-06-22 19:15:00 +00005922 }
drh4b70f112004-05-02 21:12:19 +00005923 if( !pPage->leaf ){
drhfe63d1c2004-09-08 20:13:04 +00005924 sqlite3DebugPrintf("right_child: %d\n", get4byte(&data[hdr+8]));
drh4b70f112004-05-02 21:12:19 +00005925 }
drh8c42ca92001-06-22 19:15:00 +00005926 nFree = 0;
5927 i = 0;
drhab9f7f12004-05-08 10:56:11 +00005928 idx = get2byte(&data[hdr+1]);
drhb6f41482004-05-14 01:58:11 +00005929 while( idx>0 && idx<pPage->pBt->usableSize ){
drhab9f7f12004-05-08 10:56:11 +00005930 int sz = get2byte(&data[idx+2]);
drh4b70f112004-05-02 21:12:19 +00005931 sprintf(range,"%d..%d", idx, idx+sz-1);
5932 nFree += sz;
drhfe63d1c2004-09-08 20:13:04 +00005933 sqlite3DebugPrintf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
drh4b70f112004-05-02 21:12:19 +00005934 i, range, sz, nFree);
drhab9f7f12004-05-08 10:56:11 +00005935 idx = get2byte(&data[idx]);
drh2aa679f2001-06-25 02:11:07 +00005936 i++;
drh8c42ca92001-06-22 19:15:00 +00005937 }
5938 if( idx!=0 ){
drhfe63d1c2004-09-08 20:13:04 +00005939 sqlite3DebugPrintf("ERROR: next freeblock index out of range: %d\n", idx);
drh8c42ca92001-06-22 19:15:00 +00005940 }
drha34b6762004-05-07 13:30:42 +00005941 if( recursive && !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005942 for(i=0; i<nCell; i++){
5943 unsigned char *pCell = findCell(pPage, i);
danielk1977c7dc7532004-11-17 10:22:03 +00005944 btreePageDump(pBt, get4byte(pCell), 1, pPage);
drha34b6762004-05-07 13:30:42 +00005945 idx = get2byte(pCell);
drh6019e162001-07-02 17:51:45 +00005946 }
danielk1977c7dc7532004-11-17 10:22:03 +00005947 btreePageDump(pBt, get4byte(&data[hdr+8]), 1, pPage);
drh6019e162001-07-02 17:51:45 +00005948 }
drha2fce642004-06-05 00:01:44 +00005949 pPage->isInit = isInit;
drhab9f7f12004-05-08 10:56:11 +00005950 sqlite3pager_unref(data);
drh3644f082004-05-10 18:45:09 +00005951 fflush(stdout);
drh8c42ca92001-06-22 19:15:00 +00005952 return SQLITE_OK;
5953}
danielk1977aef0bf62005-12-30 16:28:01 +00005954int sqlite3BtreePageDump(Btree *p, int pgno, int recursive){
5955 return btreePageDump(p->pBt, pgno, recursive, 0);
danielk1977c7dc7532004-11-17 10:22:03 +00005956}
drhaaab5722002-02-19 13:39:21 +00005957#endif
drh8c42ca92001-06-22 19:15:00 +00005958
drh77bba592006-08-13 18:39:26 +00005959#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
drh8c42ca92001-06-22 19:15:00 +00005960/*
drh2aa679f2001-06-25 02:11:07 +00005961** Fill aResult[] with information about the entry and page that the
5962** cursor is pointing to.
5963**
5964** aResult[0] = The page number
5965** aResult[1] = The entry number
5966** aResult[2] = Total number of entries on this page
drh3e27c022004-07-23 00:01:38 +00005967** aResult[3] = Cell size (local payload + header)
drh2aa679f2001-06-25 02:11:07 +00005968** aResult[4] = Number of free bytes on this page
5969** aResult[5] = Number of free blocks on the page
drh3e27c022004-07-23 00:01:38 +00005970** aResult[6] = Total payload size (local + overflow)
5971** aResult[7] = Header size in bytes
5972** aResult[8] = Local payload size
5973** aResult[9] = Parent page number
drh5eddca62001-06-30 21:53:53 +00005974**
5975** This routine is used for testing and debugging only.
drh8c42ca92001-06-22 19:15:00 +00005976*/
drh3e27c022004-07-23 00:01:38 +00005977int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){
drh2aa679f2001-06-25 02:11:07 +00005978 int cnt, idx;
5979 MemPage *pPage = pCur->pPage;
drh3e27c022004-07-23 00:01:38 +00005980 BtCursor tmpCur;
drhda200cc2004-05-09 11:51:38 +00005981
drh777e4c42006-01-13 04:31:58 +00005982 int rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00005983 if( rc!=SQLITE_OK ){
5984 return rc;
5985 }
5986
drhda200cc2004-05-09 11:51:38 +00005987 pageIntegrity(pPage);
drh4b70f112004-05-02 21:12:19 +00005988 assert( pPage->isInit );
drh3e27c022004-07-23 00:01:38 +00005989 getTempCursor(pCur, &tmpCur);
5990 while( upCnt-- ){
5991 moveToParent(&tmpCur);
5992 }
5993 pPage = tmpCur.pPage;
5994 pageIntegrity(pPage);
drha34b6762004-05-07 13:30:42 +00005995 aResult[0] = sqlite3pager_pagenumber(pPage->aData);
drh91025292004-05-03 19:49:32 +00005996 assert( aResult[0]==pPage->pgno );
drh3e27c022004-07-23 00:01:38 +00005997 aResult[1] = tmpCur.idx;
drh2aa679f2001-06-25 02:11:07 +00005998 aResult[2] = pPage->nCell;
drh3e27c022004-07-23 00:01:38 +00005999 if( tmpCur.idx>=0 && tmpCur.idx<pPage->nCell ){
6000 getCellInfo(&tmpCur);
6001 aResult[3] = tmpCur.info.nSize;
6002 aResult[6] = tmpCur.info.nData;
6003 aResult[7] = tmpCur.info.nHeader;
6004 aResult[8] = tmpCur.info.nLocal;
drh2aa679f2001-06-25 02:11:07 +00006005 }else{
6006 aResult[3] = 0;
6007 aResult[6] = 0;
drh3e27c022004-07-23 00:01:38 +00006008 aResult[7] = 0;
6009 aResult[8] = 0;
drh2aa679f2001-06-25 02:11:07 +00006010 }
6011 aResult[4] = pPage->nFree;
6012 cnt = 0;
drh4b70f112004-05-02 21:12:19 +00006013 idx = get2byte(&pPage->aData[pPage->hdrOffset+1]);
drhb6f41482004-05-14 01:58:11 +00006014 while( idx>0 && idx<pPage->pBt->usableSize ){
drh2aa679f2001-06-25 02:11:07 +00006015 cnt++;
drh4b70f112004-05-02 21:12:19 +00006016 idx = get2byte(&pPage->aData[idx]);
drh2aa679f2001-06-25 02:11:07 +00006017 }
6018 aResult[5] = cnt;
drh3e27c022004-07-23 00:01:38 +00006019 if( pPage->pParent==0 || isRootPage(pPage) ){
6020 aResult[9] = 0;
6021 }else{
6022 aResult[9] = pPage->pParent->pgno;
6023 }
6024 releaseTempCursor(&tmpCur);
drh8c42ca92001-06-22 19:15:00 +00006025 return SQLITE_OK;
6026}
drhaaab5722002-02-19 13:39:21 +00006027#endif
drhdd793422001-06-28 01:54:48 +00006028
drhdd793422001-06-28 01:54:48 +00006029/*
drh5eddca62001-06-30 21:53:53 +00006030** Return the pager associated with a BTree. This routine is used for
6031** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00006032*/
danielk1977aef0bf62005-12-30 16:28:01 +00006033Pager *sqlite3BtreePager(Btree *p){
6034 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00006035}
drh5eddca62001-06-30 21:53:53 +00006036
6037/*
6038** This structure is passed around through all the sanity checking routines
6039** in order to keep track of some global state information.
6040*/
drhaaab5722002-02-19 13:39:21 +00006041typedef struct IntegrityCk IntegrityCk;
6042struct IntegrityCk {
danielk1977aef0bf62005-12-30 16:28:01 +00006043 BtShared *pBt; /* The tree being checked out */
drh100569d2001-10-02 13:01:48 +00006044 Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
6045 int nPage; /* Number of pages in the database */
6046 int *anRef; /* Number of times each page is referenced */
drh100569d2001-10-02 13:01:48 +00006047 char *zErrMsg; /* An error message. NULL of no errors seen. */
drh5eddca62001-06-30 21:53:53 +00006048};
6049
drhb7f91642004-10-31 02:22:47 +00006050#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006051/*
6052** Append a message to the error message string.
6053*/
drh2e38c322004-09-03 18:38:44 +00006054static void checkAppendMsg(
6055 IntegrityCk *pCheck,
6056 char *zMsg1,
6057 const char *zFormat,
6058 ...
6059){
6060 va_list ap;
6061 char *zMsg2;
6062 va_start(ap, zFormat);
6063 zMsg2 = sqlite3VMPrintf(zFormat, ap);
6064 va_end(ap);
6065 if( zMsg1==0 ) zMsg1 = "";
drh5eddca62001-06-30 21:53:53 +00006066 if( pCheck->zErrMsg ){
6067 char *zOld = pCheck->zErrMsg;
6068 pCheck->zErrMsg = 0;
danielk19774adee202004-05-08 08:23:19 +00006069 sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00006070 sqliteFree(zOld);
6071 }else{
danielk19774adee202004-05-08 08:23:19 +00006072 sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00006073 }
drh2e38c322004-09-03 18:38:44 +00006074 sqliteFree(zMsg2);
drh5eddca62001-06-30 21:53:53 +00006075}
drhb7f91642004-10-31 02:22:47 +00006076#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00006077
drhb7f91642004-10-31 02:22:47 +00006078#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006079/*
6080** Add 1 to the reference count for page iPage. If this is the second
6081** reference to the page, add an error message to pCheck->zErrMsg.
6082** Return 1 if there are 2 ore more references to the page and 0 if
6083** if this is the first reference to the page.
6084**
6085** Also check that the page number is in bounds.
6086*/
drhaaab5722002-02-19 13:39:21 +00006087static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00006088 if( iPage==0 ) return 1;
drh0de8c112002-07-06 16:32:14 +00006089 if( iPage>pCheck->nPage || iPage<0 ){
drh2e38c322004-09-03 18:38:44 +00006090 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00006091 return 1;
6092 }
6093 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00006094 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00006095 return 1;
6096 }
6097 return (pCheck->anRef[iPage]++)>1;
6098}
6099
danielk1977afcdd022004-10-31 16:25:42 +00006100#ifndef SQLITE_OMIT_AUTOVACUUM
6101/*
6102** Check that the entry in the pointer-map for page iChild maps to
6103** page iParent, pointer type ptrType. If not, append an error message
6104** to pCheck.
6105*/
6106static void checkPtrmap(
6107 IntegrityCk *pCheck, /* Integrity check context */
6108 Pgno iChild, /* Child page number */
6109 u8 eType, /* Expected pointer map type */
6110 Pgno iParent, /* Expected pointer map parent page number */
6111 char *zContext /* Context description (used for error msg) */
6112){
6113 int rc;
6114 u8 ePtrmapType;
6115 Pgno iPtrmapParent;
6116
6117 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
6118 if( rc!=SQLITE_OK ){
6119 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
6120 return;
6121 }
6122
6123 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
6124 checkAppendMsg(pCheck, zContext,
6125 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
6126 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
6127 }
6128}
6129#endif
6130
drh5eddca62001-06-30 21:53:53 +00006131/*
6132** Check the integrity of the freelist or of an overflow page list.
6133** Verify that the number of pages on the list is N.
6134*/
drh30e58752002-03-02 20:41:57 +00006135static void checkList(
6136 IntegrityCk *pCheck, /* Integrity checking context */
6137 int isFreeList, /* True for a freelist. False for overflow page list */
6138 int iPage, /* Page number for first page in the list */
6139 int N, /* Expected number of pages in the list */
6140 char *zContext /* Context for error messages */
6141){
6142 int i;
drh3a4c1412004-05-09 20:40:11 +00006143 int expected = N;
6144 int iFirst = iPage;
drh30e58752002-03-02 20:41:57 +00006145 while( N-- > 0 ){
drh4b70f112004-05-02 21:12:19 +00006146 unsigned char *pOvfl;
drh5eddca62001-06-30 21:53:53 +00006147 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00006148 checkAppendMsg(pCheck, zContext,
6149 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00006150 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00006151 break;
6152 }
6153 if( checkRef(pCheck, iPage, zContext) ) break;
drha34b6762004-05-07 13:30:42 +00006154 if( sqlite3pager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
drh2e38c322004-09-03 18:38:44 +00006155 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00006156 break;
6157 }
drh30e58752002-03-02 20:41:57 +00006158 if( isFreeList ){
drh4b70f112004-05-02 21:12:19 +00006159 int n = get4byte(&pOvfl[4]);
danielk1977687566d2004-11-02 12:56:41 +00006160#ifndef SQLITE_OMIT_AUTOVACUUM
6161 if( pCheck->pBt->autoVacuum ){
6162 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
6163 }
6164#endif
drh855eb1c2004-08-31 13:45:11 +00006165 if( n>pCheck->pBt->usableSize/4-8 ){
drh2e38c322004-09-03 18:38:44 +00006166 checkAppendMsg(pCheck, zContext,
6167 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00006168 N--;
6169 }else{
6170 for(i=0; i<n; i++){
danielk1977687566d2004-11-02 12:56:41 +00006171 Pgno iFreePage = get4byte(&pOvfl[8+i*4]);
6172#ifndef SQLITE_OMIT_AUTOVACUUM
6173 if( pCheck->pBt->autoVacuum ){
6174 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
6175 }
6176#endif
6177 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00006178 }
6179 N -= n;
drh30e58752002-03-02 20:41:57 +00006180 }
drh30e58752002-03-02 20:41:57 +00006181 }
danielk1977afcdd022004-10-31 16:25:42 +00006182#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00006183 else{
6184 /* If this database supports auto-vacuum and iPage is not the last
6185 ** page in this overflow list, check that the pointer-map entry for
6186 ** the following page matches iPage.
6187 */
6188 if( pCheck->pBt->autoVacuum && N>0 ){
6189 i = get4byte(pOvfl);
6190 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
6191 }
danielk1977afcdd022004-10-31 16:25:42 +00006192 }
6193#endif
drh4b70f112004-05-02 21:12:19 +00006194 iPage = get4byte(pOvfl);
drha34b6762004-05-07 13:30:42 +00006195 sqlite3pager_unref(pOvfl);
drh5eddca62001-06-30 21:53:53 +00006196 }
6197}
drhb7f91642004-10-31 02:22:47 +00006198#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00006199
drhb7f91642004-10-31 02:22:47 +00006200#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006201/*
6202** Do various sanity checks on a single page of a tree. Return
6203** the tree depth. Root pages return 0. Parents of root pages
6204** return 1, and so forth.
6205**
6206** These checks are done:
6207**
6208** 1. Make sure that cells and freeblocks do not overlap
6209** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00006210** NO 2. Make sure cell keys are in order.
6211** NO 3. Make sure no key is less than or equal to zLowerBound.
6212** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00006213** 5. Check the integrity of overflow pages.
6214** 6. Recursively call checkTreePage on all children.
6215** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00006216** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00006217** the root of the tree.
6218*/
6219static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00006220 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00006221 int iPage, /* Page number of the page to check */
6222 MemPage *pParent, /* Parent page */
drh74161702006-02-24 02:53:49 +00006223 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00006224){
6225 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00006226 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00006227 int hdr, cellStart;
6228 int nCell;
drhda200cc2004-05-09 11:51:38 +00006229 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00006230 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00006231 int usableSize;
drh5eddca62001-06-30 21:53:53 +00006232 char zContext[100];
drh2e38c322004-09-03 18:38:44 +00006233 char *hit;
drh5eddca62001-06-30 21:53:53 +00006234
danielk1977ef73ee92004-11-06 12:26:07 +00006235 sprintf(zContext, "Page %d: ", iPage);
6236
drh5eddca62001-06-30 21:53:53 +00006237 /* Check that the page exists
6238 */
drhd9cb6ac2005-10-20 07:28:17 +00006239 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00006240 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00006241 if( iPage==0 ) return 0;
6242 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh4b70f112004-05-02 21:12:19 +00006243 if( (rc = getPage(pBt, (Pgno)iPage, &pPage))!=0 ){
drh2e38c322004-09-03 18:38:44 +00006244 checkAppendMsg(pCheck, zContext,
6245 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00006246 return 0;
6247 }
drh4b70f112004-05-02 21:12:19 +00006248 if( (rc = initPage(pPage, pParent))!=0 ){
drh2e38c322004-09-03 18:38:44 +00006249 checkAppendMsg(pCheck, zContext, "initPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00006250 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00006251 return 0;
6252 }
6253
6254 /* Check out all the cells.
6255 */
6256 depth = 0;
drh5eddca62001-06-30 21:53:53 +00006257 for(i=0; i<pPage->nCell; i++){
drh6f11bef2004-05-13 01:12:56 +00006258 u8 *pCell;
6259 int sz;
6260 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00006261
6262 /* Check payload overflow pages
6263 */
drh3a4c1412004-05-09 20:40:11 +00006264 sprintf(zContext, "On tree page %d cell %d: ", iPage, i);
drh43605152004-05-29 21:46:49 +00006265 pCell = findCell(pPage,i);
6266 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00006267 sz = info.nData;
6268 if( !pPage->intKey ) sz += info.nKey;
6269 if( sz>info.nLocal ){
drhb6f41482004-05-14 01:58:11 +00006270 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00006271 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
6272#ifndef SQLITE_OMIT_AUTOVACUUM
6273 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00006274 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00006275 }
6276#endif
6277 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00006278 }
6279
6280 /* Check sanity of left child page.
6281 */
drhda200cc2004-05-09 11:51:38 +00006282 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006283 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00006284#ifndef SQLITE_OMIT_AUTOVACUUM
6285 if( pBt->autoVacuum ){
6286 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
6287 }
6288#endif
drh74161702006-02-24 02:53:49 +00006289 d2 = checkTreePage(pCheck,pgno,pPage,zContext);
drhda200cc2004-05-09 11:51:38 +00006290 if( i>0 && d2!=depth ){
6291 checkAppendMsg(pCheck, zContext, "Child page depth differs");
6292 }
6293 depth = d2;
drh5eddca62001-06-30 21:53:53 +00006294 }
drh5eddca62001-06-30 21:53:53 +00006295 }
drhda200cc2004-05-09 11:51:38 +00006296 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006297 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drhda200cc2004-05-09 11:51:38 +00006298 sprintf(zContext, "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00006299#ifndef SQLITE_OMIT_AUTOVACUUM
6300 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00006301 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006302 }
6303#endif
drh74161702006-02-24 02:53:49 +00006304 checkTreePage(pCheck, pgno, pPage, zContext);
drhda200cc2004-05-09 11:51:38 +00006305 }
drh5eddca62001-06-30 21:53:53 +00006306
6307 /* Check for complete coverage of the page
6308 */
drhda200cc2004-05-09 11:51:38 +00006309 data = pPage->aData;
6310 hdr = pPage->hdrOffset;
drh2e38c322004-09-03 18:38:44 +00006311 hit = sqliteMalloc( usableSize );
6312 if( hit ){
6313 memset(hit, 1, get2byte(&data[hdr+5]));
6314 nCell = get2byte(&data[hdr+3]);
6315 cellStart = hdr + 12 - 4*pPage->leaf;
6316 for(i=0; i<nCell; i++){
6317 int pc = get2byte(&data[cellStart+i*2]);
6318 int size = cellSizePtr(pPage, &data[pc]);
6319 int j;
danielk19777701e812005-01-10 12:59:51 +00006320 if( (pc+size-1)>=usableSize || pc<0 ){
6321 checkAppendMsg(pCheck, 0,
6322 "Corruption detected in cell %d on page %d",i,iPage,0);
6323 }else{
6324 for(j=pc+size-1; j>=pc; j--) hit[j]++;
6325 }
drh2e38c322004-09-03 18:38:44 +00006326 }
6327 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
6328 cnt++){
6329 int size = get2byte(&data[i+2]);
6330 int j;
danielk19777701e812005-01-10 12:59:51 +00006331 if( (i+size-1)>=usableSize || i<0 ){
6332 checkAppendMsg(pCheck, 0,
6333 "Corruption detected in cell %d on page %d",i,iPage,0);
6334 }else{
6335 for(j=i+size-1; j>=i; j--) hit[j]++;
6336 }
drh2e38c322004-09-03 18:38:44 +00006337 i = get2byte(&data[i]);
6338 }
6339 for(i=cnt=0; i<usableSize; i++){
6340 if( hit[i]==0 ){
6341 cnt++;
6342 }else if( hit[i]>1 ){
6343 checkAppendMsg(pCheck, 0,
6344 "Multiple uses for byte %d of page %d", i, iPage);
6345 break;
6346 }
6347 }
6348 if( cnt!=data[hdr+7] ){
6349 checkAppendMsg(pCheck, 0,
6350 "Fragmented space is %d byte reported as %d on page %d",
6351 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00006352 }
6353 }
drh2e38c322004-09-03 18:38:44 +00006354 sqliteFree(hit);
drh6019e162001-07-02 17:51:45 +00006355
drh4b70f112004-05-02 21:12:19 +00006356 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00006357 return depth+1;
drh5eddca62001-06-30 21:53:53 +00006358}
drhb7f91642004-10-31 02:22:47 +00006359#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00006360
drhb7f91642004-10-31 02:22:47 +00006361#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006362/*
6363** This routine does a complete check of the given BTree file. aRoot[] is
6364** an array of pages numbers were each page number is the root page of
6365** a table. nRoot is the number of entries in aRoot.
6366**
6367** If everything checks out, this routine returns NULL. If something is
6368** amiss, an error message is written into memory obtained from malloc()
6369** and a pointer to that error message is returned. The calling function
6370** is responsible for freeing the error message when it is done.
6371*/
danielk1977aef0bf62005-12-30 16:28:01 +00006372char *sqlite3BtreeIntegrityCheck(Btree *p, int *aRoot, int nRoot){
drh5eddca62001-06-30 21:53:53 +00006373 int i;
6374 int nRef;
drhaaab5722002-02-19 13:39:21 +00006375 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00006376 BtShared *pBt = p->pBt;
drh5eddca62001-06-30 21:53:53 +00006377
drh0f7eb612006-08-08 13:51:43 +00006378 nRef = sqlite3pager_refcount(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00006379 if( lockBtreeWithRetry(p)!=SQLITE_OK ){
drhefc251d2001-07-01 22:12:01 +00006380 return sqliteStrDup("Unable to acquire a read lock on the database");
6381 }
drh5eddca62001-06-30 21:53:53 +00006382 sCheck.pBt = pBt;
6383 sCheck.pPager = pBt->pPager;
drha34b6762004-05-07 13:30:42 +00006384 sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager);
drh0de8c112002-07-06 16:32:14 +00006385 if( sCheck.nPage==0 ){
6386 unlockBtreeIfUnused(pBt);
6387 return 0;
6388 }
drh8c1238a2003-01-02 14:43:55 +00006389 sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00006390 if( !sCheck.anRef ){
6391 unlockBtreeIfUnused(pBt);
6392 return sqlite3MPrintf("Unable to malloc %d bytes",
6393 (sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
6394 }
drhda200cc2004-05-09 11:51:38 +00006395 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00006396 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00006397 if( i<=sCheck.nPage ){
6398 sCheck.anRef[i] = 1;
6399 }
drh5eddca62001-06-30 21:53:53 +00006400 sCheck.zErrMsg = 0;
6401
6402 /* Check the integrity of the freelist
6403 */
drha34b6762004-05-07 13:30:42 +00006404 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
6405 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00006406
6407 /* Check all the tables.
6408 */
6409 for(i=0; i<nRoot; i++){
drh4ff6dfa2002-03-03 23:06:00 +00006410 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00006411#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00006412 if( pBt->autoVacuum && aRoot[i]>1 ){
6413 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
6414 }
6415#endif
drh74161702006-02-24 02:53:49 +00006416 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00006417 }
6418
6419 /* Make sure every page in the file is referenced
6420 */
6421 for(i=1; i<=sCheck.nPage; i++){
danielk1977afcdd022004-10-31 16:25:42 +00006422#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00006423 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00006424 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00006425 }
danielk1977afcdd022004-10-31 16:25:42 +00006426#else
6427 /* If the database supports auto-vacuum, make sure no tables contain
6428 ** references to pointer-map pages.
6429 */
6430 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00006431 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00006432 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
6433 }
6434 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00006435 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00006436 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
6437 }
6438#endif
drh5eddca62001-06-30 21:53:53 +00006439 }
6440
6441 /* Make sure this analysis did not leave any unref() pages
6442 */
drh5e00f6c2001-09-13 13:46:56 +00006443 unlockBtreeIfUnused(pBt);
drh0f7eb612006-08-08 13:51:43 +00006444 if( nRef != sqlite3pager_refcount(pBt->pPager) ){
drh2e38c322004-09-03 18:38:44 +00006445 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00006446 "Outstanding page count goes from %d to %d during this analysis",
drh0f7eb612006-08-08 13:51:43 +00006447 nRef, sqlite3pager_refcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00006448 );
drh5eddca62001-06-30 21:53:53 +00006449 }
6450
6451 /* Clean up and report errors.
6452 */
6453 sqliteFree(sCheck.anRef);
6454 return sCheck.zErrMsg;
6455}
drhb7f91642004-10-31 02:22:47 +00006456#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00006457
drh73509ee2003-04-06 20:44:45 +00006458/*
6459** Return the full pathname of the underlying database file.
6460*/
danielk1977aef0bf62005-12-30 16:28:01 +00006461const char *sqlite3BtreeGetFilename(Btree *p){
6462 assert( p->pBt->pPager!=0 );
6463 return sqlite3pager_filename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00006464}
6465
6466/*
danielk19775865e3d2004-06-14 06:03:57 +00006467** Return the pathname of the directory that contains the database file.
6468*/
danielk1977aef0bf62005-12-30 16:28:01 +00006469const char *sqlite3BtreeGetDirname(Btree *p){
6470 assert( p->pBt->pPager!=0 );
6471 return sqlite3pager_dirname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00006472}
6473
6474/*
6475** Return the pathname of the journal file for this database. The return
6476** value of this routine is the same regardless of whether the journal file
6477** has been created or not.
6478*/
danielk1977aef0bf62005-12-30 16:28:01 +00006479const char *sqlite3BtreeGetJournalname(Btree *p){
6480 assert( p->pBt->pPager!=0 );
6481 return sqlite3pager_journalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00006482}
6483
drhb7f91642004-10-31 02:22:47 +00006484#ifndef SQLITE_OMIT_VACUUM
danielk19775865e3d2004-06-14 06:03:57 +00006485/*
drhf7c57532003-04-25 13:22:51 +00006486** Copy the complete content of pBtFrom into pBtTo. A transaction
6487** must be active for both files.
6488**
6489** The size of file pBtFrom may be reduced by this operation.
drh43605152004-05-29 21:46:49 +00006490** If anything goes wrong, the transaction on pBtFrom is rolled back.
drh73509ee2003-04-06 20:44:45 +00006491*/
danielk1977aef0bf62005-12-30 16:28:01 +00006492int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
drhf7c57532003-04-25 13:22:51 +00006493 int rc = SQLITE_OK;
drh50f2f432005-09-16 11:32:18 +00006494 Pgno i, nPage, nToPage, iSkip;
drhf7c57532003-04-25 13:22:51 +00006495
danielk1977aef0bf62005-12-30 16:28:01 +00006496 BtShared *pBtTo = pTo->pBt;
6497 BtShared *pBtFrom = pFrom->pBt;
6498
6499 if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
danielk1977ee5741e2004-05-31 10:01:34 +00006500 return SQLITE_ERROR;
6501 }
drhf7c57532003-04-25 13:22:51 +00006502 if( pBtTo->pCursor ) return SQLITE_BUSY;
drha34b6762004-05-07 13:30:42 +00006503 nToPage = sqlite3pager_pagecount(pBtTo->pPager);
6504 nPage = sqlite3pager_pagecount(pBtFrom->pPager);
drh50f2f432005-09-16 11:32:18 +00006505 iSkip = PENDING_BYTE_PAGE(pBtTo);
danielk1977369f27e2004-06-15 11:40:04 +00006506 for(i=1; rc==SQLITE_OK && i<=nPage; i++){
drhf7c57532003-04-25 13:22:51 +00006507 void *pPage;
drh50f2f432005-09-16 11:32:18 +00006508 if( i==iSkip ) continue;
drha34b6762004-05-07 13:30:42 +00006509 rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage);
drhf7c57532003-04-25 13:22:51 +00006510 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00006511 rc = sqlite3pager_overwrite(pBtTo->pPager, i, pPage);
drh2e6d11b2003-04-25 15:37:57 +00006512 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00006513 sqlite3pager_unref(pPage);
drhf7c57532003-04-25 13:22:51 +00006514 }
drh2e6d11b2003-04-25 15:37:57 +00006515 for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
6516 void *pPage;
drh49285702005-09-17 15:20:26 +00006517 if( i==iSkip ) continue;
drha34b6762004-05-07 13:30:42 +00006518 rc = sqlite3pager_get(pBtTo->pPager, i, &pPage);
drh2e6d11b2003-04-25 15:37:57 +00006519 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00006520 rc = sqlite3pager_write(pPage);
6521 sqlite3pager_unref(pPage);
6522 sqlite3pager_dont_write(pBtTo->pPager, i);
drh2e6d11b2003-04-25 15:37:57 +00006523 }
6524 if( !rc && nPage<nToPage ){
drha34b6762004-05-07 13:30:42 +00006525 rc = sqlite3pager_truncate(pBtTo->pPager, nPage);
drh2e6d11b2003-04-25 15:37:57 +00006526 }
drhf7c57532003-04-25 13:22:51 +00006527 if( rc ){
danielk1977aef0bf62005-12-30 16:28:01 +00006528 sqlite3BtreeRollback(pTo);
drhf7c57532003-04-25 13:22:51 +00006529 }
6530 return rc;
drh73509ee2003-04-06 20:44:45 +00006531}
drhb7f91642004-10-31 02:22:47 +00006532#endif /* SQLITE_OMIT_VACUUM */
danielk19771d850a72004-05-31 08:26:49 +00006533
6534/*
6535** Return non-zero if a transaction is active.
6536*/
danielk1977aef0bf62005-12-30 16:28:01 +00006537int sqlite3BtreeIsInTrans(Btree *p){
6538 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00006539}
6540
6541/*
6542** Return non-zero if a statement transaction is active.
6543*/
danielk1977aef0bf62005-12-30 16:28:01 +00006544int sqlite3BtreeIsInStmt(Btree *p){
6545 return (p->pBt && p->pBt->inStmt);
danielk19771d850a72004-05-31 08:26:49 +00006546}
danielk197713adf8a2004-06-03 16:08:41 +00006547
6548/*
danielk19772372c2b2006-06-27 16:34:56 +00006549** Return non-zero if a read (or write) transaction is active.
6550*/
6551int sqlite3BtreeIsInReadTrans(Btree *p){
6552 return (p && (p->inTrans!=TRANS_NONE));
6553}
6554
6555/*
danielk197713adf8a2004-06-03 16:08:41 +00006556** This call is a no-op if no write-transaction is currently active on pBt.
6557**
6558** Otherwise, sync the database file for the btree pBt. zMaster points to
6559** the name of a master journal file that should be written into the
6560** individual journal file, or is NULL, indicating no master journal file
6561** (single database transaction).
6562**
6563** When this is called, the master journal should already have been
6564** created, populated with this journal pointer and synced to disk.
6565**
6566** Once this is routine has returned, the only thing required to commit
6567** the write-transaction for this database file is to delete the journal.
6568*/
danielk1977aef0bf62005-12-30 16:28:01 +00006569int sqlite3BtreeSync(Btree *p, const char *zMaster){
danielk1977266664d2006-02-10 08:24:21 +00006570 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00006571 if( p->inTrans==TRANS_WRITE ){
6572 BtShared *pBt = p->pBt;
danielk1977d761c0c2004-11-05 16:37:02 +00006573 Pgno nTrunc = 0;
danielk1977266664d2006-02-10 08:24:21 +00006574#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00006575 if( pBt->autoVacuum ){
danielk1977266664d2006-02-10 08:24:21 +00006576 rc = autoVacuumCommit(pBt, &nTrunc);
6577 if( rc!=SQLITE_OK ){
6578 return rc;
6579 }
danielk1977687566d2004-11-02 12:56:41 +00006580 }
6581#endif
danielk1977266664d2006-02-10 08:24:21 +00006582 rc = sqlite3pager_sync(pBt->pPager, zMaster, nTrunc);
danielk197713adf8a2004-06-03 16:08:41 +00006583 }
danielk1977266664d2006-02-10 08:24:21 +00006584 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00006585}
danielk1977aef0bf62005-12-30 16:28:01 +00006586
danielk1977da184232006-01-05 11:34:32 +00006587/*
6588** This function returns a pointer to a blob of memory associated with
6589** a single shared-btree. The memory is used by client code for it's own
6590** purposes (for example, to store a high-level schema associated with
6591** the shared-btree). The btree layer manages reference counting issues.
6592**
6593** The first time this is called on a shared-btree, nBytes bytes of memory
6594** are allocated, zeroed, and returned to the caller. For each subsequent
6595** call the nBytes parameter is ignored and a pointer to the same blob
6596** of memory returned.
6597**
6598** Just before the shared-btree is closed, the function passed as the
6599** xFree argument when the memory allocation was made is invoked on the
6600** blob of allocated memory. This function should not call sqliteFree()
6601** on the memory, the btree layer does that.
6602*/
6603void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
6604 BtShared *pBt = p->pBt;
6605 if( !pBt->pSchema ){
6606 pBt->pSchema = sqliteMalloc(nBytes);
6607 pBt->xFreeSchema = xFree;
6608 }
6609 return pBt->pSchema;
6610}
6611
danielk1977c87d34d2006-01-06 13:00:28 +00006612/*
6613** Return true if another user of the same shared btree as the argument
6614** handle holds an exclusive lock on the sqlite_master table.
6615*/
6616int sqlite3BtreeSchemaLocked(Btree *p){
6617 return (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
6618}
6619
drha154dcd2006-03-22 22:10:07 +00006620
6621#ifndef SQLITE_OMIT_SHARED_CACHE
6622/*
6623** Obtain a lock on the table whose root page is iTab. The
6624** lock is a write lock if isWritelock is true or a read lock
6625** if it is false.
6626*/
danielk1977c00da102006-01-07 13:21:04 +00006627int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00006628 int rc = SQLITE_OK;
danielk1977c00da102006-01-07 13:21:04 +00006629 u8 lockType = (isWriteLock?WRITE_LOCK:READ_LOCK);
danielk19772e94d4d2006-01-09 05:36:27 +00006630 rc = queryTableLock(p, iTab, lockType);
danielk1977c00da102006-01-07 13:21:04 +00006631 if( rc==SQLITE_OK ){
6632 rc = lockTable(p, iTab, lockType);
6633 }
6634 return rc;
6635}
drha154dcd2006-03-22 22:10:07 +00006636#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00006637
drh6f7adc82006-01-11 21:41:20 +00006638/*
6639** The following debugging interface has to be in this file (rather
6640** than in, for example, test1.c) so that it can get access to
6641** the definition of BtShared.
6642*/
danielk197707cb5602006-01-20 10:55:05 +00006643#if defined(SQLITE_DEBUG) && defined(TCLSH)
danielk1977b82e7ed2006-01-11 14:09:31 +00006644#include <tcl.h>
6645int sqlite3_shared_cache_report(
6646 void * clientData,
6647 Tcl_Interp *interp,
6648 int objc,
6649 Tcl_Obj *CONST objv[]
6650){
drha154dcd2006-03-22 22:10:07 +00006651#ifndef SQLITE_OMIT_SHARED_CACHE
drh6f7adc82006-01-11 21:41:20 +00006652 const ThreadData *pTd = sqlite3ThreadDataReadOnly();
danielk1977b82e7ed2006-01-11 14:09:31 +00006653 if( pTd->useSharedData ){
6654 BtShared *pBt;
6655 Tcl_Obj *pRet = Tcl_NewObj();
6656 for(pBt=pTd->pBtree; pBt; pBt=pBt->pNext){
6657 const char *zFile = sqlite3pager_filename(pBt->pPager);
6658 Tcl_ListObjAppendElement(interp, pRet, Tcl_NewStringObj(zFile, -1));
6659 Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(pBt->nRef));
6660 }
6661 Tcl_SetObjResult(interp, pRet);
6662 }
drha154dcd2006-03-22 22:10:07 +00006663#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00006664 return TCL_OK;
6665}
6666#endif