blob: e4b18d53f574d50522bf4e0a5d3791e799ddb015 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drhc6b52df2002-01-04 03:09:29 +000012** $Id: btree.c,v 1.46 2002/01/04 03:09:29 drh Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
15** For a detailed discussion of BTrees, refer to
16**
17** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
18** "Sorting And Searching", pages 473-480. Addison-Wesley
19** Publishing Company, Reading, Massachusetts.
20**
21** The basic idea is that each page of the file contains N database
22** entries and N+1 pointers to subpages.
23**
24** ----------------------------------------------------------------
25** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
26** ----------------------------------------------------------------
27**
28** All of the keys on the page that Ptr(0) points to have values less
29** than Key(0). All of the keys on page Ptr(1) and its subpages have
30** values greater than Key(0) and less than Key(1). All of the keys
31** on Ptr(N+1) and its subpages have values greater than Key(N). And
32** so forth.
33**
drh5e00f6c2001-09-13 13:46:56 +000034** Finding a particular key requires reading O(log(M)) pages from the
35** disk where M is the number of entries in the tree.
drh8b2f49b2001-06-08 00:21:52 +000036**
37** In this implementation, a single file can hold one or more separate
38** BTrees. Each BTree is identified by the index of its root page. The
39** key and data for any entry are combined to form the "payload". Up to
40** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the
41** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes
42** then surplus bytes are stored on overflow pages. The payload for an
43** entry and the preceding pointer are combined to form a "Cell". Each
drhb19a2bc2001-09-16 00:13:26 +000044** page has a small header which contains the Ptr(N+1) pointer.
drh8b2f49b2001-06-08 00:21:52 +000045**
46** The first page of the file contains a magic string used to verify that
47** the file really is a valid BTree database, a pointer to a list of unused
48** pages in the file, and some meta information. The root of the first
49** BTree begins on page 2 of the file. (Pages are numbered beginning with
50** 1, not 0.) Thus a minimum database contains 2 pages.
drha059ad02001-04-17 20:09:11 +000051*/
52#include "sqliteInt.h"
53#include "pager.h"
54#include "btree.h"
55#include <assert.h>
56
drh8c42ca92001-06-22 19:15:00 +000057/*
drh365d68f2001-05-11 11:02:46 +000058** Forward declarations of structures used only in this file.
59*/
drhbd03cae2001-06-02 02:40:57 +000060typedef struct PageOne PageOne;
drh2af926b2001-05-15 00:39:25 +000061typedef struct MemPage MemPage;
drh365d68f2001-05-11 11:02:46 +000062typedef struct PageHdr PageHdr;
63typedef struct Cell Cell;
drh3b7511c2001-05-26 13:15:44 +000064typedef struct CellHdr CellHdr;
drh365d68f2001-05-11 11:02:46 +000065typedef struct FreeBlk FreeBlk;
drh2af926b2001-05-15 00:39:25 +000066typedef struct OverflowPage OverflowPage;
67
68/*
69** All structures on a database page are aligned to 4-byte boundries.
70** This routine rounds up a number of bytes to the next multiple of 4.
drh306dc212001-05-21 13:45:10 +000071**
72** This might need to change for computer architectures that require
73** and 8-byte alignment boundry for structures.
drh2af926b2001-05-15 00:39:25 +000074*/
75#define ROUNDUP(X) ((X+3) & ~3)
drha059ad02001-04-17 20:09:11 +000076
drh08ed44e2001-04-29 23:32:55 +000077/*
drhbd03cae2001-06-02 02:40:57 +000078** This is a magic string that appears at the beginning of every
drh8c42ca92001-06-22 19:15:00 +000079** SQLite database in order to identify the file as a real database.
drh08ed44e2001-04-29 23:32:55 +000080*/
drhbd03cae2001-06-02 02:40:57 +000081static const char zMagicHeader[] =
drh80ff32f2001-11-04 18:32:46 +000082 "** This file contains an SQLite 2.1 database **";
drhbd03cae2001-06-02 02:40:57 +000083#define MAGIC_SIZE (sizeof(zMagicHeader))
drh08ed44e2001-04-29 23:32:55 +000084
85/*
drh5e00f6c2001-09-13 13:46:56 +000086** This is a magic integer also used to test the integrity of the database
drh8c42ca92001-06-22 19:15:00 +000087** file. This integer is used in addition to the string above so that
88** if the file is written on a little-endian architecture and read
89** on a big-endian architectures (or vice versa) we can detect the
90** problem.
91**
92** The number used was obtained at random and has no special
drhb19a2bc2001-09-16 00:13:26 +000093** significance other than the fact that it represents a different
94** integer on little-endian and big-endian machines.
drh8c42ca92001-06-22 19:15:00 +000095*/
96#define MAGIC 0xdae37528
97
98/*
drhbd03cae2001-06-02 02:40:57 +000099** The first page of the database file contains a magic header string
100** to identify the file as an SQLite database file. It also contains
101** a pointer to the first free page of the file. Page 2 contains the
drh8b2f49b2001-06-08 00:21:52 +0000102** root of the principle BTree. The file might contain other BTrees
103** rooted on pages above 2.
104**
105** The first page also contains SQLITE_N_BTREE_META integers that
106** can be used by higher-level routines.
drh08ed44e2001-04-29 23:32:55 +0000107**
drhbd03cae2001-06-02 02:40:57 +0000108** Remember that pages are numbered beginning with 1. (See pager.c
109** for additional information.) Page 0 does not exist and a page
110** number of 0 is used to mean "no such page".
111*/
112struct PageOne {
113 char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
drh8c42ca92001-06-22 19:15:00 +0000114 int iMagic; /* Integer to verify correct byte order */
115 Pgno freeList; /* First free page in a list of all free pages */
drh2aa679f2001-06-25 02:11:07 +0000116 int nFree; /* Number of pages on the free list */
117 int aMeta[SQLITE_N_BTREE_META-1]; /* User defined integers */
drhbd03cae2001-06-02 02:40:57 +0000118};
119
120/*
121** Each database page has a header that is an instance of this
122** structure.
drh08ed44e2001-04-29 23:32:55 +0000123**
drh8b2f49b2001-06-08 00:21:52 +0000124** PageHdr.firstFree is 0 if there is no free space on this page.
drh14acc042001-06-10 19:56:58 +0000125** Otherwise, PageHdr.firstFree is the index in MemPage.u.aDisk[] of a
drh8b2f49b2001-06-08 00:21:52 +0000126** FreeBlk structure that describes the first block of free space.
127** All free space is defined by a linked list of FreeBlk structures.
drh08ed44e2001-04-29 23:32:55 +0000128**
drh8b2f49b2001-06-08 00:21:52 +0000129** Data is stored in a linked list of Cell structures. PageHdr.firstCell
drh14acc042001-06-10 19:56:58 +0000130** is the index into MemPage.u.aDisk[] of the first cell on the page. The
drh306dc212001-05-21 13:45:10 +0000131** Cells are kept in sorted order.
drh8b2f49b2001-06-08 00:21:52 +0000132**
133** A Cell contains all information about a database entry and a pointer
134** to a child page that contains other entries less than itself. In
135** other words, the i-th Cell contains both Ptr(i) and Key(i). The
136** right-most pointer of the page is contained in PageHdr.rightChild.
drh08ed44e2001-04-29 23:32:55 +0000137*/
drh365d68f2001-05-11 11:02:46 +0000138struct PageHdr {
drh5e2f8b92001-05-28 00:41:15 +0000139 Pgno rightChild; /* Child page that comes after all cells on this page */
drh14acc042001-06-10 19:56:58 +0000140 u16 firstCell; /* Index in MemPage.u.aDisk[] of the first cell */
141 u16 firstFree; /* Index in MemPage.u.aDisk[] of the first free block */
drh365d68f2001-05-11 11:02:46 +0000142};
drh306dc212001-05-21 13:45:10 +0000143
drh3b7511c2001-05-26 13:15:44 +0000144/*
145** Entries on a page of the database are called "Cells". Each Cell
146** has a header and data. This structure defines the header. The
drhbd03cae2001-06-02 02:40:57 +0000147** key and data (collectively the "payload") follow this header on
148** the database page.
149**
150** A definition of the complete Cell structure is given below. The
drh8c42ca92001-06-22 19:15:00 +0000151** header for the cell must be defined first in order to do some
drhbd03cae2001-06-02 02:40:57 +0000152** of the sizing #defines that follow.
drh3b7511c2001-05-26 13:15:44 +0000153*/
154struct CellHdr {
drh5e2f8b92001-05-28 00:41:15 +0000155 Pgno leftChild; /* Child page that comes before this cell */
drh3b7511c2001-05-26 13:15:44 +0000156 u16 nKey; /* Number of bytes in the key */
drh14acc042001-06-10 19:56:58 +0000157 u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */
drh58a11682001-11-10 13:51:08 +0000158 u8 nKeyHi; /* Upper 8 bits of key size for keys larger than 64K bytes */
159 u8 nDataHi; /* Upper 8 bits of data size when the size is more than 64K */
drh80ff32f2001-11-04 18:32:46 +0000160 u16 nData; /* Number of bytes of data */
drh8c42ca92001-06-22 19:15:00 +0000161};
drh58a11682001-11-10 13:51:08 +0000162
163/*
164** The key and data size are split into a lower 16-bit segment and an
165** upper 8-bit segment in order to pack them together into a smaller
166** space. The following macros reassembly a key or data size back
167** into an integer.
168*/
drh80ff32f2001-11-04 18:32:46 +0000169#define NKEY(h) (h.nKey + h.nKeyHi*65536)
170#define NDATA(h) (h.nData + h.nDataHi*65536)
drh3b7511c2001-05-26 13:15:44 +0000171
172/*
173** The minimum size of a complete Cell. The Cell must contain a header
drhbd03cae2001-06-02 02:40:57 +0000174** and at least 4 bytes of payload.
drh3b7511c2001-05-26 13:15:44 +0000175*/
176#define MIN_CELL_SIZE (sizeof(CellHdr)+4)
177
178/*
179** The maximum number of database entries that can be held in a single
180** page of the database.
181*/
182#define MX_CELL ((SQLITE_PAGE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE)
183
184/*
drh6019e162001-07-02 17:51:45 +0000185** The amount of usable space on a single page of the BTree. This is the
186** page size minus the overhead of the page header.
187*/
188#define USABLE_SPACE (SQLITE_PAGE_SIZE - sizeof(PageHdr))
189
190/*
drh8c42ca92001-06-22 19:15:00 +0000191** The maximum amount of payload (in bytes) that can be stored locally for
192** a database entry. If the entry contains more data than this, the
drh3b7511c2001-05-26 13:15:44 +0000193** extra goes onto overflow pages.
drhbd03cae2001-06-02 02:40:57 +0000194**
195** This number is chosen so that at least 4 cells will fit on every page.
drh3b7511c2001-05-26 13:15:44 +0000196*/
drh6019e162001-07-02 17:51:45 +0000197#define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3)
drh3b7511c2001-05-26 13:15:44 +0000198
drh306dc212001-05-21 13:45:10 +0000199/*
200** Data on a database page is stored as a linked list of Cell structures.
drh5e2f8b92001-05-28 00:41:15 +0000201** Both the key and the data are stored in aPayload[]. The key always comes
202** first. The aPayload[] field grows as necessary to hold the key and data,
drh306dc212001-05-21 13:45:10 +0000203** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and
drh3b7511c2001-05-26 13:15:44 +0000204** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
205** page number of the first overflow page.
206**
207** Though this structure is fixed in size, the Cell on the database
drhbd03cae2001-06-02 02:40:57 +0000208** page varies in size. Every cell has a CellHdr and at least 4 bytes
drh3b7511c2001-05-26 13:15:44 +0000209** of payload space. Additional payload bytes (up to the maximum of
210** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
211** needed.
drh306dc212001-05-21 13:45:10 +0000212*/
drh365d68f2001-05-11 11:02:46 +0000213struct Cell {
drh5e2f8b92001-05-28 00:41:15 +0000214 CellHdr h; /* The cell header */
215 char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */
216 Pgno ovfl; /* The first overflow page */
drh365d68f2001-05-11 11:02:46 +0000217};
drh306dc212001-05-21 13:45:10 +0000218
219/*
220** Free space on a page is remembered using a linked list of the FreeBlk
221** structures. Space on a database page is allocated in increments of
drh72f82862001-05-24 21:06:34 +0000222** at least 4 bytes and is always aligned to a 4-byte boundry. The
drh8b2f49b2001-06-08 00:21:52 +0000223** linked list of FreeBlks is always kept in order by address.
drh306dc212001-05-21 13:45:10 +0000224*/
drh365d68f2001-05-11 11:02:46 +0000225struct FreeBlk {
drh72f82862001-05-24 21:06:34 +0000226 u16 iSize; /* Number of bytes in this block of free space */
drh14acc042001-06-10 19:56:58 +0000227 u16 iNext; /* Index in MemPage.u.aDisk[] of the next free block */
drh365d68f2001-05-11 11:02:46 +0000228};
drh306dc212001-05-21 13:45:10 +0000229
230/*
drh14acc042001-06-10 19:56:58 +0000231** The number of bytes of payload that will fit on a single overflow page.
drh3b7511c2001-05-26 13:15:44 +0000232*/
233#define OVERFLOW_SIZE (SQLITE_PAGE_SIZE-sizeof(Pgno))
234
235/*
drh306dc212001-05-21 13:45:10 +0000236** When the key and data for a single entry in the BTree will not fit in
drh8c42ca92001-06-22 19:15:00 +0000237** the MX_LOCAL_PAYLOAD bytes of space available on the database page,
drh8b2f49b2001-06-08 00:21:52 +0000238** then all extra bytes are written to a linked list of overflow pages.
drh306dc212001-05-21 13:45:10 +0000239** Each overflow page is an instance of the following structure.
240**
241** Unused pages in the database are also represented by instances of
drhbd03cae2001-06-02 02:40:57 +0000242** the OverflowPage structure. The PageOne.freeList field is the
drh306dc212001-05-21 13:45:10 +0000243** page number of the first page in a linked list of unused database
244** pages.
245*/
drh2af926b2001-05-15 00:39:25 +0000246struct OverflowPage {
drh14acc042001-06-10 19:56:58 +0000247 Pgno iNext;
drh5e2f8b92001-05-28 00:41:15 +0000248 char aPayload[OVERFLOW_SIZE];
drh7e3b0a02001-04-28 16:52:40 +0000249};
drh7e3b0a02001-04-28 16:52:40 +0000250
251/*
252** For every page in the database file, an instance of the following structure
drh14acc042001-06-10 19:56:58 +0000253** is stored in memory. The u.aDisk[] array contains the raw bits read from
drh6446c4d2001-12-15 14:22:18 +0000254** the disk. The rest is auxiliary information held in memory only. The
drhbd03cae2001-06-02 02:40:57 +0000255** auxiliary info is only valid for regular database pages - it is not
256** used for overflow pages and pages on the freelist.
drh306dc212001-05-21 13:45:10 +0000257**
drhbd03cae2001-06-02 02:40:57 +0000258** Of particular interest in the auxiliary info is the apCell[] entry. Each
drh14acc042001-06-10 19:56:58 +0000259** apCell[] entry is a pointer to a Cell structure in u.aDisk[]. The cells are
drh306dc212001-05-21 13:45:10 +0000260** put in this array so that they can be accessed in constant time, rather
drhbd03cae2001-06-02 02:40:57 +0000261** than in linear time which would be needed if we had to walk the linked
262** list on every access.
drh72f82862001-05-24 21:06:34 +0000263**
drh14acc042001-06-10 19:56:58 +0000264** Note that apCell[] contains enough space to hold up to two more Cells
265** than can possibly fit on one page. In the steady state, every apCell[]
266** points to memory inside u.aDisk[]. But in the middle of an insert
267** operation, some apCell[] entries may temporarily point to data space
268** outside of u.aDisk[]. This is a transient situation that is quickly
269** resolved. But while it is happening, it is possible for a database
270** page to hold as many as two more cells than it might otherwise hold.
drh18b81e52001-11-01 13:52:52 +0000271** The extra two entries in apCell[] are an allowance for this situation.
drh14acc042001-06-10 19:56:58 +0000272**
drh72f82862001-05-24 21:06:34 +0000273** The pParent field points back to the parent page. This allows us to
274** walk up the BTree from any leaf to the root. Care must be taken to
275** unref() the parent page pointer when this page is no longer referenced.
drhbd03cae2001-06-02 02:40:57 +0000276** The pageDestructor() routine handles that chore.
drh7e3b0a02001-04-28 16:52:40 +0000277*/
278struct MemPage {
drh14acc042001-06-10 19:56:58 +0000279 union {
280 char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
281 PageHdr hdr; /* Overlay page header */
282 } u;
drh5e2f8b92001-05-28 00:41:15 +0000283 int isInit; /* True if auxiliary data is initialized */
drh72f82862001-05-24 21:06:34 +0000284 MemPage *pParent; /* The parent of this page. NULL for root */
drh14acc042001-06-10 19:56:58 +0000285 int nFree; /* Number of free bytes in u.aDisk[] */
drh306dc212001-05-21 13:45:10 +0000286 int nCell; /* Number of entries on this page */
drh14acc042001-06-10 19:56:58 +0000287 int isOverfull; /* Some apCell[] points outside u.aDisk[] */
288 Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */
drh8c42ca92001-06-22 19:15:00 +0000289};
drh7e3b0a02001-04-28 16:52:40 +0000290
291/*
drh3b7511c2001-05-26 13:15:44 +0000292** The in-memory image of a disk page has the auxiliary information appended
293** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
294** that extra information.
295*/
296#define EXTRA_SIZE (sizeof(MemPage)-SQLITE_PAGE_SIZE)
297
298/*
drha059ad02001-04-17 20:09:11 +0000299** Everything we need to know about an open database
300*/
301struct Btree {
302 Pager *pPager; /* The page cache */
drh306dc212001-05-21 13:45:10 +0000303 BtCursor *pCursor; /* A list of all open cursors */
drhbd03cae2001-06-02 02:40:57 +0000304 PageOne *page1; /* First page of the database */
drh306dc212001-05-21 13:45:10 +0000305 int inTrans; /* True if a transaction is in progress */
drhecdc7532001-09-23 02:35:53 +0000306 Hash locks; /* Key: root page number. Data: lock count */
drha059ad02001-04-17 20:09:11 +0000307};
308typedef Btree Bt;
309
drh365d68f2001-05-11 11:02:46 +0000310/*
311** A cursor is a pointer to a particular entry in the BTree.
312** The entry is identified by its MemPage and the index in
drh5e2f8b92001-05-28 00:41:15 +0000313** MemPage.apCell[] of the entry.
drh365d68f2001-05-11 11:02:46 +0000314*/
drh72f82862001-05-24 21:06:34 +0000315struct BtCursor {
drh5e2f8b92001-05-28 00:41:15 +0000316 Btree *pBt; /* The Btree to which this cursor belongs */
drh14acc042001-06-10 19:56:58 +0000317 BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
drh8b2f49b2001-06-08 00:21:52 +0000318 Pgno pgnoRoot; /* The root page of this tree */
drh5e2f8b92001-05-28 00:41:15 +0000319 MemPage *pPage; /* Page that contains the entry */
drh8c42ca92001-06-22 19:15:00 +0000320 int idx; /* Index of the entry in pPage->apCell[] */
drhecdc7532001-09-23 02:35:53 +0000321 u8 wrFlag; /* True if writable */
drh5e2f8b92001-05-28 00:41:15 +0000322 u8 bSkipNext; /* sqliteBtreeNext() is no-op if true */
323 u8 iMatch; /* compare result from last sqliteBtreeMoveto() */
drh365d68f2001-05-11 11:02:46 +0000324};
drh7e3b0a02001-04-28 16:52:40 +0000325
drha059ad02001-04-17 20:09:11 +0000326/*
drh3b7511c2001-05-26 13:15:44 +0000327** Compute the total number of bytes that a Cell needs on the main
drh5e2f8b92001-05-28 00:41:15 +0000328** database page. The number returned includes the Cell header,
329** local payload storage, and the pointer to overflow pages (if
drh8c42ca92001-06-22 19:15:00 +0000330** applicable). Additional space allocated on overflow pages
drhbd03cae2001-06-02 02:40:57 +0000331** is NOT included in the value returned from this routine.
drh3b7511c2001-05-26 13:15:44 +0000332*/
333static int cellSize(Cell *pCell){
drh80ff32f2001-11-04 18:32:46 +0000334 int n = NKEY(pCell->h) + NDATA(pCell->h);
drh3b7511c2001-05-26 13:15:44 +0000335 if( n>MX_LOCAL_PAYLOAD ){
336 n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
337 }else{
338 n = ROUNDUP(n);
339 }
340 n += sizeof(CellHdr);
341 return n;
342}
343
344/*
drh72f82862001-05-24 21:06:34 +0000345** Defragment the page given. All Cells are moved to the
346** beginning of the page and all free space is collected
347** into one big FreeBlk at the end of the page.
drh365d68f2001-05-11 11:02:46 +0000348*/
349static void defragmentPage(MemPage *pPage){
drh14acc042001-06-10 19:56:58 +0000350 int pc, i, n;
drh2af926b2001-05-15 00:39:25 +0000351 FreeBlk *pFBlk;
352 char newPage[SQLITE_PAGE_SIZE];
353
drh6019e162001-07-02 17:51:45 +0000354 assert( sqlitepager_iswriteable(pPage) );
drhbd03cae2001-06-02 02:40:57 +0000355 pc = sizeof(PageHdr);
drh14acc042001-06-10 19:56:58 +0000356 pPage->u.hdr.firstCell = pc;
357 memcpy(newPage, pPage->u.aDisk, pc);
drh2af926b2001-05-15 00:39:25 +0000358 for(i=0; i<pPage->nCell; i++){
drh2aa679f2001-06-25 02:11:07 +0000359 Cell *pCell = pPage->apCell[i];
drh8c42ca92001-06-22 19:15:00 +0000360
361 /* This routine should never be called on an overfull page. The
362 ** following asserts verify that constraint. */
drh7c717f72001-06-24 20:39:41 +0000363 assert( Addr(pCell) > Addr(pPage) );
364 assert( Addr(pCell) < Addr(pPage) + SQLITE_PAGE_SIZE );
drh8c42ca92001-06-22 19:15:00 +0000365
drh3b7511c2001-05-26 13:15:44 +0000366 n = cellSize(pCell);
drh2aa679f2001-06-25 02:11:07 +0000367 pCell->h.iNext = pc + n;
drh2af926b2001-05-15 00:39:25 +0000368 memcpy(&newPage[pc], pCell, n);
drh14acc042001-06-10 19:56:58 +0000369 pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc];
drh2af926b2001-05-15 00:39:25 +0000370 pc += n;
371 }
drh72f82862001-05-24 21:06:34 +0000372 assert( pPage->nFree==SQLITE_PAGE_SIZE-pc );
drh14acc042001-06-10 19:56:58 +0000373 memcpy(pPage->u.aDisk, newPage, pc);
drh2aa679f2001-06-25 02:11:07 +0000374 if( pPage->nCell>0 ){
375 pPage->apCell[pPage->nCell-1]->h.iNext = 0;
376 }
drh8c42ca92001-06-22 19:15:00 +0000377 pFBlk = (FreeBlk*)&pPage->u.aDisk[pc];
drh2af926b2001-05-15 00:39:25 +0000378 pFBlk->iSize = SQLITE_PAGE_SIZE - pc;
379 pFBlk->iNext = 0;
drh14acc042001-06-10 19:56:58 +0000380 pPage->u.hdr.firstFree = pc;
drh2af926b2001-05-15 00:39:25 +0000381 memset(&pFBlk[1], 0, SQLITE_PAGE_SIZE - pc - sizeof(FreeBlk));
drh365d68f2001-05-11 11:02:46 +0000382}
383
drha059ad02001-04-17 20:09:11 +0000384/*
drh8b2f49b2001-06-08 00:21:52 +0000385** Allocate nByte bytes of space on a page. nByte must be a
386** multiple of 4.
drhbd03cae2001-06-02 02:40:57 +0000387**
drh14acc042001-06-10 19:56:58 +0000388** Return the index into pPage->u.aDisk[] of the first byte of
drhbd03cae2001-06-02 02:40:57 +0000389** the new allocation. Or return 0 if there is not enough free
390** space on the page to satisfy the allocation request.
drh2af926b2001-05-15 00:39:25 +0000391**
drh72f82862001-05-24 21:06:34 +0000392** If the page contains nBytes of free space but does not contain
drh8b2f49b2001-06-08 00:21:52 +0000393** nBytes of contiguous free space, then this routine automatically
394** calls defragementPage() to consolidate all free space before
395** allocating the new chunk.
drh7e3b0a02001-04-28 16:52:40 +0000396*/
drhbd03cae2001-06-02 02:40:57 +0000397static int allocateSpace(MemPage *pPage, int nByte){
drh2af926b2001-05-15 00:39:25 +0000398 FreeBlk *p;
399 u16 *pIdx;
400 int start;
drh8c42ca92001-06-22 19:15:00 +0000401 int cnt = 0;
drh72f82862001-05-24 21:06:34 +0000402
drh6019e162001-07-02 17:51:45 +0000403 assert( sqlitepager_iswriteable(pPage) );
drh5e2f8b92001-05-28 00:41:15 +0000404 assert( nByte==ROUNDUP(nByte) );
drh14acc042001-06-10 19:56:58 +0000405 if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
406 pIdx = &pPage->u.hdr.firstFree;
407 p = (FreeBlk*)&pPage->u.aDisk[*pIdx];
drh2af926b2001-05-15 00:39:25 +0000408 while( p->iSize<nByte ){
drh8c42ca92001-06-22 19:15:00 +0000409 assert( cnt++ < SQLITE_PAGE_SIZE/4 );
drh2af926b2001-05-15 00:39:25 +0000410 if( p->iNext==0 ){
411 defragmentPage(pPage);
drh14acc042001-06-10 19:56:58 +0000412 pIdx = &pPage->u.hdr.firstFree;
drh2af926b2001-05-15 00:39:25 +0000413 }else{
414 pIdx = &p->iNext;
415 }
drh14acc042001-06-10 19:56:58 +0000416 p = (FreeBlk*)&pPage->u.aDisk[*pIdx];
drh2af926b2001-05-15 00:39:25 +0000417 }
418 if( p->iSize==nByte ){
419 start = *pIdx;
420 *pIdx = p->iNext;
421 }else{
drh8c42ca92001-06-22 19:15:00 +0000422 FreeBlk *pNew;
drh72f82862001-05-24 21:06:34 +0000423 start = *pIdx;
drh8c42ca92001-06-22 19:15:00 +0000424 pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte];
drh72f82862001-05-24 21:06:34 +0000425 pNew->iNext = p->iNext;
426 pNew->iSize = p->iSize - nByte;
427 *pIdx = start + nByte;
drh2af926b2001-05-15 00:39:25 +0000428 }
429 pPage->nFree -= nByte;
430 return start;
drh7e3b0a02001-04-28 16:52:40 +0000431}
432
433/*
drh14acc042001-06-10 19:56:58 +0000434** Return a section of the MemPage.u.aDisk[] to the freelist.
435** The first byte of the new free block is pPage->u.aDisk[start]
436** and the size of the block is "size" bytes. Size must be
437** a multiple of 4.
drh306dc212001-05-21 13:45:10 +0000438**
439** Most of the effort here is involved in coalesing adjacent
440** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000441*/
442static void freeSpace(MemPage *pPage, int start, int size){
drh2af926b2001-05-15 00:39:25 +0000443 int end = start + size;
444 u16 *pIdx, idx;
445 FreeBlk *pFBlk;
446 FreeBlk *pNew;
447 FreeBlk *pNext;
448
drh6019e162001-07-02 17:51:45 +0000449 assert( sqlitepager_iswriteable(pPage) );
drh2af926b2001-05-15 00:39:25 +0000450 assert( size == ROUNDUP(size) );
451 assert( start == ROUNDUP(start) );
drh14acc042001-06-10 19:56:58 +0000452 pIdx = &pPage->u.hdr.firstFree;
drh2af926b2001-05-15 00:39:25 +0000453 idx = *pIdx;
454 while( idx!=0 && idx<start ){
drh14acc042001-06-10 19:56:58 +0000455 pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
drh2af926b2001-05-15 00:39:25 +0000456 if( idx + pFBlk->iSize == start ){
457 pFBlk->iSize += size;
458 if( idx + pFBlk->iSize == pFBlk->iNext ){
drh8c42ca92001-06-22 19:15:00 +0000459 pNext = (FreeBlk*)&pPage->u.aDisk[pFBlk->iNext];
drh2af926b2001-05-15 00:39:25 +0000460 pFBlk->iSize += pNext->iSize;
461 pFBlk->iNext = pNext->iNext;
462 }
463 pPage->nFree += size;
464 return;
465 }
466 pIdx = &pFBlk->iNext;
467 idx = *pIdx;
468 }
drh14acc042001-06-10 19:56:58 +0000469 pNew = (FreeBlk*)&pPage->u.aDisk[start];
drh2af926b2001-05-15 00:39:25 +0000470 if( idx != end ){
471 pNew->iSize = size;
472 pNew->iNext = idx;
473 }else{
drh14acc042001-06-10 19:56:58 +0000474 pNext = (FreeBlk*)&pPage->u.aDisk[idx];
drh2af926b2001-05-15 00:39:25 +0000475 pNew->iSize = size + pNext->iSize;
476 pNew->iNext = pNext->iNext;
477 }
478 *pIdx = start;
479 pPage->nFree += size;
drh7e3b0a02001-04-28 16:52:40 +0000480}
481
482/*
483** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +0000484**
drhbd03cae2001-06-02 02:40:57 +0000485** The pParent parameter must be a pointer to the MemPage which
486** is the parent of the page being initialized. The root of the
drh8b2f49b2001-06-08 00:21:52 +0000487** BTree (usually page 2) has no parent and so for that page,
488** pParent==NULL.
drh5e2f8b92001-05-28 00:41:15 +0000489**
drh72f82862001-05-24 21:06:34 +0000490** Return SQLITE_OK on success. If we see that the page does
491** not contained a well-formed database page, then return
492** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
493** guarantee that the page is well-formed. It only shows that
494** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +0000495*/
drh72f82862001-05-24 21:06:34 +0000496static int initPage(MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
drh14acc042001-06-10 19:56:58 +0000497 int idx; /* An index into pPage->u.aDisk[] */
498 Cell *pCell; /* A pointer to a Cell in pPage->u.aDisk[] */
499 FreeBlk *pFBlk; /* A pointer to a free block in pPage->u.aDisk[] */
drh5e2f8b92001-05-28 00:41:15 +0000500 int sz; /* The size of a Cell in bytes */
501 int freeSpace; /* Amount of free space on the page */
drh2af926b2001-05-15 00:39:25 +0000502
drh5e2f8b92001-05-28 00:41:15 +0000503 if( pPage->pParent ){
504 assert( pPage->pParent==pParent );
505 return SQLITE_OK;
506 }
507 if( pParent ){
508 pPage->pParent = pParent;
509 sqlitepager_ref(pParent);
510 }
511 if( pPage->isInit ) return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +0000512 pPage->isInit = 1;
drh7e3b0a02001-04-28 16:52:40 +0000513 pPage->nCell = 0;
drh6019e162001-07-02 17:51:45 +0000514 freeSpace = USABLE_SPACE;
drh14acc042001-06-10 19:56:58 +0000515 idx = pPage->u.hdr.firstCell;
drh7e3b0a02001-04-28 16:52:40 +0000516 while( idx!=0 ){
drh8c42ca92001-06-22 19:15:00 +0000517 if( idx>SQLITE_PAGE_SIZE-MIN_CELL_SIZE ) goto page_format_error;
drhbd03cae2001-06-02 02:40:57 +0000518 if( idx<sizeof(PageHdr) ) goto page_format_error;
drh8c42ca92001-06-22 19:15:00 +0000519 if( idx!=ROUNDUP(idx) ) goto page_format_error;
drh14acc042001-06-10 19:56:58 +0000520 pCell = (Cell*)&pPage->u.aDisk[idx];
drh5e2f8b92001-05-28 00:41:15 +0000521 sz = cellSize(pCell);
522 if( idx+sz > SQLITE_PAGE_SIZE ) goto page_format_error;
523 freeSpace -= sz;
524 pPage->apCell[pPage->nCell++] = pCell;
drh3b7511c2001-05-26 13:15:44 +0000525 idx = pCell->h.iNext;
drh2af926b2001-05-15 00:39:25 +0000526 }
527 pPage->nFree = 0;
drh14acc042001-06-10 19:56:58 +0000528 idx = pPage->u.hdr.firstFree;
drh2af926b2001-05-15 00:39:25 +0000529 while( idx!=0 ){
530 if( idx>SQLITE_PAGE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
drhbd03cae2001-06-02 02:40:57 +0000531 if( idx<sizeof(PageHdr) ) goto page_format_error;
drh14acc042001-06-10 19:56:58 +0000532 pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
drh2af926b2001-05-15 00:39:25 +0000533 pPage->nFree += pFBlk->iSize;
drh7c717f72001-06-24 20:39:41 +0000534 if( pFBlk->iNext>0 && pFBlk->iNext <= idx ) goto page_format_error;
drh2af926b2001-05-15 00:39:25 +0000535 idx = pFBlk->iNext;
drh7e3b0a02001-04-28 16:52:40 +0000536 }
drh8b2f49b2001-06-08 00:21:52 +0000537 if( pPage->nCell==0 && pPage->nFree==0 ){
538 /* As a special case, an uninitialized root page appears to be
539 ** an empty database */
540 return SQLITE_OK;
541 }
drh5e2f8b92001-05-28 00:41:15 +0000542 if( pPage->nFree!=freeSpace ) goto page_format_error;
drh7e3b0a02001-04-28 16:52:40 +0000543 return SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +0000544
545page_format_error:
546 return SQLITE_CORRUPT;
drh7e3b0a02001-04-28 16:52:40 +0000547}
548
549/*
drh8b2f49b2001-06-08 00:21:52 +0000550** Set up a raw page so that it looks like a database page holding
551** no entries.
drhbd03cae2001-06-02 02:40:57 +0000552*/
553static void zeroPage(MemPage *pPage){
554 PageHdr *pHdr;
555 FreeBlk *pFBlk;
drh6019e162001-07-02 17:51:45 +0000556 assert( sqlitepager_iswriteable(pPage) );
drhbd03cae2001-06-02 02:40:57 +0000557 memset(pPage, 0, SQLITE_PAGE_SIZE);
drh14acc042001-06-10 19:56:58 +0000558 pHdr = &pPage->u.hdr;
drhbd03cae2001-06-02 02:40:57 +0000559 pHdr->firstCell = 0;
560 pHdr->firstFree = sizeof(*pHdr);
561 pFBlk = (FreeBlk*)&pHdr[1];
562 pFBlk->iNext = 0;
563 pFBlk->iSize = SQLITE_PAGE_SIZE - sizeof(*pHdr);
drh8c42ca92001-06-22 19:15:00 +0000564 pPage->nFree = pFBlk->iSize;
565 pPage->nCell = 0;
566 pPage->isOverfull = 0;
drhbd03cae2001-06-02 02:40:57 +0000567}
568
569/*
drh72f82862001-05-24 21:06:34 +0000570** This routine is called when the reference count for a page
571** reaches zero. We need to unref the pParent pointer when that
572** happens.
573*/
574static void pageDestructor(void *pData){
575 MemPage *pPage = (MemPage*)pData;
576 if( pPage->pParent ){
577 MemPage *pParent = pPage->pParent;
578 pPage->pParent = 0;
579 sqlitepager_unref(pParent);
580 }
581}
582
583/*
drh306dc212001-05-21 13:45:10 +0000584** Open a new database.
585**
586** Actually, this routine just sets up the internal data structures
drh72f82862001-05-24 21:06:34 +0000587** for accessing the database. We do not open the database file
588** until the first page is loaded.
drh382c0242001-10-06 16:33:02 +0000589**
590** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +0000591** a new database with a random name is created. This randomly named
592** database file will be deleted when sqliteBtreeClose() is called.
drha059ad02001-04-17 20:09:11 +0000593*/
drh6019e162001-07-02 17:51:45 +0000594int sqliteBtreeOpen(
595 const char *zFilename, /* Name of the file containing the BTree database */
596 int mode, /* Not currently used */
597 int nCache, /* How many pages in the page cache */
598 Btree **ppBtree /* Pointer to new Btree object written here */
599){
drha059ad02001-04-17 20:09:11 +0000600 Btree *pBt;
drh8c42ca92001-06-22 19:15:00 +0000601 int rc;
drha059ad02001-04-17 20:09:11 +0000602
603 pBt = sqliteMalloc( sizeof(*pBt) );
604 if( pBt==0 ){
drh8c42ca92001-06-22 19:15:00 +0000605 *ppBtree = 0;
drha059ad02001-04-17 20:09:11 +0000606 return SQLITE_NOMEM;
607 }
drh6019e162001-07-02 17:51:45 +0000608 if( nCache<10 ) nCache = 10;
609 rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE);
drha059ad02001-04-17 20:09:11 +0000610 if( rc!=SQLITE_OK ){
611 if( pBt->pPager ) sqlitepager_close(pBt->pPager);
612 sqliteFree(pBt);
613 *ppBtree = 0;
614 return rc;
615 }
drh72f82862001-05-24 21:06:34 +0000616 sqlitepager_set_destructor(pBt->pPager, pageDestructor);
drha059ad02001-04-17 20:09:11 +0000617 pBt->pCursor = 0;
618 pBt->page1 = 0;
drhecdc7532001-09-23 02:35:53 +0000619 sqliteHashInit(&pBt->locks, SQLITE_HASH_INT, 0);
drha059ad02001-04-17 20:09:11 +0000620 *ppBtree = pBt;
621 return SQLITE_OK;
622}
623
624/*
625** Close an open database and invalidate all cursors.
626*/
627int sqliteBtreeClose(Btree *pBt){
628 while( pBt->pCursor ){
629 sqliteBtreeCloseCursor(pBt->pCursor);
630 }
631 sqlitepager_close(pBt->pPager);
drhecdc7532001-09-23 02:35:53 +0000632 sqliteHashClear(&pBt->locks);
drha059ad02001-04-17 20:09:11 +0000633 sqliteFree(pBt);
634 return SQLITE_OK;
635}
636
637/*
drh6446c4d2001-12-15 14:22:18 +0000638** Change the limit on the number of pages allowed the cache.
drhf57b14a2001-09-14 18:54:08 +0000639*/
640int sqliteBtreeSetCacheSize(Btree *pBt, int mxPage){
641 sqlitepager_set_cachesize(pBt->pPager, mxPage);
642 return SQLITE_OK;
643}
644
645/*
drh306dc212001-05-21 13:45:10 +0000646** Get a reference to page1 of the database file. This will
647** also acquire a readlock on that file.
648**
649** SQLITE_OK is returned on success. If the file is not a
650** well-formed database file, then SQLITE_CORRUPT is returned.
651** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
652** is returned if we run out of memory. SQLITE_PROTOCOL is returned
653** if there is a locking protocol violation.
654*/
655static int lockBtree(Btree *pBt){
656 int rc;
657 if( pBt->page1 ) return SQLITE_OK;
drh8c42ca92001-06-22 19:15:00 +0000658 rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1);
drh306dc212001-05-21 13:45:10 +0000659 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +0000660
661 /* Do some checking to help insure the file we opened really is
662 ** a valid database file.
663 */
664 if( sqlitepager_pagecount(pBt->pPager)>0 ){
drhbd03cae2001-06-02 02:40:57 +0000665 PageOne *pP1 = pBt->page1;
drh8c42ca92001-06-22 19:15:00 +0000666 if( strcmp(pP1->zMagic,zMagicHeader)!=0 || pP1->iMagic!=MAGIC ){
drh306dc212001-05-21 13:45:10 +0000667 rc = SQLITE_CORRUPT;
drh72f82862001-05-24 21:06:34 +0000668 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +0000669 }
670 }
671 return rc;
672
drh72f82862001-05-24 21:06:34 +0000673page1_init_failed:
drh306dc212001-05-21 13:45:10 +0000674 sqlitepager_unref(pBt->page1);
675 pBt->page1 = 0;
drh72f82862001-05-24 21:06:34 +0000676 return rc;
drh306dc212001-05-21 13:45:10 +0000677}
678
679/*
drhb8ca3072001-12-05 00:21:20 +0000680** If there are no outstanding cursors and we are not in the middle
681** of a transaction but there is a read lock on the database, then
682** this routine unrefs the first page of the database file which
683** has the effect of releasing the read lock.
684**
685** If there are any outstanding cursors, this routine is a no-op.
686**
687** If there is a transaction in progress, this routine is a no-op.
688*/
689static void unlockBtreeIfUnused(Btree *pBt){
690 if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
691 sqlitepager_unref(pBt->page1);
692 pBt->page1 = 0;
693 pBt->inTrans = 0;
694 }
695}
696
697/*
drh8c42ca92001-06-22 19:15:00 +0000698** Create a new database by initializing the first two pages of the
699** file.
drh8b2f49b2001-06-08 00:21:52 +0000700*/
701static int newDatabase(Btree *pBt){
702 MemPage *pRoot;
703 PageOne *pP1;
drh8c42ca92001-06-22 19:15:00 +0000704 int rc;
drh7c717f72001-06-24 20:39:41 +0000705 if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK;
drh8b2f49b2001-06-08 00:21:52 +0000706 pP1 = pBt->page1;
707 rc = sqlitepager_write(pBt->page1);
708 if( rc ) return rc;
drh8c42ca92001-06-22 19:15:00 +0000709 rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot);
drh8b2f49b2001-06-08 00:21:52 +0000710 if( rc ) return rc;
711 rc = sqlitepager_write(pRoot);
712 if( rc ){
713 sqlitepager_unref(pRoot);
714 return rc;
715 }
716 strcpy(pP1->zMagic, zMagicHeader);
drh8c42ca92001-06-22 19:15:00 +0000717 pP1->iMagic = MAGIC;
drh8b2f49b2001-06-08 00:21:52 +0000718 zeroPage(pRoot);
719 sqlitepager_unref(pRoot);
720 return SQLITE_OK;
721}
722
723/*
drh72f82862001-05-24 21:06:34 +0000724** Attempt to start a new transaction.
drh8b2f49b2001-06-08 00:21:52 +0000725**
726** A transaction must be started before attempting any changes
727** to the database. None of the following routines will work
728** unless a transaction is started first:
729**
730** sqliteBtreeCreateTable()
drhc6b52df2002-01-04 03:09:29 +0000731** sqliteBtreeCreateIndex()
drh8b2f49b2001-06-08 00:21:52 +0000732** sqliteBtreeClearTable()
733** sqliteBtreeDropTable()
734** sqliteBtreeInsert()
735** sqliteBtreeDelete()
736** sqliteBtreeUpdateMeta()
drha059ad02001-04-17 20:09:11 +0000737*/
738int sqliteBtreeBeginTrans(Btree *pBt){
739 int rc;
740 if( pBt->inTrans ) return SQLITE_ERROR;
741 if( pBt->page1==0 ){
drh7e3b0a02001-04-28 16:52:40 +0000742 rc = lockBtree(pBt);
drh8c42ca92001-06-22 19:15:00 +0000743 if( rc!=SQLITE_OK ){
744 return rc;
745 }
drha059ad02001-04-17 20:09:11 +0000746 }
drhb8ca3072001-12-05 00:21:20 +0000747 if( sqlitepager_isreadonly(pBt->pPager) ){
748 return SQLITE_READONLY;
749 }
750 rc = sqlitepager_write(pBt->page1);
751 if( rc==SQLITE_OK ){
drh5e00f6c2001-09-13 13:46:56 +0000752 rc = newDatabase(pBt);
drha059ad02001-04-17 20:09:11 +0000753 }
drhb8ca3072001-12-05 00:21:20 +0000754 if( rc==SQLITE_OK ){
755 pBt->inTrans = 1;
756 }else{
757 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +0000758 }
drhb8ca3072001-12-05 00:21:20 +0000759 return rc;
drha059ad02001-04-17 20:09:11 +0000760}
761
762/*
drh2aa679f2001-06-25 02:11:07 +0000763** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +0000764**
765** This will release the write lock on the database file. If there
766** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +0000767*/
768int sqliteBtreeCommit(Btree *pBt){
769 int rc;
drh2aa679f2001-06-25 02:11:07 +0000770 if( pBt->inTrans==0 ) return SQLITE_ERROR;
drha059ad02001-04-17 20:09:11 +0000771 rc = sqlitepager_commit(pBt->pPager);
drh7c717f72001-06-24 20:39:41 +0000772 pBt->inTrans = 0;
drh5e00f6c2001-09-13 13:46:56 +0000773 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +0000774 return rc;
775}
776
777/*
drhecdc7532001-09-23 02:35:53 +0000778** Rollback the transaction in progress. All cursors will be
779** invalided by this operation. Any attempt to use a cursor
780** that was open at the beginning of this operation will result
781** in an error.
drh5e00f6c2001-09-13 13:46:56 +0000782**
783** This will release the write lock on the database file. If there
784** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +0000785*/
786int sqliteBtreeRollback(Btree *pBt){
787 int rc;
drhecdc7532001-09-23 02:35:53 +0000788 BtCursor *pCur;
drh7c717f72001-06-24 20:39:41 +0000789 if( pBt->inTrans==0 ) return SQLITE_OK;
790 pBt->inTrans = 0;
drhecdc7532001-09-23 02:35:53 +0000791 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
792 if( pCur->pPage ){
793 sqlitepager_unref(pCur->pPage);
794 pCur->pPage = 0;
795 }
796 }
drha059ad02001-04-17 20:09:11 +0000797 rc = sqlitepager_rollback(pBt->pPager);
drh5e00f6c2001-09-13 13:46:56 +0000798 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +0000799 return rc;
800}
801
802/*
drh8b2f49b2001-06-08 00:21:52 +0000803** Create a new cursor for the BTree whose root is on the page
804** iTable. The act of acquiring a cursor gets a read lock on
805** the database file.
drh1bee3d72001-10-15 00:44:35 +0000806**
807** If wrFlag==0, then the cursor can only be used for reading.
808** If wrFlag==1, then the cursor can be used for reading or writing.
809** A read/write cursor requires exclusive access to its table. There
drh6446c4d2001-12-15 14:22:18 +0000810** cannot be two or more cursors open on the same table if any one of
drh1bee3d72001-10-15 00:44:35 +0000811** cursors is a read/write cursor. But there can be two or more
812** read-only cursors open on the same table.
drh6446c4d2001-12-15 14:22:18 +0000813**
814** No checking is done to make sure that page iTable really is the
815** root page of a b-tree. If it is not, then the cursor acquired
816** will not work correctly.
drha059ad02001-04-17 20:09:11 +0000817*/
drhecdc7532001-09-23 02:35:53 +0000818int sqliteBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
drha059ad02001-04-17 20:09:11 +0000819 int rc;
820 BtCursor *pCur;
drh5a2c2c22001-11-21 02:21:11 +0000821 ptr nLock;
drhecdc7532001-09-23 02:35:53 +0000822
drha059ad02001-04-17 20:09:11 +0000823 if( pBt->page1==0 ){
824 rc = lockBtree(pBt);
825 if( rc!=SQLITE_OK ){
826 *ppCur = 0;
827 return rc;
828 }
829 }
830 pCur = sqliteMalloc( sizeof(*pCur) );
831 if( pCur==0 ){
drhbd03cae2001-06-02 02:40:57 +0000832 rc = SQLITE_NOMEM;
833 goto create_cursor_exception;
834 }
drh8b2f49b2001-06-08 00:21:52 +0000835 pCur->pgnoRoot = (Pgno)iTable;
drh8c42ca92001-06-22 19:15:00 +0000836 rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
drhbd03cae2001-06-02 02:40:57 +0000837 if( rc!=SQLITE_OK ){
838 goto create_cursor_exception;
839 }
drh8b2f49b2001-06-08 00:21:52 +0000840 rc = initPage(pCur->pPage, pCur->pgnoRoot, 0);
drhbd03cae2001-06-02 02:40:57 +0000841 if( rc!=SQLITE_OK ){
842 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +0000843 }
drh5a2c2c22001-11-21 02:21:11 +0000844 nLock = (ptr)sqliteHashFind(&pBt->locks, 0, iTable);
drhecdc7532001-09-23 02:35:53 +0000845 if( nLock<0 || (nLock>0 && wrFlag) ){
846 rc = SQLITE_LOCKED;
847 goto create_cursor_exception;
848 }
849 nLock = wrFlag ? -1 : nLock+1;
850 sqliteHashInsert(&pBt->locks, 0, iTable, (void*)nLock);
drh14acc042001-06-10 19:56:58 +0000851 pCur->pBt = pBt;
drhecdc7532001-09-23 02:35:53 +0000852 pCur->wrFlag = wrFlag;
drh14acc042001-06-10 19:56:58 +0000853 pCur->idx = 0;
drha059ad02001-04-17 20:09:11 +0000854 pCur->pNext = pBt->pCursor;
855 if( pCur->pNext ){
856 pCur->pNext->pPrev = pCur;
857 }
drh14acc042001-06-10 19:56:58 +0000858 pCur->pPrev = 0;
drha059ad02001-04-17 20:09:11 +0000859 pBt->pCursor = pCur;
drh2af926b2001-05-15 00:39:25 +0000860 *ppCur = pCur;
861 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +0000862
863create_cursor_exception:
864 *ppCur = 0;
865 if( pCur ){
866 if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
867 sqliteFree(pCur);
868 }
drh5e00f6c2001-09-13 13:46:56 +0000869 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +0000870 return rc;
drha059ad02001-04-17 20:09:11 +0000871}
872
873/*
drh5e00f6c2001-09-13 13:46:56 +0000874** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +0000875** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +0000876*/
877int sqliteBtreeCloseCursor(BtCursor *pCur){
drh5a2c2c22001-11-21 02:21:11 +0000878 ptr nLock;
drha059ad02001-04-17 20:09:11 +0000879 Btree *pBt = pCur->pBt;
drha059ad02001-04-17 20:09:11 +0000880 if( pCur->pPrev ){
881 pCur->pPrev->pNext = pCur->pNext;
882 }else{
883 pBt->pCursor = pCur->pNext;
884 }
885 if( pCur->pNext ){
886 pCur->pNext->pPrev = pCur->pPrev;
887 }
drhecdc7532001-09-23 02:35:53 +0000888 if( pCur->pPage ){
889 sqlitepager_unref(pCur->pPage);
890 }
drh5e00f6c2001-09-13 13:46:56 +0000891 unlockBtreeIfUnused(pBt);
drh5a2c2c22001-11-21 02:21:11 +0000892 nLock = (ptr)sqliteHashFind(&pBt->locks, 0, pCur->pgnoRoot);
drh6d4abfb2001-10-22 02:58:08 +0000893 assert( nLock!=0 || sqlite_malloc_failed );
drhecdc7532001-09-23 02:35:53 +0000894 nLock = nLock<0 ? 0 : nLock-1;
895 sqliteHashInsert(&pBt->locks, 0, pCur->pgnoRoot, (void*)nLock);
drha059ad02001-04-17 20:09:11 +0000896 sqliteFree(pCur);
drh8c42ca92001-06-22 19:15:00 +0000897 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +0000898}
899
drh7e3b0a02001-04-28 16:52:40 +0000900/*
drh5e2f8b92001-05-28 00:41:15 +0000901** Make a temporary cursor by filling in the fields of pTempCur.
902** The temporary cursor is not on the cursor list for the Btree.
903*/
drh14acc042001-06-10 19:56:58 +0000904static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
drh5e2f8b92001-05-28 00:41:15 +0000905 memcpy(pTempCur, pCur, sizeof(*pCur));
906 pTempCur->pNext = 0;
907 pTempCur->pPrev = 0;
drhecdc7532001-09-23 02:35:53 +0000908 if( pTempCur->pPage ){
909 sqlitepager_ref(pTempCur->pPage);
910 }
drh5e2f8b92001-05-28 00:41:15 +0000911}
912
913/*
drhbd03cae2001-06-02 02:40:57 +0000914** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +0000915** function above.
916*/
drh14acc042001-06-10 19:56:58 +0000917static void releaseTempCursor(BtCursor *pCur){
drhecdc7532001-09-23 02:35:53 +0000918 if( pCur->pPage ){
919 sqlitepager_unref(pCur->pPage);
920 }
drh5e2f8b92001-05-28 00:41:15 +0000921}
922
923/*
drhbd03cae2001-06-02 02:40:57 +0000924** Set *pSize to the number of bytes of key in the entry the
925** cursor currently points to. Always return SQLITE_OK.
926** Failure is not possible. If the cursor is not currently
927** pointing to an entry (which can happen, for example, if
928** the database is empty) then *pSize is set to 0.
drh7e3b0a02001-04-28 16:52:40 +0000929*/
drh72f82862001-05-24 21:06:34 +0000930int sqliteBtreeKeySize(BtCursor *pCur, int *pSize){
drh2af926b2001-05-15 00:39:25 +0000931 Cell *pCell;
932 MemPage *pPage;
933
934 pPage = pCur->pPage;
drhecdc7532001-09-23 02:35:53 +0000935 if( pPage==0 || pCur->idx >= pPage->nCell ){
drh72f82862001-05-24 21:06:34 +0000936 *pSize = 0;
937 }else{
drh5e2f8b92001-05-28 00:41:15 +0000938 pCell = pPage->apCell[pCur->idx];
drh80ff32f2001-11-04 18:32:46 +0000939 *pSize = NKEY(pCell->h);
drh72f82862001-05-24 21:06:34 +0000940 }
941 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +0000942}
drh2af926b2001-05-15 00:39:25 +0000943
drh72f82862001-05-24 21:06:34 +0000944/*
945** Read payload information from the entry that the pCur cursor is
946** pointing to. Begin reading the payload at "offset" and read
947** a total of "amt" bytes. Put the result in zBuf.
948**
949** This routine does not make a distinction between key and data.
950** It just reads bytes from the payload area.
951*/
drh2af926b2001-05-15 00:39:25 +0000952static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
drh5e2f8b92001-05-28 00:41:15 +0000953 char *aPayload;
drh2af926b2001-05-15 00:39:25 +0000954 Pgno nextPage;
drh8c42ca92001-06-22 19:15:00 +0000955 int rc;
drh72f82862001-05-24 21:06:34 +0000956 assert( pCur!=0 && pCur->pPage!=0 );
drh8c42ca92001-06-22 19:15:00 +0000957 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
958 aPayload = pCur->pPage->apCell[pCur->idx]->aPayload;
drh2af926b2001-05-15 00:39:25 +0000959 if( offset<MX_LOCAL_PAYLOAD ){
960 int a = amt;
961 if( a+offset>MX_LOCAL_PAYLOAD ){
962 a = MX_LOCAL_PAYLOAD - offset;
963 }
drh5e2f8b92001-05-28 00:41:15 +0000964 memcpy(zBuf, &aPayload[offset], a);
drh2af926b2001-05-15 00:39:25 +0000965 if( a==amt ){
966 return SQLITE_OK;
967 }
drh2aa679f2001-06-25 02:11:07 +0000968 offset = 0;
drh2af926b2001-05-15 00:39:25 +0000969 zBuf += a;
970 amt -= a;
drhdd793422001-06-28 01:54:48 +0000971 }else{
972 offset -= MX_LOCAL_PAYLOAD;
drhbd03cae2001-06-02 02:40:57 +0000973 }
974 if( amt>0 ){
drh8c42ca92001-06-22 19:15:00 +0000975 nextPage = pCur->pPage->apCell[pCur->idx]->ovfl;
drh2af926b2001-05-15 00:39:25 +0000976 }
977 while( amt>0 && nextPage ){
978 OverflowPage *pOvfl;
drh8c42ca92001-06-22 19:15:00 +0000979 rc = sqlitepager_get(pCur->pBt->pPager, nextPage, (void**)&pOvfl);
drh2af926b2001-05-15 00:39:25 +0000980 if( rc!=0 ){
981 return rc;
982 }
drh14acc042001-06-10 19:56:58 +0000983 nextPage = pOvfl->iNext;
drh2af926b2001-05-15 00:39:25 +0000984 if( offset<OVERFLOW_SIZE ){
985 int a = amt;
986 if( a + offset > OVERFLOW_SIZE ){
987 a = OVERFLOW_SIZE - offset;
988 }
drh5e2f8b92001-05-28 00:41:15 +0000989 memcpy(zBuf, &pOvfl->aPayload[offset], a);
drh2aa679f2001-06-25 02:11:07 +0000990 offset = 0;
drh2af926b2001-05-15 00:39:25 +0000991 amt -= a;
992 zBuf += a;
drh2aa679f2001-06-25 02:11:07 +0000993 }else{
994 offset -= OVERFLOW_SIZE;
drh2af926b2001-05-15 00:39:25 +0000995 }
996 sqlitepager_unref(pOvfl);
997 }
drha7fcb052001-12-14 15:09:55 +0000998 if( amt>0 ){
999 return SQLITE_CORRUPT;
1000 }
1001 return SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +00001002}
1003
drh72f82862001-05-24 21:06:34 +00001004/*
drh5e00f6c2001-09-13 13:46:56 +00001005** Read part of the key associated with cursor pCur. A maximum
drh72f82862001-05-24 21:06:34 +00001006** of "amt" bytes will be transfered into zBuf[]. The transfer
drh5e00f6c2001-09-13 13:46:56 +00001007** begins at "offset". The number of bytes actually read is
1008** returned. The amount returned will be smaller than the
1009** amount requested if there are not enough bytes in the key
1010** to satisfy the request.
drh72f82862001-05-24 21:06:34 +00001011*/
1012int sqliteBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
1013 Cell *pCell;
1014 MemPage *pPage;
drha059ad02001-04-17 20:09:11 +00001015
drh5e00f6c2001-09-13 13:46:56 +00001016 if( amt<0 ) return 0;
1017 if( offset<0 ) return 0;
1018 if( amt==0 ) return 0;
drh72f82862001-05-24 21:06:34 +00001019 pPage = pCur->pPage;
drhecdc7532001-09-23 02:35:53 +00001020 if( pPage==0 ) return 0;
drh72f82862001-05-24 21:06:34 +00001021 if( pCur->idx >= pPage->nCell ){
drh5e00f6c2001-09-13 13:46:56 +00001022 return 0;
drh72f82862001-05-24 21:06:34 +00001023 }
drh5e2f8b92001-05-28 00:41:15 +00001024 pCell = pPage->apCell[pCur->idx];
drh80ff32f2001-11-04 18:32:46 +00001025 if( amt+offset > NKEY(pCell->h) ){
1026 amt = NKEY(pCell->h) - offset;
drh5e00f6c2001-09-13 13:46:56 +00001027 if( amt<=0 ){
1028 return 0;
1029 }
drhbd03cae2001-06-02 02:40:57 +00001030 }
drh5e00f6c2001-09-13 13:46:56 +00001031 getPayload(pCur, offset, amt, zBuf);
1032 return amt;
drh72f82862001-05-24 21:06:34 +00001033}
1034
1035/*
drhbd03cae2001-06-02 02:40:57 +00001036** Set *pSize to the number of bytes of data in the entry the
1037** cursor currently points to. Always return SQLITE_OK.
1038** Failure is not possible. If the cursor is not currently
1039** pointing to an entry (which can happen, for example, if
1040** the database is empty) then *pSize is set to 0.
drh72f82862001-05-24 21:06:34 +00001041*/
1042int sqliteBtreeDataSize(BtCursor *pCur, int *pSize){
1043 Cell *pCell;
1044 MemPage *pPage;
1045
1046 pPage = pCur->pPage;
drhecdc7532001-09-23 02:35:53 +00001047 if( pPage==0 || pCur->idx >= pPage->nCell ){
drh72f82862001-05-24 21:06:34 +00001048 *pSize = 0;
1049 }else{
drh5e2f8b92001-05-28 00:41:15 +00001050 pCell = pPage->apCell[pCur->idx];
drh80ff32f2001-11-04 18:32:46 +00001051 *pSize = NDATA(pCell->h);
drh72f82862001-05-24 21:06:34 +00001052 }
1053 return SQLITE_OK;
1054}
1055
1056/*
drh5e00f6c2001-09-13 13:46:56 +00001057** Read part of the data associated with cursor pCur. A maximum
drh72f82862001-05-24 21:06:34 +00001058** of "amt" bytes will be transfered into zBuf[]. The transfer
drh5e00f6c2001-09-13 13:46:56 +00001059** begins at "offset". The number of bytes actually read is
1060** returned. The amount returned will be smaller than the
1061** amount requested if there are not enough bytes in the data
1062** to satisfy the request.
drh72f82862001-05-24 21:06:34 +00001063*/
1064int sqliteBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
1065 Cell *pCell;
1066 MemPage *pPage;
1067
drh5e00f6c2001-09-13 13:46:56 +00001068 if( amt<0 ) return 0;
1069 if( offset<0 ) return 0;
1070 if( amt==0 ) return 0;
drh72f82862001-05-24 21:06:34 +00001071 pPage = pCur->pPage;
drhecdc7532001-09-23 02:35:53 +00001072 if( pPage==0 || pCur->idx >= pPage->nCell ){
drh5e00f6c2001-09-13 13:46:56 +00001073 return 0;
drh72f82862001-05-24 21:06:34 +00001074 }
drh5e2f8b92001-05-28 00:41:15 +00001075 pCell = pPage->apCell[pCur->idx];
drh80ff32f2001-11-04 18:32:46 +00001076 if( amt+offset > NDATA(pCell->h) ){
1077 amt = NDATA(pCell->h) - offset;
drh5e00f6c2001-09-13 13:46:56 +00001078 if( amt<=0 ){
1079 return 0;
1080 }
drhbd03cae2001-06-02 02:40:57 +00001081 }
drh80ff32f2001-11-04 18:32:46 +00001082 getPayload(pCur, offset + NKEY(pCell->h), amt, zBuf);
drh5e00f6c2001-09-13 13:46:56 +00001083 return amt;
drh72f82862001-05-24 21:06:34 +00001084}
drha059ad02001-04-17 20:09:11 +00001085
drh2af926b2001-05-15 00:39:25 +00001086/*
drh8721ce42001-11-07 14:22:00 +00001087** Compare an external key against the key on the entry that pCur points to.
1088**
1089** The external key is pKey and is nKey bytes long. The last nIgnore bytes
1090** of the key associated with pCur are ignored, as if they do not exist.
1091** (The normal case is for nIgnore to be zero in which case the entire
1092** internal key is used in the comparison.)
1093**
1094** The comparison result is written to *pRes as follows:
drh2af926b2001-05-15 00:39:25 +00001095**
drh717e6402001-09-27 03:22:32 +00001096** *pRes<0 This means pCur<pKey
1097**
1098** *pRes==0 This means pCur==pKey for all nKey bytes
1099**
1100** *pRes>0 This means pCur>pKey
1101**
drh8721ce42001-11-07 14:22:00 +00001102** When one key is an exact prefix of the other, the shorter key is
1103** considered less than the longer one. In order to be equal the
1104** keys must be exactly the same length. (The length of the pCur key
1105** is the actual key length minus nIgnore bytes.)
drh2af926b2001-05-15 00:39:25 +00001106*/
drh717e6402001-09-27 03:22:32 +00001107int sqliteBtreeKeyCompare(
drh8721ce42001-11-07 14:22:00 +00001108 BtCursor *pCur, /* Pointer to entry to compare against */
1109 const void *pKey, /* Key to compare against entry that pCur points to */
1110 int nKey, /* Number of bytes in pKey */
1111 int nIgnore, /* Ignore this many bytes at the end of pCur */
1112 int *pResult /* Write the result here */
drh5c4d9702001-08-20 00:33:58 +00001113){
drh2af926b2001-05-15 00:39:25 +00001114 Pgno nextPage;
drh8721ce42001-11-07 14:22:00 +00001115 int n, c, rc, nLocal;
drh2af926b2001-05-15 00:39:25 +00001116 Cell *pCell;
drh717e6402001-09-27 03:22:32 +00001117 const char *zKey = (const char*)pKey;
drh2af926b2001-05-15 00:39:25 +00001118
1119 assert( pCur->pPage );
1120 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drhbd03cae2001-06-02 02:40:57 +00001121 pCell = pCur->pPage->apCell[pCur->idx];
drh8721ce42001-11-07 14:22:00 +00001122 nLocal = NKEY(pCell->h) - nIgnore;
1123 if( nLocal<0 ) nLocal = 0;
1124 n = nKey<nLocal ? nKey : nLocal;
drh2af926b2001-05-15 00:39:25 +00001125 if( n>MX_LOCAL_PAYLOAD ){
1126 n = MX_LOCAL_PAYLOAD;
1127 }
drh717e6402001-09-27 03:22:32 +00001128 c = memcmp(pCell->aPayload, zKey, n);
drh2af926b2001-05-15 00:39:25 +00001129 if( c!=0 ){
1130 *pResult = c;
1131 return SQLITE_OK;
1132 }
drh717e6402001-09-27 03:22:32 +00001133 zKey += n;
drh2af926b2001-05-15 00:39:25 +00001134 nKey -= n;
drh8721ce42001-11-07 14:22:00 +00001135 nLocal -= n;
drh3b7511c2001-05-26 13:15:44 +00001136 nextPage = pCell->ovfl;
drh8721ce42001-11-07 14:22:00 +00001137 while( nKey>0 && nLocal>0 ){
drh2af926b2001-05-15 00:39:25 +00001138 OverflowPage *pOvfl;
1139 if( nextPage==0 ){
1140 return SQLITE_CORRUPT;
1141 }
drh8c42ca92001-06-22 19:15:00 +00001142 rc = sqlitepager_get(pCur->pBt->pPager, nextPage, (void**)&pOvfl);
drh72f82862001-05-24 21:06:34 +00001143 if( rc ){
drh2af926b2001-05-15 00:39:25 +00001144 return rc;
1145 }
drh14acc042001-06-10 19:56:58 +00001146 nextPage = pOvfl->iNext;
drh8721ce42001-11-07 14:22:00 +00001147 n = nKey<nLocal ? nKey : nLocal;
drh2af926b2001-05-15 00:39:25 +00001148 if( n>OVERFLOW_SIZE ){
1149 n = OVERFLOW_SIZE;
1150 }
drh717e6402001-09-27 03:22:32 +00001151 c = memcmp(pOvfl->aPayload, zKey, n);
drh2af926b2001-05-15 00:39:25 +00001152 sqlitepager_unref(pOvfl);
1153 if( c!=0 ){
1154 *pResult = c;
1155 return SQLITE_OK;
1156 }
1157 nKey -= n;
drh8721ce42001-11-07 14:22:00 +00001158 nLocal -= n;
drh717e6402001-09-27 03:22:32 +00001159 zKey += n;
drh2af926b2001-05-15 00:39:25 +00001160 }
drh717e6402001-09-27 03:22:32 +00001161 if( c==0 ){
drh8721ce42001-11-07 14:22:00 +00001162 c = nLocal - nKey;
drh717e6402001-09-27 03:22:32 +00001163 }
drh2af926b2001-05-15 00:39:25 +00001164 *pResult = c;
1165 return SQLITE_OK;
1166}
1167
drh72f82862001-05-24 21:06:34 +00001168/*
1169** Move the cursor down to a new child page.
1170*/
drh5e2f8b92001-05-28 00:41:15 +00001171static int moveToChild(BtCursor *pCur, int newPgno){
drh72f82862001-05-24 21:06:34 +00001172 int rc;
1173 MemPage *pNewPage;
1174
drh8c42ca92001-06-22 19:15:00 +00001175 rc = sqlitepager_get(pCur->pBt->pPager, newPgno, (void**)&pNewPage);
drh6019e162001-07-02 17:51:45 +00001176 if( rc ) return rc;
1177 rc = initPage(pNewPage, newPgno, pCur->pPage);
1178 if( rc ) return rc;
drh72f82862001-05-24 21:06:34 +00001179 sqlitepager_unref(pCur->pPage);
1180 pCur->pPage = pNewPage;
1181 pCur->idx = 0;
1182 return SQLITE_OK;
1183}
1184
1185/*
drh5e2f8b92001-05-28 00:41:15 +00001186** Move the cursor up to the parent page.
1187**
1188** pCur->idx is set to the cell index that contains the pointer
1189** to the page we are coming from. If we are coming from the
1190** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00001191** the largest cell index.
drh72f82862001-05-24 21:06:34 +00001192*/
drh5e2f8b92001-05-28 00:41:15 +00001193static int moveToParent(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00001194 Pgno oldPgno;
1195 MemPage *pParent;
drh8c42ca92001-06-22 19:15:00 +00001196 int i;
drh72f82862001-05-24 21:06:34 +00001197 pParent = pCur->pPage->pParent;
drhbd03cae2001-06-02 02:40:57 +00001198 if( pParent==0 ) return SQLITE_INTERNAL;
drh72f82862001-05-24 21:06:34 +00001199 oldPgno = sqlitepager_pagenumber(pCur->pPage);
drh72f82862001-05-24 21:06:34 +00001200 sqlitepager_ref(pParent);
1201 sqlitepager_unref(pCur->pPage);
1202 pCur->pPage = pParent;
drh8c42ca92001-06-22 19:15:00 +00001203 pCur->idx = pParent->nCell;
1204 for(i=0; i<pParent->nCell; i++){
1205 if( pParent->apCell[i]->h.leftChild==oldPgno ){
drh72f82862001-05-24 21:06:34 +00001206 pCur->idx = i;
1207 break;
1208 }
1209 }
drh5e2f8b92001-05-28 00:41:15 +00001210 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00001211}
1212
1213/*
1214** Move the cursor to the root page
1215*/
drh5e2f8b92001-05-28 00:41:15 +00001216static int moveToRoot(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00001217 MemPage *pNew;
drhbd03cae2001-06-02 02:40:57 +00001218 int rc;
1219
drh8c42ca92001-06-22 19:15:00 +00001220 rc = sqlitepager_get(pCur->pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
drhbd03cae2001-06-02 02:40:57 +00001221 if( rc ) return rc;
drh6019e162001-07-02 17:51:45 +00001222 rc = initPage(pNew, pCur->pgnoRoot, 0);
1223 if( rc ) return rc;
drh72f82862001-05-24 21:06:34 +00001224 sqlitepager_unref(pCur->pPage);
1225 pCur->pPage = pNew;
1226 pCur->idx = 0;
1227 return SQLITE_OK;
1228}
drh2af926b2001-05-15 00:39:25 +00001229
drh5e2f8b92001-05-28 00:41:15 +00001230/*
1231** Move the cursor down to the left-most leaf entry beneath the
1232** entry to which it is currently pointing.
1233*/
1234static int moveToLeftmost(BtCursor *pCur){
1235 Pgno pgno;
1236 int rc;
1237
1238 while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
1239 rc = moveToChild(pCur, pgno);
1240 if( rc ) return rc;
1241 }
1242 return SQLITE_OK;
1243}
1244
drh5e00f6c2001-09-13 13:46:56 +00001245/* Move the cursor to the first entry in the table. Return SQLITE_OK
1246** on success. Set *pRes to 0 if the cursor actually points to something
1247** or set *pRes to 1 if the table is empty and there is no first element.
1248*/
1249int sqliteBtreeFirst(BtCursor *pCur, int *pRes){
1250 int rc;
drhecdc7532001-09-23 02:35:53 +00001251 if( pCur->pPage==0 ) return SQLITE_ABORT;
drh5e00f6c2001-09-13 13:46:56 +00001252 rc = moveToRoot(pCur);
1253 if( rc ) return rc;
1254 if( pCur->pPage->nCell==0 ){
1255 *pRes = 1;
1256 return SQLITE_OK;
1257 }
1258 *pRes = 0;
1259 rc = moveToLeftmost(pCur);
drh0ce92ed2001-12-15 02:47:28 +00001260 pCur->bSkipNext = 0;
drh5e00f6c2001-09-13 13:46:56 +00001261 return rc;
1262}
drh5e2f8b92001-05-28 00:41:15 +00001263
drha059ad02001-04-17 20:09:11 +00001264/* Move the cursor so that it points to an entry near pKey.
drh72f82862001-05-24 21:06:34 +00001265** Return a success code.
1266**
drh5e2f8b92001-05-28 00:41:15 +00001267** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00001268** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00001269** were present. The cursor might point to an entry that comes
1270** before or after the key.
1271**
drhbd03cae2001-06-02 02:40:57 +00001272** The result of comparing the key with the entry to which the
1273** cursor is left pointing is stored in pCur->iMatch. The same
1274** value is also written to *pRes if pRes!=NULL. The meaning of
1275** this value is as follows:
1276**
1277** *pRes<0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00001278** is smaller than pKey.
drhbd03cae2001-06-02 02:40:57 +00001279**
1280** *pRes==0 The cursor is left pointing at an entry that
1281** exactly matches pKey.
1282**
1283** *pRes>0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00001284** is larger than pKey.
drha059ad02001-04-17 20:09:11 +00001285*/
drh5c4d9702001-08-20 00:33:58 +00001286int sqliteBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
drh72f82862001-05-24 21:06:34 +00001287 int rc;
drhecdc7532001-09-23 02:35:53 +00001288 if( pCur->pPage==0 ) return SQLITE_ABORT;
drh7c717f72001-06-24 20:39:41 +00001289 pCur->bSkipNext = 0;
drh5e2f8b92001-05-28 00:41:15 +00001290 rc = moveToRoot(pCur);
drh72f82862001-05-24 21:06:34 +00001291 if( rc ) return rc;
1292 for(;;){
1293 int lwr, upr;
1294 Pgno chldPg;
1295 MemPage *pPage = pCur->pPage;
drh8b2f49b2001-06-08 00:21:52 +00001296 int c = -1;
drh72f82862001-05-24 21:06:34 +00001297 lwr = 0;
1298 upr = pPage->nCell-1;
1299 while( lwr<=upr ){
drh72f82862001-05-24 21:06:34 +00001300 pCur->idx = (lwr+upr)/2;
drh8721ce42001-11-07 14:22:00 +00001301 rc = sqliteBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
drh72f82862001-05-24 21:06:34 +00001302 if( rc ) return rc;
1303 if( c==0 ){
drh5e2f8b92001-05-28 00:41:15 +00001304 pCur->iMatch = c;
drh72f82862001-05-24 21:06:34 +00001305 if( pRes ) *pRes = 0;
1306 return SQLITE_OK;
1307 }
1308 if( c<0 ){
1309 lwr = pCur->idx+1;
1310 }else{
1311 upr = pCur->idx-1;
1312 }
1313 }
1314 assert( lwr==upr+1 );
1315 if( lwr>=pPage->nCell ){
drh14acc042001-06-10 19:56:58 +00001316 chldPg = pPage->u.hdr.rightChild;
drh72f82862001-05-24 21:06:34 +00001317 }else{
drh5e2f8b92001-05-28 00:41:15 +00001318 chldPg = pPage->apCell[lwr]->h.leftChild;
drh72f82862001-05-24 21:06:34 +00001319 }
1320 if( chldPg==0 ){
drh5e2f8b92001-05-28 00:41:15 +00001321 pCur->iMatch = c;
drh72f82862001-05-24 21:06:34 +00001322 if( pRes ) *pRes = c;
1323 return SQLITE_OK;
1324 }
drh5e2f8b92001-05-28 00:41:15 +00001325 rc = moveToChild(pCur, chldPg);
drh72f82862001-05-24 21:06:34 +00001326 if( rc ) return rc;
1327 }
drhbd03cae2001-06-02 02:40:57 +00001328 /* NOT REACHED */
drh72f82862001-05-24 21:06:34 +00001329}
1330
1331/*
drhbd03cae2001-06-02 02:40:57 +00001332** Advance the cursor to the next entry in the database. If
1333** successful and pRes!=NULL then set *pRes=0. If the cursor
1334** was already pointing to the last entry in the database before
1335** this routine was called, then set *pRes=1 if pRes!=NULL.
drh72f82862001-05-24 21:06:34 +00001336*/
1337int sqliteBtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00001338 int rc;
drhecdc7532001-09-23 02:35:53 +00001339 if( pCur->pPage==0 ){
drh1bee3d72001-10-15 00:44:35 +00001340 if( pRes ) *pRes = 1;
drhecdc7532001-09-23 02:35:53 +00001341 return SQLITE_ABORT;
1342 }
drhf5bf0a72001-11-23 00:24:12 +00001343 if( pCur->bSkipNext && pCur->idx<pCur->pPage->nCell ){
drh5e2f8b92001-05-28 00:41:15 +00001344 pCur->bSkipNext = 0;
drh72f82862001-05-24 21:06:34 +00001345 if( pRes ) *pRes = 0;
1346 return SQLITE_OK;
1347 }
drh72f82862001-05-24 21:06:34 +00001348 pCur->idx++;
drh5e2f8b92001-05-28 00:41:15 +00001349 if( pCur->idx>=pCur->pPage->nCell ){
drh8c42ca92001-06-22 19:15:00 +00001350 if( pCur->pPage->u.hdr.rightChild ){
1351 rc = moveToChild(pCur, pCur->pPage->u.hdr.rightChild);
drh5e2f8b92001-05-28 00:41:15 +00001352 if( rc ) return rc;
1353 rc = moveToLeftmost(pCur);
1354 if( rc ) return rc;
1355 if( pRes ) *pRes = 0;
drh72f82862001-05-24 21:06:34 +00001356 return SQLITE_OK;
1357 }
drh5e2f8b92001-05-28 00:41:15 +00001358 do{
drh8c42ca92001-06-22 19:15:00 +00001359 if( pCur->pPage->pParent==0 ){
drh5e2f8b92001-05-28 00:41:15 +00001360 if( pRes ) *pRes = 1;
1361 return SQLITE_OK;
1362 }
1363 rc = moveToParent(pCur);
1364 if( rc ) return rc;
1365 }while( pCur->idx>=pCur->pPage->nCell );
drh72f82862001-05-24 21:06:34 +00001366 if( pRes ) *pRes = 0;
1367 return SQLITE_OK;
1368 }
drh5e2f8b92001-05-28 00:41:15 +00001369 rc = moveToLeftmost(pCur);
1370 if( rc ) return rc;
drh72f82862001-05-24 21:06:34 +00001371 if( pRes ) *pRes = 0;
1372 return SQLITE_OK;
1373}
1374
drh3b7511c2001-05-26 13:15:44 +00001375/*
1376** Allocate a new page from the database file.
1377**
1378** The new page is marked as dirty. (In other words, sqlitepager_write()
1379** has already been called on the new page.) The new page has also
1380** been referenced and the calling routine is responsible for calling
1381** sqlitepager_unref() on the new page when it is done.
1382**
1383** SQLITE_OK is returned on success. Any other return value indicates
1384** an error. *ppPage and *pPgno are undefined in the event of an error.
1385** Do not invoke sqlitepager_unref() on *ppPage if an error is returned.
1386*/
1387static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno){
drhbd03cae2001-06-02 02:40:57 +00001388 PageOne *pPage1 = pBt->page1;
drh8c42ca92001-06-22 19:15:00 +00001389 int rc;
drh3b7511c2001-05-26 13:15:44 +00001390 if( pPage1->freeList ){
1391 OverflowPage *pOvfl;
1392 rc = sqlitepager_write(pPage1);
1393 if( rc ) return rc;
1394 *pPgno = pPage1->freeList;
drh8c42ca92001-06-22 19:15:00 +00001395 rc = sqlitepager_get(pBt->pPager, pPage1->freeList, (void**)&pOvfl);
drh3b7511c2001-05-26 13:15:44 +00001396 if( rc ) return rc;
1397 rc = sqlitepager_write(pOvfl);
1398 if( rc ){
1399 sqlitepager_unref(pOvfl);
1400 return rc;
1401 }
drh14acc042001-06-10 19:56:58 +00001402 pPage1->freeList = pOvfl->iNext;
drh2aa679f2001-06-25 02:11:07 +00001403 pPage1->nFree--;
drh3b7511c2001-05-26 13:15:44 +00001404 *ppPage = (MemPage*)pOvfl;
1405 }else{
drh2aa679f2001-06-25 02:11:07 +00001406 *pPgno = sqlitepager_pagecount(pBt->pPager) + 1;
drh8c42ca92001-06-22 19:15:00 +00001407 rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
drh3b7511c2001-05-26 13:15:44 +00001408 if( rc ) return rc;
1409 rc = sqlitepager_write(*ppPage);
1410 }
1411 return rc;
1412}
1413
1414/*
1415** Add a page of the database file to the freelist. Either pgno or
1416** pPage but not both may be 0.
drh5e2f8b92001-05-28 00:41:15 +00001417**
drhdd793422001-06-28 01:54:48 +00001418** sqlitepager_unref() is NOT called for pPage.
drh3b7511c2001-05-26 13:15:44 +00001419*/
1420static int freePage(Btree *pBt, void *pPage, Pgno pgno){
drhbd03cae2001-06-02 02:40:57 +00001421 PageOne *pPage1 = pBt->page1;
drh3b7511c2001-05-26 13:15:44 +00001422 OverflowPage *pOvfl = (OverflowPage*)pPage;
1423 int rc;
drhdd793422001-06-28 01:54:48 +00001424 int needUnref = 0;
1425 MemPage *pMemPage;
drh8b2f49b2001-06-08 00:21:52 +00001426
drh3b7511c2001-05-26 13:15:44 +00001427 if( pgno==0 ){
1428 assert( pOvfl!=0 );
1429 pgno = sqlitepager_pagenumber(pOvfl);
1430 }
drh2aa679f2001-06-25 02:11:07 +00001431 assert( pgno>2 );
drh3b7511c2001-05-26 13:15:44 +00001432 rc = sqlitepager_write(pPage1);
1433 if( rc ){
1434 return rc;
1435 }
1436 if( pOvfl==0 ){
1437 assert( pgno>0 );
drh8c42ca92001-06-22 19:15:00 +00001438 rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl);
drh3b7511c2001-05-26 13:15:44 +00001439 if( rc ) return rc;
drhdd793422001-06-28 01:54:48 +00001440 needUnref = 1;
drh3b7511c2001-05-26 13:15:44 +00001441 }
1442 rc = sqlitepager_write(pOvfl);
1443 if( rc ){
drhdd793422001-06-28 01:54:48 +00001444 if( needUnref ) sqlitepager_unref(pOvfl);
drh3b7511c2001-05-26 13:15:44 +00001445 return rc;
1446 }
drh14acc042001-06-10 19:56:58 +00001447 pOvfl->iNext = pPage1->freeList;
drh3b7511c2001-05-26 13:15:44 +00001448 pPage1->freeList = pgno;
drh2aa679f2001-06-25 02:11:07 +00001449 pPage1->nFree++;
drh5e2f8b92001-05-28 00:41:15 +00001450 memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
drhdd793422001-06-28 01:54:48 +00001451 pMemPage = (MemPage*)pPage;
1452 pMemPage->isInit = 0;
1453 if( pMemPage->pParent ){
1454 sqlitepager_unref(pMemPage->pParent);
1455 pMemPage->pParent = 0;
1456 }
1457 if( needUnref ) rc = sqlitepager_unref(pOvfl);
drh3b7511c2001-05-26 13:15:44 +00001458 return rc;
1459}
1460
1461/*
1462** Erase all the data out of a cell. This involves returning overflow
1463** pages back the freelist.
1464*/
1465static int clearCell(Btree *pBt, Cell *pCell){
1466 Pager *pPager = pBt->pPager;
1467 OverflowPage *pOvfl;
drh3b7511c2001-05-26 13:15:44 +00001468 Pgno ovfl, nextOvfl;
1469 int rc;
1470
drh80ff32f2001-11-04 18:32:46 +00001471 if( NKEY(pCell->h) + NDATA(pCell->h) <= MX_LOCAL_PAYLOAD ){
drh5e2f8b92001-05-28 00:41:15 +00001472 return SQLITE_OK;
1473 }
drh3b7511c2001-05-26 13:15:44 +00001474 ovfl = pCell->ovfl;
1475 pCell->ovfl = 0;
1476 while( ovfl ){
drh8c42ca92001-06-22 19:15:00 +00001477 rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl);
drh3b7511c2001-05-26 13:15:44 +00001478 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00001479 nextOvfl = pOvfl->iNext;
drhbd03cae2001-06-02 02:40:57 +00001480 rc = freePage(pBt, pOvfl, ovfl);
1481 if( rc ) return rc;
drhdd793422001-06-28 01:54:48 +00001482 sqlitepager_unref(pOvfl);
drh3b7511c2001-05-26 13:15:44 +00001483 ovfl = nextOvfl;
drh3b7511c2001-05-26 13:15:44 +00001484 }
drh5e2f8b92001-05-28 00:41:15 +00001485 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00001486}
1487
1488/*
1489** Create a new cell from key and data. Overflow pages are allocated as
1490** necessary and linked to this cell.
1491*/
1492static int fillInCell(
1493 Btree *pBt, /* The whole Btree. Needed to allocate pages */
1494 Cell *pCell, /* Populate this Cell structure */
drh5c4d9702001-08-20 00:33:58 +00001495 const void *pKey, int nKey, /* The key */
1496 const void *pData,int nData /* The data */
drh3b7511c2001-05-26 13:15:44 +00001497){
drhdd793422001-06-28 01:54:48 +00001498 OverflowPage *pOvfl, *pPrior;
drh3b7511c2001-05-26 13:15:44 +00001499 Pgno *pNext;
1500 int spaceLeft;
drh8c42ca92001-06-22 19:15:00 +00001501 int n, rc;
drh3b7511c2001-05-26 13:15:44 +00001502 int nPayload;
drh5c4d9702001-08-20 00:33:58 +00001503 const char *pPayload;
drh3b7511c2001-05-26 13:15:44 +00001504 char *pSpace;
1505
drh5e2f8b92001-05-28 00:41:15 +00001506 pCell->h.leftChild = 0;
drh80ff32f2001-11-04 18:32:46 +00001507 pCell->h.nKey = nKey & 0xffff;
1508 pCell->h.nKeyHi = nKey >> 16;
1509 pCell->h.nData = nData & 0xffff;
1510 pCell->h.nDataHi = nData >> 16;
drh3b7511c2001-05-26 13:15:44 +00001511 pCell->h.iNext = 0;
1512
1513 pNext = &pCell->ovfl;
drh5e2f8b92001-05-28 00:41:15 +00001514 pSpace = pCell->aPayload;
drh3b7511c2001-05-26 13:15:44 +00001515 spaceLeft = MX_LOCAL_PAYLOAD;
1516 pPayload = pKey;
1517 pKey = 0;
1518 nPayload = nKey;
drhdd793422001-06-28 01:54:48 +00001519 pPrior = 0;
drh3b7511c2001-05-26 13:15:44 +00001520 while( nPayload>0 ){
1521 if( spaceLeft==0 ){
drh8c42ca92001-06-22 19:15:00 +00001522 rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext);
drh3b7511c2001-05-26 13:15:44 +00001523 if( rc ){
1524 *pNext = 0;
drhdd793422001-06-28 01:54:48 +00001525 }
1526 if( pPrior ) sqlitepager_unref(pPrior);
1527 if( rc ){
drh5e2f8b92001-05-28 00:41:15 +00001528 clearCell(pBt, pCell);
drh3b7511c2001-05-26 13:15:44 +00001529 return rc;
1530 }
drhdd793422001-06-28 01:54:48 +00001531 pPrior = pOvfl;
drh3b7511c2001-05-26 13:15:44 +00001532 spaceLeft = OVERFLOW_SIZE;
drh5e2f8b92001-05-28 00:41:15 +00001533 pSpace = pOvfl->aPayload;
drh8c42ca92001-06-22 19:15:00 +00001534 pNext = &pOvfl->iNext;
drh3b7511c2001-05-26 13:15:44 +00001535 }
1536 n = nPayload;
1537 if( n>spaceLeft ) n = spaceLeft;
1538 memcpy(pSpace, pPayload, n);
1539 nPayload -= n;
1540 if( nPayload==0 && pData ){
1541 pPayload = pData;
1542 nPayload = nData;
1543 pData = 0;
1544 }else{
1545 pPayload += n;
1546 }
1547 spaceLeft -= n;
1548 pSpace += n;
1549 }
drhdd793422001-06-28 01:54:48 +00001550 *pNext = 0;
1551 if( pPrior ){
1552 sqlitepager_unref(pPrior);
1553 }
drh3b7511c2001-05-26 13:15:44 +00001554 return SQLITE_OK;
1555}
1556
1557/*
drhbd03cae2001-06-02 02:40:57 +00001558** Change the MemPage.pParent pointer on the page whose number is
drh8b2f49b2001-06-08 00:21:52 +00001559** given in the second argument so that MemPage.pParent holds the
drhbd03cae2001-06-02 02:40:57 +00001560** pointer in the third argument.
1561*/
1562static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent){
1563 MemPage *pThis;
1564
drhdd793422001-06-28 01:54:48 +00001565 if( pgno==0 ) return;
1566 assert( pPager!=0 );
drhbd03cae2001-06-02 02:40:57 +00001567 pThis = sqlitepager_lookup(pPager, pgno);
drh6019e162001-07-02 17:51:45 +00001568 if( pThis && pThis->isInit ){
drhdd793422001-06-28 01:54:48 +00001569 if( pThis->pParent!=pNewParent ){
1570 if( pThis->pParent ) sqlitepager_unref(pThis->pParent);
1571 pThis->pParent = pNewParent;
1572 if( pNewParent ) sqlitepager_ref(pNewParent);
1573 }
1574 sqlitepager_unref(pThis);
drhbd03cae2001-06-02 02:40:57 +00001575 }
1576}
1577
1578/*
1579** Reparent all children of the given page to be the given page.
1580** In other words, for every child of pPage, invoke reparentPage()
drh5e00f6c2001-09-13 13:46:56 +00001581** to make sure that each child knows that pPage is its parent.
drhbd03cae2001-06-02 02:40:57 +00001582**
1583** This routine gets called after you memcpy() one page into
1584** another.
1585*/
drh8c42ca92001-06-22 19:15:00 +00001586static void reparentChildPages(Pager *pPager, MemPage *pPage){
drhbd03cae2001-06-02 02:40:57 +00001587 int i;
1588 for(i=0; i<pPage->nCell; i++){
drh8c42ca92001-06-22 19:15:00 +00001589 reparentPage(pPager, pPage->apCell[i]->h.leftChild, pPage);
drhbd03cae2001-06-02 02:40:57 +00001590 }
drh14acc042001-06-10 19:56:58 +00001591 reparentPage(pPager, pPage->u.hdr.rightChild, pPage);
1592}
1593
1594/*
1595** Remove the i-th cell from pPage. This routine effects pPage only.
1596** The cell content is not freed or deallocated. It is assumed that
1597** the cell content has been copied someplace else. This routine just
1598** removes the reference to the cell from pPage.
1599**
1600** "sz" must be the number of bytes in the cell.
1601**
1602** Do not bother maintaining the integrity of the linked list of Cells.
drh8c42ca92001-06-22 19:15:00 +00001603** Only the pPage->apCell[] array is important. The relinkCellList()
1604** routine will be called soon after this routine in order to rebuild
1605** the linked list.
drh14acc042001-06-10 19:56:58 +00001606*/
drh8c42ca92001-06-22 19:15:00 +00001607static void dropCell(MemPage *pPage, int idx, int sz){
drh14acc042001-06-10 19:56:58 +00001608 int j;
drh8c42ca92001-06-22 19:15:00 +00001609 assert( idx>=0 && idx<pPage->nCell );
1610 assert( sz==cellSize(pPage->apCell[idx]) );
drh6019e162001-07-02 17:51:45 +00001611 assert( sqlitepager_iswriteable(pPage) );
drh7c717f72001-06-24 20:39:41 +00001612 freeSpace(pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz);
1613 for(j=idx; j<pPage->nCell-1; j++){
drh14acc042001-06-10 19:56:58 +00001614 pPage->apCell[j] = pPage->apCell[j+1];
1615 }
1616 pPage->nCell--;
1617}
1618
1619/*
1620** Insert a new cell on pPage at cell index "i". pCell points to the
1621** content of the cell.
1622**
1623** If the cell content will fit on the page, then put it there. If it
1624** will not fit, then just make pPage->apCell[i] point to the content
1625** and set pPage->isOverfull.
1626**
1627** Do not bother maintaining the integrity of the linked list of Cells.
drh8c42ca92001-06-22 19:15:00 +00001628** Only the pPage->apCell[] array is important. The relinkCellList()
1629** routine will be called soon after this routine in order to rebuild
1630** the linked list.
drh14acc042001-06-10 19:56:58 +00001631*/
1632static void insertCell(MemPage *pPage, int i, Cell *pCell, int sz){
1633 int idx, j;
1634 assert( i>=0 && i<=pPage->nCell );
1635 assert( sz==cellSize(pCell) );
drh6019e162001-07-02 17:51:45 +00001636 assert( sqlitepager_iswriteable(pPage) );
drh2aa679f2001-06-25 02:11:07 +00001637 idx = allocateSpace(pPage, sz);
drh14acc042001-06-10 19:56:58 +00001638 for(j=pPage->nCell; j>i; j--){
1639 pPage->apCell[j] = pPage->apCell[j-1];
1640 }
1641 pPage->nCell++;
drh14acc042001-06-10 19:56:58 +00001642 if( idx<=0 ){
1643 pPage->isOverfull = 1;
1644 pPage->apCell[i] = pCell;
1645 }else{
1646 memcpy(&pPage->u.aDisk[idx], pCell, sz);
drh8c42ca92001-06-22 19:15:00 +00001647 pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx];
drh14acc042001-06-10 19:56:58 +00001648 }
1649}
1650
1651/*
1652** Rebuild the linked list of cells on a page so that the cells
drh8c42ca92001-06-22 19:15:00 +00001653** occur in the order specified by the pPage->apCell[] array.
1654** Invoke this routine once to repair damage after one or more
1655** invocations of either insertCell() or dropCell().
drh14acc042001-06-10 19:56:58 +00001656*/
1657static void relinkCellList(MemPage *pPage){
1658 int i;
1659 u16 *pIdx;
drh6019e162001-07-02 17:51:45 +00001660 assert( sqlitepager_iswriteable(pPage) );
drh14acc042001-06-10 19:56:58 +00001661 pIdx = &pPage->u.hdr.firstCell;
1662 for(i=0; i<pPage->nCell; i++){
drh7c717f72001-06-24 20:39:41 +00001663 int idx = Addr(pPage->apCell[i]) - Addr(pPage);
drh8c42ca92001-06-22 19:15:00 +00001664 assert( idx>0 && idx<SQLITE_PAGE_SIZE );
drh14acc042001-06-10 19:56:58 +00001665 *pIdx = idx;
1666 pIdx = &pPage->apCell[i]->h.iNext;
1667 }
1668 *pIdx = 0;
1669}
1670
1671/*
1672** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[]
drh5e00f6c2001-09-13 13:46:56 +00001673** pointers that point into pFrom->u.aDisk[] must be adjusted to point
drhdd793422001-06-28 01:54:48 +00001674** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might
drh14acc042001-06-10 19:56:58 +00001675** not point to pFrom->u.aDisk[]. Those are unchanged.
1676*/
1677static void copyPage(MemPage *pTo, MemPage *pFrom){
1678 uptr from, to;
1679 int i;
1680 memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_PAGE_SIZE);
drhdd793422001-06-28 01:54:48 +00001681 pTo->pParent = 0;
drh14acc042001-06-10 19:56:58 +00001682 pTo->isInit = 1;
1683 pTo->nCell = pFrom->nCell;
1684 pTo->nFree = pFrom->nFree;
1685 pTo->isOverfull = pFrom->isOverfull;
drh7c717f72001-06-24 20:39:41 +00001686 to = Addr(pTo);
1687 from = Addr(pFrom);
drh14acc042001-06-10 19:56:58 +00001688 for(i=0; i<pTo->nCell; i++){
drh7c717f72001-06-24 20:39:41 +00001689 uptr x = Addr(pFrom->apCell[i]);
drh8c42ca92001-06-22 19:15:00 +00001690 if( x>from && x<from+SQLITE_PAGE_SIZE ){
1691 *((uptr*)&pTo->apCell[i]) = x + to - from;
drhdd793422001-06-28 01:54:48 +00001692 }else{
1693 pTo->apCell[i] = pFrom->apCell[i];
drh14acc042001-06-10 19:56:58 +00001694 }
1695 }
drhbd03cae2001-06-02 02:40:57 +00001696}
1697
1698/*
drh8b2f49b2001-06-08 00:21:52 +00001699** This routine redistributes Cells on pPage and up to two siblings
1700** of pPage so that all pages have about the same amount of free space.
drh14acc042001-06-10 19:56:58 +00001701** Usually one sibling on either side of pPage is used in the balancing,
drh8b2f49b2001-06-08 00:21:52 +00001702** though both siblings might come from one side if pPage is the first
1703** or last child of its parent. If pPage has fewer than two siblings
1704** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00001705** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00001706**
1707** The number of siblings of pPage might be increased or decreased by
drh8c42ca92001-06-22 19:15:00 +00001708** one in an effort to keep pages between 66% and 100% full. The root page
1709** is special and is allowed to be less than 66% full. If pPage is
1710** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00001711** or decreased by one, as necessary, to keep the root page from being
1712** overfull or empty.
1713**
drh14acc042001-06-10 19:56:58 +00001714** This routine calls relinkCellList() on its input page regardless of
1715** whether or not it does any real balancing. Client routines will typically
1716** invoke insertCell() or dropCell() before calling this routine, so we
1717** need to call relinkCellList() to clean up the mess that those other
1718** routines left behind.
1719**
1720** pCur is left pointing to the same cell as when this routine was called
drh8c42ca92001-06-22 19:15:00 +00001721** even if that cell gets moved to a different page. pCur may be NULL.
1722** Set the pCur parameter to NULL if you do not care about keeping track
1723** of a cell as that will save this routine the work of keeping track of it.
drh14acc042001-06-10 19:56:58 +00001724**
drh8b2f49b2001-06-08 00:21:52 +00001725** Note that when this routine is called, some of the Cells on pPage
drh14acc042001-06-10 19:56:58 +00001726** might not actually be stored in pPage->u.aDisk[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00001727** if the page is overfull. Part of the job of this routine is to
drh14acc042001-06-10 19:56:58 +00001728** make sure all Cells for pPage once again fit in pPage->u.aDisk[].
1729**
drh8c42ca92001-06-22 19:15:00 +00001730** In the course of balancing the siblings of pPage, the parent of pPage
1731** might become overfull or underfull. If that happens, then this routine
1732** is called recursively on the parent.
1733**
drh5e00f6c2001-09-13 13:46:56 +00001734** If this routine fails for any reason, it might leave the database
1735** in a corrupted state. So if this routine fails, the database should
1736** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00001737*/
drh14acc042001-06-10 19:56:58 +00001738static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
drh8b2f49b2001-06-08 00:21:52 +00001739 MemPage *pParent; /* The parent of pPage */
drh14acc042001-06-10 19:56:58 +00001740 MemPage *apOld[3]; /* pPage and up to two siblings */
drh8b2f49b2001-06-08 00:21:52 +00001741 Pgno pgnoOld[3]; /* Page numbers for each page in apOld[] */
drh14acc042001-06-10 19:56:58 +00001742 MemPage *apNew[4]; /* pPage and up to 3 siblings after balancing */
1743 Pgno pgnoNew[4]; /* Page numbers for each page in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00001744 int idxDiv[3]; /* Indices of divider cells in pParent */
1745 Cell *apDiv[3]; /* Divider cells in pParent */
1746 int nCell; /* Number of cells in apCell[] */
1747 int nOld; /* Number of pages in apOld[] */
1748 int nNew; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00001749 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00001750 int i, j, k; /* Loop counters */
1751 int idx; /* Index of pPage in pParent->apCell[] */
1752 int nxDiv; /* Next divider slot in pParent->apCell[] */
1753 int rc; /* The return code */
1754 int iCur; /* apCell[iCur] is the cell of the cursor */
drh5edc3122001-09-13 21:53:09 +00001755 MemPage *pOldCurPage; /* The cursor originally points to this page */
drh8c42ca92001-06-22 19:15:00 +00001756 int totalSize; /* Total bytes for all cells */
drh6019e162001-07-02 17:51:45 +00001757 int subtotal; /* Subtotal of bytes in cells on one page */
1758 int cntNew[4]; /* Index in apCell[] of cell after i-th page */
1759 int szNew[4]; /* Combined size of cells place on i-th page */
drh9ca7d3b2001-06-28 11:50:21 +00001760 MemPage *extraUnref = 0; /* A page that needs to be unref-ed */
drh8c42ca92001-06-22 19:15:00 +00001761 Pgno pgno; /* Page number */
drh14acc042001-06-10 19:56:58 +00001762 Cell *apCell[MX_CELL*3+5]; /* All cells from pages being balanceed */
1763 int szCell[MX_CELL*3+5]; /* Local size of all cells */
1764 Cell aTemp[2]; /* Temporary holding area for apDiv[] */
1765 MemPage aOld[3]; /* Temporary copies of pPage and its siblings */
drh8b2f49b2001-06-08 00:21:52 +00001766
drh14acc042001-06-10 19:56:58 +00001767 /*
1768 ** Return without doing any work if pPage is neither overfull nor
1769 ** underfull.
drh8b2f49b2001-06-08 00:21:52 +00001770 */
drh6019e162001-07-02 17:51:45 +00001771 assert( sqlitepager_iswriteable(pPage) );
drha1b351a2001-09-14 16:42:12 +00001772 if( !pPage->isOverfull && pPage->nFree<SQLITE_PAGE_SIZE/2
1773 && pPage->nCell>=2){
drh14acc042001-06-10 19:56:58 +00001774 relinkCellList(pPage);
drh8b2f49b2001-06-08 00:21:52 +00001775 return SQLITE_OK;
1776 }
1777
1778 /*
drh14acc042001-06-10 19:56:58 +00001779 ** Find the parent of the page to be balanceed.
1780 ** If there is no parent, it means this page is the root page and
drh8b2f49b2001-06-08 00:21:52 +00001781 ** special rules apply.
1782 */
drh14acc042001-06-10 19:56:58 +00001783 pParent = pPage->pParent;
drh8b2f49b2001-06-08 00:21:52 +00001784 if( pParent==0 ){
1785 Pgno pgnoChild;
drh8c42ca92001-06-22 19:15:00 +00001786 MemPage *pChild;
drh8b2f49b2001-06-08 00:21:52 +00001787 if( pPage->nCell==0 ){
drh14acc042001-06-10 19:56:58 +00001788 if( pPage->u.hdr.rightChild ){
1789 /*
1790 ** The root page is empty. Copy the one child page
drh8b2f49b2001-06-08 00:21:52 +00001791 ** into the root page and return. This reduces the depth
1792 ** of the BTree by one.
1793 */
drh14acc042001-06-10 19:56:58 +00001794 pgnoChild = pPage->u.hdr.rightChild;
drh8c42ca92001-06-22 19:15:00 +00001795 rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild);
drh8b2f49b2001-06-08 00:21:52 +00001796 if( rc ) return rc;
1797 memcpy(pPage, pChild, SQLITE_PAGE_SIZE);
1798 pPage->isInit = 0;
drh6019e162001-07-02 17:51:45 +00001799 rc = initPage(pPage, sqlitepager_pagenumber(pPage), 0);
1800 assert( rc==SQLITE_OK );
drh8b2f49b2001-06-08 00:21:52 +00001801 reparentChildPages(pBt->pPager, pPage);
drh5edc3122001-09-13 21:53:09 +00001802 if( pCur && pCur->pPage==pChild ){
1803 sqlitepager_unref(pChild);
1804 pCur->pPage = pPage;
1805 sqlitepager_ref(pPage);
1806 }
drh8b2f49b2001-06-08 00:21:52 +00001807 freePage(pBt, pChild, pgnoChild);
1808 sqlitepager_unref(pChild);
drhefc251d2001-07-01 22:12:01 +00001809 }else{
1810 relinkCellList(pPage);
drh8b2f49b2001-06-08 00:21:52 +00001811 }
1812 return SQLITE_OK;
1813 }
drh14acc042001-06-10 19:56:58 +00001814 if( !pPage->isOverfull ){
drh8b2f49b2001-06-08 00:21:52 +00001815 /* It is OK for the root page to be less than half full.
1816 */
drh14acc042001-06-10 19:56:58 +00001817 relinkCellList(pPage);
drh8b2f49b2001-06-08 00:21:52 +00001818 return SQLITE_OK;
1819 }
drh14acc042001-06-10 19:56:58 +00001820 /*
1821 ** If we get to here, it means the root page is overfull.
drh8b2f49b2001-06-08 00:21:52 +00001822 ** When this happens, Create a new child page and copy the
1823 ** contents of the root into the child. Then make the root
drh14acc042001-06-10 19:56:58 +00001824 ** page an empty page with rightChild pointing to the new
drh8b2f49b2001-06-08 00:21:52 +00001825 ** child. Then fall thru to the code below which will cause
1826 ** the overfull child page to be split.
1827 */
drh14acc042001-06-10 19:56:58 +00001828 rc = sqlitepager_write(pPage);
1829 if( rc ) return rc;
drh8b2f49b2001-06-08 00:21:52 +00001830 rc = allocatePage(pBt, &pChild, &pgnoChild);
1831 if( rc ) return rc;
drh6019e162001-07-02 17:51:45 +00001832 assert( sqlitepager_iswriteable(pChild) );
drh14acc042001-06-10 19:56:58 +00001833 copyPage(pChild, pPage);
1834 pChild->pParent = pPage;
drhdd793422001-06-28 01:54:48 +00001835 sqlitepager_ref(pPage);
drh14acc042001-06-10 19:56:58 +00001836 pChild->isOverfull = 1;
drh5edc3122001-09-13 21:53:09 +00001837 if( pCur && pCur->pPage==pPage ){
1838 sqlitepager_unref(pPage);
drh14acc042001-06-10 19:56:58 +00001839 pCur->pPage = pChild;
drh9ca7d3b2001-06-28 11:50:21 +00001840 }else{
1841 extraUnref = pChild;
drh8b2f49b2001-06-08 00:21:52 +00001842 }
drh8b2f49b2001-06-08 00:21:52 +00001843 zeroPage(pPage);
drh14acc042001-06-10 19:56:58 +00001844 pPage->u.hdr.rightChild = pgnoChild;
drh8b2f49b2001-06-08 00:21:52 +00001845 pParent = pPage;
1846 pPage = pChild;
drh8b2f49b2001-06-08 00:21:52 +00001847 }
drh6019e162001-07-02 17:51:45 +00001848 rc = sqlitepager_write(pParent);
1849 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00001850
drh8b2f49b2001-06-08 00:21:52 +00001851 /*
drh14acc042001-06-10 19:56:58 +00001852 ** Find the Cell in the parent page whose h.leftChild points back
1853 ** to pPage. The "idx" variable is the index of that cell. If pPage
1854 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00001855 */
1856 idx = -1;
1857 pgno = sqlitepager_pagenumber(pPage);
1858 for(i=0; i<pParent->nCell; i++){
1859 if( pParent->apCell[i]->h.leftChild==pgno ){
1860 idx = i;
1861 break;
1862 }
1863 }
drhdd793422001-06-28 01:54:48 +00001864 if( idx<0 && pParent->u.hdr.rightChild==pgno ){
1865 idx = pParent->nCell;
drh8b2f49b2001-06-08 00:21:52 +00001866 }
1867 if( idx<0 ){
drh14acc042001-06-10 19:56:58 +00001868 return SQLITE_CORRUPT;
drh8b2f49b2001-06-08 00:21:52 +00001869 }
1870
1871 /*
drh14acc042001-06-10 19:56:58 +00001872 ** Initialize variables so that it will be safe to jump
drh5edc3122001-09-13 21:53:09 +00001873 ** directly to balance_cleanup at any moment.
drh8b2f49b2001-06-08 00:21:52 +00001874 */
drh14acc042001-06-10 19:56:58 +00001875 nOld = nNew = 0;
1876 sqlitepager_ref(pParent);
1877
1878 /*
1879 ** Find sibling pages to pPage and the Cells in pParent that divide
1880 ** the siblings. An attempt is made to find one sibling on either
1881 ** side of pPage. Both siblings are taken from one side, however, if
1882 ** pPage is either the first or last child of its parent. If pParent
1883 ** has 3 or fewer children then all children of pParent are taken.
1884 */
1885 if( idx==pParent->nCell ){
1886 nxDiv = idx - 2;
drh8b2f49b2001-06-08 00:21:52 +00001887 }else{
drh14acc042001-06-10 19:56:58 +00001888 nxDiv = idx - 1;
drh8b2f49b2001-06-08 00:21:52 +00001889 }
drh14acc042001-06-10 19:56:58 +00001890 if( nxDiv<0 ) nxDiv = 0;
drh8b2f49b2001-06-08 00:21:52 +00001891 nDiv = 0;
drh14acc042001-06-10 19:56:58 +00001892 for(i=0, k=nxDiv; i<3; i++, k++){
1893 if( k<pParent->nCell ){
1894 idxDiv[i] = k;
1895 apDiv[i] = pParent->apCell[k];
drh8b2f49b2001-06-08 00:21:52 +00001896 nDiv++;
1897 pgnoOld[i] = apDiv[i]->h.leftChild;
drh14acc042001-06-10 19:56:58 +00001898 }else if( k==pParent->nCell ){
drh8c42ca92001-06-22 19:15:00 +00001899 pgnoOld[i] = pParent->u.hdr.rightChild;
drh14acc042001-06-10 19:56:58 +00001900 }else{
1901 break;
drh8b2f49b2001-06-08 00:21:52 +00001902 }
drh8c42ca92001-06-22 19:15:00 +00001903 rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
drh14acc042001-06-10 19:56:58 +00001904 if( rc ) goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00001905 rc = initPage(apOld[i], pgnoOld[i], pParent);
1906 if( rc ) goto balance_cleanup;
drh14acc042001-06-10 19:56:58 +00001907 nOld++;
drh8b2f49b2001-06-08 00:21:52 +00001908 }
1909
1910 /*
drh14acc042001-06-10 19:56:58 +00001911 ** Set iCur to be the index in apCell[] of the cell that the cursor
1912 ** is pointing to. We will need this later on in order to keep the
drh5edc3122001-09-13 21:53:09 +00001913 ** cursor pointing at the same cell. If pCur points to a page that
1914 ** has no involvement with this rebalancing, then set iCur to a large
1915 ** number so that the iCur==j tests always fail in the main cell
1916 ** distribution loop below.
drh14acc042001-06-10 19:56:58 +00001917 */
1918 if( pCur ){
drh5edc3122001-09-13 21:53:09 +00001919 iCur = 0;
1920 for(i=0; i<nOld; i++){
1921 if( pCur->pPage==apOld[i] ){
1922 iCur += pCur->idx;
1923 break;
1924 }
1925 iCur += apOld[i]->nCell;
1926 if( i<nOld-1 && pCur->pPage==pParent && pCur->idx==idxDiv[i] ){
1927 break;
1928 }
1929 iCur++;
drh14acc042001-06-10 19:56:58 +00001930 }
drh5edc3122001-09-13 21:53:09 +00001931 pOldCurPage = pCur->pPage;
drh14acc042001-06-10 19:56:58 +00001932 }
1933
1934 /*
1935 ** Make copies of the content of pPage and its siblings into aOld[].
1936 ** The rest of this function will use data from the copies rather
1937 ** that the original pages since the original pages will be in the
1938 ** process of being overwritten.
1939 */
1940 for(i=0; i<nOld; i++){
1941 copyPage(&aOld[i], apOld[i]);
1942 rc = freePage(pBt, apOld[i], pgnoOld[i]);
1943 if( rc ) goto balance_cleanup;
drhdd793422001-06-28 01:54:48 +00001944 sqlitepager_unref(apOld[i]);
drh14acc042001-06-10 19:56:58 +00001945 apOld[i] = &aOld[i];
1946 }
1947
1948 /*
1949 ** Load pointers to all cells on sibling pages and the divider cells
1950 ** into the local apCell[] array. Make copies of the divider cells
1951 ** into aTemp[] and remove the the divider Cells from pParent.
drh8b2f49b2001-06-08 00:21:52 +00001952 */
1953 nCell = 0;
1954 for(i=0; i<nOld; i++){
1955 MemPage *pOld = apOld[i];
1956 for(j=0; j<pOld->nCell; j++){
drh14acc042001-06-10 19:56:58 +00001957 apCell[nCell] = pOld->apCell[j];
1958 szCell[nCell] = cellSize(apCell[nCell]);
1959 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00001960 }
1961 if( i<nOld-1 ){
drh14acc042001-06-10 19:56:58 +00001962 szCell[nCell] = cellSize(apDiv[i]);
drh8c42ca92001-06-22 19:15:00 +00001963 memcpy(&aTemp[i], apDiv[i], szCell[nCell]);
drh14acc042001-06-10 19:56:58 +00001964 apCell[nCell] = &aTemp[i];
1965 dropCell(pParent, nxDiv, szCell[nCell]);
1966 assert( apCell[nCell]->h.leftChild==pgnoOld[i] );
1967 apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild;
1968 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00001969 }
1970 }
1971
1972 /*
drh6019e162001-07-02 17:51:45 +00001973 ** Figure out the number of pages needed to hold all nCell cells.
1974 ** Store this number in "k". Also compute szNew[] which is the total
1975 ** size of all cells on the i-th page and cntNew[] which is the index
1976 ** in apCell[] of the cell that divides path i from path i+1.
1977 ** cntNew[k] should equal nCell.
1978 **
1979 ** This little patch of code is critical for keeping the tree
1980 ** balanced.
drh8b2f49b2001-06-08 00:21:52 +00001981 */
1982 totalSize = 0;
1983 for(i=0; i<nCell; i++){
drh14acc042001-06-10 19:56:58 +00001984 totalSize += szCell[i];
drh8b2f49b2001-06-08 00:21:52 +00001985 }
drh6019e162001-07-02 17:51:45 +00001986 for(subtotal=k=i=0; i<nCell; i++){
1987 subtotal += szCell[i];
1988 if( subtotal > USABLE_SPACE ){
1989 szNew[k] = subtotal - szCell[i];
1990 cntNew[k] = i;
1991 subtotal = 0;
1992 k++;
1993 }
1994 }
1995 szNew[k] = subtotal;
1996 cntNew[k] = nCell;
1997 k++;
1998 for(i=k-1; i>0; i--){
1999 while( szNew[i]<USABLE_SPACE/2 ){
2000 cntNew[i-1]--;
2001 assert( cntNew[i-1]>0 );
2002 szNew[i] += szCell[cntNew[i-1]];
2003 szNew[i-1] -= szCell[cntNew[i-1]-1];
2004 }
2005 }
2006 assert( cntNew[0]>0 );
drh8b2f49b2001-06-08 00:21:52 +00002007
2008 /*
drh6019e162001-07-02 17:51:45 +00002009 ** Allocate k new pages
drh8b2f49b2001-06-08 00:21:52 +00002010 */
drh14acc042001-06-10 19:56:58 +00002011 for(i=0; i<k; i++){
drh8b2f49b2001-06-08 00:21:52 +00002012 rc = allocatePage(pBt, &apNew[i], &pgnoNew[i]);
drh14acc042001-06-10 19:56:58 +00002013 if( rc ) goto balance_cleanup;
2014 nNew++;
drh8b2f49b2001-06-08 00:21:52 +00002015 zeroPage(apNew[i]);
drh6019e162001-07-02 17:51:45 +00002016 apNew[i]->isInit = 1;
drh8b2f49b2001-06-08 00:21:52 +00002017 }
2018
2019 /*
drh14acc042001-06-10 19:56:58 +00002020 ** Evenly distribute the data in apCell[] across the new pages.
2021 ** Insert divider cells into pParent as necessary.
2022 */
2023 j = 0;
2024 for(i=0; i<nNew; i++){
2025 MemPage *pNew = apNew[i];
drh6019e162001-07-02 17:51:45 +00002026 while( j<cntNew[i] ){
2027 assert( pNew->nFree>=szCell[j] );
drh14acc042001-06-10 19:56:58 +00002028 if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; }
2029 insertCell(pNew, pNew->nCell, apCell[j], szCell[j]);
2030 j++;
2031 }
drh6019e162001-07-02 17:51:45 +00002032 assert( pNew->nCell>0 );
drh14acc042001-06-10 19:56:58 +00002033 assert( !pNew->isOverfull );
2034 relinkCellList(pNew);
2035 if( i<nNew-1 && j<nCell ){
2036 pNew->u.hdr.rightChild = apCell[j]->h.leftChild;
2037 apCell[j]->h.leftChild = pgnoNew[i];
2038 if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; }
2039 insertCell(pParent, nxDiv, apCell[j], szCell[j]);
2040 j++;
2041 nxDiv++;
2042 }
2043 }
drh6019e162001-07-02 17:51:45 +00002044 assert( j==nCell );
drh14acc042001-06-10 19:56:58 +00002045 apNew[nNew-1]->u.hdr.rightChild = apOld[nOld-1]->u.hdr.rightChild;
2046 if( nxDiv==pParent->nCell ){
2047 pParent->u.hdr.rightChild = pgnoNew[nNew-1];
2048 }else{
2049 pParent->apCell[nxDiv]->h.leftChild = pgnoNew[nNew-1];
2050 }
2051 if( pCur ){
drh3fc190c2001-09-14 03:24:23 +00002052 if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){
2053 assert( pCur->pPage==pOldCurPage );
2054 pCur->idx += nNew - nOld;
2055 }else{
2056 assert( pOldCurPage!=0 );
2057 sqlitepager_ref(pCur->pPage);
2058 sqlitepager_unref(pOldCurPage);
2059 }
drh14acc042001-06-10 19:56:58 +00002060 }
2061
2062 /*
2063 ** Reparent children of all cells.
drh8b2f49b2001-06-08 00:21:52 +00002064 */
2065 for(i=0; i<nNew; i++){
drh14acc042001-06-10 19:56:58 +00002066 reparentChildPages(pBt->pPager, apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00002067 }
drh14acc042001-06-10 19:56:58 +00002068 reparentChildPages(pBt->pPager, pParent);
drh8b2f49b2001-06-08 00:21:52 +00002069
2070 /*
drh14acc042001-06-10 19:56:58 +00002071 ** balance the parent page.
drh8b2f49b2001-06-08 00:21:52 +00002072 */
drh5edc3122001-09-13 21:53:09 +00002073 rc = balance(pBt, pParent, pCur);
drh8b2f49b2001-06-08 00:21:52 +00002074
2075 /*
drh14acc042001-06-10 19:56:58 +00002076 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00002077 */
drh14acc042001-06-10 19:56:58 +00002078balance_cleanup:
drh9ca7d3b2001-06-28 11:50:21 +00002079 if( extraUnref ){
2080 sqlitepager_unref(extraUnref);
2081 }
drh8b2f49b2001-06-08 00:21:52 +00002082 for(i=0; i<nOld; i++){
drhdd793422001-06-28 01:54:48 +00002083 if( apOld[i]!=&aOld[i] ) sqlitepager_unref(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00002084 }
drh14acc042001-06-10 19:56:58 +00002085 for(i=0; i<nNew; i++){
2086 sqlitepager_unref(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00002087 }
drh14acc042001-06-10 19:56:58 +00002088 if( pCur && pCur->pPage==0 ){
2089 pCur->pPage = pParent;
2090 pCur->idx = 0;
2091 }else{
2092 sqlitepager_unref(pParent);
drh8b2f49b2001-06-08 00:21:52 +00002093 }
2094 return rc;
2095}
2096
2097/*
drh3b7511c2001-05-26 13:15:44 +00002098** Insert a new record into the BTree. The key is given by (pKey,nKey)
2099** and the data is given by (pData,nData). The cursor is used only to
2100** define what database the record should be inserted into. The cursor
drh14acc042001-06-10 19:56:58 +00002101** is left pointing at the new record.
drh3b7511c2001-05-26 13:15:44 +00002102*/
2103int sqliteBtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00002104 BtCursor *pCur, /* Insert data into the table of this cursor */
drhbe0072d2001-09-13 14:46:09 +00002105 const void *pKey, int nKey, /* The key of the new record */
drh5c4d9702001-08-20 00:33:58 +00002106 const void *pData, int nData /* The data of the new record */
drh3b7511c2001-05-26 13:15:44 +00002107){
2108 Cell newCell;
2109 int rc;
2110 int loc;
drh14acc042001-06-10 19:56:58 +00002111 int szNew;
drh3b7511c2001-05-26 13:15:44 +00002112 MemPage *pPage;
2113 Btree *pBt = pCur->pBt;
2114
drhecdc7532001-09-23 02:35:53 +00002115 if( pCur->pPage==0 ){
2116 return SQLITE_ABORT; /* A rollback destroyed this cursor */
2117 }
drh5edc3122001-09-13 21:53:09 +00002118 if( !pCur->pBt->inTrans || nKey+nData==0 ){
drh8b2f49b2001-06-08 00:21:52 +00002119 return SQLITE_ERROR; /* Must start a transaction first */
2120 }
drhecdc7532001-09-23 02:35:53 +00002121 if( !pCur->wrFlag ){
2122 return SQLITE_PERM; /* Cursor not open for writing */
2123 }
drh14acc042001-06-10 19:56:58 +00002124 rc = sqliteBtreeMoveto(pCur, pKey, nKey, &loc);
drh3b7511c2001-05-26 13:15:44 +00002125 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00002126 pPage = pCur->pPage;
2127 rc = sqlitepager_write(pPage);
drhbd03cae2001-06-02 02:40:57 +00002128 if( rc ) return rc;
drh3b7511c2001-05-26 13:15:44 +00002129 rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
2130 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00002131 szNew = cellSize(&newCell);
drh3b7511c2001-05-26 13:15:44 +00002132 if( loc==0 ){
drh14acc042001-06-10 19:56:58 +00002133 newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild;
2134 rc = clearCell(pBt, pPage->apCell[pCur->idx]);
drh5e2f8b92001-05-28 00:41:15 +00002135 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00002136 dropCell(pPage, pCur->idx, cellSize(pPage->apCell[pCur->idx]));
drh7c717f72001-06-24 20:39:41 +00002137 }else if( loc<0 && pPage->nCell>0 ){
drh14acc042001-06-10 19:56:58 +00002138 assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
2139 pCur->idx++;
2140 }else{
2141 assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
drh3b7511c2001-05-26 13:15:44 +00002142 }
drh7c717f72001-06-24 20:39:41 +00002143 insertCell(pPage, pCur->idx, &newCell, szNew);
drh14acc042001-06-10 19:56:58 +00002144 rc = balance(pCur->pBt, pPage, pCur);
drh3fc190c2001-09-14 03:24:23 +00002145 /* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
2146 /* fflush(stdout); */
drh5e2f8b92001-05-28 00:41:15 +00002147 return rc;
2148}
2149
2150/*
drhbd03cae2001-06-02 02:40:57 +00002151** Delete the entry that the cursor is pointing to.
drh5e2f8b92001-05-28 00:41:15 +00002152**
drhbd03cae2001-06-02 02:40:57 +00002153** The cursor is left pointing at either the next or the previous
2154** entry. If the cursor is left pointing to the next entry, then
2155** the pCur->bSkipNext flag is set which forces the next call to
2156** sqliteBtreeNext() to be a no-op. That way, you can always call
2157** sqliteBtreeNext() after a delete and the cursor will be left
2158** pointing to the first entry after the deleted entry.
drh3b7511c2001-05-26 13:15:44 +00002159*/
2160int sqliteBtreeDelete(BtCursor *pCur){
drh5e2f8b92001-05-28 00:41:15 +00002161 MemPage *pPage = pCur->pPage;
2162 Cell *pCell;
2163 int rc;
drh8c42ca92001-06-22 19:15:00 +00002164 Pgno pgnoChild;
drh8b2f49b2001-06-08 00:21:52 +00002165
drhecdc7532001-09-23 02:35:53 +00002166 if( pCur->pPage==0 ){
2167 return SQLITE_ABORT; /* A rollback destroyed this cursor */
2168 }
drh8b2f49b2001-06-08 00:21:52 +00002169 if( !pCur->pBt->inTrans ){
2170 return SQLITE_ERROR; /* Must start a transaction first */
2171 }
drhbd03cae2001-06-02 02:40:57 +00002172 if( pCur->idx >= pPage->nCell ){
2173 return SQLITE_ERROR; /* The cursor is not pointing to anything */
2174 }
drhecdc7532001-09-23 02:35:53 +00002175 if( !pCur->wrFlag ){
2176 return SQLITE_PERM; /* Did not open this cursor for writing */
2177 }
drhbd03cae2001-06-02 02:40:57 +00002178 rc = sqlitepager_write(pPage);
2179 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00002180 pCell = pPage->apCell[pCur->idx];
drh14acc042001-06-10 19:56:58 +00002181 pgnoChild = pCell->h.leftChild;
drh8c42ca92001-06-22 19:15:00 +00002182 clearCell(pCur->pBt, pCell);
drh14acc042001-06-10 19:56:58 +00002183 if( pgnoChild ){
2184 /*
drh5e00f6c2001-09-13 13:46:56 +00002185 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00002186 ** do something we will leave a hole on an internal page.
2187 ** We have to fill the hole by moving in a cell from a leaf. The
2188 ** next Cell after the one to be deleted is guaranteed to exist and
2189 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00002190 */
drh14acc042001-06-10 19:56:58 +00002191 BtCursor leafCur;
2192 Cell *pNext;
2193 int szNext;
2194 getTempCursor(pCur, &leafCur);
2195 rc = sqliteBtreeNext(&leafCur, 0);
2196 if( rc!=SQLITE_OK ){
2197 return SQLITE_CORRUPT;
drh5e2f8b92001-05-28 00:41:15 +00002198 }
drh6019e162001-07-02 17:51:45 +00002199 rc = sqlitepager_write(leafCur.pPage);
2200 if( rc ) return rc;
drh9ca7d3b2001-06-28 11:50:21 +00002201 dropCell(pPage, pCur->idx, cellSize(pCell));
drh8c42ca92001-06-22 19:15:00 +00002202 pNext = leafCur.pPage->apCell[leafCur.idx];
drh14acc042001-06-10 19:56:58 +00002203 szNext = cellSize(pNext);
drh8c42ca92001-06-22 19:15:00 +00002204 pNext->h.leftChild = pgnoChild;
drh14acc042001-06-10 19:56:58 +00002205 insertCell(pPage, pCur->idx, pNext, szNext);
2206 rc = balance(pCur->pBt, pPage, pCur);
drh5e2f8b92001-05-28 00:41:15 +00002207 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00002208 pCur->bSkipNext = 1;
drh14acc042001-06-10 19:56:58 +00002209 dropCell(leafCur.pPage, leafCur.idx, szNext);
drhf5bf0a72001-11-23 00:24:12 +00002210 rc = balance(pCur->pBt, leafCur.pPage, pCur);
drh8c42ca92001-06-22 19:15:00 +00002211 releaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00002212 }else{
drh9ca7d3b2001-06-28 11:50:21 +00002213 dropCell(pPage, pCur->idx, cellSize(pCell));
drh5edc3122001-09-13 21:53:09 +00002214 if( pCur->idx>=pPage->nCell ){
2215 pCur->idx = pPage->nCell-1;
drhf5bf0a72001-11-23 00:24:12 +00002216 if( pCur->idx<0 ){
2217 pCur->idx = 0;
2218 pCur->bSkipNext = 1;
2219 }else{
2220 pCur->bSkipNext = 0;
2221 }
drh6019e162001-07-02 17:51:45 +00002222 }else{
2223 pCur->bSkipNext = 1;
2224 }
drh14acc042001-06-10 19:56:58 +00002225 rc = balance(pCur->pBt, pPage, pCur);
drh5e2f8b92001-05-28 00:41:15 +00002226 }
drh5e2f8b92001-05-28 00:41:15 +00002227 return rc;
drh3b7511c2001-05-26 13:15:44 +00002228}
drh8b2f49b2001-06-08 00:21:52 +00002229
2230/*
drhc6b52df2002-01-04 03:09:29 +00002231** Create a new BTree table. Write into *piTable the page
2232** number for the root page of the new table.
2233**
2234** In the current implementation, BTree tables and BTree indices are the
2235** the same. But in the future, we may change this so that BTree tables
2236** are restricted to having a 4-byte integer key and arbitrary data and
2237** BTree indices are restricted to having an arbitrary key and no data.
drh8b2f49b2001-06-08 00:21:52 +00002238*/
2239int sqliteBtreeCreateTable(Btree *pBt, int *piTable){
2240 MemPage *pRoot;
2241 Pgno pgnoRoot;
2242 int rc;
2243 if( !pBt->inTrans ){
2244 return SQLITE_ERROR; /* Must start a transaction first */
2245 }
2246 rc = allocatePage(pBt, &pRoot, &pgnoRoot);
2247 if( rc ) return rc;
drh6019e162001-07-02 17:51:45 +00002248 assert( sqlitepager_iswriteable(pRoot) );
drh8b2f49b2001-06-08 00:21:52 +00002249 zeroPage(pRoot);
2250 sqlitepager_unref(pRoot);
2251 *piTable = (int)pgnoRoot;
2252 return SQLITE_OK;
2253}
2254
2255/*
drhc6b52df2002-01-04 03:09:29 +00002256** Create a new BTree index. Write into *piTable the page
2257** number for the root page of the new index.
2258**
2259** In the current implementation, BTree tables and BTree indices are the
2260** the same. But in the future, we may change this so that BTree tables
2261** are restricted to having a 4-byte integer key and arbitrary data and
2262** BTree indices are restricted to having an arbitrary key and no data.
2263*/
2264int sqliteBtreeCreateIndex(Btree *pBt, int *piIndex){
2265 MemPage *pRoot;
2266 Pgno pgnoRoot;
2267 int rc;
2268 if( !pBt->inTrans ){
2269 return SQLITE_ERROR; /* Must start a transaction first */
2270 }
2271 rc = allocatePage(pBt, &pRoot, &pgnoRoot);
2272 if( rc ) return rc;
2273 assert( sqlitepager_iswriteable(pRoot) );
2274 zeroPage(pRoot);
2275 sqlitepager_unref(pRoot);
2276 *piIndex = (int)pgnoRoot;
2277 return SQLITE_OK;
2278}
2279
2280/*
drh8b2f49b2001-06-08 00:21:52 +00002281** Erase the given database page and all its children. Return
2282** the page to the freelist.
2283*/
drh2aa679f2001-06-25 02:11:07 +00002284static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
drh8b2f49b2001-06-08 00:21:52 +00002285 MemPage *pPage;
2286 int rc;
drh8b2f49b2001-06-08 00:21:52 +00002287 Cell *pCell;
2288 int idx;
2289
drh8c42ca92001-06-22 19:15:00 +00002290 rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage);
drh8b2f49b2001-06-08 00:21:52 +00002291 if( rc ) return rc;
drh6019e162001-07-02 17:51:45 +00002292 rc = sqlitepager_write(pPage);
2293 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00002294 idx = pPage->u.hdr.firstCell;
drh8b2f49b2001-06-08 00:21:52 +00002295 while( idx>0 ){
drh14acc042001-06-10 19:56:58 +00002296 pCell = (Cell*)&pPage->u.aDisk[idx];
drh8b2f49b2001-06-08 00:21:52 +00002297 idx = pCell->h.iNext;
2298 if( pCell->h.leftChild ){
drh2aa679f2001-06-25 02:11:07 +00002299 rc = clearDatabasePage(pBt, pCell->h.leftChild, 1);
drh8b2f49b2001-06-08 00:21:52 +00002300 if( rc ) return rc;
2301 }
drh8c42ca92001-06-22 19:15:00 +00002302 rc = clearCell(pBt, pCell);
drh8b2f49b2001-06-08 00:21:52 +00002303 if( rc ) return rc;
2304 }
drh2aa679f2001-06-25 02:11:07 +00002305 if( pPage->u.hdr.rightChild ){
2306 rc = clearDatabasePage(pBt, pPage->u.hdr.rightChild, 1);
2307 if( rc ) return rc;
2308 }
2309 if( freePageFlag ){
2310 rc = freePage(pBt, pPage, pgno);
2311 }else{
2312 zeroPage(pPage);
2313 }
drhdd793422001-06-28 01:54:48 +00002314 sqlitepager_unref(pPage);
drh2aa679f2001-06-25 02:11:07 +00002315 return rc;
drh8b2f49b2001-06-08 00:21:52 +00002316}
2317
2318/*
2319** Delete all information from a single table in the database.
2320*/
2321int sqliteBtreeClearTable(Btree *pBt, int iTable){
2322 int rc;
drh5a2c2c22001-11-21 02:21:11 +00002323 ptr nLock;
drh8b2f49b2001-06-08 00:21:52 +00002324 if( !pBt->inTrans ){
2325 return SQLITE_ERROR; /* Must start a transaction first */
2326 }
drh5a2c2c22001-11-21 02:21:11 +00002327 nLock = (ptr)sqliteHashFind(&pBt->locks, 0, iTable);
drhecdc7532001-09-23 02:35:53 +00002328 if( nLock ){
2329 return SQLITE_LOCKED;
2330 }
drh2aa679f2001-06-25 02:11:07 +00002331 rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
drh8b2f49b2001-06-08 00:21:52 +00002332 if( rc ){
2333 sqliteBtreeRollback(pBt);
drh8b2f49b2001-06-08 00:21:52 +00002334 }
drh8c42ca92001-06-22 19:15:00 +00002335 return rc;
drh8b2f49b2001-06-08 00:21:52 +00002336}
2337
2338/*
2339** Erase all information in a table and add the root of the table to
2340** the freelist. Except, the root of the principle table (the one on
2341** page 2) is never added to the freelist.
2342*/
2343int sqliteBtreeDropTable(Btree *pBt, int iTable){
2344 int rc;
2345 MemPage *pPage;
2346 if( !pBt->inTrans ){
2347 return SQLITE_ERROR; /* Must start a transaction first */
2348 }
drh8c42ca92001-06-22 19:15:00 +00002349 rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
drh2aa679f2001-06-25 02:11:07 +00002350 if( rc ) return rc;
2351 rc = sqliteBtreeClearTable(pBt, iTable);
2352 if( rc ) return rc;
2353 if( iTable>2 ){
2354 rc = freePage(pBt, pPage, iTable);
2355 }else{
2356 zeroPage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00002357 }
drhdd793422001-06-28 01:54:48 +00002358 sqlitepager_unref(pPage);
drh8b2f49b2001-06-08 00:21:52 +00002359 return rc;
2360}
2361
2362/*
2363** Read the meta-information out of a database file.
2364*/
2365int sqliteBtreeGetMeta(Btree *pBt, int *aMeta){
2366 PageOne *pP1;
2367 int rc;
2368
drh8c42ca92001-06-22 19:15:00 +00002369 rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1);
drh8b2f49b2001-06-08 00:21:52 +00002370 if( rc ) return rc;
drh2aa679f2001-06-25 02:11:07 +00002371 aMeta[0] = pP1->nFree;
2372 memcpy(&aMeta[1], pP1->aMeta, sizeof(pP1->aMeta));
drh8b2f49b2001-06-08 00:21:52 +00002373 sqlitepager_unref(pP1);
2374 return SQLITE_OK;
2375}
2376
2377/*
2378** Write meta-information back into the database.
2379*/
2380int sqliteBtreeUpdateMeta(Btree *pBt, int *aMeta){
2381 PageOne *pP1;
2382 int rc;
2383 if( !pBt->inTrans ){
2384 return SQLITE_ERROR; /* Must start a transaction first */
2385 }
2386 pP1 = pBt->page1;
2387 rc = sqlitepager_write(pP1);
drh2aa679f2001-06-25 02:11:07 +00002388 if( rc ) return rc;
2389 memcpy(pP1->aMeta, &aMeta[1], sizeof(pP1->aMeta));
drh8b2f49b2001-06-08 00:21:52 +00002390 return SQLITE_OK;
2391}
drh8c42ca92001-06-22 19:15:00 +00002392
drh5eddca62001-06-30 21:53:53 +00002393/******************************************************************************
2394** The complete implementation of the BTree subsystem is above this line.
2395** All the code the follows is for testing and troubleshooting the BTree
2396** subsystem. None of the code that follows is used during normal operation.
2397** All of the following code is omitted unless the library is compiled with
2398** the -DSQLITE_TEST=1 compiler option.
2399******************************************************************************/
drh5edc3122001-09-13 21:53:09 +00002400#if 1
drh5eddca62001-06-30 21:53:53 +00002401
drh8c42ca92001-06-22 19:15:00 +00002402/*
2403** Print a disassembly of the given page on standard output. This routine
2404** is used for debugging and testing only.
2405*/
drh6019e162001-07-02 17:51:45 +00002406int sqliteBtreePageDump(Btree *pBt, int pgno, int recursive){
drh8c42ca92001-06-22 19:15:00 +00002407 int rc;
2408 MemPage *pPage;
2409 int i, j;
2410 int nFree;
2411 u16 idx;
2412 char range[20];
2413 unsigned char payload[20];
2414 rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage);
2415 if( rc ){
2416 return rc;
2417 }
drh6019e162001-07-02 17:51:45 +00002418 if( recursive ) printf("PAGE %d:\n", pgno);
drh8c42ca92001-06-22 19:15:00 +00002419 i = 0;
2420 idx = pPage->u.hdr.firstCell;
2421 while( idx>0 && idx<=SQLITE_PAGE_SIZE-MIN_CELL_SIZE ){
2422 Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
2423 int sz = cellSize(pCell);
2424 sprintf(range,"%d..%d", idx, idx+sz-1);
drh80ff32f2001-11-04 18:32:46 +00002425 sz = NKEY(pCell->h) + NDATA(pCell->h);
drh8c42ca92001-06-22 19:15:00 +00002426 if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
2427 memcpy(payload, pCell->aPayload, sz);
2428 for(j=0; j<sz; j++){
2429 if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
2430 }
2431 payload[sz] = 0;
2432 printf(
drh6019e162001-07-02 17:51:45 +00002433 "cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n",
drh80ff32f2001-11-04 18:32:46 +00002434 i, range, (int)pCell->h.leftChild, NKEY(pCell->h), NDATA(pCell->h),
drh2aa679f2001-06-25 02:11:07 +00002435 payload
drh8c42ca92001-06-22 19:15:00 +00002436 );
drh6019e162001-07-02 17:51:45 +00002437 if( pPage->isInit && pPage->apCell[i]!=pCell ){
drh2aa679f2001-06-25 02:11:07 +00002438 printf("**** apCell[%d] does not match on prior entry ****\n", i);
2439 }
drh7c717f72001-06-24 20:39:41 +00002440 i++;
drh8c42ca92001-06-22 19:15:00 +00002441 idx = pCell->h.iNext;
2442 }
2443 if( idx!=0 ){
2444 printf("ERROR: next cell index out of range: %d\n", idx);
2445 }
2446 printf("right_child: %d\n", pPage->u.hdr.rightChild);
2447 nFree = 0;
2448 i = 0;
2449 idx = pPage->u.hdr.firstFree;
2450 while( idx>0 && idx<SQLITE_PAGE_SIZE ){
2451 FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx];
2452 sprintf(range,"%d..%d", idx, idx+p->iSize-1);
2453 nFree += p->iSize;
2454 printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
2455 i, range, p->iSize, nFree);
2456 idx = p->iNext;
drh2aa679f2001-06-25 02:11:07 +00002457 i++;
drh8c42ca92001-06-22 19:15:00 +00002458 }
2459 if( idx!=0 ){
2460 printf("ERROR: next freeblock index out of range: %d\n", idx);
2461 }
drh6019e162001-07-02 17:51:45 +00002462 if( recursive && pPage->u.hdr.rightChild!=0 ){
2463 idx = pPage->u.hdr.firstCell;
2464 while( idx>0 && idx<SQLITE_PAGE_SIZE-MIN_CELL_SIZE ){
2465 Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
2466 sqliteBtreePageDump(pBt, pCell->h.leftChild, 1);
2467 idx = pCell->h.iNext;
2468 }
2469 sqliteBtreePageDump(pBt, pPage->u.hdr.rightChild, 1);
2470 }
drh8c42ca92001-06-22 19:15:00 +00002471 sqlitepager_unref(pPage);
2472 return SQLITE_OK;
2473}
drh8c42ca92001-06-22 19:15:00 +00002474
drh8c42ca92001-06-22 19:15:00 +00002475/*
drh2aa679f2001-06-25 02:11:07 +00002476** Fill aResult[] with information about the entry and page that the
2477** cursor is pointing to.
2478**
2479** aResult[0] = The page number
2480** aResult[1] = The entry number
2481** aResult[2] = Total number of entries on this page
2482** aResult[3] = Size of this entry
2483** aResult[4] = Number of free bytes on this page
2484** aResult[5] = Number of free blocks on the page
2485** aResult[6] = Page number of the left child of this entry
2486** aResult[7] = Page number of the right child for the whole page
drh5eddca62001-06-30 21:53:53 +00002487**
2488** This routine is used for testing and debugging only.
drh8c42ca92001-06-22 19:15:00 +00002489*/
2490int sqliteBtreeCursorDump(BtCursor *pCur, int *aResult){
drh2aa679f2001-06-25 02:11:07 +00002491 int cnt, idx;
2492 MemPage *pPage = pCur->pPage;
2493 aResult[0] = sqlitepager_pagenumber(pPage);
drh8c42ca92001-06-22 19:15:00 +00002494 aResult[1] = pCur->idx;
drh2aa679f2001-06-25 02:11:07 +00002495 aResult[2] = pPage->nCell;
2496 if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
2497 aResult[3] = cellSize(pPage->apCell[pCur->idx]);
2498 aResult[6] = pPage->apCell[pCur->idx]->h.leftChild;
2499 }else{
2500 aResult[3] = 0;
2501 aResult[6] = 0;
2502 }
2503 aResult[4] = pPage->nFree;
2504 cnt = 0;
2505 idx = pPage->u.hdr.firstFree;
2506 while( idx>0 && idx<SQLITE_PAGE_SIZE ){
2507 cnt++;
2508 idx = ((FreeBlk*)&pPage->u.aDisk[idx])->iNext;
2509 }
2510 aResult[5] = cnt;
2511 aResult[7] = pPage->u.hdr.rightChild;
drh8c42ca92001-06-22 19:15:00 +00002512 return SQLITE_OK;
2513}
drhdd793422001-06-28 01:54:48 +00002514
drhdd793422001-06-28 01:54:48 +00002515/*
drh5eddca62001-06-30 21:53:53 +00002516** Return the pager associated with a BTree. This routine is used for
2517** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00002518*/
2519Pager *sqliteBtreePager(Btree *pBt){
2520 return pBt->pPager;
2521}
drh5eddca62001-06-30 21:53:53 +00002522
2523/*
2524** This structure is passed around through all the sanity checking routines
2525** in order to keep track of some global state information.
2526*/
2527typedef struct SanityCheck SanityCheck;
2528struct SanityCheck {
drh100569d2001-10-02 13:01:48 +00002529 Btree *pBt; /* The tree being checked out */
2530 Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
2531 int nPage; /* Number of pages in the database */
2532 int *anRef; /* Number of times each page is referenced */
2533 int nTreePage; /* Number of BTree pages */
2534 int nByte; /* Number of bytes of data stored on BTree pages */
2535 char *zErrMsg; /* An error message. NULL of no errors seen. */
drh5eddca62001-06-30 21:53:53 +00002536};
2537
2538/*
2539** Append a message to the error message string.
2540*/
2541static void checkAppendMsg(SanityCheck *pCheck, char *zMsg1, char *zMsg2){
2542 if( pCheck->zErrMsg ){
2543 char *zOld = pCheck->zErrMsg;
2544 pCheck->zErrMsg = 0;
2545 sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, 0);
2546 sqliteFree(zOld);
2547 }else{
2548 sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, 0);
2549 }
2550}
2551
2552/*
2553** Add 1 to the reference count for page iPage. If this is the second
2554** reference to the page, add an error message to pCheck->zErrMsg.
2555** Return 1 if there are 2 ore more references to the page and 0 if
2556** if this is the first reference to the page.
2557**
2558** Also check that the page number is in bounds.
2559*/
2560static int checkRef(SanityCheck *pCheck, int iPage, char *zContext){
2561 if( iPage==0 ) return 1;
2562 if( iPage>pCheck->nPage ){
2563 char zBuf[100];
2564 sprintf(zBuf, "invalid page number %d", iPage);
2565 checkAppendMsg(pCheck, zContext, zBuf);
2566 return 1;
2567 }
2568 if( pCheck->anRef[iPage]==1 ){
2569 char zBuf[100];
2570 sprintf(zBuf, "2nd reference to page %d", iPage);
2571 checkAppendMsg(pCheck, zContext, zBuf);
2572 return 1;
2573 }
2574 return (pCheck->anRef[iPage]++)>1;
2575}
2576
2577/*
2578** Check the integrity of the freelist or of an overflow page list.
2579** Verify that the number of pages on the list is N.
2580*/
2581static void checkList(SanityCheck *pCheck, int iPage, int N, char *zContext){
2582 char zMsg[100];
2583 while( N-- ){
2584 OverflowPage *pOvfl;
2585 if( iPage<1 ){
2586 sprintf(zMsg, "%d pages missing from overflow list", N+1);
2587 checkAppendMsg(pCheck, zContext, zMsg);
2588 break;
2589 }
2590 if( checkRef(pCheck, iPage, zContext) ) break;
2591 if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
2592 sprintf(zMsg, "failed to get page %d", iPage);
2593 checkAppendMsg(pCheck, zContext, zMsg);
2594 break;
2595 }
2596 iPage = (int)pOvfl->iNext;
2597 sqlitepager_unref(pOvfl);
2598 }
2599}
2600
2601/*
2602** Do various sanity checks on a single page of a tree. Return
2603** the tree depth. Root pages return 0. Parents of root pages
2604** return 1, and so forth.
2605**
2606** These checks are done:
2607**
2608** 1. Make sure that cells and freeblocks do not overlap
2609** but combine to completely cover the page.
2610** 2. Make sure cell keys are in order.
2611** 3. Make sure no key is less than or equal to zLowerBound.
2612** 4. Make sure no key is greater than or equal to zUpperBound.
2613** 5. Check the integrity of overflow pages.
2614** 6. Recursively call checkTreePage on all children.
2615** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00002616** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00002617** the root of the tree.
2618*/
2619static int checkTreePage(
2620 SanityCheck *pCheck, /* Context for the sanity check */
2621 int iPage, /* Page number of the page to check */
2622 MemPage *pParent, /* Parent page */
2623 char *zParentContext, /* Parent context */
2624 char *zLowerBound, /* All keys should be greater than this, if not NULL */
2625 char *zUpperBound /* All keys should be less than this, if not NULL */
2626){
2627 MemPage *pPage;
2628 int i, rc, depth, d2, pgno;
2629 char *zKey1, *zKey2;
2630 BtCursor cur;
2631 char zMsg[100];
2632 char zContext[100];
2633 char hit[SQLITE_PAGE_SIZE];
2634
2635 /* Check that the page exists
2636 */
2637 if( iPage==0 ) return 0;
2638 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
2639 sprintf(zContext, "On tree page %d: ", iPage);
2640 if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){
2641 sprintf(zMsg, "unable to get the page. error code=%d", rc);
2642 checkAppendMsg(pCheck, zContext, zMsg);
2643 return 0;
2644 }
2645 if( (rc = initPage(pPage, (Pgno)iPage, pParent))!=0 ){
2646 sprintf(zMsg, "initPage() returns error code %d", rc);
2647 checkAppendMsg(pCheck, zContext, zMsg);
2648 sqlitepager_unref(pPage);
2649 return 0;
2650 }
2651
2652 /* Check out all the cells.
2653 */
2654 depth = 0;
2655 zKey1 = zLowerBound ? sqliteStrDup(zLowerBound) : 0;
2656 cur.pPage = pPage;
2657 cur.pBt = pCheck->pBt;
2658 for(i=0; i<pPage->nCell; i++){
2659 Cell *pCell = pPage->apCell[i];
2660 int sz;
2661
2662 /* Check payload overflow pages
2663 */
drh80ff32f2001-11-04 18:32:46 +00002664 sz = NKEY(pCell->h) + NDATA(pCell->h);
drh5eddca62001-06-30 21:53:53 +00002665 sprintf(zContext, "On page %d cell %d: ", iPage, i);
2666 if( sz>MX_LOCAL_PAYLOAD ){
2667 int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE;
2668 checkList(pCheck, pCell->ovfl, nPage, zContext);
2669 }
2670
2671 /* Check that keys are in the right order
2672 */
2673 cur.idx = i;
drh80ff32f2001-11-04 18:32:46 +00002674 zKey2 = sqliteMalloc( NKEY(pCell->h)+1 );
2675 getPayload(&cur, 0, NKEY(pCell->h), zKey2);
drh5eddca62001-06-30 21:53:53 +00002676 if( zKey1 && strcmp(zKey1,zKey2)>=0 ){
2677 checkAppendMsg(pCheck, zContext, "Key is out of order");
2678 }
2679
2680 /* Check sanity of left child page.
2681 */
2682 pgno = (int)pCell->h.leftChild;
2683 d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1, zKey2);
2684 if( i>0 && d2!=depth ){
2685 checkAppendMsg(pCheck, zContext, "Child page depth differs");
2686 }
2687 depth = d2;
2688 sqliteFree(zKey1);
2689 zKey1 = zKey2;
2690 }
2691 pgno = pPage->u.hdr.rightChild;
2692 sprintf(zContext, "On page %d at right child: ", iPage);
2693 checkTreePage(pCheck, pgno, pPage, zContext, zKey1, zUpperBound);
2694 sqliteFree(zKey1);
2695
2696 /* Check for complete coverage of the page
2697 */
2698 memset(hit, 0, sizeof(hit));
2699 memset(hit, 1, sizeof(PageHdr));
2700 for(i=pPage->u.hdr.firstCell; i>0 && i<SQLITE_PAGE_SIZE; ){
2701 Cell *pCell = (Cell*)&pPage->u.aDisk[i];
2702 int j;
2703 for(j=i+cellSize(pCell)-1; j>=i; j--) hit[j]++;
2704 i = pCell->h.iNext;
2705 }
2706 for(i=pPage->u.hdr.firstFree; i>0 && i<SQLITE_PAGE_SIZE; ){
2707 FreeBlk *pFBlk = (FreeBlk*)&pPage->u.aDisk[i];
2708 int j;
2709 for(j=i+pFBlk->iSize-1; j>=i; j--) hit[j]++;
2710 i = pFBlk->iNext;
2711 }
2712 for(i=0; i<SQLITE_PAGE_SIZE; i++){
2713 if( hit[i]==0 ){
2714 sprintf(zMsg, "Unused space at byte %d of page %d", i, iPage);
2715 checkAppendMsg(pCheck, zMsg, 0);
2716 break;
2717 }else if( hit[i]>1 ){
2718 sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
2719 checkAppendMsg(pCheck, zMsg, 0);
2720 break;
2721 }
2722 }
2723
2724 /* Check that free space is kept to a minimum
2725 */
drh6019e162001-07-02 17:51:45 +00002726#if 0
2727 if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_PAGE_SIZE/4 ){
drh5eddca62001-06-30 21:53:53 +00002728 sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree,
2729 SQLITE_PAGE_SIZE/3);
2730 checkAppendMsg(pCheck, zContext, zMsg);
2731 }
drh6019e162001-07-02 17:51:45 +00002732#endif
2733
2734 /* Update freespace totals.
2735 */
2736 pCheck->nTreePage++;
2737 pCheck->nByte += USABLE_SPACE - pPage->nFree;
drh5eddca62001-06-30 21:53:53 +00002738
2739 sqlitepager_unref(pPage);
2740 return depth;
2741}
2742
2743/*
2744** This routine does a complete check of the given BTree file. aRoot[] is
2745** an array of pages numbers were each page number is the root page of
2746** a table. nRoot is the number of entries in aRoot.
2747**
2748** If everything checks out, this routine returns NULL. If something is
2749** amiss, an error message is written into memory obtained from malloc()
2750** and a pointer to that error message is returned. The calling function
2751** is responsible for freeing the error message when it is done.
2752*/
2753char *sqliteBtreeSanityCheck(Btree *pBt, int *aRoot, int nRoot){
2754 int i;
2755 int nRef;
2756 SanityCheck sCheck;
2757
2758 nRef = *sqlitepager_stats(pBt->pPager);
drhefc251d2001-07-01 22:12:01 +00002759 if( lockBtree(pBt)!=SQLITE_OK ){
2760 return sqliteStrDup("Unable to acquire a read lock on the database");
2761 }
drh5eddca62001-06-30 21:53:53 +00002762 sCheck.pBt = pBt;
2763 sCheck.pPager = pBt->pPager;
2764 sCheck.nPage = sqlitepager_pagecount(sCheck.pPager);
2765 sCheck.anRef = sqliteMalloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
2766 sCheck.anRef[1] = 1;
2767 for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
2768 sCheck.zErrMsg = 0;
2769
2770 /* Check the integrity of the freelist
2771 */
2772 checkList(&sCheck, pBt->page1->freeList, pBt->page1->nFree,"Main freelist: ");
2773
2774 /* Check all the tables.
2775 */
2776 for(i=0; i<nRoot; i++){
2777 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0, 0);
2778 }
2779
2780 /* Make sure every page in the file is referenced
2781 */
2782 for(i=1; i<=sCheck.nPage; i++){
2783 if( sCheck.anRef[i]==0 ){
2784 char zBuf[100];
2785 sprintf(zBuf, "Page %d is never used", i);
2786 checkAppendMsg(&sCheck, zBuf, 0);
2787 }
2788 }
2789
2790 /* Make sure this analysis did not leave any unref() pages
2791 */
drh5e00f6c2001-09-13 13:46:56 +00002792 unlockBtreeIfUnused(pBt);
drh5eddca62001-06-30 21:53:53 +00002793 if( nRef != *sqlitepager_stats(pBt->pPager) ){
2794 char zBuf[100];
2795 sprintf(zBuf,
2796 "Outstanding page count goes from %d to %d during this analysis",
2797 nRef, *sqlitepager_stats(pBt->pPager)
2798 );
2799 checkAppendMsg(&sCheck, zBuf, 0);
2800 }
2801
2802 /* Clean up and report errors.
2803 */
2804 sqliteFree(sCheck.anRef);
2805 return sCheck.zErrMsg;
2806}
2807
2808#endif /* SQLITE_TEST */