blob: 96140d68c63e21daa47d531ef0831bf52d18a66a [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
165 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000179 }
180 }
181 }else{
182 iTab = iRoot;
183 }
184
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
192 ){
193 return 1;
194 }
195 }
196
197 /* Failed to find the required lock. */
198 return 0;
199}
drh0ee3dbe2009-10-16 15:05:18 +0000200#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000201
drh0ee3dbe2009-10-16 15:05:18 +0000202#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000203/*
drh0ee3dbe2009-10-16 15:05:18 +0000204**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000205**
drh0ee3dbe2009-10-16 15:05:18 +0000206** Return true if it would be illegal for pBtree to write into the
207** table or index rooted at iRoot because other shared connections are
208** simultaneously reading that same table or index.
209**
210** It is illegal for pBtree to write if some other Btree object that
211** shares the same BtShared object is currently reading or writing
212** the iRoot table. Except, if the other Btree object has the
213** read-uncommitted flag set, then it is OK for the other object to
214** have a read cursor.
215**
216** For example, before writing to any part of the table or index
217** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000218**
219** assert( !hasReadConflicts(pBtree, iRoot) );
220*/
221static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227 ){
228 return 1;
229 }
230 }
231 return 0;
232}
233#endif /* #ifdef SQLITE_DEBUG */
234
danielk1977da184232006-01-05 11:34:32 +0000235/*
drh0ee3dbe2009-10-16 15:05:18 +0000236** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000237** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000238** SQLITE_OK if the lock may be obtained (by calling
239** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000240*/
drhc25eabe2009-02-24 18:57:31 +0000241static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
244
drh1fee73e2007-08-29 04:00:57 +0000245 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000249
danielk19775b413d72009-04-01 09:41:54 +0000250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
253 */
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256
drh0ee3dbe2009-10-16 15:05:18 +0000257 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000258 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000259 return SQLITE_OK;
260 }
261
danielk1977641b0f42007-12-21 04:47:25 +0000262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
264 */
drhc9166342012-01-05 23:32:06 +0000265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000268 }
269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
273 **
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275 **
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
279 */
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000286 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000287 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000288 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000289 }
290 }
291 return SQLITE_OK;
292}
drhe53831d2007-08-17 01:14:38 +0000293#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000294
drhe53831d2007-08-17 01:14:38 +0000295#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000296/*
297** Add a lock on the table with root-page iTable to the shared-btree used
298** by Btree handle p. Parameter eLock must be either READ_LOCK or
299** WRITE_LOCK.
300**
danielk19779d104862009-07-09 08:27:14 +0000301** This function assumes the following:
302**
drh0ee3dbe2009-10-16 15:05:18 +0000303** (a) The specified Btree object p is connected to a sharable
304** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000305**
drh0ee3dbe2009-10-16 15:05:18 +0000306** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000307** with the requested lock (i.e. querySharedCacheTableLock() has
308** already been called and returned SQLITE_OK).
309**
310** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000312*/
drhc25eabe2009-02-24 18:57:31 +0000313static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
317
drh1fee73e2007-08-29 04:00:57 +0000318 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000321
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327
danielk19779d104862009-07-09 08:27:14 +0000328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000332
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
338 }
339 }
340
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
343 */
344 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( !pLock ){
347 return SQLITE_NOMEM;
348 }
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
353 }
354
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
358 */
359 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
362 }
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 return SQLITE_OK;
365}
drhe53831d2007-08-17 01:14:38 +0000366#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000367
drhe53831d2007-08-17 01:14:38 +0000368#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000369/*
drhc25eabe2009-02-24 18:57:31 +0000370** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000371** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000372**
drh0ee3dbe2009-10-16 15:05:18 +0000373** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000374** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000375** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000376*/
drhc25eabe2009-02-24 18:57:31 +0000377static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000380
drh1fee73e2007-08-29 04:00:57 +0000381 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000382 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000383 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000384
danielk1977aef0bf62005-12-30 16:28:01 +0000385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000388 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
394 }
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }else{
396 ppIter = &pLock->pNext;
397 }
398 }
danielk1977641b0f42007-12-21 04:47:25 +0000399
drhc9166342012-01-05 23:32:06 +0000400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000404 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000405 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000409 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000410 **
drhc9166342012-01-05 23:32:06 +0000411 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000412 ** be zero already. So this next line is harmless in that case.
413 */
drhc9166342012-01-05 23:32:06 +0000414 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000415 }
danielk1977aef0bf62005-12-30 16:28:01 +0000416}
danielk197794b30732009-07-02 17:21:57 +0000417
danielk1977e0d9e6f2009-07-03 16:25:06 +0000418/*
drh0ee3dbe2009-10-16 15:05:18 +0000419** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000420*/
danielk197794b30732009-07-02 17:21:57 +0000421static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
430 }
431 }
432}
433
danielk1977aef0bf62005-12-30 16:28:01 +0000434#endif /* SQLITE_OMIT_SHARED_CACHE */
435
drh980b1a72006-08-16 16:42:48 +0000436static void releasePage(MemPage *pPage); /* Forward reference */
437
drh1fee73e2007-08-29 04:00:57 +0000438/*
drh0ee3dbe2009-10-16 15:05:18 +0000439***** This routine is used inside of assert() only ****
440**
441** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000442*/
drh0ee3dbe2009-10-16 15:05:18 +0000443#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000444static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000445 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000446}
447#endif
448
449
danielk197792d4d7a2007-05-04 12:05:56 +0000450#ifndef SQLITE_OMIT_INCRBLOB
451/*
452** Invalidate the overflow page-list cache for cursor pCur, if any.
453*/
454static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000455 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000456 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000457 pCur->aOverflow = 0;
458}
459
460/*
461** Invalidate the overflow page-list cache for all cursors opened
462** on the shared btree structure pBt.
463*/
464static void invalidateAllOverflowCache(BtShared *pBt){
465 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000466 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000467 for(p=pBt->pCursor; p; p=p->pNext){
468 invalidateOverflowCache(p);
469 }
470}
danielk197796d48e92009-06-29 06:00:37 +0000471
472/*
473** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000474** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000475** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000476**
477** If argument isClearTable is true, then the entire contents of the
478** table is about to be deleted. In this case invalidate all incrblob
479** cursors open on any row within the table with root-page pgnoRoot.
480**
481** Otherwise, if argument isClearTable is false, then the row with
482** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000483** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000484*/
485static void invalidateIncrblobCursors(
486 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000487 i64 iRow, /* The rowid that might be changing */
488 int isClearTable /* True if all rows are being deleted */
489){
490 BtCursor *p;
491 BtShared *pBt = pBtree->pBt;
492 assert( sqlite3BtreeHoldsMutex(pBtree) );
493 for(p=pBt->pCursor; p; p=p->pNext){
494 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
495 p->eState = CURSOR_INVALID;
496 }
497 }
498}
499
danielk197792d4d7a2007-05-04 12:05:56 +0000500#else
drh0ee3dbe2009-10-16 15:05:18 +0000501 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000502 #define invalidateOverflowCache(x)
503 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000504 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000505#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000506
drh980b1a72006-08-16 16:42:48 +0000507/*
danielk1977bea2a942009-01-20 17:06:27 +0000508** Set bit pgno of the BtShared.pHasContent bitvec. This is called
509** when a page that previously contained data becomes a free-list leaf
510** page.
511**
512** The BtShared.pHasContent bitvec exists to work around an obscure
513** bug caused by the interaction of two useful IO optimizations surrounding
514** free-list leaf pages:
515**
516** 1) When all data is deleted from a page and the page becomes
517** a free-list leaf page, the page is not written to the database
518** (as free-list leaf pages contain no meaningful data). Sometimes
519** such a page is not even journalled (as it will not be modified,
520** why bother journalling it?).
521**
522** 2) When a free-list leaf page is reused, its content is not read
523** from the database or written to the journal file (why should it
524** be, if it is not at all meaningful?).
525**
526** By themselves, these optimizations work fine and provide a handy
527** performance boost to bulk delete or insert operations. However, if
528** a page is moved to the free-list and then reused within the same
529** transaction, a problem comes up. If the page is not journalled when
530** it is moved to the free-list and it is also not journalled when it
531** is extracted from the free-list and reused, then the original data
532** may be lost. In the event of a rollback, it may not be possible
533** to restore the database to its original configuration.
534**
535** The solution is the BtShared.pHasContent bitvec. Whenever a page is
536** moved to become a free-list leaf page, the corresponding bit is
537** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000538** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000539** set in BtShared.pHasContent. The contents of the bitvec are cleared
540** at the end of every transaction.
541*/
542static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
543 int rc = SQLITE_OK;
544 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000545 assert( pgno<=pBt->nPage );
546 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000547 if( !pBt->pHasContent ){
548 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000549 }
550 }
551 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
552 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
553 }
554 return rc;
555}
556
557/*
558** Query the BtShared.pHasContent vector.
559**
560** This function is called when a free-list leaf page is removed from the
561** free-list for reuse. It returns false if it is safe to retrieve the
562** page from the pager layer with the 'no-content' flag set. True otherwise.
563*/
564static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
565 Bitvec *p = pBt->pHasContent;
566 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
567}
568
569/*
570** Clear (destroy) the BtShared.pHasContent bitvec. This should be
571** invoked at the conclusion of each write-transaction.
572*/
573static void btreeClearHasContent(BtShared *pBt){
574 sqlite3BitvecDestroy(pBt->pHasContent);
575 pBt->pHasContent = 0;
576}
577
578/*
drh138eeeb2013-03-27 03:15:23 +0000579** Release all of the apPage[] pages for a cursor.
580*/
581static void btreeReleaseAllCursorPages(BtCursor *pCur){
582 int i;
583 for(i=0; i<=pCur->iPage; i++){
584 releasePage(pCur->apPage[i]);
585 pCur->apPage[i] = 0;
586 }
587 pCur->iPage = -1;
588}
589
590
591/*
drh980b1a72006-08-16 16:42:48 +0000592** Save the current cursor position in the variables BtCursor.nKey
593** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000594**
595** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
596** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000597*/
598static int saveCursorPosition(BtCursor *pCur){
599 int rc;
600
601 assert( CURSOR_VALID==pCur->eState );
602 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000603 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000604
605 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000606 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000607
608 /* If this is an intKey table, then the above call to BtreeKeySize()
609 ** stores the integer key in pCur->nKey. In this case this value is
610 ** all that is required. Otherwise, if pCur is not open on an intKey
611 ** table, then malloc space for and store the pCur->nKey bytes of key
612 ** data.
613 */
drh4c301aa2009-07-15 17:25:45 +0000614 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000615 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000616 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000617 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000618 if( rc==SQLITE_OK ){
619 pCur->pKey = pKey;
620 }else{
drh17435752007-08-16 04:30:38 +0000621 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000622 }
623 }else{
624 rc = SQLITE_NOMEM;
625 }
626 }
danielk197771d5d2c2008-09-29 11:49:47 +0000627 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000628
629 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000630 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000631 pCur->eState = CURSOR_REQUIRESEEK;
632 }
633
danielk197792d4d7a2007-05-04 12:05:56 +0000634 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000635 return rc;
636}
637
638/*
drh0ee3dbe2009-10-16 15:05:18 +0000639** Save the positions of all cursors (except pExcept) that are open on
640** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000641** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
642*/
643static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
644 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000645 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000646 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000647 for(p=pBt->pCursor; p; p=p->pNext){
drh138eeeb2013-03-27 03:15:23 +0000648 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
649 if( p->eState==CURSOR_VALID ){
650 int rc = saveCursorPosition(p);
651 if( SQLITE_OK!=rc ){
652 return rc;
653 }
654 }else{
655 testcase( p->iPage>0 );
656 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000657 }
658 }
659 }
660 return SQLITE_OK;
661}
662
663/*
drhbf700f32007-03-31 02:36:44 +0000664** Clear the current cursor position.
665*/
danielk1977be51a652008-10-08 17:58:48 +0000666void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000667 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000668 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000669 pCur->pKey = 0;
670 pCur->eState = CURSOR_INVALID;
671}
672
673/*
danielk19773509a652009-07-06 18:56:13 +0000674** In this version of BtreeMoveto, pKey is a packed index record
675** such as is generated by the OP_MakeRecord opcode. Unpack the
676** record and then call BtreeMovetoUnpacked() to do the work.
677*/
678static int btreeMoveto(
679 BtCursor *pCur, /* Cursor open on the btree to be searched */
680 const void *pKey, /* Packed key if the btree is an index */
681 i64 nKey, /* Integer key for tables. Size of pKey for indices */
682 int bias, /* Bias search to the high end */
683 int *pRes /* Write search results here */
684){
685 int rc; /* Status code */
686 UnpackedRecord *pIdxKey; /* Unpacked index key */
687 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000688 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000689
690 if( pKey ){
691 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000692 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
693 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
694 );
danielk19773509a652009-07-06 18:56:13 +0000695 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000696 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000697 }else{
698 pIdxKey = 0;
699 }
700 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000701 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000702 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000703 }
704 return rc;
705}
706
707/*
drh980b1a72006-08-16 16:42:48 +0000708** Restore the cursor to the position it was in (or as close to as possible)
709** when saveCursorPosition() was called. Note that this call deletes the
710** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000711** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000712** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000713*/
danielk197730548662009-07-09 05:07:37 +0000714static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000715 int rc;
drh1fee73e2007-08-29 04:00:57 +0000716 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000717 assert( pCur->eState>=CURSOR_REQUIRESEEK );
718 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000719 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000720 }
drh980b1a72006-08-16 16:42:48 +0000721 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000722 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000723 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000724 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000725 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000726 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000727 }
728 return rc;
729}
730
drha3460582008-07-11 21:02:53 +0000731#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000732 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000733 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000734 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000735
drha3460582008-07-11 21:02:53 +0000736/*
737** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000738** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000739** at is deleted out from under them.
740**
741** This routine returns an error code if something goes wrong. The
742** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
743*/
744int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
745 int rc;
746
747 rc = restoreCursorPosition(pCur);
748 if( rc ){
749 *pHasMoved = 1;
750 return rc;
751 }
drh4c301aa2009-07-15 17:25:45 +0000752 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000753 *pHasMoved = 1;
754 }else{
755 *pHasMoved = 0;
756 }
757 return SQLITE_OK;
758}
759
danielk1977599fcba2004-11-08 07:13:13 +0000760#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000761/*
drha3152892007-05-05 11:48:52 +0000762** Given a page number of a regular database page, return the page
763** number for the pointer-map page that contains the entry for the
764** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000765**
766** Return 0 (not a valid page) for pgno==1 since there is
767** no pointer map associated with page 1. The integrity_check logic
768** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000769*/
danielk1977266664d2006-02-10 08:24:21 +0000770static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000771 int nPagesPerMapPage;
772 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000773 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000774 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000775 nPagesPerMapPage = (pBt->usableSize/5)+1;
776 iPtrMap = (pgno-2)/nPagesPerMapPage;
777 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000778 if( ret==PENDING_BYTE_PAGE(pBt) ){
779 ret++;
780 }
781 return ret;
782}
danielk1977a19df672004-11-03 11:37:07 +0000783
danielk1977afcdd022004-10-31 16:25:42 +0000784/*
danielk1977afcdd022004-10-31 16:25:42 +0000785** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000786**
787** This routine updates the pointer map entry for page number 'key'
788** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000789**
790** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
791** a no-op. If an error occurs, the appropriate error code is written
792** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000793*/
drh98add2e2009-07-20 17:11:49 +0000794static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000795 DbPage *pDbPage; /* The pointer map page */
796 u8 *pPtrmap; /* The pointer map data */
797 Pgno iPtrmap; /* The pointer map page number */
798 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000799 int rc; /* Return code from subfunctions */
800
801 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000802
drh1fee73e2007-08-29 04:00:57 +0000803 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000804 /* The master-journal page number must never be used as a pointer map page */
805 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
806
danielk1977ac11ee62005-01-15 12:45:51 +0000807 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000808 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000809 *pRC = SQLITE_CORRUPT_BKPT;
810 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000811 }
danielk1977266664d2006-02-10 08:24:21 +0000812 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000813 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000814 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000815 *pRC = rc;
816 return;
danielk1977afcdd022004-10-31 16:25:42 +0000817 }
danielk19778c666b12008-07-18 09:34:57 +0000818 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000819 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000820 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000821 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000822 }
drhfc243732011-05-17 15:21:56 +0000823 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000824 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000825
drh615ae552005-01-16 23:21:00 +0000826 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
827 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000828 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000829 if( rc==SQLITE_OK ){
830 pPtrmap[offset] = eType;
831 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000832 }
danielk1977afcdd022004-10-31 16:25:42 +0000833 }
834
drh4925a552009-07-07 11:39:58 +0000835ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000836 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000837}
838
839/*
840** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000841**
842** This routine retrieves the pointer map entry for page 'key', writing
843** the type and parent page number to *pEType and *pPgno respectively.
844** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000845*/
danielk1977aef0bf62005-12-30 16:28:01 +0000846static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000847 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000848 int iPtrmap; /* Pointer map page index */
849 u8 *pPtrmap; /* Pointer map page data */
850 int offset; /* Offset of entry in pointer map */
851 int rc;
852
drh1fee73e2007-08-29 04:00:57 +0000853 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000854
danielk1977266664d2006-02-10 08:24:21 +0000855 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000856 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000857 if( rc!=0 ){
858 return rc;
859 }
danielk19773b8a05f2007-03-19 17:44:26 +0000860 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000861
danielk19778c666b12008-07-18 09:34:57 +0000862 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000863 if( offset<0 ){
864 sqlite3PagerUnref(pDbPage);
865 return SQLITE_CORRUPT_BKPT;
866 }
867 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000868 assert( pEType!=0 );
869 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000870 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000871
danielk19773b8a05f2007-03-19 17:44:26 +0000872 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000873 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000874 return SQLITE_OK;
875}
876
danielk197785d90ca2008-07-19 14:25:15 +0000877#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000878 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000879 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000880 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000881#endif
danielk1977afcdd022004-10-31 16:25:42 +0000882
drh0d316a42002-08-11 20:10:47 +0000883/*
drh271efa52004-05-30 19:19:05 +0000884** Given a btree page and a cell index (0 means the first cell on
885** the page, 1 means the second cell, and so forth) return a pointer
886** to the cell content.
887**
888** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000889*/
drh1688c862008-07-18 02:44:17 +0000890#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000891 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000892#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
893
drh43605152004-05-29 21:46:49 +0000894
895/*
drh93a960a2008-07-10 00:32:42 +0000896** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000897** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000898*/
899static u8 *findOverflowCell(MemPage *pPage, int iCell){
900 int i;
drh1fee73e2007-08-29 04:00:57 +0000901 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000902 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000903 int k;
drh2cbd78b2012-02-02 19:37:18 +0000904 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000905 if( k<=iCell ){
906 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000907 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000908 }
909 iCell--;
910 }
911 }
danielk19771cc5ed82007-05-16 17:28:43 +0000912 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000913}
914
915/*
916** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000917** are two versions of this function. btreeParseCell() takes a
918** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000919** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000920**
921** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000922** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000923*/
danielk197730548662009-07-09 05:07:37 +0000924static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000925 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000926 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000927 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000928){
drhf49661a2008-12-10 16:45:50 +0000929 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000930 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000931
drh1fee73e2007-08-29 04:00:57 +0000932 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000933
drh43605152004-05-29 21:46:49 +0000934 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000935 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000936 n = pPage->childPtrSize;
937 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000938 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000939 if( pPage->hasData ){
940 n += getVarint32(&pCell[n], nPayload);
941 }else{
942 nPayload = 0;
943 }
drh1bd10f82008-12-10 21:19:56 +0000944 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000945 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000946 }else{
drh79df1f42008-07-18 00:57:33 +0000947 pInfo->nData = 0;
948 n += getVarint32(&pCell[n], nPayload);
949 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000950 }
drh72365832007-03-06 15:53:44 +0000951 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000952 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000953 testcase( nPayload==pPage->maxLocal );
954 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000955 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000956 /* This is the (easy) common case where the entire payload fits
957 ** on the local page. No overflow is required.
958 */
drh41692e92011-01-25 04:34:51 +0000959 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000960 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000961 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000962 }else{
drh271efa52004-05-30 19:19:05 +0000963 /* If the payload will not fit completely on the local page, we have
964 ** to decide how much to store locally and how much to spill onto
965 ** overflow pages. The strategy is to minimize the amount of unused
966 ** space on overflow pages while keeping the amount of local storage
967 ** in between minLocal and maxLocal.
968 **
969 ** Warning: changing the way overflow payload is distributed in any
970 ** way will result in an incompatible file format.
971 */
972 int minLocal; /* Minimum amount of payload held locally */
973 int maxLocal; /* Maximum amount of payload held locally */
974 int surplus; /* Overflow payload available for local storage */
975
976 minLocal = pPage->minLocal;
977 maxLocal = pPage->maxLocal;
978 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000979 testcase( surplus==maxLocal );
980 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000981 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000982 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000983 }else{
drhf49661a2008-12-10 16:45:50 +0000984 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000985 }
drhf49661a2008-12-10 16:45:50 +0000986 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000987 pInfo->nSize = pInfo->iOverflow + 4;
988 }
drh3aac2dd2004-04-26 14:10:20 +0000989}
danielk19771cc5ed82007-05-16 17:28:43 +0000990#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000991 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
992static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000993 MemPage *pPage, /* Page containing the cell */
994 int iCell, /* The cell index. First cell is 0 */
995 CellInfo *pInfo /* Fill in this structure */
996){
danielk19771cc5ed82007-05-16 17:28:43 +0000997 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000998}
drh3aac2dd2004-04-26 14:10:20 +0000999
1000/*
drh43605152004-05-29 21:46:49 +00001001** Compute the total number of bytes that a Cell needs in the cell
1002** data area of the btree-page. The return number includes the cell
1003** data header and the local payload, but not any overflow page or
1004** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001005*/
danielk1977ae5558b2009-04-29 11:31:47 +00001006static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1007 u8 *pIter = &pCell[pPage->childPtrSize];
1008 u32 nSize;
1009
1010#ifdef SQLITE_DEBUG
1011 /* The value returned by this function should always be the same as
1012 ** the (CellInfo.nSize) value found by doing a full parse of the
1013 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1014 ** this function verifies that this invariant is not violated. */
1015 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001016 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001017#endif
1018
1019 if( pPage->intKey ){
1020 u8 *pEnd;
1021 if( pPage->hasData ){
1022 pIter += getVarint32(pIter, nSize);
1023 }else{
1024 nSize = 0;
1025 }
1026
1027 /* pIter now points at the 64-bit integer key value, a variable length
1028 ** integer. The following block moves pIter to point at the first byte
1029 ** past the end of the key value. */
1030 pEnd = &pIter[9];
1031 while( (*pIter++)&0x80 && pIter<pEnd );
1032 }else{
1033 pIter += getVarint32(pIter, nSize);
1034 }
1035
drh0a45c272009-07-08 01:49:11 +00001036 testcase( nSize==pPage->maxLocal );
1037 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001038 if( nSize>pPage->maxLocal ){
1039 int minLocal = pPage->minLocal;
1040 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001041 testcase( nSize==pPage->maxLocal );
1042 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001043 if( nSize>pPage->maxLocal ){
1044 nSize = minLocal;
1045 }
1046 nSize += 4;
1047 }
shane75ac1de2009-06-09 18:58:52 +00001048 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001049
1050 /* The minimum size of any cell is 4 bytes. */
1051 if( nSize<4 ){
1052 nSize = 4;
1053 }
1054
1055 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001056 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001057}
drh0ee3dbe2009-10-16 15:05:18 +00001058
1059#ifdef SQLITE_DEBUG
1060/* This variation on cellSizePtr() is used inside of assert() statements
1061** only. */
drha9121e42008-02-19 14:59:35 +00001062static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001063 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001064}
danielk1977bc6ada42004-06-30 08:20:16 +00001065#endif
drh3b7511c2001-05-26 13:15:44 +00001066
danielk197779a40da2005-01-16 08:00:01 +00001067#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001068/*
danielk197726836652005-01-17 01:33:13 +00001069** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001070** to an overflow page, insert an entry into the pointer-map
1071** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001072*/
drh98add2e2009-07-20 17:11:49 +00001073static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001074 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001075 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001076 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001077 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001078 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001079 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001080 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001081 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001082 }
danielk1977ac11ee62005-01-15 12:45:51 +00001083}
danielk197779a40da2005-01-16 08:00:01 +00001084#endif
1085
danielk1977ac11ee62005-01-15 12:45:51 +00001086
drhda200cc2004-05-09 11:51:38 +00001087/*
drh72f82862001-05-24 21:06:34 +00001088** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001089** end of the page and all free space is collected into one
1090** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001091** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001092*/
shane0af3f892008-11-12 04:55:34 +00001093static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001094 int i; /* Loop counter */
1095 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001096 int hdr; /* Offset to the page header */
1097 int size; /* Size of a cell */
1098 int usableSize; /* Number of usable bytes on a page */
1099 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001100 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001101 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001102 unsigned char *data; /* The page data */
1103 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001104 int iCellFirst; /* First allowable cell index */
1105 int iCellLast; /* Last possible cell index */
1106
drh2af926b2001-05-15 00:39:25 +00001107
danielk19773b8a05f2007-03-19 17:44:26 +00001108 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001109 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001110 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001111 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001112 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001113 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001114 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001115 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001116 cellOffset = pPage->cellOffset;
1117 nCell = pPage->nCell;
1118 assert( nCell==get2byte(&data[hdr+3]) );
1119 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001120 cbrk = get2byte(&data[hdr+5]);
1121 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1122 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001123 iCellFirst = cellOffset + 2*nCell;
1124 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001125 for(i=0; i<nCell; i++){
1126 u8 *pAddr; /* The i-th cell pointer */
1127 pAddr = &data[cellOffset + i*2];
1128 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001129 testcase( pc==iCellFirst );
1130 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001131#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001132 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001133 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1134 */
1135 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001136 return SQLITE_CORRUPT_BKPT;
1137 }
drh17146622009-07-07 17:38:38 +00001138#endif
1139 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001140 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001141 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001142#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1143 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001144 return SQLITE_CORRUPT_BKPT;
1145 }
drh17146622009-07-07 17:38:38 +00001146#else
1147 if( cbrk<iCellFirst || pc+size>usableSize ){
1148 return SQLITE_CORRUPT_BKPT;
1149 }
1150#endif
drh7157e1d2009-07-09 13:25:32 +00001151 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001152 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001153 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001154 memcpy(&data[cbrk], &temp[pc], size);
1155 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001156 }
drh17146622009-07-07 17:38:38 +00001157 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001158 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001159 data[hdr+1] = 0;
1160 data[hdr+2] = 0;
1161 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001162 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001163 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001164 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001165 return SQLITE_CORRUPT_BKPT;
1166 }
shane0af3f892008-11-12 04:55:34 +00001167 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001168}
1169
drha059ad02001-04-17 20:09:11 +00001170/*
danielk19776011a752009-04-01 16:25:32 +00001171** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001172** as the first argument. Write into *pIdx the index into pPage->aData[]
1173** of the first byte of allocated space. Return either SQLITE_OK or
1174** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001175**
drh0a45c272009-07-08 01:49:11 +00001176** The caller guarantees that there is sufficient space to make the
1177** allocation. This routine might need to defragment in order to bring
1178** all the space together, however. This routine will avoid using
1179** the first two bytes past the cell pointer area since presumably this
1180** allocation is being made in order to insert a new cell, so we will
1181** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001182*/
drh0a45c272009-07-08 01:49:11 +00001183static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001184 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1185 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1186 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001187 int top; /* First byte of cell content area */
1188 int gap; /* First byte of gap between cell pointers and cell content */
1189 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001190 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001191
danielk19773b8a05f2007-03-19 17:44:26 +00001192 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001193 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001194 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001195 assert( nByte>=0 ); /* Minimum cell size is 4 */
1196 assert( pPage->nFree>=nByte );
1197 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001198 usableSize = pPage->pBt->usableSize;
1199 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001200
1201 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001202 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1203 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001204 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001205 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001206 testcase( gap+2==top );
1207 testcase( gap+1==top );
1208 testcase( gap==top );
1209
danielk19776011a752009-04-01 16:25:32 +00001210 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001211 /* Always defragment highly fragmented pages */
1212 rc = defragmentPage(pPage);
1213 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001214 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001215 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001216 /* Search the freelist looking for a free slot big enough to satisfy
1217 ** the request. The allocation is made from the first free slot in
1218 ** the list that is large enough to accomadate it.
1219 */
1220 int pc, addr;
1221 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001222 int size; /* Size of the free slot */
1223 if( pc>usableSize-4 || pc<addr+4 ){
1224 return SQLITE_CORRUPT_BKPT;
1225 }
1226 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001227 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001228 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001229 testcase( x==4 );
1230 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001231 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001232 /* Remove the slot from the free-list. Update the number of
1233 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001234 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001235 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001236 }else if( size+pc > usableSize ){
1237 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001238 }else{
danielk1977fad91942009-04-29 17:49:59 +00001239 /* The slot remains on the free-list. Reduce its size to account
1240 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001241 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001242 }
drh0a45c272009-07-08 01:49:11 +00001243 *pIdx = pc + x;
1244 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001245 }
drh9e572e62004-04-23 23:43:10 +00001246 }
1247 }
drh43605152004-05-29 21:46:49 +00001248
drh0a45c272009-07-08 01:49:11 +00001249 /* Check to make sure there is enough space in the gap to satisfy
1250 ** the allocation. If not, defragment.
1251 */
1252 testcase( gap+2+nByte==top );
1253 if( gap+2+nByte>top ){
1254 rc = defragmentPage(pPage);
1255 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001256 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001257 assert( gap+nByte<=top );
1258 }
1259
1260
drh43605152004-05-29 21:46:49 +00001261 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001262 ** and the cell content area. The btreeInitPage() call has already
1263 ** validated the freelist. Given that the freelist is valid, there
1264 ** is no way that the allocation can extend off the end of the page.
1265 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001266 */
drh0a45c272009-07-08 01:49:11 +00001267 top -= nByte;
drh43605152004-05-29 21:46:49 +00001268 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001269 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001270 *pIdx = top;
1271 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001272}
1273
1274/*
drh9e572e62004-04-23 23:43:10 +00001275** Return a section of the pPage->aData to the freelist.
1276** The first byte of the new free block is pPage->aDisk[start]
1277** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001278**
1279** Most of the effort here is involved in coalesing adjacent
1280** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001281*/
shanedcc50b72008-11-13 18:29:50 +00001282static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001283 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001284 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001285 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001286
drh9e572e62004-04-23 23:43:10 +00001287 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001288 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001289 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001290 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001291 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001292 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001293
drhc9166342012-01-05 23:32:06 +00001294 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001295 /* Overwrite deleted information with zeros when the secure_delete
1296 ** option is enabled */
1297 memset(&data[start], 0, size);
1298 }
drhfcce93f2006-02-22 03:08:32 +00001299
drh0a45c272009-07-08 01:49:11 +00001300 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001301 ** even though the freeblock list was checked by btreeInitPage(),
1302 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001303 ** freeblocks that overlapped cells. Nor does it detect when the
1304 ** cell content area exceeds the value in the page header. If these
1305 ** situations arise, then subsequent insert operations might corrupt
1306 ** the freelist. So we do need to check for corruption while scanning
1307 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001308 */
drh43605152004-05-29 21:46:49 +00001309 hdr = pPage->hdrOffset;
1310 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001311 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001312 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001313 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001314 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001315 return SQLITE_CORRUPT_BKPT;
1316 }
drh3aac2dd2004-04-26 14:10:20 +00001317 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001318 }
drh0a45c272009-07-08 01:49:11 +00001319 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001320 return SQLITE_CORRUPT_BKPT;
1321 }
drh3aac2dd2004-04-26 14:10:20 +00001322 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001323 put2byte(&data[addr], start);
1324 put2byte(&data[start], pbegin);
1325 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001326 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001327
1328 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001329 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001330 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001331 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001332 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001333 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001334 pnext = get2byte(&data[pbegin]);
1335 psize = get2byte(&data[pbegin+2]);
1336 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1337 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001338 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001339 return SQLITE_CORRUPT_BKPT;
1340 }
drh0a45c272009-07-08 01:49:11 +00001341 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001342 x = get2byte(&data[pnext]);
1343 put2byte(&data[pbegin], x);
1344 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1345 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001346 }else{
drh3aac2dd2004-04-26 14:10:20 +00001347 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001348 }
1349 }
drh7e3b0a02001-04-28 16:52:40 +00001350
drh43605152004-05-29 21:46:49 +00001351 /* If the cell content area begins with a freeblock, remove it. */
1352 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1353 int top;
1354 pbegin = get2byte(&data[hdr+1]);
1355 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001356 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1357 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001358 }
drhc5053fb2008-11-27 02:22:10 +00001359 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001360 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001361}
1362
1363/*
drh271efa52004-05-30 19:19:05 +00001364** Decode the flags byte (the first byte of the header) for a page
1365** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001366**
1367** Only the following combinations are supported. Anything different
1368** indicates a corrupt database files:
1369**
1370** PTF_ZERODATA
1371** PTF_ZERODATA | PTF_LEAF
1372** PTF_LEAFDATA | PTF_INTKEY
1373** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001374*/
drh44845222008-07-17 18:39:57 +00001375static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001376 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001377
1378 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001379 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001380 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001381 flagByte &= ~PTF_LEAF;
1382 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001383 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001384 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1385 pPage->intKey = 1;
1386 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001387 pPage->maxLocal = pBt->maxLeaf;
1388 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001389 }else if( flagByte==PTF_ZERODATA ){
1390 pPage->intKey = 0;
1391 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001392 pPage->maxLocal = pBt->maxLocal;
1393 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001394 }else{
1395 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001396 }
drhc9166342012-01-05 23:32:06 +00001397 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001398 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001399}
1400
1401/*
drh7e3b0a02001-04-28 16:52:40 +00001402** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001403**
1404** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001405** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001406** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1407** guarantee that the page is well-formed. It only shows that
1408** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001409*/
danielk197730548662009-07-09 05:07:37 +00001410static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001411
danielk197771d5d2c2008-09-29 11:49:47 +00001412 assert( pPage->pBt!=0 );
1413 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001414 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001415 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1416 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001417
1418 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001419 u16 pc; /* Address of a freeblock within pPage->aData[] */
1420 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001421 u8 *data; /* Equal to pPage->aData */
1422 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001423 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001424 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001425 int nFree; /* Number of unused bytes on the page */
1426 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001427 int iCellFirst; /* First allowable cell or freeblock offset */
1428 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001429
1430 pBt = pPage->pBt;
1431
danielk1977eaa06f62008-09-18 17:34:44 +00001432 hdr = pPage->hdrOffset;
1433 data = pPage->aData;
1434 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001435 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1436 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001437 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001438 usableSize = pBt->usableSize;
1439 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001440 pPage->aDataEnd = &data[usableSize];
1441 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001442 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001443 pPage->nCell = get2byte(&data[hdr+3]);
1444 if( pPage->nCell>MX_CELL(pBt) ){
1445 /* To many cells for a single page. The page must be corrupt */
1446 return SQLITE_CORRUPT_BKPT;
1447 }
drhb908d762009-07-08 16:54:40 +00001448 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001449
shane5eff7cf2009-08-10 03:57:58 +00001450 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001451 ** of page when parsing a cell.
1452 **
1453 ** The following block of code checks early to see if a cell extends
1454 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1455 ** returned if it does.
1456 */
drh0a45c272009-07-08 01:49:11 +00001457 iCellFirst = cellOffset + 2*pPage->nCell;
1458 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001459#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001460 {
drh69e931e2009-06-03 21:04:35 +00001461 int i; /* Index into the cell pointer array */
1462 int sz; /* Size of a cell */
1463
drh69e931e2009-06-03 21:04:35 +00001464 if( !pPage->leaf ) iCellLast--;
1465 for(i=0; i<pPage->nCell; i++){
1466 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001467 testcase( pc==iCellFirst );
1468 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001469 if( pc<iCellFirst || pc>iCellLast ){
1470 return SQLITE_CORRUPT_BKPT;
1471 }
1472 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001473 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001474 if( pc+sz>usableSize ){
1475 return SQLITE_CORRUPT_BKPT;
1476 }
1477 }
drh0a45c272009-07-08 01:49:11 +00001478 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001479 }
1480#endif
1481
danielk1977eaa06f62008-09-18 17:34:44 +00001482 /* Compute the total free space on the page */
1483 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001484 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001485 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001486 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001487 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001488 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001489 return SQLITE_CORRUPT_BKPT;
1490 }
1491 next = get2byte(&data[pc]);
1492 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001493 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1494 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001495 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001496 return SQLITE_CORRUPT_BKPT;
1497 }
shane85095702009-06-15 16:27:08 +00001498 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001499 pc = next;
1500 }
danielk197793c829c2009-06-03 17:26:17 +00001501
1502 /* At this point, nFree contains the sum of the offset to the start
1503 ** of the cell-content area plus the number of free bytes within
1504 ** the cell-content area. If this is greater than the usable-size
1505 ** of the page, then the page must be corrupted. This check also
1506 ** serves to verify that the offset to the start of the cell-content
1507 ** area, according to the page header, lies within the page.
1508 */
1509 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001510 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001511 }
shane5eff7cf2009-08-10 03:57:58 +00001512 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001513 pPage->isInit = 1;
1514 }
drh9e572e62004-04-23 23:43:10 +00001515 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001516}
1517
1518/*
drh8b2f49b2001-06-08 00:21:52 +00001519** Set up a raw page so that it looks like a database page holding
1520** no entries.
drhbd03cae2001-06-02 02:40:57 +00001521*/
drh9e572e62004-04-23 23:43:10 +00001522static void zeroPage(MemPage *pPage, int flags){
1523 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001524 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001525 u8 hdr = pPage->hdrOffset;
1526 u16 first;
drh9e572e62004-04-23 23:43:10 +00001527
danielk19773b8a05f2007-03-19 17:44:26 +00001528 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001529 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1530 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001531 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001532 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001533 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001534 memset(&data[hdr], 0, pBt->usableSize - hdr);
1535 }
drh1bd10f82008-12-10 21:19:56 +00001536 data[hdr] = (char)flags;
1537 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001538 memset(&data[hdr+1], 0, 4);
1539 data[hdr+7] = 0;
1540 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001541 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001542 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001543 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001544 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001545 pPage->aDataEnd = &data[pBt->usableSize];
1546 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001547 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001548 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1549 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001550 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001551 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001552}
1553
drh897a8202008-09-18 01:08:15 +00001554
1555/*
1556** Convert a DbPage obtained from the pager into a MemPage used by
1557** the btree layer.
1558*/
1559static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1560 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1561 pPage->aData = sqlite3PagerGetData(pDbPage);
1562 pPage->pDbPage = pDbPage;
1563 pPage->pBt = pBt;
1564 pPage->pgno = pgno;
1565 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1566 return pPage;
1567}
1568
drhbd03cae2001-06-02 02:40:57 +00001569/*
drh3aac2dd2004-04-26 14:10:20 +00001570** Get a page from the pager. Initialize the MemPage.pBt and
1571** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001572**
1573** If the noContent flag is set, it means that we do not care about
1574** the content of the page at this time. So do not go to the disk
1575** to fetch the content. Just fill in the content with zeros for now.
1576** If in the future we call sqlite3PagerWrite() on this page, that
1577** means we have started to be concerned about content and the disk
1578** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001579*/
danielk197730548662009-07-09 05:07:37 +00001580static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001581 BtShared *pBt, /* The btree */
1582 Pgno pgno, /* Number of the page to fetch */
1583 MemPage **ppPage, /* Return the page in this parameter */
1584 int noContent /* Do not load page content if true */
1585){
drh3aac2dd2004-04-26 14:10:20 +00001586 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001587 DbPage *pDbPage;
1588
drh1fee73e2007-08-29 04:00:57 +00001589 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001590 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001591 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001592 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001593 return SQLITE_OK;
1594}
1595
1596/*
danielk1977bea2a942009-01-20 17:06:27 +00001597** Retrieve a page from the pager cache. If the requested page is not
1598** already in the pager cache return NULL. Initialize the MemPage.pBt and
1599** MemPage.aData elements if needed.
1600*/
1601static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1602 DbPage *pDbPage;
1603 assert( sqlite3_mutex_held(pBt->mutex) );
1604 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1605 if( pDbPage ){
1606 return btreePageFromDbPage(pDbPage, pgno, pBt);
1607 }
1608 return 0;
1609}
1610
1611/*
danielk197789d40042008-11-17 14:20:56 +00001612** Return the size of the database file in pages. If there is any kind of
1613** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001614*/
drhb1299152010-03-30 22:58:33 +00001615static Pgno btreePagecount(BtShared *pBt){
1616 return pBt->nPage;
1617}
1618u32 sqlite3BtreeLastPage(Btree *p){
1619 assert( sqlite3BtreeHoldsMutex(p) );
1620 assert( ((p->pBt->nPage)&0x8000000)==0 );
1621 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001622}
1623
1624/*
danielk197789bc4bc2009-07-21 19:25:24 +00001625** Get a page from the pager and initialize it. This routine is just a
1626** convenience wrapper around separate calls to btreeGetPage() and
1627** btreeInitPage().
1628**
1629** If an error occurs, then the value *ppPage is set to is undefined. It
1630** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001631*/
1632static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001633 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001634 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001635 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001636){
1637 int rc;
drh1fee73e2007-08-29 04:00:57 +00001638 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001639
danba3cbf32010-06-30 04:29:03 +00001640 if( pgno>btreePagecount(pBt) ){
1641 rc = SQLITE_CORRUPT_BKPT;
1642 }else{
1643 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1644 if( rc==SQLITE_OK ){
1645 rc = btreeInitPage(*ppPage);
1646 if( rc!=SQLITE_OK ){
1647 releasePage(*ppPage);
1648 }
danielk197789bc4bc2009-07-21 19:25:24 +00001649 }
drhee696e22004-08-30 16:52:17 +00001650 }
danba3cbf32010-06-30 04:29:03 +00001651
1652 testcase( pgno==0 );
1653 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001654 return rc;
1655}
1656
1657/*
drh3aac2dd2004-04-26 14:10:20 +00001658** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001659** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001660*/
drh4b70f112004-05-02 21:12:19 +00001661static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001662 if( pPage ){
1663 assert( pPage->aData );
1664 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001665 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1666 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001667 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001668 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001669 }
1670}
1671
1672/*
drha6abd042004-06-09 17:37:22 +00001673** During a rollback, when the pager reloads information into the cache
1674** so that the cache is restored to its original state at the start of
1675** the transaction, for each page restored this routine is called.
1676**
1677** This routine needs to reset the extra data section at the end of the
1678** page to agree with the restored data.
1679*/
danielk1977eaa06f62008-09-18 17:34:44 +00001680static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001681 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001682 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001683 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001684 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001685 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001686 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001687 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001688 /* pPage might not be a btree page; it might be an overflow page
1689 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001690 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001691 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001692 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001693 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001694 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001695 }
drha6abd042004-06-09 17:37:22 +00001696 }
1697}
1698
1699/*
drhe5fe6902007-12-07 18:55:28 +00001700** Invoke the busy handler for a btree.
1701*/
danielk19771ceedd32008-11-19 10:22:33 +00001702static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001703 BtShared *pBt = (BtShared*)pArg;
1704 assert( pBt->db );
1705 assert( sqlite3_mutex_held(pBt->db->mutex) );
1706 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1707}
1708
1709/*
drhad3e0102004-09-03 23:32:18 +00001710** Open a database file.
1711**
drh382c0242001-10-06 16:33:02 +00001712** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001713** then an ephemeral database is created. The ephemeral database might
1714** be exclusively in memory, or it might use a disk-based memory cache.
1715** Either way, the ephemeral database will be automatically deleted
1716** when sqlite3BtreeClose() is called.
1717**
drhe53831d2007-08-17 01:14:38 +00001718** If zFilename is ":memory:" then an in-memory database is created
1719** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001720**
drh33f111d2012-01-17 15:29:14 +00001721** The "flags" parameter is a bitmask that might contain bits like
1722** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001723**
drhc47fd8e2009-04-30 13:30:32 +00001724** If the database is already opened in the same database connection
1725** and we are in shared cache mode, then the open will fail with an
1726** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1727** objects in the same database connection since doing so will lead
1728** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001729*/
drh23e11ca2004-05-04 17:27:28 +00001730int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001731 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001732 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001733 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001734 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001735 int flags, /* Options */
1736 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001737){
drh7555d8e2009-03-20 13:15:30 +00001738 BtShared *pBt = 0; /* Shared part of btree structure */
1739 Btree *p; /* Handle to return */
1740 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1741 int rc = SQLITE_OK; /* Result code from this function */
1742 u8 nReserve; /* Byte of unused space on each page */
1743 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001744
drh75c014c2010-08-30 15:02:28 +00001745 /* True if opening an ephemeral, temporary database */
1746 const int isTempDb = zFilename==0 || zFilename[0]==0;
1747
danielk1977aef0bf62005-12-30 16:28:01 +00001748 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001749 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001750 */
drhb0a7c9c2010-12-06 21:09:59 +00001751#ifdef SQLITE_OMIT_MEMORYDB
1752 const int isMemdb = 0;
1753#else
1754 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001755 || (isTempDb && sqlite3TempInMemory(db))
1756 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001757#endif
1758
drhe5fe6902007-12-07 18:55:28 +00001759 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001760 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001761 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001762 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1763
1764 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1765 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1766
1767 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1768 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001769
drh75c014c2010-08-30 15:02:28 +00001770 if( isMemdb ){
1771 flags |= BTREE_MEMORY;
1772 }
1773 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1774 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1775 }
drh17435752007-08-16 04:30:38 +00001776 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001777 if( !p ){
1778 return SQLITE_NOMEM;
1779 }
1780 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001781 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001782#ifndef SQLITE_OMIT_SHARED_CACHE
1783 p->lock.pBtree = p;
1784 p->lock.iTable = 1;
1785#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001786
drh198bf392006-01-06 21:52:49 +00001787#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001788 /*
1789 ** If this Btree is a candidate for shared cache, try to find an
1790 ** existing BtShared object that we can share with
1791 */
drh4ab9d252012-05-26 20:08:49 +00001792 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001793 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001794 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001795 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001796 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001797 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001798 if( !zFullPathname ){
1799 sqlite3_free(p);
1800 return SQLITE_NOMEM;
1801 }
drhafc8b7f2012-05-26 18:06:38 +00001802 if( isMemdb ){
1803 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1804 }else{
1805 rc = sqlite3OsFullPathname(pVfs, zFilename,
1806 nFullPathname, zFullPathname);
1807 if( rc ){
1808 sqlite3_free(zFullPathname);
1809 sqlite3_free(p);
1810 return rc;
1811 }
drh070ad6b2011-11-17 11:43:19 +00001812 }
drh30ddce62011-10-15 00:16:30 +00001813#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001814 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1815 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001816 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001817 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001818#endif
drh78f82d12008-09-02 00:52:52 +00001819 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001820 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001821 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001822 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001823 int iDb;
1824 for(iDb=db->nDb-1; iDb>=0; iDb--){
1825 Btree *pExisting = db->aDb[iDb].pBt;
1826 if( pExisting && pExisting->pBt==pBt ){
1827 sqlite3_mutex_leave(mutexShared);
1828 sqlite3_mutex_leave(mutexOpen);
1829 sqlite3_free(zFullPathname);
1830 sqlite3_free(p);
1831 return SQLITE_CONSTRAINT;
1832 }
1833 }
drhff0587c2007-08-29 17:43:19 +00001834 p->pBt = pBt;
1835 pBt->nRef++;
1836 break;
1837 }
1838 }
1839 sqlite3_mutex_leave(mutexShared);
1840 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001841 }
drhff0587c2007-08-29 17:43:19 +00001842#ifdef SQLITE_DEBUG
1843 else{
1844 /* In debug mode, we mark all persistent databases as sharable
1845 ** even when they are not. This exercises the locking code and
1846 ** gives more opportunity for asserts(sqlite3_mutex_held())
1847 ** statements to find locking problems.
1848 */
1849 p->sharable = 1;
1850 }
1851#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001852 }
1853#endif
drha059ad02001-04-17 20:09:11 +00001854 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001855 /*
1856 ** The following asserts make sure that structures used by the btree are
1857 ** the right size. This is to guard against size changes that result
1858 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001859 */
drhe53831d2007-08-17 01:14:38 +00001860 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1861 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1862 assert( sizeof(u32)==4 );
1863 assert( sizeof(u16)==2 );
1864 assert( sizeof(Pgno)==4 );
1865
1866 pBt = sqlite3MallocZero( sizeof(*pBt) );
1867 if( pBt==0 ){
1868 rc = SQLITE_NOMEM;
1869 goto btree_open_out;
1870 }
danielk197771d5d2c2008-09-29 11:49:47 +00001871 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001872 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001873 if( rc==SQLITE_OK ){
1874 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1875 }
1876 if( rc!=SQLITE_OK ){
1877 goto btree_open_out;
1878 }
shanehbd2aaf92010-09-01 02:38:21 +00001879 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001880 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001881 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001882 p->pBt = pBt;
1883
drhe53831d2007-08-17 01:14:38 +00001884 pBt->pCursor = 0;
1885 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001886 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001887#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001888 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001889#endif
drhb2eced52010-08-12 02:41:12 +00001890 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001891 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1892 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001893 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001894#ifndef SQLITE_OMIT_AUTOVACUUM
1895 /* If the magic name ":memory:" will create an in-memory database, then
1896 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1897 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1898 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1899 ** regular file-name. In this case the auto-vacuum applies as per normal.
1900 */
1901 if( zFilename && !isMemdb ){
1902 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1903 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1904 }
1905#endif
1906 nReserve = 0;
1907 }else{
1908 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001909 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001910#ifndef SQLITE_OMIT_AUTOVACUUM
1911 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1912 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1913#endif
1914 }
drhfa9601a2009-06-18 17:22:39 +00001915 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001916 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001917 pBt->usableSize = pBt->pageSize - nReserve;
1918 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001919
1920#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1921 /* Add the new BtShared object to the linked list sharable BtShareds.
1922 */
1923 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001924 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001925 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001926 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001927 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001928 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001929 if( pBt->mutex==0 ){
1930 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001931 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001932 goto btree_open_out;
1933 }
drhff0587c2007-08-29 17:43:19 +00001934 }
drhe53831d2007-08-17 01:14:38 +00001935 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001936 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1937 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001938 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001939 }
drheee46cf2004-11-06 00:02:48 +00001940#endif
drh90f5ecb2004-07-22 01:19:35 +00001941 }
danielk1977aef0bf62005-12-30 16:28:01 +00001942
drhcfed7bc2006-03-13 14:28:05 +00001943#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001944 /* If the new Btree uses a sharable pBtShared, then link the new
1945 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001946 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001947 */
drhe53831d2007-08-17 01:14:38 +00001948 if( p->sharable ){
1949 int i;
1950 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001951 for(i=0; i<db->nDb; i++){
1952 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001953 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1954 if( p->pBt<pSib->pBt ){
1955 p->pNext = pSib;
1956 p->pPrev = 0;
1957 pSib->pPrev = p;
1958 }else{
drhabddb0c2007-08-20 13:14:28 +00001959 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001960 pSib = pSib->pNext;
1961 }
1962 p->pNext = pSib->pNext;
1963 p->pPrev = pSib;
1964 if( p->pNext ){
1965 p->pNext->pPrev = p;
1966 }
1967 pSib->pNext = p;
1968 }
1969 break;
1970 }
1971 }
danielk1977aef0bf62005-12-30 16:28:01 +00001972 }
danielk1977aef0bf62005-12-30 16:28:01 +00001973#endif
1974 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001975
1976btree_open_out:
1977 if( rc!=SQLITE_OK ){
1978 if( pBt && pBt->pPager ){
1979 sqlite3PagerClose(pBt->pPager);
1980 }
drh17435752007-08-16 04:30:38 +00001981 sqlite3_free(pBt);
1982 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001983 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001984 }else{
1985 /* If the B-Tree was successfully opened, set the pager-cache size to the
1986 ** default value. Except, when opening on an existing shared pager-cache,
1987 ** do not change the pager-cache size.
1988 */
1989 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1990 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1991 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001992 }
drh7555d8e2009-03-20 13:15:30 +00001993 if( mutexOpen ){
1994 assert( sqlite3_mutex_held(mutexOpen) );
1995 sqlite3_mutex_leave(mutexOpen);
1996 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001997 return rc;
drha059ad02001-04-17 20:09:11 +00001998}
1999
2000/*
drhe53831d2007-08-17 01:14:38 +00002001** Decrement the BtShared.nRef counter. When it reaches zero,
2002** remove the BtShared structure from the sharing list. Return
2003** true if the BtShared.nRef counter reaches zero and return
2004** false if it is still positive.
2005*/
2006static int removeFromSharingList(BtShared *pBt){
2007#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002008 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002009 BtShared *pList;
2010 int removed = 0;
2011
drhd677b3d2007-08-20 22:48:41 +00002012 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002013 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002014 sqlite3_mutex_enter(pMaster);
2015 pBt->nRef--;
2016 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002017 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2018 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002019 }else{
drh78f82d12008-09-02 00:52:52 +00002020 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002021 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002022 pList=pList->pNext;
2023 }
drh34004ce2008-07-11 16:15:17 +00002024 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002025 pList->pNext = pBt->pNext;
2026 }
2027 }
drh3285db22007-09-03 22:00:39 +00002028 if( SQLITE_THREADSAFE ){
2029 sqlite3_mutex_free(pBt->mutex);
2030 }
drhe53831d2007-08-17 01:14:38 +00002031 removed = 1;
2032 }
2033 sqlite3_mutex_leave(pMaster);
2034 return removed;
2035#else
2036 return 1;
2037#endif
2038}
2039
2040/*
drhf7141992008-06-19 00:16:08 +00002041** Make sure pBt->pTmpSpace points to an allocation of
2042** MX_CELL_SIZE(pBt) bytes.
2043*/
2044static void allocateTempSpace(BtShared *pBt){
2045 if( !pBt->pTmpSpace ){
2046 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2047 }
2048}
2049
2050/*
2051** Free the pBt->pTmpSpace allocation
2052*/
2053static void freeTempSpace(BtShared *pBt){
2054 sqlite3PageFree( pBt->pTmpSpace);
2055 pBt->pTmpSpace = 0;
2056}
2057
2058/*
drha059ad02001-04-17 20:09:11 +00002059** Close an open database and invalidate all cursors.
2060*/
danielk1977aef0bf62005-12-30 16:28:01 +00002061int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002062 BtShared *pBt = p->pBt;
2063 BtCursor *pCur;
2064
danielk1977aef0bf62005-12-30 16:28:01 +00002065 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002066 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002067 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002068 pCur = pBt->pCursor;
2069 while( pCur ){
2070 BtCursor *pTmp = pCur;
2071 pCur = pCur->pNext;
2072 if( pTmp->pBtree==p ){
2073 sqlite3BtreeCloseCursor(pTmp);
2074 }
drha059ad02001-04-17 20:09:11 +00002075 }
danielk1977aef0bf62005-12-30 16:28:01 +00002076
danielk19778d34dfd2006-01-24 16:37:57 +00002077 /* Rollback any active transaction and free the handle structure.
2078 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2079 ** this handle.
2080 */
drh0f198a72012-02-13 16:43:16 +00002081 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002082 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002083
danielk1977aef0bf62005-12-30 16:28:01 +00002084 /* If there are still other outstanding references to the shared-btree
2085 ** structure, return now. The remainder of this procedure cleans
2086 ** up the shared-btree.
2087 */
drhe53831d2007-08-17 01:14:38 +00002088 assert( p->wantToLock==0 && p->locked==0 );
2089 if( !p->sharable || removeFromSharingList(pBt) ){
2090 /* The pBt is no longer on the sharing list, so we can access
2091 ** it without having to hold the mutex.
2092 **
2093 ** Clean out and delete the BtShared object.
2094 */
2095 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002096 sqlite3PagerClose(pBt->pPager);
2097 if( pBt->xFreeSchema && pBt->pSchema ){
2098 pBt->xFreeSchema(pBt->pSchema);
2099 }
drhb9755982010-07-24 16:34:37 +00002100 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002101 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002102 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002103 }
2104
drhe53831d2007-08-17 01:14:38 +00002105#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002106 assert( p->wantToLock==0 );
2107 assert( p->locked==0 );
2108 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2109 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002110#endif
2111
drhe53831d2007-08-17 01:14:38 +00002112 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002113 return SQLITE_OK;
2114}
2115
2116/*
drhda47d772002-12-02 04:25:19 +00002117** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002118**
2119** The maximum number of cache pages is set to the absolute
2120** value of mxPage. If mxPage is negative, the pager will
2121** operate asynchronously - it will not stop to do fsync()s
2122** to insure data is written to the disk surface before
2123** continuing. Transactions still work if synchronous is off,
2124** and the database cannot be corrupted if this program
2125** crashes. But if the operating system crashes or there is
2126** an abrupt power failure when synchronous is off, the database
2127** could be left in an inconsistent and unrecoverable state.
2128** Synchronous is on by default so database corruption is not
2129** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002130*/
danielk1977aef0bf62005-12-30 16:28:01 +00002131int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2132 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002133 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002134 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002135 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002136 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002137 return SQLITE_OK;
2138}
2139
2140/*
drh973b6e32003-02-12 14:09:42 +00002141** Change the way data is synced to disk in order to increase or decrease
2142** how well the database resists damage due to OS crashes and power
2143** failures. Level 1 is the same as asynchronous (no syncs() occur and
2144** there is a high probability of damage) Level 2 is the default. There
2145** is a very low but non-zero probability of damage. Level 3 reduces the
2146** probability of damage to near zero but with a write performance reduction.
2147*/
danielk197793758c82005-01-21 08:13:14 +00002148#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhc97d8462010-11-19 18:23:35 +00002149int sqlite3BtreeSetSafetyLevel(
2150 Btree *p, /* The btree to set the safety level on */
2151 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
2152 int fullSync, /* PRAGMA fullfsync. */
2153 int ckptFullSync /* PRAGMA checkpoint_fullfync */
2154){
danielk1977aef0bf62005-12-30 16:28:01 +00002155 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002156 assert( sqlite3_mutex_held(p->db->mutex) );
drhc97d8462010-11-19 18:23:35 +00002157 assert( level>=1 && level<=3 );
drhd677b3d2007-08-20 22:48:41 +00002158 sqlite3BtreeEnter(p);
drhc97d8462010-11-19 18:23:35 +00002159 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
drhd677b3d2007-08-20 22:48:41 +00002160 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002161 return SQLITE_OK;
2162}
danielk197793758c82005-01-21 08:13:14 +00002163#endif
drh973b6e32003-02-12 14:09:42 +00002164
drh2c8997b2005-08-27 16:36:48 +00002165/*
2166** Return TRUE if the given btree is set to safety level 1. In other
2167** words, return TRUE if no sync() occurs on the disk files.
2168*/
danielk1977aef0bf62005-12-30 16:28:01 +00002169int sqlite3BtreeSyncDisabled(Btree *p){
2170 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002171 int rc;
drhe5fe6902007-12-07 18:55:28 +00002172 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002173 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002174 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002175 rc = sqlite3PagerNosync(pBt->pPager);
2176 sqlite3BtreeLeave(p);
2177 return rc;
drh2c8997b2005-08-27 16:36:48 +00002178}
2179
drh973b6e32003-02-12 14:09:42 +00002180/*
drh90f5ecb2004-07-22 01:19:35 +00002181** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002182** Or, if the page size has already been fixed, return SQLITE_READONLY
2183** without changing anything.
drh06f50212004-11-02 14:24:33 +00002184**
2185** The page size must be a power of 2 between 512 and 65536. If the page
2186** size supplied does not meet this constraint then the page size is not
2187** changed.
2188**
2189** Page sizes are constrained to be a power of two so that the region
2190** of the database file used for locking (beginning at PENDING_BYTE,
2191** the first byte past the 1GB boundary, 0x40000000) needs to occur
2192** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002193**
2194** If parameter nReserve is less than zero, then the number of reserved
2195** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002196**
drhc9166342012-01-05 23:32:06 +00002197** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002198** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002199*/
drhce4869f2009-04-02 20:16:58 +00002200int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002201 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002202 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002203 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002204 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002205 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002206 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002207 return SQLITE_READONLY;
2208 }
2209 if( nReserve<0 ){
2210 nReserve = pBt->pageSize - pBt->usableSize;
2211 }
drhf49661a2008-12-10 16:45:50 +00002212 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002213 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2214 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002215 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002216 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002217 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002218 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002219 }
drhfa9601a2009-06-18 17:22:39 +00002220 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002221 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002222 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002223 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002224 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002225}
2226
2227/*
2228** Return the currently defined page size
2229*/
danielk1977aef0bf62005-12-30 16:28:01 +00002230int sqlite3BtreeGetPageSize(Btree *p){
2231 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002232}
drh7f751222009-03-17 22:33:00 +00002233
drha1f38532012-10-01 12:44:26 +00002234#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002235/*
2236** This function is similar to sqlite3BtreeGetReserve(), except that it
2237** may only be called if it is guaranteed that the b-tree mutex is already
2238** held.
2239**
2240** This is useful in one special case in the backup API code where it is
2241** known that the shared b-tree mutex is held, but the mutex on the
2242** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2243** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002244** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002245*/
2246int sqlite3BtreeGetReserveNoMutex(Btree *p){
2247 assert( sqlite3_mutex_held(p->pBt->mutex) );
2248 return p->pBt->pageSize - p->pBt->usableSize;
2249}
drha1f38532012-10-01 12:44:26 +00002250#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002251
danbb2b4412011-04-06 17:54:31 +00002252#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002253/*
2254** Return the number of bytes of space at the end of every page that
2255** are intentually left unused. This is the "reserved" space that is
2256** sometimes used by extensions.
2257*/
danielk1977aef0bf62005-12-30 16:28:01 +00002258int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002259 int n;
2260 sqlite3BtreeEnter(p);
2261 n = p->pBt->pageSize - p->pBt->usableSize;
2262 sqlite3BtreeLeave(p);
2263 return n;
drh2011d5f2004-07-22 02:40:37 +00002264}
drhf8e632b2007-05-08 14:51:36 +00002265
2266/*
2267** Set the maximum page count for a database if mxPage is positive.
2268** No changes are made if mxPage is 0 or negative.
2269** Regardless of the value of mxPage, return the maximum page count.
2270*/
2271int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002272 int n;
2273 sqlite3BtreeEnter(p);
2274 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2275 sqlite3BtreeLeave(p);
2276 return n;
drhf8e632b2007-05-08 14:51:36 +00002277}
drh5b47efa2010-02-12 18:18:39 +00002278
2279/*
drhc9166342012-01-05 23:32:06 +00002280** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2281** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002282** setting after the change.
2283*/
2284int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2285 int b;
drhaf034ed2010-02-12 19:46:26 +00002286 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002287 sqlite3BtreeEnter(p);
2288 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002289 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2290 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002291 }
drhc9166342012-01-05 23:32:06 +00002292 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002293 sqlite3BtreeLeave(p);
2294 return b;
2295}
danielk1977576ec6b2005-01-21 11:55:25 +00002296#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002297
2298/*
danielk1977951af802004-11-05 15:45:09 +00002299** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2300** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2301** is disabled. The default value for the auto-vacuum property is
2302** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2303*/
danielk1977aef0bf62005-12-30 16:28:01 +00002304int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002305#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002306 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002307#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002308 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002309 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002310 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002311
2312 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002313 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002314 rc = SQLITE_READONLY;
2315 }else{
drh076d4662009-02-18 20:31:18 +00002316 pBt->autoVacuum = av ?1:0;
2317 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002318 }
drhd677b3d2007-08-20 22:48:41 +00002319 sqlite3BtreeLeave(p);
2320 return rc;
danielk1977951af802004-11-05 15:45:09 +00002321#endif
2322}
2323
2324/*
2325** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2326** enabled 1 is returned. Otherwise 0.
2327*/
danielk1977aef0bf62005-12-30 16:28:01 +00002328int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002329#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002330 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002331#else
drhd677b3d2007-08-20 22:48:41 +00002332 int rc;
2333 sqlite3BtreeEnter(p);
2334 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002335 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2336 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2337 BTREE_AUTOVACUUM_INCR
2338 );
drhd677b3d2007-08-20 22:48:41 +00002339 sqlite3BtreeLeave(p);
2340 return rc;
danielk1977951af802004-11-05 15:45:09 +00002341#endif
2342}
2343
2344
2345/*
drha34b6762004-05-07 13:30:42 +00002346** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002347** also acquire a readlock on that file.
2348**
2349** SQLITE_OK is returned on success. If the file is not a
2350** well-formed database file, then SQLITE_CORRUPT is returned.
2351** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002352** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002353*/
danielk1977aef0bf62005-12-30 16:28:01 +00002354static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002355 int rc; /* Result code from subfunctions */
2356 MemPage *pPage1; /* Page 1 of the database file */
2357 int nPage; /* Number of pages in the database */
2358 int nPageFile = 0; /* Number of pages in the database file */
2359 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002360
drh1fee73e2007-08-29 04:00:57 +00002361 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002362 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002363 rc = sqlite3PagerSharedLock(pBt->pPager);
2364 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002365 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002366 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002367
2368 /* Do some checking to help insure the file we opened really is
2369 ** a valid database file.
2370 */
drhc2a4bab2010-04-02 12:46:45 +00002371 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002372 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002373 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002374 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002375 }
2376 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002377 u32 pageSize;
2378 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002379 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002380 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002381 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002382 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002383 }
dan5cf53532010-05-01 16:40:20 +00002384
2385#ifdef SQLITE_OMIT_WAL
2386 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002387 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002388 }
2389 if( page1[19]>1 ){
2390 goto page1_init_failed;
2391 }
2392#else
dane04dc882010-04-20 18:53:15 +00002393 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002394 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002395 }
dane04dc882010-04-20 18:53:15 +00002396 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002397 goto page1_init_failed;
2398 }
drhe5ae5732008-06-15 02:51:47 +00002399
dana470aeb2010-04-21 11:43:38 +00002400 /* If the write version is set to 2, this database should be accessed
2401 ** in WAL mode. If the log is not already open, open it now. Then
2402 ** return SQLITE_OK and return without populating BtShared.pPage1.
2403 ** The caller detects this and calls this function again. This is
2404 ** required as the version of page 1 currently in the page1 buffer
2405 ** may not be the latest version - there may be a newer one in the log
2406 ** file.
2407 */
drhc9166342012-01-05 23:32:06 +00002408 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002409 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002410 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002411 if( rc!=SQLITE_OK ){
2412 goto page1_init_failed;
2413 }else if( isOpen==0 ){
2414 releasePage(pPage1);
2415 return SQLITE_OK;
2416 }
dan8b5444b2010-04-27 14:37:47 +00002417 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002418 }
dan5cf53532010-05-01 16:40:20 +00002419#endif
dane04dc882010-04-20 18:53:15 +00002420
drhe5ae5732008-06-15 02:51:47 +00002421 /* The maximum embedded fraction must be exactly 25%. And the minimum
2422 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2423 ** The original design allowed these amounts to vary, but as of
2424 ** version 3.6.0, we require them to be fixed.
2425 */
2426 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2427 goto page1_init_failed;
2428 }
drhb2eced52010-08-12 02:41:12 +00002429 pageSize = (page1[16]<<8) | (page1[17]<<16);
2430 if( ((pageSize-1)&pageSize)!=0
2431 || pageSize>SQLITE_MAX_PAGE_SIZE
2432 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002433 ){
drh07d183d2005-05-01 22:52:42 +00002434 goto page1_init_failed;
2435 }
2436 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002437 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002438 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002439 /* After reading the first page of the database assuming a page size
2440 ** of BtShared.pageSize, we have discovered that the page-size is
2441 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2442 ** zero and return SQLITE_OK. The caller will call this function
2443 ** again with the correct page-size.
2444 */
2445 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002446 pBt->usableSize = usableSize;
2447 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002448 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002449 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2450 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002451 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002452 }
danecac6702011-02-09 18:19:20 +00002453 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002454 rc = SQLITE_CORRUPT_BKPT;
2455 goto page1_init_failed;
2456 }
drhb33e1b92009-06-18 11:29:20 +00002457 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002458 goto page1_init_failed;
2459 }
drh43b18e12010-08-17 19:40:08 +00002460 pBt->pageSize = pageSize;
2461 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002462#ifndef SQLITE_OMIT_AUTOVACUUM
2463 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002464 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002465#endif
drh306dc212001-05-21 13:45:10 +00002466 }
drhb6f41482004-05-14 01:58:11 +00002467
2468 /* maxLocal is the maximum amount of payload to store locally for
2469 ** a cell. Make sure it is small enough so that at least minFanout
2470 ** cells can will fit on one page. We assume a 10-byte page header.
2471 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002472 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002473 ** 4-byte child pointer
2474 ** 9-byte nKey value
2475 ** 4-byte nData value
2476 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002477 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002478 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2479 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002480 */
shaneh1df2db72010-08-18 02:28:48 +00002481 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2482 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2483 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2484 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002485 if( pBt->maxLocal>127 ){
2486 pBt->max1bytePayload = 127;
2487 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002488 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002489 }
drh2e38c322004-09-03 18:38:44 +00002490 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002491 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002492 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002493 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002494
drh72f82862001-05-24 21:06:34 +00002495page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002496 releasePage(pPage1);
2497 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002498 return rc;
drh306dc212001-05-21 13:45:10 +00002499}
2500
2501/*
drhb8ca3072001-12-05 00:21:20 +00002502** If there are no outstanding cursors and we are not in the middle
2503** of a transaction but there is a read lock on the database, then
2504** this routine unrefs the first page of the database file which
2505** has the effect of releasing the read lock.
2506**
drhb8ca3072001-12-05 00:21:20 +00002507** If there is a transaction in progress, this routine is a no-op.
2508*/
danielk1977aef0bf62005-12-30 16:28:01 +00002509static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002510 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002511 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2512 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002513 assert( pBt->pPage1->aData );
2514 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2515 assert( pBt->pPage1->aData );
2516 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002517 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002518 }
2519}
2520
2521/*
drhe39f2f92009-07-23 01:43:59 +00002522** If pBt points to an empty file then convert that empty file
2523** into a new empty database by initializing the first page of
2524** the database.
drh8b2f49b2001-06-08 00:21:52 +00002525*/
danielk1977aef0bf62005-12-30 16:28:01 +00002526static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002527 MemPage *pP1;
2528 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002529 int rc;
drhd677b3d2007-08-20 22:48:41 +00002530
drh1fee73e2007-08-29 04:00:57 +00002531 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002532 if( pBt->nPage>0 ){
2533 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002534 }
drh3aac2dd2004-04-26 14:10:20 +00002535 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002536 assert( pP1!=0 );
2537 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002538 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002539 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002540 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2541 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002542 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2543 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002544 data[18] = 1;
2545 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002546 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2547 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002548 data[21] = 64;
2549 data[22] = 32;
2550 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002551 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002552 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002553 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002554#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002555 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002556 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002557 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002558 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002559#endif
drhdd3cd972010-03-27 17:12:36 +00002560 pBt->nPage = 1;
2561 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002562 return SQLITE_OK;
2563}
2564
2565/*
danb483eba2012-10-13 19:58:11 +00002566** Initialize the first page of the database file (creating a database
2567** consisting of a single page and no schema objects). Return SQLITE_OK
2568** if successful, or an SQLite error code otherwise.
2569*/
2570int sqlite3BtreeNewDb(Btree *p){
2571 int rc;
2572 sqlite3BtreeEnter(p);
2573 p->pBt->nPage = 0;
2574 rc = newDatabase(p->pBt);
2575 sqlite3BtreeLeave(p);
2576 return rc;
2577}
2578
2579/*
danielk1977ee5741e2004-05-31 10:01:34 +00002580** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002581** is started if the second argument is nonzero, otherwise a read-
2582** transaction. If the second argument is 2 or more and exclusive
2583** transaction is started, meaning that no other process is allowed
2584** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002585** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002586** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002587**
danielk1977ee5741e2004-05-31 10:01:34 +00002588** A write-transaction must be started before attempting any
2589** changes to the database. None of the following routines
2590** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002591**
drh23e11ca2004-05-04 17:27:28 +00002592** sqlite3BtreeCreateTable()
2593** sqlite3BtreeCreateIndex()
2594** sqlite3BtreeClearTable()
2595** sqlite3BtreeDropTable()
2596** sqlite3BtreeInsert()
2597** sqlite3BtreeDelete()
2598** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002599**
drhb8ef32c2005-03-14 02:01:49 +00002600** If an initial attempt to acquire the lock fails because of lock contention
2601** and the database was previously unlocked, then invoke the busy handler
2602** if there is one. But if there was previously a read-lock, do not
2603** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2604** returned when there is already a read-lock in order to avoid a deadlock.
2605**
2606** Suppose there are two processes A and B. A has a read lock and B has
2607** a reserved lock. B tries to promote to exclusive but is blocked because
2608** of A's read lock. A tries to promote to reserved but is blocked by B.
2609** One or the other of the two processes must give way or there can be
2610** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2611** when A already has a read lock, we encourage A to give up and let B
2612** proceed.
drha059ad02001-04-17 20:09:11 +00002613*/
danielk1977aef0bf62005-12-30 16:28:01 +00002614int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002615 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002616 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002617 int rc = SQLITE_OK;
2618
drhd677b3d2007-08-20 22:48:41 +00002619 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002620 btreeIntegrity(p);
2621
danielk1977ee5741e2004-05-31 10:01:34 +00002622 /* If the btree is already in a write-transaction, or it
2623 ** is already in a read-transaction and a read-transaction
2624 ** is requested, this is a no-op.
2625 */
danielk1977aef0bf62005-12-30 16:28:01 +00002626 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002627 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002628 }
dan09ff9e12013-03-11 11:49:03 +00002629 assert( IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002630
2631 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002632 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002633 rc = SQLITE_READONLY;
2634 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002635 }
2636
danielk1977404ca072009-03-16 13:19:36 +00002637#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002638 /* If another database handle has already opened a write transaction
2639 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002640 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002641 */
drhc9166342012-01-05 23:32:06 +00002642 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2643 || (pBt->btsFlags & BTS_PENDING)!=0
2644 ){
danielk1977404ca072009-03-16 13:19:36 +00002645 pBlock = pBt->pWriter->db;
2646 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002647 BtLock *pIter;
2648 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2649 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002650 pBlock = pIter->pBtree->db;
2651 break;
danielk1977641b0f42007-12-21 04:47:25 +00002652 }
2653 }
2654 }
danielk1977404ca072009-03-16 13:19:36 +00002655 if( pBlock ){
2656 sqlite3ConnectionBlocked(p->db, pBlock);
2657 rc = SQLITE_LOCKED_SHAREDCACHE;
2658 goto trans_begun;
2659 }
danielk1977641b0f42007-12-21 04:47:25 +00002660#endif
2661
danielk1977602b4662009-07-02 07:47:33 +00002662 /* Any read-only or read-write transaction implies a read-lock on
2663 ** page 1. So if some other shared-cache client already has a write-lock
2664 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002665 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2666 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002667
drhc9166342012-01-05 23:32:06 +00002668 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2669 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002670 do {
danielk1977295dc102009-04-01 19:07:03 +00002671 /* Call lockBtree() until either pBt->pPage1 is populated or
2672 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2673 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2674 ** reading page 1 it discovers that the page-size of the database
2675 ** file is not pBt->pageSize. In this case lockBtree() will update
2676 ** pBt->pageSize to the page-size of the file on disk.
2677 */
2678 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002679
drhb8ef32c2005-03-14 02:01:49 +00002680 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002681 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002682 rc = SQLITE_READONLY;
2683 }else{
danielk1977d8293352009-04-30 09:10:37 +00002684 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002685 if( rc==SQLITE_OK ){
2686 rc = newDatabase(pBt);
2687 }
drhb8ef32c2005-03-14 02:01:49 +00002688 }
2689 }
2690
danielk1977bd434552009-03-18 10:33:00 +00002691 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002692 unlockBtreeIfUnused(pBt);
2693 }
danf9b76712010-06-01 14:12:45 +00002694 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002695 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002696
2697 if( rc==SQLITE_OK ){
2698 if( p->inTrans==TRANS_NONE ){
2699 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002700#ifndef SQLITE_OMIT_SHARED_CACHE
2701 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002702 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002703 p->lock.eLock = READ_LOCK;
2704 p->lock.pNext = pBt->pLock;
2705 pBt->pLock = &p->lock;
2706 }
2707#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002708 }
2709 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2710 if( p->inTrans>pBt->inTransaction ){
2711 pBt->inTransaction = p->inTrans;
2712 }
danielk1977404ca072009-03-16 13:19:36 +00002713 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002714 MemPage *pPage1 = pBt->pPage1;
2715#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002716 assert( !pBt->pWriter );
2717 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002718 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2719 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002720#endif
dan59257dc2010-08-04 11:34:31 +00002721
2722 /* If the db-size header field is incorrect (as it may be if an old
2723 ** client has been writing the database file), update it now. Doing
2724 ** this sooner rather than later means the database size can safely
2725 ** re-read the database size from page 1 if a savepoint or transaction
2726 ** rollback occurs within the transaction.
2727 */
2728 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2729 rc = sqlite3PagerWrite(pPage1->pDbPage);
2730 if( rc==SQLITE_OK ){
2731 put4byte(&pPage1->aData[28], pBt->nPage);
2732 }
2733 }
2734 }
danielk1977aef0bf62005-12-30 16:28:01 +00002735 }
2736
drhd677b3d2007-08-20 22:48:41 +00002737
2738trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002739 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002740 /* This call makes sure that the pager has the correct number of
2741 ** open savepoints. If the second parameter is greater than 0 and
2742 ** the sub-journal is not already open, then it will be opened here.
2743 */
danielk1977fd7f0452008-12-17 17:30:26 +00002744 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2745 }
danielk197712dd5492008-12-18 15:45:07 +00002746
danielk1977aef0bf62005-12-30 16:28:01 +00002747 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002748 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002749 return rc;
drha059ad02001-04-17 20:09:11 +00002750}
2751
danielk1977687566d2004-11-02 12:56:41 +00002752#ifndef SQLITE_OMIT_AUTOVACUUM
2753
2754/*
2755** Set the pointer-map entries for all children of page pPage. Also, if
2756** pPage contains cells that point to overflow pages, set the pointer
2757** map entries for the overflow pages as well.
2758*/
2759static int setChildPtrmaps(MemPage *pPage){
2760 int i; /* Counter variable */
2761 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002762 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002763 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002764 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002765 Pgno pgno = pPage->pgno;
2766
drh1fee73e2007-08-29 04:00:57 +00002767 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002768 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002769 if( rc!=SQLITE_OK ){
2770 goto set_child_ptrmaps_out;
2771 }
danielk1977687566d2004-11-02 12:56:41 +00002772 nCell = pPage->nCell;
2773
2774 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002775 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002776
drh98add2e2009-07-20 17:11:49 +00002777 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002778
danielk1977687566d2004-11-02 12:56:41 +00002779 if( !pPage->leaf ){
2780 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002781 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002782 }
2783 }
2784
2785 if( !pPage->leaf ){
2786 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002787 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002788 }
2789
2790set_child_ptrmaps_out:
2791 pPage->isInit = isInitOrig;
2792 return rc;
2793}
2794
2795/*
drhf3aed592009-07-08 18:12:49 +00002796** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2797** that it points to iTo. Parameter eType describes the type of pointer to
2798** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002799**
2800** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2801** page of pPage.
2802**
2803** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2804** page pointed to by one of the cells on pPage.
2805**
2806** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2807** overflow page in the list.
2808*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002809static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002810 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002811 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002812 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002813 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002814 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002815 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002816 }
danielk1977f78fc082004-11-02 14:40:32 +00002817 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002818 }else{
drhf49661a2008-12-10 16:45:50 +00002819 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002820 int i;
2821 int nCell;
2822
danielk197730548662009-07-09 05:07:37 +00002823 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002824 nCell = pPage->nCell;
2825
danielk1977687566d2004-11-02 12:56:41 +00002826 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002827 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002828 if( eType==PTRMAP_OVERFLOW1 ){
2829 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002830 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002831 if( info.iOverflow
2832 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2833 && iFrom==get4byte(&pCell[info.iOverflow])
2834 ){
2835 put4byte(&pCell[info.iOverflow], iTo);
2836 break;
danielk1977687566d2004-11-02 12:56:41 +00002837 }
2838 }else{
2839 if( get4byte(pCell)==iFrom ){
2840 put4byte(pCell, iTo);
2841 break;
2842 }
2843 }
2844 }
2845
2846 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002847 if( eType!=PTRMAP_BTREE ||
2848 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002849 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002850 }
danielk1977687566d2004-11-02 12:56:41 +00002851 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2852 }
2853
2854 pPage->isInit = isInitOrig;
2855 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002856 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002857}
2858
danielk1977003ba062004-11-04 02:57:33 +00002859
danielk19777701e812005-01-10 12:59:51 +00002860/*
2861** Move the open database page pDbPage to location iFreePage in the
2862** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002863**
2864** The isCommit flag indicates that there is no need to remember that
2865** the journal needs to be sync()ed before database page pDbPage->pgno
2866** can be written to. The caller has already promised not to write to that
2867** page.
danielk19777701e812005-01-10 12:59:51 +00002868*/
danielk1977003ba062004-11-04 02:57:33 +00002869static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002870 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002871 MemPage *pDbPage, /* Open page to move */
2872 u8 eType, /* Pointer map 'type' entry for pDbPage */
2873 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002874 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002875 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002876){
2877 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2878 Pgno iDbPage = pDbPage->pgno;
2879 Pager *pPager = pBt->pPager;
2880 int rc;
2881
danielk1977a0bf2652004-11-04 14:30:04 +00002882 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2883 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002884 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002885 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002886
drh85b623f2007-12-13 21:54:09 +00002887 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002888 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2889 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002890 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002891 if( rc!=SQLITE_OK ){
2892 return rc;
2893 }
2894 pDbPage->pgno = iFreePage;
2895
2896 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2897 ** that point to overflow pages. The pointer map entries for all these
2898 ** pages need to be changed.
2899 **
2900 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2901 ** pointer to a subsequent overflow page. If this is the case, then
2902 ** the pointer map needs to be updated for the subsequent overflow page.
2903 */
danielk1977a0bf2652004-11-04 14:30:04 +00002904 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002905 rc = setChildPtrmaps(pDbPage);
2906 if( rc!=SQLITE_OK ){
2907 return rc;
2908 }
2909 }else{
2910 Pgno nextOvfl = get4byte(pDbPage->aData);
2911 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002912 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002913 if( rc!=SQLITE_OK ){
2914 return rc;
2915 }
2916 }
2917 }
2918
2919 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2920 ** that it points at iFreePage. Also fix the pointer map entry for
2921 ** iPtrPage.
2922 */
danielk1977a0bf2652004-11-04 14:30:04 +00002923 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002924 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002925 if( rc!=SQLITE_OK ){
2926 return rc;
2927 }
danielk19773b8a05f2007-03-19 17:44:26 +00002928 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002929 if( rc!=SQLITE_OK ){
2930 releasePage(pPtrPage);
2931 return rc;
2932 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002933 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002934 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002935 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002936 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002937 }
danielk1977003ba062004-11-04 02:57:33 +00002938 }
danielk1977003ba062004-11-04 02:57:33 +00002939 return rc;
2940}
2941
danielk1977dddbcdc2007-04-26 14:42:34 +00002942/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002943static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002944
2945/*
dan51f0b6d2013-02-22 20:16:34 +00002946** Perform a single step of an incremental-vacuum. If successful, return
2947** SQLITE_OK. If there is no work to do (and therefore no point in
2948** calling this function again), return SQLITE_DONE. Or, if an error
2949** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00002950**
dan51f0b6d2013-02-22 20:16:34 +00002951** More specificly, this function attempts to re-organize the database so
2952** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00002953**
dan51f0b6d2013-02-22 20:16:34 +00002954** Parameter nFin is the number of pages that this database would contain
2955** were this function called until it returns SQLITE_DONE.
2956**
2957** If the bCommit parameter is non-zero, this function assumes that the
2958** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
2959** or an error. bCommit is passed true for an auto-vacuum-on-commmit
2960** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00002961*/
dan51f0b6d2013-02-22 20:16:34 +00002962static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00002963 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002964 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002965
drh1fee73e2007-08-29 04:00:57 +00002966 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002967 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002968
2969 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002970 u8 eType;
2971 Pgno iPtrPage;
2972
2973 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002974 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002975 return SQLITE_DONE;
2976 }
2977
2978 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2979 if( rc!=SQLITE_OK ){
2980 return rc;
2981 }
2982 if( eType==PTRMAP_ROOTPAGE ){
2983 return SQLITE_CORRUPT_BKPT;
2984 }
2985
2986 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00002987 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002988 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00002989 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002990 ** truncated to zero after this function returns, so it doesn't
2991 ** matter if it still contains some garbage entries.
2992 */
2993 Pgno iFreePg;
2994 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00002995 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00002996 if( rc!=SQLITE_OK ){
2997 return rc;
2998 }
2999 assert( iFreePg==iLastPg );
3000 releasePage(pFreePg);
3001 }
3002 } else {
3003 Pgno iFreePg; /* Index of free page to move pLastPg to */
3004 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003005 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3006 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003007
danielk197730548662009-07-09 05:07:37 +00003008 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003009 if( rc!=SQLITE_OK ){
3010 return rc;
3011 }
3012
dan51f0b6d2013-02-22 20:16:34 +00003013 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003014 ** is swapped with the first free page pulled off the free list.
3015 **
dan51f0b6d2013-02-22 20:16:34 +00003016 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003017 ** looping until a free-page located within the first nFin pages
3018 ** of the file is found.
3019 */
dan51f0b6d2013-02-22 20:16:34 +00003020 if( bCommit==0 ){
3021 eMode = BTALLOC_LE;
3022 iNear = nFin;
3023 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003024 do {
3025 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003026 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003027 if( rc!=SQLITE_OK ){
3028 releasePage(pLastPg);
3029 return rc;
3030 }
3031 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003032 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003033 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003034
dane1df4e32013-03-05 11:27:04 +00003035 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003036 releasePage(pLastPg);
3037 if( rc!=SQLITE_OK ){
3038 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003039 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003040 }
3041 }
3042
dan51f0b6d2013-02-22 20:16:34 +00003043 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003044 do {
danielk19773460d192008-12-27 15:23:13 +00003045 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003046 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3047 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003048 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003049 }
3050 return SQLITE_OK;
3051}
3052
3053/*
dan51f0b6d2013-02-22 20:16:34 +00003054** The database opened by the first argument is an auto-vacuum database
3055** nOrig pages in size containing nFree free pages. Return the expected
3056** size of the database in pages following an auto-vacuum operation.
3057*/
3058static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3059 int nEntry; /* Number of entries on one ptrmap page */
3060 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3061 Pgno nFin; /* Return value */
3062
3063 nEntry = pBt->usableSize/5;
3064 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3065 nFin = nOrig - nFree - nPtrmap;
3066 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3067 nFin--;
3068 }
3069 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3070 nFin--;
3071 }
dan51f0b6d2013-02-22 20:16:34 +00003072
3073 return nFin;
3074}
3075
3076/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003077** A write-transaction must be opened before calling this function.
3078** It performs a single unit of work towards an incremental vacuum.
3079**
3080** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003081** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003082** SQLITE_OK is returned. Otherwise an SQLite error code.
3083*/
3084int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003085 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003086 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003087
3088 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003089 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3090 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003091 rc = SQLITE_DONE;
3092 }else{
dan51f0b6d2013-02-22 20:16:34 +00003093 Pgno nOrig = btreePagecount(pBt);
3094 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3095 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3096
dan91384712013-02-24 11:50:43 +00003097 if( nOrig<nFin ){
3098 rc = SQLITE_CORRUPT_BKPT;
3099 }else if( nFree>0 ){
dan51f0b6d2013-02-22 20:16:34 +00003100 invalidateAllOverflowCache(pBt);
3101 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3102 if( rc==SQLITE_OK ){
3103 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3104 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3105 }
3106 }else{
3107 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003108 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003109 }
drhd677b3d2007-08-20 22:48:41 +00003110 sqlite3BtreeLeave(p);
3111 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003112}
3113
3114/*
danielk19773b8a05f2007-03-19 17:44:26 +00003115** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003116** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003117**
3118** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3119** the database file should be truncated to during the commit process.
3120** i.e. the database has been reorganized so that only the first *pnTrunc
3121** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003122*/
danielk19773460d192008-12-27 15:23:13 +00003123static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003124 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003125 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003126 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003127
drh1fee73e2007-08-29 04:00:57 +00003128 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003129 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003130 assert(pBt->autoVacuum);
3131 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003132 Pgno nFin; /* Number of pages in database after autovacuuming */
3133 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003134 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003135 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003136
drhb1299152010-03-30 22:58:33 +00003137 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003138 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3139 /* It is not possible to create a database for which the final page
3140 ** is either a pointer-map page or the pending-byte page. If one
3141 ** is encountered, this indicates corruption.
3142 */
danielk19773460d192008-12-27 15:23:13 +00003143 return SQLITE_CORRUPT_BKPT;
3144 }
danielk1977ef165ce2009-04-06 17:50:03 +00003145
danielk19773460d192008-12-27 15:23:13 +00003146 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003147 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003148 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003149
danielk19773460d192008-12-27 15:23:13 +00003150 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003151 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003152 }
danielk19773460d192008-12-27 15:23:13 +00003153 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003154 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3155 put4byte(&pBt->pPage1->aData[32], 0);
3156 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003157 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003158 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003159 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003160 }
3161 if( rc!=SQLITE_OK ){
3162 sqlite3PagerRollback(pPager);
3163 }
danielk1977687566d2004-11-02 12:56:41 +00003164 }
3165
danielk19773b8a05f2007-03-19 17:44:26 +00003166 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003167 return rc;
3168}
danielk1977dddbcdc2007-04-26 14:42:34 +00003169
danielk1977a50d9aa2009-06-08 14:49:45 +00003170#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3171# define setChildPtrmaps(x) SQLITE_OK
3172#endif
danielk1977687566d2004-11-02 12:56:41 +00003173
3174/*
drh80e35f42007-03-30 14:06:34 +00003175** This routine does the first phase of a two-phase commit. This routine
3176** causes a rollback journal to be created (if it does not already exist)
3177** and populated with enough information so that if a power loss occurs
3178** the database can be restored to its original state by playing back
3179** the journal. Then the contents of the journal are flushed out to
3180** the disk. After the journal is safely on oxide, the changes to the
3181** database are written into the database file and flushed to oxide.
3182** At the end of this call, the rollback journal still exists on the
3183** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003184** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003185** commit process.
3186**
3187** This call is a no-op if no write-transaction is currently active on pBt.
3188**
3189** Otherwise, sync the database file for the btree pBt. zMaster points to
3190** the name of a master journal file that should be written into the
3191** individual journal file, or is NULL, indicating no master journal file
3192** (single database transaction).
3193**
3194** When this is called, the master journal should already have been
3195** created, populated with this journal pointer and synced to disk.
3196**
3197** Once this is routine has returned, the only thing required to commit
3198** the write-transaction for this database file is to delete the journal.
3199*/
3200int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3201 int rc = SQLITE_OK;
3202 if( p->inTrans==TRANS_WRITE ){
3203 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003204 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003205#ifndef SQLITE_OMIT_AUTOVACUUM
3206 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003207 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003208 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003209 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003210 return rc;
3211 }
3212 }
danbc1a3c62013-02-23 16:40:46 +00003213 if( pBt->bDoTruncate ){
3214 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3215 }
drh80e35f42007-03-30 14:06:34 +00003216#endif
drh49b9d332009-01-02 18:10:42 +00003217 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003218 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003219 }
3220 return rc;
3221}
3222
3223/*
danielk197794b30732009-07-02 17:21:57 +00003224** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3225** at the conclusion of a transaction.
3226*/
3227static void btreeEndTransaction(Btree *p){
3228 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003229 assert( sqlite3BtreeHoldsMutex(p) );
3230
danbc1a3c62013-02-23 16:40:46 +00003231#ifndef SQLITE_OMIT_AUTOVACUUM
3232 pBt->bDoTruncate = 0;
3233#endif
danielk197794b30732009-07-02 17:21:57 +00003234 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003235 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3236 /* If there are other active statements that belong to this database
3237 ** handle, downgrade to a read-only transaction. The other statements
3238 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003239 downgradeAllSharedCacheTableLocks(p);
3240 p->inTrans = TRANS_READ;
3241 }else{
3242 /* If the handle had any kind of transaction open, decrement the
3243 ** transaction count of the shared btree. If the transaction count
3244 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3245 ** call below will unlock the pager. */
3246 if( p->inTrans!=TRANS_NONE ){
3247 clearAllSharedCacheTableLocks(p);
3248 pBt->nTransaction--;
3249 if( 0==pBt->nTransaction ){
3250 pBt->inTransaction = TRANS_NONE;
3251 }
3252 }
3253
3254 /* Set the current transaction state to TRANS_NONE and unlock the
3255 ** pager if this call closed the only read or write transaction. */
3256 p->inTrans = TRANS_NONE;
3257 unlockBtreeIfUnused(pBt);
3258 }
3259
3260 btreeIntegrity(p);
3261}
3262
3263/*
drh2aa679f2001-06-25 02:11:07 +00003264** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003265**
drh6e345992007-03-30 11:12:08 +00003266** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003267** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3268** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3269** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003270** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003271** routine has to do is delete or truncate or zero the header in the
3272** the rollback journal (which causes the transaction to commit) and
3273** drop locks.
drh6e345992007-03-30 11:12:08 +00003274**
dan60939d02011-03-29 15:40:55 +00003275** Normally, if an error occurs while the pager layer is attempting to
3276** finalize the underlying journal file, this function returns an error and
3277** the upper layer will attempt a rollback. However, if the second argument
3278** is non-zero then this b-tree transaction is part of a multi-file
3279** transaction. In this case, the transaction has already been committed
3280** (by deleting a master journal file) and the caller will ignore this
3281** functions return code. So, even if an error occurs in the pager layer,
3282** reset the b-tree objects internal state to indicate that the write
3283** transaction has been closed. This is quite safe, as the pager will have
3284** transitioned to the error state.
3285**
drh5e00f6c2001-09-13 13:46:56 +00003286** This will release the write lock on the database file. If there
3287** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003288*/
dan60939d02011-03-29 15:40:55 +00003289int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003290
drh075ed302010-10-14 01:17:30 +00003291 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003292 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003293 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003294
3295 /* If the handle has a write-transaction open, commit the shared-btrees
3296 ** transaction and set the shared state to TRANS_READ.
3297 */
3298 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003299 int rc;
drh075ed302010-10-14 01:17:30 +00003300 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003301 assert( pBt->inTransaction==TRANS_WRITE );
3302 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003303 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003304 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003305 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003306 return rc;
3307 }
danielk1977aef0bf62005-12-30 16:28:01 +00003308 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003309 }
danielk1977aef0bf62005-12-30 16:28:01 +00003310
danielk197794b30732009-07-02 17:21:57 +00003311 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003312 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003313 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003314}
3315
drh80e35f42007-03-30 14:06:34 +00003316/*
3317** Do both phases of a commit.
3318*/
3319int sqlite3BtreeCommit(Btree *p){
3320 int rc;
drhd677b3d2007-08-20 22:48:41 +00003321 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003322 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3323 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003324 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003325 }
drhd677b3d2007-08-20 22:48:41 +00003326 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003327 return rc;
3328}
3329
danielk1977fbcd5852004-06-15 02:44:18 +00003330#ifndef NDEBUG
3331/*
3332** Return the number of write-cursors open on this handle. This is for use
3333** in assert() expressions, so it is only compiled if NDEBUG is not
3334** defined.
drhfb982642007-08-30 01:19:59 +00003335**
3336** For the purposes of this routine, a write-cursor is any cursor that
3337** is capable of writing to the databse. That means the cursor was
3338** originally opened for writing and the cursor has not be disabled
3339** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003340*/
danielk1977aef0bf62005-12-30 16:28:01 +00003341static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003342 BtCursor *pCur;
3343 int r = 0;
3344 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003345 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003346 }
3347 return r;
3348}
3349#endif
3350
drhc39e0002004-05-07 23:50:57 +00003351/*
drhfb982642007-08-30 01:19:59 +00003352** This routine sets the state to CURSOR_FAULT and the error
3353** code to errCode for every cursor on BtShared that pBtree
3354** references.
3355**
3356** Every cursor is tripped, including cursors that belong
3357** to other database connections that happen to be sharing
3358** the cache with pBtree.
3359**
3360** This routine gets called when a rollback occurs.
3361** All cursors using the same cache must be tripped
3362** to prevent them from trying to use the btree after
3363** the rollback. The rollback may have deleted tables
3364** or moved root pages, so it is not sufficient to
3365** save the state of the cursor. The cursor must be
3366** invalidated.
3367*/
3368void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3369 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003370 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003371 sqlite3BtreeEnter(pBtree);
3372 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003373 int i;
danielk1977be51a652008-10-08 17:58:48 +00003374 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003375 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003376 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003377 for(i=0; i<=p->iPage; i++){
3378 releasePage(p->apPage[i]);
3379 p->apPage[i] = 0;
3380 }
drhfb982642007-08-30 01:19:59 +00003381 }
3382 sqlite3BtreeLeave(pBtree);
3383}
3384
3385/*
drhecdc7532001-09-23 02:35:53 +00003386** Rollback the transaction in progress. All cursors will be
3387** invalided by this operation. Any attempt to use a cursor
3388** that was open at the beginning of this operation will result
3389** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003390**
3391** This will release the write lock on the database file. If there
3392** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003393*/
drh0f198a72012-02-13 16:43:16 +00003394int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003395 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003396 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003397 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003398
drhd677b3d2007-08-20 22:48:41 +00003399 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003400 if( tripCode==SQLITE_OK ){
3401 rc = tripCode = saveAllCursors(pBt, 0, 0);
3402 }else{
3403 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003404 }
drh0f198a72012-02-13 16:43:16 +00003405 if( tripCode ){
3406 sqlite3BtreeTripAllCursors(p, tripCode);
3407 }
danielk1977aef0bf62005-12-30 16:28:01 +00003408 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003409
3410 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003411 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003412
danielk19778d34dfd2006-01-24 16:37:57 +00003413 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003414 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003415 if( rc2!=SQLITE_OK ){
3416 rc = rc2;
3417 }
3418
drh24cd67e2004-05-10 16:18:47 +00003419 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003420 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003421 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003422 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003423 int nPage = get4byte(28+(u8*)pPage1->aData);
3424 testcase( nPage==0 );
3425 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3426 testcase( pBt->nPage!=nPage );
3427 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003428 releasePage(pPage1);
3429 }
danielk1977fbcd5852004-06-15 02:44:18 +00003430 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003431 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003432 }
danielk1977aef0bf62005-12-30 16:28:01 +00003433
danielk197794b30732009-07-02 17:21:57 +00003434 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003435 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003436 return rc;
3437}
3438
3439/*
danielk1977bd434552009-03-18 10:33:00 +00003440** Start a statement subtransaction. The subtransaction can can be rolled
3441** back independently of the main transaction. You must start a transaction
3442** before starting a subtransaction. The subtransaction is ended automatically
3443** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003444**
3445** Statement subtransactions are used around individual SQL statements
3446** that are contained within a BEGIN...COMMIT block. If a constraint
3447** error occurs within the statement, the effect of that one statement
3448** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003449**
3450** A statement sub-transaction is implemented as an anonymous savepoint. The
3451** value passed as the second parameter is the total number of savepoints,
3452** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3453** are no active savepoints and no other statement-transactions open,
3454** iStatement is 1. This anonymous savepoint can be released or rolled back
3455** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003456*/
danielk1977bd434552009-03-18 10:33:00 +00003457int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003458 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003459 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003460 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003461 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003462 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003463 assert( iStatement>0 );
3464 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003465 assert( pBt->inTransaction==TRANS_WRITE );
3466 /* At the pager level, a statement transaction is a savepoint with
3467 ** an index greater than all savepoints created explicitly using
3468 ** SQL statements. It is illegal to open, release or rollback any
3469 ** such savepoints while the statement transaction savepoint is active.
3470 */
3471 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003472 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003473 return rc;
3474}
3475
3476/*
danielk1977fd7f0452008-12-17 17:30:26 +00003477** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3478** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003479** savepoint identified by parameter iSavepoint, depending on the value
3480** of op.
3481**
3482** Normally, iSavepoint is greater than or equal to zero. However, if op is
3483** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3484** contents of the entire transaction are rolled back. This is different
3485** from a normal transaction rollback, as no locks are released and the
3486** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003487*/
3488int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3489 int rc = SQLITE_OK;
3490 if( p && p->inTrans==TRANS_WRITE ){
3491 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003492 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3493 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3494 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003495 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003496 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003497 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3498 pBt->nPage = 0;
3499 }
drh9f0bbf92009-01-02 21:08:09 +00003500 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003501 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003502
3503 /* The database size was written into the offset 28 of the header
3504 ** when the transaction started, so we know that the value at offset
3505 ** 28 is nonzero. */
3506 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003507 }
danielk1977fd7f0452008-12-17 17:30:26 +00003508 sqlite3BtreeLeave(p);
3509 }
3510 return rc;
3511}
3512
3513/*
drh8b2f49b2001-06-08 00:21:52 +00003514** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003515** iTable. If a read-only cursor is requested, it is assumed that
3516** the caller already has at least a read-only transaction open
3517** on the database already. If a write-cursor is requested, then
3518** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003519**
3520** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003521** If wrFlag==1, then the cursor can be used for reading or for
3522** writing if other conditions for writing are also met. These
3523** are the conditions that must be met in order for writing to
3524** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003525**
drhf74b8d92002-09-01 23:20:45 +00003526** 1: The cursor must have been opened with wrFlag==1
3527**
drhfe5d71d2007-03-19 11:54:10 +00003528** 2: Other database connections that share the same pager cache
3529** but which are not in the READ_UNCOMMITTED state may not have
3530** cursors open with wrFlag==0 on the same table. Otherwise
3531** the changes made by this write cursor would be visible to
3532** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003533**
3534** 3: The database must be writable (not on read-only media)
3535**
3536** 4: There must be an active transaction.
3537**
drh6446c4d2001-12-15 14:22:18 +00003538** No checking is done to make sure that page iTable really is the
3539** root page of a b-tree. If it is not, then the cursor acquired
3540** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003541**
drhf25a5072009-11-18 23:01:25 +00003542** It is assumed that the sqlite3BtreeCursorZero() has been called
3543** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003544*/
drhd677b3d2007-08-20 22:48:41 +00003545static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003546 Btree *p, /* The btree */
3547 int iTable, /* Root page of table to open */
3548 int wrFlag, /* 1 to write. 0 read-only */
3549 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3550 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003551){
danielk19773e8add92009-07-04 17:16:00 +00003552 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003553
drh1fee73e2007-08-29 04:00:57 +00003554 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003555 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003556
danielk1977602b4662009-07-02 07:47:33 +00003557 /* The following assert statements verify that if this is a sharable
3558 ** b-tree database, the connection is holding the required table locks,
3559 ** and that no other connection has any open cursor that conflicts with
3560 ** this lock. */
3561 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003562 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3563
danielk19773e8add92009-07-04 17:16:00 +00003564 /* Assert that the caller has opened the required transaction. */
3565 assert( p->inTrans>TRANS_NONE );
3566 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3567 assert( pBt->pPage1 && pBt->pPage1->aData );
3568
drhc9166342012-01-05 23:32:06 +00003569 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003570 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003571 }
drhb1299152010-03-30 22:58:33 +00003572 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003573 assert( wrFlag==0 );
3574 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003575 }
danielk1977aef0bf62005-12-30 16:28:01 +00003576
danielk1977aef0bf62005-12-30 16:28:01 +00003577 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003578 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003579 pCur->pgnoRoot = (Pgno)iTable;
3580 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003581 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003582 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003583 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003584 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003585 pCur->pNext = pBt->pCursor;
3586 if( pCur->pNext ){
3587 pCur->pNext->pPrev = pCur;
3588 }
3589 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003590 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003591 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003592 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003593}
drhd677b3d2007-08-20 22:48:41 +00003594int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003595 Btree *p, /* The btree */
3596 int iTable, /* Root page of table to open */
3597 int wrFlag, /* 1 to write. 0 read-only */
3598 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3599 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003600){
3601 int rc;
3602 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003603 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003604 sqlite3BtreeLeave(p);
3605 return rc;
3606}
drh7f751222009-03-17 22:33:00 +00003607
3608/*
3609** Return the size of a BtCursor object in bytes.
3610**
3611** This interfaces is needed so that users of cursors can preallocate
3612** sufficient storage to hold a cursor. The BtCursor object is opaque
3613** to users so they cannot do the sizeof() themselves - they must call
3614** this routine.
3615*/
3616int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003617 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003618}
3619
drh7f751222009-03-17 22:33:00 +00003620/*
drhf25a5072009-11-18 23:01:25 +00003621** Initialize memory that will be converted into a BtCursor object.
3622**
3623** The simple approach here would be to memset() the entire object
3624** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3625** do not need to be zeroed and they are large, so we can save a lot
3626** of run-time by skipping the initialization of those elements.
3627*/
3628void sqlite3BtreeCursorZero(BtCursor *p){
3629 memset(p, 0, offsetof(BtCursor, iPage));
3630}
3631
3632/*
drh7f751222009-03-17 22:33:00 +00003633** Set the cached rowid value of every cursor in the same database file
3634** as pCur and having the same root page number as pCur. The value is
3635** set to iRowid.
3636**
3637** Only positive rowid values are considered valid for this cache.
3638** The cache is initialized to zero, indicating an invalid cache.
3639** A btree will work fine with zero or negative rowids. We just cannot
3640** cache zero or negative rowids, which means tables that use zero or
3641** negative rowids might run a little slower. But in practice, zero
3642** or negative rowids are very uncommon so this should not be a problem.
3643*/
3644void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3645 BtCursor *p;
3646 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3647 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3648 }
3649 assert( pCur->cachedRowid==iRowid );
3650}
drhd677b3d2007-08-20 22:48:41 +00003651
drh7f751222009-03-17 22:33:00 +00003652/*
3653** Return the cached rowid for the given cursor. A negative or zero
3654** return value indicates that the rowid cache is invalid and should be
3655** ignored. If the rowid cache has never before been set, then a
3656** zero is returned.
3657*/
3658sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3659 return pCur->cachedRowid;
3660}
drha059ad02001-04-17 20:09:11 +00003661
3662/*
drh5e00f6c2001-09-13 13:46:56 +00003663** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003664** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003665*/
drh3aac2dd2004-04-26 14:10:20 +00003666int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003667 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003668 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003669 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003670 BtShared *pBt = pCur->pBt;
3671 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003672 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003673 if( pCur->pPrev ){
3674 pCur->pPrev->pNext = pCur->pNext;
3675 }else{
3676 pBt->pCursor = pCur->pNext;
3677 }
3678 if( pCur->pNext ){
3679 pCur->pNext->pPrev = pCur->pPrev;
3680 }
danielk197771d5d2c2008-09-29 11:49:47 +00003681 for(i=0; i<=pCur->iPage; i++){
3682 releasePage(pCur->apPage[i]);
3683 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003684 unlockBtreeIfUnused(pBt);
3685 invalidateOverflowCache(pCur);
3686 /* sqlite3_free(pCur); */
3687 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003688 }
drh8c42ca92001-06-22 19:15:00 +00003689 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003690}
3691
drh5e2f8b92001-05-28 00:41:15 +00003692/*
drh86057612007-06-26 01:04:48 +00003693** Make sure the BtCursor* given in the argument has a valid
3694** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003695** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003696**
3697** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003698** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003699**
3700** 2007-06-25: There is a bug in some versions of MSVC that cause the
3701** compiler to crash when getCellInfo() is implemented as a macro.
3702** But there is a measureable speed advantage to using the macro on gcc
3703** (when less compiler optimizations like -Os or -O0 are used and the
3704** compiler is not doing agressive inlining.) So we use a real function
3705** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003706*/
drh9188b382004-05-14 21:12:22 +00003707#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003708 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003709 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003710 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003711 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003712 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003713 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003714 }
danielk19771cc5ed82007-05-16 17:28:43 +00003715#else
3716 #define assertCellInfo(x)
3717#endif
drh86057612007-06-26 01:04:48 +00003718#ifdef _MSC_VER
3719 /* Use a real function in MSVC to work around bugs in that compiler. */
3720 static void getCellInfo(BtCursor *pCur){
3721 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003722 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003723 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003724 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003725 }else{
3726 assertCellInfo(pCur);
3727 }
3728 }
3729#else /* if not _MSC_VER */
3730 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003731#define getCellInfo(pCur) \
3732 if( pCur->info.nSize==0 ){ \
3733 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003734 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003735 pCur->validNKey = 1; \
3736 }else{ \
3737 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003738 }
3739#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003740
drhea8ffdf2009-07-22 00:35:23 +00003741#ifndef NDEBUG /* The next routine used only within assert() statements */
3742/*
3743** Return true if the given BtCursor is valid. A valid cursor is one
3744** that is currently pointing to a row in a (non-empty) table.
3745** This is a verification routine is used only within assert() statements.
3746*/
3747int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3748 return pCur && pCur->eState==CURSOR_VALID;
3749}
3750#endif /* NDEBUG */
3751
drh9188b382004-05-14 21:12:22 +00003752/*
drh3aac2dd2004-04-26 14:10:20 +00003753** Set *pSize to the size of the buffer needed to hold the value of
3754** the key for the current entry. If the cursor is not pointing
3755** to a valid entry, *pSize is set to 0.
3756**
drh4b70f112004-05-02 21:12:19 +00003757** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003758** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003759**
3760** The caller must position the cursor prior to invoking this routine.
3761**
3762** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003763*/
drh4a1c3802004-05-12 15:15:47 +00003764int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003765 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003766 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3767 if( pCur->eState!=CURSOR_VALID ){
3768 *pSize = 0;
3769 }else{
3770 getCellInfo(pCur);
3771 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003772 }
drhea8ffdf2009-07-22 00:35:23 +00003773 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003774}
drh2af926b2001-05-15 00:39:25 +00003775
drh72f82862001-05-24 21:06:34 +00003776/*
drh0e1c19e2004-05-11 00:58:56 +00003777** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003778** cursor currently points to.
3779**
3780** The caller must guarantee that the cursor is pointing to a non-NULL
3781** valid entry. In other words, the calling procedure must guarantee
3782** that the cursor has Cursor.eState==CURSOR_VALID.
3783**
3784** Failure is not possible. This function always returns SQLITE_OK.
3785** It might just as well be a procedure (returning void) but we continue
3786** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003787*/
3788int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003789 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003790 assert( pCur->eState==CURSOR_VALID );
3791 getCellInfo(pCur);
3792 *pSize = pCur->info.nData;
3793 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003794}
3795
3796/*
danielk1977d04417962007-05-02 13:16:30 +00003797** Given the page number of an overflow page in the database (parameter
3798** ovfl), this function finds the page number of the next page in the
3799** linked list of overflow pages. If possible, it uses the auto-vacuum
3800** pointer-map data instead of reading the content of page ovfl to do so.
3801**
3802** If an error occurs an SQLite error code is returned. Otherwise:
3803**
danielk1977bea2a942009-01-20 17:06:27 +00003804** The page number of the next overflow page in the linked list is
3805** written to *pPgnoNext. If page ovfl is the last page in its linked
3806** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003807**
danielk1977bea2a942009-01-20 17:06:27 +00003808** If ppPage is not NULL, and a reference to the MemPage object corresponding
3809** to page number pOvfl was obtained, then *ppPage is set to point to that
3810** reference. It is the responsibility of the caller to call releasePage()
3811** on *ppPage to free the reference. In no reference was obtained (because
3812** the pointer-map was used to obtain the value for *pPgnoNext), then
3813** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003814*/
3815static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003816 BtShared *pBt, /* The database file */
3817 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003818 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003819 Pgno *pPgnoNext /* OUT: Next overflow page number */
3820){
3821 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003822 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003823 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003824
drh1fee73e2007-08-29 04:00:57 +00003825 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003826 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003827
3828#ifndef SQLITE_OMIT_AUTOVACUUM
3829 /* Try to find the next page in the overflow list using the
3830 ** autovacuum pointer-map pages. Guess that the next page in
3831 ** the overflow list is page number (ovfl+1). If that guess turns
3832 ** out to be wrong, fall back to loading the data of page
3833 ** number ovfl to determine the next page number.
3834 */
3835 if( pBt->autoVacuum ){
3836 Pgno pgno;
3837 Pgno iGuess = ovfl+1;
3838 u8 eType;
3839
3840 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3841 iGuess++;
3842 }
3843
drhb1299152010-03-30 22:58:33 +00003844 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003845 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003846 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003847 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003848 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003849 }
3850 }
3851 }
3852#endif
3853
danielk1977d8a3f3d2009-07-11 11:45:23 +00003854 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003855 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003856 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003857 assert( rc==SQLITE_OK || pPage==0 );
3858 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003859 next = get4byte(pPage->aData);
3860 }
danielk1977443c0592009-01-16 15:21:05 +00003861 }
danielk197745d68822009-01-16 16:23:38 +00003862
danielk1977bea2a942009-01-20 17:06:27 +00003863 *pPgnoNext = next;
3864 if( ppPage ){
3865 *ppPage = pPage;
3866 }else{
3867 releasePage(pPage);
3868 }
3869 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003870}
3871
danielk1977da107192007-05-04 08:32:13 +00003872/*
3873** Copy data from a buffer to a page, or from a page to a buffer.
3874**
3875** pPayload is a pointer to data stored on database page pDbPage.
3876** If argument eOp is false, then nByte bytes of data are copied
3877** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3878** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3879** of data are copied from the buffer pBuf to pPayload.
3880**
3881** SQLITE_OK is returned on success, otherwise an error code.
3882*/
3883static int copyPayload(
3884 void *pPayload, /* Pointer to page data */
3885 void *pBuf, /* Pointer to buffer */
3886 int nByte, /* Number of bytes to copy */
3887 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3888 DbPage *pDbPage /* Page containing pPayload */
3889){
3890 if( eOp ){
3891 /* Copy data from buffer to page (a write operation) */
3892 int rc = sqlite3PagerWrite(pDbPage);
3893 if( rc!=SQLITE_OK ){
3894 return rc;
3895 }
3896 memcpy(pPayload, pBuf, nByte);
3897 }else{
3898 /* Copy data from page to buffer (a read operation) */
3899 memcpy(pBuf, pPayload, nByte);
3900 }
3901 return SQLITE_OK;
3902}
danielk1977d04417962007-05-02 13:16:30 +00003903
3904/*
danielk19779f8d6402007-05-02 17:48:45 +00003905** This function is used to read or overwrite payload information
3906** for the entry that the pCur cursor is pointing to. If the eOp
3907** parameter is 0, this is a read operation (data copied into
3908** buffer pBuf). If it is non-zero, a write (data copied from
3909** buffer pBuf).
3910**
3911** A total of "amt" bytes are read or written beginning at "offset".
3912** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003913**
drh3bcdfd22009-07-12 02:32:21 +00003914** The content being read or written might appear on the main page
3915** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003916**
danielk1977dcbb5d32007-05-04 18:36:44 +00003917** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003918** cursor entry uses one or more overflow pages, this function
3919** allocates space for and lazily popluates the overflow page-list
3920** cache array (BtCursor.aOverflow). Subsequent calls use this
3921** cache to make seeking to the supplied offset more efficient.
3922**
3923** Once an overflow page-list cache has been allocated, it may be
3924** invalidated if some other cursor writes to the same table, or if
3925** the cursor is moved to a different row. Additionally, in auto-vacuum
3926** mode, the following events may invalidate an overflow page-list cache.
3927**
3928** * An incremental vacuum,
3929** * A commit in auto_vacuum="full" mode,
3930** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003931*/
danielk19779f8d6402007-05-02 17:48:45 +00003932static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003933 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003934 u32 offset, /* Begin reading this far into payload */
3935 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003936 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003937 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003938){
3939 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003940 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003941 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003942 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003943 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003944 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003945
danielk1977da107192007-05-04 08:32:13 +00003946 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003947 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003948 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003949 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003950
drh86057612007-06-26 01:04:48 +00003951 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003952 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003953 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003954
drh3bcdfd22009-07-12 02:32:21 +00003955 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003956 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3957 ){
danielk1977da107192007-05-04 08:32:13 +00003958 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003959 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003960 }
danielk1977da107192007-05-04 08:32:13 +00003961
3962 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003963 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003964 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003965 if( a+offset>pCur->info.nLocal ){
3966 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003967 }
danielk1977da107192007-05-04 08:32:13 +00003968 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003969 offset = 0;
drha34b6762004-05-07 13:30:42 +00003970 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003971 amt -= a;
drhdd793422001-06-28 01:54:48 +00003972 }else{
drhfa1a98a2004-05-14 19:08:17 +00003973 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003974 }
danielk1977da107192007-05-04 08:32:13 +00003975
3976 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003977 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003978 Pgno nextPage;
3979
drhfa1a98a2004-05-14 19:08:17 +00003980 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003981
danielk19772dec9702007-05-02 16:48:37 +00003982#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003983 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003984 ** has not been allocated, allocate it now. The array is sized at
3985 ** one entry for each overflow page in the overflow chain. The
3986 ** page number of the first overflow page is stored in aOverflow[0],
3987 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3988 ** (the cache is lazily populated).
3989 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003990 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003991 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003992 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003993 /* nOvfl is always positive. If it were zero, fetchPayload would have
3994 ** been used instead of this routine. */
3995 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003996 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003997 }
3998 }
danielk1977da107192007-05-04 08:32:13 +00003999
4000 /* If the overflow page-list cache has been allocated and the
4001 ** entry for the first required overflow page is valid, skip
4002 ** directly to it.
4003 */
danielk19772dec9702007-05-02 16:48:37 +00004004 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
4005 iIdx = (offset/ovflSize);
4006 nextPage = pCur->aOverflow[iIdx];
4007 offset = (offset%ovflSize);
4008 }
4009#endif
danielk1977da107192007-05-04 08:32:13 +00004010
4011 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4012
4013#ifndef SQLITE_OMIT_INCRBLOB
4014 /* If required, populate the overflow page-list cache. */
4015 if( pCur->aOverflow ){
4016 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4017 pCur->aOverflow[iIdx] = nextPage;
4018 }
4019#endif
4020
danielk1977d04417962007-05-02 13:16:30 +00004021 if( offset>=ovflSize ){
4022 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004023 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004024 ** data is not required. So first try to lookup the overflow
4025 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004026 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004027 */
danielk19772dec9702007-05-02 16:48:37 +00004028#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00004029 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
4030 nextPage = pCur->aOverflow[iIdx+1];
4031 } else
danielk19772dec9702007-05-02 16:48:37 +00004032#endif
danielk1977da107192007-05-04 08:32:13 +00004033 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00004034 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004035 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004036 /* Need to read this page properly. It contains some of the
4037 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004038 */
danf4ba1092011-10-08 14:57:07 +00004039#ifdef SQLITE_DIRECT_OVERFLOW_READ
4040 sqlite3_file *fd;
4041#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004042 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004043 if( a + offset > ovflSize ){
4044 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004045 }
danf4ba1092011-10-08 14:57:07 +00004046
4047#ifdef SQLITE_DIRECT_OVERFLOW_READ
4048 /* If all the following are true:
4049 **
4050 ** 1) this is a read operation, and
4051 ** 2) data is required from the start of this overflow page, and
4052 ** 3) the database is file-backed, and
4053 ** 4) there is no open write-transaction, and
4054 ** 5) the database is not a WAL database,
4055 **
4056 ** then data can be read directly from the database file into the
4057 ** output buffer, bypassing the page-cache altogether. This speeds
4058 ** up loading large records that span many overflow pages.
4059 */
4060 if( eOp==0 /* (1) */
4061 && offset==0 /* (2) */
4062 && pBt->inTransaction==TRANS_READ /* (4) */
4063 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4064 && pBt->pPage1->aData[19]==0x01 /* (5) */
4065 ){
4066 u8 aSave[4];
4067 u8 *aWrite = &pBuf[-4];
4068 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004069 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004070 nextPage = get4byte(aWrite);
4071 memcpy(aWrite, aSave, 4);
4072 }else
4073#endif
4074
4075 {
4076 DbPage *pDbPage;
4077 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
4078 if( rc==SQLITE_OK ){
4079 aPayload = sqlite3PagerGetData(pDbPage);
4080 nextPage = get4byte(aPayload);
4081 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4082 sqlite3PagerUnref(pDbPage);
4083 offset = 0;
4084 }
4085 }
4086 amt -= a;
4087 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004088 }
drh2af926b2001-05-15 00:39:25 +00004089 }
drh2af926b2001-05-15 00:39:25 +00004090 }
danielk1977cfe9a692004-06-16 12:00:29 +00004091
danielk1977da107192007-05-04 08:32:13 +00004092 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004093 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004094 }
danielk1977da107192007-05-04 08:32:13 +00004095 return rc;
drh2af926b2001-05-15 00:39:25 +00004096}
4097
drh72f82862001-05-24 21:06:34 +00004098/*
drh3aac2dd2004-04-26 14:10:20 +00004099** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004100** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004101** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004102**
drh5d1a8722009-07-22 18:07:40 +00004103** The caller must ensure that pCur is pointing to a valid row
4104** in the table.
4105**
drh3aac2dd2004-04-26 14:10:20 +00004106** Return SQLITE_OK on success or an error code if anything goes
4107** wrong. An error is returned if "offset+amt" is larger than
4108** the available payload.
drh72f82862001-05-24 21:06:34 +00004109*/
drha34b6762004-05-07 13:30:42 +00004110int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004111 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004112 assert( pCur->eState==CURSOR_VALID );
4113 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4114 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4115 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004116}
4117
4118/*
drh3aac2dd2004-04-26 14:10:20 +00004119** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004120** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004121** begins at "offset".
4122**
4123** Return SQLITE_OK on success or an error code if anything goes
4124** wrong. An error is returned if "offset+amt" is larger than
4125** the available payload.
drh72f82862001-05-24 21:06:34 +00004126*/
drh3aac2dd2004-04-26 14:10:20 +00004127int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004128 int rc;
4129
danielk19773588ceb2008-06-10 17:30:26 +00004130#ifndef SQLITE_OMIT_INCRBLOB
4131 if ( pCur->eState==CURSOR_INVALID ){
4132 return SQLITE_ABORT;
4133 }
4134#endif
4135
drh1fee73e2007-08-29 04:00:57 +00004136 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004137 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004138 if( rc==SQLITE_OK ){
4139 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004140 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4141 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004142 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004143 }
4144 return rc;
drh2af926b2001-05-15 00:39:25 +00004145}
4146
drh72f82862001-05-24 21:06:34 +00004147/*
drh0e1c19e2004-05-11 00:58:56 +00004148** Return a pointer to payload information from the entry that the
4149** pCur cursor is pointing to. The pointer is to the beginning of
4150** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004151** skipKey==1. The number of bytes of available key/data is written
4152** into *pAmt. If *pAmt==0, then the value returned will not be
4153** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004154**
4155** This routine is an optimization. It is common for the entire key
4156** and data to fit on the local page and for there to be no overflow
4157** pages. When that is so, this routine can be used to access the
4158** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004159** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004160** the key/data and copy it into a preallocated buffer.
4161**
4162** The pointer returned by this routine looks directly into the cached
4163** page of the database. The data might change or move the next time
4164** any btree routine is called.
4165*/
4166static const unsigned char *fetchPayload(
4167 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004168 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004169 int skipKey /* read beginning at data if this is true */
4170){
4171 unsigned char *aPayload;
4172 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004173 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004174 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004175
danielk197771d5d2c2008-09-29 11:49:47 +00004176 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004177 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004178 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004179 pPage = pCur->apPage[pCur->iPage];
4180 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004181 if( NEVER(pCur->info.nSize==0) ){
4182 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4183 &pCur->info);
4184 }
drh43605152004-05-29 21:46:49 +00004185 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004186 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004187 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004188 nKey = 0;
4189 }else{
drhf49661a2008-12-10 16:45:50 +00004190 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004191 }
drh0e1c19e2004-05-11 00:58:56 +00004192 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004193 aPayload += nKey;
4194 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004195 }else{
drhfa1a98a2004-05-14 19:08:17 +00004196 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004197 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004198 }
drhe51c44f2004-05-30 20:46:09 +00004199 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004200 return aPayload;
4201}
4202
4203
4204/*
drhe51c44f2004-05-30 20:46:09 +00004205** For the entry that cursor pCur is point to, return as
4206** many bytes of the key or data as are available on the local
4207** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004208**
4209** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004210** or be destroyed on the next call to any Btree routine,
4211** including calls from other threads against the same cache.
4212** Hence, a mutex on the BtShared should be held prior to calling
4213** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004214**
4215** These routines is used to get quick access to key and data
4216** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004217*/
drhe51c44f2004-05-30 20:46:09 +00004218const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004219 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004220 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004221 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004222 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4223 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004224 }
drhfe3313f2009-07-21 19:02:20 +00004225 return p;
drh0e1c19e2004-05-11 00:58:56 +00004226}
drhe51c44f2004-05-30 20:46:09 +00004227const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004228 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004229 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004230 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004231 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4232 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004233 }
drhfe3313f2009-07-21 19:02:20 +00004234 return p;
drh0e1c19e2004-05-11 00:58:56 +00004235}
4236
4237
4238/*
drh8178a752003-01-05 21:41:40 +00004239** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004240** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004241**
4242** This function returns SQLITE_CORRUPT if the page-header flags field of
4243** the new child page does not match the flags field of the parent (i.e.
4244** if an intkey page appears to be the parent of a non-intkey page, or
4245** vice-versa).
drh72f82862001-05-24 21:06:34 +00004246*/
drh3aac2dd2004-04-26 14:10:20 +00004247static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004248 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004249 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004250 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004251 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004252
drh1fee73e2007-08-29 04:00:57 +00004253 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004254 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004255 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4256 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4257 return SQLITE_CORRUPT_BKPT;
4258 }
4259 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004260 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004261 pCur->apPage[i+1] = pNewPage;
4262 pCur->aiIdx[i+1] = 0;
4263 pCur->iPage++;
4264
drh271efa52004-05-30 19:19:05 +00004265 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004266 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004267 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004268 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004269 }
drh72f82862001-05-24 21:06:34 +00004270 return SQLITE_OK;
4271}
4272
danbb246c42012-01-12 14:25:55 +00004273#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004274/*
4275** Page pParent is an internal (non-leaf) tree page. This function
4276** asserts that page number iChild is the left-child if the iIdx'th
4277** cell in page pParent. Or, if iIdx is equal to the total number of
4278** cells in pParent, that page number iChild is the right-child of
4279** the page.
4280*/
4281static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4282 assert( iIdx<=pParent->nCell );
4283 if( iIdx==pParent->nCell ){
4284 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4285 }else{
4286 assert( get4byte(findCell(pParent, iIdx))==iChild );
4287 }
4288}
4289#else
4290# define assertParentIndex(x,y,z)
4291#endif
4292
drh72f82862001-05-24 21:06:34 +00004293/*
drh5e2f8b92001-05-28 00:41:15 +00004294** Move the cursor up to the parent page.
4295**
4296** pCur->idx is set to the cell index that contains the pointer
4297** to the page we are coming from. If we are coming from the
4298** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004299** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004300*/
danielk197730548662009-07-09 05:07:37 +00004301static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004302 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004303 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004304 assert( pCur->iPage>0 );
4305 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004306
4307 /* UPDATE: It is actually possible for the condition tested by the assert
4308 ** below to be untrue if the database file is corrupt. This can occur if
4309 ** one cursor has modified page pParent while a reference to it is held
4310 ** by a second cursor. Which can only happen if a single page is linked
4311 ** into more than one b-tree structure in a corrupt database. */
4312#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004313 assertParentIndex(
4314 pCur->apPage[pCur->iPage-1],
4315 pCur->aiIdx[pCur->iPage-1],
4316 pCur->apPage[pCur->iPage]->pgno
4317 );
danbb246c42012-01-12 14:25:55 +00004318#endif
dan6c2688c2012-01-12 15:05:03 +00004319 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004320
danielk197771d5d2c2008-09-29 11:49:47 +00004321 releasePage(pCur->apPage[pCur->iPage]);
4322 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004323 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004324 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004325}
4326
4327/*
danielk19778f880a82009-07-13 09:41:45 +00004328** Move the cursor to point to the root page of its b-tree structure.
4329**
4330** If the table has a virtual root page, then the cursor is moved to point
4331** to the virtual root page instead of the actual root page. A table has a
4332** virtual root page when the actual root page contains no cells and a
4333** single child page. This can only happen with the table rooted at page 1.
4334**
4335** If the b-tree structure is empty, the cursor state is set to
4336** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4337** cell located on the root (or virtual root) page and the cursor state
4338** is set to CURSOR_VALID.
4339**
4340** If this function returns successfully, it may be assumed that the
4341** page-header flags indicate that the [virtual] root-page is the expected
4342** kind of b-tree page (i.e. if when opening the cursor the caller did not
4343** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4344** indicating a table b-tree, or if the caller did specify a KeyInfo
4345** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4346** b-tree).
drh72f82862001-05-24 21:06:34 +00004347*/
drh5e2f8b92001-05-28 00:41:15 +00004348static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004349 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004350 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004351 Btree *p = pCur->pBtree;
4352 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004353
drh1fee73e2007-08-29 04:00:57 +00004354 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004355 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4356 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4357 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4358 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4359 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004360 assert( pCur->skipNext!=SQLITE_OK );
4361 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004362 }
danielk1977be51a652008-10-08 17:58:48 +00004363 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004364 }
danielk197771d5d2c2008-09-29 11:49:47 +00004365
4366 if( pCur->iPage>=0 ){
4367 int i;
4368 for(i=1; i<=pCur->iPage; i++){
4369 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004370 }
danielk1977172114a2009-07-07 15:47:12 +00004371 pCur->iPage = 0;
dana205a482011-08-27 18:48:57 +00004372 }else if( pCur->pgnoRoot==0 ){
4373 pCur->eState = CURSOR_INVALID;
4374 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004375 }else{
drh4c301aa2009-07-15 17:25:45 +00004376 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4377 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004378 pCur->eState = CURSOR_INVALID;
4379 return rc;
4380 }
danielk1977172114a2009-07-07 15:47:12 +00004381 pCur->iPage = 0;
4382
4383 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4384 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4385 ** NULL, the caller expects a table b-tree. If this is not the case,
4386 ** return an SQLITE_CORRUPT error. */
4387 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4388 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4389 return SQLITE_CORRUPT_BKPT;
4390 }
drhc39e0002004-05-07 23:50:57 +00004391 }
danielk197771d5d2c2008-09-29 11:49:47 +00004392
danielk19778f880a82009-07-13 09:41:45 +00004393 /* Assert that the root page is of the correct type. This must be the
4394 ** case as the call to this function that loaded the root-page (either
4395 ** this call or a previous invocation) would have detected corruption
4396 ** if the assumption were not true, and it is not possible for the flags
4397 ** byte to have been modified while this cursor is holding a reference
4398 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004399 pRoot = pCur->apPage[0];
4400 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004401 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4402
danielk197771d5d2c2008-09-29 11:49:47 +00004403 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004404 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004405 pCur->atLast = 0;
4406 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004407
drh8856d6a2004-04-29 14:42:46 +00004408 if( pRoot->nCell==0 && !pRoot->leaf ){
4409 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004410 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004411 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004412 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004413 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004414 }else{
4415 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004416 }
4417 return rc;
drh72f82862001-05-24 21:06:34 +00004418}
drh2af926b2001-05-15 00:39:25 +00004419
drh5e2f8b92001-05-28 00:41:15 +00004420/*
4421** Move the cursor down to the left-most leaf entry beneath the
4422** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004423**
4424** The left-most leaf is the one with the smallest key - the first
4425** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004426*/
4427static int moveToLeftmost(BtCursor *pCur){
4428 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004429 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004430 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004431
drh1fee73e2007-08-29 04:00:57 +00004432 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004433 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004434 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4435 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4436 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004437 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004438 }
drhd677b3d2007-08-20 22:48:41 +00004439 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004440}
4441
drh2dcc9aa2002-12-04 13:40:25 +00004442/*
4443** Move the cursor down to the right-most leaf entry beneath the
4444** page to which it is currently pointing. Notice the difference
4445** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4446** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4447** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004448**
4449** The right-most entry is the one with the largest key - the last
4450** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004451*/
4452static int moveToRightmost(BtCursor *pCur){
4453 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004454 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004455 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004456
drh1fee73e2007-08-29 04:00:57 +00004457 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004458 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004459 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004460 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004461 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004462 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004463 }
drhd677b3d2007-08-20 22:48:41 +00004464 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004465 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004466 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004467 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004468 }
danielk1977518002e2008-09-05 05:02:46 +00004469 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004470}
4471
drh5e00f6c2001-09-13 13:46:56 +00004472/* Move the cursor to the first entry in the table. Return SQLITE_OK
4473** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004474** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004475*/
drh3aac2dd2004-04-26 14:10:20 +00004476int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004477 int rc;
drhd677b3d2007-08-20 22:48:41 +00004478
drh1fee73e2007-08-29 04:00:57 +00004479 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004480 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004481 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004482 if( rc==SQLITE_OK ){
4483 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004484 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004485 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004486 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004487 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004488 *pRes = 0;
4489 rc = moveToLeftmost(pCur);
4490 }
drh5e00f6c2001-09-13 13:46:56 +00004491 }
drh5e00f6c2001-09-13 13:46:56 +00004492 return rc;
4493}
drh5e2f8b92001-05-28 00:41:15 +00004494
drh9562b552002-02-19 15:00:07 +00004495/* Move the cursor to the last entry in the table. Return SQLITE_OK
4496** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004497** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004498*/
drh3aac2dd2004-04-26 14:10:20 +00004499int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004500 int rc;
drhd677b3d2007-08-20 22:48:41 +00004501
drh1fee73e2007-08-29 04:00:57 +00004502 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004503 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004504
4505 /* If the cursor already points to the last entry, this is a no-op. */
4506 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4507#ifdef SQLITE_DEBUG
4508 /* This block serves to assert() that the cursor really does point
4509 ** to the last entry in the b-tree. */
4510 int ii;
4511 for(ii=0; ii<pCur->iPage; ii++){
4512 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4513 }
4514 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4515 assert( pCur->apPage[pCur->iPage]->leaf );
4516#endif
4517 return SQLITE_OK;
4518 }
4519
drh9562b552002-02-19 15:00:07 +00004520 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004521 if( rc==SQLITE_OK ){
4522 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004523 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004524 *pRes = 1;
4525 }else{
4526 assert( pCur->eState==CURSOR_VALID );
4527 *pRes = 0;
4528 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004529 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004530 }
drh9562b552002-02-19 15:00:07 +00004531 }
drh9562b552002-02-19 15:00:07 +00004532 return rc;
4533}
4534
drhe14006d2008-03-25 17:23:32 +00004535/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004536** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004537**
drhe63d9992008-08-13 19:11:48 +00004538** For INTKEY tables, the intKey parameter is used. pIdxKey
4539** must be NULL. For index tables, pIdxKey is used and intKey
4540** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004541**
drh5e2f8b92001-05-28 00:41:15 +00004542** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004543** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004544** were present. The cursor might point to an entry that comes
4545** before or after the key.
4546**
drh64022502009-01-09 14:11:04 +00004547** An integer is written into *pRes which is the result of
4548** comparing the key with the entry to which the cursor is
4549** pointing. The meaning of the integer written into
4550** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004551**
4552** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004553** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004554** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004555**
4556** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004557** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004558**
4559** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004560** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004561**
drha059ad02001-04-17 20:09:11 +00004562*/
drhe63d9992008-08-13 19:11:48 +00004563int sqlite3BtreeMovetoUnpacked(
4564 BtCursor *pCur, /* The cursor to be moved */
4565 UnpackedRecord *pIdxKey, /* Unpacked index key */
4566 i64 intKey, /* The table key */
4567 int biasRight, /* If true, bias the search to the high end */
4568 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004569){
drh72f82862001-05-24 21:06:34 +00004570 int rc;
drhd677b3d2007-08-20 22:48:41 +00004571
drh1fee73e2007-08-29 04:00:57 +00004572 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004573 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004574 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004575 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004576
4577 /* If the cursor is already positioned at the point we are trying
4578 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004579 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4580 && pCur->apPage[0]->intKey
4581 ){
drhe63d9992008-08-13 19:11:48 +00004582 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004583 *pRes = 0;
4584 return SQLITE_OK;
4585 }
drhe63d9992008-08-13 19:11:48 +00004586 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004587 *pRes = -1;
4588 return SQLITE_OK;
4589 }
4590 }
4591
drh5e2f8b92001-05-28 00:41:15 +00004592 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004593 if( rc ){
4594 return rc;
4595 }
dana205a482011-08-27 18:48:57 +00004596 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4597 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4598 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004599 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004600 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004601 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004602 return SQLITE_OK;
4603 }
danielk197771d5d2c2008-09-29 11:49:47 +00004604 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004605 for(;;){
drhafb98172011-06-04 01:43:53 +00004606 int lwr, upr, idx;
drh72f82862001-05-24 21:06:34 +00004607 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004608 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004609 int c;
4610
4611 /* pPage->nCell must be greater than zero. If this is the root-page
4612 ** the cursor would have been INVALID above and this for(;;) loop
4613 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004614 ** would have already detected db corruption. Similarly, pPage must
4615 ** be the right kind (index or table) of b-tree page. Otherwise
4616 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004617 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004618 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004619 lwr = 0;
4620 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004621 if( biasRight ){
drhafb98172011-06-04 01:43:53 +00004622 pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
drhe4d90812007-03-29 05:51:49 +00004623 }else{
drhafb98172011-06-04 01:43:53 +00004624 pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004625 }
drh64022502009-01-09 14:11:04 +00004626 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004627 u8 *pCell; /* Pointer to current cell in pPage */
4628
drhafb98172011-06-04 01:43:53 +00004629 assert( idx==pCur->aiIdx[pCur->iPage] );
drh366fda62006-01-13 02:35:09 +00004630 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004631 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004632 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004633 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004634 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004635 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004636 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004637 }
drha2c20e42008-03-29 16:01:04 +00004638 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004639 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004640 c = 0;
drhe63d9992008-08-13 19:11:48 +00004641 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004642 c = -1;
4643 }else{
drhe63d9992008-08-13 19:11:48 +00004644 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004645 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004646 }
danielk197711c327a2009-05-04 19:01:26 +00004647 pCur->validNKey = 1;
4648 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004649 }else{
drhb2eced52010-08-12 02:41:12 +00004650 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004651 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004652 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004653 ** varint. This information is used to attempt to avoid parsing
4654 ** the entire cell by checking for the cases where the record is
4655 ** stored entirely within the b-tree page by inspecting the first
4656 ** 2 bytes of the cell.
4657 */
4658 int nCell = pCell[0];
drhc9166342012-01-05 23:32:06 +00004659 if( nCell<=pPage->max1bytePayload
4660 /* && (pCell+nCell)<pPage->aDataEnd */
drh3def2352011-11-11 00:27:15 +00004661 ){
danielk197711c327a2009-05-04 19:01:26 +00004662 /* This branch runs if the record-size field of the cell is a
4663 ** single byte varint and the record fits entirely on the main
4664 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004665 testcase( pCell+nCell+1==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004666 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4667 }else if( !(pCell[1] & 0x80)
4668 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
drhc9166342012-01-05 23:32:06 +00004669 /* && (pCell+nCell+2)<=pPage->aDataEnd */
danielk197711c327a2009-05-04 19:01:26 +00004670 ){
4671 /* The record-size field is a 2 byte varint and the record
4672 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004673 testcase( pCell+nCell+2==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004674 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004675 }else{
danielk197711c327a2009-05-04 19:01:26 +00004676 /* The record flows over onto one or more overflow pages. In
4677 ** this case the whole cell needs to be parsed, a buffer allocated
4678 ** and accessPayload() used to retrieve the record into the
4679 ** buffer before VdbeRecordCompare() can be called. */
4680 void *pCellKey;
4681 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004682 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004683 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004684 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004685 if( pCellKey==0 ){
4686 rc = SQLITE_NOMEM;
4687 goto moveto_finish;
4688 }
drhfb192682009-07-11 18:26:28 +00004689 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004690 if( rc ){
4691 sqlite3_free(pCellKey);
4692 goto moveto_finish;
4693 }
danielk197711c327a2009-05-04 19:01:26 +00004694 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004695 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004696 }
drh3aac2dd2004-04-26 14:10:20 +00004697 }
drh72f82862001-05-24 21:06:34 +00004698 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004699 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004700 lwr = idx;
drh8b18dd42004-05-12 19:18:15 +00004701 break;
4702 }else{
drh64022502009-01-09 14:11:04 +00004703 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004704 rc = SQLITE_OK;
4705 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004706 }
drh72f82862001-05-24 21:06:34 +00004707 }
4708 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004709 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004710 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004711 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004712 }
drhf1d68b32007-03-29 04:43:26 +00004713 if( lwr>upr ){
4714 break;
4715 }
drhafb98172011-06-04 01:43:53 +00004716 pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004717 }
drhb07028f2011-10-14 21:49:18 +00004718 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004719 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004720 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004721 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004722 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004723 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004724 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004725 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004726 }
4727 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004728 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004729 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004730 rc = SQLITE_OK;
4731 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004732 }
drhf49661a2008-12-10 16:45:50 +00004733 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004734 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004735 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004736 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004737 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004738 }
drh1e968a02008-03-25 00:22:21 +00004739moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004740 return rc;
4741}
4742
drhd677b3d2007-08-20 22:48:41 +00004743
drh72f82862001-05-24 21:06:34 +00004744/*
drhc39e0002004-05-07 23:50:57 +00004745** Return TRUE if the cursor is not pointing at an entry of the table.
4746**
4747** TRUE will be returned after a call to sqlite3BtreeNext() moves
4748** past the last entry in the table or sqlite3BtreePrev() moves past
4749** the first entry. TRUE is also returned if the table is empty.
4750*/
4751int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004752 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4753 ** have been deleted? This API will need to change to return an error code
4754 ** as well as the boolean result value.
4755 */
4756 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004757}
4758
4759/*
drhbd03cae2001-06-02 02:40:57 +00004760** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004761** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004762** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004763** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004764*/
drhd094db12008-04-03 21:46:57 +00004765int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004766 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004767 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004768 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004769
drh1fee73e2007-08-29 04:00:57 +00004770 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004771 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004772 if( rc!=SQLITE_OK ){
4773 return rc;
4774 }
drh8c4d3a62007-04-06 01:03:32 +00004775 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004776 if( CURSOR_INVALID==pCur->eState ){
4777 *pRes = 1;
4778 return SQLITE_OK;
4779 }
drh4c301aa2009-07-15 17:25:45 +00004780 if( pCur->skipNext>0 ){
4781 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004782 *pRes = 0;
4783 return SQLITE_OK;
4784 }
drh4c301aa2009-07-15 17:25:45 +00004785 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004786
danielk197771d5d2c2008-09-29 11:49:47 +00004787 pPage = pCur->apPage[pCur->iPage];
4788 idx = ++pCur->aiIdx[pCur->iPage];
4789 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004790
4791 /* If the database file is corrupt, it is possible for the value of idx
4792 ** to be invalid here. This can only occur if a second cursor modifies
4793 ** the page while cursor pCur is holding a reference to it. Which can
4794 ** only happen if the database is corrupt in such a way as to link the
4795 ** page into more than one b-tree structure. */
4796 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004797
drh271efa52004-05-30 19:19:05 +00004798 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004799 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004800 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004801 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004802 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004803 if( rc ) return rc;
4804 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004805 *pRes = 0;
4806 return rc;
drh72f82862001-05-24 21:06:34 +00004807 }
drh5e2f8b92001-05-28 00:41:15 +00004808 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004809 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004810 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004811 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004812 return SQLITE_OK;
4813 }
danielk197730548662009-07-09 05:07:37 +00004814 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004815 pPage = pCur->apPage[pCur->iPage];
4816 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004817 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004818 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004819 rc = sqlite3BtreeNext(pCur, pRes);
4820 }else{
4821 rc = SQLITE_OK;
4822 }
4823 return rc;
drh8178a752003-01-05 21:41:40 +00004824 }
4825 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004826 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004827 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004828 }
drh5e2f8b92001-05-28 00:41:15 +00004829 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004830 return rc;
drh72f82862001-05-24 21:06:34 +00004831}
drhd677b3d2007-08-20 22:48:41 +00004832
drh72f82862001-05-24 21:06:34 +00004833
drh3b7511c2001-05-26 13:15:44 +00004834/*
drh2dcc9aa2002-12-04 13:40:25 +00004835** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004836** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004837** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004838** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004839*/
drhd094db12008-04-03 21:46:57 +00004840int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004841 int rc;
drh8178a752003-01-05 21:41:40 +00004842 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004843
drh1fee73e2007-08-29 04:00:57 +00004844 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004845 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004846 if( rc!=SQLITE_OK ){
4847 return rc;
4848 }
drha2c20e42008-03-29 16:01:04 +00004849 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004850 if( CURSOR_INVALID==pCur->eState ){
4851 *pRes = 1;
4852 return SQLITE_OK;
4853 }
drh4c301aa2009-07-15 17:25:45 +00004854 if( pCur->skipNext<0 ){
4855 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004856 *pRes = 0;
4857 return SQLITE_OK;
4858 }
drh4c301aa2009-07-15 17:25:45 +00004859 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004860
danielk197771d5d2c2008-09-29 11:49:47 +00004861 pPage = pCur->apPage[pCur->iPage];
4862 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004863 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004864 int idx = pCur->aiIdx[pCur->iPage];
4865 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004866 if( rc ){
4867 return rc;
4868 }
drh2dcc9aa2002-12-04 13:40:25 +00004869 rc = moveToRightmost(pCur);
4870 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004871 while( pCur->aiIdx[pCur->iPage]==0 ){
4872 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004873 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004874 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004875 return SQLITE_OK;
4876 }
danielk197730548662009-07-09 05:07:37 +00004877 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004878 }
drh271efa52004-05-30 19:19:05 +00004879 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004880 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004881
4882 pCur->aiIdx[pCur->iPage]--;
4883 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004884 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004885 rc = sqlite3BtreePrevious(pCur, pRes);
4886 }else{
4887 rc = SQLITE_OK;
4888 }
drh2dcc9aa2002-12-04 13:40:25 +00004889 }
drh8178a752003-01-05 21:41:40 +00004890 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004891 return rc;
4892}
4893
4894/*
drh3b7511c2001-05-26 13:15:44 +00004895** Allocate a new page from the database file.
4896**
danielk19773b8a05f2007-03-19 17:44:26 +00004897** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004898** has already been called on the new page.) The new page has also
4899** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004900** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004901**
4902** SQLITE_OK is returned on success. Any other return value indicates
4903** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004904** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004905**
drh82e647d2013-03-02 03:25:55 +00004906** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00004907** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004908** attempt to keep related pages close to each other in the database file,
4909** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004910**
drh82e647d2013-03-02 03:25:55 +00004911** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
4912** anywhere on the free-list, then it is guaranteed to be returned. If
4913** eMode is BTALLOC_LT then the page returned will be less than or equal
4914** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
4915** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00004916*/
drh4f0c5872007-03-26 22:05:01 +00004917static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00004918 BtShared *pBt, /* The btree */
4919 MemPage **ppPage, /* Store pointer to the allocated page here */
4920 Pgno *pPgno, /* Store the page number here */
4921 Pgno nearby, /* Search for a page near this one */
4922 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004923){
drh3aac2dd2004-04-26 14:10:20 +00004924 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004925 int rc;
drh35cd6432009-06-05 14:17:21 +00004926 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004927 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004928 MemPage *pTrunk = 0;
4929 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004930 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004931
drh1fee73e2007-08-29 04:00:57 +00004932 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00004933 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00004934 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004935 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004936 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004937 testcase( n==mxPage-1 );
4938 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004939 return SQLITE_CORRUPT_BKPT;
4940 }
drh3aac2dd2004-04-26 14:10:20 +00004941 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004942 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004943 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004944 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4945
drh82e647d2013-03-02 03:25:55 +00004946 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004947 ** shows that the page 'nearby' is somewhere on the free-list, then
4948 ** the entire-list will be searched for that page.
4949 */
4950#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00004951 if( eMode==BTALLOC_EXACT ){
4952 if( nearby<=mxPage ){
4953 u8 eType;
4954 assert( nearby>0 );
4955 assert( pBt->autoVacuum );
4956 rc = ptrmapGet(pBt, nearby, &eType, 0);
4957 if( rc ) return rc;
4958 if( eType==PTRMAP_FREEPAGE ){
4959 searchList = 1;
4960 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004961 }
dan51f0b6d2013-02-22 20:16:34 +00004962 }else if( eMode==BTALLOC_LE ){
4963 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004964 }
4965#endif
4966
4967 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4968 ** first free-list trunk page. iPrevTrunk is initially 1.
4969 */
danielk19773b8a05f2007-03-19 17:44:26 +00004970 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004971 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004972 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004973
4974 /* The code within this loop is run only once if the 'searchList' variable
4975 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00004976 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
4977 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00004978 */
4979 do {
4980 pPrevTrunk = pTrunk;
4981 if( pPrevTrunk ){
4982 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004983 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004984 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004985 }
drhdf35a082009-07-09 02:24:35 +00004986 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004987 if( iTrunk>mxPage ){
4988 rc = SQLITE_CORRUPT_BKPT;
4989 }else{
danielk197730548662009-07-09 05:07:37 +00004990 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004991 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004992 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004993 pTrunk = 0;
4994 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004995 }
drhb07028f2011-10-14 21:49:18 +00004996 assert( pTrunk!=0 );
4997 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004998
drh93b4fc72011-04-07 14:47:01 +00004999 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005000 if( k==0 && !searchList ){
5001 /* The trunk has no leaves and the list is not being searched.
5002 ** So extract the trunk page itself and use it as the newly
5003 ** allocated page */
5004 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005005 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005006 if( rc ){
5007 goto end_allocate_page;
5008 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005009 *pPgno = iTrunk;
5010 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5011 *ppPage = pTrunk;
5012 pTrunk = 0;
5013 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005014 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005015 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005016 rc = SQLITE_CORRUPT_BKPT;
5017 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005018#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005019 }else if( searchList
5020 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5021 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005022 /* The list is being searched and this trunk page is the page
5023 ** to allocate, regardless of whether it has leaves.
5024 */
dan51f0b6d2013-02-22 20:16:34 +00005025 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005026 *ppPage = pTrunk;
5027 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005028 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005029 if( rc ){
5030 goto end_allocate_page;
5031 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005032 if( k==0 ){
5033 if( !pPrevTrunk ){
5034 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5035 }else{
danf48c3552010-08-23 15:41:24 +00005036 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5037 if( rc!=SQLITE_OK ){
5038 goto end_allocate_page;
5039 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005040 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5041 }
5042 }else{
5043 /* The trunk page is required by the caller but it contains
5044 ** pointers to free-list leaves. The first leaf becomes a trunk
5045 ** page in this case.
5046 */
5047 MemPage *pNewTrunk;
5048 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005049 if( iNewTrunk>mxPage ){
5050 rc = SQLITE_CORRUPT_BKPT;
5051 goto end_allocate_page;
5052 }
drhdf35a082009-07-09 02:24:35 +00005053 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00005054 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005055 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005056 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005057 }
danielk19773b8a05f2007-03-19 17:44:26 +00005058 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005059 if( rc!=SQLITE_OK ){
5060 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005061 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005062 }
5063 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5064 put4byte(&pNewTrunk->aData[4], k-1);
5065 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005066 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005067 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005068 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005069 put4byte(&pPage1->aData[32], iNewTrunk);
5070 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005071 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005072 if( rc ){
5073 goto end_allocate_page;
5074 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005075 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5076 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005077 }
5078 pTrunk = 0;
5079 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5080#endif
danielk1977e5765212009-06-17 11:13:28 +00005081 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005082 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005083 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005084 Pgno iPage;
5085 unsigned char *aData = pTrunk->aData;
5086 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005087 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005088 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005089 if( eMode==BTALLOC_LE ){
5090 for(i=0; i<k; i++){
5091 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005092 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005093 closest = i;
5094 break;
5095 }
5096 }
5097 }else{
5098 int dist;
5099 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5100 for(i=1; i<k; i++){
5101 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5102 if( d2<dist ){
5103 closest = i;
5104 dist = d2;
5105 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005106 }
5107 }
5108 }else{
5109 closest = 0;
5110 }
5111
5112 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005113 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005114 if( iPage>mxPage ){
5115 rc = SQLITE_CORRUPT_BKPT;
5116 goto end_allocate_page;
5117 }
drhdf35a082009-07-09 02:24:35 +00005118 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005119 if( !searchList
5120 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5121 ){
danielk1977bea2a942009-01-20 17:06:27 +00005122 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005123 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005124 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5125 ": %d more free pages\n",
5126 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005127 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5128 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005129 if( closest<k-1 ){
5130 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5131 }
5132 put4byte(&aData[4], k-1);
danielk1977bea2a942009-01-20 17:06:27 +00005133 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00005134 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005135 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005136 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005137 if( rc!=SQLITE_OK ){
5138 releasePage(*ppPage);
5139 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005140 }
5141 searchList = 0;
5142 }
drhee696e22004-08-30 16:52:17 +00005143 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005144 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005145 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005146 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005147 }else{
danbc1a3c62013-02-23 16:40:46 +00005148 /* There are no pages on the freelist, so append a new page to the
5149 ** database image.
5150 **
5151 ** Normally, new pages allocated by this block can be requested from the
5152 ** pager layer with the 'no-content' flag set. This prevents the pager
5153 ** from trying to read the pages content from disk. However, if the
5154 ** current transaction has already run one or more incremental-vacuum
5155 ** steps, then the page we are about to allocate may contain content
5156 ** that is required in the event of a rollback. In this case, do
5157 ** not set the no-content flag. This causes the pager to load and journal
5158 ** the current page content before overwriting it.
5159 **
5160 ** Note that the pager will not actually attempt to load or journal
5161 ** content for any page that really does lie past the end of the database
5162 ** file on disk. So the effects of disabling the no-content optimization
5163 ** here are confined to those pages that lie between the end of the
5164 ** database image and the end of the database file.
5165 */
dan09ff9e12013-03-11 11:49:03 +00005166 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate));
danbc1a3c62013-02-23 16:40:46 +00005167
drhdd3cd972010-03-27 17:12:36 +00005168 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5169 if( rc ) return rc;
5170 pBt->nPage++;
5171 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005172
danielk1977afcdd022004-10-31 16:25:42 +00005173#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005174 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005175 /* If *pPgno refers to a pointer-map page, allocate two new pages
5176 ** at the end of the file instead of one. The first allocated page
5177 ** becomes a new pointer-map page, the second is used by the caller.
5178 */
danielk1977ac861692009-03-28 10:54:22 +00005179 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005180 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5181 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
danbc1a3c62013-02-23 16:40:46 +00005182 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005183 if( rc==SQLITE_OK ){
5184 rc = sqlite3PagerWrite(pPg->pDbPage);
5185 releasePage(pPg);
5186 }
5187 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005188 pBt->nPage++;
5189 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005190 }
5191#endif
drhdd3cd972010-03-27 17:12:36 +00005192 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5193 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005194
danielk1977599fcba2004-11-08 07:13:13 +00005195 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danbc1a3c62013-02-23 16:40:46 +00005196 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005197 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005198 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005199 if( rc!=SQLITE_OK ){
5200 releasePage(*ppPage);
5201 }
drh3a4c1412004-05-09 20:40:11 +00005202 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005203 }
danielk1977599fcba2004-11-08 07:13:13 +00005204
5205 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005206
5207end_allocate_page:
5208 releasePage(pTrunk);
5209 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005210 if( rc==SQLITE_OK ){
5211 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5212 releasePage(*ppPage);
5213 return SQLITE_CORRUPT_BKPT;
5214 }
5215 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005216 }else{
5217 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005218 }
drh93b4fc72011-04-07 14:47:01 +00005219 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005220 return rc;
5221}
5222
5223/*
danielk1977bea2a942009-01-20 17:06:27 +00005224** This function is used to add page iPage to the database file free-list.
5225** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005226**
danielk1977bea2a942009-01-20 17:06:27 +00005227** The value passed as the second argument to this function is optional.
5228** If the caller happens to have a pointer to the MemPage object
5229** corresponding to page iPage handy, it may pass it as the second value.
5230** Otherwise, it may pass NULL.
5231**
5232** If a pointer to a MemPage object is passed as the second argument,
5233** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005234*/
danielk1977bea2a942009-01-20 17:06:27 +00005235static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5236 MemPage *pTrunk = 0; /* Free-list trunk page */
5237 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5238 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5239 MemPage *pPage; /* Page being freed. May be NULL. */
5240 int rc; /* Return Code */
5241 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005242
danielk1977bea2a942009-01-20 17:06:27 +00005243 assert( sqlite3_mutex_held(pBt->mutex) );
5244 assert( iPage>1 );
5245 assert( !pMemPage || pMemPage->pgno==iPage );
5246
5247 if( pMemPage ){
5248 pPage = pMemPage;
5249 sqlite3PagerRef(pPage->pDbPage);
5250 }else{
5251 pPage = btreePageLookup(pBt, iPage);
5252 }
drh3aac2dd2004-04-26 14:10:20 +00005253
drha34b6762004-05-07 13:30:42 +00005254 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005255 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005256 if( rc ) goto freepage_out;
5257 nFree = get4byte(&pPage1->aData[36]);
5258 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005259
drhc9166342012-01-05 23:32:06 +00005260 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005261 /* If the secure_delete option is enabled, then
5262 ** always fully overwrite deleted information with zeros.
5263 */
shaneh84f4b2f2010-02-26 01:46:54 +00005264 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5265 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005266 ){
5267 goto freepage_out;
5268 }
5269 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005270 }
drhfcce93f2006-02-22 03:08:32 +00005271
danielk1977687566d2004-11-02 12:56:41 +00005272 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005273 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005274 */
danielk197785d90ca2008-07-19 14:25:15 +00005275 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005276 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005277 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005278 }
danielk1977687566d2004-11-02 12:56:41 +00005279
danielk1977bea2a942009-01-20 17:06:27 +00005280 /* Now manipulate the actual database free-list structure. There are two
5281 ** possibilities. If the free-list is currently empty, or if the first
5282 ** trunk page in the free-list is full, then this page will become a
5283 ** new free-list trunk page. Otherwise, it will become a leaf of the
5284 ** first trunk page in the current free-list. This block tests if it
5285 ** is possible to add the page as a new free-list leaf.
5286 */
5287 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005288 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005289
5290 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005291 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005292 if( rc!=SQLITE_OK ){
5293 goto freepage_out;
5294 }
5295
5296 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005297 assert( pBt->usableSize>32 );
5298 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005299 rc = SQLITE_CORRUPT_BKPT;
5300 goto freepage_out;
5301 }
drheeb844a2009-08-08 18:01:07 +00005302 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005303 /* In this case there is room on the trunk page to insert the page
5304 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005305 **
5306 ** Note that the trunk page is not really full until it contains
5307 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5308 ** coded. But due to a coding error in versions of SQLite prior to
5309 ** 3.6.0, databases with freelist trunk pages holding more than
5310 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5311 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005312 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005313 ** for now. At some point in the future (once everyone has upgraded
5314 ** to 3.6.0 or later) we should consider fixing the conditional above
5315 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5316 */
danielk19773b8a05f2007-03-19 17:44:26 +00005317 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005318 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005319 put4byte(&pTrunk->aData[4], nLeaf+1);
5320 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005321 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005322 sqlite3PagerDontWrite(pPage->pDbPage);
5323 }
danielk1977bea2a942009-01-20 17:06:27 +00005324 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005325 }
drh3a4c1412004-05-09 20:40:11 +00005326 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005327 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005328 }
drh3b7511c2001-05-26 13:15:44 +00005329 }
danielk1977bea2a942009-01-20 17:06:27 +00005330
5331 /* If control flows to this point, then it was not possible to add the
5332 ** the page being freed as a leaf page of the first trunk in the free-list.
5333 ** Possibly because the free-list is empty, or possibly because the
5334 ** first trunk in the free-list is full. Either way, the page being freed
5335 ** will become the new first trunk page in the free-list.
5336 */
drhc046e3e2009-07-15 11:26:44 +00005337 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5338 goto freepage_out;
5339 }
5340 rc = sqlite3PagerWrite(pPage->pDbPage);
5341 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005342 goto freepage_out;
5343 }
5344 put4byte(pPage->aData, iTrunk);
5345 put4byte(&pPage->aData[4], 0);
5346 put4byte(&pPage1->aData[32], iPage);
5347 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5348
5349freepage_out:
5350 if( pPage ){
5351 pPage->isInit = 0;
5352 }
5353 releasePage(pPage);
5354 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005355 return rc;
5356}
drhc314dc72009-07-21 11:52:34 +00005357static void freePage(MemPage *pPage, int *pRC){
5358 if( (*pRC)==SQLITE_OK ){
5359 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5360 }
danielk1977bea2a942009-01-20 17:06:27 +00005361}
drh3b7511c2001-05-26 13:15:44 +00005362
5363/*
drh3aac2dd2004-04-26 14:10:20 +00005364** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005365*/
drh3aac2dd2004-04-26 14:10:20 +00005366static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005367 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005368 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005369 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005370 int rc;
drh94440812007-03-06 11:42:19 +00005371 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005372 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005373
drh1fee73e2007-08-29 04:00:57 +00005374 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005375 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005376 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005377 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005378 }
drhe42a9b42011-08-31 13:27:19 +00005379 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005380 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005381 }
drh6f11bef2004-05-13 01:12:56 +00005382 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005383 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005384 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005385 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5386 assert( ovflPgno==0 || nOvfl>0 );
5387 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005388 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005389 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005390 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005391 /* 0 is not a legal page number and page 1 cannot be an
5392 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5393 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005394 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005395 }
danielk1977bea2a942009-01-20 17:06:27 +00005396 if( nOvfl ){
5397 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5398 if( rc ) return rc;
5399 }
dan887d4b22010-02-25 12:09:16 +00005400
shaneh1da207e2010-03-09 14:41:12 +00005401 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005402 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5403 ){
5404 /* There is no reason any cursor should have an outstanding reference
5405 ** to an overflow page belonging to a cell that is being deleted/updated.
5406 ** So if there exists more than one reference to this page, then it
5407 ** must not really be an overflow page and the database must be corrupt.
5408 ** It is helpful to detect this before calling freePage2(), as
5409 ** freePage2() may zero the page contents if secure-delete mode is
5410 ** enabled. If this 'overflow' page happens to be a page that the
5411 ** caller is iterating through or using in some other way, this
5412 ** can be problematic.
5413 */
5414 rc = SQLITE_CORRUPT_BKPT;
5415 }else{
5416 rc = freePage2(pBt, pOvfl, ovflPgno);
5417 }
5418
danielk1977bea2a942009-01-20 17:06:27 +00005419 if( pOvfl ){
5420 sqlite3PagerUnref(pOvfl->pDbPage);
5421 }
drh3b7511c2001-05-26 13:15:44 +00005422 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005423 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005424 }
drh5e2f8b92001-05-28 00:41:15 +00005425 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005426}
5427
5428/*
drh91025292004-05-03 19:49:32 +00005429** Create the byte sequence used to represent a cell on page pPage
5430** and write that byte sequence into pCell[]. Overflow pages are
5431** allocated and filled in as necessary. The calling procedure
5432** is responsible for making sure sufficient space has been allocated
5433** for pCell[].
5434**
5435** Note that pCell does not necessary need to point to the pPage->aData
5436** area. pCell might point to some temporary storage. The cell will
5437** be constructed in this temporary area then copied into pPage->aData
5438** later.
drh3b7511c2001-05-26 13:15:44 +00005439*/
5440static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005441 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005442 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005443 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005444 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005445 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005446 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005447){
drh3b7511c2001-05-26 13:15:44 +00005448 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005449 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005450 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005451 int spaceLeft;
5452 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005453 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005454 unsigned char *pPrior;
5455 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005456 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005457 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005458 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005459 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005460
drh1fee73e2007-08-29 04:00:57 +00005461 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005462
drhc5053fb2008-11-27 02:22:10 +00005463 /* pPage is not necessarily writeable since pCell might be auxiliary
5464 ** buffer space that is separate from the pPage buffer area */
5465 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5466 || sqlite3PagerIswriteable(pPage->pDbPage) );
5467
drh91025292004-05-03 19:49:32 +00005468 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005469 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005470 if( !pPage->leaf ){
5471 nHeader += 4;
5472 }
drh8b18dd42004-05-12 19:18:15 +00005473 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005474 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005475 }else{
drhb026e052007-05-02 01:34:31 +00005476 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005477 }
drh6f11bef2004-05-13 01:12:56 +00005478 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005479 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005480 assert( info.nHeader==nHeader );
5481 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005482 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005483
5484 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005485 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005486 if( pPage->intKey ){
5487 pSrc = pData;
5488 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005489 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005490 }else{
danielk197731d31b82009-07-13 13:18:07 +00005491 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5492 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005493 }
drhf49661a2008-12-10 16:45:50 +00005494 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005495 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005496 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005497 }
drh6f11bef2004-05-13 01:12:56 +00005498 *pnSize = info.nSize;
5499 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005500 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005501 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005502
drh3b7511c2001-05-26 13:15:44 +00005503 while( nPayload>0 ){
5504 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005505#ifndef SQLITE_OMIT_AUTOVACUUM
5506 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005507 if( pBt->autoVacuum ){
5508 do{
5509 pgnoOvfl++;
5510 } while(
5511 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5512 );
danielk1977b39f70b2007-05-17 18:28:11 +00005513 }
danielk1977afcdd022004-10-31 16:25:42 +00005514#endif
drhf49661a2008-12-10 16:45:50 +00005515 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005516#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005517 /* If the database supports auto-vacuum, and the second or subsequent
5518 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005519 ** for that page now.
5520 **
5521 ** If this is the first overflow page, then write a partial entry
5522 ** to the pointer-map. If we write nothing to this pointer-map slot,
5523 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005524 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005525 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005526 */
danielk19774ef24492007-05-23 09:52:41 +00005527 if( pBt->autoVacuum && rc==SQLITE_OK ){
5528 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005529 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005530 if( rc ){
5531 releasePage(pOvfl);
5532 }
danielk1977afcdd022004-10-31 16:25:42 +00005533 }
5534#endif
drh3b7511c2001-05-26 13:15:44 +00005535 if( rc ){
drh9b171272004-05-08 02:03:22 +00005536 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005537 return rc;
5538 }
drhc5053fb2008-11-27 02:22:10 +00005539
5540 /* If pToRelease is not zero than pPrior points into the data area
5541 ** of pToRelease. Make sure pToRelease is still writeable. */
5542 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5543
5544 /* If pPrior is part of the data area of pPage, then make sure pPage
5545 ** is still writeable */
5546 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5547 || sqlite3PagerIswriteable(pPage->pDbPage) );
5548
drh3aac2dd2004-04-26 14:10:20 +00005549 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005550 releasePage(pToRelease);
5551 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005552 pPrior = pOvfl->aData;
5553 put4byte(pPrior, 0);
5554 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005555 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005556 }
5557 n = nPayload;
5558 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005559
5560 /* If pToRelease is not zero than pPayload points into the data area
5561 ** of pToRelease. Make sure pToRelease is still writeable. */
5562 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5563
5564 /* If pPayload is part of the data area of pPage, then make sure pPage
5565 ** is still writeable */
5566 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5567 || sqlite3PagerIswriteable(pPage->pDbPage) );
5568
drhb026e052007-05-02 01:34:31 +00005569 if( nSrc>0 ){
5570 if( n>nSrc ) n = nSrc;
5571 assert( pSrc );
5572 memcpy(pPayload, pSrc, n);
5573 }else{
5574 memset(pPayload, 0, n);
5575 }
drh3b7511c2001-05-26 13:15:44 +00005576 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005577 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005578 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005579 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005580 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005581 if( nSrc==0 ){
5582 nSrc = nData;
5583 pSrc = pData;
5584 }
drhdd793422001-06-28 01:54:48 +00005585 }
drh9b171272004-05-08 02:03:22 +00005586 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005587 return SQLITE_OK;
5588}
5589
drh14acc042001-06-10 19:56:58 +00005590/*
5591** Remove the i-th cell from pPage. This routine effects pPage only.
5592** The cell content is not freed or deallocated. It is assumed that
5593** the cell content has been copied someplace else. This routine just
5594** removes the reference to the cell from pPage.
5595**
5596** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005597*/
drh98add2e2009-07-20 17:11:49 +00005598static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005599 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005600 u8 *data; /* pPage->aData */
5601 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005602 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005603 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005604 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005605
drh98add2e2009-07-20 17:11:49 +00005606 if( *pRC ) return;
5607
drh8c42ca92001-06-22 19:15:00 +00005608 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005609 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005610 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005611 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005612 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005613 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005614 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005615 hdr = pPage->hdrOffset;
5616 testcase( pc==get2byte(&data[hdr+5]) );
5617 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005618 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005619 *pRC = SQLITE_CORRUPT_BKPT;
5620 return;
shane0af3f892008-11-12 04:55:34 +00005621 }
shanedcc50b72008-11-13 18:29:50 +00005622 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005623 if( rc ){
5624 *pRC = rc;
5625 return;
shanedcc50b72008-11-13 18:29:50 +00005626 }
drh3def2352011-11-11 00:27:15 +00005627 endPtr = &pPage->aCellIdx[2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005628 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005629 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005630 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005631 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005632 }
5633 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005634 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005635 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005636}
5637
5638/*
5639** Insert a new cell on pPage at cell index "i". pCell points to the
5640** content of the cell.
5641**
5642** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005643** will not fit, then make a copy of the cell content into pTemp if
5644** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005645** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005646** in pTemp or the original pCell) and also record its index.
5647** Allocating a new entry in pPage->aCell[] implies that
5648** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005649**
5650** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5651** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005652** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005653** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005654*/
drh98add2e2009-07-20 17:11:49 +00005655static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005656 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005657 int i, /* New cell becomes the i-th cell of the page */
5658 u8 *pCell, /* Content of the new cell */
5659 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005660 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005661 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5662 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005663){
drh383d30f2010-02-26 13:07:37 +00005664 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005665 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005666 int end; /* First byte past the last cell pointer in data[] */
5667 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005668 int cellOffset; /* Address of first cell pointer in data[] */
5669 u8 *data; /* The content of the whole page */
5670 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005671 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005672
danielk19774dbaa892009-06-16 16:50:22 +00005673 int nSkip = (iChild ? 4 : 0);
5674
drh98add2e2009-07-20 17:11:49 +00005675 if( *pRC ) return;
5676
drh43605152004-05-29 21:46:49 +00005677 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005678 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drh2cbd78b2012-02-02 19:37:18 +00005679 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5680 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005681 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005682 /* The cell should normally be sized correctly. However, when moving a
5683 ** malformed cell from a leaf page to an interior page, if the cell size
5684 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5685 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5686 ** the term after the || in the following assert(). */
5687 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005688 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005689 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005690 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005691 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005692 }
danielk19774dbaa892009-06-16 16:50:22 +00005693 if( iChild ){
5694 put4byte(pCell, iChild);
5695 }
drh43605152004-05-29 21:46:49 +00005696 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005697 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5698 pPage->apOvfl[j] = pCell;
5699 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005700 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005701 int rc = sqlite3PagerWrite(pPage->pDbPage);
5702 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005703 *pRC = rc;
5704 return;
danielk19776e465eb2007-08-21 13:11:00 +00005705 }
5706 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005707 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005708 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005709 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005710 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005711 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005712 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005713 /* The allocateSpace() routine guarantees the following two properties
5714 ** if it returns success */
5715 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005716 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005717 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005718 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005719 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005720 if( iChild ){
5721 put4byte(&data[idx], iChild);
5722 }
drh61d2fe92011-06-03 23:28:33 +00005723 ptr = &data[end];
5724 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005725 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005726 while( ptr>endPtr ){
5727 *(u16*)ptr = *(u16*)&ptr[-2];
5728 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005729 }
drh43605152004-05-29 21:46:49 +00005730 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005731 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005732#ifndef SQLITE_OMIT_AUTOVACUUM
5733 if( pPage->pBt->autoVacuum ){
5734 /* The cell may contain a pointer to an overflow page. If so, write
5735 ** the entry for the overflow page into the pointer map.
5736 */
drh98add2e2009-07-20 17:11:49 +00005737 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005738 }
5739#endif
drh14acc042001-06-10 19:56:58 +00005740 }
5741}
5742
5743/*
drhfa1a98a2004-05-14 19:08:17 +00005744** Add a list of cells to a page. The page should be initially empty.
5745** The cells are guaranteed to fit on the page.
5746*/
5747static void assemblePage(
5748 MemPage *pPage, /* The page to be assemblied */
5749 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005750 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005751 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005752){
5753 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005754 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005755 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005756 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5757 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5758 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005759
drh43605152004-05-29 21:46:49 +00005760 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005761 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005762 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5763 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005764 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005765
5766 /* Check that the page has just been zeroed by zeroPage() */
5767 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005768 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005769
drh3def2352011-11-11 00:27:15 +00005770 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005771 cellbody = nUsable;
5772 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005773 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005774 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005775 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005776 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005777 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005778 }
danielk1977fad91942009-04-29 17:49:59 +00005779 put2byte(&data[hdr+3], nCell);
5780 put2byte(&data[hdr+5], cellbody);
5781 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005782 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005783}
5784
drh14acc042001-06-10 19:56:58 +00005785/*
drhc3b70572003-01-04 19:44:07 +00005786** The following parameters determine how many adjacent pages get involved
5787** in a balancing operation. NN is the number of neighbors on either side
5788** of the page that participate in the balancing operation. NB is the
5789** total number of pages that participate, including the target page and
5790** NN neighbors on either side.
5791**
5792** The minimum value of NN is 1 (of course). Increasing NN above 1
5793** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5794** in exchange for a larger degradation in INSERT and UPDATE performance.
5795** The value of NN appears to give the best results overall.
5796*/
5797#define NN 1 /* Number of neighbors on either side of pPage */
5798#define NB (NN*2+1) /* Total pages involved in the balance */
5799
danielk1977ac245ec2005-01-14 13:50:11 +00005800
drh615ae552005-01-16 23:21:00 +00005801#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005802/*
5803** This version of balance() handles the common special case where
5804** a new entry is being inserted on the extreme right-end of the
5805** tree, in other words, when the new entry will become the largest
5806** entry in the tree.
5807**
drhc314dc72009-07-21 11:52:34 +00005808** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005809** a new page to the right-hand side and put the one new entry in
5810** that page. This leaves the right side of the tree somewhat
5811** unbalanced. But odds are that we will be inserting new entries
5812** at the end soon afterwards so the nearly empty page will quickly
5813** fill up. On average.
5814**
5815** pPage is the leaf page which is the right-most page in the tree.
5816** pParent is its parent. pPage must have a single overflow entry
5817** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005818**
5819** The pSpace buffer is used to store a temporary copy of the divider
5820** cell that will be inserted into pParent. Such a cell consists of a 4
5821** byte page number followed by a variable length integer. In other
5822** words, at most 13 bytes. Hence the pSpace buffer must be at
5823** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005824*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005825static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5826 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005827 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005828 int rc; /* Return Code */
5829 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005830
drh1fee73e2007-08-29 04:00:57 +00005831 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005832 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005833 assert( pPage->nOverflow==1 );
5834
drh5d433ce2010-08-14 16:02:52 +00005835 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00005836 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005837
danielk1977a50d9aa2009-06-08 14:49:45 +00005838 /* Allocate a new page. This page will become the right-sibling of
5839 ** pPage. Make the parent page writable, so that the new divider cell
5840 ** may be inserted. If both these operations are successful, proceed.
5841 */
drh4f0c5872007-03-26 22:05:01 +00005842 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005843
danielk1977eaa06f62008-09-18 17:34:44 +00005844 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005845
5846 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00005847 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00005848 u16 szCell = cellSizePtr(pPage, pCell);
5849 u8 *pStop;
5850
drhc5053fb2008-11-27 02:22:10 +00005851 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005852 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5853 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005854 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005855
5856 /* If this is an auto-vacuum database, update the pointer map
5857 ** with entries for the new page, and any pointer from the
5858 ** cell on the page to an overflow page. If either of these
5859 ** operations fails, the return code is set, but the contents
5860 ** of the parent page are still manipulated by thh code below.
5861 ** That is Ok, at this point the parent page is guaranteed to
5862 ** be marked as dirty. Returning an error code will cause a
5863 ** rollback, undoing any changes made to the parent page.
5864 */
5865 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005866 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5867 if( szCell>pNew->minLocal ){
5868 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005869 }
5870 }
danielk1977eaa06f62008-09-18 17:34:44 +00005871
danielk19776f235cc2009-06-04 14:46:08 +00005872 /* Create a divider cell to insert into pParent. The divider cell
5873 ** consists of a 4-byte page number (the page number of pPage) and
5874 ** a variable length key value (which must be the same value as the
5875 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005876 **
danielk19776f235cc2009-06-04 14:46:08 +00005877 ** To find the largest key value on pPage, first find the right-most
5878 ** cell on pPage. The first two fields of this cell are the
5879 ** record-length (a variable length integer at most 32-bits in size)
5880 ** and the key value (a variable length integer, may have any value).
5881 ** The first of the while(...) loops below skips over the record-length
5882 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005883 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005884 */
danielk1977eaa06f62008-09-18 17:34:44 +00005885 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005886 pStop = &pCell[9];
5887 while( (*(pCell++)&0x80) && pCell<pStop );
5888 pStop = &pCell[9];
5889 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5890
danielk19774dbaa892009-06-16 16:50:22 +00005891 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005892 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5893 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005894
5895 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005896 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5897
danielk1977e08a3c42008-09-18 18:17:03 +00005898 /* Release the reference to the new page. */
5899 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005900 }
5901
danielk1977eaa06f62008-09-18 17:34:44 +00005902 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005903}
drh615ae552005-01-16 23:21:00 +00005904#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005905
danielk19774dbaa892009-06-16 16:50:22 +00005906#if 0
drhc3b70572003-01-04 19:44:07 +00005907/*
danielk19774dbaa892009-06-16 16:50:22 +00005908** This function does not contribute anything to the operation of SQLite.
5909** it is sometimes activated temporarily while debugging code responsible
5910** for setting pointer-map entries.
5911*/
5912static int ptrmapCheckPages(MemPage **apPage, int nPage){
5913 int i, j;
5914 for(i=0; i<nPage; i++){
5915 Pgno n;
5916 u8 e;
5917 MemPage *pPage = apPage[i];
5918 BtShared *pBt = pPage->pBt;
5919 assert( pPage->isInit );
5920
5921 for(j=0; j<pPage->nCell; j++){
5922 CellInfo info;
5923 u8 *z;
5924
5925 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005926 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005927 if( info.iOverflow ){
5928 Pgno ovfl = get4byte(&z[info.iOverflow]);
5929 ptrmapGet(pBt, ovfl, &e, &n);
5930 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5931 }
5932 if( !pPage->leaf ){
5933 Pgno child = get4byte(z);
5934 ptrmapGet(pBt, child, &e, &n);
5935 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5936 }
5937 }
5938 if( !pPage->leaf ){
5939 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5940 ptrmapGet(pBt, child, &e, &n);
5941 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5942 }
5943 }
5944 return 1;
5945}
5946#endif
5947
danielk1977cd581a72009-06-23 15:43:39 +00005948/*
5949** This function is used to copy the contents of the b-tree node stored
5950** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5951** the pointer-map entries for each child page are updated so that the
5952** parent page stored in the pointer map is page pTo. If pFrom contained
5953** any cells with overflow page pointers, then the corresponding pointer
5954** map entries are also updated so that the parent page is page pTo.
5955**
5956** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00005957** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00005958**
danielk197730548662009-07-09 05:07:37 +00005959** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005960**
5961** The performance of this function is not critical. It is only used by
5962** the balance_shallower() and balance_deeper() procedures, neither of
5963** which are called often under normal circumstances.
5964*/
drhc314dc72009-07-21 11:52:34 +00005965static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5966 if( (*pRC)==SQLITE_OK ){
5967 BtShared * const pBt = pFrom->pBt;
5968 u8 * const aFrom = pFrom->aData;
5969 u8 * const aTo = pTo->aData;
5970 int const iFromHdr = pFrom->hdrOffset;
5971 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005972 int rc;
drhc314dc72009-07-21 11:52:34 +00005973 int iData;
5974
5975
5976 assert( pFrom->isInit );
5977 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00005978 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00005979
5980 /* Copy the b-tree node content from page pFrom to page pTo. */
5981 iData = get2byte(&aFrom[iFromHdr+5]);
5982 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5983 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5984
5985 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005986 ** match the new data. The initialization of pTo can actually fail under
5987 ** fairly obscure circumstances, even though it is a copy of initialized
5988 ** page pFrom.
5989 */
drhc314dc72009-07-21 11:52:34 +00005990 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005991 rc = btreeInitPage(pTo);
5992 if( rc!=SQLITE_OK ){
5993 *pRC = rc;
5994 return;
5995 }
drhc314dc72009-07-21 11:52:34 +00005996
5997 /* If this is an auto-vacuum database, update the pointer-map entries
5998 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5999 */
6000 if( ISAUTOVACUUM ){
6001 *pRC = setChildPtrmaps(pTo);
6002 }
danielk1977cd581a72009-06-23 15:43:39 +00006003 }
danielk1977cd581a72009-06-23 15:43:39 +00006004}
6005
6006/*
danielk19774dbaa892009-06-16 16:50:22 +00006007** This routine redistributes cells on the iParentIdx'th child of pParent
6008** (hereafter "the page") and up to 2 siblings so that all pages have about the
6009** same amount of free space. Usually a single sibling on either side of the
6010** page are used in the balancing, though both siblings might come from one
6011** side if the page is the first or last child of its parent. If the page
6012** has fewer than 2 siblings (something which can only happen if the page
6013** is a root page or a child of a root page) then all available siblings
6014** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006015**
danielk19774dbaa892009-06-16 16:50:22 +00006016** The number of siblings of the page might be increased or decreased by
6017** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006018**
danielk19774dbaa892009-06-16 16:50:22 +00006019** Note that when this routine is called, some of the cells on the page
6020** might not actually be stored in MemPage.aData[]. This can happen
6021** if the page is overfull. This routine ensures that all cells allocated
6022** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006023**
danielk19774dbaa892009-06-16 16:50:22 +00006024** In the course of balancing the page and its siblings, cells may be
6025** inserted into or removed from the parent page (pParent). Doing so
6026** may cause the parent page to become overfull or underfull. If this
6027** happens, it is the responsibility of the caller to invoke the correct
6028** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006029**
drh5e00f6c2001-09-13 13:46:56 +00006030** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006031** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006032** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006033**
6034** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006035** buffer big enough to hold one page. If while inserting cells into the parent
6036** page (pParent) the parent page becomes overfull, this buffer is
6037** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006038** a maximum of four divider cells into the parent page, and the maximum
6039** size of a cell stored within an internal node is always less than 1/4
6040** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6041** enough for all overflow cells.
6042**
6043** If aOvflSpace is set to a null pointer, this function returns
6044** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006045*/
mistachkine7c54162012-10-02 22:54:27 +00006046#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6047#pragma optimize("", off)
6048#endif
danielk19774dbaa892009-06-16 16:50:22 +00006049static int balance_nonroot(
6050 MemPage *pParent, /* Parent page of siblings being balanced */
6051 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006052 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006053 int isRoot, /* True if pParent is a root-page */
6054 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006055){
drh16a9b832007-05-05 18:39:25 +00006056 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006057 int nCell = 0; /* Number of cells in apCell[] */
6058 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006059 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006060 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006061 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006062 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006063 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006064 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006065 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006066 int usableSpace; /* Bytes in pPage beyond the header */
6067 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006068 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006069 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006070 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006071 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006072 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00006073 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00006074 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006075 u8 *pRight; /* Location in parent of right-sibling pointer */
6076 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006077 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6078 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006079 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006080 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006081 u8 *aSpace1; /* Space for copies of dividers cells */
6082 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00006083
danielk1977a50d9aa2009-06-08 14:49:45 +00006084 pBt = pParent->pBt;
6085 assert( sqlite3_mutex_held(pBt->mutex) );
6086 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006087
danielk1977e5765212009-06-17 11:13:28 +00006088#if 0
drh43605152004-05-29 21:46:49 +00006089 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006090#endif
drh2e38c322004-09-03 18:38:44 +00006091
danielk19774dbaa892009-06-16 16:50:22 +00006092 /* At this point pParent may have at most one overflow cell. And if
6093 ** this overflow cell is present, it must be the cell with
6094 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006095 ** is called (indirectly) from sqlite3BtreeDelete().
6096 */
danielk19774dbaa892009-06-16 16:50:22 +00006097 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006098 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006099
danielk197711a8a862009-06-17 11:49:52 +00006100 if( !aOvflSpace ){
6101 return SQLITE_NOMEM;
6102 }
6103
danielk1977a50d9aa2009-06-08 14:49:45 +00006104 /* Find the sibling pages to balance. Also locate the cells in pParent
6105 ** that divide the siblings. An attempt is made to find NN siblings on
6106 ** either side of pPage. More siblings are taken from one side, however,
6107 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006108 ** has NB or fewer children then all children of pParent are taken.
6109 **
6110 ** This loop also drops the divider cells from the parent page. This
6111 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006112 ** overflow cells in the parent page, since if any existed they will
6113 ** have already been removed.
6114 */
danielk19774dbaa892009-06-16 16:50:22 +00006115 i = pParent->nOverflow + pParent->nCell;
6116 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006117 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006118 }else{
dan7d6885a2012-08-08 14:04:56 +00006119 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006120 if( iParentIdx==0 ){
6121 nxDiv = 0;
6122 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006123 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006124 }else{
dan7d6885a2012-08-08 14:04:56 +00006125 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006126 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006127 }
dan7d6885a2012-08-08 14:04:56 +00006128 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006129 }
dan7d6885a2012-08-08 14:04:56 +00006130 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006131 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6132 pRight = &pParent->aData[pParent->hdrOffset+8];
6133 }else{
6134 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6135 }
6136 pgno = get4byte(pRight);
6137 while( 1 ){
6138 rc = getAndInitPage(pBt, pgno, &apOld[i]);
6139 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006140 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006141 goto balance_cleanup;
6142 }
danielk1977634f2982005-03-28 08:44:07 +00006143 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006144 if( (i--)==0 ) break;
6145
drh2cbd78b2012-02-02 19:37:18 +00006146 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6147 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006148 pgno = get4byte(apDiv[i]);
6149 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6150 pParent->nOverflow = 0;
6151 }else{
6152 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6153 pgno = get4byte(apDiv[i]);
6154 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6155
6156 /* Drop the cell from the parent page. apDiv[i] still points to
6157 ** the cell within the parent, even though it has been dropped.
6158 ** This is safe because dropping a cell only overwrites the first
6159 ** four bytes of it, and this function does not need the first
6160 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006161 ** later on.
6162 **
drh8a575d92011-10-12 17:00:28 +00006163 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006164 ** the dropCell() routine will overwrite the entire cell with zeroes.
6165 ** In this case, temporarily copy the cell into the aOvflSpace[]
6166 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6167 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006168 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006169 int iOff;
6170
6171 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006172 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006173 rc = SQLITE_CORRUPT_BKPT;
6174 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6175 goto balance_cleanup;
6176 }else{
6177 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6178 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6179 }
drh5b47efa2010-02-12 18:18:39 +00006180 }
drh98add2e2009-07-20 17:11:49 +00006181 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006182 }
drh8b2f49b2001-06-08 00:21:52 +00006183 }
6184
drha9121e42008-02-19 14:59:35 +00006185 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006186 ** alignment */
drha9121e42008-02-19 14:59:35 +00006187 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006188
drh8b2f49b2001-06-08 00:21:52 +00006189 /*
danielk1977634f2982005-03-28 08:44:07 +00006190 ** Allocate space for memory structures
6191 */
danielk19774dbaa892009-06-16 16:50:22 +00006192 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006193 szScratch =
drha9121e42008-02-19 14:59:35 +00006194 nMaxCells*sizeof(u8*) /* apCell */
6195 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006196 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006197 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006198 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006199 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006200 rc = SQLITE_NOMEM;
6201 goto balance_cleanup;
6202 }
drha9121e42008-02-19 14:59:35 +00006203 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006204 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006205 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006206
6207 /*
6208 ** Load pointers to all cells on sibling pages and the divider cells
6209 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006210 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006211 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006212 **
6213 ** If the siblings are on leaf pages, then the child pointers of the
6214 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006215 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006216 ** child pointers. If siblings are not leaves, then all cell in
6217 ** apCell[] include child pointers. Either way, all cells in apCell[]
6218 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006219 **
6220 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6221 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006222 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006223 leafCorrection = apOld[0]->leaf*4;
6224 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006225 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006226 int limit;
6227
6228 /* Before doing anything else, take a copy of the i'th original sibling
6229 ** The rest of this function will use data from the copies rather
6230 ** that the original pages since the original pages will be in the
6231 ** process of being overwritten. */
6232 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6233 memcpy(pOld, apOld[i], sizeof(MemPage));
6234 pOld->aData = (void*)&pOld[1];
6235 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6236
6237 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006238 if( pOld->nOverflow>0 ){
6239 for(j=0; j<limit; j++){
6240 assert( nCell<nMaxCells );
6241 apCell[nCell] = findOverflowCell(pOld, j);
6242 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6243 nCell++;
6244 }
6245 }else{
6246 u8 *aData = pOld->aData;
6247 u16 maskPage = pOld->maskPage;
6248 u16 cellOffset = pOld->cellOffset;
6249 for(j=0; j<limit; j++){
6250 assert( nCell<nMaxCells );
6251 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6252 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6253 nCell++;
6254 }
6255 }
danielk19774dbaa892009-06-16 16:50:22 +00006256 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006257 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006258 u8 *pTemp;
6259 assert( nCell<nMaxCells );
6260 szCell[nCell] = sz;
6261 pTemp = &aSpace1[iSpace1];
6262 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006263 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006264 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006265 memcpy(pTemp, apDiv[i], sz);
6266 apCell[nCell] = pTemp+leafCorrection;
6267 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006268 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006269 if( !pOld->leaf ){
6270 assert( leafCorrection==0 );
6271 assert( pOld->hdrOffset==0 );
6272 /* The right pointer of the child page pOld becomes the left
6273 ** pointer of the divider cell */
6274 memcpy(apCell[nCell], &pOld->aData[8], 4);
6275 }else{
6276 assert( leafCorrection==4 );
6277 if( szCell[nCell]<4 ){
6278 /* Do not allow any cells smaller than 4 bytes. */
6279 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006280 }
6281 }
drh14acc042001-06-10 19:56:58 +00006282 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006283 }
drh8b2f49b2001-06-08 00:21:52 +00006284 }
6285
6286 /*
drh6019e162001-07-02 17:51:45 +00006287 ** Figure out the number of pages needed to hold all nCell cells.
6288 ** Store this number in "k". Also compute szNew[] which is the total
6289 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006290 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006291 ** cntNew[k] should equal nCell.
6292 **
drh96f5b762004-05-16 16:24:36 +00006293 ** Values computed by this block:
6294 **
6295 ** k: The total number of sibling pages
6296 ** szNew[i]: Spaced used on the i-th sibling page.
6297 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6298 ** the right of the i-th sibling page.
6299 ** usableSpace: Number of bytes of space available on each sibling.
6300 **
drh8b2f49b2001-06-08 00:21:52 +00006301 */
drh43605152004-05-29 21:46:49 +00006302 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006303 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006304 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006305 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006306 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006307 szNew[k] = subtotal - szCell[i];
6308 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006309 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006310 subtotal = 0;
6311 k++;
drh9978c972010-02-23 17:36:32 +00006312 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006313 }
6314 }
6315 szNew[k] = subtotal;
6316 cntNew[k] = nCell;
6317 k++;
drh96f5b762004-05-16 16:24:36 +00006318
6319 /*
6320 ** The packing computed by the previous block is biased toward the siblings
6321 ** on the left side. The left siblings are always nearly full, while the
6322 ** right-most sibling might be nearly empty. This block of code attempts
6323 ** to adjust the packing of siblings to get a better balance.
6324 **
6325 ** This adjustment is more than an optimization. The packing above might
6326 ** be so out of balance as to be illegal. For example, the right-most
6327 ** sibling might be completely empty. This adjustment is not optional.
6328 */
drh6019e162001-07-02 17:51:45 +00006329 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006330 int szRight = szNew[i]; /* Size of sibling on the right */
6331 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6332 int r; /* Index of right-most cell in left sibling */
6333 int d; /* Index of first cell to the left of right sibling */
6334
6335 r = cntNew[i-1] - 1;
6336 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006337 assert( d<nMaxCells );
6338 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006339 while( szRight==0
6340 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6341 ){
drh43605152004-05-29 21:46:49 +00006342 szRight += szCell[d] + 2;
6343 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006344 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006345 r = cntNew[i-1] - 1;
6346 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006347 }
drh96f5b762004-05-16 16:24:36 +00006348 szNew[i] = szRight;
6349 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006350 }
drh09d0deb2005-08-02 17:13:09 +00006351
danielk19776f235cc2009-06-04 14:46:08 +00006352 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006353 ** a virtual root page. A virtual root page is when the real root
6354 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006355 **
6356 ** UPDATE: The assert() below is not necessarily true if the database
6357 ** file is corrupt. The corruption will be detected and reported later
6358 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006359 */
drh2f32fba2012-01-02 16:38:57 +00006360#if 0
drh09d0deb2005-08-02 17:13:09 +00006361 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006362#endif
drh8b2f49b2001-06-08 00:21:52 +00006363
danielk1977e5765212009-06-17 11:13:28 +00006364 TRACE(("BALANCE: old: %d %d %d ",
6365 apOld[0]->pgno,
6366 nOld>=2 ? apOld[1]->pgno : 0,
6367 nOld>=3 ? apOld[2]->pgno : 0
6368 ));
6369
drh8b2f49b2001-06-08 00:21:52 +00006370 /*
drh6b308672002-07-08 02:16:37 +00006371 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006372 */
drheac74422009-06-14 12:47:11 +00006373 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006374 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006375 goto balance_cleanup;
6376 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006377 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006378 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006379 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006380 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006381 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006382 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006383 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006384 nNew++;
danielk197728129562005-01-11 10:25:06 +00006385 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006386 }else{
drh7aa8f852006-03-28 00:24:44 +00006387 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006388 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006389 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006390 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006391 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006392
6393 /* Set the pointer-map entry for the new sibling page. */
6394 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006395 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006396 if( rc!=SQLITE_OK ){
6397 goto balance_cleanup;
6398 }
6399 }
drh6b308672002-07-08 02:16:37 +00006400 }
drh8b2f49b2001-06-08 00:21:52 +00006401 }
6402
danielk1977299b1872004-11-22 10:02:10 +00006403 /* Free any old pages that were not reused as new pages.
6404 */
6405 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006406 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006407 if( rc ) goto balance_cleanup;
6408 releasePage(apOld[i]);
6409 apOld[i] = 0;
6410 i++;
6411 }
6412
drh8b2f49b2001-06-08 00:21:52 +00006413 /*
drhf9ffac92002-03-02 19:00:31 +00006414 ** Put the new pages in accending order. This helps to
6415 ** keep entries in the disk file in order so that a scan
6416 ** of the table is a linear scan through the file. That
6417 ** in turn helps the operating system to deliver pages
6418 ** from the disk more rapidly.
6419 **
6420 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006421 ** n is never more than NB (a small constant), that should
6422 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006423 **
drhc3b70572003-01-04 19:44:07 +00006424 ** When NB==3, this one optimization makes the database
6425 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006426 */
6427 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006428 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006429 int minI = i;
6430 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006431 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006432 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006433 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006434 }
6435 }
6436 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006437 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006438 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006439 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006440 apNew[minI] = pT;
6441 }
6442 }
danielk1977e5765212009-06-17 11:13:28 +00006443 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006444 apNew[0]->pgno, szNew[0],
6445 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6446 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6447 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6448 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6449
6450 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6451 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006452
drhf9ffac92002-03-02 19:00:31 +00006453 /*
drh14acc042001-06-10 19:56:58 +00006454 ** Evenly distribute the data in apCell[] across the new pages.
6455 ** Insert divider cells into pParent as necessary.
6456 */
6457 j = 0;
6458 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006459 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006460 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006461 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006462 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006463 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006464 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006465 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006466
danielk1977ac11ee62005-01-15 12:45:51 +00006467 j = cntNew[i];
6468
6469 /* If the sibling page assembled above was not the right-most sibling,
6470 ** insert a divider cell into the parent page.
6471 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006472 assert( i<nNew-1 || j==nCell );
6473 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006474 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006475 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006476 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006477
6478 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006479 pCell = apCell[j];
6480 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006481 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006482 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006483 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006484 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006485 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006486 ** then there is no divider cell in apCell[]. Instead, the divider
6487 ** cell consists of the integer key for the right-most cell of
6488 ** the sibling-page assembled above only.
6489 */
drh6f11bef2004-05-13 01:12:56 +00006490 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006491 j--;
danielk197730548662009-07-09 05:07:37 +00006492 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006493 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006494 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006495 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006496 }else{
6497 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006498 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006499 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006500 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006501 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006502 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006503 ** insertCell(), so reparse the cell now.
6504 **
6505 ** Note that this can never happen in an SQLite data file, as all
6506 ** cells are at least 4 bytes. It only happens in b-trees used
6507 ** to evaluate "IN (SELECT ...)" and similar clauses.
6508 */
6509 if( szCell[j]==4 ){
6510 assert(leafCorrection==4);
6511 sz = cellSizePtr(pParent, pCell);
6512 }
drh4b70f112004-05-02 21:12:19 +00006513 }
danielk19776067a9b2009-06-09 09:41:00 +00006514 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006515 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006516 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006517 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006518 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006519 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006520
drh14acc042001-06-10 19:56:58 +00006521 j++;
6522 nxDiv++;
6523 }
6524 }
drh6019e162001-07-02 17:51:45 +00006525 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006526 assert( nOld>0 );
6527 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006528 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006529 u8 *zChild = &apCopy[nOld-1]->aData[8];
6530 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006531 }
6532
danielk197713bd99f2009-06-24 05:40:34 +00006533 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6534 /* The root page of the b-tree now contains no cells. The only sibling
6535 ** page is the right-child of the parent. Copy the contents of the
6536 ** child page into the parent, decreasing the overall height of the
6537 ** b-tree structure by one. This is described as the "balance-shallower"
6538 ** sub-algorithm in some documentation.
6539 **
6540 ** If this is an auto-vacuum database, the call to copyNodeContent()
6541 ** sets all pointer-map entries corresponding to database image pages
6542 ** for which the pointer is stored within the content being copied.
6543 **
6544 ** The second assert below verifies that the child page is defragmented
6545 ** (it must be, as it was just reconstructed using assemblePage()). This
6546 ** is important if the parent page happens to be page 1 of the database
6547 ** image. */
6548 assert( nNew==1 );
6549 assert( apNew[0]->nFree ==
6550 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6551 );
drhc314dc72009-07-21 11:52:34 +00006552 copyNodeContent(apNew[0], pParent, &rc);
6553 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006554 }else if( ISAUTOVACUUM ){
6555 /* Fix the pointer-map entries for all the cells that were shifted around.
6556 ** There are several different types of pointer-map entries that need to
6557 ** be dealt with by this routine. Some of these have been set already, but
6558 ** many have not. The following is a summary:
6559 **
6560 ** 1) The entries associated with new sibling pages that were not
6561 ** siblings when this function was called. These have already
6562 ** been set. We don't need to worry about old siblings that were
6563 ** moved to the free-list - the freePage() code has taken care
6564 ** of those.
6565 **
6566 ** 2) The pointer-map entries associated with the first overflow
6567 ** page in any overflow chains used by new divider cells. These
6568 ** have also already been taken care of by the insertCell() code.
6569 **
6570 ** 3) If the sibling pages are not leaves, then the child pages of
6571 ** cells stored on the sibling pages may need to be updated.
6572 **
6573 ** 4) If the sibling pages are not internal intkey nodes, then any
6574 ** overflow pages used by these cells may need to be updated
6575 ** (internal intkey nodes never contain pointers to overflow pages).
6576 **
6577 ** 5) If the sibling pages are not leaves, then the pointer-map
6578 ** entries for the right-child pages of each sibling may need
6579 ** to be updated.
6580 **
6581 ** Cases 1 and 2 are dealt with above by other code. The next
6582 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6583 ** setting a pointer map entry is a relatively expensive operation, this
6584 ** code only sets pointer map entries for child or overflow pages that have
6585 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006586 MemPage *pNew = apNew[0];
6587 MemPage *pOld = apCopy[0];
6588 int nOverflow = pOld->nOverflow;
6589 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006590 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006591 j = 0; /* Current 'old' sibling page */
6592 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006593 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006594 int isDivider = 0;
6595 while( i==iNextOld ){
6596 /* Cell i is the cell immediately following the last cell on old
6597 ** sibling page j. If the siblings are not leaf pages of an
6598 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006599 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006600 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006601 pOld = apCopy[++j];
6602 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6603 if( pOld->nOverflow ){
6604 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006605 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006606 }
6607 isDivider = !leafData;
6608 }
6609
6610 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006611 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6612 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006613 if( i==iOverflow ){
6614 isDivider = 1;
6615 if( (--nOverflow)>0 ){
6616 iOverflow++;
6617 }
6618 }
6619
6620 if( i==cntNew[k] ){
6621 /* Cell i is the cell immediately following the last cell on new
6622 ** sibling page k. If the siblings are not leaf pages of an
6623 ** intkey b-tree, then cell i is a divider cell. */
6624 pNew = apNew[++k];
6625 if( !leafData ) continue;
6626 }
danielk19774dbaa892009-06-16 16:50:22 +00006627 assert( j<nOld );
6628 assert( k<nNew );
6629
6630 /* If the cell was originally divider cell (and is not now) or
6631 ** an overflow cell, or if the cell was located on a different sibling
6632 ** page before the balancing, then the pointer map entries associated
6633 ** with any child or overflow pages need to be updated. */
6634 if( isDivider || pOld->pgno!=pNew->pgno ){
6635 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006636 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006637 }
drh98add2e2009-07-20 17:11:49 +00006638 if( szCell[i]>pNew->minLocal ){
6639 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006640 }
6641 }
6642 }
6643
6644 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006645 for(i=0; i<nNew; i++){
6646 u32 key = get4byte(&apNew[i]->aData[8]);
6647 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006648 }
6649 }
6650
6651#if 0
6652 /* The ptrmapCheckPages() contains assert() statements that verify that
6653 ** all pointer map pages are set correctly. This is helpful while
6654 ** debugging. This is usually disabled because a corrupt database may
6655 ** cause an assert() statement to fail. */
6656 ptrmapCheckPages(apNew, nNew);
6657 ptrmapCheckPages(&pParent, 1);
6658#endif
6659 }
6660
danielk197771d5d2c2008-09-29 11:49:47 +00006661 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006662 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6663 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006664
drh8b2f49b2001-06-08 00:21:52 +00006665 /*
drh14acc042001-06-10 19:56:58 +00006666 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006667 */
drh14acc042001-06-10 19:56:58 +00006668balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006669 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006670 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006671 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006672 }
drh14acc042001-06-10 19:56:58 +00006673 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006674 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006675 }
danielk1977eaa06f62008-09-18 17:34:44 +00006676
drh8b2f49b2001-06-08 00:21:52 +00006677 return rc;
6678}
mistachkine7c54162012-10-02 22:54:27 +00006679#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6680#pragma optimize("", on)
6681#endif
drh8b2f49b2001-06-08 00:21:52 +00006682
drh43605152004-05-29 21:46:49 +00006683
6684/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006685** This function is called when the root page of a b-tree structure is
6686** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006687**
danielk1977a50d9aa2009-06-08 14:49:45 +00006688** A new child page is allocated and the contents of the current root
6689** page, including overflow cells, are copied into the child. The root
6690** page is then overwritten to make it an empty page with the right-child
6691** pointer pointing to the new page.
6692**
6693** Before returning, all pointer-map entries corresponding to pages
6694** that the new child-page now contains pointers to are updated. The
6695** entry corresponding to the new right-child pointer of the root
6696** page is also updated.
6697**
6698** If successful, *ppChild is set to contain a reference to the child
6699** page and SQLITE_OK is returned. In this case the caller is required
6700** to call releasePage() on *ppChild exactly once. If an error occurs,
6701** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006702*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006703static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6704 int rc; /* Return value from subprocedures */
6705 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006706 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006707 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006708
danielk1977a50d9aa2009-06-08 14:49:45 +00006709 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006710 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006711
danielk1977a50d9aa2009-06-08 14:49:45 +00006712 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6713 ** page that will become the new right-child of pPage. Copy the contents
6714 ** of the node stored on pRoot into the new child page.
6715 */
drh98add2e2009-07-20 17:11:49 +00006716 rc = sqlite3PagerWrite(pRoot->pDbPage);
6717 if( rc==SQLITE_OK ){
6718 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006719 copyNodeContent(pRoot, pChild, &rc);
6720 if( ISAUTOVACUUM ){
6721 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006722 }
6723 }
6724 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006725 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006726 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006727 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006728 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006729 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6730 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6731 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006732
danielk1977a50d9aa2009-06-08 14:49:45 +00006733 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6734
6735 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006736 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6737 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6738 memcpy(pChild->apOvfl, pRoot->apOvfl,
6739 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006740 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006741
6742 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6743 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6744 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6745
6746 *ppChild = pChild;
6747 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006748}
6749
6750/*
danielk197771d5d2c2008-09-29 11:49:47 +00006751** The page that pCur currently points to has just been modified in
6752** some way. This function figures out if this modification means the
6753** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006754** routine. Balancing routines are:
6755**
6756** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006757** balance_deeper()
6758** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006759*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006760static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006761 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006762 const int nMin = pCur->pBt->usableSize * 2 / 3;
6763 u8 aBalanceQuickSpace[13];
6764 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006765
shane75ac1de2009-06-09 18:58:52 +00006766 TESTONLY( int balance_quick_called = 0 );
6767 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006768
6769 do {
6770 int iPage = pCur->iPage;
6771 MemPage *pPage = pCur->apPage[iPage];
6772
6773 if( iPage==0 ){
6774 if( pPage->nOverflow ){
6775 /* The root page of the b-tree is overfull. In this case call the
6776 ** balance_deeper() function to create a new child for the root-page
6777 ** and copy the current contents of the root-page to it. The
6778 ** next iteration of the do-loop will balance the child page.
6779 */
6780 assert( (balance_deeper_called++)==0 );
6781 rc = balance_deeper(pPage, &pCur->apPage[1]);
6782 if( rc==SQLITE_OK ){
6783 pCur->iPage = 1;
6784 pCur->aiIdx[0] = 0;
6785 pCur->aiIdx[1] = 0;
6786 assert( pCur->apPage[1]->nOverflow );
6787 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006788 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006789 break;
6790 }
6791 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6792 break;
6793 }else{
6794 MemPage * const pParent = pCur->apPage[iPage-1];
6795 int const iIdx = pCur->aiIdx[iPage-1];
6796
6797 rc = sqlite3PagerWrite(pParent->pDbPage);
6798 if( rc==SQLITE_OK ){
6799#ifndef SQLITE_OMIT_QUICKBALANCE
6800 if( pPage->hasData
6801 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006802 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006803 && pParent->pgno!=1
6804 && pParent->nCell==iIdx
6805 ){
6806 /* Call balance_quick() to create a new sibling of pPage on which
6807 ** to store the overflow cell. balance_quick() inserts a new cell
6808 ** into pParent, which may cause pParent overflow. If this
6809 ** happens, the next interation of the do-loop will balance pParent
6810 ** use either balance_nonroot() or balance_deeper(). Until this
6811 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6812 ** buffer.
6813 **
6814 ** The purpose of the following assert() is to check that only a
6815 ** single call to balance_quick() is made for each call to this
6816 ** function. If this were not verified, a subtle bug involving reuse
6817 ** of the aBalanceQuickSpace[] might sneak in.
6818 */
6819 assert( (balance_quick_called++)==0 );
6820 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6821 }else
6822#endif
6823 {
6824 /* In this case, call balance_nonroot() to redistribute cells
6825 ** between pPage and up to 2 of its sibling pages. This involves
6826 ** modifying the contents of pParent, which may cause pParent to
6827 ** become overfull or underfull. The next iteration of the do-loop
6828 ** will balance the parent page to correct this.
6829 **
6830 ** If the parent page becomes overfull, the overflow cell or cells
6831 ** are stored in the pSpace buffer allocated immediately below.
6832 ** A subsequent iteration of the do-loop will deal with this by
6833 ** calling balance_nonroot() (balance_deeper() may be called first,
6834 ** but it doesn't deal with overflow cells - just moves them to a
6835 ** different page). Once this subsequent call to balance_nonroot()
6836 ** has completed, it is safe to release the pSpace buffer used by
6837 ** the previous call, as the overflow cell data will have been
6838 ** copied either into the body of a database page or into the new
6839 ** pSpace buffer passed to the latter call to balance_nonroot().
6840 */
6841 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00006842 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00006843 if( pFree ){
6844 /* If pFree is not NULL, it points to the pSpace buffer used
6845 ** by a previous call to balance_nonroot(). Its contents are
6846 ** now stored either on real database pages or within the
6847 ** new pSpace buffer, so it may be safely freed here. */
6848 sqlite3PageFree(pFree);
6849 }
6850
danielk19774dbaa892009-06-16 16:50:22 +00006851 /* The pSpace buffer will be freed after the next call to
6852 ** balance_nonroot(), or just before this function returns, whichever
6853 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006854 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006855 }
6856 }
6857
6858 pPage->nOverflow = 0;
6859
6860 /* The next iteration of the do-loop balances the parent page. */
6861 releasePage(pPage);
6862 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006863 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006864 }while( rc==SQLITE_OK );
6865
6866 if( pFree ){
6867 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006868 }
6869 return rc;
6870}
6871
drhf74b8d92002-09-01 23:20:45 +00006872
6873/*
drh3b7511c2001-05-26 13:15:44 +00006874** Insert a new record into the BTree. The key is given by (pKey,nKey)
6875** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006876** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006877** is left pointing at a random location.
6878**
6879** For an INTKEY table, only the nKey value of the key is used. pKey is
6880** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006881**
6882** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006883** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006884** been performed. seekResult is the search result returned (a negative
6885** number if pCur points at an entry that is smaller than (pKey, nKey), or
6886** a positive value if pCur points at an etry that is larger than
6887** (pKey, nKey)).
6888**
drh3e9ca092009-09-08 01:14:48 +00006889** If the seekResult parameter is non-zero, then the caller guarantees that
6890** cursor pCur is pointing at the existing copy of a row that is to be
6891** overwritten. If the seekResult parameter is 0, then cursor pCur may
6892** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006893** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006894*/
drh3aac2dd2004-04-26 14:10:20 +00006895int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006896 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006897 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006898 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006899 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006900 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006901 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006902){
drh3b7511c2001-05-26 13:15:44 +00006903 int rc;
drh3e9ca092009-09-08 01:14:48 +00006904 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006905 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006906 int idx;
drh3b7511c2001-05-26 13:15:44 +00006907 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006908 Btree *p = pCur->pBtree;
6909 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006910 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006911 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006912
drh98add2e2009-07-20 17:11:49 +00006913 if( pCur->eState==CURSOR_FAULT ){
6914 assert( pCur->skipNext!=SQLITE_OK );
6915 return pCur->skipNext;
6916 }
6917
drh1fee73e2007-08-29 04:00:57 +00006918 assert( cursorHoldsMutex(pCur) );
drhc9166342012-01-05 23:32:06 +00006919 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6920 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006921 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6922
danielk197731d31b82009-07-13 13:18:07 +00006923 /* Assert that the caller has been consistent. If this cursor was opened
6924 ** expecting an index b-tree, then the caller should be inserting blob
6925 ** keys with no associated data. If the cursor was opened expecting an
6926 ** intkey table, the caller should be inserting integer keys with a
6927 ** blob of associated data. */
6928 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6929
danielk19779c3acf32009-05-02 07:36:49 +00006930 /* Save the positions of any other cursors open on this table.
6931 **
danielk19773509a652009-07-06 18:56:13 +00006932 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006933 ** example, when inserting data into a table with auto-generated integer
6934 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6935 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006936 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006937 ** that the cursor is already where it needs to be and returns without
6938 ** doing any work. To avoid thwarting these optimizations, it is important
6939 ** not to clear the cursor here.
6940 */
drh4c301aa2009-07-15 17:25:45 +00006941 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6942 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00006943
6944 /* If this is an insert into a table b-tree, invalidate any incrblob
6945 ** cursors open on the row being replaced (assuming this is a replace
6946 ** operation - if it is not, the following is a no-op). */
6947 if( pCur->pKeyInfo==0 ){
6948 invalidateIncrblobCursors(p, nKey, 0);
6949 }
6950
drh4c301aa2009-07-15 17:25:45 +00006951 if( !loc ){
6952 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6953 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006954 }
danielk1977b980d2212009-06-22 18:03:51 +00006955 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006956
danielk197771d5d2c2008-09-29 11:49:47 +00006957 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006958 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006959 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006960
drh3a4c1412004-05-09 20:40:11 +00006961 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6962 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6963 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006964 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006965 allocateTempSpace(pBt);
6966 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006967 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006968 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006969 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006970 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00006971 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006972 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006973 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006974 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006975 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006976 rc = sqlite3PagerWrite(pPage->pDbPage);
6977 if( rc ){
6978 goto end_insert;
6979 }
danielk197771d5d2c2008-09-29 11:49:47 +00006980 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006981 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006982 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006983 }
drh43605152004-05-29 21:46:49 +00006984 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006985 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006986 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006987 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006988 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006989 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006990 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006991 }else{
drh4b70f112004-05-02 21:12:19 +00006992 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006993 }
drh98add2e2009-07-20 17:11:49 +00006994 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006995 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006996
mistachkin48864df2013-03-21 21:20:32 +00006997 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00006998 ** to redistribute the cells within the tree. Since balance() may move
6999 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
7000 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007001 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007002 ** Previous versions of SQLite called moveToRoot() to move the cursor
7003 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007004 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7005 ** set the cursor state to "invalid". This makes common insert operations
7006 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007007 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007008 ** There is a subtle but important optimization here too. When inserting
7009 ** multiple records into an intkey b-tree using a single cursor (as can
7010 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7011 ** is advantageous to leave the cursor pointing to the last entry in
7012 ** the b-tree if possible. If the cursor is left pointing to the last
7013 ** entry in the table, and the next row inserted has an integer key
7014 ** larger than the largest existing key, it is possible to insert the
7015 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007016 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007017 pCur->info.nSize = 0;
7018 pCur->validNKey = 0;
7019 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007020 rc = balance(pCur);
7021
7022 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007023 ** fails. Internal data structure corruption will result otherwise.
7024 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7025 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007026 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007027 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007028 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007029 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007030
drh2e38c322004-09-03 18:38:44 +00007031end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007032 return rc;
7033}
7034
7035/*
drh4b70f112004-05-02 21:12:19 +00007036** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00007037** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007038*/
drh3aac2dd2004-04-26 14:10:20 +00007039int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007040 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007041 BtShared *pBt = p->pBt;
7042 int rc; /* Return code */
7043 MemPage *pPage; /* Page to delete cell from */
7044 unsigned char *pCell; /* Pointer to cell to delete */
7045 int iCellIdx; /* Index of cell to delete */
7046 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00007047
drh1fee73e2007-08-29 04:00:57 +00007048 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007049 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007050 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh64022502009-01-09 14:11:04 +00007051 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00007052 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7053 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7054
danielk19774dbaa892009-06-16 16:50:22 +00007055 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7056 || NEVER(pCur->eState!=CURSOR_VALID)
7057 ){
7058 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007059 }
danielk1977da184232006-01-05 11:34:32 +00007060
danielk19774dbaa892009-06-16 16:50:22 +00007061 iCellDepth = pCur->iPage;
7062 iCellIdx = pCur->aiIdx[iCellDepth];
7063 pPage = pCur->apPage[iCellDepth];
7064 pCell = findCell(pPage, iCellIdx);
7065
7066 /* If the page containing the entry to delete is not a leaf page, move
7067 ** the cursor to the largest entry in the tree that is smaller than
7068 ** the entry being deleted. This cell will replace the cell being deleted
7069 ** from the internal node. The 'previous' entry is used for this instead
7070 ** of the 'next' entry, as the previous entry is always a part of the
7071 ** sub-tree headed by the child page of the cell being deleted. This makes
7072 ** balancing the tree following the delete operation easier. */
7073 if( !pPage->leaf ){
7074 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00007075 rc = sqlite3BtreePrevious(pCur, &notUsed);
7076 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007077 }
7078
7079 /* Save the positions of any other cursors open on this table before
7080 ** making any modifications. Make the page containing the entry to be
7081 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007082 ** entry and finally remove the cell itself from within the page.
7083 */
7084 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7085 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007086
7087 /* If this is a delete operation to remove a row from a table b-tree,
7088 ** invalidate any incrblob cursors open on the row being deleted. */
7089 if( pCur->pKeyInfo==0 ){
7090 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7091 }
7092
drha4ec1d42009-07-11 13:13:11 +00007093 rc = sqlite3PagerWrite(pPage->pDbPage);
7094 if( rc ) return rc;
7095 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00007096 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00007097 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007098
danielk19774dbaa892009-06-16 16:50:22 +00007099 /* If the cell deleted was not located on a leaf page, then the cursor
7100 ** is currently pointing to the largest entry in the sub-tree headed
7101 ** by the child-page of the cell that was just deleted from an internal
7102 ** node. The cell from the leaf node needs to be moved to the internal
7103 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007104 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007105 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7106 int nCell;
7107 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7108 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007109
danielk19774dbaa892009-06-16 16:50:22 +00007110 pCell = findCell(pLeaf, pLeaf->nCell-1);
7111 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007112 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007113
danielk19774dbaa892009-06-16 16:50:22 +00007114 allocateTempSpace(pBt);
7115 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00007116
drha4ec1d42009-07-11 13:13:11 +00007117 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007118 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7119 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007120 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007121 }
danielk19774dbaa892009-06-16 16:50:22 +00007122
7123 /* Balance the tree. If the entry deleted was located on a leaf page,
7124 ** then the cursor still points to that page. In this case the first
7125 ** call to balance() repairs the tree, and the if(...) condition is
7126 ** never true.
7127 **
7128 ** Otherwise, if the entry deleted was on an internal node page, then
7129 ** pCur is pointing to the leaf page from which a cell was removed to
7130 ** replace the cell deleted from the internal node. This is slightly
7131 ** tricky as the leaf node may be underfull, and the internal node may
7132 ** be either under or overfull. In this case run the balancing algorithm
7133 ** on the leaf node first. If the balance proceeds far enough up the
7134 ** tree that we can be sure that any problem in the internal node has
7135 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7136 ** walk the cursor up the tree to the internal node and balance it as
7137 ** well. */
7138 rc = balance(pCur);
7139 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7140 while( pCur->iPage>iCellDepth ){
7141 releasePage(pCur->apPage[pCur->iPage--]);
7142 }
7143 rc = balance(pCur);
7144 }
7145
danielk19776b456a22005-03-21 04:04:02 +00007146 if( rc==SQLITE_OK ){
7147 moveToRoot(pCur);
7148 }
drh5e2f8b92001-05-28 00:41:15 +00007149 return rc;
drh3b7511c2001-05-26 13:15:44 +00007150}
drh8b2f49b2001-06-08 00:21:52 +00007151
7152/*
drhc6b52df2002-01-04 03:09:29 +00007153** Create a new BTree table. Write into *piTable the page
7154** number for the root page of the new table.
7155**
drhab01f612004-05-22 02:55:23 +00007156** The type of type is determined by the flags parameter. Only the
7157** following values of flags are currently in use. Other values for
7158** flags might not work:
7159**
7160** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7161** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007162*/
drhd4187c72010-08-30 22:15:45 +00007163static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007164 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007165 MemPage *pRoot;
7166 Pgno pgnoRoot;
7167 int rc;
drhd4187c72010-08-30 22:15:45 +00007168 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007169
drh1fee73e2007-08-29 04:00:57 +00007170 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007171 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007172 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007173
danielk1977003ba062004-11-04 02:57:33 +00007174#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007175 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007176 if( rc ){
7177 return rc;
7178 }
danielk1977003ba062004-11-04 02:57:33 +00007179#else
danielk1977687566d2004-11-02 12:56:41 +00007180 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007181 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7182 MemPage *pPageMove; /* The page to move to. */
7183
danielk197720713f32007-05-03 11:43:33 +00007184 /* Creating a new table may probably require moving an existing database
7185 ** to make room for the new tables root page. In case this page turns
7186 ** out to be an overflow page, delete all overflow page-map caches
7187 ** held by open cursors.
7188 */
danielk197792d4d7a2007-05-04 12:05:56 +00007189 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007190
danielk1977003ba062004-11-04 02:57:33 +00007191 /* Read the value of meta[3] from the database to determine where the
7192 ** root page of the new table should go. meta[3] is the largest root-page
7193 ** created so far, so the new root-page is (meta[3]+1).
7194 */
danielk1977602b4662009-07-02 07:47:33 +00007195 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007196 pgnoRoot++;
7197
danielk1977599fcba2004-11-08 07:13:13 +00007198 /* The new root-page may not be allocated on a pointer-map page, or the
7199 ** PENDING_BYTE page.
7200 */
drh72190432008-01-31 14:54:43 +00007201 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007202 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007203 pgnoRoot++;
7204 }
7205 assert( pgnoRoot>=3 );
7206
7207 /* Allocate a page. The page that currently resides at pgnoRoot will
7208 ** be moved to the allocated page (unless the allocated page happens
7209 ** to reside at pgnoRoot).
7210 */
dan51f0b6d2013-02-22 20:16:34 +00007211 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007212 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007213 return rc;
7214 }
danielk1977003ba062004-11-04 02:57:33 +00007215
7216 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007217 /* pgnoRoot is the page that will be used for the root-page of
7218 ** the new table (assuming an error did not occur). But we were
7219 ** allocated pgnoMove. If required (i.e. if it was not allocated
7220 ** by extending the file), the current page at position pgnoMove
7221 ** is already journaled.
7222 */
drheeb844a2009-08-08 18:01:07 +00007223 u8 eType = 0;
7224 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007225
7226 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00007227
7228 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00007229 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007230 if( rc!=SQLITE_OK ){
7231 return rc;
7232 }
7233 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007234 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7235 rc = SQLITE_CORRUPT_BKPT;
7236 }
7237 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007238 releasePage(pRoot);
7239 return rc;
7240 }
drhccae6022005-02-26 17:31:26 +00007241 assert( eType!=PTRMAP_ROOTPAGE );
7242 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007243 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007244 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007245
7246 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007247 if( rc!=SQLITE_OK ){
7248 return rc;
7249 }
danielk197730548662009-07-09 05:07:37 +00007250 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007251 if( rc!=SQLITE_OK ){
7252 return rc;
7253 }
danielk19773b8a05f2007-03-19 17:44:26 +00007254 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007255 if( rc!=SQLITE_OK ){
7256 releasePage(pRoot);
7257 return rc;
7258 }
7259 }else{
7260 pRoot = pPageMove;
7261 }
7262
danielk197742741be2005-01-08 12:42:39 +00007263 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007264 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007265 if( rc ){
7266 releasePage(pRoot);
7267 return rc;
7268 }
drhbf592832010-03-30 15:51:12 +00007269
7270 /* When the new root page was allocated, page 1 was made writable in
7271 ** order either to increase the database filesize, or to decrement the
7272 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7273 */
7274 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007275 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007276 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007277 releasePage(pRoot);
7278 return rc;
7279 }
danielk197742741be2005-01-08 12:42:39 +00007280
danielk1977003ba062004-11-04 02:57:33 +00007281 }else{
drh4f0c5872007-03-26 22:05:01 +00007282 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007283 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007284 }
7285#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007286 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007287 if( createTabFlags & BTREE_INTKEY ){
7288 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7289 }else{
7290 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7291 }
7292 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007293 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007294 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007295 *piTable = (int)pgnoRoot;
7296 return SQLITE_OK;
7297}
drhd677b3d2007-08-20 22:48:41 +00007298int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7299 int rc;
7300 sqlite3BtreeEnter(p);
7301 rc = btreeCreateTable(p, piTable, flags);
7302 sqlite3BtreeLeave(p);
7303 return rc;
7304}
drh8b2f49b2001-06-08 00:21:52 +00007305
7306/*
7307** Erase the given database page and all its children. Return
7308** the page to the freelist.
7309*/
drh4b70f112004-05-02 21:12:19 +00007310static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007311 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007312 Pgno pgno, /* Page number to clear */
7313 int freePageFlag, /* Deallocate page if true */
7314 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007315){
danielk1977146ba992009-07-22 14:08:13 +00007316 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007317 int rc;
drh4b70f112004-05-02 21:12:19 +00007318 unsigned char *pCell;
7319 int i;
drh8b2f49b2001-06-08 00:21:52 +00007320
drh1fee73e2007-08-29 04:00:57 +00007321 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007322 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007323 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007324 }
7325
danielk197771d5d2c2008-09-29 11:49:47 +00007326 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007327 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007328 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007329 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007330 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007331 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007332 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007333 }
drh4b70f112004-05-02 21:12:19 +00007334 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007335 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007336 }
drha34b6762004-05-07 13:30:42 +00007337 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007338 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007339 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007340 }else if( pnChange ){
7341 assert( pPage->intKey );
7342 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007343 }
7344 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007345 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007346 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007347 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007348 }
danielk19776b456a22005-03-21 04:04:02 +00007349
7350cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007351 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007352 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007353}
7354
7355/*
drhab01f612004-05-22 02:55:23 +00007356** Delete all information from a single table in the database. iTable is
7357** the page number of the root of the table. After this routine returns,
7358** the root page is empty, but still exists.
7359**
7360** This routine will fail with SQLITE_LOCKED if there are any open
7361** read cursors on the table. Open write cursors are moved to the
7362** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007363**
7364** If pnChange is not NULL, then table iTable must be an intkey table. The
7365** integer value pointed to by pnChange is incremented by the number of
7366** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007367*/
danielk1977c7af4842008-10-27 13:59:33 +00007368int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007369 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007370 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007371 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007372 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007373
drhc046e3e2009-07-15 11:26:44 +00007374 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007375
drhc046e3e2009-07-15 11:26:44 +00007376 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007377 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7378 ** is the root of a table b-tree - if it is not, the following call is
7379 ** a no-op). */
7380 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007381 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007382 }
drhd677b3d2007-08-20 22:48:41 +00007383 sqlite3BtreeLeave(p);
7384 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007385}
7386
7387/*
7388** Erase all information in a table and add the root of the table to
7389** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007390** page 1) is never added to the freelist.
7391**
7392** This routine will fail with SQLITE_LOCKED if there are any open
7393** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007394**
7395** If AUTOVACUUM is enabled and the page at iTable is not the last
7396** root page in the database file, then the last root page
7397** in the database file is moved into the slot formerly occupied by
7398** iTable and that last slot formerly occupied by the last root page
7399** is added to the freelist instead of iTable. In this say, all
7400** root pages are kept at the beginning of the database file, which
7401** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7402** page number that used to be the last root page in the file before
7403** the move. If no page gets moved, *piMoved is set to 0.
7404** The last root page is recorded in meta[3] and the value of
7405** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007406*/
danielk197789d40042008-11-17 14:20:56 +00007407static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007408 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007409 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007410 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007411
drh1fee73e2007-08-29 04:00:57 +00007412 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007413 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007414
danielk1977e6efa742004-11-10 11:55:10 +00007415 /* It is illegal to drop a table if any cursors are open on the
7416 ** database. This is because in auto-vacuum mode the backend may
7417 ** need to move another root-page to fill a gap left by the deleted
7418 ** root page. If an open cursor was using this page a problem would
7419 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007420 **
7421 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007422 */
drhc046e3e2009-07-15 11:26:44 +00007423 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007424 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7425 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007426 }
danielk1977a0bf2652004-11-04 14:30:04 +00007427
danielk197730548662009-07-09 05:07:37 +00007428 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007429 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007430 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007431 if( rc ){
7432 releasePage(pPage);
7433 return rc;
7434 }
danielk1977a0bf2652004-11-04 14:30:04 +00007435
drh205f48e2004-11-05 00:43:11 +00007436 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007437
drh4b70f112004-05-02 21:12:19 +00007438 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007439#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007440 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007441 releasePage(pPage);
7442#else
7443 if( pBt->autoVacuum ){
7444 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007445 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007446
7447 if( iTable==maxRootPgno ){
7448 /* If the table being dropped is the table with the largest root-page
7449 ** number in the database, put the root page on the free list.
7450 */
drhc314dc72009-07-21 11:52:34 +00007451 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007452 releasePage(pPage);
7453 if( rc!=SQLITE_OK ){
7454 return rc;
7455 }
7456 }else{
7457 /* The table being dropped does not have the largest root-page
7458 ** number in the database. So move the page that does into the
7459 ** gap left by the deleted root-page.
7460 */
7461 MemPage *pMove;
7462 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007463 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007464 if( rc!=SQLITE_OK ){
7465 return rc;
7466 }
danielk19774c999992008-07-16 18:17:55 +00007467 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007468 releasePage(pMove);
7469 if( rc!=SQLITE_OK ){
7470 return rc;
7471 }
drhfe3313f2009-07-21 19:02:20 +00007472 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007473 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007474 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007475 releasePage(pMove);
7476 if( rc!=SQLITE_OK ){
7477 return rc;
7478 }
7479 *piMoved = maxRootPgno;
7480 }
7481
danielk1977599fcba2004-11-08 07:13:13 +00007482 /* Set the new 'max-root-page' value in the database header. This
7483 ** is the old value less one, less one more if that happens to
7484 ** be a root-page number, less one again if that is the
7485 ** PENDING_BYTE_PAGE.
7486 */
danielk197787a6e732004-11-05 12:58:25 +00007487 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007488 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7489 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007490 maxRootPgno--;
7491 }
danielk1977599fcba2004-11-08 07:13:13 +00007492 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7493
danielk1977aef0bf62005-12-30 16:28:01 +00007494 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007495 }else{
drhc314dc72009-07-21 11:52:34 +00007496 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007497 releasePage(pPage);
7498 }
7499#endif
drh2aa679f2001-06-25 02:11:07 +00007500 }else{
drhc046e3e2009-07-15 11:26:44 +00007501 /* If sqlite3BtreeDropTable was called on page 1.
7502 ** This really never should happen except in a corrupt
7503 ** database.
7504 */
drha34b6762004-05-07 13:30:42 +00007505 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007506 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007507 }
drh8b2f49b2001-06-08 00:21:52 +00007508 return rc;
7509}
drhd677b3d2007-08-20 22:48:41 +00007510int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7511 int rc;
7512 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007513 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007514 sqlite3BtreeLeave(p);
7515 return rc;
7516}
drh8b2f49b2001-06-08 00:21:52 +00007517
drh001bbcb2003-03-19 03:14:00 +00007518
drh8b2f49b2001-06-08 00:21:52 +00007519/*
danielk1977602b4662009-07-02 07:47:33 +00007520** This function may only be called if the b-tree connection already
7521** has a read or write transaction open on the database.
7522**
drh23e11ca2004-05-04 17:27:28 +00007523** Read the meta-information out of a database file. Meta[0]
7524** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007525** through meta[15] are available for use by higher layers. Meta[0]
7526** is read-only, the others are read/write.
7527**
7528** The schema layer numbers meta values differently. At the schema
7529** layer (and the SetCookie and ReadCookie opcodes) the number of
7530** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007531*/
danielk1977602b4662009-07-02 07:47:33 +00007532void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007533 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007534
drhd677b3d2007-08-20 22:48:41 +00007535 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007536 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007537 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007538 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007539 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007540
danielk1977602b4662009-07-02 07:47:33 +00007541 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007542
danielk1977602b4662009-07-02 07:47:33 +00007543 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7544 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007545#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007546 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7547 pBt->btsFlags |= BTS_READ_ONLY;
7548 }
danielk1977003ba062004-11-04 02:57:33 +00007549#endif
drhae157872004-08-14 19:20:09 +00007550
drhd677b3d2007-08-20 22:48:41 +00007551 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007552}
7553
7554/*
drh23e11ca2004-05-04 17:27:28 +00007555** Write meta-information back into the database. Meta[0] is
7556** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007557*/
danielk1977aef0bf62005-12-30 16:28:01 +00007558int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7559 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007560 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007561 int rc;
drh23e11ca2004-05-04 17:27:28 +00007562 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007563 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007564 assert( p->inTrans==TRANS_WRITE );
7565 assert( pBt->pPage1!=0 );
7566 pP1 = pBt->pPage1->aData;
7567 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7568 if( rc==SQLITE_OK ){
7569 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007570#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007571 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007572 assert( pBt->autoVacuum || iMeta==0 );
7573 assert( iMeta==0 || iMeta==1 );
7574 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007575 }
drh64022502009-01-09 14:11:04 +00007576#endif
drh5df72a52002-06-06 23:16:05 +00007577 }
drhd677b3d2007-08-20 22:48:41 +00007578 sqlite3BtreeLeave(p);
7579 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007580}
drh8c42ca92001-06-22 19:15:00 +00007581
danielk1977a5533162009-02-24 10:01:51 +00007582#ifndef SQLITE_OMIT_BTREECOUNT
7583/*
7584** The first argument, pCur, is a cursor opened on some b-tree. Count the
7585** number of entries in the b-tree and write the result to *pnEntry.
7586**
7587** SQLITE_OK is returned if the operation is successfully executed.
7588** Otherwise, if an error is encountered (i.e. an IO error or database
7589** corruption) an SQLite error code is returned.
7590*/
7591int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7592 i64 nEntry = 0; /* Value to return in *pnEntry */
7593 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007594
7595 if( pCur->pgnoRoot==0 ){
7596 *pnEntry = 0;
7597 return SQLITE_OK;
7598 }
danielk1977a5533162009-02-24 10:01:51 +00007599 rc = moveToRoot(pCur);
7600
7601 /* Unless an error occurs, the following loop runs one iteration for each
7602 ** page in the B-Tree structure (not including overflow pages).
7603 */
7604 while( rc==SQLITE_OK ){
7605 int iIdx; /* Index of child node in parent */
7606 MemPage *pPage; /* Current page of the b-tree */
7607
7608 /* If this is a leaf page or the tree is not an int-key tree, then
7609 ** this page contains countable entries. Increment the entry counter
7610 ** accordingly.
7611 */
7612 pPage = pCur->apPage[pCur->iPage];
7613 if( pPage->leaf || !pPage->intKey ){
7614 nEntry += pPage->nCell;
7615 }
7616
7617 /* pPage is a leaf node. This loop navigates the cursor so that it
7618 ** points to the first interior cell that it points to the parent of
7619 ** the next page in the tree that has not yet been visited. The
7620 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7621 ** of the page, or to the number of cells in the page if the next page
7622 ** to visit is the right-child of its parent.
7623 **
7624 ** If all pages in the tree have been visited, return SQLITE_OK to the
7625 ** caller.
7626 */
7627 if( pPage->leaf ){
7628 do {
7629 if( pCur->iPage==0 ){
7630 /* All pages of the b-tree have been visited. Return successfully. */
7631 *pnEntry = nEntry;
7632 return SQLITE_OK;
7633 }
danielk197730548662009-07-09 05:07:37 +00007634 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007635 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7636
7637 pCur->aiIdx[pCur->iPage]++;
7638 pPage = pCur->apPage[pCur->iPage];
7639 }
7640
7641 /* Descend to the child node of the cell that the cursor currently
7642 ** points at. This is the right-child if (iIdx==pPage->nCell).
7643 */
7644 iIdx = pCur->aiIdx[pCur->iPage];
7645 if( iIdx==pPage->nCell ){
7646 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7647 }else{
7648 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7649 }
7650 }
7651
shanebe217792009-03-05 04:20:31 +00007652 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007653 return rc;
7654}
7655#endif
drhdd793422001-06-28 01:54:48 +00007656
drhdd793422001-06-28 01:54:48 +00007657/*
drh5eddca62001-06-30 21:53:53 +00007658** Return the pager associated with a BTree. This routine is used for
7659** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007660*/
danielk1977aef0bf62005-12-30 16:28:01 +00007661Pager *sqlite3BtreePager(Btree *p){
7662 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007663}
drh5eddca62001-06-30 21:53:53 +00007664
drhb7f91642004-10-31 02:22:47 +00007665#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007666/*
7667** Append a message to the error message string.
7668*/
drh2e38c322004-09-03 18:38:44 +00007669static void checkAppendMsg(
7670 IntegrityCk *pCheck,
7671 char *zMsg1,
7672 const char *zFormat,
7673 ...
7674){
7675 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007676 if( !pCheck->mxErr ) return;
7677 pCheck->mxErr--;
7678 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007679 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007680 if( pCheck->errMsg.nChar ){
7681 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007682 }
drhf089aa42008-07-08 19:34:06 +00007683 if( zMsg1 ){
7684 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7685 }
7686 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7687 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007688 if( pCheck->errMsg.mallocFailed ){
7689 pCheck->mallocFailed = 1;
7690 }
drh5eddca62001-06-30 21:53:53 +00007691}
drhb7f91642004-10-31 02:22:47 +00007692#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007693
drhb7f91642004-10-31 02:22:47 +00007694#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007695
7696/*
7697** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7698** corresponds to page iPg is already set.
7699*/
7700static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7701 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7702 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7703}
7704
7705/*
7706** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7707*/
7708static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7709 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7710 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7711}
7712
7713
drh5eddca62001-06-30 21:53:53 +00007714/*
7715** Add 1 to the reference count for page iPage. If this is the second
7716** reference to the page, add an error message to pCheck->zErrMsg.
7717** Return 1 if there are 2 ore more references to the page and 0 if
7718** if this is the first reference to the page.
7719**
7720** Also check that the page number is in bounds.
7721*/
danielk197789d40042008-11-17 14:20:56 +00007722static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007723 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007724 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007725 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007726 return 1;
7727 }
dan1235bb12012-04-03 17:43:28 +00007728 if( getPageReferenced(pCheck, iPage) ){
drh2e38c322004-09-03 18:38:44 +00007729 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007730 return 1;
7731 }
dan1235bb12012-04-03 17:43:28 +00007732 setPageReferenced(pCheck, iPage);
7733 return 0;
drh5eddca62001-06-30 21:53:53 +00007734}
7735
danielk1977afcdd022004-10-31 16:25:42 +00007736#ifndef SQLITE_OMIT_AUTOVACUUM
7737/*
7738** Check that the entry in the pointer-map for page iChild maps to
7739** page iParent, pointer type ptrType. If not, append an error message
7740** to pCheck.
7741*/
7742static void checkPtrmap(
7743 IntegrityCk *pCheck, /* Integrity check context */
7744 Pgno iChild, /* Child page number */
7745 u8 eType, /* Expected pointer map type */
7746 Pgno iParent, /* Expected pointer map parent page number */
7747 char *zContext /* Context description (used for error msg) */
7748){
7749 int rc;
7750 u8 ePtrmapType;
7751 Pgno iPtrmapParent;
7752
7753 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7754 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007755 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007756 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7757 return;
7758 }
7759
7760 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7761 checkAppendMsg(pCheck, zContext,
7762 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7763 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7764 }
7765}
7766#endif
7767
drh5eddca62001-06-30 21:53:53 +00007768/*
7769** Check the integrity of the freelist or of an overflow page list.
7770** Verify that the number of pages on the list is N.
7771*/
drh30e58752002-03-02 20:41:57 +00007772static void checkList(
7773 IntegrityCk *pCheck, /* Integrity checking context */
7774 int isFreeList, /* True for a freelist. False for overflow page list */
7775 int iPage, /* Page number for first page in the list */
7776 int N, /* Expected number of pages in the list */
7777 char *zContext /* Context for error messages */
7778){
7779 int i;
drh3a4c1412004-05-09 20:40:11 +00007780 int expected = N;
7781 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007782 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007783 DbPage *pOvflPage;
7784 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007785 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007786 checkAppendMsg(pCheck, zContext,
7787 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007788 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007789 break;
7790 }
7791 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007792 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007793 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007794 break;
7795 }
danielk19773b8a05f2007-03-19 17:44:26 +00007796 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007797 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007798 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007799#ifndef SQLITE_OMIT_AUTOVACUUM
7800 if( pCheck->pBt->autoVacuum ){
7801 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7802 }
7803#endif
drh43b18e12010-08-17 19:40:08 +00007804 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007805 checkAppendMsg(pCheck, zContext,
7806 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007807 N--;
7808 }else{
7809 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007810 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007811#ifndef SQLITE_OMIT_AUTOVACUUM
7812 if( pCheck->pBt->autoVacuum ){
7813 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7814 }
7815#endif
7816 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007817 }
7818 N -= n;
drh30e58752002-03-02 20:41:57 +00007819 }
drh30e58752002-03-02 20:41:57 +00007820 }
danielk1977afcdd022004-10-31 16:25:42 +00007821#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007822 else{
7823 /* If this database supports auto-vacuum and iPage is not the last
7824 ** page in this overflow list, check that the pointer-map entry for
7825 ** the following page matches iPage.
7826 */
7827 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007828 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007829 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7830 }
danielk1977afcdd022004-10-31 16:25:42 +00007831 }
7832#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007833 iPage = get4byte(pOvflData);
7834 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007835 }
7836}
drhb7f91642004-10-31 02:22:47 +00007837#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007838
drhb7f91642004-10-31 02:22:47 +00007839#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007840/*
7841** Do various sanity checks on a single page of a tree. Return
7842** the tree depth. Root pages return 0. Parents of root pages
7843** return 1, and so forth.
7844**
7845** These checks are done:
7846**
7847** 1. Make sure that cells and freeblocks do not overlap
7848** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007849** NO 2. Make sure cell keys are in order.
7850** NO 3. Make sure no key is less than or equal to zLowerBound.
7851** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007852** 5. Check the integrity of overflow pages.
7853** 6. Recursively call checkTreePage on all children.
7854** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007855** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007856** the root of the tree.
7857*/
7858static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007859 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007860 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007861 char *zParentContext, /* Parent context */
7862 i64 *pnParentMinKey,
7863 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007864){
7865 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007866 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007867 int hdr, cellStart;
7868 int nCell;
drhda200cc2004-05-09 11:51:38 +00007869 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007870 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007871 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007872 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007873 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007874 i64 nMinKey = 0;
7875 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007876
drh5bb3eb92007-05-04 13:15:55 +00007877 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007878
drh5eddca62001-06-30 21:53:53 +00007879 /* Check that the page exists
7880 */
drhd9cb6ac2005-10-20 07:28:17 +00007881 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007882 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007883 if( iPage==0 ) return 0;
7884 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007885 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007886 checkAppendMsg(pCheck, zContext,
7887 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007888 return 0;
7889 }
danielk197793caf5a2009-07-11 06:55:33 +00007890
7891 /* Clear MemPage.isInit to make sure the corruption detection code in
7892 ** btreeInitPage() is executed. */
7893 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007894 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007895 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007896 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007897 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007898 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007899 return 0;
7900 }
7901
7902 /* Check out all the cells.
7903 */
7904 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007905 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007906 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007907 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007908 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007909
7910 /* Check payload overflow pages
7911 */
drh5bb3eb92007-05-04 13:15:55 +00007912 sqlite3_snprintf(sizeof(zContext), zContext,
7913 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007914 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007915 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007916 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007917 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007918 /* For intKey pages, check that the keys are in order.
7919 */
7920 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7921 else{
7922 if( info.nKey <= nMaxKey ){
7923 checkAppendMsg(pCheck, zContext,
7924 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7925 }
7926 nMaxKey = info.nKey;
7927 }
drh72365832007-03-06 15:53:44 +00007928 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007929 if( (sz>info.nLocal)
7930 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7931 ){
drhb6f41482004-05-14 01:58:11 +00007932 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007933 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7934#ifndef SQLITE_OMIT_AUTOVACUUM
7935 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007936 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007937 }
7938#endif
7939 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007940 }
7941
7942 /* Check sanity of left child page.
7943 */
drhda200cc2004-05-09 11:51:38 +00007944 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007945 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007946#ifndef SQLITE_OMIT_AUTOVACUUM
7947 if( pBt->autoVacuum ){
7948 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7949 }
7950#endif
shaneh195475d2010-02-19 04:28:08 +00007951 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007952 if( i>0 && d2!=depth ){
7953 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7954 }
7955 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007956 }
drh5eddca62001-06-30 21:53:53 +00007957 }
shaneh195475d2010-02-19 04:28:08 +00007958
drhda200cc2004-05-09 11:51:38 +00007959 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007960 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007961 sqlite3_snprintf(sizeof(zContext), zContext,
7962 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007963#ifndef SQLITE_OMIT_AUTOVACUUM
7964 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007965 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007966 }
7967#endif
shaneh195475d2010-02-19 04:28:08 +00007968 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007969 }
drh5eddca62001-06-30 21:53:53 +00007970
shaneh195475d2010-02-19 04:28:08 +00007971 /* For intKey leaf pages, check that the min/max keys are in order
7972 ** with any left/parent/right pages.
7973 */
7974 if( pPage->leaf && pPage->intKey ){
7975 /* if we are a left child page */
7976 if( pnParentMinKey ){
7977 /* if we are the left most child page */
7978 if( !pnParentMaxKey ){
7979 if( nMaxKey > *pnParentMinKey ){
7980 checkAppendMsg(pCheck, zContext,
7981 "Rowid %lld out of order (max larger than parent min of %lld)",
7982 nMaxKey, *pnParentMinKey);
7983 }
7984 }else{
7985 if( nMinKey <= *pnParentMinKey ){
7986 checkAppendMsg(pCheck, zContext,
7987 "Rowid %lld out of order (min less than parent min of %lld)",
7988 nMinKey, *pnParentMinKey);
7989 }
7990 if( nMaxKey > *pnParentMaxKey ){
7991 checkAppendMsg(pCheck, zContext,
7992 "Rowid %lld out of order (max larger than parent max of %lld)",
7993 nMaxKey, *pnParentMaxKey);
7994 }
7995 *pnParentMinKey = nMaxKey;
7996 }
7997 /* else if we're a right child page */
7998 } else if( pnParentMaxKey ){
7999 if( nMinKey <= *pnParentMaxKey ){
8000 checkAppendMsg(pCheck, zContext,
8001 "Rowid %lld out of order (min less than parent max of %lld)",
8002 nMinKey, *pnParentMaxKey);
8003 }
8004 }
8005 }
8006
drh5eddca62001-06-30 21:53:53 +00008007 /* Check for complete coverage of the page
8008 */
drhda200cc2004-05-09 11:51:38 +00008009 data = pPage->aData;
8010 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008011 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00008012 if( hit==0 ){
8013 pCheck->mallocFailed = 1;
8014 }else{
drh5d433ce2010-08-14 16:02:52 +00008015 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008016 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008017 memset(hit+contentOffset, 0, usableSize-contentOffset);
8018 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00008019 nCell = get2byte(&data[hdr+3]);
8020 cellStart = hdr + 12 - 4*pPage->leaf;
8021 for(i=0; i<nCell; i++){
8022 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008023 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008024 int j;
drh8c2bbb62009-07-10 02:52:20 +00008025 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008026 size = cellSizePtr(pPage, &data[pc]);
8027 }
drh43b18e12010-08-17 19:40:08 +00008028 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00008029 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00008030 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008031 }else{
8032 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8033 }
drh2e38c322004-09-03 18:38:44 +00008034 }
drh8c2bbb62009-07-10 02:52:20 +00008035 i = get2byte(&data[hdr+1]);
8036 while( i>0 ){
8037 int size, j;
8038 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8039 size = get2byte(&data[i+2]);
8040 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8041 for(j=i+size-1; j>=i; j--) hit[j]++;
8042 j = get2byte(&data[i]);
8043 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8044 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8045 i = j;
drh2e38c322004-09-03 18:38:44 +00008046 }
8047 for(i=cnt=0; i<usableSize; i++){
8048 if( hit[i]==0 ){
8049 cnt++;
8050 }else if( hit[i]>1 ){
8051 checkAppendMsg(pCheck, 0,
8052 "Multiple uses for byte %d of page %d", i, iPage);
8053 break;
8054 }
8055 }
8056 if( cnt!=data[hdr+7] ){
8057 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00008058 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008059 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008060 }
8061 }
drh8c2bbb62009-07-10 02:52:20 +00008062 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008063 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00008064 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008065}
drhb7f91642004-10-31 02:22:47 +00008066#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008067
drhb7f91642004-10-31 02:22:47 +00008068#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008069/*
8070** This routine does a complete check of the given BTree file. aRoot[] is
8071** an array of pages numbers were each page number is the root page of
8072** a table. nRoot is the number of entries in aRoot.
8073**
danielk19773509a652009-07-06 18:56:13 +00008074** A read-only or read-write transaction must be opened before calling
8075** this function.
8076**
drhc890fec2008-08-01 20:10:08 +00008077** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008078** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008079** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008080** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008081*/
drh1dcdbc02007-01-27 02:24:54 +00008082char *sqlite3BtreeIntegrityCheck(
8083 Btree *p, /* The btree to be checked */
8084 int *aRoot, /* An array of root pages numbers for individual trees */
8085 int nRoot, /* Number of entries in aRoot[] */
8086 int mxErr, /* Stop reporting errors after this many */
8087 int *pnErr /* Write number of errors seen to this variable */
8088){
danielk197789d40042008-11-17 14:20:56 +00008089 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008090 int nRef;
drhaaab5722002-02-19 13:39:21 +00008091 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008092 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008093 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008094
drhd677b3d2007-08-20 22:48:41 +00008095 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008096 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008097 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008098 sCheck.pBt = pBt;
8099 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008100 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008101 sCheck.mxErr = mxErr;
8102 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008103 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00008104 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008105 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008106 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008107 return 0;
8108 }
dan1235bb12012-04-03 17:43:28 +00008109
8110 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8111 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008112 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008113 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008114 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008115 }
drh42cac6d2004-11-20 20:31:11 +00008116 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008117 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008118 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008119 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008120
8121 /* Check the integrity of the freelist
8122 */
drha34b6762004-05-07 13:30:42 +00008123 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8124 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00008125
8126 /* Check all the tables.
8127 */
danielk197789d40042008-11-17 14:20:56 +00008128 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008129 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008130#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008131 if( pBt->autoVacuum && aRoot[i]>1 ){
8132 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8133 }
8134#endif
shaneh195475d2010-02-19 04:28:08 +00008135 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00008136 }
8137
8138 /* Make sure every page in the file is referenced
8139 */
drh1dcdbc02007-01-27 02:24:54 +00008140 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008141#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008142 if( getPageReferenced(&sCheck, i)==0 ){
drh2e38c322004-09-03 18:38:44 +00008143 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008144 }
danielk1977afcdd022004-10-31 16:25:42 +00008145#else
8146 /* If the database supports auto-vacuum, make sure no tables contain
8147 ** references to pointer-map pages.
8148 */
dan1235bb12012-04-03 17:43:28 +00008149 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008150 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008151 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8152 }
dan1235bb12012-04-03 17:43:28 +00008153 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008154 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008155 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8156 }
8157#endif
drh5eddca62001-06-30 21:53:53 +00008158 }
8159
drh64022502009-01-09 14:11:04 +00008160 /* Make sure this analysis did not leave any unref() pages.
8161 ** This is an internal consistency check; an integrity check
8162 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008163 */
drh64022502009-01-09 14:11:04 +00008164 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008165 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008166 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008167 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008168 );
drh5eddca62001-06-30 21:53:53 +00008169 }
8170
8171 /* Clean up and report errors.
8172 */
drhd677b3d2007-08-20 22:48:41 +00008173 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008174 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008175 if( sCheck.mallocFailed ){
8176 sqlite3StrAccumReset(&sCheck.errMsg);
8177 *pnErr = sCheck.nErr+1;
8178 return 0;
8179 }
drh1dcdbc02007-01-27 02:24:54 +00008180 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008181 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8182 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008183}
drhb7f91642004-10-31 02:22:47 +00008184#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008185
drh73509ee2003-04-06 20:44:45 +00008186/*
drhd4e0bb02012-05-27 01:19:04 +00008187** Return the full pathname of the underlying database file. Return
8188** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008189**
8190** The pager filename is invariant as long as the pager is
8191** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008192*/
danielk1977aef0bf62005-12-30 16:28:01 +00008193const char *sqlite3BtreeGetFilename(Btree *p){
8194 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008195 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008196}
8197
8198/*
danielk19775865e3d2004-06-14 06:03:57 +00008199** Return the pathname of the journal file for this database. The return
8200** value of this routine is the same regardless of whether the journal file
8201** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008202**
8203** The pager journal filename is invariant as long as the pager is
8204** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008205*/
danielk1977aef0bf62005-12-30 16:28:01 +00008206const char *sqlite3BtreeGetJournalname(Btree *p){
8207 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008208 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008209}
8210
danielk19771d850a72004-05-31 08:26:49 +00008211/*
8212** Return non-zero if a transaction is active.
8213*/
danielk1977aef0bf62005-12-30 16:28:01 +00008214int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008215 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008216 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008217}
8218
dana550f2d2010-08-02 10:47:05 +00008219#ifndef SQLITE_OMIT_WAL
8220/*
8221** Run a checkpoint on the Btree passed as the first argument.
8222**
8223** Return SQLITE_LOCKED if this or any other connection has an open
8224** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008225**
dancdc1f042010-11-18 12:11:05 +00008226** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008227*/
dancdc1f042010-11-18 12:11:05 +00008228int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008229 int rc = SQLITE_OK;
8230 if( p ){
8231 BtShared *pBt = p->pBt;
8232 sqlite3BtreeEnter(p);
8233 if( pBt->inTransaction!=TRANS_NONE ){
8234 rc = SQLITE_LOCKED;
8235 }else{
dancdc1f042010-11-18 12:11:05 +00008236 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008237 }
8238 sqlite3BtreeLeave(p);
8239 }
8240 return rc;
8241}
8242#endif
8243
danielk19771d850a72004-05-31 08:26:49 +00008244/*
danielk19772372c2b2006-06-27 16:34:56 +00008245** Return non-zero if a read (or write) transaction is active.
8246*/
8247int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008248 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008249 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008250 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008251}
8252
danielk197704103022009-02-03 16:51:24 +00008253int sqlite3BtreeIsInBackup(Btree *p){
8254 assert( p );
8255 assert( sqlite3_mutex_held(p->db->mutex) );
8256 return p->nBackup!=0;
8257}
8258
danielk19772372c2b2006-06-27 16:34:56 +00008259/*
danielk1977da184232006-01-05 11:34:32 +00008260** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008261** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008262** purposes (for example, to store a high-level schema associated with
8263** the shared-btree). The btree layer manages reference counting issues.
8264**
8265** The first time this is called on a shared-btree, nBytes bytes of memory
8266** are allocated, zeroed, and returned to the caller. For each subsequent
8267** call the nBytes parameter is ignored and a pointer to the same blob
8268** of memory returned.
8269**
danielk1977171bfed2008-06-23 09:50:50 +00008270** If the nBytes parameter is 0 and the blob of memory has not yet been
8271** allocated, a null pointer is returned. If the blob has already been
8272** allocated, it is returned as normal.
8273**
danielk1977da184232006-01-05 11:34:32 +00008274** Just before the shared-btree is closed, the function passed as the
8275** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008276** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008277** on the memory, the btree layer does that.
8278*/
8279void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8280 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008281 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008282 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008283 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008284 pBt->xFreeSchema = xFree;
8285 }
drh27641702007-08-22 02:56:42 +00008286 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008287 return pBt->pSchema;
8288}
8289
danielk1977c87d34d2006-01-06 13:00:28 +00008290/*
danielk1977404ca072009-03-16 13:19:36 +00008291** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8292** btree as the argument handle holds an exclusive lock on the
8293** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008294*/
8295int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008296 int rc;
drhe5fe6902007-12-07 18:55:28 +00008297 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008298 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008299 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8300 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008301 sqlite3BtreeLeave(p);
8302 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008303}
8304
drha154dcd2006-03-22 22:10:07 +00008305
8306#ifndef SQLITE_OMIT_SHARED_CACHE
8307/*
8308** Obtain a lock on the table whose root page is iTab. The
8309** lock is a write lock if isWritelock is true or a read lock
8310** if it is false.
8311*/
danielk1977c00da102006-01-07 13:21:04 +00008312int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008313 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008314 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008315 if( p->sharable ){
8316 u8 lockType = READ_LOCK + isWriteLock;
8317 assert( READ_LOCK+1==WRITE_LOCK );
8318 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008319
drh6a9ad3d2008-04-02 16:29:30 +00008320 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008321 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008322 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008323 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008324 }
8325 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008326 }
8327 return rc;
8328}
drha154dcd2006-03-22 22:10:07 +00008329#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008330
danielk1977b4e9af92007-05-01 17:49:49 +00008331#ifndef SQLITE_OMIT_INCRBLOB
8332/*
8333** Argument pCsr must be a cursor opened for writing on an
8334** INTKEY table currently pointing at a valid table entry.
8335** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008336**
8337** Only the data content may only be modified, it is not possible to
8338** change the length of the data stored. If this function is called with
8339** parameters that attempt to write past the end of the existing data,
8340** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008341*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008342int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008343 int rc;
drh1fee73e2007-08-29 04:00:57 +00008344 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008345 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008346 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008347
danielk1977c9000e62009-07-08 13:55:28 +00008348 rc = restoreCursorPosition(pCsr);
8349 if( rc!=SQLITE_OK ){
8350 return rc;
8351 }
danielk19773588ceb2008-06-10 17:30:26 +00008352 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8353 if( pCsr->eState!=CURSOR_VALID ){
8354 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008355 }
8356
danielk1977c9000e62009-07-08 13:55:28 +00008357 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008358 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008359 ** (b) there is a read/write transaction open,
8360 ** (c) the connection holds a write-lock on the table (if required),
8361 ** (d) there are no conflicting read-locks, and
8362 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008363 */
danielk19774f029602009-07-08 18:45:37 +00008364 if( !pCsr->wrFlag ){
8365 return SQLITE_READONLY;
8366 }
drhc9166342012-01-05 23:32:06 +00008367 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8368 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008369 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8370 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008371 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008372
drhfb192682009-07-11 18:26:28 +00008373 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008374}
danielk19772dec9702007-05-02 16:48:37 +00008375
8376/*
8377** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008378** overflow list for the current row. This is used by cursors opened
8379** for incremental blob IO only.
8380**
8381** This function sets a flag only. The actual page location cache
8382** (stored in BtCursor.aOverflow[]) is allocated and used by function
8383** accessPayload() (the worker function for sqlite3BtreeData() and
8384** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008385*/
8386void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008387 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008388 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008389 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008390 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008391}
danielk1977b4e9af92007-05-01 17:49:49 +00008392#endif
dane04dc882010-04-20 18:53:15 +00008393
8394/*
8395** Set both the "read version" (single byte at byte offset 18) and
8396** "write version" (single byte at byte offset 19) fields in the database
8397** header to iVersion.
8398*/
8399int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8400 BtShared *pBt = pBtree->pBt;
8401 int rc; /* Return code */
8402
dane04dc882010-04-20 18:53:15 +00008403 assert( iVersion==1 || iVersion==2 );
8404
danb9780022010-04-21 18:37:57 +00008405 /* If setting the version fields to 1, do not automatically open the
8406 ** WAL connection, even if the version fields are currently set to 2.
8407 */
drhc9166342012-01-05 23:32:06 +00008408 pBt->btsFlags &= ~BTS_NO_WAL;
8409 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008410
8411 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008412 if( rc==SQLITE_OK ){
8413 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008414 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008415 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008416 if( rc==SQLITE_OK ){
8417 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8418 if( rc==SQLITE_OK ){
8419 aData[18] = (u8)iVersion;
8420 aData[19] = (u8)iVersion;
8421 }
8422 }
8423 }
dane04dc882010-04-20 18:53:15 +00008424 }
8425
drhc9166342012-01-05 23:32:06 +00008426 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008427 return rc;
8428}
dan428c2182012-08-06 18:50:11 +00008429
8430/*
8431** set the mask of hint flags for cursor pCsr. Currently the only valid
8432** values are 0 and BTREE_BULKLOAD.
8433*/
8434void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8435 assert( mask==BTREE_BULKLOAD || mask==0 );
8436 pCsr->hints = mask;
8437}