blob: 5769a236c888432ec96758ddcc62a7cbee4f8a51 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
453#endif
454
danielk197792d4d7a2007-05-04 12:05:56 +0000455/*
dan5a500af2014-03-11 20:33:04 +0000456** Invalidate the overflow cache of the cursor passed as the first argument.
457** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000458*/
drh036dbec2014-03-11 23:40:44 +0000459#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000460
461/*
462** Invalidate the overflow page-list cache for all cursors opened
463** on the shared btree structure pBt.
464*/
465static void invalidateAllOverflowCache(BtShared *pBt){
466 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000467 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000468 for(p=pBt->pCursor; p; p=p->pNext){
469 invalidateOverflowCache(p);
470 }
471}
danielk197796d48e92009-06-29 06:00:37 +0000472
dan5a500af2014-03-11 20:33:04 +0000473#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000474/*
475** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000476** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000477** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000478**
479** If argument isClearTable is true, then the entire contents of the
480** table is about to be deleted. In this case invalidate all incrblob
481** cursors open on any row within the table with root-page pgnoRoot.
482**
483** Otherwise, if argument isClearTable is false, then the row with
484** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000485** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000486*/
487static void invalidateIncrblobCursors(
488 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000489 i64 iRow, /* The rowid that might be changing */
490 int isClearTable /* True if all rows are being deleted */
491){
492 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000493 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000494 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000495 pBtree->hasIncrblobCur = 0;
496 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
497 if( (p->curFlags & BTCF_Incrblob)!=0 ){
498 pBtree->hasIncrblobCur = 1;
499 if( isClearTable || p->info.nKey==iRow ){
500 p->eState = CURSOR_INVALID;
501 }
danielk197796d48e92009-06-29 06:00:37 +0000502 }
503 }
504}
505
danielk197792d4d7a2007-05-04 12:05:56 +0000506#else
dan5a500af2014-03-11 20:33:04 +0000507 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000508 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000509#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000510
drh980b1a72006-08-16 16:42:48 +0000511/*
danielk1977bea2a942009-01-20 17:06:27 +0000512** Set bit pgno of the BtShared.pHasContent bitvec. This is called
513** when a page that previously contained data becomes a free-list leaf
514** page.
515**
516** The BtShared.pHasContent bitvec exists to work around an obscure
517** bug caused by the interaction of two useful IO optimizations surrounding
518** free-list leaf pages:
519**
520** 1) When all data is deleted from a page and the page becomes
521** a free-list leaf page, the page is not written to the database
522** (as free-list leaf pages contain no meaningful data). Sometimes
523** such a page is not even journalled (as it will not be modified,
524** why bother journalling it?).
525**
526** 2) When a free-list leaf page is reused, its content is not read
527** from the database or written to the journal file (why should it
528** be, if it is not at all meaningful?).
529**
530** By themselves, these optimizations work fine and provide a handy
531** performance boost to bulk delete or insert operations. However, if
532** a page is moved to the free-list and then reused within the same
533** transaction, a problem comes up. If the page is not journalled when
534** it is moved to the free-list and it is also not journalled when it
535** is extracted from the free-list and reused, then the original data
536** may be lost. In the event of a rollback, it may not be possible
537** to restore the database to its original configuration.
538**
539** The solution is the BtShared.pHasContent bitvec. Whenever a page is
540** moved to become a free-list leaf page, the corresponding bit is
541** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000542** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000543** set in BtShared.pHasContent. The contents of the bitvec are cleared
544** at the end of every transaction.
545*/
546static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
547 int rc = SQLITE_OK;
548 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000549 assert( pgno<=pBt->nPage );
550 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000551 if( !pBt->pHasContent ){
552 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000553 }
554 }
555 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
556 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
557 }
558 return rc;
559}
560
561/*
562** Query the BtShared.pHasContent vector.
563**
564** This function is called when a free-list leaf page is removed from the
565** free-list for reuse. It returns false if it is safe to retrieve the
566** page from the pager layer with the 'no-content' flag set. True otherwise.
567*/
568static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
569 Bitvec *p = pBt->pHasContent;
570 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
571}
572
573/*
574** Clear (destroy) the BtShared.pHasContent bitvec. This should be
575** invoked at the conclusion of each write-transaction.
576*/
577static void btreeClearHasContent(BtShared *pBt){
578 sqlite3BitvecDestroy(pBt->pHasContent);
579 pBt->pHasContent = 0;
580}
581
582/*
drh138eeeb2013-03-27 03:15:23 +0000583** Release all of the apPage[] pages for a cursor.
584*/
585static void btreeReleaseAllCursorPages(BtCursor *pCur){
586 int i;
587 for(i=0; i<=pCur->iPage; i++){
588 releasePage(pCur->apPage[i]);
589 pCur->apPage[i] = 0;
590 }
591 pCur->iPage = -1;
592}
593
594
595/*
drh980b1a72006-08-16 16:42:48 +0000596** Save the current cursor position in the variables BtCursor.nKey
597** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000598**
599** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
600** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000601*/
602static int saveCursorPosition(BtCursor *pCur){
603 int rc;
604
drhd2f83132015-03-25 17:35:01 +0000605 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000606 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000607 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000608
drhd2f83132015-03-25 17:35:01 +0000609 if( pCur->eState==CURSOR_SKIPNEXT ){
610 pCur->eState = CURSOR_VALID;
611 }else{
612 pCur->skipNext = 0;
613 }
drh980b1a72006-08-16 16:42:48 +0000614 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000615 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000616
617 /* If this is an intKey table, then the above call to BtreeKeySize()
618 ** stores the integer key in pCur->nKey. In this case this value is
619 ** all that is required. Otherwise, if pCur is not open on an intKey
620 ** table, then malloc space for and store the pCur->nKey bytes of key
621 ** data.
622 */
drh4c301aa2009-07-15 17:25:45 +0000623 if( 0==pCur->apPage[0]->intKey ){
drhda4ca9d2014-09-09 17:27:35 +0000624 void *pKey = sqlite3Malloc( pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000625 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000626 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000627 if( rc==SQLITE_OK ){
628 pCur->pKey = pKey;
629 }else{
drh17435752007-08-16 04:30:38 +0000630 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000631 }
632 }else{
633 rc = SQLITE_NOMEM;
634 }
635 }
danielk197771d5d2c2008-09-29 11:49:47 +0000636 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000637
638 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000639 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000640 pCur->eState = CURSOR_REQUIRESEEK;
641 }
642
danielk197792d4d7a2007-05-04 12:05:56 +0000643 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000644 return rc;
645}
646
drh637f3d82014-08-22 22:26:07 +0000647/* Forward reference */
648static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
649
drh980b1a72006-08-16 16:42:48 +0000650/*
drh0ee3dbe2009-10-16 15:05:18 +0000651** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000652** the table with root-page iRoot. "Saving the cursor position" means that
653** the location in the btree is remembered in such a way that it can be
654** moved back to the same spot after the btree has been modified. This
655** routine is called just before cursor pExcept is used to modify the
656** table, for example in BtreeDelete() or BtreeInsert().
657**
658** Implementation note: This routine merely checks to see if any cursors
659** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
660** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000661*/
662static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000663 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000664 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000665 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000666 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000667 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
668 }
669 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;
670}
671
672/* This helper routine to saveAllCursors does the actual work of saving
673** the cursors if and when a cursor is found that actually requires saving.
674** The common case is that no cursors need to be saved, so this routine is
675** broken out from its caller to avoid unnecessary stack pointer movement.
676*/
677static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000678 BtCursor *p, /* The first cursor that needs saving */
679 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
680 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000681){
682 do{
drh138eeeb2013-03-27 03:15:23 +0000683 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000684 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000685 int rc = saveCursorPosition(p);
686 if( SQLITE_OK!=rc ){
687 return rc;
688 }
689 }else{
690 testcase( p->iPage>0 );
691 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000692 }
693 }
drh637f3d82014-08-22 22:26:07 +0000694 p = p->pNext;
695 }while( p );
drh980b1a72006-08-16 16:42:48 +0000696 return SQLITE_OK;
697}
698
699/*
drhbf700f32007-03-31 02:36:44 +0000700** Clear the current cursor position.
701*/
danielk1977be51a652008-10-08 17:58:48 +0000702void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000703 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000704 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000705 pCur->pKey = 0;
706 pCur->eState = CURSOR_INVALID;
707}
708
709/*
danielk19773509a652009-07-06 18:56:13 +0000710** In this version of BtreeMoveto, pKey is a packed index record
711** such as is generated by the OP_MakeRecord opcode. Unpack the
712** record and then call BtreeMovetoUnpacked() to do the work.
713*/
714static int btreeMoveto(
715 BtCursor *pCur, /* Cursor open on the btree to be searched */
716 const void *pKey, /* Packed key if the btree is an index */
717 i64 nKey, /* Integer key for tables. Size of pKey for indices */
718 int bias, /* Bias search to the high end */
719 int *pRes /* Write search results here */
720){
721 int rc; /* Status code */
722 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000723 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000724 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000725
726 if( pKey ){
727 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000728 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
729 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
730 );
danielk19773509a652009-07-06 18:56:13 +0000731 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000732 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000733 if( pIdxKey->nField==0 ){
734 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
735 return SQLITE_CORRUPT_BKPT;
736 }
danielk19773509a652009-07-06 18:56:13 +0000737 }else{
738 pIdxKey = 0;
739 }
740 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000741 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000742 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000743 }
744 return rc;
745}
746
747/*
drh980b1a72006-08-16 16:42:48 +0000748** Restore the cursor to the position it was in (or as close to as possible)
749** when saveCursorPosition() was called. Note that this call deletes the
750** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000751** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000752** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000753*/
danielk197730548662009-07-09 05:07:37 +0000754static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000755 int rc;
drhd2f83132015-03-25 17:35:01 +0000756 int skipNext;
drh1fee73e2007-08-29 04:00:57 +0000757 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000758 assert( pCur->eState>=CURSOR_REQUIRESEEK );
759 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000760 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000761 }
drh980b1a72006-08-16 16:42:48 +0000762 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000763 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000764 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000765 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000766 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000767 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000768 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000769 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
770 pCur->eState = CURSOR_SKIPNEXT;
771 }
drh980b1a72006-08-16 16:42:48 +0000772 }
773 return rc;
774}
775
drha3460582008-07-11 21:02:53 +0000776#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000777 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000778 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000779 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000780
drha3460582008-07-11 21:02:53 +0000781/*
drh6848dad2014-08-22 23:33:03 +0000782** Determine whether or not a cursor has moved from the position where
783** it was last placed, or has been invalidated for any other reason.
784** Cursors can move when the row they are pointing at is deleted out
785** from under them, for example. Cursor might also move if a btree
786** is rebalanced.
drha3460582008-07-11 21:02:53 +0000787**
drh6848dad2014-08-22 23:33:03 +0000788** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000789**
drh6848dad2014-08-22 23:33:03 +0000790** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
791** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000792*/
drh6848dad2014-08-22 23:33:03 +0000793int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000794 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000795}
796
797/*
798** This routine restores a cursor back to its original position after it
799** has been moved by some outside activity (such as a btree rebalance or
800** a row having been deleted out from under the cursor).
801**
802** On success, the *pDifferentRow parameter is false if the cursor is left
803** pointing at exactly the same row. *pDifferntRow is the row the cursor
804** was pointing to has been deleted, forcing the cursor to point to some
805** nearby row.
806**
807** This routine should only be called for a cursor that just returned
808** TRUE from sqlite3BtreeCursorHasMoved().
809*/
810int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000811 int rc;
812
drh6848dad2014-08-22 23:33:03 +0000813 assert( pCur!=0 );
814 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000815 rc = restoreCursorPosition(pCur);
816 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000817 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000818 return rc;
819 }
drh606a3572015-03-25 18:29:10 +0000820 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000821 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000822 }else{
drh606a3572015-03-25 18:29:10 +0000823 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000824 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000825 }
826 return SQLITE_OK;
827}
828
danielk1977599fcba2004-11-08 07:13:13 +0000829#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000830/*
drha3152892007-05-05 11:48:52 +0000831** Given a page number of a regular database page, return the page
832** number for the pointer-map page that contains the entry for the
833** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000834**
835** Return 0 (not a valid page) for pgno==1 since there is
836** no pointer map associated with page 1. The integrity_check logic
837** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000838*/
danielk1977266664d2006-02-10 08:24:21 +0000839static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000840 int nPagesPerMapPage;
841 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000842 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000843 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000844 nPagesPerMapPage = (pBt->usableSize/5)+1;
845 iPtrMap = (pgno-2)/nPagesPerMapPage;
846 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000847 if( ret==PENDING_BYTE_PAGE(pBt) ){
848 ret++;
849 }
850 return ret;
851}
danielk1977a19df672004-11-03 11:37:07 +0000852
danielk1977afcdd022004-10-31 16:25:42 +0000853/*
danielk1977afcdd022004-10-31 16:25:42 +0000854** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000855**
856** This routine updates the pointer map entry for page number 'key'
857** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000858**
859** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
860** a no-op. If an error occurs, the appropriate error code is written
861** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000862*/
drh98add2e2009-07-20 17:11:49 +0000863static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000864 DbPage *pDbPage; /* The pointer map page */
865 u8 *pPtrmap; /* The pointer map data */
866 Pgno iPtrmap; /* The pointer map page number */
867 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000868 int rc; /* Return code from subfunctions */
869
870 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000871
drh1fee73e2007-08-29 04:00:57 +0000872 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000873 /* The master-journal page number must never be used as a pointer map page */
874 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
875
danielk1977ac11ee62005-01-15 12:45:51 +0000876 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000877 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000878 *pRC = SQLITE_CORRUPT_BKPT;
879 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000880 }
danielk1977266664d2006-02-10 08:24:21 +0000881 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000882 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000883 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000884 *pRC = rc;
885 return;
danielk1977afcdd022004-10-31 16:25:42 +0000886 }
danielk19778c666b12008-07-18 09:34:57 +0000887 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000888 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000889 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000890 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000891 }
drhfc243732011-05-17 15:21:56 +0000892 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000893 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000894
drh615ae552005-01-16 23:21:00 +0000895 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
896 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000897 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000898 if( rc==SQLITE_OK ){
899 pPtrmap[offset] = eType;
900 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000901 }
danielk1977afcdd022004-10-31 16:25:42 +0000902 }
903
drh4925a552009-07-07 11:39:58 +0000904ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000905 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000906}
907
908/*
909** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000910**
911** This routine retrieves the pointer map entry for page 'key', writing
912** the type and parent page number to *pEType and *pPgno respectively.
913** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000914*/
danielk1977aef0bf62005-12-30 16:28:01 +0000915static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000916 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000917 int iPtrmap; /* Pointer map page index */
918 u8 *pPtrmap; /* Pointer map page data */
919 int offset; /* Offset of entry in pointer map */
920 int rc;
921
drh1fee73e2007-08-29 04:00:57 +0000922 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000923
danielk1977266664d2006-02-10 08:24:21 +0000924 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000925 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000926 if( rc!=0 ){
927 return rc;
928 }
danielk19773b8a05f2007-03-19 17:44:26 +0000929 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000930
danielk19778c666b12008-07-18 09:34:57 +0000931 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000932 if( offset<0 ){
933 sqlite3PagerUnref(pDbPage);
934 return SQLITE_CORRUPT_BKPT;
935 }
936 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000937 assert( pEType!=0 );
938 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000939 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000940
danielk19773b8a05f2007-03-19 17:44:26 +0000941 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000942 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000943 return SQLITE_OK;
944}
945
danielk197785d90ca2008-07-19 14:25:15 +0000946#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000947 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000948 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000949 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000950#endif
danielk1977afcdd022004-10-31 16:25:42 +0000951
drh0d316a42002-08-11 20:10:47 +0000952/*
drh271efa52004-05-30 19:19:05 +0000953** Given a btree page and a cell index (0 means the first cell on
954** the page, 1 means the second cell, and so forth) return a pointer
955** to the cell content.
956**
957** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000958*/
drh1688c862008-07-18 02:44:17 +0000959#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000960 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000961
drh43605152004-05-29 21:46:49 +0000962/*
drh5fa60512015-06-19 17:19:34 +0000963** This is common tail processing for btreeParseCellPtr() and
964** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
965** on a single B-tree page. Make necessary adjustments to the CellInfo
966** structure.
drh43605152004-05-29 21:46:49 +0000967*/
drh5fa60512015-06-19 17:19:34 +0000968static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
969 MemPage *pPage, /* Page containing the cell */
970 u8 *pCell, /* Pointer to the cell text. */
971 CellInfo *pInfo /* Fill in this structure */
972){
973 /* If the payload will not fit completely on the local page, we have
974 ** to decide how much to store locally and how much to spill onto
975 ** overflow pages. The strategy is to minimize the amount of unused
976 ** space on overflow pages while keeping the amount of local storage
977 ** in between minLocal and maxLocal.
978 **
979 ** Warning: changing the way overflow payload is distributed in any
980 ** way will result in an incompatible file format.
981 */
982 int minLocal; /* Minimum amount of payload held locally */
983 int maxLocal; /* Maximum amount of payload held locally */
984 int surplus; /* Overflow payload available for local storage */
985
986 minLocal = pPage->minLocal;
987 maxLocal = pPage->maxLocal;
988 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
989 testcase( surplus==maxLocal );
990 testcase( surplus==maxLocal+1 );
991 if( surplus <= maxLocal ){
992 pInfo->nLocal = (u16)surplus;
993 }else{
994 pInfo->nLocal = (u16)minLocal;
995 }
996 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
997 pInfo->nSize = pInfo->iOverflow + 4;
998}
999
1000/*
1001** The following routines are implementations of the MemPage.xParseCell()
1002** method.
1003**
1004** Parse a cell content block and fill in the CellInfo structure.
1005**
1006** btreeParseCellPtr() => table btree leaf nodes
1007** btreeParseCellNoPayload() => table btree internal nodes
1008** btreeParseCellPtrIndex() => index btree nodes
1009**
1010** There is also a wrapper function btreeParseCell() that works for
1011** all MemPage types and that references the cell by index rather than
1012** by pointer.
1013*/
1014static void btreeParseCellPtrNoPayload(
1015 MemPage *pPage, /* Page containing the cell */
1016 u8 *pCell, /* Pointer to the cell text. */
1017 CellInfo *pInfo /* Fill in this structure */
1018){
1019 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1020 assert( pPage->leaf==0 );
1021 assert( pPage->noPayload );
1022 assert( pPage->childPtrSize==4 );
1023 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1024 pInfo->nPayload = 0;
1025 pInfo->nLocal = 0;
1026 pInfo->iOverflow = 0;
1027 pInfo->pPayload = 0;
1028 return;
1029}
danielk197730548662009-07-09 05:07:37 +00001030static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001031 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001032 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001033 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001034){
drh3e28ff52014-09-24 00:59:08 +00001035 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001036 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001037 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001038
drh1fee73e2007-08-29 04:00:57 +00001039 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001040 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001041 assert( pPage->intKeyLeaf || pPage->noPayload );
1042 assert( pPage->noPayload==0 );
1043 assert( pPage->intKeyLeaf );
1044 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001045 pIter = pCell;
1046
1047 /* The next block of code is equivalent to:
1048 **
1049 ** pIter += getVarint32(pIter, nPayload);
1050 **
1051 ** The code is inlined to avoid a function call.
1052 */
1053 nPayload = *pIter;
1054 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001055 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001056 nPayload &= 0x7f;
1057 do{
1058 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1059 }while( (*pIter)>=0x80 && pIter<pEnd );
1060 }
1061 pIter++;
1062
1063 /* The next block of code is equivalent to:
1064 **
1065 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1066 **
1067 ** The code is inlined to avoid a function call.
1068 */
1069 iKey = *pIter;
1070 if( iKey>=0x80 ){
1071 u8 *pEnd = &pIter[7];
1072 iKey &= 0x7f;
1073 while(1){
1074 iKey = (iKey<<7) | (*++pIter & 0x7f);
1075 if( (*pIter)<0x80 ) break;
1076 if( pIter>=pEnd ){
1077 iKey = (iKey<<8) | *++pIter;
1078 break;
1079 }
1080 }
1081 }
1082 pIter++;
1083
1084 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001085 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001086 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001087 testcase( nPayload==pPage->maxLocal );
1088 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001089 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001090 /* This is the (easy) common case where the entire payload fits
1091 ** on the local page. No overflow is required.
1092 */
drhab1cc582014-09-23 21:25:19 +00001093 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1094 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001095 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001096 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001097 }else{
drh5fa60512015-06-19 17:19:34 +00001098 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1099 }
1100}
1101static void btreeParseCellPtrIndex(
1102 MemPage *pPage, /* Page containing the cell */
1103 u8 *pCell, /* Pointer to the cell text. */
1104 CellInfo *pInfo /* Fill in this structure */
1105){
1106 u8 *pIter; /* For scanning through pCell */
1107 u32 nPayload; /* Number of bytes of cell payload */
drh271efa52004-05-30 19:19:05 +00001108
drh5fa60512015-06-19 17:19:34 +00001109 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1110 assert( pPage->leaf==0 || pPage->leaf==1 );
1111 assert( pPage->intKeyLeaf==0 );
1112 assert( pPage->noPayload==0 );
1113 pIter = pCell + pPage->childPtrSize;
1114 nPayload = *pIter;
1115 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001116 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001117 nPayload &= 0x7f;
1118 do{
1119 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1120 }while( *(pIter)>=0x80 && pIter<pEnd );
1121 }
1122 pIter++;
1123 pInfo->nKey = nPayload;
1124 pInfo->nPayload = nPayload;
1125 pInfo->pPayload = pIter;
1126 testcase( nPayload==pPage->maxLocal );
1127 testcase( nPayload==pPage->maxLocal+1 );
1128 if( nPayload<=pPage->maxLocal ){
1129 /* This is the (easy) common case where the entire payload fits
1130 ** on the local page. No overflow is required.
1131 */
1132 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1133 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1134 pInfo->nLocal = (u16)nPayload;
1135 pInfo->iOverflow = 0;
1136 }else{
1137 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001138 }
drh3aac2dd2004-04-26 14:10:20 +00001139}
danielk197730548662009-07-09 05:07:37 +00001140static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001141 MemPage *pPage, /* Page containing the cell */
1142 int iCell, /* The cell index. First cell is 0 */
1143 CellInfo *pInfo /* Fill in this structure */
1144){
drh5fa60512015-06-19 17:19:34 +00001145 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001146}
drh3aac2dd2004-04-26 14:10:20 +00001147
1148/*
drh5fa60512015-06-19 17:19:34 +00001149** The following routines are implementations of the MemPage.xCellSize
1150** method.
1151**
drh43605152004-05-29 21:46:49 +00001152** Compute the total number of bytes that a Cell needs in the cell
1153** data area of the btree-page. The return number includes the cell
1154** data header and the local payload, but not any overflow page or
1155** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001156**
drh5fa60512015-06-19 17:19:34 +00001157** cellSizePtrNoPayload() => table internal nodes
1158** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001159*/
danielk1977ae5558b2009-04-29 11:31:47 +00001160static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001161 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1162 u8 *pEnd; /* End mark for a varint */
1163 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001164
1165#ifdef SQLITE_DEBUG
1166 /* The value returned by this function should always be the same as
1167 ** the (CellInfo.nSize) value found by doing a full parse of the
1168 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1169 ** this function verifies that this invariant is not violated. */
1170 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001171 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001172#endif
1173
drh25ada072015-06-19 15:07:14 +00001174 assert( pPage->noPayload==0 );
drh3e28ff52014-09-24 00:59:08 +00001175 nSize = *pIter;
1176 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001177 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001178 nSize &= 0x7f;
1179 do{
1180 nSize = (nSize<<7) | (*++pIter & 0x7f);
1181 }while( *(pIter)>=0x80 && pIter<pEnd );
1182 }
1183 pIter++;
drhdc41d602014-09-22 19:51:35 +00001184 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001185 /* pIter now points at the 64-bit integer key value, a variable length
1186 ** integer. The following block moves pIter to point at the first byte
1187 ** past the end of the key value. */
1188 pEnd = &pIter[9];
1189 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001190 }
drh0a45c272009-07-08 01:49:11 +00001191 testcase( nSize==pPage->maxLocal );
1192 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001193 if( nSize<=pPage->maxLocal ){
1194 nSize += (u32)(pIter - pCell);
1195 if( nSize<4 ) nSize = 4;
1196 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001197 int minLocal = pPage->minLocal;
1198 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001199 testcase( nSize==pPage->maxLocal );
1200 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001201 if( nSize>pPage->maxLocal ){
1202 nSize = minLocal;
1203 }
drh3e28ff52014-09-24 00:59:08 +00001204 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001205 }
drhdc41d602014-09-22 19:51:35 +00001206 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001207 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001208}
drh25ada072015-06-19 15:07:14 +00001209static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1210 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1211 u8 *pEnd; /* End mark for a varint */
1212
1213#ifdef SQLITE_DEBUG
1214 /* The value returned by this function should always be the same as
1215 ** the (CellInfo.nSize) value found by doing a full parse of the
1216 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1217 ** this function verifies that this invariant is not violated. */
1218 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001219 pPage->xParseCell(pPage, pCell, &debuginfo);
drh25ada072015-06-19 15:07:14 +00001220#endif
1221
1222 assert( pPage->childPtrSize==4 );
1223 pEnd = pIter + 9;
1224 while( (*pIter++)&0x80 && pIter<pEnd );
1225 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1226 return (u16)(pIter - pCell);
1227}
1228
drh0ee3dbe2009-10-16 15:05:18 +00001229
1230#ifdef SQLITE_DEBUG
1231/* This variation on cellSizePtr() is used inside of assert() statements
1232** only. */
drha9121e42008-02-19 14:59:35 +00001233static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001234 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001235}
danielk1977bc6ada42004-06-30 08:20:16 +00001236#endif
drh3b7511c2001-05-26 13:15:44 +00001237
danielk197779a40da2005-01-16 08:00:01 +00001238#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001239/*
danielk197726836652005-01-17 01:33:13 +00001240** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001241** to an overflow page, insert an entry into the pointer-map
1242** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001243*/
drh98add2e2009-07-20 17:11:49 +00001244static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001245 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001246 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001247 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001248 pPage->xParseCell(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001249 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001250 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001251 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001252 }
danielk1977ac11ee62005-01-15 12:45:51 +00001253}
danielk197779a40da2005-01-16 08:00:01 +00001254#endif
1255
danielk1977ac11ee62005-01-15 12:45:51 +00001256
drhda200cc2004-05-09 11:51:38 +00001257/*
drh72f82862001-05-24 21:06:34 +00001258** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001259** end of the page and all free space is collected into one
1260** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001261** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001262**
1263** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1264** b-tree page so that there are no freeblocks or fragment bytes, all
1265** unused bytes are contained in the unallocated space region, and all
1266** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001267*/
shane0af3f892008-11-12 04:55:34 +00001268static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001269 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001270 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001271 int hdr; /* Offset to the page header */
1272 int size; /* Size of a cell */
1273 int usableSize; /* Number of usable bytes on a page */
1274 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001275 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001276 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001277 unsigned char *data; /* The page data */
1278 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001279 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001280 int iCellFirst; /* First allowable cell index */
1281 int iCellLast; /* Last possible cell index */
1282
drh2af926b2001-05-15 00:39:25 +00001283
danielk19773b8a05f2007-03-19 17:44:26 +00001284 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001285 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001286 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001287 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001288 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001289 temp = 0;
1290 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001291 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001292 cellOffset = pPage->cellOffset;
1293 nCell = pPage->nCell;
1294 assert( nCell==get2byte(&data[hdr+3]) );
1295 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001296 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001297 iCellFirst = cellOffset + 2*nCell;
1298 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001299 for(i=0; i<nCell; i++){
1300 u8 *pAddr; /* The i-th cell pointer */
1301 pAddr = &data[cellOffset + i*2];
1302 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001303 testcase( pc==iCellFirst );
1304 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001305 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001306 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001307 */
1308 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001309 return SQLITE_CORRUPT_BKPT;
1310 }
drh17146622009-07-07 17:38:38 +00001311 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001312 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001313 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001314 if( cbrk<iCellFirst || pc+size>usableSize ){
1315 return SQLITE_CORRUPT_BKPT;
1316 }
drh7157e1d2009-07-09 13:25:32 +00001317 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001318 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001319 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001320 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001321 if( temp==0 ){
1322 int x;
1323 if( cbrk==pc ) continue;
1324 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1325 x = get2byte(&data[hdr+5]);
1326 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1327 src = temp;
1328 }
1329 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001330 }
drh17146622009-07-07 17:38:38 +00001331 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001332 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001333 data[hdr+1] = 0;
1334 data[hdr+2] = 0;
1335 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001336 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001337 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001338 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001339 return SQLITE_CORRUPT_BKPT;
1340 }
shane0af3f892008-11-12 04:55:34 +00001341 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001342}
1343
drha059ad02001-04-17 20:09:11 +00001344/*
dan8e9ba0c2014-10-14 17:27:04 +00001345** Search the free-list on page pPg for space to store a cell nByte bytes in
1346** size. If one can be found, return a pointer to the space and remove it
1347** from the free-list.
1348**
1349** If no suitable space can be found on the free-list, return NULL.
1350**
drhba0f9992014-10-30 20:48:44 +00001351** This function may detect corruption within pPg. If corruption is
1352** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001353**
drhb7580e82015-06-25 18:36:13 +00001354** Slots on the free list that are between 1 and 3 bytes larger than nByte
1355** will be ignored if adding the extra space to the fragmentation count
1356** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001357*/
drhb7580e82015-06-25 18:36:13 +00001358static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001359 const int hdr = pPg->hdrOffset;
1360 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001361 int iAddr = hdr + 1;
1362 int pc = get2byte(&aData[iAddr]);
1363 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001364 int usableSize = pPg->pBt->usableSize;
1365
drhb7580e82015-06-25 18:36:13 +00001366 assert( pc>0 );
1367 do{
dan8e9ba0c2014-10-14 17:27:04 +00001368 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001369 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1370 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001371 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001372 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001373 return 0;
1374 }
drh113762a2014-11-19 16:36:25 +00001375 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1376 ** freeblock form a big-endian integer which is the size of the freeblock
1377 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001378 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001379 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001380 testcase( x==4 );
1381 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001382 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1383 *pRc = SQLITE_CORRUPT_BKPT;
1384 return 0;
1385 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001386 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1387 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001388 if( aData[hdr+7]>57 ) return 0;
1389
dan8e9ba0c2014-10-14 17:27:04 +00001390 /* Remove the slot from the free-list. Update the number of
1391 ** fragmented bytes within the page. */
1392 memcpy(&aData[iAddr], &aData[pc], 2);
1393 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001394 }else{
1395 /* The slot remains on the free-list. Reduce its size to account
1396 ** for the portion used by the new allocation. */
1397 put2byte(&aData[pc+2], x);
1398 }
1399 return &aData[pc + x];
1400 }
drhb7580e82015-06-25 18:36:13 +00001401 iAddr = pc;
1402 pc = get2byte(&aData[pc]);
1403 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001404
1405 return 0;
1406}
1407
1408/*
danielk19776011a752009-04-01 16:25:32 +00001409** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001410** as the first argument. Write into *pIdx the index into pPage->aData[]
1411** of the first byte of allocated space. Return either SQLITE_OK or
1412** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001413**
drh0a45c272009-07-08 01:49:11 +00001414** The caller guarantees that there is sufficient space to make the
1415** allocation. This routine might need to defragment in order to bring
1416** all the space together, however. This routine will avoid using
1417** the first two bytes past the cell pointer area since presumably this
1418** allocation is being made in order to insert a new cell, so we will
1419** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001420*/
drh0a45c272009-07-08 01:49:11 +00001421static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001422 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1423 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001424 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001425 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001426 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001427
danielk19773b8a05f2007-03-19 17:44:26 +00001428 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001429 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001430 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001431 assert( nByte>=0 ); /* Minimum cell size is 4 */
1432 assert( pPage->nFree>=nByte );
1433 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001434 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001435
drh0a45c272009-07-08 01:49:11 +00001436 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1437 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001438 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001439 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1440 ** and the reserved space is zero (the usual value for reserved space)
1441 ** then the cell content offset of an empty page wants to be 65536.
1442 ** However, that integer is too large to be stored in a 2-byte unsigned
1443 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001444 top = get2byte(&data[hdr+5]);
1445 assert( top<=pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
1446 if( gap>top ){
1447 if( top==0 && pPage->pBt->usableSize==65536 ){
1448 top = 65536;
1449 }else{
1450 return SQLITE_CORRUPT_BKPT;
1451 }
drhe7266222015-05-29 17:51:16 +00001452 }
drh4c04f3c2014-08-20 11:56:14 +00001453
1454 /* If there is enough space between gap and top for one more cell pointer
1455 ** array entry offset, and if the freelist is not empty, then search the
1456 ** freelist looking for a free slot big enough to satisfy the request.
1457 */
drh0a45c272009-07-08 01:49:11 +00001458 testcase( gap+2==top );
1459 testcase( gap+1==top );
1460 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001461 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001462 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001463 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001464 assert( pSpace>=data && (pSpace - data)<65536 );
1465 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001466 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001467 }else if( rc ){
1468 return rc;
drh9e572e62004-04-23 23:43:10 +00001469 }
1470 }
drh43605152004-05-29 21:46:49 +00001471
drh4c04f3c2014-08-20 11:56:14 +00001472 /* The request could not be fulfilled using a freelist slot. Check
1473 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001474 */
1475 testcase( gap+2+nByte==top );
1476 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001477 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001478 rc = defragmentPage(pPage);
1479 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001480 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001481 assert( gap+nByte<=top );
1482 }
1483
1484
drh43605152004-05-29 21:46:49 +00001485 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001486 ** and the cell content area. The btreeInitPage() call has already
1487 ** validated the freelist. Given that the freelist is valid, there
1488 ** is no way that the allocation can extend off the end of the page.
1489 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001490 */
drh0a45c272009-07-08 01:49:11 +00001491 top -= nByte;
drh43605152004-05-29 21:46:49 +00001492 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001493 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001494 *pIdx = top;
1495 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001496}
1497
1498/*
drh9e572e62004-04-23 23:43:10 +00001499** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001500** The first byte of the new free block is pPage->aData[iStart]
1501** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001502**
drh5f5c7532014-08-20 17:56:27 +00001503** Adjacent freeblocks are coalesced.
1504**
1505** Note that even though the freeblock list was checked by btreeInitPage(),
1506** that routine will not detect overlap between cells or freeblocks. Nor
1507** does it detect cells or freeblocks that encrouch into the reserved bytes
1508** at the end of the page. So do additional corruption checks inside this
1509** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001510*/
drh5f5c7532014-08-20 17:56:27 +00001511static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001512 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001513 u16 iFreeBlk; /* Address of the next freeblock */
1514 u8 hdr; /* Page header size. 0 or 100 */
1515 u8 nFrag = 0; /* Reduction in fragmentation */
1516 u16 iOrigSize = iSize; /* Original value of iSize */
1517 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1518 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001519 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001520
drh9e572e62004-04-23 23:43:10 +00001521 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001522 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001523 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001524 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001525 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001526 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001527 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001528
drh5f5c7532014-08-20 17:56:27 +00001529 /* Overwrite deleted information with zeros when the secure_delete
1530 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001531 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001532 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001533 }
drhfcce93f2006-02-22 03:08:32 +00001534
drh5f5c7532014-08-20 17:56:27 +00001535 /* The list of freeblocks must be in ascending order. Find the
1536 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001537 */
drh43605152004-05-29 21:46:49 +00001538 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001539 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001540 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1541 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1542 }else{
1543 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1544 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1545 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001546 }
drh7bc4c452014-08-20 18:43:44 +00001547 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1548 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1549
1550 /* At this point:
1551 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001552 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001553 **
1554 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1555 */
1556 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1557 nFrag = iFreeBlk - iEnd;
1558 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1559 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001560 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001561 iSize = iEnd - iStart;
1562 iFreeBlk = get2byte(&data[iFreeBlk]);
1563 }
1564
drh3f387402014-09-24 01:23:00 +00001565 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1566 ** pointer in the page header) then check to see if iStart should be
1567 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001568 */
1569 if( iPtr>hdr+1 ){
1570 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1571 if( iPtrEnd+3>=iStart ){
1572 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1573 nFrag += iStart - iPtrEnd;
1574 iSize = iEnd - iPtr;
1575 iStart = iPtr;
1576 }
1577 }
1578 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1579 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001580 }
drh7bc4c452014-08-20 18:43:44 +00001581 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001582 /* The new freeblock is at the beginning of the cell content area,
1583 ** so just extend the cell content area rather than create another
1584 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001585 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001586 put2byte(&data[hdr+1], iFreeBlk);
1587 put2byte(&data[hdr+5], iEnd);
1588 }else{
1589 /* Insert the new freeblock into the freelist */
1590 put2byte(&data[iPtr], iStart);
1591 put2byte(&data[iStart], iFreeBlk);
1592 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001593 }
drh5f5c7532014-08-20 17:56:27 +00001594 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001595 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001596}
1597
1598/*
drh271efa52004-05-30 19:19:05 +00001599** Decode the flags byte (the first byte of the header) for a page
1600** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001601**
1602** Only the following combinations are supported. Anything different
1603** indicates a corrupt database files:
1604**
1605** PTF_ZERODATA
1606** PTF_ZERODATA | PTF_LEAF
1607** PTF_LEAFDATA | PTF_INTKEY
1608** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001609*/
drh44845222008-07-17 18:39:57 +00001610static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001611 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001612
1613 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001614 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001615 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001616 flagByte &= ~PTF_LEAF;
1617 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001618 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001619 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001620 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001621 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1622 ** table b-tree page. */
1623 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1624 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1625 ** table b-tree page. */
1626 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001627 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001628 if( pPage->leaf ){
1629 pPage->intKeyLeaf = 1;
1630 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001631 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001632 }else{
1633 pPage->intKeyLeaf = 0;
1634 pPage->noPayload = 1;
1635 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001636 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001637 }
drh271efa52004-05-30 19:19:05 +00001638 pPage->maxLocal = pBt->maxLeaf;
1639 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001640 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001641 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1642 ** index b-tree page. */
1643 assert( (PTF_ZERODATA)==2 );
1644 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1645 ** index b-tree page. */
1646 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001647 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001648 pPage->intKeyLeaf = 0;
1649 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001650 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001651 pPage->maxLocal = pBt->maxLocal;
1652 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001653 }else{
drhfdab0262014-11-20 15:30:50 +00001654 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1655 ** an error. */
drh44845222008-07-17 18:39:57 +00001656 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001657 }
drhc9166342012-01-05 23:32:06 +00001658 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001659 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001660}
1661
1662/*
drh7e3b0a02001-04-28 16:52:40 +00001663** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001664**
1665** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001666** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001667** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1668** guarantee that the page is well-formed. It only shows that
1669** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001670*/
danielk197730548662009-07-09 05:07:37 +00001671static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001672
danielk197771d5d2c2008-09-29 11:49:47 +00001673 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001674 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001675 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001676 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001677 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1678 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001679
1680 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001681 u16 pc; /* Address of a freeblock within pPage->aData[] */
1682 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001683 u8 *data; /* Equal to pPage->aData */
1684 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001685 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001686 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001687 int nFree; /* Number of unused bytes on the page */
1688 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001689 int iCellFirst; /* First allowable cell or freeblock offset */
1690 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001691
1692 pBt = pPage->pBt;
1693
danielk1977eaa06f62008-09-18 17:34:44 +00001694 hdr = pPage->hdrOffset;
1695 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001696 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1697 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001698 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001699 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1700 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001701 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001702 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001703 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001704 pPage->aDataEnd = &data[usableSize];
1705 pPage->aCellIdx = &data[cellOffset];
drhfdab0262014-11-20 15:30:50 +00001706 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1707 ** the start of the cell content area. A zero value for this integer is
1708 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001709 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001710 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1711 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001712 pPage->nCell = get2byte(&data[hdr+3]);
1713 if( pPage->nCell>MX_CELL(pBt) ){
1714 /* To many cells for a single page. The page must be corrupt */
1715 return SQLITE_CORRUPT_BKPT;
1716 }
drhb908d762009-07-08 16:54:40 +00001717 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001718 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1719 ** possible for a root page of a table that contains no rows) then the
1720 ** offset to the cell content area will equal the page size minus the
1721 ** bytes of reserved space. */
1722 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001723
shane5eff7cf2009-08-10 03:57:58 +00001724 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001725 ** of page when parsing a cell.
1726 **
1727 ** The following block of code checks early to see if a cell extends
1728 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1729 ** returned if it does.
1730 */
drh0a45c272009-07-08 01:49:11 +00001731 iCellFirst = cellOffset + 2*pPage->nCell;
1732 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001733 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001734 int i; /* Index into the cell pointer array */
1735 int sz; /* Size of a cell */
1736
drh69e931e2009-06-03 21:04:35 +00001737 if( !pPage->leaf ) iCellLast--;
1738 for(i=0; i<pPage->nCell; i++){
1739 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001740 testcase( pc==iCellFirst );
1741 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001742 if( pc<iCellFirst || pc>iCellLast ){
1743 return SQLITE_CORRUPT_BKPT;
1744 }
drh25ada072015-06-19 15:07:14 +00001745 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001746 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001747 if( pc+sz>usableSize ){
1748 return SQLITE_CORRUPT_BKPT;
1749 }
1750 }
drh0a45c272009-07-08 01:49:11 +00001751 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001752 }
drh69e931e2009-06-03 21:04:35 +00001753
drhfdab0262014-11-20 15:30:50 +00001754 /* Compute the total free space on the page
1755 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1756 ** start of the first freeblock on the page, or is zero if there are no
1757 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001758 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001759 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001760 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001761 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001762 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001763 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1764 ** always be at least one cell before the first freeblock.
1765 **
1766 ** Or, the freeblock is off the end of the page
1767 */
danielk1977eaa06f62008-09-18 17:34:44 +00001768 return SQLITE_CORRUPT_BKPT;
1769 }
1770 next = get2byte(&data[pc]);
1771 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001772 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1773 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001774 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001775 return SQLITE_CORRUPT_BKPT;
1776 }
shane85095702009-06-15 16:27:08 +00001777 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001778 pc = next;
1779 }
danielk197793c829c2009-06-03 17:26:17 +00001780
1781 /* At this point, nFree contains the sum of the offset to the start
1782 ** of the cell-content area plus the number of free bytes within
1783 ** the cell-content area. If this is greater than the usable-size
1784 ** of the page, then the page must be corrupted. This check also
1785 ** serves to verify that the offset to the start of the cell-content
1786 ** area, according to the page header, lies within the page.
1787 */
1788 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001789 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001790 }
shane5eff7cf2009-08-10 03:57:58 +00001791 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001792 pPage->isInit = 1;
1793 }
drh9e572e62004-04-23 23:43:10 +00001794 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001795}
1796
1797/*
drh8b2f49b2001-06-08 00:21:52 +00001798** Set up a raw page so that it looks like a database page holding
1799** no entries.
drhbd03cae2001-06-02 02:40:57 +00001800*/
drh9e572e62004-04-23 23:43:10 +00001801static void zeroPage(MemPage *pPage, int flags){
1802 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001803 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001804 u8 hdr = pPage->hdrOffset;
1805 u16 first;
drh9e572e62004-04-23 23:43:10 +00001806
danielk19773b8a05f2007-03-19 17:44:26 +00001807 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001808 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1809 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001810 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001811 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001812 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001813 memset(&data[hdr], 0, pBt->usableSize - hdr);
1814 }
drh1bd10f82008-12-10 21:19:56 +00001815 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001816 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001817 memset(&data[hdr+1], 0, 4);
1818 data[hdr+7] = 0;
1819 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001820 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001821 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001822 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001823 pPage->aDataEnd = &data[pBt->usableSize];
1824 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001825 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001826 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1827 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001828 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001829 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001830}
1831
drh897a8202008-09-18 01:08:15 +00001832
1833/*
1834** Convert a DbPage obtained from the pager into a MemPage used by
1835** the btree layer.
1836*/
1837static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1838 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1839 pPage->aData = sqlite3PagerGetData(pDbPage);
1840 pPage->pDbPage = pDbPage;
1841 pPage->pBt = pBt;
1842 pPage->pgno = pgno;
1843 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1844 return pPage;
1845}
1846
drhbd03cae2001-06-02 02:40:57 +00001847/*
drh3aac2dd2004-04-26 14:10:20 +00001848** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001849** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001850**
drh7e8c6f12015-05-28 03:28:27 +00001851** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1852** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001853** to fetch the content. Just fill in the content with zeros for now.
1854** If in the future we call sqlite3PagerWrite() on this page, that
1855** means we have started to be concerned about content and the disk
1856** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001857*/
danielk197730548662009-07-09 05:07:37 +00001858static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001859 BtShared *pBt, /* The btree */
1860 Pgno pgno, /* Number of the page to fetch */
1861 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001862 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001863){
drh3aac2dd2004-04-26 14:10:20 +00001864 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001865 DbPage *pDbPage;
1866
drhb00fc3b2013-08-21 23:42:32 +00001867 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001868 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001869 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001870 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001871 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001872 return SQLITE_OK;
1873}
1874
1875/*
danielk1977bea2a942009-01-20 17:06:27 +00001876** Retrieve a page from the pager cache. If the requested page is not
1877** already in the pager cache return NULL. Initialize the MemPage.pBt and
1878** MemPage.aData elements if needed.
1879*/
1880static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1881 DbPage *pDbPage;
1882 assert( sqlite3_mutex_held(pBt->mutex) );
1883 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1884 if( pDbPage ){
1885 return btreePageFromDbPage(pDbPage, pgno, pBt);
1886 }
1887 return 0;
1888}
1889
1890/*
danielk197789d40042008-11-17 14:20:56 +00001891** Return the size of the database file in pages. If there is any kind of
1892** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001893*/
drhb1299152010-03-30 22:58:33 +00001894static Pgno btreePagecount(BtShared *pBt){
1895 return pBt->nPage;
1896}
1897u32 sqlite3BtreeLastPage(Btree *p){
1898 assert( sqlite3BtreeHoldsMutex(p) );
1899 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001900 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001901}
1902
1903/*
danielk197789bc4bc2009-07-21 19:25:24 +00001904** Get a page from the pager and initialize it. This routine is just a
1905** convenience wrapper around separate calls to btreeGetPage() and
1906** btreeInitPage().
1907**
1908** If an error occurs, then the value *ppPage is set to is undefined. It
1909** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001910*/
1911static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001912 BtShared *pBt, /* The database file */
1913 Pgno pgno, /* Number of the page to get */
1914 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001915 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001916){
1917 int rc;
drh1fee73e2007-08-29 04:00:57 +00001918 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001919 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001920
danba3cbf32010-06-30 04:29:03 +00001921 if( pgno>btreePagecount(pBt) ){
1922 rc = SQLITE_CORRUPT_BKPT;
1923 }else{
drhb00fc3b2013-08-21 23:42:32 +00001924 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001925 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001926 rc = btreeInitPage(*ppPage);
1927 if( rc!=SQLITE_OK ){
1928 releasePage(*ppPage);
1929 }
danielk197789bc4bc2009-07-21 19:25:24 +00001930 }
drhee696e22004-08-30 16:52:17 +00001931 }
danba3cbf32010-06-30 04:29:03 +00001932
1933 testcase( pgno==0 );
1934 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001935 return rc;
1936}
1937
1938/*
drh3aac2dd2004-04-26 14:10:20 +00001939** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001940** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001941*/
drh4b70f112004-05-02 21:12:19 +00001942static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001943 if( pPage ){
1944 assert( pPage->aData );
1945 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001946 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001947 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1948 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001949 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001950 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001951 }
1952}
1953
1954/*
drh7e8c6f12015-05-28 03:28:27 +00001955** Get an unused page.
1956**
1957** This works just like btreeGetPage() with the addition:
1958**
1959** * If the page is already in use for some other purpose, immediately
1960** release it and return an SQLITE_CURRUPT error.
1961** * Make sure the isInit flag is clear
1962*/
1963static int btreeGetUnusedPage(
1964 BtShared *pBt, /* The btree */
1965 Pgno pgno, /* Number of the page to fetch */
1966 MemPage **ppPage, /* Return the page in this parameter */
1967 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1968){
1969 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
1970 if( rc==SQLITE_OK ){
1971 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
1972 releasePage(*ppPage);
1973 *ppPage = 0;
1974 return SQLITE_CORRUPT_BKPT;
1975 }
1976 (*ppPage)->isInit = 0;
1977 }else{
1978 *ppPage = 0;
1979 }
1980 return rc;
1981}
1982
1983
1984/*
drha6abd042004-06-09 17:37:22 +00001985** During a rollback, when the pager reloads information into the cache
1986** so that the cache is restored to its original state at the start of
1987** the transaction, for each page restored this routine is called.
1988**
1989** This routine needs to reset the extra data section at the end of the
1990** page to agree with the restored data.
1991*/
danielk1977eaa06f62008-09-18 17:34:44 +00001992static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001993 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001994 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001995 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001996 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001997 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001998 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001999 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002000 /* pPage might not be a btree page; it might be an overflow page
2001 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002002 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002003 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002004 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002005 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002006 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002007 }
drha6abd042004-06-09 17:37:22 +00002008 }
2009}
2010
2011/*
drhe5fe6902007-12-07 18:55:28 +00002012** Invoke the busy handler for a btree.
2013*/
danielk19771ceedd32008-11-19 10:22:33 +00002014static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002015 BtShared *pBt = (BtShared*)pArg;
2016 assert( pBt->db );
2017 assert( sqlite3_mutex_held(pBt->db->mutex) );
2018 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2019}
2020
2021/*
drhad3e0102004-09-03 23:32:18 +00002022** Open a database file.
2023**
drh382c0242001-10-06 16:33:02 +00002024** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002025** then an ephemeral database is created. The ephemeral database might
2026** be exclusively in memory, or it might use a disk-based memory cache.
2027** Either way, the ephemeral database will be automatically deleted
2028** when sqlite3BtreeClose() is called.
2029**
drhe53831d2007-08-17 01:14:38 +00002030** If zFilename is ":memory:" then an in-memory database is created
2031** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002032**
drh33f111d2012-01-17 15:29:14 +00002033** The "flags" parameter is a bitmask that might contain bits like
2034** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002035**
drhc47fd8e2009-04-30 13:30:32 +00002036** If the database is already opened in the same database connection
2037** and we are in shared cache mode, then the open will fail with an
2038** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2039** objects in the same database connection since doing so will lead
2040** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002041*/
drh23e11ca2004-05-04 17:27:28 +00002042int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002043 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002044 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002045 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002046 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002047 int flags, /* Options */
2048 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002049){
drh7555d8e2009-03-20 13:15:30 +00002050 BtShared *pBt = 0; /* Shared part of btree structure */
2051 Btree *p; /* Handle to return */
2052 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2053 int rc = SQLITE_OK; /* Result code from this function */
2054 u8 nReserve; /* Byte of unused space on each page */
2055 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002056
drh75c014c2010-08-30 15:02:28 +00002057 /* True if opening an ephemeral, temporary database */
2058 const int isTempDb = zFilename==0 || zFilename[0]==0;
2059
danielk1977aef0bf62005-12-30 16:28:01 +00002060 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002061 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002062 */
drhb0a7c9c2010-12-06 21:09:59 +00002063#ifdef SQLITE_OMIT_MEMORYDB
2064 const int isMemdb = 0;
2065#else
2066 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002067 || (isTempDb && sqlite3TempInMemory(db))
2068 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002069#endif
2070
drhe5fe6902007-12-07 18:55:28 +00002071 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002072 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002073 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002074 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2075
2076 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2077 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2078
2079 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2080 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002081
drh75c014c2010-08-30 15:02:28 +00002082 if( isMemdb ){
2083 flags |= BTREE_MEMORY;
2084 }
2085 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2086 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2087 }
drh17435752007-08-16 04:30:38 +00002088 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002089 if( !p ){
2090 return SQLITE_NOMEM;
2091 }
2092 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002093 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002094#ifndef SQLITE_OMIT_SHARED_CACHE
2095 p->lock.pBtree = p;
2096 p->lock.iTable = 1;
2097#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002098
drh198bf392006-01-06 21:52:49 +00002099#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002100 /*
2101 ** If this Btree is a candidate for shared cache, try to find an
2102 ** existing BtShared object that we can share with
2103 */
drh4ab9d252012-05-26 20:08:49 +00002104 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002105 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002106 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002107 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002108 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002109 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002110
drhff0587c2007-08-29 17:43:19 +00002111 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002112 if( !zFullPathname ){
2113 sqlite3_free(p);
2114 return SQLITE_NOMEM;
2115 }
drhafc8b7f2012-05-26 18:06:38 +00002116 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002117 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002118 }else{
2119 rc = sqlite3OsFullPathname(pVfs, zFilename,
2120 nFullPathname, zFullPathname);
2121 if( rc ){
2122 sqlite3_free(zFullPathname);
2123 sqlite3_free(p);
2124 return rc;
2125 }
drh070ad6b2011-11-17 11:43:19 +00002126 }
drh30ddce62011-10-15 00:16:30 +00002127#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002128 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2129 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002130 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002131 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002132#endif
drh78f82d12008-09-02 00:52:52 +00002133 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002134 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002135 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002136 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002137 int iDb;
2138 for(iDb=db->nDb-1; iDb>=0; iDb--){
2139 Btree *pExisting = db->aDb[iDb].pBt;
2140 if( pExisting && pExisting->pBt==pBt ){
2141 sqlite3_mutex_leave(mutexShared);
2142 sqlite3_mutex_leave(mutexOpen);
2143 sqlite3_free(zFullPathname);
2144 sqlite3_free(p);
2145 return SQLITE_CONSTRAINT;
2146 }
2147 }
drhff0587c2007-08-29 17:43:19 +00002148 p->pBt = pBt;
2149 pBt->nRef++;
2150 break;
2151 }
2152 }
2153 sqlite3_mutex_leave(mutexShared);
2154 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002155 }
drhff0587c2007-08-29 17:43:19 +00002156#ifdef SQLITE_DEBUG
2157 else{
2158 /* In debug mode, we mark all persistent databases as sharable
2159 ** even when they are not. This exercises the locking code and
2160 ** gives more opportunity for asserts(sqlite3_mutex_held())
2161 ** statements to find locking problems.
2162 */
2163 p->sharable = 1;
2164 }
2165#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002166 }
2167#endif
drha059ad02001-04-17 20:09:11 +00002168 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002169 /*
2170 ** The following asserts make sure that structures used by the btree are
2171 ** the right size. This is to guard against size changes that result
2172 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002173 */
drh062cf272015-03-23 19:03:51 +00002174 assert( sizeof(i64)==8 );
2175 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002176 assert( sizeof(u32)==4 );
2177 assert( sizeof(u16)==2 );
2178 assert( sizeof(Pgno)==4 );
2179
2180 pBt = sqlite3MallocZero( sizeof(*pBt) );
2181 if( pBt==0 ){
2182 rc = SQLITE_NOMEM;
2183 goto btree_open_out;
2184 }
danielk197771d5d2c2008-09-29 11:49:47 +00002185 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002186 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002187 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002188 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002189 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2190 }
2191 if( rc!=SQLITE_OK ){
2192 goto btree_open_out;
2193 }
shanehbd2aaf92010-09-01 02:38:21 +00002194 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002195 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002196 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002197 p->pBt = pBt;
2198
drhe53831d2007-08-17 01:14:38 +00002199 pBt->pCursor = 0;
2200 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002201 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002202#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002203 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002204#endif
drh113762a2014-11-19 16:36:25 +00002205 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2206 ** determined by the 2-byte integer located at an offset of 16 bytes from
2207 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002208 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002209 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2210 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002211 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002212#ifndef SQLITE_OMIT_AUTOVACUUM
2213 /* If the magic name ":memory:" will create an in-memory database, then
2214 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2215 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2216 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2217 ** regular file-name. In this case the auto-vacuum applies as per normal.
2218 */
2219 if( zFilename && !isMemdb ){
2220 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2221 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2222 }
2223#endif
2224 nReserve = 0;
2225 }else{
drh113762a2014-11-19 16:36:25 +00002226 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2227 ** determined by the one-byte unsigned integer found at an offset of 20
2228 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002229 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002230 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002231#ifndef SQLITE_OMIT_AUTOVACUUM
2232 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2233 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2234#endif
2235 }
drhfa9601a2009-06-18 17:22:39 +00002236 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002237 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002238 pBt->usableSize = pBt->pageSize - nReserve;
2239 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002240
2241#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2242 /* Add the new BtShared object to the linked list sharable BtShareds.
2243 */
2244 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002245 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002246 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002247 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002248 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002249 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002250 if( pBt->mutex==0 ){
2251 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002252 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002253 goto btree_open_out;
2254 }
drhff0587c2007-08-29 17:43:19 +00002255 }
drhe53831d2007-08-17 01:14:38 +00002256 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002257 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2258 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002259 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002260 }
drheee46cf2004-11-06 00:02:48 +00002261#endif
drh90f5ecb2004-07-22 01:19:35 +00002262 }
danielk1977aef0bf62005-12-30 16:28:01 +00002263
drhcfed7bc2006-03-13 14:28:05 +00002264#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002265 /* If the new Btree uses a sharable pBtShared, then link the new
2266 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002267 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002268 */
drhe53831d2007-08-17 01:14:38 +00002269 if( p->sharable ){
2270 int i;
2271 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002272 for(i=0; i<db->nDb; i++){
2273 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002274 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2275 if( p->pBt<pSib->pBt ){
2276 p->pNext = pSib;
2277 p->pPrev = 0;
2278 pSib->pPrev = p;
2279 }else{
drhabddb0c2007-08-20 13:14:28 +00002280 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002281 pSib = pSib->pNext;
2282 }
2283 p->pNext = pSib->pNext;
2284 p->pPrev = pSib;
2285 if( p->pNext ){
2286 p->pNext->pPrev = p;
2287 }
2288 pSib->pNext = p;
2289 }
2290 break;
2291 }
2292 }
danielk1977aef0bf62005-12-30 16:28:01 +00002293 }
danielk1977aef0bf62005-12-30 16:28:01 +00002294#endif
2295 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002296
2297btree_open_out:
2298 if( rc!=SQLITE_OK ){
2299 if( pBt && pBt->pPager ){
2300 sqlite3PagerClose(pBt->pPager);
2301 }
drh17435752007-08-16 04:30:38 +00002302 sqlite3_free(pBt);
2303 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002304 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002305 }else{
2306 /* If the B-Tree was successfully opened, set the pager-cache size to the
2307 ** default value. Except, when opening on an existing shared pager-cache,
2308 ** do not change the pager-cache size.
2309 */
2310 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2311 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2312 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002313 }
drh7555d8e2009-03-20 13:15:30 +00002314 if( mutexOpen ){
2315 assert( sqlite3_mutex_held(mutexOpen) );
2316 sqlite3_mutex_leave(mutexOpen);
2317 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002318 return rc;
drha059ad02001-04-17 20:09:11 +00002319}
2320
2321/*
drhe53831d2007-08-17 01:14:38 +00002322** Decrement the BtShared.nRef counter. When it reaches zero,
2323** remove the BtShared structure from the sharing list. Return
2324** true if the BtShared.nRef counter reaches zero and return
2325** false if it is still positive.
2326*/
2327static int removeFromSharingList(BtShared *pBt){
2328#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002329 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002330 BtShared *pList;
2331 int removed = 0;
2332
drhd677b3d2007-08-20 22:48:41 +00002333 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002334 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002335 sqlite3_mutex_enter(pMaster);
2336 pBt->nRef--;
2337 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002338 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2339 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002340 }else{
drh78f82d12008-09-02 00:52:52 +00002341 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002342 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002343 pList=pList->pNext;
2344 }
drh34004ce2008-07-11 16:15:17 +00002345 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002346 pList->pNext = pBt->pNext;
2347 }
2348 }
drh3285db22007-09-03 22:00:39 +00002349 if( SQLITE_THREADSAFE ){
2350 sqlite3_mutex_free(pBt->mutex);
2351 }
drhe53831d2007-08-17 01:14:38 +00002352 removed = 1;
2353 }
2354 sqlite3_mutex_leave(pMaster);
2355 return removed;
2356#else
2357 return 1;
2358#endif
2359}
2360
2361/*
drhf7141992008-06-19 00:16:08 +00002362** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002363** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2364** pointer.
drhf7141992008-06-19 00:16:08 +00002365*/
2366static void allocateTempSpace(BtShared *pBt){
2367 if( !pBt->pTmpSpace ){
2368 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002369
2370 /* One of the uses of pBt->pTmpSpace is to format cells before
2371 ** inserting them into a leaf page (function fillInCell()). If
2372 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2373 ** by the various routines that manipulate binary cells. Which
2374 ** can mean that fillInCell() only initializes the first 2 or 3
2375 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2376 ** it into a database page. This is not actually a problem, but it
2377 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2378 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002379 ** zero the first 4 bytes of temp space here.
2380 **
2381 ** Also: Provide four bytes of initialized space before the
2382 ** beginning of pTmpSpace as an area available to prepend the
2383 ** left-child pointer to the beginning of a cell.
2384 */
2385 if( pBt->pTmpSpace ){
2386 memset(pBt->pTmpSpace, 0, 8);
2387 pBt->pTmpSpace += 4;
2388 }
drhf7141992008-06-19 00:16:08 +00002389 }
2390}
2391
2392/*
2393** Free the pBt->pTmpSpace allocation
2394*/
2395static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002396 if( pBt->pTmpSpace ){
2397 pBt->pTmpSpace -= 4;
2398 sqlite3PageFree(pBt->pTmpSpace);
2399 pBt->pTmpSpace = 0;
2400 }
drhf7141992008-06-19 00:16:08 +00002401}
2402
2403/*
drha059ad02001-04-17 20:09:11 +00002404** Close an open database and invalidate all cursors.
2405*/
danielk1977aef0bf62005-12-30 16:28:01 +00002406int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002407 BtShared *pBt = p->pBt;
2408 BtCursor *pCur;
2409
danielk1977aef0bf62005-12-30 16:28:01 +00002410 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002411 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002412 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002413 pCur = pBt->pCursor;
2414 while( pCur ){
2415 BtCursor *pTmp = pCur;
2416 pCur = pCur->pNext;
2417 if( pTmp->pBtree==p ){
2418 sqlite3BtreeCloseCursor(pTmp);
2419 }
drha059ad02001-04-17 20:09:11 +00002420 }
danielk1977aef0bf62005-12-30 16:28:01 +00002421
danielk19778d34dfd2006-01-24 16:37:57 +00002422 /* Rollback any active transaction and free the handle structure.
2423 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2424 ** this handle.
2425 */
drh47b7fc72014-11-11 01:33:57 +00002426 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002427 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002428
danielk1977aef0bf62005-12-30 16:28:01 +00002429 /* If there are still other outstanding references to the shared-btree
2430 ** structure, return now. The remainder of this procedure cleans
2431 ** up the shared-btree.
2432 */
drhe53831d2007-08-17 01:14:38 +00002433 assert( p->wantToLock==0 && p->locked==0 );
2434 if( !p->sharable || removeFromSharingList(pBt) ){
2435 /* The pBt is no longer on the sharing list, so we can access
2436 ** it without having to hold the mutex.
2437 **
2438 ** Clean out and delete the BtShared object.
2439 */
2440 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002441 sqlite3PagerClose(pBt->pPager);
2442 if( pBt->xFreeSchema && pBt->pSchema ){
2443 pBt->xFreeSchema(pBt->pSchema);
2444 }
drhb9755982010-07-24 16:34:37 +00002445 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002446 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002447 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002448 }
2449
drhe53831d2007-08-17 01:14:38 +00002450#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002451 assert( p->wantToLock==0 );
2452 assert( p->locked==0 );
2453 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2454 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002455#endif
2456
drhe53831d2007-08-17 01:14:38 +00002457 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002458 return SQLITE_OK;
2459}
2460
2461/*
drhda47d772002-12-02 04:25:19 +00002462** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002463**
2464** The maximum number of cache pages is set to the absolute
2465** value of mxPage. If mxPage is negative, the pager will
2466** operate asynchronously - it will not stop to do fsync()s
2467** to insure data is written to the disk surface before
2468** continuing. Transactions still work if synchronous is off,
2469** and the database cannot be corrupted if this program
2470** crashes. But if the operating system crashes or there is
2471** an abrupt power failure when synchronous is off, the database
2472** could be left in an inconsistent and unrecoverable state.
2473** Synchronous is on by default so database corruption is not
2474** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002475*/
danielk1977aef0bf62005-12-30 16:28:01 +00002476int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2477 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002478 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002479 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002480 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002481 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002482 return SQLITE_OK;
2483}
2484
drh18c7e402014-03-14 11:46:10 +00002485#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002486/*
dan5d8a1372013-03-19 19:28:06 +00002487** Change the limit on the amount of the database file that may be
2488** memory mapped.
2489*/
drh9b4c59f2013-04-15 17:03:42 +00002490int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002491 BtShared *pBt = p->pBt;
2492 assert( sqlite3_mutex_held(p->db->mutex) );
2493 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002494 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002495 sqlite3BtreeLeave(p);
2496 return SQLITE_OK;
2497}
drh18c7e402014-03-14 11:46:10 +00002498#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002499
2500/*
drh973b6e32003-02-12 14:09:42 +00002501** Change the way data is synced to disk in order to increase or decrease
2502** how well the database resists damage due to OS crashes and power
2503** failures. Level 1 is the same as asynchronous (no syncs() occur and
2504** there is a high probability of damage) Level 2 is the default. There
2505** is a very low but non-zero probability of damage. Level 3 reduces the
2506** probability of damage to near zero but with a write performance reduction.
2507*/
danielk197793758c82005-01-21 08:13:14 +00002508#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002509int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002510 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002511 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002512){
danielk1977aef0bf62005-12-30 16:28:01 +00002513 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002514 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002515 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002516 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002517 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002518 return SQLITE_OK;
2519}
danielk197793758c82005-01-21 08:13:14 +00002520#endif
drh973b6e32003-02-12 14:09:42 +00002521
drh2c8997b2005-08-27 16:36:48 +00002522/*
2523** Return TRUE if the given btree is set to safety level 1. In other
2524** words, return TRUE if no sync() occurs on the disk files.
2525*/
danielk1977aef0bf62005-12-30 16:28:01 +00002526int sqlite3BtreeSyncDisabled(Btree *p){
2527 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002528 int rc;
drhe5fe6902007-12-07 18:55:28 +00002529 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002530 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002531 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002532 rc = sqlite3PagerNosync(pBt->pPager);
2533 sqlite3BtreeLeave(p);
2534 return rc;
drh2c8997b2005-08-27 16:36:48 +00002535}
2536
drh973b6e32003-02-12 14:09:42 +00002537/*
drh90f5ecb2004-07-22 01:19:35 +00002538** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002539** Or, if the page size has already been fixed, return SQLITE_READONLY
2540** without changing anything.
drh06f50212004-11-02 14:24:33 +00002541**
2542** The page size must be a power of 2 between 512 and 65536. If the page
2543** size supplied does not meet this constraint then the page size is not
2544** changed.
2545**
2546** Page sizes are constrained to be a power of two so that the region
2547** of the database file used for locking (beginning at PENDING_BYTE,
2548** the first byte past the 1GB boundary, 0x40000000) needs to occur
2549** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002550**
2551** If parameter nReserve is less than zero, then the number of reserved
2552** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002553**
drhc9166342012-01-05 23:32:06 +00002554** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002555** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002556*/
drhce4869f2009-04-02 20:16:58 +00002557int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002558 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002559 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002560 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002561 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002562#if SQLITE_HAS_CODEC
2563 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2564#endif
drhc9166342012-01-05 23:32:06 +00002565 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002566 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002567 return SQLITE_READONLY;
2568 }
2569 if( nReserve<0 ){
2570 nReserve = pBt->pageSize - pBt->usableSize;
2571 }
drhf49661a2008-12-10 16:45:50 +00002572 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002573 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2574 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002575 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002576 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002577 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002578 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002579 }
drhfa9601a2009-06-18 17:22:39 +00002580 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002581 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002582 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002583 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002584 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002585}
2586
2587/*
2588** Return the currently defined page size
2589*/
danielk1977aef0bf62005-12-30 16:28:01 +00002590int sqlite3BtreeGetPageSize(Btree *p){
2591 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002592}
drh7f751222009-03-17 22:33:00 +00002593
dan0094f372012-09-28 20:23:42 +00002594/*
2595** This function is similar to sqlite3BtreeGetReserve(), except that it
2596** may only be called if it is guaranteed that the b-tree mutex is already
2597** held.
2598**
2599** This is useful in one special case in the backup API code where it is
2600** known that the shared b-tree mutex is held, but the mutex on the
2601** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2602** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002603** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002604*/
2605int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002606 int n;
dan0094f372012-09-28 20:23:42 +00002607 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002608 n = p->pBt->pageSize - p->pBt->usableSize;
2609 return n;
dan0094f372012-09-28 20:23:42 +00002610}
2611
drh7f751222009-03-17 22:33:00 +00002612/*
2613** Return the number of bytes of space at the end of every page that
2614** are intentually left unused. This is the "reserved" space that is
2615** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002616**
2617** If SQLITE_HAS_MUTEX is defined then the number returned is the
2618** greater of the current reserved space and the maximum requested
2619** reserve space.
drh7f751222009-03-17 22:33:00 +00002620*/
drhad0961b2015-02-21 00:19:25 +00002621int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002622 int n;
2623 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002624 n = sqlite3BtreeGetReserveNoMutex(p);
2625#ifdef SQLITE_HAS_CODEC
2626 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2627#endif
drhd677b3d2007-08-20 22:48:41 +00002628 sqlite3BtreeLeave(p);
2629 return n;
drh2011d5f2004-07-22 02:40:37 +00002630}
drhf8e632b2007-05-08 14:51:36 +00002631
drhad0961b2015-02-21 00:19:25 +00002632
drhf8e632b2007-05-08 14:51:36 +00002633/*
2634** Set the maximum page count for a database if mxPage is positive.
2635** No changes are made if mxPage is 0 or negative.
2636** Regardless of the value of mxPage, return the maximum page count.
2637*/
2638int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002639 int n;
2640 sqlite3BtreeEnter(p);
2641 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2642 sqlite3BtreeLeave(p);
2643 return n;
drhf8e632b2007-05-08 14:51:36 +00002644}
drh5b47efa2010-02-12 18:18:39 +00002645
2646/*
drhc9166342012-01-05 23:32:06 +00002647** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2648** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002649** setting after the change.
2650*/
2651int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2652 int b;
drhaf034ed2010-02-12 19:46:26 +00002653 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002654 sqlite3BtreeEnter(p);
2655 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002656 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2657 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002658 }
drhc9166342012-01-05 23:32:06 +00002659 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002660 sqlite3BtreeLeave(p);
2661 return b;
2662}
drh90f5ecb2004-07-22 01:19:35 +00002663
2664/*
danielk1977951af802004-11-05 15:45:09 +00002665** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2666** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2667** is disabled. The default value for the auto-vacuum property is
2668** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2669*/
danielk1977aef0bf62005-12-30 16:28:01 +00002670int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002671#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002672 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002673#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002674 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002675 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002676 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002677
2678 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002679 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002680 rc = SQLITE_READONLY;
2681 }else{
drh076d4662009-02-18 20:31:18 +00002682 pBt->autoVacuum = av ?1:0;
2683 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002684 }
drhd677b3d2007-08-20 22:48:41 +00002685 sqlite3BtreeLeave(p);
2686 return rc;
danielk1977951af802004-11-05 15:45:09 +00002687#endif
2688}
2689
2690/*
2691** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2692** enabled 1 is returned. Otherwise 0.
2693*/
danielk1977aef0bf62005-12-30 16:28:01 +00002694int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002695#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002696 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002697#else
drhd677b3d2007-08-20 22:48:41 +00002698 int rc;
2699 sqlite3BtreeEnter(p);
2700 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002701 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2702 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2703 BTREE_AUTOVACUUM_INCR
2704 );
drhd677b3d2007-08-20 22:48:41 +00002705 sqlite3BtreeLeave(p);
2706 return rc;
danielk1977951af802004-11-05 15:45:09 +00002707#endif
2708}
2709
2710
2711/*
drha34b6762004-05-07 13:30:42 +00002712** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002713** also acquire a readlock on that file.
2714**
2715** SQLITE_OK is returned on success. If the file is not a
2716** well-formed database file, then SQLITE_CORRUPT is returned.
2717** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002718** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002719*/
danielk1977aef0bf62005-12-30 16:28:01 +00002720static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002721 int rc; /* Result code from subfunctions */
2722 MemPage *pPage1; /* Page 1 of the database file */
2723 int nPage; /* Number of pages in the database */
2724 int nPageFile = 0; /* Number of pages in the database file */
2725 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002726
drh1fee73e2007-08-29 04:00:57 +00002727 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002728 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002729 rc = sqlite3PagerSharedLock(pBt->pPager);
2730 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002731 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002732 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002733
2734 /* Do some checking to help insure the file we opened really is
2735 ** a valid database file.
2736 */
drhc2a4bab2010-04-02 12:46:45 +00002737 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002738 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002739 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002740 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002741 }
2742 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002743 u32 pageSize;
2744 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002745 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002746 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002747 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2748 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2749 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002750 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002751 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002752 }
dan5cf53532010-05-01 16:40:20 +00002753
2754#ifdef SQLITE_OMIT_WAL
2755 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002756 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002757 }
2758 if( page1[19]>1 ){
2759 goto page1_init_failed;
2760 }
2761#else
dane04dc882010-04-20 18:53:15 +00002762 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002763 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002764 }
dane04dc882010-04-20 18:53:15 +00002765 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002766 goto page1_init_failed;
2767 }
drhe5ae5732008-06-15 02:51:47 +00002768
dana470aeb2010-04-21 11:43:38 +00002769 /* If the write version is set to 2, this database should be accessed
2770 ** in WAL mode. If the log is not already open, open it now. Then
2771 ** return SQLITE_OK and return without populating BtShared.pPage1.
2772 ** The caller detects this and calls this function again. This is
2773 ** required as the version of page 1 currently in the page1 buffer
2774 ** may not be the latest version - there may be a newer one in the log
2775 ** file.
2776 */
drhc9166342012-01-05 23:32:06 +00002777 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002778 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002779 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002780 if( rc!=SQLITE_OK ){
2781 goto page1_init_failed;
2782 }else if( isOpen==0 ){
2783 releasePage(pPage1);
2784 return SQLITE_OK;
2785 }
dan8b5444b2010-04-27 14:37:47 +00002786 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002787 }
dan5cf53532010-05-01 16:40:20 +00002788#endif
dane04dc882010-04-20 18:53:15 +00002789
drh113762a2014-11-19 16:36:25 +00002790 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2791 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2792 **
drhe5ae5732008-06-15 02:51:47 +00002793 ** The original design allowed these amounts to vary, but as of
2794 ** version 3.6.0, we require them to be fixed.
2795 */
2796 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2797 goto page1_init_failed;
2798 }
drh113762a2014-11-19 16:36:25 +00002799 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2800 ** determined by the 2-byte integer located at an offset of 16 bytes from
2801 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002802 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002803 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2804 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002805 if( ((pageSize-1)&pageSize)!=0
2806 || pageSize>SQLITE_MAX_PAGE_SIZE
2807 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002808 ){
drh07d183d2005-05-01 22:52:42 +00002809 goto page1_init_failed;
2810 }
2811 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002812 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2813 ** integer at offset 20 is the number of bytes of space at the end of
2814 ** each page to reserve for extensions.
2815 **
2816 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2817 ** determined by the one-byte unsigned integer found at an offset of 20
2818 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002819 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002820 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002821 /* After reading the first page of the database assuming a page size
2822 ** of BtShared.pageSize, we have discovered that the page-size is
2823 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2824 ** zero and return SQLITE_OK. The caller will call this function
2825 ** again with the correct page-size.
2826 */
2827 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002828 pBt->usableSize = usableSize;
2829 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002830 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002831 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2832 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002833 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002834 }
danecac6702011-02-09 18:19:20 +00002835 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002836 rc = SQLITE_CORRUPT_BKPT;
2837 goto page1_init_failed;
2838 }
drh113762a2014-11-19 16:36:25 +00002839 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2840 ** be less than 480. In other words, if the page size is 512, then the
2841 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002842 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002843 goto page1_init_failed;
2844 }
drh43b18e12010-08-17 19:40:08 +00002845 pBt->pageSize = pageSize;
2846 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002847#ifndef SQLITE_OMIT_AUTOVACUUM
2848 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002849 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002850#endif
drh306dc212001-05-21 13:45:10 +00002851 }
drhb6f41482004-05-14 01:58:11 +00002852
2853 /* maxLocal is the maximum amount of payload to store locally for
2854 ** a cell. Make sure it is small enough so that at least minFanout
2855 ** cells can will fit on one page. We assume a 10-byte page header.
2856 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002857 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002858 ** 4-byte child pointer
2859 ** 9-byte nKey value
2860 ** 4-byte nData value
2861 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002862 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002863 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2864 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002865 */
shaneh1df2db72010-08-18 02:28:48 +00002866 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2867 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2868 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2869 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002870 if( pBt->maxLocal>127 ){
2871 pBt->max1bytePayload = 127;
2872 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002873 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002874 }
drh2e38c322004-09-03 18:38:44 +00002875 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002876 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002877 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002878 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002879
drh72f82862001-05-24 21:06:34 +00002880page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002881 releasePage(pPage1);
2882 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002883 return rc;
drh306dc212001-05-21 13:45:10 +00002884}
2885
drh85ec3b62013-05-14 23:12:06 +00002886#ifndef NDEBUG
2887/*
2888** Return the number of cursors open on pBt. This is for use
2889** in assert() expressions, so it is only compiled if NDEBUG is not
2890** defined.
2891**
2892** Only write cursors are counted if wrOnly is true. If wrOnly is
2893** false then all cursors are counted.
2894**
2895** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002896** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002897** have been tripped into the CURSOR_FAULT state are not counted.
2898*/
2899static int countValidCursors(BtShared *pBt, int wrOnly){
2900 BtCursor *pCur;
2901 int r = 0;
2902 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002903 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2904 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002905 }
2906 return r;
2907}
2908#endif
2909
drh306dc212001-05-21 13:45:10 +00002910/*
drhb8ca3072001-12-05 00:21:20 +00002911** If there are no outstanding cursors and we are not in the middle
2912** of a transaction but there is a read lock on the database, then
2913** this routine unrefs the first page of the database file which
2914** has the effect of releasing the read lock.
2915**
drhb8ca3072001-12-05 00:21:20 +00002916** If there is a transaction in progress, this routine is a no-op.
2917*/
danielk1977aef0bf62005-12-30 16:28:01 +00002918static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002919 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002920 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002921 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00002922 MemPage *pPage1 = pBt->pPage1;
2923 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00002924 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00002925 pBt->pPage1 = 0;
drhb2325b72014-09-24 18:31:07 +00002926 releasePage(pPage1);
drhb8ca3072001-12-05 00:21:20 +00002927 }
2928}
2929
2930/*
drhe39f2f92009-07-23 01:43:59 +00002931** If pBt points to an empty file then convert that empty file
2932** into a new empty database by initializing the first page of
2933** the database.
drh8b2f49b2001-06-08 00:21:52 +00002934*/
danielk1977aef0bf62005-12-30 16:28:01 +00002935static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002936 MemPage *pP1;
2937 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002938 int rc;
drhd677b3d2007-08-20 22:48:41 +00002939
drh1fee73e2007-08-29 04:00:57 +00002940 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002941 if( pBt->nPage>0 ){
2942 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002943 }
drh3aac2dd2004-04-26 14:10:20 +00002944 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002945 assert( pP1!=0 );
2946 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002947 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002948 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002949 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2950 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002951 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2952 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002953 data[18] = 1;
2954 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002955 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2956 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002957 data[21] = 64;
2958 data[22] = 32;
2959 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002960 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002961 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002962 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002963#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002964 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002965 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002966 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002967 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002968#endif
drhdd3cd972010-03-27 17:12:36 +00002969 pBt->nPage = 1;
2970 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002971 return SQLITE_OK;
2972}
2973
2974/*
danb483eba2012-10-13 19:58:11 +00002975** Initialize the first page of the database file (creating a database
2976** consisting of a single page and no schema objects). Return SQLITE_OK
2977** if successful, or an SQLite error code otherwise.
2978*/
2979int sqlite3BtreeNewDb(Btree *p){
2980 int rc;
2981 sqlite3BtreeEnter(p);
2982 p->pBt->nPage = 0;
2983 rc = newDatabase(p->pBt);
2984 sqlite3BtreeLeave(p);
2985 return rc;
2986}
2987
2988/*
danielk1977ee5741e2004-05-31 10:01:34 +00002989** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002990** is started if the second argument is nonzero, otherwise a read-
2991** transaction. If the second argument is 2 or more and exclusive
2992** transaction is started, meaning that no other process is allowed
2993** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002994** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002995** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002996**
danielk1977ee5741e2004-05-31 10:01:34 +00002997** A write-transaction must be started before attempting any
2998** changes to the database. None of the following routines
2999** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003000**
drh23e11ca2004-05-04 17:27:28 +00003001** sqlite3BtreeCreateTable()
3002** sqlite3BtreeCreateIndex()
3003** sqlite3BtreeClearTable()
3004** sqlite3BtreeDropTable()
3005** sqlite3BtreeInsert()
3006** sqlite3BtreeDelete()
3007** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003008**
drhb8ef32c2005-03-14 02:01:49 +00003009** If an initial attempt to acquire the lock fails because of lock contention
3010** and the database was previously unlocked, then invoke the busy handler
3011** if there is one. But if there was previously a read-lock, do not
3012** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3013** returned when there is already a read-lock in order to avoid a deadlock.
3014**
3015** Suppose there are two processes A and B. A has a read lock and B has
3016** a reserved lock. B tries to promote to exclusive but is blocked because
3017** of A's read lock. A tries to promote to reserved but is blocked by B.
3018** One or the other of the two processes must give way or there can be
3019** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3020** when A already has a read lock, we encourage A to give up and let B
3021** proceed.
drha059ad02001-04-17 20:09:11 +00003022*/
danielk1977aef0bf62005-12-30 16:28:01 +00003023int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00003024 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003025 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003026 int rc = SQLITE_OK;
3027
drhd677b3d2007-08-20 22:48:41 +00003028 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003029 btreeIntegrity(p);
3030
danielk1977ee5741e2004-05-31 10:01:34 +00003031 /* If the btree is already in a write-transaction, or it
3032 ** is already in a read-transaction and a read-transaction
3033 ** is requested, this is a no-op.
3034 */
danielk1977aef0bf62005-12-30 16:28:01 +00003035 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003036 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003037 }
dan56c517a2013-09-26 11:04:33 +00003038 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003039
3040 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003041 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003042 rc = SQLITE_READONLY;
3043 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003044 }
3045
danielk1977404ca072009-03-16 13:19:36 +00003046#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00003047 /* If another database handle has already opened a write transaction
3048 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00003049 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00003050 */
drhc9166342012-01-05 23:32:06 +00003051 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3052 || (pBt->btsFlags & BTS_PENDING)!=0
3053 ){
danielk1977404ca072009-03-16 13:19:36 +00003054 pBlock = pBt->pWriter->db;
3055 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00003056 BtLock *pIter;
3057 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3058 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00003059 pBlock = pIter->pBtree->db;
3060 break;
danielk1977641b0f42007-12-21 04:47:25 +00003061 }
3062 }
3063 }
danielk1977404ca072009-03-16 13:19:36 +00003064 if( pBlock ){
3065 sqlite3ConnectionBlocked(p->db, pBlock);
3066 rc = SQLITE_LOCKED_SHAREDCACHE;
3067 goto trans_begun;
3068 }
danielk1977641b0f42007-12-21 04:47:25 +00003069#endif
3070
danielk1977602b4662009-07-02 07:47:33 +00003071 /* Any read-only or read-write transaction implies a read-lock on
3072 ** page 1. So if some other shared-cache client already has a write-lock
3073 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003074 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3075 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003076
drhc9166342012-01-05 23:32:06 +00003077 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3078 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003079 do {
danielk1977295dc102009-04-01 19:07:03 +00003080 /* Call lockBtree() until either pBt->pPage1 is populated or
3081 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3082 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3083 ** reading page 1 it discovers that the page-size of the database
3084 ** file is not pBt->pageSize. In this case lockBtree() will update
3085 ** pBt->pageSize to the page-size of the file on disk.
3086 */
3087 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003088
drhb8ef32c2005-03-14 02:01:49 +00003089 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003090 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003091 rc = SQLITE_READONLY;
3092 }else{
danielk1977d8293352009-04-30 09:10:37 +00003093 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003094 if( rc==SQLITE_OK ){
3095 rc = newDatabase(pBt);
3096 }
drhb8ef32c2005-03-14 02:01:49 +00003097 }
3098 }
3099
danielk1977bd434552009-03-18 10:33:00 +00003100 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003101 unlockBtreeIfUnused(pBt);
3102 }
danf9b76712010-06-01 14:12:45 +00003103 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003104 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003105
3106 if( rc==SQLITE_OK ){
3107 if( p->inTrans==TRANS_NONE ){
3108 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003109#ifndef SQLITE_OMIT_SHARED_CACHE
3110 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003111 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003112 p->lock.eLock = READ_LOCK;
3113 p->lock.pNext = pBt->pLock;
3114 pBt->pLock = &p->lock;
3115 }
3116#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003117 }
3118 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3119 if( p->inTrans>pBt->inTransaction ){
3120 pBt->inTransaction = p->inTrans;
3121 }
danielk1977404ca072009-03-16 13:19:36 +00003122 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003123 MemPage *pPage1 = pBt->pPage1;
3124#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003125 assert( !pBt->pWriter );
3126 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003127 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3128 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003129#endif
dan59257dc2010-08-04 11:34:31 +00003130
3131 /* If the db-size header field is incorrect (as it may be if an old
3132 ** client has been writing the database file), update it now. Doing
3133 ** this sooner rather than later means the database size can safely
3134 ** re-read the database size from page 1 if a savepoint or transaction
3135 ** rollback occurs within the transaction.
3136 */
3137 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3138 rc = sqlite3PagerWrite(pPage1->pDbPage);
3139 if( rc==SQLITE_OK ){
3140 put4byte(&pPage1->aData[28], pBt->nPage);
3141 }
3142 }
3143 }
danielk1977aef0bf62005-12-30 16:28:01 +00003144 }
3145
drhd677b3d2007-08-20 22:48:41 +00003146
3147trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003148 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003149 /* This call makes sure that the pager has the correct number of
3150 ** open savepoints. If the second parameter is greater than 0 and
3151 ** the sub-journal is not already open, then it will be opened here.
3152 */
danielk1977fd7f0452008-12-17 17:30:26 +00003153 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3154 }
danielk197712dd5492008-12-18 15:45:07 +00003155
danielk1977aef0bf62005-12-30 16:28:01 +00003156 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003157 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003158 return rc;
drha059ad02001-04-17 20:09:11 +00003159}
3160
danielk1977687566d2004-11-02 12:56:41 +00003161#ifndef SQLITE_OMIT_AUTOVACUUM
3162
3163/*
3164** Set the pointer-map entries for all children of page pPage. Also, if
3165** pPage contains cells that point to overflow pages, set the pointer
3166** map entries for the overflow pages as well.
3167*/
3168static int setChildPtrmaps(MemPage *pPage){
3169 int i; /* Counter variable */
3170 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003171 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003172 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003173 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003174 Pgno pgno = pPage->pgno;
3175
drh1fee73e2007-08-29 04:00:57 +00003176 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003177 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003178 if( rc!=SQLITE_OK ){
3179 goto set_child_ptrmaps_out;
3180 }
danielk1977687566d2004-11-02 12:56:41 +00003181 nCell = pPage->nCell;
3182
3183 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003184 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003185
drh98add2e2009-07-20 17:11:49 +00003186 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003187
danielk1977687566d2004-11-02 12:56:41 +00003188 if( !pPage->leaf ){
3189 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003190 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003191 }
3192 }
3193
3194 if( !pPage->leaf ){
3195 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003196 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003197 }
3198
3199set_child_ptrmaps_out:
3200 pPage->isInit = isInitOrig;
3201 return rc;
3202}
3203
3204/*
drhf3aed592009-07-08 18:12:49 +00003205** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3206** that it points to iTo. Parameter eType describes the type of pointer to
3207** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003208**
3209** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3210** page of pPage.
3211**
3212** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3213** page pointed to by one of the cells on pPage.
3214**
3215** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3216** overflow page in the list.
3217*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003218static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003219 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003220 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003221 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003222 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003223 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003224 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003225 }
danielk1977f78fc082004-11-02 14:40:32 +00003226 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003227 }else{
drhf49661a2008-12-10 16:45:50 +00003228 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003229 int i;
3230 int nCell;
drha1f75d92015-05-24 10:18:12 +00003231 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003232
drha1f75d92015-05-24 10:18:12 +00003233 rc = btreeInitPage(pPage);
3234 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003235 nCell = pPage->nCell;
3236
danielk1977687566d2004-11-02 12:56:41 +00003237 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003238 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003239 if( eType==PTRMAP_OVERFLOW1 ){
3240 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003241 pPage->xParseCell(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00003242 if( info.iOverflow
3243 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3244 && iFrom==get4byte(&pCell[info.iOverflow])
3245 ){
3246 put4byte(&pCell[info.iOverflow], iTo);
3247 break;
danielk1977687566d2004-11-02 12:56:41 +00003248 }
3249 }else{
3250 if( get4byte(pCell)==iFrom ){
3251 put4byte(pCell, iTo);
3252 break;
3253 }
3254 }
3255 }
3256
3257 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003258 if( eType!=PTRMAP_BTREE ||
3259 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003260 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003261 }
danielk1977687566d2004-11-02 12:56:41 +00003262 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3263 }
3264
3265 pPage->isInit = isInitOrig;
3266 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003267 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003268}
3269
danielk1977003ba062004-11-04 02:57:33 +00003270
danielk19777701e812005-01-10 12:59:51 +00003271/*
3272** Move the open database page pDbPage to location iFreePage in the
3273** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003274**
3275** The isCommit flag indicates that there is no need to remember that
3276** the journal needs to be sync()ed before database page pDbPage->pgno
3277** can be written to. The caller has already promised not to write to that
3278** page.
danielk19777701e812005-01-10 12:59:51 +00003279*/
danielk1977003ba062004-11-04 02:57:33 +00003280static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003281 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003282 MemPage *pDbPage, /* Open page to move */
3283 u8 eType, /* Pointer map 'type' entry for pDbPage */
3284 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003285 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003286 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003287){
3288 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3289 Pgno iDbPage = pDbPage->pgno;
3290 Pager *pPager = pBt->pPager;
3291 int rc;
3292
danielk1977a0bf2652004-11-04 14:30:04 +00003293 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3294 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003295 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003296 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003297
drh85b623f2007-12-13 21:54:09 +00003298 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003299 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3300 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003301 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003302 if( rc!=SQLITE_OK ){
3303 return rc;
3304 }
3305 pDbPage->pgno = iFreePage;
3306
3307 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3308 ** that point to overflow pages. The pointer map entries for all these
3309 ** pages need to be changed.
3310 **
3311 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3312 ** pointer to a subsequent overflow page. If this is the case, then
3313 ** the pointer map needs to be updated for the subsequent overflow page.
3314 */
danielk1977a0bf2652004-11-04 14:30:04 +00003315 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003316 rc = setChildPtrmaps(pDbPage);
3317 if( rc!=SQLITE_OK ){
3318 return rc;
3319 }
3320 }else{
3321 Pgno nextOvfl = get4byte(pDbPage->aData);
3322 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003323 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003324 if( rc!=SQLITE_OK ){
3325 return rc;
3326 }
3327 }
3328 }
3329
3330 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3331 ** that it points at iFreePage. Also fix the pointer map entry for
3332 ** iPtrPage.
3333 */
danielk1977a0bf2652004-11-04 14:30:04 +00003334 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003335 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003336 if( rc!=SQLITE_OK ){
3337 return rc;
3338 }
danielk19773b8a05f2007-03-19 17:44:26 +00003339 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003340 if( rc!=SQLITE_OK ){
3341 releasePage(pPtrPage);
3342 return rc;
3343 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003344 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003345 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003346 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003347 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003348 }
danielk1977003ba062004-11-04 02:57:33 +00003349 }
danielk1977003ba062004-11-04 02:57:33 +00003350 return rc;
3351}
3352
danielk1977dddbcdc2007-04-26 14:42:34 +00003353/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003354static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003355
3356/*
dan51f0b6d2013-02-22 20:16:34 +00003357** Perform a single step of an incremental-vacuum. If successful, return
3358** SQLITE_OK. If there is no work to do (and therefore no point in
3359** calling this function again), return SQLITE_DONE. Or, if an error
3360** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003361**
peter.d.reid60ec9142014-09-06 16:39:46 +00003362** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003363** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003364**
dan51f0b6d2013-02-22 20:16:34 +00003365** Parameter nFin is the number of pages that this database would contain
3366** were this function called until it returns SQLITE_DONE.
3367**
3368** If the bCommit parameter is non-zero, this function assumes that the
3369** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003370** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003371** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003372*/
dan51f0b6d2013-02-22 20:16:34 +00003373static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003374 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003375 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003376
drh1fee73e2007-08-29 04:00:57 +00003377 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003378 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003379
3380 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003381 u8 eType;
3382 Pgno iPtrPage;
3383
3384 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003385 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003386 return SQLITE_DONE;
3387 }
3388
3389 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3390 if( rc!=SQLITE_OK ){
3391 return rc;
3392 }
3393 if( eType==PTRMAP_ROOTPAGE ){
3394 return SQLITE_CORRUPT_BKPT;
3395 }
3396
3397 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003398 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003399 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003400 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003401 ** truncated to zero after this function returns, so it doesn't
3402 ** matter if it still contains some garbage entries.
3403 */
3404 Pgno iFreePg;
3405 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003406 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003407 if( rc!=SQLITE_OK ){
3408 return rc;
3409 }
3410 assert( iFreePg==iLastPg );
3411 releasePage(pFreePg);
3412 }
3413 } else {
3414 Pgno iFreePg; /* Index of free page to move pLastPg to */
3415 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003416 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3417 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003418
drhb00fc3b2013-08-21 23:42:32 +00003419 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003420 if( rc!=SQLITE_OK ){
3421 return rc;
3422 }
3423
dan51f0b6d2013-02-22 20:16:34 +00003424 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003425 ** is swapped with the first free page pulled off the free list.
3426 **
dan51f0b6d2013-02-22 20:16:34 +00003427 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003428 ** looping until a free-page located within the first nFin pages
3429 ** of the file is found.
3430 */
dan51f0b6d2013-02-22 20:16:34 +00003431 if( bCommit==0 ){
3432 eMode = BTALLOC_LE;
3433 iNear = nFin;
3434 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003435 do {
3436 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003437 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003438 if( rc!=SQLITE_OK ){
3439 releasePage(pLastPg);
3440 return rc;
3441 }
3442 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003443 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003444 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003445
dane1df4e32013-03-05 11:27:04 +00003446 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003447 releasePage(pLastPg);
3448 if( rc!=SQLITE_OK ){
3449 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003450 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003451 }
3452 }
3453
dan51f0b6d2013-02-22 20:16:34 +00003454 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003455 do {
danielk19773460d192008-12-27 15:23:13 +00003456 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003457 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3458 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003459 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003460 }
3461 return SQLITE_OK;
3462}
3463
3464/*
dan51f0b6d2013-02-22 20:16:34 +00003465** The database opened by the first argument is an auto-vacuum database
3466** nOrig pages in size containing nFree free pages. Return the expected
3467** size of the database in pages following an auto-vacuum operation.
3468*/
3469static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3470 int nEntry; /* Number of entries on one ptrmap page */
3471 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3472 Pgno nFin; /* Return value */
3473
3474 nEntry = pBt->usableSize/5;
3475 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3476 nFin = nOrig - nFree - nPtrmap;
3477 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3478 nFin--;
3479 }
3480 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3481 nFin--;
3482 }
dan51f0b6d2013-02-22 20:16:34 +00003483
3484 return nFin;
3485}
3486
3487/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003488** A write-transaction must be opened before calling this function.
3489** It performs a single unit of work towards an incremental vacuum.
3490**
3491** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003492** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003493** SQLITE_OK is returned. Otherwise an SQLite error code.
3494*/
3495int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003496 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003497 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003498
3499 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003500 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3501 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003502 rc = SQLITE_DONE;
3503 }else{
dan51f0b6d2013-02-22 20:16:34 +00003504 Pgno nOrig = btreePagecount(pBt);
3505 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3506 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3507
dan91384712013-02-24 11:50:43 +00003508 if( nOrig<nFin ){
3509 rc = SQLITE_CORRUPT_BKPT;
3510 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003511 rc = saveAllCursors(pBt, 0, 0);
3512 if( rc==SQLITE_OK ){
3513 invalidateAllOverflowCache(pBt);
3514 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3515 }
dan51f0b6d2013-02-22 20:16:34 +00003516 if( rc==SQLITE_OK ){
3517 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3518 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3519 }
3520 }else{
3521 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003522 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003523 }
drhd677b3d2007-08-20 22:48:41 +00003524 sqlite3BtreeLeave(p);
3525 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003526}
3527
3528/*
danielk19773b8a05f2007-03-19 17:44:26 +00003529** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003530** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003531**
3532** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3533** the database file should be truncated to during the commit process.
3534** i.e. the database has been reorganized so that only the first *pnTrunc
3535** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003536*/
danielk19773460d192008-12-27 15:23:13 +00003537static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003538 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003539 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003540 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003541
drh1fee73e2007-08-29 04:00:57 +00003542 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003543 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003544 assert(pBt->autoVacuum);
3545 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003546 Pgno nFin; /* Number of pages in database after autovacuuming */
3547 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003548 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003549 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003550
drhb1299152010-03-30 22:58:33 +00003551 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003552 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3553 /* It is not possible to create a database for which the final page
3554 ** is either a pointer-map page or the pending-byte page. If one
3555 ** is encountered, this indicates corruption.
3556 */
danielk19773460d192008-12-27 15:23:13 +00003557 return SQLITE_CORRUPT_BKPT;
3558 }
danielk1977ef165ce2009-04-06 17:50:03 +00003559
danielk19773460d192008-12-27 15:23:13 +00003560 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003561 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003562 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003563 if( nFin<nOrig ){
3564 rc = saveAllCursors(pBt, 0, 0);
3565 }
danielk19773460d192008-12-27 15:23:13 +00003566 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003567 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003568 }
danielk19773460d192008-12-27 15:23:13 +00003569 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003570 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3571 put4byte(&pBt->pPage1->aData[32], 0);
3572 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003573 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003574 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003575 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003576 }
3577 if( rc!=SQLITE_OK ){
3578 sqlite3PagerRollback(pPager);
3579 }
danielk1977687566d2004-11-02 12:56:41 +00003580 }
3581
dan0aed84d2013-03-26 14:16:20 +00003582 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003583 return rc;
3584}
danielk1977dddbcdc2007-04-26 14:42:34 +00003585
danielk1977a50d9aa2009-06-08 14:49:45 +00003586#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3587# define setChildPtrmaps(x) SQLITE_OK
3588#endif
danielk1977687566d2004-11-02 12:56:41 +00003589
3590/*
drh80e35f42007-03-30 14:06:34 +00003591** This routine does the first phase of a two-phase commit. This routine
3592** causes a rollback journal to be created (if it does not already exist)
3593** and populated with enough information so that if a power loss occurs
3594** the database can be restored to its original state by playing back
3595** the journal. Then the contents of the journal are flushed out to
3596** the disk. After the journal is safely on oxide, the changes to the
3597** database are written into the database file and flushed to oxide.
3598** At the end of this call, the rollback journal still exists on the
3599** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003600** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003601** commit process.
3602**
3603** This call is a no-op if no write-transaction is currently active on pBt.
3604**
3605** Otherwise, sync the database file for the btree pBt. zMaster points to
3606** the name of a master journal file that should be written into the
3607** individual journal file, or is NULL, indicating no master journal file
3608** (single database transaction).
3609**
3610** When this is called, the master journal should already have been
3611** created, populated with this journal pointer and synced to disk.
3612**
3613** Once this is routine has returned, the only thing required to commit
3614** the write-transaction for this database file is to delete the journal.
3615*/
3616int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3617 int rc = SQLITE_OK;
3618 if( p->inTrans==TRANS_WRITE ){
3619 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003620 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003621#ifndef SQLITE_OMIT_AUTOVACUUM
3622 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003623 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003624 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003625 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003626 return rc;
3627 }
3628 }
danbc1a3c62013-02-23 16:40:46 +00003629 if( pBt->bDoTruncate ){
3630 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3631 }
drh80e35f42007-03-30 14:06:34 +00003632#endif
drh49b9d332009-01-02 18:10:42 +00003633 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003634 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003635 }
3636 return rc;
3637}
3638
3639/*
danielk197794b30732009-07-02 17:21:57 +00003640** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3641** at the conclusion of a transaction.
3642*/
3643static void btreeEndTransaction(Btree *p){
3644 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003645 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003646 assert( sqlite3BtreeHoldsMutex(p) );
3647
danbc1a3c62013-02-23 16:40:46 +00003648#ifndef SQLITE_OMIT_AUTOVACUUM
3649 pBt->bDoTruncate = 0;
3650#endif
danc0537fe2013-06-28 19:41:43 +00003651 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003652 /* If there are other active statements that belong to this database
3653 ** handle, downgrade to a read-only transaction. The other statements
3654 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003655 downgradeAllSharedCacheTableLocks(p);
3656 p->inTrans = TRANS_READ;
3657 }else{
3658 /* If the handle had any kind of transaction open, decrement the
3659 ** transaction count of the shared btree. If the transaction count
3660 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3661 ** call below will unlock the pager. */
3662 if( p->inTrans!=TRANS_NONE ){
3663 clearAllSharedCacheTableLocks(p);
3664 pBt->nTransaction--;
3665 if( 0==pBt->nTransaction ){
3666 pBt->inTransaction = TRANS_NONE;
3667 }
3668 }
3669
3670 /* Set the current transaction state to TRANS_NONE and unlock the
3671 ** pager if this call closed the only read or write transaction. */
3672 p->inTrans = TRANS_NONE;
3673 unlockBtreeIfUnused(pBt);
3674 }
3675
3676 btreeIntegrity(p);
3677}
3678
3679/*
drh2aa679f2001-06-25 02:11:07 +00003680** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003681**
drh6e345992007-03-30 11:12:08 +00003682** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003683** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3684** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3685** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003686** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003687** routine has to do is delete or truncate or zero the header in the
3688** the rollback journal (which causes the transaction to commit) and
3689** drop locks.
drh6e345992007-03-30 11:12:08 +00003690**
dan60939d02011-03-29 15:40:55 +00003691** Normally, if an error occurs while the pager layer is attempting to
3692** finalize the underlying journal file, this function returns an error and
3693** the upper layer will attempt a rollback. However, if the second argument
3694** is non-zero then this b-tree transaction is part of a multi-file
3695** transaction. In this case, the transaction has already been committed
3696** (by deleting a master journal file) and the caller will ignore this
3697** functions return code. So, even if an error occurs in the pager layer,
3698** reset the b-tree objects internal state to indicate that the write
3699** transaction has been closed. This is quite safe, as the pager will have
3700** transitioned to the error state.
3701**
drh5e00f6c2001-09-13 13:46:56 +00003702** This will release the write lock on the database file. If there
3703** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003704*/
dan60939d02011-03-29 15:40:55 +00003705int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003706
drh075ed302010-10-14 01:17:30 +00003707 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003708 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003709 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003710
3711 /* If the handle has a write-transaction open, commit the shared-btrees
3712 ** transaction and set the shared state to TRANS_READ.
3713 */
3714 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003715 int rc;
drh075ed302010-10-14 01:17:30 +00003716 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003717 assert( pBt->inTransaction==TRANS_WRITE );
3718 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003719 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003720 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003721 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003722 return rc;
3723 }
drh3da9c042014-12-22 18:41:21 +00003724 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003725 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003726 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003727 }
danielk1977aef0bf62005-12-30 16:28:01 +00003728
danielk197794b30732009-07-02 17:21:57 +00003729 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003730 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003731 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003732}
3733
drh80e35f42007-03-30 14:06:34 +00003734/*
3735** Do both phases of a commit.
3736*/
3737int sqlite3BtreeCommit(Btree *p){
3738 int rc;
drhd677b3d2007-08-20 22:48:41 +00003739 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003740 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3741 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003742 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003743 }
drhd677b3d2007-08-20 22:48:41 +00003744 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003745 return rc;
3746}
3747
drhc39e0002004-05-07 23:50:57 +00003748/*
drhfb982642007-08-30 01:19:59 +00003749** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003750** code to errCode for every cursor on any BtShared that pBtree
3751** references. Or if the writeOnly flag is set to 1, then only
3752** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003753**
drh47b7fc72014-11-11 01:33:57 +00003754** Every cursor is a candidate to be tripped, including cursors
3755** that belong to other database connections that happen to be
3756** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003757**
dan80231042014-11-12 14:56:02 +00003758** This routine gets called when a rollback occurs. If the writeOnly
3759** flag is true, then only write-cursors need be tripped - read-only
3760** cursors save their current positions so that they may continue
3761** following the rollback. Or, if writeOnly is false, all cursors are
3762** tripped. In general, writeOnly is false if the transaction being
3763** rolled back modified the database schema. In this case b-tree root
3764** pages may be moved or deleted from the database altogether, making
3765** it unsafe for read cursors to continue.
3766**
3767** If the writeOnly flag is true and an error is encountered while
3768** saving the current position of a read-only cursor, all cursors,
3769** including all read-cursors are tripped.
3770**
3771** SQLITE_OK is returned if successful, or if an error occurs while
3772** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003773*/
dan80231042014-11-12 14:56:02 +00003774int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003775 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003776 int rc = SQLITE_OK;
3777
drh47b7fc72014-11-11 01:33:57 +00003778 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003779 if( pBtree ){
3780 sqlite3BtreeEnter(pBtree);
3781 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3782 int i;
3783 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003784 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003785 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003786 if( rc!=SQLITE_OK ){
3787 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3788 break;
3789 }
3790 }
3791 }else{
3792 sqlite3BtreeClearCursor(p);
3793 p->eState = CURSOR_FAULT;
3794 p->skipNext = errCode;
3795 }
3796 for(i=0; i<=p->iPage; i++){
3797 releasePage(p->apPage[i]);
3798 p->apPage[i] = 0;
3799 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003800 }
dan80231042014-11-12 14:56:02 +00003801 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003802 }
dan80231042014-11-12 14:56:02 +00003803 return rc;
drhfb982642007-08-30 01:19:59 +00003804}
3805
3806/*
drh47b7fc72014-11-11 01:33:57 +00003807** Rollback the transaction in progress.
3808**
3809** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3810** Only write cursors are tripped if writeOnly is true but all cursors are
3811** tripped if writeOnly is false. Any attempt to use
3812** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003813**
3814** This will release the write lock on the database file. If there
3815** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003816*/
drh47b7fc72014-11-11 01:33:57 +00003817int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003818 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003819 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003820 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003821
drh47b7fc72014-11-11 01:33:57 +00003822 assert( writeOnly==1 || writeOnly==0 );
3823 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003824 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003825 if( tripCode==SQLITE_OK ){
3826 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003827 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003828 }else{
3829 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003830 }
drh0f198a72012-02-13 16:43:16 +00003831 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003832 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3833 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3834 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003835 }
danielk1977aef0bf62005-12-30 16:28:01 +00003836 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003837
3838 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003839 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003840
danielk19778d34dfd2006-01-24 16:37:57 +00003841 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003842 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003843 if( rc2!=SQLITE_OK ){
3844 rc = rc2;
3845 }
3846
drh24cd67e2004-05-10 16:18:47 +00003847 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003848 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003849 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003850 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003851 int nPage = get4byte(28+(u8*)pPage1->aData);
3852 testcase( nPage==0 );
3853 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3854 testcase( pBt->nPage!=nPage );
3855 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003856 releasePage(pPage1);
3857 }
drh85ec3b62013-05-14 23:12:06 +00003858 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003859 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003860 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003861 }
danielk1977aef0bf62005-12-30 16:28:01 +00003862
danielk197794b30732009-07-02 17:21:57 +00003863 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003864 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003865 return rc;
3866}
3867
3868/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003869** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003870** back independently of the main transaction. You must start a transaction
3871** before starting a subtransaction. The subtransaction is ended automatically
3872** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003873**
3874** Statement subtransactions are used around individual SQL statements
3875** that are contained within a BEGIN...COMMIT block. If a constraint
3876** error occurs within the statement, the effect of that one statement
3877** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003878**
3879** A statement sub-transaction is implemented as an anonymous savepoint. The
3880** value passed as the second parameter is the total number of savepoints,
3881** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3882** are no active savepoints and no other statement-transactions open,
3883** iStatement is 1. This anonymous savepoint can be released or rolled back
3884** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003885*/
danielk1977bd434552009-03-18 10:33:00 +00003886int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003887 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003888 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003889 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003890 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003891 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003892 assert( iStatement>0 );
3893 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003894 assert( pBt->inTransaction==TRANS_WRITE );
3895 /* At the pager level, a statement transaction is a savepoint with
3896 ** an index greater than all savepoints created explicitly using
3897 ** SQL statements. It is illegal to open, release or rollback any
3898 ** such savepoints while the statement transaction savepoint is active.
3899 */
3900 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003901 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003902 return rc;
3903}
3904
3905/*
danielk1977fd7f0452008-12-17 17:30:26 +00003906** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3907** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003908** savepoint identified by parameter iSavepoint, depending on the value
3909** of op.
3910**
3911** Normally, iSavepoint is greater than or equal to zero. However, if op is
3912** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3913** contents of the entire transaction are rolled back. This is different
3914** from a normal transaction rollback, as no locks are released and the
3915** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003916*/
3917int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3918 int rc = SQLITE_OK;
3919 if( p && p->inTrans==TRANS_WRITE ){
3920 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003921 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3922 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3923 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003924 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003925 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003926 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3927 pBt->nPage = 0;
3928 }
drh9f0bbf92009-01-02 21:08:09 +00003929 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003930 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003931
3932 /* The database size was written into the offset 28 of the header
3933 ** when the transaction started, so we know that the value at offset
3934 ** 28 is nonzero. */
3935 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003936 }
danielk1977fd7f0452008-12-17 17:30:26 +00003937 sqlite3BtreeLeave(p);
3938 }
3939 return rc;
3940}
3941
3942/*
drh8b2f49b2001-06-08 00:21:52 +00003943** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003944** iTable. If a read-only cursor is requested, it is assumed that
3945** the caller already has at least a read-only transaction open
3946** on the database already. If a write-cursor is requested, then
3947** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003948**
3949** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003950** If wrFlag==1, then the cursor can be used for reading or for
3951** writing if other conditions for writing are also met. These
3952** are the conditions that must be met in order for writing to
3953** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003954**
drhf74b8d92002-09-01 23:20:45 +00003955** 1: The cursor must have been opened with wrFlag==1
3956**
drhfe5d71d2007-03-19 11:54:10 +00003957** 2: Other database connections that share the same pager cache
3958** but which are not in the READ_UNCOMMITTED state may not have
3959** cursors open with wrFlag==0 on the same table. Otherwise
3960** the changes made by this write cursor would be visible to
3961** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003962**
3963** 3: The database must be writable (not on read-only media)
3964**
3965** 4: There must be an active transaction.
3966**
drh6446c4d2001-12-15 14:22:18 +00003967** No checking is done to make sure that page iTable really is the
3968** root page of a b-tree. If it is not, then the cursor acquired
3969** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003970**
drhf25a5072009-11-18 23:01:25 +00003971** It is assumed that the sqlite3BtreeCursorZero() has been called
3972** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003973*/
drhd677b3d2007-08-20 22:48:41 +00003974static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003975 Btree *p, /* The btree */
3976 int iTable, /* Root page of table to open */
3977 int wrFlag, /* 1 to write. 0 read-only */
3978 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3979 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003980){
danielk19773e8add92009-07-04 17:16:00 +00003981 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003982
drh1fee73e2007-08-29 04:00:57 +00003983 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003984 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003985
danielk1977602b4662009-07-02 07:47:33 +00003986 /* The following assert statements verify that if this is a sharable
3987 ** b-tree database, the connection is holding the required table locks,
3988 ** and that no other connection has any open cursor that conflicts with
3989 ** this lock. */
3990 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003991 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3992
danielk19773e8add92009-07-04 17:16:00 +00003993 /* Assert that the caller has opened the required transaction. */
3994 assert( p->inTrans>TRANS_NONE );
3995 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3996 assert( pBt->pPage1 && pBt->pPage1->aData );
3997
drhc9166342012-01-05 23:32:06 +00003998 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003999 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00004000 }
drh3fbb0222014-09-24 19:47:27 +00004001 if( wrFlag ){
4002 allocateTempSpace(pBt);
4003 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
4004 }
drhb1299152010-03-30 22:58:33 +00004005 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004006 assert( wrFlag==0 );
4007 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004008 }
danielk1977aef0bf62005-12-30 16:28:01 +00004009
danielk1977aef0bf62005-12-30 16:28:01 +00004010 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004011 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004012 pCur->pgnoRoot = (Pgno)iTable;
4013 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004014 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004015 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004016 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00004017 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
4018 pCur->curFlags = wrFlag;
drha059ad02001-04-17 20:09:11 +00004019 pCur->pNext = pBt->pCursor;
4020 if( pCur->pNext ){
4021 pCur->pNext->pPrev = pCur;
4022 }
4023 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004024 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004025 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004026}
drhd677b3d2007-08-20 22:48:41 +00004027int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004028 Btree *p, /* The btree */
4029 int iTable, /* Root page of table to open */
4030 int wrFlag, /* 1 to write. 0 read-only */
4031 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4032 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004033){
4034 int rc;
dan08f901b2015-05-25 19:24:36 +00004035 if( iTable<1 ){
4036 rc = SQLITE_CORRUPT_BKPT;
4037 }else{
4038 sqlite3BtreeEnter(p);
4039 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4040 sqlite3BtreeLeave(p);
4041 }
drhd677b3d2007-08-20 22:48:41 +00004042 return rc;
4043}
drh7f751222009-03-17 22:33:00 +00004044
4045/*
4046** Return the size of a BtCursor object in bytes.
4047**
4048** This interfaces is needed so that users of cursors can preallocate
4049** sufficient storage to hold a cursor. The BtCursor object is opaque
4050** to users so they cannot do the sizeof() themselves - they must call
4051** this routine.
4052*/
4053int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004054 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004055}
4056
drh7f751222009-03-17 22:33:00 +00004057/*
drhf25a5072009-11-18 23:01:25 +00004058** Initialize memory that will be converted into a BtCursor object.
4059**
4060** The simple approach here would be to memset() the entire object
4061** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4062** do not need to be zeroed and they are large, so we can save a lot
4063** of run-time by skipping the initialization of those elements.
4064*/
4065void sqlite3BtreeCursorZero(BtCursor *p){
4066 memset(p, 0, offsetof(BtCursor, iPage));
4067}
4068
4069/*
drh5e00f6c2001-09-13 13:46:56 +00004070** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004071** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004072*/
drh3aac2dd2004-04-26 14:10:20 +00004073int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004074 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004075 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004076 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004077 BtShared *pBt = pCur->pBt;
4078 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004079 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004080 if( pCur->pPrev ){
4081 pCur->pPrev->pNext = pCur->pNext;
4082 }else{
4083 pBt->pCursor = pCur->pNext;
4084 }
4085 if( pCur->pNext ){
4086 pCur->pNext->pPrev = pCur->pPrev;
4087 }
danielk197771d5d2c2008-09-29 11:49:47 +00004088 for(i=0; i<=pCur->iPage; i++){
4089 releasePage(pCur->apPage[i]);
4090 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004091 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004092 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004093 /* sqlite3_free(pCur); */
4094 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004095 }
drh8c42ca92001-06-22 19:15:00 +00004096 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004097}
4098
drh5e2f8b92001-05-28 00:41:15 +00004099/*
drh86057612007-06-26 01:04:48 +00004100** Make sure the BtCursor* given in the argument has a valid
4101** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004102** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004103**
4104** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004105** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004106*/
drh9188b382004-05-14 21:12:22 +00004107#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004108 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004109 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004110 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004111 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004112 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004113 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004114 }
danielk19771cc5ed82007-05-16 17:28:43 +00004115#else
4116 #define assertCellInfo(x)
4117#endif
drhc5b41ac2015-06-17 02:11:46 +00004118static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4119 if( pCur->info.nSize==0 ){
4120 int iPage = pCur->iPage;
4121 pCur->curFlags |= BTCF_ValidNKey;
4122 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4123 }else{
4124 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004125 }
drhc5b41ac2015-06-17 02:11:46 +00004126}
drh9188b382004-05-14 21:12:22 +00004127
drhea8ffdf2009-07-22 00:35:23 +00004128#ifndef NDEBUG /* The next routine used only within assert() statements */
4129/*
4130** Return true if the given BtCursor is valid. A valid cursor is one
4131** that is currently pointing to a row in a (non-empty) table.
4132** This is a verification routine is used only within assert() statements.
4133*/
4134int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4135 return pCur && pCur->eState==CURSOR_VALID;
4136}
4137#endif /* NDEBUG */
4138
drh9188b382004-05-14 21:12:22 +00004139/*
drh3aac2dd2004-04-26 14:10:20 +00004140** Set *pSize to the size of the buffer needed to hold the value of
4141** the key for the current entry. If the cursor is not pointing
4142** to a valid entry, *pSize is set to 0.
4143**
drh4b70f112004-05-02 21:12:19 +00004144** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004145** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004146**
4147** The caller must position the cursor prior to invoking this routine.
4148**
4149** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004150*/
drh4a1c3802004-05-12 15:15:47 +00004151int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004152 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004153 assert( pCur->eState==CURSOR_VALID );
4154 getCellInfo(pCur);
4155 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004156 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004157}
drh2af926b2001-05-15 00:39:25 +00004158
drh72f82862001-05-24 21:06:34 +00004159/*
drh0e1c19e2004-05-11 00:58:56 +00004160** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004161** cursor currently points to.
4162**
4163** The caller must guarantee that the cursor is pointing to a non-NULL
4164** valid entry. In other words, the calling procedure must guarantee
4165** that the cursor has Cursor.eState==CURSOR_VALID.
4166**
4167** Failure is not possible. This function always returns SQLITE_OK.
4168** It might just as well be a procedure (returning void) but we continue
4169** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004170*/
4171int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004172 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004173 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004174 assert( pCur->iPage>=0 );
4175 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004176 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004177 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004178 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004179 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004180}
4181
4182/*
danielk1977d04417962007-05-02 13:16:30 +00004183** Given the page number of an overflow page in the database (parameter
4184** ovfl), this function finds the page number of the next page in the
4185** linked list of overflow pages. If possible, it uses the auto-vacuum
4186** pointer-map data instead of reading the content of page ovfl to do so.
4187**
4188** If an error occurs an SQLite error code is returned. Otherwise:
4189**
danielk1977bea2a942009-01-20 17:06:27 +00004190** The page number of the next overflow page in the linked list is
4191** written to *pPgnoNext. If page ovfl is the last page in its linked
4192** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004193**
danielk1977bea2a942009-01-20 17:06:27 +00004194** If ppPage is not NULL, and a reference to the MemPage object corresponding
4195** to page number pOvfl was obtained, then *ppPage is set to point to that
4196** reference. It is the responsibility of the caller to call releasePage()
4197** on *ppPage to free the reference. In no reference was obtained (because
4198** the pointer-map was used to obtain the value for *pPgnoNext), then
4199** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004200*/
4201static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004202 BtShared *pBt, /* The database file */
4203 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004204 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004205 Pgno *pPgnoNext /* OUT: Next overflow page number */
4206){
4207 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004208 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004209 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004210
drh1fee73e2007-08-29 04:00:57 +00004211 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004212 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004213
4214#ifndef SQLITE_OMIT_AUTOVACUUM
4215 /* Try to find the next page in the overflow list using the
4216 ** autovacuum pointer-map pages. Guess that the next page in
4217 ** the overflow list is page number (ovfl+1). If that guess turns
4218 ** out to be wrong, fall back to loading the data of page
4219 ** number ovfl to determine the next page number.
4220 */
4221 if( pBt->autoVacuum ){
4222 Pgno pgno;
4223 Pgno iGuess = ovfl+1;
4224 u8 eType;
4225
4226 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4227 iGuess++;
4228 }
4229
drhb1299152010-03-30 22:58:33 +00004230 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004231 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004232 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004233 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004234 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004235 }
4236 }
4237 }
4238#endif
4239
danielk1977d8a3f3d2009-07-11 11:45:23 +00004240 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004241 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004242 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004243 assert( rc==SQLITE_OK || pPage==0 );
4244 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004245 next = get4byte(pPage->aData);
4246 }
danielk1977443c0592009-01-16 15:21:05 +00004247 }
danielk197745d68822009-01-16 16:23:38 +00004248
danielk1977bea2a942009-01-20 17:06:27 +00004249 *pPgnoNext = next;
4250 if( ppPage ){
4251 *ppPage = pPage;
4252 }else{
4253 releasePage(pPage);
4254 }
4255 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004256}
4257
danielk1977da107192007-05-04 08:32:13 +00004258/*
4259** Copy data from a buffer to a page, or from a page to a buffer.
4260**
4261** pPayload is a pointer to data stored on database page pDbPage.
4262** If argument eOp is false, then nByte bytes of data are copied
4263** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4264** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4265** of data are copied from the buffer pBuf to pPayload.
4266**
4267** SQLITE_OK is returned on success, otherwise an error code.
4268*/
4269static int copyPayload(
4270 void *pPayload, /* Pointer to page data */
4271 void *pBuf, /* Pointer to buffer */
4272 int nByte, /* Number of bytes to copy */
4273 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4274 DbPage *pDbPage /* Page containing pPayload */
4275){
4276 if( eOp ){
4277 /* Copy data from buffer to page (a write operation) */
4278 int rc = sqlite3PagerWrite(pDbPage);
4279 if( rc!=SQLITE_OK ){
4280 return rc;
4281 }
4282 memcpy(pPayload, pBuf, nByte);
4283 }else{
4284 /* Copy data from page to buffer (a read operation) */
4285 memcpy(pBuf, pPayload, nByte);
4286 }
4287 return SQLITE_OK;
4288}
danielk1977d04417962007-05-02 13:16:30 +00004289
4290/*
danielk19779f8d6402007-05-02 17:48:45 +00004291** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004292** for the entry that the pCur cursor is pointing to. The eOp
4293** argument is interpreted as follows:
4294**
4295** 0: The operation is a read. Populate the overflow cache.
4296** 1: The operation is a write. Populate the overflow cache.
4297** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004298**
4299** A total of "amt" bytes are read or written beginning at "offset".
4300** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004301**
drh3bcdfd22009-07-12 02:32:21 +00004302** The content being read or written might appear on the main page
4303** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004304**
dan5a500af2014-03-11 20:33:04 +00004305** If the current cursor entry uses one or more overflow pages and the
4306** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004307** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004308** Subsequent calls use this cache to make seeking to the supplied offset
4309** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004310**
4311** Once an overflow page-list cache has been allocated, it may be
4312** invalidated if some other cursor writes to the same table, or if
4313** the cursor is moved to a different row. Additionally, in auto-vacuum
4314** mode, the following events may invalidate an overflow page-list cache.
4315**
4316** * An incremental vacuum,
4317** * A commit in auto_vacuum="full" mode,
4318** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004319*/
danielk19779f8d6402007-05-02 17:48:45 +00004320static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004321 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004322 u32 offset, /* Begin reading this far into payload */
4323 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004324 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004325 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004326){
4327 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004328 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004329 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004330 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004331 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004332#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004333 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004334 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004335#endif
drh3aac2dd2004-04-26 14:10:20 +00004336
danielk1977da107192007-05-04 08:32:13 +00004337 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004338 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004339 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004340 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004341 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004342
drh86057612007-06-26 01:04:48 +00004343 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004344 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004345#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004346 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004347#endif
drhab1cc582014-09-23 21:25:19 +00004348 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004349
drhab1cc582014-09-23 21:25:19 +00004350 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004351 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004352 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004353 }
danielk1977da107192007-05-04 08:32:13 +00004354
4355 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004356 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004357 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004358 if( a+offset>pCur->info.nLocal ){
4359 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004360 }
dan5a500af2014-03-11 20:33:04 +00004361 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004362 offset = 0;
drha34b6762004-05-07 13:30:42 +00004363 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004364 amt -= a;
drhdd793422001-06-28 01:54:48 +00004365 }else{
drhfa1a98a2004-05-14 19:08:17 +00004366 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004367 }
danielk1977da107192007-05-04 08:32:13 +00004368
dan85753662014-12-11 16:38:18 +00004369
danielk1977da107192007-05-04 08:32:13 +00004370 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004371 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004372 Pgno nextPage;
4373
drhfa1a98a2004-05-14 19:08:17 +00004374 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004375
drha38c9512014-04-01 01:24:34 +00004376 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4377 ** Except, do not allocate aOverflow[] for eOp==2.
4378 **
4379 ** The aOverflow[] array is sized at one entry for each overflow page
4380 ** in the overflow chain. The page number of the first overflow page is
4381 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4382 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004383 */
drh036dbec2014-03-11 23:40:44 +00004384 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004385 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004386 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004387 Pgno *aNew = (Pgno*)sqlite3Realloc(
4388 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004389 );
4390 if( aNew==0 ){
4391 rc = SQLITE_NOMEM;
4392 }else{
4393 pCur->nOvflAlloc = nOvfl*2;
4394 pCur->aOverflow = aNew;
4395 }
4396 }
4397 if( rc==SQLITE_OK ){
4398 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004399 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004400 }
4401 }
danielk1977da107192007-05-04 08:32:13 +00004402
4403 /* If the overflow page-list cache has been allocated and the
4404 ** entry for the first required overflow page is valid, skip
4405 ** directly to it.
4406 */
drh3f387402014-09-24 01:23:00 +00004407 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4408 && pCur->aOverflow[offset/ovflSize]
4409 ){
danielk19772dec9702007-05-02 16:48:37 +00004410 iIdx = (offset/ovflSize);
4411 nextPage = pCur->aOverflow[iIdx];
4412 offset = (offset%ovflSize);
4413 }
danielk1977da107192007-05-04 08:32:13 +00004414
4415 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4416
danielk1977da107192007-05-04 08:32:13 +00004417 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004418 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004419 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4420 pCur->aOverflow[iIdx] = nextPage;
4421 }
danielk1977da107192007-05-04 08:32:13 +00004422
danielk1977d04417962007-05-02 13:16:30 +00004423 if( offset>=ovflSize ){
4424 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004425 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004426 ** data is not required. So first try to lookup the overflow
4427 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004428 ** function.
drha38c9512014-04-01 01:24:34 +00004429 **
4430 ** Note that the aOverflow[] array must be allocated because eOp!=2
4431 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004432 */
drha38c9512014-04-01 01:24:34 +00004433 assert( eOp!=2 );
4434 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004435 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004436 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004437 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004438 }else{
danielk1977da107192007-05-04 08:32:13 +00004439 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004440 }
danielk1977da107192007-05-04 08:32:13 +00004441 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004442 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004443 /* Need to read this page properly. It contains some of the
4444 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004445 */
danf4ba1092011-10-08 14:57:07 +00004446#ifdef SQLITE_DIRECT_OVERFLOW_READ
4447 sqlite3_file *fd;
4448#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004449 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004450 if( a + offset > ovflSize ){
4451 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004452 }
danf4ba1092011-10-08 14:57:07 +00004453
4454#ifdef SQLITE_DIRECT_OVERFLOW_READ
4455 /* If all the following are true:
4456 **
4457 ** 1) this is a read operation, and
4458 ** 2) data is required from the start of this overflow page, and
4459 ** 3) the database is file-backed, and
4460 ** 4) there is no open write-transaction, and
4461 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004462 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004463 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004464 **
4465 ** then data can be read directly from the database file into the
4466 ** output buffer, bypassing the page-cache altogether. This speeds
4467 ** up loading large records that span many overflow pages.
4468 */
dan5a500af2014-03-11 20:33:04 +00004469 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004470 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004471 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004472 && pBt->inTransaction==TRANS_READ /* (4) */
4473 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4474 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004475 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004476 ){
4477 u8 aSave[4];
4478 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004479 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004480 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004481 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004482 nextPage = get4byte(aWrite);
4483 memcpy(aWrite, aSave, 4);
4484 }else
4485#endif
4486
4487 {
4488 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004489 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004490 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004491 );
danf4ba1092011-10-08 14:57:07 +00004492 if( rc==SQLITE_OK ){
4493 aPayload = sqlite3PagerGetData(pDbPage);
4494 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004495 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004496 sqlite3PagerUnref(pDbPage);
4497 offset = 0;
4498 }
4499 }
4500 amt -= a;
4501 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004502 }
drh2af926b2001-05-15 00:39:25 +00004503 }
drh2af926b2001-05-15 00:39:25 +00004504 }
danielk1977cfe9a692004-06-16 12:00:29 +00004505
danielk1977da107192007-05-04 08:32:13 +00004506 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004507 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004508 }
danielk1977da107192007-05-04 08:32:13 +00004509 return rc;
drh2af926b2001-05-15 00:39:25 +00004510}
4511
drh72f82862001-05-24 21:06:34 +00004512/*
drh3aac2dd2004-04-26 14:10:20 +00004513** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004514** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004515** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004516**
drh5d1a8722009-07-22 18:07:40 +00004517** The caller must ensure that pCur is pointing to a valid row
4518** in the table.
4519**
drh3aac2dd2004-04-26 14:10:20 +00004520** Return SQLITE_OK on success or an error code if anything goes
4521** wrong. An error is returned if "offset+amt" is larger than
4522** the available payload.
drh72f82862001-05-24 21:06:34 +00004523*/
drha34b6762004-05-07 13:30:42 +00004524int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004525 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004526 assert( pCur->eState==CURSOR_VALID );
4527 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4528 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4529 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004530}
4531
4532/*
drh3aac2dd2004-04-26 14:10:20 +00004533** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004534** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004535** begins at "offset".
4536**
4537** Return SQLITE_OK on success or an error code if anything goes
4538** wrong. An error is returned if "offset+amt" is larger than
4539** the available payload.
drh72f82862001-05-24 21:06:34 +00004540*/
drh3aac2dd2004-04-26 14:10:20 +00004541int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004542 int rc;
4543
danielk19773588ceb2008-06-10 17:30:26 +00004544#ifndef SQLITE_OMIT_INCRBLOB
4545 if ( pCur->eState==CURSOR_INVALID ){
4546 return SQLITE_ABORT;
4547 }
4548#endif
4549
drh1fee73e2007-08-29 04:00:57 +00004550 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004551 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004552 if( rc==SQLITE_OK ){
4553 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004554 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4555 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004556 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004557 }
4558 return rc;
drh2af926b2001-05-15 00:39:25 +00004559}
4560
drh72f82862001-05-24 21:06:34 +00004561/*
drh0e1c19e2004-05-11 00:58:56 +00004562** Return a pointer to payload information from the entry that the
4563** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004564** the key if index btrees (pPage->intKey==0) and is the data for
4565** table btrees (pPage->intKey==1). The number of bytes of available
4566** key/data is written into *pAmt. If *pAmt==0, then the value
4567** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004568**
4569** This routine is an optimization. It is common for the entire key
4570** and data to fit on the local page and for there to be no overflow
4571** pages. When that is so, this routine can be used to access the
4572** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004573** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004574** the key/data and copy it into a preallocated buffer.
4575**
4576** The pointer returned by this routine looks directly into the cached
4577** page of the database. The data might change or move the next time
4578** any btree routine is called.
4579*/
drh2a8d2262013-12-09 20:43:22 +00004580static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004581 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004582 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004583){
drhf3392e32015-04-15 17:26:55 +00004584 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004585 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004586 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004587 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004588 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004589 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004590 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004591 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4592 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4593 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4594 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4595 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004596 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004597}
4598
4599
4600/*
drhe51c44f2004-05-30 20:46:09 +00004601** For the entry that cursor pCur is point to, return as
4602** many bytes of the key or data as are available on the local
4603** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004604**
4605** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004606** or be destroyed on the next call to any Btree routine,
4607** including calls from other threads against the same cache.
4608** Hence, a mutex on the BtShared should be held prior to calling
4609** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004610**
4611** These routines is used to get quick access to key and data
4612** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004613*/
drh501932c2013-11-21 21:59:53 +00004614const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004615 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004616}
drh501932c2013-11-21 21:59:53 +00004617const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004618 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004619}
4620
4621
4622/*
drh8178a752003-01-05 21:41:40 +00004623** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004624** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004625**
4626** This function returns SQLITE_CORRUPT if the page-header flags field of
4627** the new child page does not match the flags field of the parent (i.e.
4628** if an intkey page appears to be the parent of a non-intkey page, or
4629** vice-versa).
drh72f82862001-05-24 21:06:34 +00004630*/
drh3aac2dd2004-04-26 14:10:20 +00004631static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004632 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004633 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004634 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004635 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004636
drh1fee73e2007-08-29 04:00:57 +00004637 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004638 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004639 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004640 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004641 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4642 return SQLITE_CORRUPT_BKPT;
4643 }
drhb00fc3b2013-08-21 23:42:32 +00004644 rc = getAndInitPage(pBt, newPgno, &pNewPage,
drh036dbec2014-03-11 23:40:44 +00004645 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004646 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004647 pCur->apPage[i+1] = pNewPage;
4648 pCur->aiIdx[i+1] = 0;
4649 pCur->iPage++;
4650
drh271efa52004-05-30 19:19:05 +00004651 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004652 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk1977bd5969a2009-07-11 17:39:42 +00004653 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004654 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004655 }
drh72f82862001-05-24 21:06:34 +00004656 return SQLITE_OK;
4657}
4658
drhcbd33492015-03-25 13:06:54 +00004659#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004660/*
4661** Page pParent is an internal (non-leaf) tree page. This function
4662** asserts that page number iChild is the left-child if the iIdx'th
4663** cell in page pParent. Or, if iIdx is equal to the total number of
4664** cells in pParent, that page number iChild is the right-child of
4665** the page.
4666*/
4667static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004668 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4669 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004670 assert( iIdx<=pParent->nCell );
4671 if( iIdx==pParent->nCell ){
4672 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4673 }else{
4674 assert( get4byte(findCell(pParent, iIdx))==iChild );
4675 }
4676}
4677#else
4678# define assertParentIndex(x,y,z)
4679#endif
4680
drh72f82862001-05-24 21:06:34 +00004681/*
drh5e2f8b92001-05-28 00:41:15 +00004682** Move the cursor up to the parent page.
4683**
4684** pCur->idx is set to the cell index that contains the pointer
4685** to the page we are coming from. If we are coming from the
4686** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004687** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004688*/
danielk197730548662009-07-09 05:07:37 +00004689static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004690 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004691 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004692 assert( pCur->iPage>0 );
4693 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004694 assertParentIndex(
4695 pCur->apPage[pCur->iPage-1],
4696 pCur->aiIdx[pCur->iPage-1],
4697 pCur->apPage[pCur->iPage]->pgno
4698 );
dan6c2688c2012-01-12 15:05:03 +00004699 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004700
danielk197771d5d2c2008-09-29 11:49:47 +00004701 releasePage(pCur->apPage[pCur->iPage]);
4702 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004703 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004704 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh72f82862001-05-24 21:06:34 +00004705}
4706
4707/*
danielk19778f880a82009-07-13 09:41:45 +00004708** Move the cursor to point to the root page of its b-tree structure.
4709**
4710** If the table has a virtual root page, then the cursor is moved to point
4711** to the virtual root page instead of the actual root page. A table has a
4712** virtual root page when the actual root page contains no cells and a
4713** single child page. This can only happen with the table rooted at page 1.
4714**
4715** If the b-tree structure is empty, the cursor state is set to
4716** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4717** cell located on the root (or virtual root) page and the cursor state
4718** is set to CURSOR_VALID.
4719**
4720** If this function returns successfully, it may be assumed that the
4721** page-header flags indicate that the [virtual] root-page is the expected
4722** kind of b-tree page (i.e. if when opening the cursor the caller did not
4723** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4724** indicating a table b-tree, or if the caller did specify a KeyInfo
4725** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4726** b-tree).
drh72f82862001-05-24 21:06:34 +00004727*/
drh5e2f8b92001-05-28 00:41:15 +00004728static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004729 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004730 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004731
drh1fee73e2007-08-29 04:00:57 +00004732 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004733 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4734 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4735 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4736 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4737 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004738 assert( pCur->skipNext!=SQLITE_OK );
4739 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004740 }
danielk1977be51a652008-10-08 17:58:48 +00004741 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004742 }
danielk197771d5d2c2008-09-29 11:49:47 +00004743
4744 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004745 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004746 }else if( pCur->pgnoRoot==0 ){
4747 pCur->eState = CURSOR_INVALID;
4748 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004749 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004750 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh036dbec2014-03-11 23:40:44 +00004751 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004752 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004753 pCur->eState = CURSOR_INVALID;
4754 return rc;
4755 }
danielk1977172114a2009-07-07 15:47:12 +00004756 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004757 }
danielk197771d5d2c2008-09-29 11:49:47 +00004758 pRoot = pCur->apPage[0];
4759 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004760
4761 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4762 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4763 ** NULL, the caller expects a table b-tree. If this is not the case,
4764 ** return an SQLITE_CORRUPT error.
4765 **
4766 ** Earlier versions of SQLite assumed that this test could not fail
4767 ** if the root page was already loaded when this function was called (i.e.
4768 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4769 ** in such a way that page pRoot is linked into a second b-tree table
4770 ** (or the freelist). */
4771 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4772 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4773 return SQLITE_CORRUPT_BKPT;
4774 }
danielk19778f880a82009-07-13 09:41:45 +00004775
danielk197771d5d2c2008-09-29 11:49:47 +00004776 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004777 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004778 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004779
drh4e8fe3f2013-12-06 23:25:27 +00004780 if( pRoot->nCell>0 ){
4781 pCur->eState = CURSOR_VALID;
4782 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004783 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004784 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004785 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004786 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004787 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004788 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004789 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004790 }
4791 return rc;
drh72f82862001-05-24 21:06:34 +00004792}
drh2af926b2001-05-15 00:39:25 +00004793
drh5e2f8b92001-05-28 00:41:15 +00004794/*
4795** Move the cursor down to the left-most leaf entry beneath the
4796** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004797**
4798** The left-most leaf is the one with the smallest key - the first
4799** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004800*/
4801static int moveToLeftmost(BtCursor *pCur){
4802 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004803 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004804 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004805
drh1fee73e2007-08-29 04:00:57 +00004806 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004807 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004808 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4809 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4810 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004811 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004812 }
drhd677b3d2007-08-20 22:48:41 +00004813 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004814}
4815
drh2dcc9aa2002-12-04 13:40:25 +00004816/*
4817** Move the cursor down to the right-most leaf entry beneath the
4818** page to which it is currently pointing. Notice the difference
4819** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4820** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4821** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004822**
4823** The right-most entry is the one with the largest key - the last
4824** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004825*/
4826static int moveToRightmost(BtCursor *pCur){
4827 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004828 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004829 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004830
drh1fee73e2007-08-29 04:00:57 +00004831 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004832 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004833 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004834 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004835 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004836 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004837 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004838 }
drhee6438d2014-09-01 13:29:32 +00004839 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4840 assert( pCur->info.nSize==0 );
4841 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4842 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004843}
4844
drh5e00f6c2001-09-13 13:46:56 +00004845/* Move the cursor to the first entry in the table. Return SQLITE_OK
4846** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004847** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004848*/
drh3aac2dd2004-04-26 14:10:20 +00004849int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004850 int rc;
drhd677b3d2007-08-20 22:48:41 +00004851
drh1fee73e2007-08-29 04:00:57 +00004852 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004853 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004854 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004855 if( rc==SQLITE_OK ){
4856 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004857 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004858 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004859 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004860 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004861 *pRes = 0;
4862 rc = moveToLeftmost(pCur);
4863 }
drh5e00f6c2001-09-13 13:46:56 +00004864 }
drh5e00f6c2001-09-13 13:46:56 +00004865 return rc;
4866}
drh5e2f8b92001-05-28 00:41:15 +00004867
drh9562b552002-02-19 15:00:07 +00004868/* Move the cursor to the last entry in the table. Return SQLITE_OK
4869** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004870** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004871*/
drh3aac2dd2004-04-26 14:10:20 +00004872int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004873 int rc;
drhd677b3d2007-08-20 22:48:41 +00004874
drh1fee73e2007-08-29 04:00:57 +00004875 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004876 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004877
4878 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004879 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004880#ifdef SQLITE_DEBUG
4881 /* This block serves to assert() that the cursor really does point
4882 ** to the last entry in the b-tree. */
4883 int ii;
4884 for(ii=0; ii<pCur->iPage; ii++){
4885 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4886 }
4887 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4888 assert( pCur->apPage[pCur->iPage]->leaf );
4889#endif
4890 return SQLITE_OK;
4891 }
4892
drh9562b552002-02-19 15:00:07 +00004893 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004894 if( rc==SQLITE_OK ){
4895 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004896 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004897 *pRes = 1;
4898 }else{
4899 assert( pCur->eState==CURSOR_VALID );
4900 *pRes = 0;
4901 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004902 if( rc==SQLITE_OK ){
4903 pCur->curFlags |= BTCF_AtLast;
4904 }else{
4905 pCur->curFlags &= ~BTCF_AtLast;
4906 }
4907
drhd677b3d2007-08-20 22:48:41 +00004908 }
drh9562b552002-02-19 15:00:07 +00004909 }
drh9562b552002-02-19 15:00:07 +00004910 return rc;
4911}
4912
drhe14006d2008-03-25 17:23:32 +00004913/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004914** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004915**
drhe63d9992008-08-13 19:11:48 +00004916** For INTKEY tables, the intKey parameter is used. pIdxKey
4917** must be NULL. For index tables, pIdxKey is used and intKey
4918** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004919**
drh5e2f8b92001-05-28 00:41:15 +00004920** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004921** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004922** were present. The cursor might point to an entry that comes
4923** before or after the key.
4924**
drh64022502009-01-09 14:11:04 +00004925** An integer is written into *pRes which is the result of
4926** comparing the key with the entry to which the cursor is
4927** pointing. The meaning of the integer written into
4928** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004929**
4930** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004931** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004932** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004933**
4934** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004935** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004936**
4937** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004938** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004939**
drha059ad02001-04-17 20:09:11 +00004940*/
drhe63d9992008-08-13 19:11:48 +00004941int sqlite3BtreeMovetoUnpacked(
4942 BtCursor *pCur, /* The cursor to be moved */
4943 UnpackedRecord *pIdxKey, /* Unpacked index key */
4944 i64 intKey, /* The table key */
4945 int biasRight, /* If true, bias the search to the high end */
4946 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004947){
drh72f82862001-05-24 21:06:34 +00004948 int rc;
dan3b9330f2014-02-27 20:44:18 +00004949 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004950
drh1fee73e2007-08-29 04:00:57 +00004951 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004952 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004953 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004954 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004955
4956 /* If the cursor is already positioned at the point we are trying
4957 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00004958 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00004959 && pCur->apPage[0]->intKey
4960 ){
drhe63d9992008-08-13 19:11:48 +00004961 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004962 *pRes = 0;
4963 return SQLITE_OK;
4964 }
drh036dbec2014-03-11 23:40:44 +00004965 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004966 *pRes = -1;
4967 return SQLITE_OK;
4968 }
4969 }
4970
dan1fed5da2014-02-25 21:01:25 +00004971 if( pIdxKey ){
4972 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00004973 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00004974 assert( pIdxKey->default_rc==1
4975 || pIdxKey->default_rc==0
4976 || pIdxKey->default_rc==-1
4977 );
drh13a747e2014-03-03 21:46:55 +00004978 }else{
drhb6e8fd12014-03-06 01:56:33 +00004979 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004980 }
4981
drh5e2f8b92001-05-28 00:41:15 +00004982 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004983 if( rc ){
4984 return rc;
4985 }
dana205a482011-08-27 18:48:57 +00004986 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4987 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4988 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004989 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004990 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004991 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004992 return SQLITE_OK;
4993 }
danielk197771d5d2c2008-09-29 11:49:47 +00004994 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004995 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004996 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004997 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004998 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004999 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005000
5001 /* pPage->nCell must be greater than zero. If this is the root-page
5002 ** the cursor would have been INVALID above and this for(;;) loop
5003 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005004 ** would have already detected db corruption. Similarly, pPage must
5005 ** be the right kind (index or table) of b-tree page. Otherwise
5006 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005007 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005008 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005009 lwr = 0;
5010 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005011 assert( biasRight==0 || biasRight==1 );
5012 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005013 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005014 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005015 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005016 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00005017 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3e28ff52014-09-24 00:59:08 +00005018 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005019 while( 0x80 <= *(pCell++) ){
5020 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5021 }
drhd172f862006-01-12 15:01:15 +00005022 }
drha2c20e42008-03-29 16:01:04 +00005023 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005024 if( nCellKey<intKey ){
5025 lwr = idx+1;
5026 if( lwr>upr ){ c = -1; break; }
5027 }else if( nCellKey>intKey ){
5028 upr = idx-1;
5029 if( lwr>upr ){ c = +1; break; }
5030 }else{
5031 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005032 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005033 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005034 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005035 if( !pPage->leaf ){
5036 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005037 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005038 }else{
5039 *pRes = 0;
5040 rc = SQLITE_OK;
5041 goto moveto_finish;
5042 }
drhd793f442013-11-25 14:10:15 +00005043 }
drhebf10b12013-11-25 17:38:26 +00005044 assert( lwr+upr>=0 );
5045 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005046 }
5047 }else{
5048 for(;;){
drhc6827502015-05-28 15:14:32 +00005049 int nCell; /* Size of the pCell cell in bytes */
drhec3e6b12013-11-25 02:38:55 +00005050 pCell = findCell(pPage, idx) + pPage->childPtrSize;
5051
drhb2eced52010-08-12 02:41:12 +00005052 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005053 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005054 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005055 ** varint. This information is used to attempt to avoid parsing
5056 ** the entire cell by checking for the cases where the record is
5057 ** stored entirely within the b-tree page by inspecting the first
5058 ** 2 bytes of the cell.
5059 */
drhec3e6b12013-11-25 02:38:55 +00005060 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005061 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005062 /* This branch runs if the record-size field of the cell is a
5063 ** single byte varint and the record fits entirely on the main
5064 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005065 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005066 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005067 }else if( !(pCell[1] & 0x80)
5068 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5069 ){
5070 /* The record-size field is a 2 byte varint and the record
5071 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005072 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005073 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005074 }else{
danielk197711c327a2009-05-04 19:01:26 +00005075 /* The record flows over onto one or more overflow pages. In
5076 ** this case the whole cell needs to be parsed, a buffer allocated
5077 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005078 ** buffer before VdbeRecordCompare() can be called.
5079 **
5080 ** If the record is corrupt, the xRecordCompare routine may read
5081 ** up to two varints past the end of the buffer. An extra 18
5082 ** bytes of padding is allocated at the end of the buffer in
5083 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005084 void *pCellKey;
5085 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005086 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005087 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005088 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5089 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5090 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5091 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005092 if( nCell<2 ){
5093 rc = SQLITE_CORRUPT_BKPT;
5094 goto moveto_finish;
5095 }
5096 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005097 if( pCellKey==0 ){
5098 rc = SQLITE_NOMEM;
5099 goto moveto_finish;
5100 }
drhd793f442013-11-25 14:10:15 +00005101 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005102 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005103 if( rc ){
5104 sqlite3_free(pCellKey);
5105 goto moveto_finish;
5106 }
drh75179de2014-09-16 14:37:35 +00005107 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005108 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005109 }
dan38fdead2014-04-01 10:19:02 +00005110 assert(
5111 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005112 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005113 );
drhbb933ef2013-11-25 15:01:38 +00005114 if( c<0 ){
5115 lwr = idx+1;
5116 }else if( c>0 ){
5117 upr = idx-1;
5118 }else{
5119 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005120 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005121 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005122 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005123 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005124 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005125 }
drhebf10b12013-11-25 17:38:26 +00005126 if( lwr>upr ) break;
5127 assert( lwr+upr>=0 );
5128 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005129 }
drh72f82862001-05-24 21:06:34 +00005130 }
drhb07028f2011-10-14 21:49:18 +00005131 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005132 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005133 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005134 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005135 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005136 *pRes = c;
5137 rc = SQLITE_OK;
5138 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005139 }
5140moveto_next_layer:
5141 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005142 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005143 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005144 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005145 }
drhf49661a2008-12-10 16:45:50 +00005146 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005147 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005148 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005149 }
drh1e968a02008-03-25 00:22:21 +00005150moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005151 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005152 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005153 return rc;
5154}
5155
drhd677b3d2007-08-20 22:48:41 +00005156
drh72f82862001-05-24 21:06:34 +00005157/*
drhc39e0002004-05-07 23:50:57 +00005158** Return TRUE if the cursor is not pointing at an entry of the table.
5159**
5160** TRUE will be returned after a call to sqlite3BtreeNext() moves
5161** past the last entry in the table or sqlite3BtreePrev() moves past
5162** the first entry. TRUE is also returned if the table is empty.
5163*/
5164int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005165 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5166 ** have been deleted? This API will need to change to return an error code
5167 ** as well as the boolean result value.
5168 */
5169 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005170}
5171
5172/*
drhbd03cae2001-06-02 02:40:57 +00005173** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005174** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005175** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005176** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005177**
drhee6438d2014-09-01 13:29:32 +00005178** The main entry point is sqlite3BtreeNext(). That routine is optimized
5179** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5180** to the next cell on the current page. The (slower) btreeNext() helper
5181** routine is called when it is necessary to move to a different page or
5182** to restore the cursor.
5183**
drhe39a7322014-02-03 14:04:11 +00005184** The calling function will set *pRes to 0 or 1. The initial *pRes value
5185** will be 1 if the cursor being stepped corresponds to an SQL index and
5186** if this routine could have been skipped if that SQL index had been
5187** a unique index. Otherwise the caller will have set *pRes to zero.
5188** Zero is the common case. The btree implementation is free to use the
5189** initial *pRes value as a hint to improve performance, but the current
5190** SQLite btree implementation does not. (Note that the comdb2 btree
5191** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005192*/
drhee6438d2014-09-01 13:29:32 +00005193static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005194 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005195 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005196 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005197
drh1fee73e2007-08-29 04:00:57 +00005198 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005199 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005200 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005201 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005202 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005203 rc = restoreCursorPosition(pCur);
5204 if( rc!=SQLITE_OK ){
5205 return rc;
5206 }
5207 if( CURSOR_INVALID==pCur->eState ){
5208 *pRes = 1;
5209 return SQLITE_OK;
5210 }
drh9b47ee32013-08-20 03:13:51 +00005211 if( pCur->skipNext ){
5212 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5213 pCur->eState = CURSOR_VALID;
5214 if( pCur->skipNext>0 ){
5215 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005216 return SQLITE_OK;
5217 }
drhf66f26a2013-08-19 20:04:10 +00005218 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005219 }
danielk1977da184232006-01-05 11:34:32 +00005220 }
danielk1977da184232006-01-05 11:34:32 +00005221
danielk197771d5d2c2008-09-29 11:49:47 +00005222 pPage = pCur->apPage[pCur->iPage];
5223 idx = ++pCur->aiIdx[pCur->iPage];
5224 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005225
5226 /* If the database file is corrupt, it is possible for the value of idx
5227 ** to be invalid here. This can only occur if a second cursor modifies
5228 ** the page while cursor pCur is holding a reference to it. Which can
5229 ** only happen if the database is corrupt in such a way as to link the
5230 ** page into more than one b-tree structure. */
5231 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005232
danielk197771d5d2c2008-09-29 11:49:47 +00005233 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005234 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005235 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005236 if( rc ) return rc;
5237 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005238 }
drh5e2f8b92001-05-28 00:41:15 +00005239 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005240 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005241 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005242 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005243 return SQLITE_OK;
5244 }
danielk197730548662009-07-09 05:07:37 +00005245 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005246 pPage = pCur->apPage[pCur->iPage];
5247 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005248 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005249 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005250 }else{
drhee6438d2014-09-01 13:29:32 +00005251 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005252 }
drh8178a752003-01-05 21:41:40 +00005253 }
drh3aac2dd2004-04-26 14:10:20 +00005254 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005255 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005256 }else{
5257 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005258 }
drh72f82862001-05-24 21:06:34 +00005259}
drhee6438d2014-09-01 13:29:32 +00005260int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5261 MemPage *pPage;
5262 assert( cursorHoldsMutex(pCur) );
5263 assert( pRes!=0 );
5264 assert( *pRes==0 || *pRes==1 );
5265 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5266 pCur->info.nSize = 0;
5267 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5268 *pRes = 0;
5269 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5270 pPage = pCur->apPage[pCur->iPage];
5271 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5272 pCur->aiIdx[pCur->iPage]--;
5273 return btreeNext(pCur, pRes);
5274 }
5275 if( pPage->leaf ){
5276 return SQLITE_OK;
5277 }else{
5278 return moveToLeftmost(pCur);
5279 }
5280}
drh72f82862001-05-24 21:06:34 +00005281
drh3b7511c2001-05-26 13:15:44 +00005282/*
drh2dcc9aa2002-12-04 13:40:25 +00005283** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005284** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005285** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005286** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005287**
drhee6438d2014-09-01 13:29:32 +00005288** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5289** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005290** to the previous cell on the current page. The (slower) btreePrevious()
5291** helper routine is called when it is necessary to move to a different page
5292** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005293**
drhe39a7322014-02-03 14:04:11 +00005294** The calling function will set *pRes to 0 or 1. The initial *pRes value
5295** will be 1 if the cursor being stepped corresponds to an SQL index and
5296** if this routine could have been skipped if that SQL index had been
5297** a unique index. Otherwise the caller will have set *pRes to zero.
5298** Zero is the common case. The btree implementation is free to use the
5299** initial *pRes value as a hint to improve performance, but the current
5300** SQLite btree implementation does not. (Note that the comdb2 btree
5301** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005302*/
drhee6438d2014-09-01 13:29:32 +00005303static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005304 int rc;
drh8178a752003-01-05 21:41:40 +00005305 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005306
drh1fee73e2007-08-29 04:00:57 +00005307 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005308 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005309 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005310 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005311 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5312 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005313 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005314 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005315 if( rc!=SQLITE_OK ){
5316 return rc;
drhf66f26a2013-08-19 20:04:10 +00005317 }
5318 if( CURSOR_INVALID==pCur->eState ){
5319 *pRes = 1;
5320 return SQLITE_OK;
5321 }
drh9b47ee32013-08-20 03:13:51 +00005322 if( pCur->skipNext ){
5323 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5324 pCur->eState = CURSOR_VALID;
5325 if( pCur->skipNext<0 ){
5326 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005327 return SQLITE_OK;
5328 }
drhf66f26a2013-08-19 20:04:10 +00005329 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005330 }
danielk1977da184232006-01-05 11:34:32 +00005331 }
danielk1977da184232006-01-05 11:34:32 +00005332
danielk197771d5d2c2008-09-29 11:49:47 +00005333 pPage = pCur->apPage[pCur->iPage];
5334 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005335 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005336 int idx = pCur->aiIdx[pCur->iPage];
5337 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005338 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005339 rc = moveToRightmost(pCur);
5340 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005341 while( pCur->aiIdx[pCur->iPage]==0 ){
5342 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005343 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005344 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005345 return SQLITE_OK;
5346 }
danielk197730548662009-07-09 05:07:37 +00005347 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005348 }
drhee6438d2014-09-01 13:29:32 +00005349 assert( pCur->info.nSize==0 );
5350 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005351
5352 pCur->aiIdx[pCur->iPage]--;
5353 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005354 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005355 rc = sqlite3BtreePrevious(pCur, pRes);
5356 }else{
5357 rc = SQLITE_OK;
5358 }
drh2dcc9aa2002-12-04 13:40:25 +00005359 }
drh2dcc9aa2002-12-04 13:40:25 +00005360 return rc;
5361}
drhee6438d2014-09-01 13:29:32 +00005362int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5363 assert( cursorHoldsMutex(pCur) );
5364 assert( pRes!=0 );
5365 assert( *pRes==0 || *pRes==1 );
5366 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5367 *pRes = 0;
5368 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5369 pCur->info.nSize = 0;
5370 if( pCur->eState!=CURSOR_VALID
5371 || pCur->aiIdx[pCur->iPage]==0
5372 || pCur->apPage[pCur->iPage]->leaf==0
5373 ){
5374 return btreePrevious(pCur, pRes);
5375 }
5376 pCur->aiIdx[pCur->iPage]--;
5377 return SQLITE_OK;
5378}
drh2dcc9aa2002-12-04 13:40:25 +00005379
5380/*
drh3b7511c2001-05-26 13:15:44 +00005381** Allocate a new page from the database file.
5382**
danielk19773b8a05f2007-03-19 17:44:26 +00005383** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005384** has already been called on the new page.) The new page has also
5385** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005386** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005387**
5388** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005389** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005390**
drh82e647d2013-03-02 03:25:55 +00005391** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005392** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005393** attempt to keep related pages close to each other in the database file,
5394** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005395**
drh82e647d2013-03-02 03:25:55 +00005396** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5397** anywhere on the free-list, then it is guaranteed to be returned. If
5398** eMode is BTALLOC_LT then the page returned will be less than or equal
5399** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5400** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005401*/
drh4f0c5872007-03-26 22:05:01 +00005402static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005403 BtShared *pBt, /* The btree */
5404 MemPage **ppPage, /* Store pointer to the allocated page here */
5405 Pgno *pPgno, /* Store the page number here */
5406 Pgno nearby, /* Search for a page near this one */
5407 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005408){
drh3aac2dd2004-04-26 14:10:20 +00005409 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005410 int rc;
drh35cd6432009-06-05 14:17:21 +00005411 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005412 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005413 MemPage *pTrunk = 0;
5414 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005415 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005416
drh1fee73e2007-08-29 04:00:57 +00005417 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005418 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005419 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005420 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005421 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5422 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005423 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005424 testcase( n==mxPage-1 );
5425 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005426 return SQLITE_CORRUPT_BKPT;
5427 }
drh3aac2dd2004-04-26 14:10:20 +00005428 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005429 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005430 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005431 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005432 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005433
drh82e647d2013-03-02 03:25:55 +00005434 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005435 ** shows that the page 'nearby' is somewhere on the free-list, then
5436 ** the entire-list will be searched for that page.
5437 */
5438#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005439 if( eMode==BTALLOC_EXACT ){
5440 if( nearby<=mxPage ){
5441 u8 eType;
5442 assert( nearby>0 );
5443 assert( pBt->autoVacuum );
5444 rc = ptrmapGet(pBt, nearby, &eType, 0);
5445 if( rc ) return rc;
5446 if( eType==PTRMAP_FREEPAGE ){
5447 searchList = 1;
5448 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005449 }
dan51f0b6d2013-02-22 20:16:34 +00005450 }else if( eMode==BTALLOC_LE ){
5451 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005452 }
5453#endif
5454
5455 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5456 ** first free-list trunk page. iPrevTrunk is initially 1.
5457 */
danielk19773b8a05f2007-03-19 17:44:26 +00005458 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005459 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005460 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005461
5462 /* The code within this loop is run only once if the 'searchList' variable
5463 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005464 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5465 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005466 */
5467 do {
5468 pPrevTrunk = pTrunk;
5469 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005470 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5471 ** is the page number of the next freelist trunk page in the list or
5472 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005473 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005474 }else{
drh113762a2014-11-19 16:36:25 +00005475 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5476 ** stores the page number of the first page of the freelist, or zero if
5477 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005478 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005479 }
drhdf35a082009-07-09 02:24:35 +00005480 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005481 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005482 rc = SQLITE_CORRUPT_BKPT;
5483 }else{
drh7e8c6f12015-05-28 03:28:27 +00005484 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005485 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005486 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005487 pTrunk = 0;
5488 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005489 }
drhb07028f2011-10-14 21:49:18 +00005490 assert( pTrunk!=0 );
5491 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005492 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5493 ** is the number of leaf page pointers to follow. */
5494 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005495 if( k==0 && !searchList ){
5496 /* The trunk has no leaves and the list is not being searched.
5497 ** So extract the trunk page itself and use it as the newly
5498 ** allocated page */
5499 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005500 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005501 if( rc ){
5502 goto end_allocate_page;
5503 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005504 *pPgno = iTrunk;
5505 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5506 *ppPage = pTrunk;
5507 pTrunk = 0;
5508 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005509 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005510 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005511 rc = SQLITE_CORRUPT_BKPT;
5512 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005513#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005514 }else if( searchList
5515 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5516 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005517 /* The list is being searched and this trunk page is the page
5518 ** to allocate, regardless of whether it has leaves.
5519 */
dan51f0b6d2013-02-22 20:16:34 +00005520 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005521 *ppPage = pTrunk;
5522 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005523 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005524 if( rc ){
5525 goto end_allocate_page;
5526 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005527 if( k==0 ){
5528 if( !pPrevTrunk ){
5529 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5530 }else{
danf48c3552010-08-23 15:41:24 +00005531 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5532 if( rc!=SQLITE_OK ){
5533 goto end_allocate_page;
5534 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005535 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5536 }
5537 }else{
5538 /* The trunk page is required by the caller but it contains
5539 ** pointers to free-list leaves. The first leaf becomes a trunk
5540 ** page in this case.
5541 */
5542 MemPage *pNewTrunk;
5543 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005544 if( iNewTrunk>mxPage ){
5545 rc = SQLITE_CORRUPT_BKPT;
5546 goto end_allocate_page;
5547 }
drhdf35a082009-07-09 02:24:35 +00005548 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005549 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005550 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005551 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005552 }
danielk19773b8a05f2007-03-19 17:44:26 +00005553 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005554 if( rc!=SQLITE_OK ){
5555 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005556 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005557 }
5558 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5559 put4byte(&pNewTrunk->aData[4], k-1);
5560 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005561 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005562 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005563 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005564 put4byte(&pPage1->aData[32], iNewTrunk);
5565 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005566 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005567 if( rc ){
5568 goto end_allocate_page;
5569 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005570 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5571 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005572 }
5573 pTrunk = 0;
5574 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5575#endif
danielk1977e5765212009-06-17 11:13:28 +00005576 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005577 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005578 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005579 Pgno iPage;
5580 unsigned char *aData = pTrunk->aData;
5581 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005582 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005583 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005584 if( eMode==BTALLOC_LE ){
5585 for(i=0; i<k; i++){
5586 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005587 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005588 closest = i;
5589 break;
5590 }
5591 }
5592 }else{
5593 int dist;
5594 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5595 for(i=1; i<k; i++){
5596 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5597 if( d2<dist ){
5598 closest = i;
5599 dist = d2;
5600 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005601 }
5602 }
5603 }else{
5604 closest = 0;
5605 }
5606
5607 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005608 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005609 if( iPage>mxPage ){
5610 rc = SQLITE_CORRUPT_BKPT;
5611 goto end_allocate_page;
5612 }
drhdf35a082009-07-09 02:24:35 +00005613 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005614 if( !searchList
5615 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5616 ){
danielk1977bea2a942009-01-20 17:06:27 +00005617 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005618 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005619 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5620 ": %d more free pages\n",
5621 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005622 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5623 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005624 if( closest<k-1 ){
5625 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5626 }
5627 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005628 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005629 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005630 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005631 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005632 if( rc!=SQLITE_OK ){
5633 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005634 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005635 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005636 }
5637 searchList = 0;
5638 }
drhee696e22004-08-30 16:52:17 +00005639 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005640 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005641 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005642 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005643 }else{
danbc1a3c62013-02-23 16:40:46 +00005644 /* There are no pages on the freelist, so append a new page to the
5645 ** database image.
5646 **
5647 ** Normally, new pages allocated by this block can be requested from the
5648 ** pager layer with the 'no-content' flag set. This prevents the pager
5649 ** from trying to read the pages content from disk. However, if the
5650 ** current transaction has already run one or more incremental-vacuum
5651 ** steps, then the page we are about to allocate may contain content
5652 ** that is required in the event of a rollback. In this case, do
5653 ** not set the no-content flag. This causes the pager to load and journal
5654 ** the current page content before overwriting it.
5655 **
5656 ** Note that the pager will not actually attempt to load or journal
5657 ** content for any page that really does lie past the end of the database
5658 ** file on disk. So the effects of disabling the no-content optimization
5659 ** here are confined to those pages that lie between the end of the
5660 ** database image and the end of the database file.
5661 */
drh3f387402014-09-24 01:23:00 +00005662 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005663
drhdd3cd972010-03-27 17:12:36 +00005664 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5665 if( rc ) return rc;
5666 pBt->nPage++;
5667 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005668
danielk1977afcdd022004-10-31 16:25:42 +00005669#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005670 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005671 /* If *pPgno refers to a pointer-map page, allocate two new pages
5672 ** at the end of the file instead of one. The first allocated page
5673 ** becomes a new pointer-map page, the second is used by the caller.
5674 */
danielk1977ac861692009-03-28 10:54:22 +00005675 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005676 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5677 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005678 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005679 if( rc==SQLITE_OK ){
5680 rc = sqlite3PagerWrite(pPg->pDbPage);
5681 releasePage(pPg);
5682 }
5683 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005684 pBt->nPage++;
5685 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005686 }
5687#endif
drhdd3cd972010-03-27 17:12:36 +00005688 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5689 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005690
danielk1977599fcba2004-11-08 07:13:13 +00005691 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005692 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005693 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005694 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005695 if( rc!=SQLITE_OK ){
5696 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005697 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005698 }
drh3a4c1412004-05-09 20:40:11 +00005699 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005700 }
danielk1977599fcba2004-11-08 07:13:13 +00005701
5702 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005703
5704end_allocate_page:
5705 releasePage(pTrunk);
5706 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005707 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5708 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005709 return rc;
5710}
5711
5712/*
danielk1977bea2a942009-01-20 17:06:27 +00005713** This function is used to add page iPage to the database file free-list.
5714** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005715**
danielk1977bea2a942009-01-20 17:06:27 +00005716** The value passed as the second argument to this function is optional.
5717** If the caller happens to have a pointer to the MemPage object
5718** corresponding to page iPage handy, it may pass it as the second value.
5719** Otherwise, it may pass NULL.
5720**
5721** If a pointer to a MemPage object is passed as the second argument,
5722** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005723*/
danielk1977bea2a942009-01-20 17:06:27 +00005724static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5725 MemPage *pTrunk = 0; /* Free-list trunk page */
5726 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5727 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5728 MemPage *pPage; /* Page being freed. May be NULL. */
5729 int rc; /* Return Code */
5730 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005731
danielk1977bea2a942009-01-20 17:06:27 +00005732 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005733 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005734 assert( !pMemPage || pMemPage->pgno==iPage );
5735
danfb0246b2015-05-26 12:18:17 +00005736 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005737 if( pMemPage ){
5738 pPage = pMemPage;
5739 sqlite3PagerRef(pPage->pDbPage);
5740 }else{
5741 pPage = btreePageLookup(pBt, iPage);
5742 }
drh3aac2dd2004-04-26 14:10:20 +00005743
drha34b6762004-05-07 13:30:42 +00005744 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005745 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005746 if( rc ) goto freepage_out;
5747 nFree = get4byte(&pPage1->aData[36]);
5748 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005749
drhc9166342012-01-05 23:32:06 +00005750 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005751 /* If the secure_delete option is enabled, then
5752 ** always fully overwrite deleted information with zeros.
5753 */
drhb00fc3b2013-08-21 23:42:32 +00005754 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005755 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005756 ){
5757 goto freepage_out;
5758 }
5759 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005760 }
drhfcce93f2006-02-22 03:08:32 +00005761
danielk1977687566d2004-11-02 12:56:41 +00005762 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005763 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005764 */
danielk197785d90ca2008-07-19 14:25:15 +00005765 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005766 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005767 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005768 }
danielk1977687566d2004-11-02 12:56:41 +00005769
danielk1977bea2a942009-01-20 17:06:27 +00005770 /* Now manipulate the actual database free-list structure. There are two
5771 ** possibilities. If the free-list is currently empty, or if the first
5772 ** trunk page in the free-list is full, then this page will become a
5773 ** new free-list trunk page. Otherwise, it will become a leaf of the
5774 ** first trunk page in the current free-list. This block tests if it
5775 ** is possible to add the page as a new free-list leaf.
5776 */
5777 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005778 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005779
5780 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005781 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005782 if( rc!=SQLITE_OK ){
5783 goto freepage_out;
5784 }
5785
5786 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005787 assert( pBt->usableSize>32 );
5788 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005789 rc = SQLITE_CORRUPT_BKPT;
5790 goto freepage_out;
5791 }
drheeb844a2009-08-08 18:01:07 +00005792 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005793 /* In this case there is room on the trunk page to insert the page
5794 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005795 **
5796 ** Note that the trunk page is not really full until it contains
5797 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5798 ** coded. But due to a coding error in versions of SQLite prior to
5799 ** 3.6.0, databases with freelist trunk pages holding more than
5800 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5801 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005802 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005803 ** for now. At some point in the future (once everyone has upgraded
5804 ** to 3.6.0 or later) we should consider fixing the conditional above
5805 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005806 **
5807 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5808 ** avoid using the last six entries in the freelist trunk page array in
5809 ** order that database files created by newer versions of SQLite can be
5810 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005811 */
danielk19773b8a05f2007-03-19 17:44:26 +00005812 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005813 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005814 put4byte(&pTrunk->aData[4], nLeaf+1);
5815 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005816 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005817 sqlite3PagerDontWrite(pPage->pDbPage);
5818 }
danielk1977bea2a942009-01-20 17:06:27 +00005819 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005820 }
drh3a4c1412004-05-09 20:40:11 +00005821 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005822 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005823 }
drh3b7511c2001-05-26 13:15:44 +00005824 }
danielk1977bea2a942009-01-20 17:06:27 +00005825
5826 /* If control flows to this point, then it was not possible to add the
5827 ** the page being freed as a leaf page of the first trunk in the free-list.
5828 ** Possibly because the free-list is empty, or possibly because the
5829 ** first trunk in the free-list is full. Either way, the page being freed
5830 ** will become the new first trunk page in the free-list.
5831 */
drhb00fc3b2013-08-21 23:42:32 +00005832 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005833 goto freepage_out;
5834 }
5835 rc = sqlite3PagerWrite(pPage->pDbPage);
5836 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005837 goto freepage_out;
5838 }
5839 put4byte(pPage->aData, iTrunk);
5840 put4byte(&pPage->aData[4], 0);
5841 put4byte(&pPage1->aData[32], iPage);
5842 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5843
5844freepage_out:
5845 if( pPage ){
5846 pPage->isInit = 0;
5847 }
5848 releasePage(pPage);
5849 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005850 return rc;
5851}
drhc314dc72009-07-21 11:52:34 +00005852static void freePage(MemPage *pPage, int *pRC){
5853 if( (*pRC)==SQLITE_OK ){
5854 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5855 }
danielk1977bea2a942009-01-20 17:06:27 +00005856}
drh3b7511c2001-05-26 13:15:44 +00005857
5858/*
drh9bfdc252014-09-24 02:05:41 +00005859** Free any overflow pages associated with the given Cell. Write the
5860** local Cell size (the number of bytes on the original page, omitting
5861** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005862*/
drh9bfdc252014-09-24 02:05:41 +00005863static int clearCell(
5864 MemPage *pPage, /* The page that contains the Cell */
5865 unsigned char *pCell, /* First byte of the Cell */
5866 u16 *pnSize /* Write the size of the Cell here */
5867){
danielk1977aef0bf62005-12-30 16:28:01 +00005868 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005869 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005870 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005871 int rc;
drh94440812007-03-06 11:42:19 +00005872 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005873 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005874
drh1fee73e2007-08-29 04:00:57 +00005875 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00005876 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005877 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005878 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005879 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005880 }
drhe42a9b42011-08-31 13:27:19 +00005881 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005882 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005883 }
drh6f11bef2004-05-13 01:12:56 +00005884 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005885 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005886 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005887 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00005888 assert( nOvfl>0 ||
5889 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
5890 );
drh72365832007-03-06 15:53:44 +00005891 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005892 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005893 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005894 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005895 /* 0 is not a legal page number and page 1 cannot be an
5896 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5897 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005898 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005899 }
danielk1977bea2a942009-01-20 17:06:27 +00005900 if( nOvfl ){
5901 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5902 if( rc ) return rc;
5903 }
dan887d4b22010-02-25 12:09:16 +00005904
shaneh1da207e2010-03-09 14:41:12 +00005905 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005906 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5907 ){
5908 /* There is no reason any cursor should have an outstanding reference
5909 ** to an overflow page belonging to a cell that is being deleted/updated.
5910 ** So if there exists more than one reference to this page, then it
5911 ** must not really be an overflow page and the database must be corrupt.
5912 ** It is helpful to detect this before calling freePage2(), as
5913 ** freePage2() may zero the page contents if secure-delete mode is
5914 ** enabled. If this 'overflow' page happens to be a page that the
5915 ** caller is iterating through or using in some other way, this
5916 ** can be problematic.
5917 */
5918 rc = SQLITE_CORRUPT_BKPT;
5919 }else{
5920 rc = freePage2(pBt, pOvfl, ovflPgno);
5921 }
5922
danielk1977bea2a942009-01-20 17:06:27 +00005923 if( pOvfl ){
5924 sqlite3PagerUnref(pOvfl->pDbPage);
5925 }
drh3b7511c2001-05-26 13:15:44 +00005926 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005927 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005928 }
drh5e2f8b92001-05-28 00:41:15 +00005929 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005930}
5931
5932/*
drh91025292004-05-03 19:49:32 +00005933** Create the byte sequence used to represent a cell on page pPage
5934** and write that byte sequence into pCell[]. Overflow pages are
5935** allocated and filled in as necessary. The calling procedure
5936** is responsible for making sure sufficient space has been allocated
5937** for pCell[].
5938**
5939** Note that pCell does not necessary need to point to the pPage->aData
5940** area. pCell might point to some temporary storage. The cell will
5941** be constructed in this temporary area then copied into pPage->aData
5942** later.
drh3b7511c2001-05-26 13:15:44 +00005943*/
5944static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005945 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005946 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005947 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005948 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005949 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005950 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005951){
drh3b7511c2001-05-26 13:15:44 +00005952 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005953 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005954 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005955 int spaceLeft;
5956 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005957 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005958 unsigned char *pPrior;
5959 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005960 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005961 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005962 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00005963
drh1fee73e2007-08-29 04:00:57 +00005964 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005965
drhc5053fb2008-11-27 02:22:10 +00005966 /* pPage is not necessarily writeable since pCell might be auxiliary
5967 ** buffer space that is separate from the pPage buffer area */
5968 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5969 || sqlite3PagerIswriteable(pPage->pDbPage) );
5970
drh91025292004-05-03 19:49:32 +00005971 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00005972 nHeader = pPage->childPtrSize;
5973 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00005974 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00005975 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00005976 }else{
drh6200c882014-09-23 22:36:25 +00005977 assert( nData==0 );
5978 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00005979 }
drh6f11bef2004-05-13 01:12:56 +00005980 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00005981
drh6200c882014-09-23 22:36:25 +00005982 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00005983 if( pPage->intKey ){
5984 pSrc = pData;
5985 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005986 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005987 }else{
danielk197731d31b82009-07-13 13:18:07 +00005988 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5989 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005990 }
drh6200c882014-09-23 22:36:25 +00005991 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005992 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005993 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005994 }
drh6200c882014-09-23 22:36:25 +00005995 if( nPayload<=pPage->maxLocal ){
5996 n = nHeader + nPayload;
5997 testcase( n==3 );
5998 testcase( n==4 );
5999 if( n<4 ) n = 4;
6000 *pnSize = n;
6001 spaceLeft = nPayload;
6002 pPrior = pCell;
6003 }else{
6004 int mn = pPage->minLocal;
6005 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6006 testcase( n==pPage->maxLocal );
6007 testcase( n==pPage->maxLocal+1 );
6008 if( n > pPage->maxLocal ) n = mn;
6009 spaceLeft = n;
6010 *pnSize = n + nHeader + 4;
6011 pPrior = &pCell[nHeader+n];
6012 }
drh3aac2dd2004-04-26 14:10:20 +00006013 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006014
drh6200c882014-09-23 22:36:25 +00006015 /* At this point variables should be set as follows:
6016 **
6017 ** nPayload Total payload size in bytes
6018 ** pPayload Begin writing payload here
6019 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6020 ** that means content must spill into overflow pages.
6021 ** *pnSize Size of the local cell (not counting overflow pages)
6022 ** pPrior Where to write the pgno of the first overflow page
6023 **
6024 ** Use a call to btreeParseCellPtr() to verify that the values above
6025 ** were computed correctly.
6026 */
6027#if SQLITE_DEBUG
6028 {
6029 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006030 pPage->xParseCell(pPage, pCell, &info);
drh6200c882014-09-23 22:36:25 +00006031 assert( nHeader=(int)(info.pPayload - pCell) );
6032 assert( info.nKey==nKey );
6033 assert( *pnSize == info.nSize );
6034 assert( spaceLeft == info.nLocal );
6035 assert( pPrior == &pCell[info.iOverflow] );
6036 }
6037#endif
6038
6039 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006040 while( nPayload>0 ){
6041 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006042#ifndef SQLITE_OMIT_AUTOVACUUM
6043 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006044 if( pBt->autoVacuum ){
6045 do{
6046 pgnoOvfl++;
6047 } while(
6048 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6049 );
danielk1977b39f70b2007-05-17 18:28:11 +00006050 }
danielk1977afcdd022004-10-31 16:25:42 +00006051#endif
drhf49661a2008-12-10 16:45:50 +00006052 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006053#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006054 /* If the database supports auto-vacuum, and the second or subsequent
6055 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006056 ** for that page now.
6057 **
6058 ** If this is the first overflow page, then write a partial entry
6059 ** to the pointer-map. If we write nothing to this pointer-map slot,
6060 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006061 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006062 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006063 */
danielk19774ef24492007-05-23 09:52:41 +00006064 if( pBt->autoVacuum && rc==SQLITE_OK ){
6065 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006066 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006067 if( rc ){
6068 releasePage(pOvfl);
6069 }
danielk1977afcdd022004-10-31 16:25:42 +00006070 }
6071#endif
drh3b7511c2001-05-26 13:15:44 +00006072 if( rc ){
drh9b171272004-05-08 02:03:22 +00006073 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006074 return rc;
6075 }
drhc5053fb2008-11-27 02:22:10 +00006076
6077 /* If pToRelease is not zero than pPrior points into the data area
6078 ** of pToRelease. Make sure pToRelease is still writeable. */
6079 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6080
6081 /* If pPrior is part of the data area of pPage, then make sure pPage
6082 ** is still writeable */
6083 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6084 || sqlite3PagerIswriteable(pPage->pDbPage) );
6085
drh3aac2dd2004-04-26 14:10:20 +00006086 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006087 releasePage(pToRelease);
6088 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006089 pPrior = pOvfl->aData;
6090 put4byte(pPrior, 0);
6091 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006092 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006093 }
6094 n = nPayload;
6095 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006096
6097 /* If pToRelease is not zero than pPayload points into the data area
6098 ** of pToRelease. Make sure pToRelease is still writeable. */
6099 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6100
6101 /* If pPayload is part of the data area of pPage, then make sure pPage
6102 ** is still writeable */
6103 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6104 || sqlite3PagerIswriteable(pPage->pDbPage) );
6105
drhb026e052007-05-02 01:34:31 +00006106 if( nSrc>0 ){
6107 if( n>nSrc ) n = nSrc;
6108 assert( pSrc );
6109 memcpy(pPayload, pSrc, n);
6110 }else{
6111 memset(pPayload, 0, n);
6112 }
drh3b7511c2001-05-26 13:15:44 +00006113 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006114 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006115 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006116 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006117 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00006118 if( nSrc==0 ){
6119 nSrc = nData;
6120 pSrc = pData;
6121 }
drhdd793422001-06-28 01:54:48 +00006122 }
drh9b171272004-05-08 02:03:22 +00006123 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006124 return SQLITE_OK;
6125}
6126
drh14acc042001-06-10 19:56:58 +00006127/*
6128** Remove the i-th cell from pPage. This routine effects pPage only.
6129** The cell content is not freed or deallocated. It is assumed that
6130** the cell content has been copied someplace else. This routine just
6131** removes the reference to the cell from pPage.
6132**
6133** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006134*/
drh98add2e2009-07-20 17:11:49 +00006135static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006136 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006137 u8 *data; /* pPage->aData */
6138 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006139 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006140 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006141
drh98add2e2009-07-20 17:11:49 +00006142 if( *pRC ) return;
6143
drh8c42ca92001-06-22 19:15:00 +00006144 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006145 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006146 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006147 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006148 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006149 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006150 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006151 hdr = pPage->hdrOffset;
6152 testcase( pc==get2byte(&data[hdr+5]) );
6153 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006154 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006155 *pRC = SQLITE_CORRUPT_BKPT;
6156 return;
shane0af3f892008-11-12 04:55:34 +00006157 }
shanedcc50b72008-11-13 18:29:50 +00006158 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006159 if( rc ){
6160 *pRC = rc;
6161 return;
shanedcc50b72008-11-13 18:29:50 +00006162 }
drh14acc042001-06-10 19:56:58 +00006163 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006164 if( pPage->nCell==0 ){
6165 memset(&data[hdr+1], 0, 4);
6166 data[hdr+7] = 0;
6167 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6168 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6169 - pPage->childPtrSize - 8;
6170 }else{
6171 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6172 put2byte(&data[hdr+3], pPage->nCell);
6173 pPage->nFree += 2;
6174 }
drh14acc042001-06-10 19:56:58 +00006175}
6176
6177/*
6178** Insert a new cell on pPage at cell index "i". pCell points to the
6179** content of the cell.
6180**
6181** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006182** will not fit, then make a copy of the cell content into pTemp if
6183** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006184** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006185** in pTemp or the original pCell) and also record its index.
6186** Allocating a new entry in pPage->aCell[] implies that
6187** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006188*/
drh98add2e2009-07-20 17:11:49 +00006189static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006190 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006191 int i, /* New cell becomes the i-th cell of the page */
6192 u8 *pCell, /* Content of the new cell */
6193 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006194 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006195 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6196 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006197){
drh383d30f2010-02-26 13:07:37 +00006198 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006199 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006200 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006201 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006202
drh98add2e2009-07-20 17:11:49 +00006203 if( *pRC ) return;
6204
drh43605152004-05-29 21:46:49 +00006205 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006206 assert( MX_CELL(pPage->pBt)<=10921 );
6207 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006208 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6209 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006210 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006211 /* The cell should normally be sized correctly. However, when moving a
6212 ** malformed cell from a leaf page to an interior page, if the cell size
6213 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6214 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6215 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006216 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006217 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006218 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006219 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006220 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006221 }
danielk19774dbaa892009-06-16 16:50:22 +00006222 if( iChild ){
6223 put4byte(pCell, iChild);
6224 }
drh43605152004-05-29 21:46:49 +00006225 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006226 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6227 pPage->apOvfl[j] = pCell;
6228 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006229
6230 /* When multiple overflows occur, they are always sequential and in
6231 ** sorted order. This invariants arise because multiple overflows can
6232 ** only occur when inserting divider cells into the parent page during
6233 ** balancing, and the dividers are adjacent and sorted.
6234 */
6235 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6236 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006237 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006238 int rc = sqlite3PagerWrite(pPage->pDbPage);
6239 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006240 *pRC = rc;
6241 return;
danielk19776e465eb2007-08-21 13:11:00 +00006242 }
6243 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006244 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006245 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006246 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006247 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006248 /* The allocateSpace() routine guarantees the following properties
6249 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006250 assert( idx >= 0 );
6251 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006252 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006253 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006254 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006255 if( iChild ){
6256 put4byte(&data[idx], iChild);
6257 }
drh2c8fb922015-06-25 19:53:48 +00006258 pIns = pPage->aCellIdx + i*2;
6259 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6260 put2byte(pIns, idx);
6261 pPage->nCell++;
6262 /* increment the cell count */
6263 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6264 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006265#ifndef SQLITE_OMIT_AUTOVACUUM
6266 if( pPage->pBt->autoVacuum ){
6267 /* The cell may contain a pointer to an overflow page. If so, write
6268 ** the entry for the overflow page into the pointer map.
6269 */
drh98add2e2009-07-20 17:11:49 +00006270 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006271 }
6272#endif
drh14acc042001-06-10 19:56:58 +00006273 }
6274}
6275
6276/*
drh1ffd2472015-06-23 02:37:30 +00006277** A CellArray object contains a cache of pointers and sizes for a
6278** consecutive sequence of cells that might be held multiple pages.
6279*/
6280typedef struct CellArray CellArray;
6281struct CellArray {
6282 int nCell; /* Number of cells in apCell[] */
6283 MemPage *pRef; /* Reference page */
6284 u8 **apCell; /* All cells begin balanced */
6285 u16 *szCell; /* Local size of all cells in apCell[] */
6286};
6287
6288/*
6289** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6290** computed.
6291*/
6292static void populateCellCache(CellArray *p, int idx, int N){
6293 assert( idx>=0 && idx+N<=p->nCell );
6294 while( N>0 ){
6295 assert( p->apCell[idx]!=0 );
6296 if( p->szCell[idx]==0 ){
6297 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6298 }else{
6299 assert( CORRUPT_DB ||
6300 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6301 }
6302 idx++;
6303 N--;
6304 }
6305}
6306
6307/*
6308** Return the size of the Nth element of the cell array
6309*/
6310static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6311 assert( N>=0 && N<p->nCell );
6312 assert( p->szCell[N]==0 );
6313 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6314 return p->szCell[N];
6315}
6316static u16 cachedCellSize(CellArray *p, int N){
6317 assert( N>=0 && N<p->nCell );
6318 if( p->szCell[N] ) return p->szCell[N];
6319 return computeCellSize(p, N);
6320}
6321
6322/*
dan8e9ba0c2014-10-14 17:27:04 +00006323** Array apCell[] contains pointers to nCell b-tree page cells. The
6324** szCell[] array contains the size in bytes of each cell. This function
6325** replaces the current contents of page pPg with the contents of the cell
6326** array.
6327**
6328** Some of the cells in apCell[] may currently be stored in pPg. This
6329** function works around problems caused by this by making a copy of any
6330** such cells before overwriting the page data.
6331**
6332** The MemPage.nFree field is invalidated by this function. It is the
6333** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006334*/
drh658873b2015-06-22 20:02:04 +00006335static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006336 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006337 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006338 u8 **apCell, /* Array of cells */
6339 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006340){
6341 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6342 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6343 const int usableSize = pPg->pBt->usableSize;
6344 u8 * const pEnd = &aData[usableSize];
6345 int i;
6346 u8 *pCellptr = pPg->aCellIdx;
6347 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6348 u8 *pData;
6349
6350 i = get2byte(&aData[hdr+5]);
6351 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006352
dan8e9ba0c2014-10-14 17:27:04 +00006353 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006354 for(i=0; i<nCell; i++){
6355 u8 *pCell = apCell[i];
6356 if( pCell>aData && pCell<pEnd ){
6357 pCell = &pTmp[pCell - aData];
6358 }
6359 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006360 put2byte(pCellptr, (pData - aData));
6361 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006362 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6363 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006364 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006365 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006366 }
6367
dand7b545b2014-10-13 18:03:27 +00006368 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006369 pPg->nCell = nCell;
6370 pPg->nOverflow = 0;
6371
6372 put2byte(&aData[hdr+1], 0);
6373 put2byte(&aData[hdr+3], pPg->nCell);
6374 put2byte(&aData[hdr+5], pData - aData);
6375 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006376 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006377}
6378
dan8e9ba0c2014-10-14 17:27:04 +00006379/*
6380** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6381** contains the size in bytes of each such cell. This function attempts to
6382** add the cells stored in the array to page pPg. If it cannot (because
6383** the page needs to be defragmented before the cells will fit), non-zero
6384** is returned. Otherwise, if the cells are added successfully, zero is
6385** returned.
6386**
6387** Argument pCellptr points to the first entry in the cell-pointer array
6388** (part of page pPg) to populate. After cell apCell[0] is written to the
6389** page body, a 16-bit offset is written to pCellptr. And so on, for each
6390** cell in the array. It is the responsibility of the caller to ensure
6391** that it is safe to overwrite this part of the cell-pointer array.
6392**
6393** When this function is called, *ppData points to the start of the
6394** content area on page pPg. If the size of the content area is extended,
6395** *ppData is updated to point to the new start of the content area
6396** before returning.
6397**
6398** Finally, argument pBegin points to the byte immediately following the
6399** end of the space required by this page for the cell-pointer area (for
6400** all cells - not just those inserted by the current call). If the content
6401** area must be extended to before this point in order to accomodate all
6402** cells in apCell[], then the cells do not fit and non-zero is returned.
6403*/
dand7b545b2014-10-13 18:03:27 +00006404static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006405 MemPage *pPg, /* Page to add cells to */
6406 u8 *pBegin, /* End of cell-pointer array */
6407 u8 **ppData, /* IN/OUT: Page content -area pointer */
6408 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006409 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006410 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006411 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006412){
6413 int i;
6414 u8 *aData = pPg->aData;
6415 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006416 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006417 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006418 for(i=iFirst; i<iEnd; i++){
6419 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006420 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006421 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006422 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
dand7b545b2014-10-13 18:03:27 +00006423 pData -= sz;
6424 if( pData<pBegin ) return 1;
6425 pSlot = pData;
6426 }
drhf7838932015-06-23 15:36:34 +00006427 memcpy(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006428 put2byte(pCellptr, (pSlot - aData));
6429 pCellptr += 2;
6430 }
6431 *ppData = pData;
6432 return 0;
6433}
6434
dan8e9ba0c2014-10-14 17:27:04 +00006435/*
6436** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6437** contains the size in bytes of each such cell. This function adds the
6438** space associated with each cell in the array that is currently stored
6439** within the body of pPg to the pPg free-list. The cell-pointers and other
6440** fields of the page are not updated.
6441**
6442** This function returns the total number of cells added to the free-list.
6443*/
dand7b545b2014-10-13 18:03:27 +00006444static int pageFreeArray(
6445 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006446 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006447 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006448 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006449){
6450 u8 * const aData = pPg->aData;
6451 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006452 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006453 int nRet = 0;
6454 int i;
drhf7838932015-06-23 15:36:34 +00006455 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006456 u8 *pFree = 0;
6457 int szFree = 0;
6458
drhf7838932015-06-23 15:36:34 +00006459 for(i=iFirst; i<iEnd; i++){
6460 u8 *pCell = pCArray->apCell[i];
dan89ca0b32014-10-25 20:36:28 +00006461 if( pCell>=pStart && pCell<pEnd ){
drhf7838932015-06-23 15:36:34 +00006462 int sz;
6463 /* No need to use cachedCellSize() here. The sizes of all cells that
6464 ** are to be freed have already been computing while deciding which
6465 ** cells need freeing */
6466 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006467 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006468 if( pFree ){
6469 assert( pFree>aData && (pFree - aData)<65536 );
6470 freeSpace(pPg, (u16)(pFree - aData), szFree);
6471 }
dand7b545b2014-10-13 18:03:27 +00006472 pFree = pCell;
6473 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006474 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006475 }else{
6476 pFree = pCell;
6477 szFree += sz;
6478 }
6479 nRet++;
6480 }
6481 }
drhfefa0942014-11-05 21:21:08 +00006482 if( pFree ){
6483 assert( pFree>aData && (pFree - aData)<65536 );
6484 freeSpace(pPg, (u16)(pFree - aData), szFree);
6485 }
dand7b545b2014-10-13 18:03:27 +00006486 return nRet;
6487}
6488
dand7b545b2014-10-13 18:03:27 +00006489/*
drh5ab63772014-11-27 03:46:04 +00006490** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6491** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6492** with apCell[iOld]. After balancing, this page should hold nNew cells
6493** starting at apCell[iNew].
6494**
6495** This routine makes the necessary adjustments to pPg so that it contains
6496** the correct cells after being balanced.
6497**
dand7b545b2014-10-13 18:03:27 +00006498** The pPg->nFree field is invalid when this function returns. It is the
6499** responsibility of the caller to set it correctly.
6500*/
drh658873b2015-06-22 20:02:04 +00006501static int editPage(
dan09c68402014-10-11 20:00:24 +00006502 MemPage *pPg, /* Edit this page */
6503 int iOld, /* Index of first cell currently on page */
6504 int iNew, /* Index of new first cell on page */
6505 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006506 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006507){
dand7b545b2014-10-13 18:03:27 +00006508 u8 * const aData = pPg->aData;
6509 const int hdr = pPg->hdrOffset;
6510 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6511 int nCell = pPg->nCell; /* Cells stored on pPg */
6512 u8 *pData;
6513 u8 *pCellptr;
6514 int i;
6515 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6516 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006517
6518#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006519 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6520 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006521#endif
6522
dand7b545b2014-10-13 18:03:27 +00006523 /* Remove cells from the start and end of the page */
6524 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006525 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006526 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6527 nCell -= nShift;
6528 }
6529 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006530 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006531 }
dan09c68402014-10-11 20:00:24 +00006532
drh5ab63772014-11-27 03:46:04 +00006533 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006534 if( pData<pBegin ) goto editpage_fail;
6535
6536 /* Add cells to the start of the page */
6537 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006538 int nAdd = MIN(nNew,iOld-iNew);
6539 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006540 pCellptr = pPg->aCellIdx;
6541 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6542 if( pageInsertArray(
6543 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006544 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006545 ) ) goto editpage_fail;
6546 nCell += nAdd;
6547 }
6548
6549 /* Add any overflow cells */
6550 for(i=0; i<pPg->nOverflow; i++){
6551 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6552 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006553 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006554 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6555 nCell++;
6556 if( pageInsertArray(
6557 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006558 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006559 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006560 }
dand7b545b2014-10-13 18:03:27 +00006561 }
dan09c68402014-10-11 20:00:24 +00006562
dand7b545b2014-10-13 18:03:27 +00006563 /* Append cells to the end of the page */
6564 pCellptr = &pPg->aCellIdx[nCell*2];
6565 if( pageInsertArray(
6566 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006567 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006568 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006569
dand7b545b2014-10-13 18:03:27 +00006570 pPg->nCell = nNew;
6571 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006572
dand7b545b2014-10-13 18:03:27 +00006573 put2byte(&aData[hdr+3], pPg->nCell);
6574 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006575
6576#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006577 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006578 u8 *pCell = pCArray->apCell[i+iNew];
dand7b545b2014-10-13 18:03:27 +00006579 int iOff = get2byte(&pPg->aCellIdx[i*2]);
6580 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6581 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006582 }
drh1ffd2472015-06-23 02:37:30 +00006583 assert( 0==memcmp(pCell, &aData[iOff],
6584 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006585 }
dan09c68402014-10-11 20:00:24 +00006586#endif
6587
drh658873b2015-06-22 20:02:04 +00006588 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006589 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006590 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006591 populateCellCache(pCArray, iNew, nNew);
6592 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
dan09c68402014-10-11 20:00:24 +00006593}
6594
drh14acc042001-06-10 19:56:58 +00006595/*
drhc3b70572003-01-04 19:44:07 +00006596** The following parameters determine how many adjacent pages get involved
6597** in a balancing operation. NN is the number of neighbors on either side
6598** of the page that participate in the balancing operation. NB is the
6599** total number of pages that participate, including the target page and
6600** NN neighbors on either side.
6601**
6602** The minimum value of NN is 1 (of course). Increasing NN above 1
6603** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6604** in exchange for a larger degradation in INSERT and UPDATE performance.
6605** The value of NN appears to give the best results overall.
6606*/
6607#define NN 1 /* Number of neighbors on either side of pPage */
6608#define NB (NN*2+1) /* Total pages involved in the balance */
6609
danielk1977ac245ec2005-01-14 13:50:11 +00006610
drh615ae552005-01-16 23:21:00 +00006611#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006612/*
6613** This version of balance() handles the common special case where
6614** a new entry is being inserted on the extreme right-end of the
6615** tree, in other words, when the new entry will become the largest
6616** entry in the tree.
6617**
drhc314dc72009-07-21 11:52:34 +00006618** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006619** a new page to the right-hand side and put the one new entry in
6620** that page. This leaves the right side of the tree somewhat
6621** unbalanced. But odds are that we will be inserting new entries
6622** at the end soon afterwards so the nearly empty page will quickly
6623** fill up. On average.
6624**
6625** pPage is the leaf page which is the right-most page in the tree.
6626** pParent is its parent. pPage must have a single overflow entry
6627** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006628**
6629** The pSpace buffer is used to store a temporary copy of the divider
6630** cell that will be inserted into pParent. Such a cell consists of a 4
6631** byte page number followed by a variable length integer. In other
6632** words, at most 13 bytes. Hence the pSpace buffer must be at
6633** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006634*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006635static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6636 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006637 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006638 int rc; /* Return Code */
6639 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006640
drh1fee73e2007-08-29 04:00:57 +00006641 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006642 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006643 assert( pPage->nOverflow==1 );
6644
drh5d433ce2010-08-14 16:02:52 +00006645 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006646 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006647
danielk1977a50d9aa2009-06-08 14:49:45 +00006648 /* Allocate a new page. This page will become the right-sibling of
6649 ** pPage. Make the parent page writable, so that the new divider cell
6650 ** may be inserted. If both these operations are successful, proceed.
6651 */
drh4f0c5872007-03-26 22:05:01 +00006652 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006653
danielk1977eaa06f62008-09-18 17:34:44 +00006654 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006655
6656 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006657 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006658 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006659 u8 *pStop;
6660
drhc5053fb2008-11-27 02:22:10 +00006661 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006662 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6663 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006664 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006665 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006666 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006667
6668 /* If this is an auto-vacuum database, update the pointer map
6669 ** with entries for the new page, and any pointer from the
6670 ** cell on the page to an overflow page. If either of these
6671 ** operations fails, the return code is set, but the contents
6672 ** of the parent page are still manipulated by thh code below.
6673 ** That is Ok, at this point the parent page is guaranteed to
6674 ** be marked as dirty. Returning an error code will cause a
6675 ** rollback, undoing any changes made to the parent page.
6676 */
6677 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006678 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6679 if( szCell>pNew->minLocal ){
6680 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006681 }
6682 }
danielk1977eaa06f62008-09-18 17:34:44 +00006683
danielk19776f235cc2009-06-04 14:46:08 +00006684 /* Create a divider cell to insert into pParent. The divider cell
6685 ** consists of a 4-byte page number (the page number of pPage) and
6686 ** a variable length key value (which must be the same value as the
6687 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006688 **
danielk19776f235cc2009-06-04 14:46:08 +00006689 ** To find the largest key value on pPage, first find the right-most
6690 ** cell on pPage. The first two fields of this cell are the
6691 ** record-length (a variable length integer at most 32-bits in size)
6692 ** and the key value (a variable length integer, may have any value).
6693 ** The first of the while(...) loops below skips over the record-length
6694 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006695 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006696 */
danielk1977eaa06f62008-09-18 17:34:44 +00006697 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006698 pStop = &pCell[9];
6699 while( (*(pCell++)&0x80) && pCell<pStop );
6700 pStop = &pCell[9];
6701 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6702
danielk19774dbaa892009-06-16 16:50:22 +00006703 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006704 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6705 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006706
6707 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006708 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6709
danielk1977e08a3c42008-09-18 18:17:03 +00006710 /* Release the reference to the new page. */
6711 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006712 }
6713
danielk1977eaa06f62008-09-18 17:34:44 +00006714 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006715}
drh615ae552005-01-16 23:21:00 +00006716#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006717
dane6593d82014-10-24 16:40:49 +00006718#if 0
drhc3b70572003-01-04 19:44:07 +00006719/*
danielk19774dbaa892009-06-16 16:50:22 +00006720** This function does not contribute anything to the operation of SQLite.
6721** it is sometimes activated temporarily while debugging code responsible
6722** for setting pointer-map entries.
6723*/
6724static int ptrmapCheckPages(MemPage **apPage, int nPage){
6725 int i, j;
6726 for(i=0; i<nPage; i++){
6727 Pgno n;
6728 u8 e;
6729 MemPage *pPage = apPage[i];
6730 BtShared *pBt = pPage->pBt;
6731 assert( pPage->isInit );
6732
6733 for(j=0; j<pPage->nCell; j++){
6734 CellInfo info;
6735 u8 *z;
6736
6737 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006738 pPage->xParseCell(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006739 if( info.iOverflow ){
6740 Pgno ovfl = get4byte(&z[info.iOverflow]);
6741 ptrmapGet(pBt, ovfl, &e, &n);
6742 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6743 }
6744 if( !pPage->leaf ){
6745 Pgno child = get4byte(z);
6746 ptrmapGet(pBt, child, &e, &n);
6747 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6748 }
6749 }
6750 if( !pPage->leaf ){
6751 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6752 ptrmapGet(pBt, child, &e, &n);
6753 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6754 }
6755 }
6756 return 1;
6757}
6758#endif
6759
danielk1977cd581a72009-06-23 15:43:39 +00006760/*
6761** This function is used to copy the contents of the b-tree node stored
6762** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6763** the pointer-map entries for each child page are updated so that the
6764** parent page stored in the pointer map is page pTo. If pFrom contained
6765** any cells with overflow page pointers, then the corresponding pointer
6766** map entries are also updated so that the parent page is page pTo.
6767**
6768** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006769** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006770**
danielk197730548662009-07-09 05:07:37 +00006771** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006772**
6773** The performance of this function is not critical. It is only used by
6774** the balance_shallower() and balance_deeper() procedures, neither of
6775** which are called often under normal circumstances.
6776*/
drhc314dc72009-07-21 11:52:34 +00006777static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6778 if( (*pRC)==SQLITE_OK ){
6779 BtShared * const pBt = pFrom->pBt;
6780 u8 * const aFrom = pFrom->aData;
6781 u8 * const aTo = pTo->aData;
6782 int const iFromHdr = pFrom->hdrOffset;
6783 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006784 int rc;
drhc314dc72009-07-21 11:52:34 +00006785 int iData;
6786
6787
6788 assert( pFrom->isInit );
6789 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006790 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006791
6792 /* Copy the b-tree node content from page pFrom to page pTo. */
6793 iData = get2byte(&aFrom[iFromHdr+5]);
6794 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6795 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6796
6797 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006798 ** match the new data. The initialization of pTo can actually fail under
6799 ** fairly obscure circumstances, even though it is a copy of initialized
6800 ** page pFrom.
6801 */
drhc314dc72009-07-21 11:52:34 +00006802 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006803 rc = btreeInitPage(pTo);
6804 if( rc!=SQLITE_OK ){
6805 *pRC = rc;
6806 return;
6807 }
drhc314dc72009-07-21 11:52:34 +00006808
6809 /* If this is an auto-vacuum database, update the pointer-map entries
6810 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6811 */
6812 if( ISAUTOVACUUM ){
6813 *pRC = setChildPtrmaps(pTo);
6814 }
danielk1977cd581a72009-06-23 15:43:39 +00006815 }
danielk1977cd581a72009-06-23 15:43:39 +00006816}
6817
6818/*
danielk19774dbaa892009-06-16 16:50:22 +00006819** This routine redistributes cells on the iParentIdx'th child of pParent
6820** (hereafter "the page") and up to 2 siblings so that all pages have about the
6821** same amount of free space. Usually a single sibling on either side of the
6822** page are used in the balancing, though both siblings might come from one
6823** side if the page is the first or last child of its parent. If the page
6824** has fewer than 2 siblings (something which can only happen if the page
6825** is a root page or a child of a root page) then all available siblings
6826** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006827**
danielk19774dbaa892009-06-16 16:50:22 +00006828** The number of siblings of the page might be increased or decreased by
6829** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006830**
danielk19774dbaa892009-06-16 16:50:22 +00006831** Note that when this routine is called, some of the cells on the page
6832** might not actually be stored in MemPage.aData[]. This can happen
6833** if the page is overfull. This routine ensures that all cells allocated
6834** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006835**
danielk19774dbaa892009-06-16 16:50:22 +00006836** In the course of balancing the page and its siblings, cells may be
6837** inserted into or removed from the parent page (pParent). Doing so
6838** may cause the parent page to become overfull or underfull. If this
6839** happens, it is the responsibility of the caller to invoke the correct
6840** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006841**
drh5e00f6c2001-09-13 13:46:56 +00006842** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006843** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006844** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006845**
6846** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006847** buffer big enough to hold one page. If while inserting cells into the parent
6848** page (pParent) the parent page becomes overfull, this buffer is
6849** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006850** a maximum of four divider cells into the parent page, and the maximum
6851** size of a cell stored within an internal node is always less than 1/4
6852** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6853** enough for all overflow cells.
6854**
6855** If aOvflSpace is set to a null pointer, this function returns
6856** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006857*/
mistachkine7c54162012-10-02 22:54:27 +00006858#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6859#pragma optimize("", off)
6860#endif
danielk19774dbaa892009-06-16 16:50:22 +00006861static int balance_nonroot(
6862 MemPage *pParent, /* Parent page of siblings being balanced */
6863 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006864 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006865 int isRoot, /* True if pParent is a root-page */
6866 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006867){
drh16a9b832007-05-05 18:39:25 +00006868 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006869 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006870 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006871 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006872 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006873 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006874 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006875 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006876 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006877 int usableSpace; /* Bytes in pPage beyond the header */
6878 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00006879 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006880 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006881 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006882 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00006883 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006884 u8 *pRight; /* Location in parent of right-sibling pointer */
6885 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00006886 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
6887 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00006888 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00006889 u8 *aSpace1; /* Space for copies of dividers cells */
6890 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00006891 u8 abDone[NB+2]; /* True after i'th new page is populated */
6892 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00006893 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00006894 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00006895 CellArray b; /* Parsed information on cells being balanced */
dan33ea4862014-10-09 19:35:37 +00006896
6897 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00006898 b.nCell = 0;
6899 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00006900 pBt = pParent->pBt;
6901 assert( sqlite3_mutex_held(pBt->mutex) );
6902 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006903
danielk1977e5765212009-06-17 11:13:28 +00006904#if 0
drh43605152004-05-29 21:46:49 +00006905 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006906#endif
drh2e38c322004-09-03 18:38:44 +00006907
danielk19774dbaa892009-06-16 16:50:22 +00006908 /* At this point pParent may have at most one overflow cell. And if
6909 ** this overflow cell is present, it must be the cell with
6910 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006911 ** is called (indirectly) from sqlite3BtreeDelete().
6912 */
danielk19774dbaa892009-06-16 16:50:22 +00006913 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006914 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006915
danielk197711a8a862009-06-17 11:49:52 +00006916 if( !aOvflSpace ){
6917 return SQLITE_NOMEM;
6918 }
6919
danielk1977a50d9aa2009-06-08 14:49:45 +00006920 /* Find the sibling pages to balance. Also locate the cells in pParent
6921 ** that divide the siblings. An attempt is made to find NN siblings on
6922 ** either side of pPage. More siblings are taken from one side, however,
6923 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006924 ** has NB or fewer children then all children of pParent are taken.
6925 **
6926 ** This loop also drops the divider cells from the parent page. This
6927 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006928 ** overflow cells in the parent page, since if any existed they will
6929 ** have already been removed.
6930 */
danielk19774dbaa892009-06-16 16:50:22 +00006931 i = pParent->nOverflow + pParent->nCell;
6932 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006933 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006934 }else{
dan7d6885a2012-08-08 14:04:56 +00006935 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006936 if( iParentIdx==0 ){
6937 nxDiv = 0;
6938 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006939 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006940 }else{
danielk19774dbaa892009-06-16 16:50:22 +00006941 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006942 }
dan7d6885a2012-08-08 14:04:56 +00006943 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006944 }
dan7d6885a2012-08-08 14:04:56 +00006945 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006946 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6947 pRight = &pParent->aData[pParent->hdrOffset+8];
6948 }else{
6949 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6950 }
6951 pgno = get4byte(pRight);
6952 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006953 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006954 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006955 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006956 goto balance_cleanup;
6957 }
danielk1977634f2982005-03-28 08:44:07 +00006958 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006959 if( (i--)==0 ) break;
6960
drh2cbd78b2012-02-02 19:37:18 +00006961 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6962 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006963 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00006964 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00006965 pParent->nOverflow = 0;
6966 }else{
6967 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6968 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00006969 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00006970
6971 /* Drop the cell from the parent page. apDiv[i] still points to
6972 ** the cell within the parent, even though it has been dropped.
6973 ** This is safe because dropping a cell only overwrites the first
6974 ** four bytes of it, and this function does not need the first
6975 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006976 ** later on.
6977 **
drh8a575d92011-10-12 17:00:28 +00006978 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006979 ** the dropCell() routine will overwrite the entire cell with zeroes.
6980 ** In this case, temporarily copy the cell into the aOvflSpace[]
6981 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6982 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006983 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006984 int iOff;
6985
6986 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006987 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006988 rc = SQLITE_CORRUPT_BKPT;
6989 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6990 goto balance_cleanup;
6991 }else{
6992 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6993 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6994 }
drh5b47efa2010-02-12 18:18:39 +00006995 }
drh98add2e2009-07-20 17:11:49 +00006996 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006997 }
drh8b2f49b2001-06-08 00:21:52 +00006998 }
6999
drha9121e42008-02-19 14:59:35 +00007000 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007001 ** alignment */
drha9121e42008-02-19 14:59:35 +00007002 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007003
drh8b2f49b2001-06-08 00:21:52 +00007004 /*
danielk1977634f2982005-03-28 08:44:07 +00007005 ** Allocate space for memory structures
7006 */
drhfacf0302008-06-17 15:12:00 +00007007 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007008 nMaxCells*sizeof(u8*) /* b.apCell */
7009 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007010 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007011
drhcbd55b02014-11-04 14:22:27 +00007012 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7013 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007014 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007015 b.apCell = sqlite3ScratchMalloc( szScratch );
7016 if( b.apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00007017 rc = SQLITE_NOMEM;
7018 goto balance_cleanup;
7019 }
drh1ffd2472015-06-23 02:37:30 +00007020 b.szCell = (u16*)&b.apCell[nMaxCells];
7021 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007022 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007023
7024 /*
7025 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007026 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007027 ** into space obtained from aSpace1[]. The divider cells have already
7028 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007029 **
7030 ** If the siblings are on leaf pages, then the child pointers of the
7031 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007032 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007033 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007034 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007035 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007036 **
7037 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7038 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007039 */
drh1ffd2472015-06-23 02:37:30 +00007040 b.pRef = apOld[0];
7041 leafCorrection = b.pRef->leaf*4;
7042 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007043 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007044 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007045 int limit = pOld->nCell;
7046 u8 *aData = pOld->aData;
7047 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007048 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007049 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007050
drh73d340a2015-05-28 11:23:11 +00007051 /* Verify that all sibling pages are of the same "type" (table-leaf,
7052 ** table-interior, index-leaf, or index-interior).
7053 */
7054 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7055 rc = SQLITE_CORRUPT_BKPT;
7056 goto balance_cleanup;
7057 }
7058
drhfe647dc2015-06-23 18:24:25 +00007059 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7060 ** constains overflow cells, include them in the b.apCell[] array
7061 ** in the correct spot.
7062 **
7063 ** Note that when there are multiple overflow cells, it is always the
7064 ** case that they are sequential and adjacent. This invariant arises
7065 ** because multiple overflows can only occurs when inserting divider
7066 ** cells into a parent on a prior balance, and divider cells are always
7067 ** adjacent and are inserted in order. There is an assert() tagged
7068 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7069 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007070 **
7071 ** This must be done in advance. Once the balance starts, the cell
7072 ** offset section of the btree page will be overwritten and we will no
7073 ** long be able to find the cells if a pointer to each cell is not saved
7074 ** first.
7075 */
drh1ffd2472015-06-23 02:37:30 +00007076 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
drh68f2a572011-06-03 17:50:49 +00007077 if( pOld->nOverflow>0 ){
drh4edfdd32015-06-23 14:49:42 +00007078 memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
drhfe647dc2015-06-23 18:24:25 +00007079 limit = pOld->aiOvfl[0];
7080 for(j=0; j<limit; j++){
7081 b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
7082 piCell += 2;
7083 b.nCell++;
7084 }
7085 for(k=0; k<pOld->nOverflow; k++){
7086 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007087 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007088 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007089 }
drh1ffd2472015-06-23 02:37:30 +00007090 }
drhfe647dc2015-06-23 18:24:25 +00007091 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7092 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007093 assert( b.nCell<nMaxCells );
drh4f4bf772015-06-23 17:09:53 +00007094 b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
7095 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007096 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007097 }
7098
drh1ffd2472015-06-23 02:37:30 +00007099 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007100 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007101 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007102 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007103 assert( b.nCell<nMaxCells );
7104 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007105 pTemp = &aSpace1[iSpace1];
7106 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007107 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007108 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007109 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007110 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007111 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007112 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007113 if( !pOld->leaf ){
7114 assert( leafCorrection==0 );
7115 assert( pOld->hdrOffset==0 );
7116 /* The right pointer of the child page pOld becomes the left
7117 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007118 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007119 }else{
7120 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007121 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007122 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7123 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007124 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7125 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007126 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007127 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007128 }
7129 }
drh1ffd2472015-06-23 02:37:30 +00007130 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007131 }
drh8b2f49b2001-06-08 00:21:52 +00007132 }
7133
7134 /*
drh1ffd2472015-06-23 02:37:30 +00007135 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007136 ** Store this number in "k". Also compute szNew[] which is the total
7137 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007138 ** in b.apCell[] of the cell that divides page i from page i+1.
7139 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007140 **
drh96f5b762004-05-16 16:24:36 +00007141 ** Values computed by this block:
7142 **
7143 ** k: The total number of sibling pages
7144 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007145 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007146 ** the right of the i-th sibling page.
7147 ** usableSpace: Number of bytes of space available on each sibling.
7148 **
drh8b2f49b2001-06-08 00:21:52 +00007149 */
drh43605152004-05-29 21:46:49 +00007150 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007151 for(i=0; i<nOld; i++){
7152 MemPage *p = apOld[i];
7153 szNew[i] = usableSpace - p->nFree;
7154 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7155 for(j=0; j<p->nOverflow; j++){
7156 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7157 }
7158 cntNew[i] = cntOld[i];
7159 }
7160 k = nOld;
7161 for(i=0; i<k; i++){
7162 int sz;
7163 while( szNew[i]>usableSpace ){
7164 if( i+1>=k ){
7165 k = i+2;
7166 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7167 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007168 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007169 }
drh1ffd2472015-06-23 02:37:30 +00007170 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007171 szNew[i] -= sz;
7172 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007173 if( cntNew[i]<b.nCell ){
7174 sz = 2 + cachedCellSize(&b, cntNew[i]);
7175 }else{
7176 sz = 0;
7177 }
drh658873b2015-06-22 20:02:04 +00007178 }
7179 szNew[i+1] += sz;
7180 cntNew[i]--;
7181 }
drh1ffd2472015-06-23 02:37:30 +00007182 while( cntNew[i]<b.nCell ){
7183 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007184 if( szNew[i]+sz>usableSpace ) break;
7185 szNew[i] += sz;
7186 cntNew[i]++;
7187 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007188 if( cntNew[i]<b.nCell ){
7189 sz = 2 + cachedCellSize(&b, cntNew[i]);
7190 }else{
7191 sz = 0;
7192 }
drh658873b2015-06-22 20:02:04 +00007193 }
7194 szNew[i+1] -= sz;
7195 }
drh1ffd2472015-06-23 02:37:30 +00007196 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007197 k = i+1;
drh672073a2015-06-24 12:07:40 +00007198 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007199 rc = SQLITE_CORRUPT_BKPT;
7200 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007201 }
7202 }
drh96f5b762004-05-16 16:24:36 +00007203
7204 /*
7205 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007206 ** on the left side (siblings with smaller keys). The left siblings are
7207 ** always nearly full, while the right-most sibling might be nearly empty.
7208 ** The next block of code attempts to adjust the packing of siblings to
7209 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007210 **
7211 ** This adjustment is more than an optimization. The packing above might
7212 ** be so out of balance as to be illegal. For example, the right-most
7213 ** sibling might be completely empty. This adjustment is not optional.
7214 */
drh6019e162001-07-02 17:51:45 +00007215 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007216 int szRight = szNew[i]; /* Size of sibling on the right */
7217 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7218 int r; /* Index of right-most cell in left sibling */
7219 int d; /* Index of first cell to the left of right sibling */
7220
drh008d64c2015-06-23 16:00:24 +00007221 r = cntNew[i-1] - 1;
7222 d = r + 1 - leafData;
7223 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007224 do{
drh1ffd2472015-06-23 02:37:30 +00007225 assert( d<nMaxCells );
7226 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007227 (void)cachedCellSize(&b, r);
7228 if( szRight!=0
7229 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7230 break;
7231 }
7232 szRight += b.szCell[d] + 2;
7233 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007234 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007235 r--;
7236 d--;
drh672073a2015-06-24 12:07:40 +00007237 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007238 szNew[i] = szRight;
7239 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007240 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7241 rc = SQLITE_CORRUPT_BKPT;
7242 goto balance_cleanup;
7243 }
drh6019e162001-07-02 17:51:45 +00007244 }
drh09d0deb2005-08-02 17:13:09 +00007245
drh2a0df922014-10-30 23:14:56 +00007246 /* Sanity check: For a non-corrupt database file one of the follwing
7247 ** must be true:
7248 ** (1) We found one or more cells (cntNew[0])>0), or
7249 ** (2) pPage is a virtual root page. A virtual root page is when
7250 ** the real root page is page 1 and we are the only child of
7251 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007252 */
drh2a0df922014-10-30 23:14:56 +00007253 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007254 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7255 apOld[0]->pgno, apOld[0]->nCell,
7256 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7257 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007258 ));
7259
drh8b2f49b2001-06-08 00:21:52 +00007260 /*
drh6b308672002-07-08 02:16:37 +00007261 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007262 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007263 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007264 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007265 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007266 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007267 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007268 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007269 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007270 nNew++;
danielk197728129562005-01-11 10:25:06 +00007271 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007272 }else{
drh7aa8f852006-03-28 00:24:44 +00007273 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007274 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007275 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007276 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007277 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007278 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007279 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007280
7281 /* Set the pointer-map entry for the new sibling page. */
7282 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007283 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007284 if( rc!=SQLITE_OK ){
7285 goto balance_cleanup;
7286 }
7287 }
drh6b308672002-07-08 02:16:37 +00007288 }
drh8b2f49b2001-06-08 00:21:52 +00007289 }
7290
7291 /*
dan33ea4862014-10-09 19:35:37 +00007292 ** Reassign page numbers so that the new pages are in ascending order.
7293 ** This helps to keep entries in the disk file in order so that a scan
7294 ** of the table is closer to a linear scan through the file. That in turn
7295 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007296 **
dan33ea4862014-10-09 19:35:37 +00007297 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7298 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007299 **
dan33ea4862014-10-09 19:35:37 +00007300 ** When NB==3, this one optimization makes the database about 25% faster
7301 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007302 */
dan33ea4862014-10-09 19:35:37 +00007303 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007304 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007305 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007306 for(j=0; j<i; j++){
7307 if( aPgno[j]==aPgno[i] ){
7308 /* This branch is taken if the set of sibling pages somehow contains
7309 ** duplicate entries. This can happen if the database is corrupt.
7310 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007311 ** we do the detection here in order to avoid populating the pager
7312 ** cache with two separate objects associated with the same
7313 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007314 assert( CORRUPT_DB );
7315 rc = SQLITE_CORRUPT_BKPT;
7316 goto balance_cleanup;
7317 }
7318 }
dan33ea4862014-10-09 19:35:37 +00007319 }
7320 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007321 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007322 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007323 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007324 }
drh00fe08a2014-10-31 00:05:23 +00007325 pgno = aPgOrder[iBest];
7326 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007327 if( iBest!=i ){
7328 if( iBest>i ){
7329 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7330 }
7331 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7332 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007333 }
7334 }
dan33ea4862014-10-09 19:35:37 +00007335
7336 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7337 "%d(%d nc=%d) %d(%d nc=%d)\n",
7338 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007339 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007340 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007341 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007342 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007343 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007344 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7345 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7346 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7347 ));
danielk19774dbaa892009-06-16 16:50:22 +00007348
7349 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7350 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007351
dan33ea4862014-10-09 19:35:37 +00007352 /* If the sibling pages are not leaves, ensure that the right-child pointer
7353 ** of the right-most new sibling page is set to the value that was
7354 ** originally in the same field of the right-most old sibling page. */
7355 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7356 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7357 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7358 }
danielk1977ac11ee62005-01-15 12:45:51 +00007359
dan33ea4862014-10-09 19:35:37 +00007360 /* Make any required updates to pointer map entries associated with
7361 ** cells stored on sibling pages following the balance operation. Pointer
7362 ** map entries associated with divider cells are set by the insertCell()
7363 ** routine. The associated pointer map entries are:
7364 **
7365 ** a) if the cell contains a reference to an overflow chain, the
7366 ** entry associated with the first page in the overflow chain, and
7367 **
7368 ** b) if the sibling pages are not leaves, the child page associated
7369 ** with the cell.
7370 **
7371 ** If the sibling pages are not leaves, then the pointer map entry
7372 ** associated with the right-child of each sibling may also need to be
7373 ** updated. This happens below, after the sibling pages have been
7374 ** populated, not here.
7375 */
7376 if( ISAUTOVACUUM ){
7377 MemPage *pNew = apNew[0];
7378 u8 *aOld = pNew->aData;
7379 int cntOldNext = pNew->nCell + pNew->nOverflow;
7380 int usableSize = pBt->usableSize;
7381 int iNew = 0;
7382 int iOld = 0;
danielk1977634f2982005-03-28 08:44:07 +00007383
drh1ffd2472015-06-23 02:37:30 +00007384 for(i=0; i<b.nCell; i++){
7385 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007386 if( i==cntOldNext ){
7387 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7388 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7389 aOld = pOld->aData;
7390 }
7391 if( i==cntNew[iNew] ){
7392 pNew = apNew[++iNew];
7393 if( !leafData ) continue;
7394 }
7395
7396 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007397 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007398 ** or else the divider cell to the left of sibling page iOld. So,
7399 ** if sibling page iOld had the same page number as pNew, and if
7400 ** pCell really was a part of sibling page iOld (not a divider or
7401 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007402 if( iOld>=nNew
7403 || pNew->pgno!=aPgno[iOld]
7404 || pCell<aOld
7405 || pCell>=&aOld[usableSize]
7406 ){
dan33ea4862014-10-09 19:35:37 +00007407 if( !leafCorrection ){
7408 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7409 }
drh1ffd2472015-06-23 02:37:30 +00007410 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007411 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00007412 }
drhea82b372015-06-23 21:35:28 +00007413 if( rc ) goto balance_cleanup;
drh4b70f112004-05-02 21:12:19 +00007414 }
drh14acc042001-06-10 19:56:58 +00007415 }
7416 }
dan33ea4862014-10-09 19:35:37 +00007417
7418 /* Insert new divider cells into pParent. */
7419 for(i=0; i<nNew-1; i++){
7420 u8 *pCell;
7421 u8 *pTemp;
7422 int sz;
7423 MemPage *pNew = apNew[i];
7424 j = cntNew[i];
7425
7426 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007427 assert( b.apCell[j]!=0 );
7428 pCell = b.apCell[j];
7429 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007430 pTemp = &aOvflSpace[iOvflSpace];
7431 if( !pNew->leaf ){
7432 memcpy(&pNew->aData[8], pCell, 4);
7433 }else if( leafData ){
7434 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007435 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007436 ** cell consists of the integer key for the right-most cell of
7437 ** the sibling-page assembled above only.
7438 */
7439 CellInfo info;
7440 j--;
drh1ffd2472015-06-23 02:37:30 +00007441 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007442 pCell = pTemp;
7443 sz = 4 + putVarint(&pCell[4], info.nKey);
7444 pTemp = 0;
7445 }else{
7446 pCell -= 4;
7447 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7448 ** previously stored on a leaf node, and its reported size was 4
7449 ** bytes, then it may actually be smaller than this
7450 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7451 ** any cell). But it is important to pass the correct size to
7452 ** insertCell(), so reparse the cell now.
7453 **
7454 ** Note that this can never happen in an SQLite data file, as all
7455 ** cells are at least 4 bytes. It only happens in b-trees used
7456 ** to evaluate "IN (SELECT ...)" and similar clauses.
7457 */
drh1ffd2472015-06-23 02:37:30 +00007458 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007459 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007460 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007461 }
7462 }
7463 iOvflSpace += sz;
7464 assert( sz<=pBt->maxLocal+23 );
7465 assert( iOvflSpace <= (int)pBt->pageSize );
7466 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7467 if( rc!=SQLITE_OK ) goto balance_cleanup;
7468 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7469 }
7470
7471 /* Now update the actual sibling pages. The order in which they are updated
7472 ** is important, as this code needs to avoid disrupting any page from which
7473 ** cells may still to be read. In practice, this means:
7474 **
drhd836d422014-10-31 14:26:36 +00007475 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7476 ** then it is not safe to update page apNew[iPg] until after
7477 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007478 **
drhd836d422014-10-31 14:26:36 +00007479 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7480 ** then it is not safe to update page apNew[iPg] until after
7481 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007482 **
7483 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007484 **
7485 ** The iPg value in the following loop starts at nNew-1 goes down
7486 ** to 0, then back up to nNew-1 again, thus making two passes over
7487 ** the pages. On the initial downward pass, only condition (1) above
7488 ** needs to be tested because (2) will always be true from the previous
7489 ** step. On the upward pass, both conditions are always true, so the
7490 ** upwards pass simply processes pages that were missed on the downward
7491 ** pass.
dan33ea4862014-10-09 19:35:37 +00007492 */
drhbec021b2014-10-31 12:22:00 +00007493 for(i=1-nNew; i<nNew; i++){
7494 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007495 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007496 if( abDone[iPg] ) continue; /* Skip pages already processed */
7497 if( i>=0 /* On the upwards pass, or... */
7498 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007499 ){
dan09c68402014-10-11 20:00:24 +00007500 int iNew;
7501 int iOld;
7502 int nNewCell;
7503
drhd836d422014-10-31 14:26:36 +00007504 /* Verify condition (1): If cells are moving left, update iPg
7505 ** only after iPg-1 has already been updated. */
7506 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7507
7508 /* Verify condition (2): If cells are moving right, update iPg
7509 ** only after iPg+1 has already been updated. */
7510 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7511
dan09c68402014-10-11 20:00:24 +00007512 if( iPg==0 ){
7513 iNew = iOld = 0;
7514 nNewCell = cntNew[0];
7515 }else{
drh1ffd2472015-06-23 02:37:30 +00007516 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007517 iNew = cntNew[iPg-1] + !leafData;
7518 nNewCell = cntNew[iPg] - iNew;
7519 }
7520
drh1ffd2472015-06-23 02:37:30 +00007521 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007522 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007523 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007524 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007525 assert( apNew[iPg]->nOverflow==0 );
7526 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007527 }
7528 }
drhd836d422014-10-31 14:26:36 +00007529
7530 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007531 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7532
drh7aa8f852006-03-28 00:24:44 +00007533 assert( nOld>0 );
7534 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007535
danielk197713bd99f2009-06-24 05:40:34 +00007536 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7537 /* The root page of the b-tree now contains no cells. The only sibling
7538 ** page is the right-child of the parent. Copy the contents of the
7539 ** child page into the parent, decreasing the overall height of the
7540 ** b-tree structure by one. This is described as the "balance-shallower"
7541 ** sub-algorithm in some documentation.
7542 **
7543 ** If this is an auto-vacuum database, the call to copyNodeContent()
7544 ** sets all pointer-map entries corresponding to database image pages
7545 ** for which the pointer is stored within the content being copied.
7546 **
drh768f2902014-10-31 02:51:41 +00007547 ** It is critical that the child page be defragmented before being
7548 ** copied into the parent, because if the parent is page 1 then it will
7549 ** by smaller than the child due to the database header, and so all the
7550 ** free space needs to be up front.
7551 */
danielk197713bd99f2009-06-24 05:40:34 +00007552 assert( nNew==1 );
dan89ca0b32014-10-25 20:36:28 +00007553 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007554 testcase( rc!=SQLITE_OK );
7555 assert( apNew[0]->nFree ==
7556 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7557 || rc!=SQLITE_OK
7558 );
7559 copyNodeContent(apNew[0], pParent, &rc);
7560 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007561 }else if( ISAUTOVACUUM && !leafCorrection ){
7562 /* Fix the pointer map entries associated with the right-child of each
7563 ** sibling page. All other pointer map entries have already been taken
7564 ** care of. */
7565 for(i=0; i<nNew; i++){
7566 u32 key = get4byte(&apNew[i]->aData[8]);
7567 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007568 }
dan33ea4862014-10-09 19:35:37 +00007569 }
danielk19774dbaa892009-06-16 16:50:22 +00007570
dan33ea4862014-10-09 19:35:37 +00007571 assert( pParent->isInit );
7572 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007573 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007574
dan33ea4862014-10-09 19:35:37 +00007575 /* Free any old pages that were not reused as new pages.
7576 */
7577 for(i=nNew; i<nOld; i++){
7578 freePage(apOld[i], &rc);
7579 }
7580
dane6593d82014-10-24 16:40:49 +00007581#if 0
dan33ea4862014-10-09 19:35:37 +00007582 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007583 /* The ptrmapCheckPages() contains assert() statements that verify that
7584 ** all pointer map pages are set correctly. This is helpful while
7585 ** debugging. This is usually disabled because a corrupt database may
7586 ** cause an assert() statement to fail. */
7587 ptrmapCheckPages(apNew, nNew);
7588 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007589 }
dan33ea4862014-10-09 19:35:37 +00007590#endif
danielk1977cd581a72009-06-23 15:43:39 +00007591
drh8b2f49b2001-06-08 00:21:52 +00007592 /*
drh14acc042001-06-10 19:56:58 +00007593 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007594 */
drh14acc042001-06-10 19:56:58 +00007595balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007596 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007597 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007598 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007599 }
drh14acc042001-06-10 19:56:58 +00007600 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007601 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007602 }
danielk1977eaa06f62008-09-18 17:34:44 +00007603
drh8b2f49b2001-06-08 00:21:52 +00007604 return rc;
7605}
mistachkine7c54162012-10-02 22:54:27 +00007606#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
7607#pragma optimize("", on)
7608#endif
drh8b2f49b2001-06-08 00:21:52 +00007609
drh43605152004-05-29 21:46:49 +00007610
7611/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007612** This function is called when the root page of a b-tree structure is
7613** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007614**
danielk1977a50d9aa2009-06-08 14:49:45 +00007615** A new child page is allocated and the contents of the current root
7616** page, including overflow cells, are copied into the child. The root
7617** page is then overwritten to make it an empty page with the right-child
7618** pointer pointing to the new page.
7619**
7620** Before returning, all pointer-map entries corresponding to pages
7621** that the new child-page now contains pointers to are updated. The
7622** entry corresponding to the new right-child pointer of the root
7623** page is also updated.
7624**
7625** If successful, *ppChild is set to contain a reference to the child
7626** page and SQLITE_OK is returned. In this case the caller is required
7627** to call releasePage() on *ppChild exactly once. If an error occurs,
7628** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007629*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007630static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7631 int rc; /* Return value from subprocedures */
7632 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007633 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007634 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007635
danielk1977a50d9aa2009-06-08 14:49:45 +00007636 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007637 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007638
danielk1977a50d9aa2009-06-08 14:49:45 +00007639 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7640 ** page that will become the new right-child of pPage. Copy the contents
7641 ** of the node stored on pRoot into the new child page.
7642 */
drh98add2e2009-07-20 17:11:49 +00007643 rc = sqlite3PagerWrite(pRoot->pDbPage);
7644 if( rc==SQLITE_OK ){
7645 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007646 copyNodeContent(pRoot, pChild, &rc);
7647 if( ISAUTOVACUUM ){
7648 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007649 }
7650 }
7651 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007652 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007653 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007654 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007655 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007656 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7657 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7658 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007659
danielk1977a50d9aa2009-06-08 14:49:45 +00007660 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7661
7662 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007663 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7664 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7665 memcpy(pChild->apOvfl, pRoot->apOvfl,
7666 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007667 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007668
7669 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7670 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7671 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7672
7673 *ppChild = pChild;
7674 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007675}
7676
7677/*
danielk197771d5d2c2008-09-29 11:49:47 +00007678** The page that pCur currently points to has just been modified in
7679** some way. This function figures out if this modification means the
7680** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007681** routine. Balancing routines are:
7682**
7683** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007684** balance_deeper()
7685** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007686*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007687static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007688 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007689 const int nMin = pCur->pBt->usableSize * 2 / 3;
7690 u8 aBalanceQuickSpace[13];
7691 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007692
shane75ac1de2009-06-09 18:58:52 +00007693 TESTONLY( int balance_quick_called = 0 );
7694 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007695
7696 do {
7697 int iPage = pCur->iPage;
7698 MemPage *pPage = pCur->apPage[iPage];
7699
7700 if( iPage==0 ){
7701 if( pPage->nOverflow ){
7702 /* The root page of the b-tree is overfull. In this case call the
7703 ** balance_deeper() function to create a new child for the root-page
7704 ** and copy the current contents of the root-page to it. The
7705 ** next iteration of the do-loop will balance the child page.
7706 */
7707 assert( (balance_deeper_called++)==0 );
7708 rc = balance_deeper(pPage, &pCur->apPage[1]);
7709 if( rc==SQLITE_OK ){
7710 pCur->iPage = 1;
7711 pCur->aiIdx[0] = 0;
7712 pCur->aiIdx[1] = 0;
7713 assert( pCur->apPage[1]->nOverflow );
7714 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007715 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007716 break;
7717 }
7718 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7719 break;
7720 }else{
7721 MemPage * const pParent = pCur->apPage[iPage-1];
7722 int const iIdx = pCur->aiIdx[iPage-1];
7723
7724 rc = sqlite3PagerWrite(pParent->pDbPage);
7725 if( rc==SQLITE_OK ){
7726#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007727 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007728 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007729 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007730 && pParent->pgno!=1
7731 && pParent->nCell==iIdx
7732 ){
7733 /* Call balance_quick() to create a new sibling of pPage on which
7734 ** to store the overflow cell. balance_quick() inserts a new cell
7735 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007736 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007737 ** use either balance_nonroot() or balance_deeper(). Until this
7738 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7739 ** buffer.
7740 **
7741 ** The purpose of the following assert() is to check that only a
7742 ** single call to balance_quick() is made for each call to this
7743 ** function. If this were not verified, a subtle bug involving reuse
7744 ** of the aBalanceQuickSpace[] might sneak in.
7745 */
7746 assert( (balance_quick_called++)==0 );
7747 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7748 }else
7749#endif
7750 {
7751 /* In this case, call balance_nonroot() to redistribute cells
7752 ** between pPage and up to 2 of its sibling pages. This involves
7753 ** modifying the contents of pParent, which may cause pParent to
7754 ** become overfull or underfull. The next iteration of the do-loop
7755 ** will balance the parent page to correct this.
7756 **
7757 ** If the parent page becomes overfull, the overflow cell or cells
7758 ** are stored in the pSpace buffer allocated immediately below.
7759 ** A subsequent iteration of the do-loop will deal with this by
7760 ** calling balance_nonroot() (balance_deeper() may be called first,
7761 ** but it doesn't deal with overflow cells - just moves them to a
7762 ** different page). Once this subsequent call to balance_nonroot()
7763 ** has completed, it is safe to release the pSpace buffer used by
7764 ** the previous call, as the overflow cell data will have been
7765 ** copied either into the body of a database page or into the new
7766 ** pSpace buffer passed to the latter call to balance_nonroot().
7767 */
7768 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007769 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7770 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007771 if( pFree ){
7772 /* If pFree is not NULL, it points to the pSpace buffer used
7773 ** by a previous call to balance_nonroot(). Its contents are
7774 ** now stored either on real database pages or within the
7775 ** new pSpace buffer, so it may be safely freed here. */
7776 sqlite3PageFree(pFree);
7777 }
7778
danielk19774dbaa892009-06-16 16:50:22 +00007779 /* The pSpace buffer will be freed after the next call to
7780 ** balance_nonroot(), or just before this function returns, whichever
7781 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007782 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007783 }
7784 }
7785
7786 pPage->nOverflow = 0;
7787
7788 /* The next iteration of the do-loop balances the parent page. */
7789 releasePage(pPage);
7790 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007791 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007792 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007793 }while( rc==SQLITE_OK );
7794
7795 if( pFree ){
7796 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007797 }
7798 return rc;
7799}
7800
drhf74b8d92002-09-01 23:20:45 +00007801
7802/*
drh3b7511c2001-05-26 13:15:44 +00007803** Insert a new record into the BTree. The key is given by (pKey,nKey)
7804** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007805** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007806** is left pointing at a random location.
7807**
7808** For an INTKEY table, only the nKey value of the key is used. pKey is
7809** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007810**
7811** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007812** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007813** been performed. seekResult is the search result returned (a negative
7814** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007815** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007816** (pKey, nKey)).
7817**
drh3e9ca092009-09-08 01:14:48 +00007818** If the seekResult parameter is non-zero, then the caller guarantees that
7819** cursor pCur is pointing at the existing copy of a row that is to be
7820** overwritten. If the seekResult parameter is 0, then cursor pCur may
7821** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007822** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007823*/
drh3aac2dd2004-04-26 14:10:20 +00007824int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007825 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007826 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007827 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007828 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007829 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007830 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007831){
drh3b7511c2001-05-26 13:15:44 +00007832 int rc;
drh3e9ca092009-09-08 01:14:48 +00007833 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007834 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007835 int idx;
drh3b7511c2001-05-26 13:15:44 +00007836 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007837 Btree *p = pCur->pBtree;
7838 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007839 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007840 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007841
drh98add2e2009-07-20 17:11:49 +00007842 if( pCur->eState==CURSOR_FAULT ){
7843 assert( pCur->skipNext!=SQLITE_OK );
7844 return pCur->skipNext;
7845 }
7846
drh1fee73e2007-08-29 04:00:57 +00007847 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007848 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7849 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007850 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007851 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7852
danielk197731d31b82009-07-13 13:18:07 +00007853 /* Assert that the caller has been consistent. If this cursor was opened
7854 ** expecting an index b-tree, then the caller should be inserting blob
7855 ** keys with no associated data. If the cursor was opened expecting an
7856 ** intkey table, the caller should be inserting integer keys with a
7857 ** blob of associated data. */
7858 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7859
danielk19779c3acf32009-05-02 07:36:49 +00007860 /* Save the positions of any other cursors open on this table.
7861 **
danielk19773509a652009-07-06 18:56:13 +00007862 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007863 ** example, when inserting data into a table with auto-generated integer
7864 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7865 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007866 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007867 ** that the cursor is already where it needs to be and returns without
7868 ** doing any work. To avoid thwarting these optimizations, it is important
7869 ** not to clear the cursor here.
7870 */
drh4c301aa2009-07-15 17:25:45 +00007871 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7872 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007873
drhd60f4f42012-03-23 14:23:52 +00007874 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00007875 /* If this is an insert into a table b-tree, invalidate any incrblob
7876 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007877 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007878
7879 /* If the cursor is currently on the last row and we are appending a
7880 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7881 ** call */
drh3f387402014-09-24 01:23:00 +00007882 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7883 && pCur->info.nKey==nKey-1 ){
drhe0670b62014-02-12 21:31:12 +00007884 loc = -1;
7885 }
drhd60f4f42012-03-23 14:23:52 +00007886 }
7887
drh4c301aa2009-07-15 17:25:45 +00007888 if( !loc ){
7889 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7890 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007891 }
danielk1977b980d2212009-06-22 18:03:51 +00007892 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007893
danielk197771d5d2c2008-09-29 11:49:47 +00007894 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007895 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007896 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007897
drh3a4c1412004-05-09 20:40:11 +00007898 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7899 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7900 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007901 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007902 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007903 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00007904 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007905 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00007906 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007907 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007908 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007909 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007910 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007911 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007912 rc = sqlite3PagerWrite(pPage->pDbPage);
7913 if( rc ){
7914 goto end_insert;
7915 }
danielk197771d5d2c2008-09-29 11:49:47 +00007916 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007917 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007918 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007919 }
drh9bfdc252014-09-24 02:05:41 +00007920 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00007921 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007922 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007923 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007924 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007925 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007926 }else{
drh4b70f112004-05-02 21:12:19 +00007927 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007928 }
drh98add2e2009-07-20 17:11:49 +00007929 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007930 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007931
mistachkin48864df2013-03-21 21:20:32 +00007932 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007933 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007934 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007935 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007936 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007937 ** Previous versions of SQLite called moveToRoot() to move the cursor
7938 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007939 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7940 ** set the cursor state to "invalid". This makes common insert operations
7941 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007942 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007943 ** There is a subtle but important optimization here too. When inserting
7944 ** multiple records into an intkey b-tree using a single cursor (as can
7945 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7946 ** is advantageous to leave the cursor pointing to the last entry in
7947 ** the b-tree if possible. If the cursor is left pointing to the last
7948 ** entry in the table, and the next row inserted has an integer key
7949 ** larger than the largest existing key, it is possible to insert the
7950 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007951 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007952 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007953 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00007954 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00007955 rc = balance(pCur);
7956
7957 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007958 ** fails. Internal data structure corruption will result otherwise.
7959 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7960 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007961 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007962 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007963 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007964 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007965
drh2e38c322004-09-03 18:38:44 +00007966end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007967 return rc;
7968}
7969
7970/*
drh4b70f112004-05-02 21:12:19 +00007971** Delete the entry that the cursor is pointing to. The cursor
peter.d.reid60ec9142014-09-06 16:39:46 +00007972** is left pointing at an arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007973*/
drh3aac2dd2004-04-26 14:10:20 +00007974int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007975 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007976 BtShared *pBt = p->pBt;
7977 int rc; /* Return code */
7978 MemPage *pPage; /* Page to delete cell from */
7979 unsigned char *pCell; /* Pointer to cell to delete */
7980 int iCellIdx; /* Index of cell to delete */
7981 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00007982 u16 szCell; /* Size of the cell being deleted */
drh8b2f49b2001-06-08 00:21:52 +00007983
drh1fee73e2007-08-29 04:00:57 +00007984 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007985 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007986 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00007987 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00007988 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7989 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7990
danielk19774dbaa892009-06-16 16:50:22 +00007991 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7992 || NEVER(pCur->eState!=CURSOR_VALID)
7993 ){
7994 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007995 }
danielk1977da184232006-01-05 11:34:32 +00007996
danielk19774dbaa892009-06-16 16:50:22 +00007997 iCellDepth = pCur->iPage;
7998 iCellIdx = pCur->aiIdx[iCellDepth];
7999 pPage = pCur->apPage[iCellDepth];
8000 pCell = findCell(pPage, iCellIdx);
8001
8002 /* If the page containing the entry to delete is not a leaf page, move
8003 ** the cursor to the largest entry in the tree that is smaller than
8004 ** the entry being deleted. This cell will replace the cell being deleted
8005 ** from the internal node. The 'previous' entry is used for this instead
8006 ** of the 'next' entry, as the previous entry is always a part of the
8007 ** sub-tree headed by the child page of the cell being deleted. This makes
8008 ** balancing the tree following the delete operation easier. */
8009 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008010 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008011 rc = sqlite3BtreePrevious(pCur, &notUsed);
8012 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008013 }
8014
8015 /* Save the positions of any other cursors open on this table before
8016 ** making any modifications. Make the page containing the entry to be
8017 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00008018 ** entry and finally remove the cell itself from within the page.
8019 */
8020 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8021 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008022
8023 /* If this is a delete operation to remove a row from a table b-tree,
8024 ** invalidate any incrblob cursors open on the row being deleted. */
8025 if( pCur->pKeyInfo==0 ){
8026 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8027 }
8028
drha4ec1d42009-07-11 13:13:11 +00008029 rc = sqlite3PagerWrite(pPage->pDbPage);
8030 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008031 rc = clearCell(pPage, pCell, &szCell);
8032 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008033 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008034
danielk19774dbaa892009-06-16 16:50:22 +00008035 /* If the cell deleted was not located on a leaf page, then the cursor
8036 ** is currently pointing to the largest entry in the sub-tree headed
8037 ** by the child-page of the cell that was just deleted from an internal
8038 ** node. The cell from the leaf node needs to be moved to the internal
8039 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008040 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008041 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8042 int nCell;
8043 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8044 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008045
danielk19774dbaa892009-06-16 16:50:22 +00008046 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008047 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008048 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008049 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008050 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008051 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008052 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00008053 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8054 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008055 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008056 }
danielk19774dbaa892009-06-16 16:50:22 +00008057
8058 /* Balance the tree. If the entry deleted was located on a leaf page,
8059 ** then the cursor still points to that page. In this case the first
8060 ** call to balance() repairs the tree, and the if(...) condition is
8061 ** never true.
8062 **
8063 ** Otherwise, if the entry deleted was on an internal node page, then
8064 ** pCur is pointing to the leaf page from which a cell was removed to
8065 ** replace the cell deleted from the internal node. This is slightly
8066 ** tricky as the leaf node may be underfull, and the internal node may
8067 ** be either under or overfull. In this case run the balancing algorithm
8068 ** on the leaf node first. If the balance proceeds far enough up the
8069 ** tree that we can be sure that any problem in the internal node has
8070 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8071 ** walk the cursor up the tree to the internal node and balance it as
8072 ** well. */
8073 rc = balance(pCur);
8074 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8075 while( pCur->iPage>iCellDepth ){
8076 releasePage(pCur->apPage[pCur->iPage--]);
8077 }
8078 rc = balance(pCur);
8079 }
8080
danielk19776b456a22005-03-21 04:04:02 +00008081 if( rc==SQLITE_OK ){
8082 moveToRoot(pCur);
8083 }
drh5e2f8b92001-05-28 00:41:15 +00008084 return rc;
drh3b7511c2001-05-26 13:15:44 +00008085}
drh8b2f49b2001-06-08 00:21:52 +00008086
8087/*
drhc6b52df2002-01-04 03:09:29 +00008088** Create a new BTree table. Write into *piTable the page
8089** number for the root page of the new table.
8090**
drhab01f612004-05-22 02:55:23 +00008091** The type of type is determined by the flags parameter. Only the
8092** following values of flags are currently in use. Other values for
8093** flags might not work:
8094**
8095** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8096** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008097*/
drhd4187c72010-08-30 22:15:45 +00008098static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008099 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008100 MemPage *pRoot;
8101 Pgno pgnoRoot;
8102 int rc;
drhd4187c72010-08-30 22:15:45 +00008103 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008104
drh1fee73e2007-08-29 04:00:57 +00008105 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008106 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008107 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008108
danielk1977003ba062004-11-04 02:57:33 +00008109#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008110 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008111 if( rc ){
8112 return rc;
8113 }
danielk1977003ba062004-11-04 02:57:33 +00008114#else
danielk1977687566d2004-11-02 12:56:41 +00008115 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008116 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8117 MemPage *pPageMove; /* The page to move to. */
8118
danielk197720713f32007-05-03 11:43:33 +00008119 /* Creating a new table may probably require moving an existing database
8120 ** to make room for the new tables root page. In case this page turns
8121 ** out to be an overflow page, delete all overflow page-map caches
8122 ** held by open cursors.
8123 */
danielk197792d4d7a2007-05-04 12:05:56 +00008124 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008125
danielk1977003ba062004-11-04 02:57:33 +00008126 /* Read the value of meta[3] from the database to determine where the
8127 ** root page of the new table should go. meta[3] is the largest root-page
8128 ** created so far, so the new root-page is (meta[3]+1).
8129 */
danielk1977602b4662009-07-02 07:47:33 +00008130 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008131 pgnoRoot++;
8132
danielk1977599fcba2004-11-08 07:13:13 +00008133 /* The new root-page may not be allocated on a pointer-map page, or the
8134 ** PENDING_BYTE page.
8135 */
drh72190432008-01-31 14:54:43 +00008136 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008137 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008138 pgnoRoot++;
8139 }
drh499e15b2015-05-22 12:37:37 +00008140 assert( pgnoRoot>=3 || CORRUPT_DB );
8141 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008142
8143 /* Allocate a page. The page that currently resides at pgnoRoot will
8144 ** be moved to the allocated page (unless the allocated page happens
8145 ** to reside at pgnoRoot).
8146 */
dan51f0b6d2013-02-22 20:16:34 +00008147 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008148 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008149 return rc;
8150 }
danielk1977003ba062004-11-04 02:57:33 +00008151
8152 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008153 /* pgnoRoot is the page that will be used for the root-page of
8154 ** the new table (assuming an error did not occur). But we were
8155 ** allocated pgnoMove. If required (i.e. if it was not allocated
8156 ** by extending the file), the current page at position pgnoMove
8157 ** is already journaled.
8158 */
drheeb844a2009-08-08 18:01:07 +00008159 u8 eType = 0;
8160 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008161
danf7679ad2013-04-03 11:38:36 +00008162 /* Save the positions of any open cursors. This is required in
8163 ** case they are holding a reference to an xFetch reference
8164 ** corresponding to page pgnoRoot. */
8165 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008166 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008167 if( rc!=SQLITE_OK ){
8168 return rc;
8169 }
danielk1977f35843b2007-04-07 15:03:17 +00008170
8171 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008172 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008173 if( rc!=SQLITE_OK ){
8174 return rc;
8175 }
8176 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008177 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8178 rc = SQLITE_CORRUPT_BKPT;
8179 }
8180 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008181 releasePage(pRoot);
8182 return rc;
8183 }
drhccae6022005-02-26 17:31:26 +00008184 assert( eType!=PTRMAP_ROOTPAGE );
8185 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008186 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008187 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008188
8189 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008190 if( rc!=SQLITE_OK ){
8191 return rc;
8192 }
drhb00fc3b2013-08-21 23:42:32 +00008193 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008194 if( rc!=SQLITE_OK ){
8195 return rc;
8196 }
danielk19773b8a05f2007-03-19 17:44:26 +00008197 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008198 if( rc!=SQLITE_OK ){
8199 releasePage(pRoot);
8200 return rc;
8201 }
8202 }else{
8203 pRoot = pPageMove;
8204 }
8205
danielk197742741be2005-01-08 12:42:39 +00008206 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008207 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008208 if( rc ){
8209 releasePage(pRoot);
8210 return rc;
8211 }
drhbf592832010-03-30 15:51:12 +00008212
8213 /* When the new root page was allocated, page 1 was made writable in
8214 ** order either to increase the database filesize, or to decrement the
8215 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8216 */
8217 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008218 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008219 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008220 releasePage(pRoot);
8221 return rc;
8222 }
danielk197742741be2005-01-08 12:42:39 +00008223
danielk1977003ba062004-11-04 02:57:33 +00008224 }else{
drh4f0c5872007-03-26 22:05:01 +00008225 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008226 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008227 }
8228#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008229 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008230 if( createTabFlags & BTREE_INTKEY ){
8231 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8232 }else{
8233 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8234 }
8235 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008236 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008237 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008238 *piTable = (int)pgnoRoot;
8239 return SQLITE_OK;
8240}
drhd677b3d2007-08-20 22:48:41 +00008241int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8242 int rc;
8243 sqlite3BtreeEnter(p);
8244 rc = btreeCreateTable(p, piTable, flags);
8245 sqlite3BtreeLeave(p);
8246 return rc;
8247}
drh8b2f49b2001-06-08 00:21:52 +00008248
8249/*
8250** Erase the given database page and all its children. Return
8251** the page to the freelist.
8252*/
drh4b70f112004-05-02 21:12:19 +00008253static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008254 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008255 Pgno pgno, /* Page number to clear */
8256 int freePageFlag, /* Deallocate page if true */
8257 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008258){
danielk1977146ba992009-07-22 14:08:13 +00008259 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008260 int rc;
drh4b70f112004-05-02 21:12:19 +00008261 unsigned char *pCell;
8262 int i;
dan8ce71842014-01-14 20:14:09 +00008263 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008264 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008265
drh1fee73e2007-08-29 04:00:57 +00008266 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008267 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008268 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008269 }
dan11dcd112013-03-15 18:29:18 +00008270 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00008271 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008272 if( pPage->bBusy ){
8273 rc = SQLITE_CORRUPT_BKPT;
8274 goto cleardatabasepage_out;
8275 }
8276 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008277 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008278 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008279 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +00008280 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008281 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008282 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008283 }
drh9bfdc252014-09-24 02:05:41 +00008284 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008285 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008286 }
drhccf46d02015-04-01 13:21:33 +00008287 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008288 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008289 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008290 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008291 assert( pPage->intKey || CORRUPT_DB );
8292 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008293 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008294 }
8295 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008296 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008297 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008298 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008299 }
danielk19776b456a22005-03-21 04:04:02 +00008300
8301cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008302 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008303 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008304 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008305}
8306
8307/*
drhab01f612004-05-22 02:55:23 +00008308** Delete all information from a single table in the database. iTable is
8309** the page number of the root of the table. After this routine returns,
8310** the root page is empty, but still exists.
8311**
8312** This routine will fail with SQLITE_LOCKED if there are any open
8313** read cursors on the table. Open write cursors are moved to the
8314** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008315**
8316** If pnChange is not NULL, then table iTable must be an intkey table. The
8317** integer value pointed to by pnChange is incremented by the number of
8318** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008319*/
danielk1977c7af4842008-10-27 13:59:33 +00008320int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008321 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008322 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008323 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008324 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008325
drhc046e3e2009-07-15 11:26:44 +00008326 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008327
drhc046e3e2009-07-15 11:26:44 +00008328 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008329 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8330 ** is the root of a table b-tree - if it is not, the following call is
8331 ** a no-op). */
8332 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008333 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008334 }
drhd677b3d2007-08-20 22:48:41 +00008335 sqlite3BtreeLeave(p);
8336 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008337}
8338
8339/*
drh079a3072014-03-19 14:10:55 +00008340** Delete all information from the single table that pCur is open on.
8341**
8342** This routine only work for pCur on an ephemeral table.
8343*/
8344int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8345 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8346}
8347
8348/*
drh8b2f49b2001-06-08 00:21:52 +00008349** Erase all information in a table and add the root of the table to
8350** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008351** page 1) is never added to the freelist.
8352**
8353** This routine will fail with SQLITE_LOCKED if there are any open
8354** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008355**
8356** If AUTOVACUUM is enabled and the page at iTable is not the last
8357** root page in the database file, then the last root page
8358** in the database file is moved into the slot formerly occupied by
8359** iTable and that last slot formerly occupied by the last root page
8360** is added to the freelist instead of iTable. In this say, all
8361** root pages are kept at the beginning of the database file, which
8362** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8363** page number that used to be the last root page in the file before
8364** the move. If no page gets moved, *piMoved is set to 0.
8365** The last root page is recorded in meta[3] and the value of
8366** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008367*/
danielk197789d40042008-11-17 14:20:56 +00008368static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008369 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008370 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008371 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008372
drh1fee73e2007-08-29 04:00:57 +00008373 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008374 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008375
danielk1977e6efa742004-11-10 11:55:10 +00008376 /* It is illegal to drop a table if any cursors are open on the
8377 ** database. This is because in auto-vacuum mode the backend may
8378 ** need to move another root-page to fill a gap left by the deleted
8379 ** root page. If an open cursor was using this page a problem would
8380 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008381 **
8382 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008383 */
drhc046e3e2009-07-15 11:26:44 +00008384 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008385 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8386 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008387 }
danielk1977a0bf2652004-11-04 14:30:04 +00008388
drhb00fc3b2013-08-21 23:42:32 +00008389 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008390 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008391 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008392 if( rc ){
8393 releasePage(pPage);
8394 return rc;
8395 }
danielk1977a0bf2652004-11-04 14:30:04 +00008396
drh205f48e2004-11-05 00:43:11 +00008397 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008398
drh4b70f112004-05-02 21:12:19 +00008399 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008400#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008401 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008402 releasePage(pPage);
8403#else
8404 if( pBt->autoVacuum ){
8405 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008406 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008407
8408 if( iTable==maxRootPgno ){
8409 /* If the table being dropped is the table with the largest root-page
8410 ** number in the database, put the root page on the free list.
8411 */
drhc314dc72009-07-21 11:52:34 +00008412 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008413 releasePage(pPage);
8414 if( rc!=SQLITE_OK ){
8415 return rc;
8416 }
8417 }else{
8418 /* The table being dropped does not have the largest root-page
8419 ** number in the database. So move the page that does into the
8420 ** gap left by the deleted root-page.
8421 */
8422 MemPage *pMove;
8423 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008424 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008425 if( rc!=SQLITE_OK ){
8426 return rc;
8427 }
danielk19774c999992008-07-16 18:17:55 +00008428 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008429 releasePage(pMove);
8430 if( rc!=SQLITE_OK ){
8431 return rc;
8432 }
drhfe3313f2009-07-21 19:02:20 +00008433 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008434 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008435 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008436 releasePage(pMove);
8437 if( rc!=SQLITE_OK ){
8438 return rc;
8439 }
8440 *piMoved = maxRootPgno;
8441 }
8442
danielk1977599fcba2004-11-08 07:13:13 +00008443 /* Set the new 'max-root-page' value in the database header. This
8444 ** is the old value less one, less one more if that happens to
8445 ** be a root-page number, less one again if that is the
8446 ** PENDING_BYTE_PAGE.
8447 */
danielk197787a6e732004-11-05 12:58:25 +00008448 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008449 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8450 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008451 maxRootPgno--;
8452 }
danielk1977599fcba2004-11-08 07:13:13 +00008453 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8454
danielk1977aef0bf62005-12-30 16:28:01 +00008455 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008456 }else{
drhc314dc72009-07-21 11:52:34 +00008457 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008458 releasePage(pPage);
8459 }
8460#endif
drh2aa679f2001-06-25 02:11:07 +00008461 }else{
drhc046e3e2009-07-15 11:26:44 +00008462 /* If sqlite3BtreeDropTable was called on page 1.
8463 ** This really never should happen except in a corrupt
8464 ** database.
8465 */
drha34b6762004-05-07 13:30:42 +00008466 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008467 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008468 }
drh8b2f49b2001-06-08 00:21:52 +00008469 return rc;
8470}
drhd677b3d2007-08-20 22:48:41 +00008471int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8472 int rc;
8473 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008474 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008475 sqlite3BtreeLeave(p);
8476 return rc;
8477}
drh8b2f49b2001-06-08 00:21:52 +00008478
drh001bbcb2003-03-19 03:14:00 +00008479
drh8b2f49b2001-06-08 00:21:52 +00008480/*
danielk1977602b4662009-07-02 07:47:33 +00008481** This function may only be called if the b-tree connection already
8482** has a read or write transaction open on the database.
8483**
drh23e11ca2004-05-04 17:27:28 +00008484** Read the meta-information out of a database file. Meta[0]
8485** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008486** through meta[15] are available for use by higher layers. Meta[0]
8487** is read-only, the others are read/write.
8488**
8489** The schema layer numbers meta values differently. At the schema
8490** layer (and the SetCookie and ReadCookie opcodes) the number of
8491** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008492**
8493** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8494** of reading the value out of the header, it instead loads the "DataVersion"
8495** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8496** database file. It is a number computed by the pager. But its access
8497** pattern is the same as header meta values, and so it is convenient to
8498** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008499*/
danielk1977602b4662009-07-02 07:47:33 +00008500void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008501 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008502
drhd677b3d2007-08-20 22:48:41 +00008503 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008504 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008505 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008506 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008507 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008508
drh91618562014-12-19 19:28:02 +00008509 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008510 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008511 }else{
8512 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8513 }
drhae157872004-08-14 19:20:09 +00008514
danielk1977602b4662009-07-02 07:47:33 +00008515 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8516 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008517#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008518 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8519 pBt->btsFlags |= BTS_READ_ONLY;
8520 }
danielk1977003ba062004-11-04 02:57:33 +00008521#endif
drhae157872004-08-14 19:20:09 +00008522
drhd677b3d2007-08-20 22:48:41 +00008523 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008524}
8525
8526/*
drh23e11ca2004-05-04 17:27:28 +00008527** Write meta-information back into the database. Meta[0] is
8528** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008529*/
danielk1977aef0bf62005-12-30 16:28:01 +00008530int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8531 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008532 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008533 int rc;
drh23e11ca2004-05-04 17:27:28 +00008534 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008535 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008536 assert( p->inTrans==TRANS_WRITE );
8537 assert( pBt->pPage1!=0 );
8538 pP1 = pBt->pPage1->aData;
8539 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8540 if( rc==SQLITE_OK ){
8541 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008542#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008543 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008544 assert( pBt->autoVacuum || iMeta==0 );
8545 assert( iMeta==0 || iMeta==1 );
8546 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008547 }
drh64022502009-01-09 14:11:04 +00008548#endif
drh5df72a52002-06-06 23:16:05 +00008549 }
drhd677b3d2007-08-20 22:48:41 +00008550 sqlite3BtreeLeave(p);
8551 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008552}
drh8c42ca92001-06-22 19:15:00 +00008553
danielk1977a5533162009-02-24 10:01:51 +00008554#ifndef SQLITE_OMIT_BTREECOUNT
8555/*
8556** The first argument, pCur, is a cursor opened on some b-tree. Count the
8557** number of entries in the b-tree and write the result to *pnEntry.
8558**
8559** SQLITE_OK is returned if the operation is successfully executed.
8560** Otherwise, if an error is encountered (i.e. an IO error or database
8561** corruption) an SQLite error code is returned.
8562*/
8563int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8564 i64 nEntry = 0; /* Value to return in *pnEntry */
8565 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008566
8567 if( pCur->pgnoRoot==0 ){
8568 *pnEntry = 0;
8569 return SQLITE_OK;
8570 }
danielk1977a5533162009-02-24 10:01:51 +00008571 rc = moveToRoot(pCur);
8572
8573 /* Unless an error occurs, the following loop runs one iteration for each
8574 ** page in the B-Tree structure (not including overflow pages).
8575 */
8576 while( rc==SQLITE_OK ){
8577 int iIdx; /* Index of child node in parent */
8578 MemPage *pPage; /* Current page of the b-tree */
8579
8580 /* If this is a leaf page or the tree is not an int-key tree, then
8581 ** this page contains countable entries. Increment the entry counter
8582 ** accordingly.
8583 */
8584 pPage = pCur->apPage[pCur->iPage];
8585 if( pPage->leaf || !pPage->intKey ){
8586 nEntry += pPage->nCell;
8587 }
8588
8589 /* pPage is a leaf node. This loop navigates the cursor so that it
8590 ** points to the first interior cell that it points to the parent of
8591 ** the next page in the tree that has not yet been visited. The
8592 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8593 ** of the page, or to the number of cells in the page if the next page
8594 ** to visit is the right-child of its parent.
8595 **
8596 ** If all pages in the tree have been visited, return SQLITE_OK to the
8597 ** caller.
8598 */
8599 if( pPage->leaf ){
8600 do {
8601 if( pCur->iPage==0 ){
8602 /* All pages of the b-tree have been visited. Return successfully. */
8603 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008604 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008605 }
danielk197730548662009-07-09 05:07:37 +00008606 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008607 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8608
8609 pCur->aiIdx[pCur->iPage]++;
8610 pPage = pCur->apPage[pCur->iPage];
8611 }
8612
8613 /* Descend to the child node of the cell that the cursor currently
8614 ** points at. This is the right-child if (iIdx==pPage->nCell).
8615 */
8616 iIdx = pCur->aiIdx[pCur->iPage];
8617 if( iIdx==pPage->nCell ){
8618 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8619 }else{
8620 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8621 }
8622 }
8623
shanebe217792009-03-05 04:20:31 +00008624 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008625 return rc;
8626}
8627#endif
drhdd793422001-06-28 01:54:48 +00008628
drhdd793422001-06-28 01:54:48 +00008629/*
drh5eddca62001-06-30 21:53:53 +00008630** Return the pager associated with a BTree. This routine is used for
8631** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008632*/
danielk1977aef0bf62005-12-30 16:28:01 +00008633Pager *sqlite3BtreePager(Btree *p){
8634 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008635}
drh5eddca62001-06-30 21:53:53 +00008636
drhb7f91642004-10-31 02:22:47 +00008637#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008638/*
8639** Append a message to the error message string.
8640*/
drh2e38c322004-09-03 18:38:44 +00008641static void checkAppendMsg(
8642 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008643 const char *zFormat,
8644 ...
8645){
8646 va_list ap;
drh867db832014-09-26 02:41:05 +00008647 char zBuf[200];
drh1dcdbc02007-01-27 02:24:54 +00008648 if( !pCheck->mxErr ) return;
8649 pCheck->mxErr--;
8650 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008651 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008652 if( pCheck->errMsg.nChar ){
8653 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008654 }
drh867db832014-09-26 02:41:05 +00008655 if( pCheck->zPfx ){
8656 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
8657 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
drhf089aa42008-07-08 19:34:06 +00008658 }
8659 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8660 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008661 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008662 pCheck->mallocFailed = 1;
8663 }
drh5eddca62001-06-30 21:53:53 +00008664}
drhb7f91642004-10-31 02:22:47 +00008665#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008666
drhb7f91642004-10-31 02:22:47 +00008667#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008668
8669/*
8670** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8671** corresponds to page iPg is already set.
8672*/
8673static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8674 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8675 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8676}
8677
8678/*
8679** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8680*/
8681static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8682 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8683 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8684}
8685
8686
drh5eddca62001-06-30 21:53:53 +00008687/*
8688** Add 1 to the reference count for page iPage. If this is the second
8689** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008690** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008691** if this is the first reference to the page.
8692**
8693** Also check that the page number is in bounds.
8694*/
drh867db832014-09-26 02:41:05 +00008695static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008696 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008697 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008698 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008699 return 1;
8700 }
dan1235bb12012-04-03 17:43:28 +00008701 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008702 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008703 return 1;
8704 }
dan1235bb12012-04-03 17:43:28 +00008705 setPageReferenced(pCheck, iPage);
8706 return 0;
drh5eddca62001-06-30 21:53:53 +00008707}
8708
danielk1977afcdd022004-10-31 16:25:42 +00008709#ifndef SQLITE_OMIT_AUTOVACUUM
8710/*
8711** Check that the entry in the pointer-map for page iChild maps to
8712** page iParent, pointer type ptrType. If not, append an error message
8713** to pCheck.
8714*/
8715static void checkPtrmap(
8716 IntegrityCk *pCheck, /* Integrity check context */
8717 Pgno iChild, /* Child page number */
8718 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008719 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008720){
8721 int rc;
8722 u8 ePtrmapType;
8723 Pgno iPtrmapParent;
8724
8725 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8726 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008727 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008728 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008729 return;
8730 }
8731
8732 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008733 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008734 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8735 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8736 }
8737}
8738#endif
8739
drh5eddca62001-06-30 21:53:53 +00008740/*
8741** Check the integrity of the freelist or of an overflow page list.
8742** Verify that the number of pages on the list is N.
8743*/
drh30e58752002-03-02 20:41:57 +00008744static void checkList(
8745 IntegrityCk *pCheck, /* Integrity checking context */
8746 int isFreeList, /* True for a freelist. False for overflow page list */
8747 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008748 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008749){
8750 int i;
drh3a4c1412004-05-09 20:40:11 +00008751 int expected = N;
8752 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008753 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008754 DbPage *pOvflPage;
8755 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008756 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008757 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008758 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008759 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008760 break;
8761 }
drh867db832014-09-26 02:41:05 +00008762 if( checkRef(pCheck, iPage) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00008763 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh867db832014-09-26 02:41:05 +00008764 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008765 break;
8766 }
danielk19773b8a05f2007-03-19 17:44:26 +00008767 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008768 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008769 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008770#ifndef SQLITE_OMIT_AUTOVACUUM
8771 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008772 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008773 }
8774#endif
drh43b18e12010-08-17 19:40:08 +00008775 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008776 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008777 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008778 N--;
8779 }else{
8780 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008781 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008782#ifndef SQLITE_OMIT_AUTOVACUUM
8783 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008784 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008785 }
8786#endif
drh867db832014-09-26 02:41:05 +00008787 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008788 }
8789 N -= n;
drh30e58752002-03-02 20:41:57 +00008790 }
drh30e58752002-03-02 20:41:57 +00008791 }
danielk1977afcdd022004-10-31 16:25:42 +00008792#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008793 else{
8794 /* If this database supports auto-vacuum and iPage is not the last
8795 ** page in this overflow list, check that the pointer-map entry for
8796 ** the following page matches iPage.
8797 */
8798 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008799 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008800 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008801 }
danielk1977afcdd022004-10-31 16:25:42 +00008802 }
8803#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008804 iPage = get4byte(pOvflData);
8805 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00008806 }
8807}
drhb7f91642004-10-31 02:22:47 +00008808#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008809
drh67731a92015-04-16 11:56:03 +00008810/*
8811** An implementation of a min-heap.
8812**
8813** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008814** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008815** and aHeap[N*2+1].
8816**
8817** The heap property is this: Every node is less than or equal to both
8818** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008819** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008820**
8821** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8822** the heap, preserving the heap property. The btreeHeapPull() routine
8823** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00008824** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00008825** property.
8826**
8827** This heap is used for cell overlap and coverage testing. Each u32
8828** entry represents the span of a cell or freeblock on a btree page.
8829** The upper 16 bits are the index of the first byte of a range and the
8830** lower 16 bits are the index of the last byte of that range.
8831*/
8832static void btreeHeapInsert(u32 *aHeap, u32 x){
8833 u32 j, i = ++aHeap[0];
8834 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00008835 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00008836 x = aHeap[j];
8837 aHeap[j] = aHeap[i];
8838 aHeap[i] = x;
8839 i = j;
8840 }
8841}
8842static int btreeHeapPull(u32 *aHeap, u32 *pOut){
8843 u32 j, i, x;
8844 if( (x = aHeap[0])==0 ) return 0;
8845 *pOut = aHeap[1];
8846 aHeap[1] = aHeap[x];
8847 aHeap[x] = 0xffffffff;
8848 aHeap[0]--;
8849 i = 1;
8850 while( (j = i*2)<=aHeap[0] ){
8851 if( aHeap[j]>aHeap[j+1] ) j++;
8852 if( aHeap[i]<aHeap[j] ) break;
8853 x = aHeap[i];
8854 aHeap[i] = aHeap[j];
8855 aHeap[j] = x;
8856 i = j;
8857 }
8858 return 1;
8859}
8860
drhb7f91642004-10-31 02:22:47 +00008861#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008862/*
8863** Do various sanity checks on a single page of a tree. Return
8864** the tree depth. Root pages return 0. Parents of root pages
8865** return 1, and so forth.
8866**
8867** These checks are done:
8868**
8869** 1. Make sure that cells and freeblocks do not overlap
8870** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00008871** NO 2. Make sure cell keys are in order.
8872** NO 3. Make sure no key is less than or equal to zLowerBound.
8873** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00008874** 5. Check the integrity of overflow pages.
8875** 6. Recursively call checkTreePage on all children.
8876** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00008877** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00008878** the root of the tree.
8879*/
8880static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00008881 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00008882 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00008883 i64 *pnParentMinKey,
8884 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00008885){
8886 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00008887 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00008888 int hdr, cellStart;
8889 int nCell;
drhda200cc2004-05-09 11:51:38 +00008890 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00008891 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00008892 int usableSize;
drh67731a92015-04-16 11:56:03 +00008893 u32 *heap = 0;
drha33b6832015-04-16 21:57:37 +00008894 u32 x, prev = 0;
shaneh195475d2010-02-19 04:28:08 +00008895 i64 nMinKey = 0;
8896 i64 nMaxKey = 0;
drh867db832014-09-26 02:41:05 +00008897 const char *saved_zPfx = pCheck->zPfx;
8898 int saved_v1 = pCheck->v1;
8899 int saved_v2 = pCheck->v2;
danielk1977ef73ee92004-11-06 12:26:07 +00008900
drh5eddca62001-06-30 21:53:53 +00008901 /* Check that the page exists
8902 */
drhd9cb6ac2005-10-20 07:28:17 +00008903 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00008904 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00008905 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00008906 if( checkRef(pCheck, iPage) ) return 0;
8907 pCheck->zPfx = "Page %d: ";
8908 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00008909 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00008910 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008911 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00008912 depth = -1;
8913 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008914 }
danielk197793caf5a2009-07-11 06:55:33 +00008915
8916 /* Clear MemPage.isInit to make sure the corruption detection code in
8917 ** btreeInitPage() is executed. */
8918 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00008919 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00008920 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00008921 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00008922 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00008923 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008924 depth = -1;
8925 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008926 }
8927
8928 /* Check out all the cells.
8929 */
8930 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00008931 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00008932 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00008933 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00008934 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00008935
8936 /* Check payload overflow pages
8937 */
drh867db832014-09-26 02:41:05 +00008938 pCheck->zPfx = "On tree page %d cell %d: ";
8939 pCheck->v1 = iPage;
8940 pCheck->v2 = i;
danielk19771cc5ed82007-05-16 17:28:43 +00008941 pCell = findCell(pPage,i);
drh5fa60512015-06-19 17:19:34 +00008942 pPage->xParseCell(pPage, pCell, &info);
drhab1cc582014-09-23 21:25:19 +00008943 sz = info.nPayload;
shaneh195475d2010-02-19 04:28:08 +00008944 /* For intKey pages, check that the keys are in order.
8945 */
drhab1cc582014-09-23 21:25:19 +00008946 if( pPage->intKey ){
8947 if( i==0 ){
8948 nMinKey = nMaxKey = info.nKey;
8949 }else if( info.nKey <= nMaxKey ){
drh867db832014-09-26 02:41:05 +00008950 checkAppendMsg(pCheck,
drhab1cc582014-09-23 21:25:19 +00008951 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
shaneh195475d2010-02-19 04:28:08 +00008952 }
8953 nMaxKey = info.nKey;
8954 }
danielk19775be31f52009-03-30 13:53:43 +00008955 if( (sz>info.nLocal)
8956 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8957 ){
drhb6f41482004-05-14 01:58:11 +00008958 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008959 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8960#ifndef SQLITE_OMIT_AUTOVACUUM
8961 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008962 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008963 }
8964#endif
drh867db832014-09-26 02:41:05 +00008965 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00008966 }
8967
8968 /* Check sanity of left child page.
8969 */
drhda200cc2004-05-09 11:51:38 +00008970 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008971 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008972#ifndef SQLITE_OMIT_AUTOVACUUM
8973 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008974 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008975 }
8976#endif
drh867db832014-09-26 02:41:05 +00008977 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008978 if( i>0 && d2!=depth ){
drh867db832014-09-26 02:41:05 +00008979 checkAppendMsg(pCheck, "Child page depth differs");
drhda200cc2004-05-09 11:51:38 +00008980 }
8981 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008982 }
drh5eddca62001-06-30 21:53:53 +00008983 }
shaneh195475d2010-02-19 04:28:08 +00008984
drhda200cc2004-05-09 11:51:38 +00008985 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008986 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh867db832014-09-26 02:41:05 +00008987 pCheck->zPfx = "On page %d at right child: ";
8988 pCheck->v1 = iPage;
danielk1977afcdd022004-10-31 16:25:42 +00008989#ifndef SQLITE_OMIT_AUTOVACUUM
8990 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008991 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008992 }
8993#endif
drh867db832014-09-26 02:41:05 +00008994 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008995 }
drh5eddca62001-06-30 21:53:53 +00008996
shaneh195475d2010-02-19 04:28:08 +00008997 /* For intKey leaf pages, check that the min/max keys are in order
8998 ** with any left/parent/right pages.
8999 */
drh867db832014-09-26 02:41:05 +00009000 pCheck->zPfx = "Page %d: ";
9001 pCheck->v1 = iPage;
shaneh195475d2010-02-19 04:28:08 +00009002 if( pPage->leaf && pPage->intKey ){
9003 /* if we are a left child page */
9004 if( pnParentMinKey ){
9005 /* if we are the left most child page */
9006 if( !pnParentMaxKey ){
9007 if( nMaxKey > *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00009008 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009009 "Rowid %lld out of order (max larger than parent min of %lld)",
9010 nMaxKey, *pnParentMinKey);
9011 }
9012 }else{
9013 if( nMinKey <= *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00009014 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009015 "Rowid %lld out of order (min less than parent min of %lld)",
9016 nMinKey, *pnParentMinKey);
9017 }
9018 if( nMaxKey > *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00009019 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009020 "Rowid %lld out of order (max larger than parent max of %lld)",
9021 nMaxKey, *pnParentMaxKey);
9022 }
9023 *pnParentMinKey = nMaxKey;
9024 }
9025 /* else if we're a right child page */
9026 } else if( pnParentMaxKey ){
9027 if( nMinKey <= *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00009028 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009029 "Rowid %lld out of order (min less than parent max of %lld)",
9030 nMinKey, *pnParentMaxKey);
9031 }
9032 }
9033 }
9034
drh5eddca62001-06-30 21:53:53 +00009035 /* Check for complete coverage of the page
9036 */
drhda200cc2004-05-09 11:51:38 +00009037 data = pPage->aData;
9038 hdr = pPage->hdrOffset;
drh67731a92015-04-16 11:56:03 +00009039 heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
drh867db832014-09-26 02:41:05 +00009040 pCheck->zPfx = 0;
drh67731a92015-04-16 11:56:03 +00009041 if( heap==0 ){
drhc890fec2008-08-01 20:10:08 +00009042 pCheck->mallocFailed = 1;
9043 }else{
drh5d433ce2010-08-14 16:02:52 +00009044 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00009045 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
drh67731a92015-04-16 11:56:03 +00009046 heap[0] = 0;
9047 btreeHeapInsert(heap, contentOffset-1);
drhfdab0262014-11-20 15:30:50 +00009048 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9049 ** number of cells on the page. */
drh2e38c322004-09-03 18:38:44 +00009050 nCell = get2byte(&data[hdr+3]);
drhfdab0262014-11-20 15:30:50 +00009051 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9052 ** immediately follows the b-tree page header. */
drh2e38c322004-09-03 18:38:44 +00009053 cellStart = hdr + 12 - 4*pPage->leaf;
drhfdab0262014-11-20 15:30:50 +00009054 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9055 ** integer offsets to the cell contents. */
drh2e38c322004-09-03 18:38:44 +00009056 for(i=0; i<nCell; i++){
9057 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00009058 u32 size = 65536;
drh8c2bbb62009-07-10 02:52:20 +00009059 if( pc<=usableSize-4 ){
drh25ada072015-06-19 15:07:14 +00009060 size = pPage->xCellSize(pPage, &data[pc]);
danielk1977daca5432008-08-25 11:57:16 +00009061 }
drh43b18e12010-08-17 19:40:08 +00009062 if( (int)(pc+size-1)>=usableSize ){
drh867db832014-09-26 02:41:05 +00009063 pCheck->zPfx = 0;
9064 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00009065 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00009066 }else{
drh67731a92015-04-16 11:56:03 +00009067 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009068 }
drh2e38c322004-09-03 18:38:44 +00009069 }
drhfdab0262014-11-20 15:30:50 +00009070 /* EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9071 ** is the offset of the first freeblock, or zero if there are no
9072 ** freeblocks on the page. */
drh8c2bbb62009-07-10 02:52:20 +00009073 i = get2byte(&data[hdr+1]);
9074 while( i>0 ){
9075 int size, j;
9076 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
9077 size = get2byte(&data[i+2]);
9078 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
drh67731a92015-04-16 11:56:03 +00009079 btreeHeapInsert(heap, (i<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009080 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9081 ** big-endian integer which is the offset in the b-tree page of the next
9082 ** freeblock in the chain, or zero if the freeblock is the last on the
9083 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009084 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009085 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9086 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009087 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
9088 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
9089 i = j;
drh2e38c322004-09-03 18:38:44 +00009090 }
drh67731a92015-04-16 11:56:03 +00009091 cnt = 0;
9092 assert( heap[0]>0 );
9093 assert( (heap[1]>>16)==0 );
9094 btreeHeapPull(heap,&prev);
9095 while( btreeHeapPull(heap,&x) ){
9096 if( (prev&0xffff)+1>(x>>16) ){
drh867db832014-09-26 02:41:05 +00009097 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009098 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009099 break;
drh67731a92015-04-16 11:56:03 +00009100 }else{
9101 cnt += (x>>16) - (prev&0xffff) - 1;
9102 prev = x;
drh2e38c322004-09-03 18:38:44 +00009103 }
9104 }
drh67731a92015-04-16 11:56:03 +00009105 cnt += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009106 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9107 ** is stored in the fifth field of the b-tree page header.
9108 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9109 ** number of fragmented free bytes within the cell content area.
9110 */
drha33b6832015-04-16 21:57:37 +00009111 if( heap[0]==0 && cnt!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009112 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009113 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00009114 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009115 }
9116 }
drh67731a92015-04-16 11:56:03 +00009117 sqlite3PageFree(heap);
drh4b70f112004-05-02 21:12:19 +00009118 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009119
9120end_of_check:
9121 pCheck->zPfx = saved_zPfx;
9122 pCheck->v1 = saved_v1;
9123 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009124 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009125}
drhb7f91642004-10-31 02:22:47 +00009126#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009127
drhb7f91642004-10-31 02:22:47 +00009128#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009129/*
9130** This routine does a complete check of the given BTree file. aRoot[] is
9131** an array of pages numbers were each page number is the root page of
9132** a table. nRoot is the number of entries in aRoot.
9133**
danielk19773509a652009-07-06 18:56:13 +00009134** A read-only or read-write transaction must be opened before calling
9135** this function.
9136**
drhc890fec2008-08-01 20:10:08 +00009137** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009138** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009139** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009140** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009141*/
drh1dcdbc02007-01-27 02:24:54 +00009142char *sqlite3BtreeIntegrityCheck(
9143 Btree *p, /* The btree to be checked */
9144 int *aRoot, /* An array of root pages numbers for individual trees */
9145 int nRoot, /* Number of entries in aRoot[] */
9146 int mxErr, /* Stop reporting errors after this many */
9147 int *pnErr /* Write number of errors seen to this variable */
9148){
danielk197789d40042008-11-17 14:20:56 +00009149 Pgno i;
drh5eddca62001-06-30 21:53:53 +00009150 int nRef;
drhaaab5722002-02-19 13:39:21 +00009151 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009152 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00009153 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00009154
drhd677b3d2007-08-20 22:48:41 +00009155 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009156 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00009157 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00009158 sCheck.pBt = pBt;
9159 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009160 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009161 sCheck.mxErr = mxErr;
9162 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009163 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009164 sCheck.zPfx = 0;
9165 sCheck.v1 = 0;
9166 sCheck.v2 = 0;
drh1dcdbc02007-01-27 02:24:54 +00009167 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00009168 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00009169 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00009170 return 0;
9171 }
dan1235bb12012-04-03 17:43:28 +00009172
9173 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9174 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00009175 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00009176 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00009177 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00009178 }
drh42cac6d2004-11-20 20:31:11 +00009179 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009180 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drhc0490572015-05-02 11:45:53 +00009181 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5eddca62001-06-30 21:53:53 +00009182
9183 /* Check the integrity of the freelist
9184 */
drh867db832014-09-26 02:41:05 +00009185 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009186 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009187 get4byte(&pBt->pPage1->aData[36]));
9188 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009189
9190 /* Check all the tables.
9191 */
danielk197789d40042008-11-17 14:20:56 +00009192 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00009193 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009194#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009195 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009196 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009197 }
9198#endif
drh867db832014-09-26 02:41:05 +00009199 sCheck.zPfx = "List of tree roots: ";
9200 checkTreePage(&sCheck, aRoot[i], NULL, NULL);
9201 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009202 }
9203
9204 /* Make sure every page in the file is referenced
9205 */
drh1dcdbc02007-01-27 02:24:54 +00009206 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009207#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009208 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009209 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009210 }
danielk1977afcdd022004-10-31 16:25:42 +00009211#else
9212 /* If the database supports auto-vacuum, make sure no tables contain
9213 ** references to pointer-map pages.
9214 */
dan1235bb12012-04-03 17:43:28 +00009215 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009216 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009217 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009218 }
dan1235bb12012-04-03 17:43:28 +00009219 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009220 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009221 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009222 }
9223#endif
drh5eddca62001-06-30 21:53:53 +00009224 }
9225
drh64022502009-01-09 14:11:04 +00009226 /* Make sure this analysis did not leave any unref() pages.
9227 ** This is an internal consistency check; an integrity check
9228 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00009229 */
drh64022502009-01-09 14:11:04 +00009230 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh867db832014-09-26 02:41:05 +00009231 checkAppendMsg(&sCheck,
drh5eddca62001-06-30 21:53:53 +00009232 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00009233 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00009234 );
drh5eddca62001-06-30 21:53:53 +00009235 }
9236
9237 /* Clean up and report errors.
9238 */
drhd677b3d2007-08-20 22:48:41 +00009239 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00009240 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009241 if( sCheck.mallocFailed ){
9242 sqlite3StrAccumReset(&sCheck.errMsg);
9243 *pnErr = sCheck.nErr+1;
9244 return 0;
9245 }
drh1dcdbc02007-01-27 02:24:54 +00009246 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009247 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
9248 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009249}
drhb7f91642004-10-31 02:22:47 +00009250#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009251
drh73509ee2003-04-06 20:44:45 +00009252/*
drhd4e0bb02012-05-27 01:19:04 +00009253** Return the full pathname of the underlying database file. Return
9254** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009255**
9256** The pager filename is invariant as long as the pager is
9257** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009258*/
danielk1977aef0bf62005-12-30 16:28:01 +00009259const char *sqlite3BtreeGetFilename(Btree *p){
9260 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009261 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009262}
9263
9264/*
danielk19775865e3d2004-06-14 06:03:57 +00009265** Return the pathname of the journal file for this database. The return
9266** value of this routine is the same regardless of whether the journal file
9267** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009268**
9269** The pager journal filename is invariant as long as the pager is
9270** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009271*/
danielk1977aef0bf62005-12-30 16:28:01 +00009272const char *sqlite3BtreeGetJournalname(Btree *p){
9273 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009274 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009275}
9276
danielk19771d850a72004-05-31 08:26:49 +00009277/*
9278** Return non-zero if a transaction is active.
9279*/
danielk1977aef0bf62005-12-30 16:28:01 +00009280int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009281 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009282 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009283}
9284
dana550f2d2010-08-02 10:47:05 +00009285#ifndef SQLITE_OMIT_WAL
9286/*
9287** Run a checkpoint on the Btree passed as the first argument.
9288**
9289** Return SQLITE_LOCKED if this or any other connection has an open
9290** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009291**
dancdc1f042010-11-18 12:11:05 +00009292** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009293*/
dancdc1f042010-11-18 12:11:05 +00009294int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009295 int rc = SQLITE_OK;
9296 if( p ){
9297 BtShared *pBt = p->pBt;
9298 sqlite3BtreeEnter(p);
9299 if( pBt->inTransaction!=TRANS_NONE ){
9300 rc = SQLITE_LOCKED;
9301 }else{
dancdc1f042010-11-18 12:11:05 +00009302 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009303 }
9304 sqlite3BtreeLeave(p);
9305 }
9306 return rc;
9307}
9308#endif
9309
danielk19771d850a72004-05-31 08:26:49 +00009310/*
danielk19772372c2b2006-06-27 16:34:56 +00009311** Return non-zero if a read (or write) transaction is active.
9312*/
9313int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009314 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009315 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009316 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009317}
9318
danielk197704103022009-02-03 16:51:24 +00009319int sqlite3BtreeIsInBackup(Btree *p){
9320 assert( p );
9321 assert( sqlite3_mutex_held(p->db->mutex) );
9322 return p->nBackup!=0;
9323}
9324
danielk19772372c2b2006-06-27 16:34:56 +00009325/*
danielk1977da184232006-01-05 11:34:32 +00009326** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009327** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009328** purposes (for example, to store a high-level schema associated with
9329** the shared-btree). The btree layer manages reference counting issues.
9330**
9331** The first time this is called on a shared-btree, nBytes bytes of memory
9332** are allocated, zeroed, and returned to the caller. For each subsequent
9333** call the nBytes parameter is ignored and a pointer to the same blob
9334** of memory returned.
9335**
danielk1977171bfed2008-06-23 09:50:50 +00009336** If the nBytes parameter is 0 and the blob of memory has not yet been
9337** allocated, a null pointer is returned. If the blob has already been
9338** allocated, it is returned as normal.
9339**
danielk1977da184232006-01-05 11:34:32 +00009340** Just before the shared-btree is closed, the function passed as the
9341** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009342** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009343** on the memory, the btree layer does that.
9344*/
9345void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9346 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009347 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009348 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009349 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009350 pBt->xFreeSchema = xFree;
9351 }
drh27641702007-08-22 02:56:42 +00009352 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009353 return pBt->pSchema;
9354}
9355
danielk1977c87d34d2006-01-06 13:00:28 +00009356/*
danielk1977404ca072009-03-16 13:19:36 +00009357** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9358** btree as the argument handle holds an exclusive lock on the
9359** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009360*/
9361int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009362 int rc;
drhe5fe6902007-12-07 18:55:28 +00009363 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009364 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009365 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9366 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009367 sqlite3BtreeLeave(p);
9368 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009369}
9370
drha154dcd2006-03-22 22:10:07 +00009371
9372#ifndef SQLITE_OMIT_SHARED_CACHE
9373/*
9374** Obtain a lock on the table whose root page is iTab. The
9375** lock is a write lock if isWritelock is true or a read lock
9376** if it is false.
9377*/
danielk1977c00da102006-01-07 13:21:04 +00009378int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009379 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009380 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009381 if( p->sharable ){
9382 u8 lockType = READ_LOCK + isWriteLock;
9383 assert( READ_LOCK+1==WRITE_LOCK );
9384 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009385
drh6a9ad3d2008-04-02 16:29:30 +00009386 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009387 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009388 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009389 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009390 }
9391 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009392 }
9393 return rc;
9394}
drha154dcd2006-03-22 22:10:07 +00009395#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009396
danielk1977b4e9af92007-05-01 17:49:49 +00009397#ifndef SQLITE_OMIT_INCRBLOB
9398/*
9399** Argument pCsr must be a cursor opened for writing on an
9400** INTKEY table currently pointing at a valid table entry.
9401** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009402**
9403** Only the data content may only be modified, it is not possible to
9404** change the length of the data stored. If this function is called with
9405** parameters that attempt to write past the end of the existing data,
9406** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009407*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009408int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009409 int rc;
drh1fee73e2007-08-29 04:00:57 +00009410 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009411 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009412 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009413
danielk1977c9000e62009-07-08 13:55:28 +00009414 rc = restoreCursorPosition(pCsr);
9415 if( rc!=SQLITE_OK ){
9416 return rc;
9417 }
danielk19773588ceb2008-06-10 17:30:26 +00009418 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9419 if( pCsr->eState!=CURSOR_VALID ){
9420 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009421 }
9422
dan227a1c42013-04-03 11:17:39 +00009423 /* Save the positions of all other cursors open on this table. This is
9424 ** required in case any of them are holding references to an xFetch
9425 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009426 **
drh3f387402014-09-24 01:23:00 +00009427 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009428 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9429 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009430 */
drh370c9f42013-04-03 20:04:04 +00009431 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9432 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009433
danielk1977c9000e62009-07-08 13:55:28 +00009434 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009435 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009436 ** (b) there is a read/write transaction open,
9437 ** (c) the connection holds a write-lock on the table (if required),
9438 ** (d) there are no conflicting read-locks, and
9439 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009440 */
drh036dbec2014-03-11 23:40:44 +00009441 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009442 return SQLITE_READONLY;
9443 }
drhc9166342012-01-05 23:32:06 +00009444 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9445 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009446 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9447 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009448 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009449
drhfb192682009-07-11 18:26:28 +00009450 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009451}
danielk19772dec9702007-05-02 16:48:37 +00009452
9453/*
dan5a500af2014-03-11 20:33:04 +00009454** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009455*/
dan5a500af2014-03-11 20:33:04 +00009456void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009457 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009458 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009459}
danielk1977b4e9af92007-05-01 17:49:49 +00009460#endif
dane04dc882010-04-20 18:53:15 +00009461
9462/*
9463** Set both the "read version" (single byte at byte offset 18) and
9464** "write version" (single byte at byte offset 19) fields in the database
9465** header to iVersion.
9466*/
9467int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9468 BtShared *pBt = pBtree->pBt;
9469 int rc; /* Return code */
9470
dane04dc882010-04-20 18:53:15 +00009471 assert( iVersion==1 || iVersion==2 );
9472
danb9780022010-04-21 18:37:57 +00009473 /* If setting the version fields to 1, do not automatically open the
9474 ** WAL connection, even if the version fields are currently set to 2.
9475 */
drhc9166342012-01-05 23:32:06 +00009476 pBt->btsFlags &= ~BTS_NO_WAL;
9477 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009478
9479 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009480 if( rc==SQLITE_OK ){
9481 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009482 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009483 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009484 if( rc==SQLITE_OK ){
9485 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9486 if( rc==SQLITE_OK ){
9487 aData[18] = (u8)iVersion;
9488 aData[19] = (u8)iVersion;
9489 }
9490 }
9491 }
dane04dc882010-04-20 18:53:15 +00009492 }
9493
drhc9166342012-01-05 23:32:06 +00009494 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009495 return rc;
9496}
dan428c2182012-08-06 18:50:11 +00009497
9498/*
drhe0997b32015-03-20 14:57:50 +00009499** set the mask of hint flags for cursor pCsr.
dan428c2182012-08-06 18:50:11 +00009500*/
9501void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
drhe0997b32015-03-20 14:57:50 +00009502 assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 );
dan428c2182012-08-06 18:50:11 +00009503 pCsr->hints = mask;
9504}
drh781597f2014-05-21 08:21:07 +00009505
drhe0997b32015-03-20 14:57:50 +00009506#ifdef SQLITE_DEBUG
9507/*
9508** Return true if the cursor has a hint specified. This routine is
9509** only used from within assert() statements
9510*/
9511int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9512 return (pCsr->hints & mask)!=0;
9513}
9514#endif
9515
drh781597f2014-05-21 08:21:07 +00009516/*
9517** Return true if the given Btree is read-only.
9518*/
9519int sqlite3BtreeIsReadonly(Btree *p){
9520 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9521}
drhdef68892014-11-04 12:11:23 +00009522
9523/*
9524** Return the size of the header added to each page by this module.
9525*/
drh37c057b2014-12-30 00:57:29 +00009526int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }