blob: 9ccf5500e78bdd8a235e67a4c0da94bad60e532d [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
drhe53831d2007-08-17 01:14:38 +000046#ifndef SQLITE_OMIT_SHARED_CACHE
47/*
danielk1977502b4e02008-09-02 14:07:24 +000048** A list of BtShared objects that are eligible for participation
49** in shared cache. This variable has file scope during normal builds,
50** but the test harness needs to access it so we make it global for
51** test builds.
drh7555d8e2009-03-20 13:15:30 +000052**
53** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000054*/
55#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000056BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000057#else
drh78f82d12008-09-02 00:52:52 +000058static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000059#endif
drhe53831d2007-08-17 01:14:38 +000060#endif /* SQLITE_OMIT_SHARED_CACHE */
61
62#ifndef SQLITE_OMIT_SHARED_CACHE
63/*
64** Enable or disable the shared pager and schema features.
65**
66** This routine has no effect on existing database connections.
67** The shared cache setting effects only future calls to
68** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
69*/
70int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000071 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000072 return SQLITE_OK;
73}
74#endif
75
drhd677b3d2007-08-20 22:48:41 +000076
danielk1977aef0bf62005-12-30 16:28:01 +000077
78#ifdef SQLITE_OMIT_SHARED_CACHE
79 /*
drhc25eabe2009-02-24 18:57:31 +000080 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
81 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000082 ** manipulate entries in the BtShared.pLock linked list used to store
83 ** shared-cache table level locks. If the library is compiled with the
84 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000085 ** of each BtShared structure and so this locking is not necessary.
86 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000087 */
drhc25eabe2009-02-24 18:57:31 +000088 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
89 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
90 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000091 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000092 #define hasSharedCacheTableLock(a,b,c,d) 1
93 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000094#endif
danielk1977aef0bf62005-12-30 16:28:01 +000095
drhe53831d2007-08-17 01:14:38 +000096#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000097
98#ifdef SQLITE_DEBUG
99/*
drh0ee3dbe2009-10-16 15:05:18 +0000100**** This function is only used as part of an assert() statement. ***
101**
102** Check to see if pBtree holds the required locks to read or write to the
103** table with root page iRoot. Return 1 if it does and 0 if not.
104**
105** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000106** Btree connection pBtree:
107**
108** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
109**
drh0ee3dbe2009-10-16 15:05:18 +0000110** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000111** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000112** the corresponding table. This makes things a bit more complicated,
113** as this module treats each table as a separate structure. To determine
114** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000115** function has to search through the database schema.
116**
drh0ee3dbe2009-10-16 15:05:18 +0000117** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000118** hold a write-lock on the schema table (root page 1). This is also
119** acceptable.
120*/
121static int hasSharedCacheTableLock(
122 Btree *pBtree, /* Handle that must hold lock */
123 Pgno iRoot, /* Root page of b-tree */
124 int isIndex, /* True if iRoot is the root of an index b-tree */
125 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
126){
127 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
128 Pgno iTab = 0;
129 BtLock *pLock;
130
drh0ee3dbe2009-10-16 15:05:18 +0000131 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000132 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000133 ** Return true immediately.
134 */
danielk197796d48e92009-06-29 06:00:37 +0000135 if( (pBtree->sharable==0)
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000137 ){
138 return 1;
139 }
140
drh0ee3dbe2009-10-16 15:05:18 +0000141 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow.
145 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
147 return 1;
148 }
149
danielk197796d48e92009-06-29 06:00:37 +0000150 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated
153 ** table. */
154 if( isIndex ){
155 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
157 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000158 if( pIdx->tnum==(int)iRoot ){
159 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000160 }
161 }
162 }else{
163 iTab = iRoot;
164 }
165
166 /* Search for the required lock. Either a write-lock on root-page iTab, a
167 ** write-lock on the schema table, or (if the client is reading) a
168 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
169 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
170 if( pLock->pBtree==pBtree
171 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
172 && pLock->eLock>=eLockType
173 ){
174 return 1;
175 }
176 }
177
178 /* Failed to find the required lock. */
179 return 0;
180}
drh0ee3dbe2009-10-16 15:05:18 +0000181#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000182
drh0ee3dbe2009-10-16 15:05:18 +0000183#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000184/*
drh0ee3dbe2009-10-16 15:05:18 +0000185**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000186**
drh0ee3dbe2009-10-16 15:05:18 +0000187** Return true if it would be illegal for pBtree to write into the
188** table or index rooted at iRoot because other shared connections are
189** simultaneously reading that same table or index.
190**
191** It is illegal for pBtree to write if some other Btree object that
192** shares the same BtShared object is currently reading or writing
193** the iRoot table. Except, if the other Btree object has the
194** read-uncommitted flag set, then it is OK for the other object to
195** have a read cursor.
196**
197** For example, before writing to any part of the table or index
198** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000199**
200** assert( !hasReadConflicts(pBtree, iRoot) );
201*/
202static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
203 BtCursor *p;
204 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
205 if( p->pgnoRoot==iRoot
206 && p->pBtree!=pBtree
207 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
208 ){
209 return 1;
210 }
211 }
212 return 0;
213}
214#endif /* #ifdef SQLITE_DEBUG */
215
danielk1977da184232006-01-05 11:34:32 +0000216/*
drh0ee3dbe2009-10-16 15:05:18 +0000217** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000218** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000219** SQLITE_OK if the lock may be obtained (by calling
220** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000221*/
drhc25eabe2009-02-24 18:57:31 +0000222static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000223 BtShared *pBt = p->pBt;
224 BtLock *pIter;
225
drh1fee73e2007-08-29 04:00:57 +0000226 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000227 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
228 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000229 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000230
danielk19775b413d72009-04-01 09:41:54 +0000231 /* If requesting a write-lock, then the Btree must have an open write
232 ** transaction on this file. And, obviously, for this to be so there
233 ** must be an open write transaction on the file itself.
234 */
235 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237
drh0ee3dbe2009-10-16 15:05:18 +0000238 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000239 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000240 return SQLITE_OK;
241 }
242
danielk1977641b0f42007-12-21 04:47:25 +0000243 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained.
245 */
danielk1977404ca072009-03-16 13:19:36 +0000246 if( pBt->pWriter!=p && pBt->isExclusive ){
247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000249 }
250
danielk1977e0d9e6f2009-07-03 16:25:06 +0000251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of:
254 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer).
260 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter );
267 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000268 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000269 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000270 }
271 }
272 return SQLITE_OK;
273}
drhe53831d2007-08-17 01:14:38 +0000274#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000275
drhe53831d2007-08-17 01:14:38 +0000276#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000277/*
278** Add a lock on the table with root-page iTable to the shared-btree used
279** by Btree handle p. Parameter eLock must be either READ_LOCK or
280** WRITE_LOCK.
281**
danielk19779d104862009-07-09 08:27:14 +0000282** This function assumes the following:
283**
drh0ee3dbe2009-10-16 15:05:18 +0000284** (a) The specified Btree object p is connected to a sharable
285** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000286**
drh0ee3dbe2009-10-16 15:05:18 +0000287** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000288** with the requested lock (i.e. querySharedCacheTableLock() has
289** already been called and returned SQLITE_OK).
290**
291** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
292** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000293*/
drhc25eabe2009-02-24 18:57:31 +0000294static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000295 BtShared *pBt = p->pBt;
296 BtLock *pLock = 0;
297 BtLock *pIter;
298
drh1fee73e2007-08-29 04:00:57 +0000299 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000300 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
301 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000302
danielk1977e0d9e6f2009-07-03 16:25:06 +0000303 /* A connection with the read-uncommitted flag set will never try to
304 ** obtain a read-lock using this function. The only read-lock obtained
305 ** by a connection in read-uncommitted mode is on the sqlite_master
306 ** table, and that lock is obtained in BtreeBeginTrans(). */
307 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
308
danielk19779d104862009-07-09 08:27:14 +0000309 /* This function should only be called on a sharable b-tree after it
310 ** has been determined that no other b-tree holds a conflicting lock. */
311 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000312 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 /* First search the list for an existing lock on this table. */
315 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
316 if( pIter->iTable==iTable && pIter->pBtree==p ){
317 pLock = pIter;
318 break;
319 }
320 }
321
322 /* If the above search did not find a BtLock struct associating Btree p
323 ** with table iTable, allocate one and link it into the list.
324 */
325 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000326 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000327 if( !pLock ){
328 return SQLITE_NOMEM;
329 }
330 pLock->iTable = iTable;
331 pLock->pBtree = p;
332 pLock->pNext = pBt->pLock;
333 pBt->pLock = pLock;
334 }
335
336 /* Set the BtLock.eLock variable to the maximum of the current lock
337 ** and the requested lock. This means if a write-lock was already held
338 ** and a read-lock requested, we don't incorrectly downgrade the lock.
339 */
340 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000341 if( eLock>pLock->eLock ){
342 pLock->eLock = eLock;
343 }
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 return SQLITE_OK;
346}
drhe53831d2007-08-17 01:14:38 +0000347#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000348
drhe53831d2007-08-17 01:14:38 +0000349#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000350/*
drhc25eabe2009-02-24 18:57:31 +0000351** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000352** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000353**
drh0ee3dbe2009-10-16 15:05:18 +0000354** This function assumes that Btree p has an open read or write
danielk1977fa542f12009-04-02 18:28:08 +0000355** transaction. If it does not, then the BtShared.isPending variable
356** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000357*/
drhc25eabe2009-02-24 18:57:31 +0000358static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000359 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000361
drh1fee73e2007-08-29 04:00:57 +0000362 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000363 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000364 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000365
danielk1977aef0bf62005-12-30 16:28:01 +0000366 while( *ppIter ){
367 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000368 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000369 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000370 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000372 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock);
375 }
danielk1977aef0bf62005-12-30 16:28:01 +0000376 }else{
377 ppIter = &pLock->pNext;
378 }
379 }
danielk1977641b0f42007-12-21 04:47:25 +0000380
danielk1977404ca072009-03-16 13:19:36 +0000381 assert( pBt->isPending==0 || pBt->pWriter );
382 if( pBt->pWriter==p ){
383 pBt->pWriter = 0;
384 pBt->isExclusive = 0;
385 pBt->isPending = 0;
386 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000387 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000388 ** transaction. If there currently exists a writer, and p is not
389 ** that writer, then the number of locks held by connections other
390 ** than the writer must be about to drop to zero. In this case
391 ** set the isPending flag to 0.
392 **
393 ** If there is not currently a writer, then BtShared.isPending must
394 ** be zero already. So this next line is harmless in that case.
395 */
396 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000397 }
danielk1977aef0bf62005-12-30 16:28:01 +0000398}
danielk197794b30732009-07-02 17:21:57 +0000399
danielk1977e0d9e6f2009-07-03 16:25:06 +0000400/*
drh0ee3dbe2009-10-16 15:05:18 +0000401** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000402*/
danielk197794b30732009-07-02 17:21:57 +0000403static void downgradeAllSharedCacheTableLocks(Btree *p){
404 BtShared *pBt = p->pBt;
405 if( pBt->pWriter==p ){
406 BtLock *pLock;
407 pBt->pWriter = 0;
408 pBt->isExclusive = 0;
409 pBt->isPending = 0;
410 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
411 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
412 pLock->eLock = READ_LOCK;
413 }
414 }
415}
416
danielk1977aef0bf62005-12-30 16:28:01 +0000417#endif /* SQLITE_OMIT_SHARED_CACHE */
418
drh980b1a72006-08-16 16:42:48 +0000419static void releasePage(MemPage *pPage); /* Forward reference */
420
drh1fee73e2007-08-29 04:00:57 +0000421/*
drh0ee3dbe2009-10-16 15:05:18 +0000422***** This routine is used inside of assert() only ****
423**
424** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000425*/
drh0ee3dbe2009-10-16 15:05:18 +0000426#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000427static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000428 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000429}
430#endif
431
432
danielk197792d4d7a2007-05-04 12:05:56 +0000433#ifndef SQLITE_OMIT_INCRBLOB
434/*
435** Invalidate the overflow page-list cache for cursor pCur, if any.
436*/
437static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000438 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000439 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000440 pCur->aOverflow = 0;
441}
442
443/*
444** Invalidate the overflow page-list cache for all cursors opened
445** on the shared btree structure pBt.
446*/
447static void invalidateAllOverflowCache(BtShared *pBt){
448 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000449 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000450 for(p=pBt->pCursor; p; p=p->pNext){
451 invalidateOverflowCache(p);
452 }
453}
danielk197796d48e92009-06-29 06:00:37 +0000454
455/*
456** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000457** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000458** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000459**
460** If argument isClearTable is true, then the entire contents of the
461** table is about to be deleted. In this case invalidate all incrblob
462** cursors open on any row within the table with root-page pgnoRoot.
463**
464** Otherwise, if argument isClearTable is false, then the row with
465** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000466** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000467*/
468static void invalidateIncrblobCursors(
469 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000470 i64 iRow, /* The rowid that might be changing */
471 int isClearTable /* True if all rows are being deleted */
472){
473 BtCursor *p;
474 BtShared *pBt = pBtree->pBt;
475 assert( sqlite3BtreeHoldsMutex(pBtree) );
476 for(p=pBt->pCursor; p; p=p->pNext){
477 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
478 p->eState = CURSOR_INVALID;
479 }
480 }
481}
482
danielk197792d4d7a2007-05-04 12:05:56 +0000483#else
drh0ee3dbe2009-10-16 15:05:18 +0000484 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000485 #define invalidateOverflowCache(x)
486 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000487 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000488#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000489
drh980b1a72006-08-16 16:42:48 +0000490/*
danielk1977bea2a942009-01-20 17:06:27 +0000491** Set bit pgno of the BtShared.pHasContent bitvec. This is called
492** when a page that previously contained data becomes a free-list leaf
493** page.
494**
495** The BtShared.pHasContent bitvec exists to work around an obscure
496** bug caused by the interaction of two useful IO optimizations surrounding
497** free-list leaf pages:
498**
499** 1) When all data is deleted from a page and the page becomes
500** a free-list leaf page, the page is not written to the database
501** (as free-list leaf pages contain no meaningful data). Sometimes
502** such a page is not even journalled (as it will not be modified,
503** why bother journalling it?).
504**
505** 2) When a free-list leaf page is reused, its content is not read
506** from the database or written to the journal file (why should it
507** be, if it is not at all meaningful?).
508**
509** By themselves, these optimizations work fine and provide a handy
510** performance boost to bulk delete or insert operations. However, if
511** a page is moved to the free-list and then reused within the same
512** transaction, a problem comes up. If the page is not journalled when
513** it is moved to the free-list and it is also not journalled when it
514** is extracted from the free-list and reused, then the original data
515** may be lost. In the event of a rollback, it may not be possible
516** to restore the database to its original configuration.
517**
518** The solution is the BtShared.pHasContent bitvec. Whenever a page is
519** moved to become a free-list leaf page, the corresponding bit is
520** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000521** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000522** set in BtShared.pHasContent. The contents of the bitvec are cleared
523** at the end of every transaction.
524*/
525static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
526 int rc = SQLITE_OK;
527 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000528 assert( pgno<=pBt->nPage );
529 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000530 if( !pBt->pHasContent ){
531 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000532 }
533 }
534 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
535 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
536 }
537 return rc;
538}
539
540/*
541** Query the BtShared.pHasContent vector.
542**
543** This function is called when a free-list leaf page is removed from the
544** free-list for reuse. It returns false if it is safe to retrieve the
545** page from the pager layer with the 'no-content' flag set. True otherwise.
546*/
547static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
548 Bitvec *p = pBt->pHasContent;
549 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
550}
551
552/*
553** Clear (destroy) the BtShared.pHasContent bitvec. This should be
554** invoked at the conclusion of each write-transaction.
555*/
556static void btreeClearHasContent(BtShared *pBt){
557 sqlite3BitvecDestroy(pBt->pHasContent);
558 pBt->pHasContent = 0;
559}
560
561/*
drh980b1a72006-08-16 16:42:48 +0000562** Save the current cursor position in the variables BtCursor.nKey
563** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000564**
565** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
566** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000567*/
568static int saveCursorPosition(BtCursor *pCur){
569 int rc;
570
571 assert( CURSOR_VALID==pCur->eState );
572 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000573 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000574
575 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000576 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000577
578 /* If this is an intKey table, then the above call to BtreeKeySize()
579 ** stores the integer key in pCur->nKey. In this case this value is
580 ** all that is required. Otherwise, if pCur is not open on an intKey
581 ** table, then malloc space for and store the pCur->nKey bytes of key
582 ** data.
583 */
drh4c301aa2009-07-15 17:25:45 +0000584 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000585 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000586 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000587 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000588 if( rc==SQLITE_OK ){
589 pCur->pKey = pKey;
590 }else{
drh17435752007-08-16 04:30:38 +0000591 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000592 }
593 }else{
594 rc = SQLITE_NOMEM;
595 }
596 }
danielk197771d5d2c2008-09-29 11:49:47 +0000597 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000598
599 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000600 int i;
601 for(i=0; i<=pCur->iPage; i++){
602 releasePage(pCur->apPage[i]);
603 pCur->apPage[i] = 0;
604 }
605 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000606 pCur->eState = CURSOR_REQUIRESEEK;
607 }
608
danielk197792d4d7a2007-05-04 12:05:56 +0000609 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000610 return rc;
611}
612
613/*
drh0ee3dbe2009-10-16 15:05:18 +0000614** Save the positions of all cursors (except pExcept) that are open on
615** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000616** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
617*/
618static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
619 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000620 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000621 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000622 for(p=pBt->pCursor; p; p=p->pNext){
623 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
624 p->eState==CURSOR_VALID ){
625 int rc = saveCursorPosition(p);
626 if( SQLITE_OK!=rc ){
627 return rc;
628 }
629 }
630 }
631 return SQLITE_OK;
632}
633
634/*
drhbf700f32007-03-31 02:36:44 +0000635** Clear the current cursor position.
636*/
danielk1977be51a652008-10-08 17:58:48 +0000637void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000638 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000639 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000640 pCur->pKey = 0;
641 pCur->eState = CURSOR_INVALID;
642}
643
644/*
danielk19773509a652009-07-06 18:56:13 +0000645** In this version of BtreeMoveto, pKey is a packed index record
646** such as is generated by the OP_MakeRecord opcode. Unpack the
647** record and then call BtreeMovetoUnpacked() to do the work.
648*/
649static int btreeMoveto(
650 BtCursor *pCur, /* Cursor open on the btree to be searched */
651 const void *pKey, /* Packed key if the btree is an index */
652 i64 nKey, /* Integer key for tables. Size of pKey for indices */
653 int bias, /* Bias search to the high end */
654 int *pRes /* Write search results here */
655){
656 int rc; /* Status code */
657 UnpackedRecord *pIdxKey; /* Unpacked index key */
658 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
659
660 if( pKey ){
661 assert( nKey==(i64)(int)nKey );
662 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
663 aSpace, sizeof(aSpace));
664 if( pIdxKey==0 ) return SQLITE_NOMEM;
665 }else{
666 pIdxKey = 0;
667 }
668 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
669 if( pKey ){
670 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
671 }
672 return rc;
673}
674
675/*
drh980b1a72006-08-16 16:42:48 +0000676** Restore the cursor to the position it was in (or as close to as possible)
677** when saveCursorPosition() was called. Note that this call deletes the
678** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000679** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000680** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000681*/
danielk197730548662009-07-09 05:07:37 +0000682static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000683 int rc;
drh1fee73e2007-08-29 04:00:57 +0000684 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000685 assert( pCur->eState>=CURSOR_REQUIRESEEK );
686 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000687 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000688 }
drh980b1a72006-08-16 16:42:48 +0000689 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000690 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000691 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000692 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000693 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000694 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000695 }
696 return rc;
697}
698
drha3460582008-07-11 21:02:53 +0000699#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000700 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000701 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000702 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000703
drha3460582008-07-11 21:02:53 +0000704/*
705** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000706** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000707** at is deleted out from under them.
708**
709** This routine returns an error code if something goes wrong. The
710** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
711*/
712int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
713 int rc;
714
715 rc = restoreCursorPosition(pCur);
716 if( rc ){
717 *pHasMoved = 1;
718 return rc;
719 }
drh4c301aa2009-07-15 17:25:45 +0000720 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000721 *pHasMoved = 1;
722 }else{
723 *pHasMoved = 0;
724 }
725 return SQLITE_OK;
726}
727
danielk1977599fcba2004-11-08 07:13:13 +0000728#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000729/*
drha3152892007-05-05 11:48:52 +0000730** Given a page number of a regular database page, return the page
731** number for the pointer-map page that contains the entry for the
732** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000733*/
danielk1977266664d2006-02-10 08:24:21 +0000734static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000735 int nPagesPerMapPage;
736 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000737 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000738 nPagesPerMapPage = (pBt->usableSize/5)+1;
739 iPtrMap = (pgno-2)/nPagesPerMapPage;
740 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000741 if( ret==PENDING_BYTE_PAGE(pBt) ){
742 ret++;
743 }
744 return ret;
745}
danielk1977a19df672004-11-03 11:37:07 +0000746
danielk1977afcdd022004-10-31 16:25:42 +0000747/*
danielk1977afcdd022004-10-31 16:25:42 +0000748** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000749**
750** This routine updates the pointer map entry for page number 'key'
751** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000752**
753** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
754** a no-op. If an error occurs, the appropriate error code is written
755** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000756*/
drh98add2e2009-07-20 17:11:49 +0000757static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000758 DbPage *pDbPage; /* The pointer map page */
759 u8 *pPtrmap; /* The pointer map data */
760 Pgno iPtrmap; /* The pointer map page number */
761 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000762 int rc; /* Return code from subfunctions */
763
764 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000765
drh1fee73e2007-08-29 04:00:57 +0000766 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000767 /* The master-journal page number must never be used as a pointer map page */
768 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
769
danielk1977ac11ee62005-01-15 12:45:51 +0000770 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000771 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000772 *pRC = SQLITE_CORRUPT_BKPT;
773 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000774 }
danielk1977266664d2006-02-10 08:24:21 +0000775 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000776 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000777 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000778 *pRC = rc;
779 return;
danielk1977afcdd022004-10-31 16:25:42 +0000780 }
danielk19778c666b12008-07-18 09:34:57 +0000781 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000782 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000783 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000784 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000785 }
danielk19773b8a05f2007-03-19 17:44:26 +0000786 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000787
drh615ae552005-01-16 23:21:00 +0000788 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
789 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000790 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000791 if( rc==SQLITE_OK ){
792 pPtrmap[offset] = eType;
793 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000794 }
danielk1977afcdd022004-10-31 16:25:42 +0000795 }
796
drh4925a552009-07-07 11:39:58 +0000797ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000798 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000799}
800
801/*
802** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000803**
804** This routine retrieves the pointer map entry for page 'key', writing
805** the type and parent page number to *pEType and *pPgno respectively.
806** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000807*/
danielk1977aef0bf62005-12-30 16:28:01 +0000808static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000809 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000810 int iPtrmap; /* Pointer map page index */
811 u8 *pPtrmap; /* Pointer map page data */
812 int offset; /* Offset of entry in pointer map */
813 int rc;
814
drh1fee73e2007-08-29 04:00:57 +0000815 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000816
danielk1977266664d2006-02-10 08:24:21 +0000817 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000818 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000819 if( rc!=0 ){
820 return rc;
821 }
danielk19773b8a05f2007-03-19 17:44:26 +0000822 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000823
danielk19778c666b12008-07-18 09:34:57 +0000824 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000825 assert( pEType!=0 );
826 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000827 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000828
danielk19773b8a05f2007-03-19 17:44:26 +0000829 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000830 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000831 return SQLITE_OK;
832}
833
danielk197785d90ca2008-07-19 14:25:15 +0000834#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000835 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000836 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000837 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000838#endif
danielk1977afcdd022004-10-31 16:25:42 +0000839
drh0d316a42002-08-11 20:10:47 +0000840/*
drh271efa52004-05-30 19:19:05 +0000841** Given a btree page and a cell index (0 means the first cell on
842** the page, 1 means the second cell, and so forth) return a pointer
843** to the cell content.
844**
845** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000846*/
drh1688c862008-07-18 02:44:17 +0000847#define findCell(P,I) \
848 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000849
850/*
drh93a960a2008-07-10 00:32:42 +0000851** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000852** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000853*/
854static u8 *findOverflowCell(MemPage *pPage, int iCell){
855 int i;
drh1fee73e2007-08-29 04:00:57 +0000856 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000857 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000858 int k;
859 struct _OvflCell *pOvfl;
860 pOvfl = &pPage->aOvfl[i];
861 k = pOvfl->idx;
862 if( k<=iCell ){
863 if( k==iCell ){
864 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000865 }
866 iCell--;
867 }
868 }
danielk19771cc5ed82007-05-16 17:28:43 +0000869 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000870}
871
872/*
873** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000874** are two versions of this function. btreeParseCell() takes a
875** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000876** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000877**
878** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000879** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000880*/
danielk197730548662009-07-09 05:07:37 +0000881static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000882 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000883 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000884 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000885){
drhf49661a2008-12-10 16:45:50 +0000886 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000887 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000888
drh1fee73e2007-08-29 04:00:57 +0000889 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000890
drh43605152004-05-29 21:46:49 +0000891 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000892 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000893 n = pPage->childPtrSize;
894 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000895 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000896 if( pPage->hasData ){
897 n += getVarint32(&pCell[n], nPayload);
898 }else{
899 nPayload = 0;
900 }
drh1bd10f82008-12-10 21:19:56 +0000901 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000902 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000903 }else{
drh79df1f42008-07-18 00:57:33 +0000904 pInfo->nData = 0;
905 n += getVarint32(&pCell[n], nPayload);
906 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000907 }
drh72365832007-03-06 15:53:44 +0000908 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000909 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000910 testcase( nPayload==pPage->maxLocal );
911 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000912 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000913 /* This is the (easy) common case where the entire payload fits
914 ** on the local page. No overflow is required.
915 */
916 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000917 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000918 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000919 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000920 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000921 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000922 }
drh1bd10f82008-12-10 21:19:56 +0000923 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000924 }else{
drh271efa52004-05-30 19:19:05 +0000925 /* If the payload will not fit completely on the local page, we have
926 ** to decide how much to store locally and how much to spill onto
927 ** overflow pages. The strategy is to minimize the amount of unused
928 ** space on overflow pages while keeping the amount of local storage
929 ** in between minLocal and maxLocal.
930 **
931 ** Warning: changing the way overflow payload is distributed in any
932 ** way will result in an incompatible file format.
933 */
934 int minLocal; /* Minimum amount of payload held locally */
935 int maxLocal; /* Maximum amount of payload held locally */
936 int surplus; /* Overflow payload available for local storage */
937
938 minLocal = pPage->minLocal;
939 maxLocal = pPage->maxLocal;
940 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000941 testcase( surplus==maxLocal );
942 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000943 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000944 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000945 }else{
drhf49661a2008-12-10 16:45:50 +0000946 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000947 }
drhf49661a2008-12-10 16:45:50 +0000948 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000949 pInfo->nSize = pInfo->iOverflow + 4;
950 }
drh3aac2dd2004-04-26 14:10:20 +0000951}
danielk19771cc5ed82007-05-16 17:28:43 +0000952#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000953 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
954static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000955 MemPage *pPage, /* Page containing the cell */
956 int iCell, /* The cell index. First cell is 0 */
957 CellInfo *pInfo /* Fill in this structure */
958){
danielk19771cc5ed82007-05-16 17:28:43 +0000959 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000960}
drh3aac2dd2004-04-26 14:10:20 +0000961
962/*
drh43605152004-05-29 21:46:49 +0000963** Compute the total number of bytes that a Cell needs in the cell
964** data area of the btree-page. The return number includes the cell
965** data header and the local payload, but not any overflow page or
966** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000967*/
danielk1977ae5558b2009-04-29 11:31:47 +0000968static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
969 u8 *pIter = &pCell[pPage->childPtrSize];
970 u32 nSize;
971
972#ifdef SQLITE_DEBUG
973 /* The value returned by this function should always be the same as
974 ** the (CellInfo.nSize) value found by doing a full parse of the
975 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
976 ** this function verifies that this invariant is not violated. */
977 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000978 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000979#endif
980
981 if( pPage->intKey ){
982 u8 *pEnd;
983 if( pPage->hasData ){
984 pIter += getVarint32(pIter, nSize);
985 }else{
986 nSize = 0;
987 }
988
989 /* pIter now points at the 64-bit integer key value, a variable length
990 ** integer. The following block moves pIter to point at the first byte
991 ** past the end of the key value. */
992 pEnd = &pIter[9];
993 while( (*pIter++)&0x80 && pIter<pEnd );
994 }else{
995 pIter += getVarint32(pIter, nSize);
996 }
997
drh0a45c272009-07-08 01:49:11 +0000998 testcase( nSize==pPage->maxLocal );
999 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001000 if( nSize>pPage->maxLocal ){
1001 int minLocal = pPage->minLocal;
1002 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001003 testcase( nSize==pPage->maxLocal );
1004 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001005 if( nSize>pPage->maxLocal ){
1006 nSize = minLocal;
1007 }
1008 nSize += 4;
1009 }
shane75ac1de2009-06-09 18:58:52 +00001010 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001011
1012 /* The minimum size of any cell is 4 bytes. */
1013 if( nSize<4 ){
1014 nSize = 4;
1015 }
1016
1017 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001018 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001019}
drh0ee3dbe2009-10-16 15:05:18 +00001020
1021#ifdef SQLITE_DEBUG
1022/* This variation on cellSizePtr() is used inside of assert() statements
1023** only. */
drha9121e42008-02-19 14:59:35 +00001024static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001025 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001026}
danielk1977bc6ada42004-06-30 08:20:16 +00001027#endif
drh3b7511c2001-05-26 13:15:44 +00001028
danielk197779a40da2005-01-16 08:00:01 +00001029#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001030/*
danielk197726836652005-01-17 01:33:13 +00001031** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001032** to an overflow page, insert an entry into the pointer-map
1033** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001034*/
drh98add2e2009-07-20 17:11:49 +00001035static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001036 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001037 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001038 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001039 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001040 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001041 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001042 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001043 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001044 }
danielk1977ac11ee62005-01-15 12:45:51 +00001045}
danielk197779a40da2005-01-16 08:00:01 +00001046#endif
1047
danielk1977ac11ee62005-01-15 12:45:51 +00001048
drhda200cc2004-05-09 11:51:38 +00001049/*
drh72f82862001-05-24 21:06:34 +00001050** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001051** end of the page and all free space is collected into one
1052** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001053** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001054*/
shane0af3f892008-11-12 04:55:34 +00001055static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001056 int i; /* Loop counter */
1057 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001058 int hdr; /* Offset to the page header */
1059 int size; /* Size of a cell */
1060 int usableSize; /* Number of usable bytes on a page */
1061 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001062 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001063 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001064 unsigned char *data; /* The page data */
1065 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001066 int iCellFirst; /* First allowable cell index */
1067 int iCellLast; /* Last possible cell index */
1068
drh2af926b2001-05-15 00:39:25 +00001069
danielk19773b8a05f2007-03-19 17:44:26 +00001070 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001071 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001072 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001073 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001074 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001075 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001076 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001077 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001078 cellOffset = pPage->cellOffset;
1079 nCell = pPage->nCell;
1080 assert( nCell==get2byte(&data[hdr+3]) );
1081 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001082 cbrk = get2byte(&data[hdr+5]);
1083 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1084 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001085 iCellFirst = cellOffset + 2*nCell;
1086 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001087 for(i=0; i<nCell; i++){
1088 u8 *pAddr; /* The i-th cell pointer */
1089 pAddr = &data[cellOffset + i*2];
1090 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001091 testcase( pc==iCellFirst );
1092 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001093#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001094 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001095 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1096 */
1097 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001098 return SQLITE_CORRUPT_BKPT;
1099 }
drh17146622009-07-07 17:38:38 +00001100#endif
1101 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001102 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001103 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001104#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1105 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001106 return SQLITE_CORRUPT_BKPT;
1107 }
drh17146622009-07-07 17:38:38 +00001108#else
1109 if( cbrk<iCellFirst || pc+size>usableSize ){
1110 return SQLITE_CORRUPT_BKPT;
1111 }
1112#endif
drh7157e1d2009-07-09 13:25:32 +00001113 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001114 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001115 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001116 memcpy(&data[cbrk], &temp[pc], size);
1117 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001118 }
drh17146622009-07-07 17:38:38 +00001119 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001120 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001121 data[hdr+1] = 0;
1122 data[hdr+2] = 0;
1123 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001124 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001125 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001126 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001127 return SQLITE_CORRUPT_BKPT;
1128 }
shane0af3f892008-11-12 04:55:34 +00001129 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001130}
1131
drha059ad02001-04-17 20:09:11 +00001132/*
danielk19776011a752009-04-01 16:25:32 +00001133** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001134** as the first argument. Write into *pIdx the index into pPage->aData[]
1135** of the first byte of allocated space. Return either SQLITE_OK or
1136** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001137**
drh0a45c272009-07-08 01:49:11 +00001138** The caller guarantees that there is sufficient space to make the
1139** allocation. This routine might need to defragment in order to bring
1140** all the space together, however. This routine will avoid using
1141** the first two bytes past the cell pointer area since presumably this
1142** allocation is being made in order to insert a new cell, so we will
1143** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001144*/
drh0a45c272009-07-08 01:49:11 +00001145static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001146 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1147 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1148 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001149 int top; /* First byte of cell content area */
1150 int gap; /* First byte of gap between cell pointers and cell content */
1151 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001152 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001153
danielk19773b8a05f2007-03-19 17:44:26 +00001154 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001155 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001156 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001157 assert( nByte>=0 ); /* Minimum cell size is 4 */
1158 assert( pPage->nFree>=nByte );
1159 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001160 usableSize = pPage->pBt->usableSize;
1161 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001162
1163 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001164 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1165 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001166 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001167 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001168 testcase( gap+2==top );
1169 testcase( gap+1==top );
1170 testcase( gap==top );
1171
danielk19776011a752009-04-01 16:25:32 +00001172 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001173 /* Always defragment highly fragmented pages */
1174 rc = defragmentPage(pPage);
1175 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001176 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001177 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001178 /* Search the freelist looking for a free slot big enough to satisfy
1179 ** the request. The allocation is made from the first free slot in
1180 ** the list that is large enough to accomadate it.
1181 */
1182 int pc, addr;
1183 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001184 int size; /* Size of the free slot */
1185 if( pc>usableSize-4 || pc<addr+4 ){
1186 return SQLITE_CORRUPT_BKPT;
1187 }
1188 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001189 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001190 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001191 testcase( x==4 );
1192 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001193 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001194 /* Remove the slot from the free-list. Update the number of
1195 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001196 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001197 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001198 }else if( size+pc > usableSize ){
1199 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001200 }else{
danielk1977fad91942009-04-29 17:49:59 +00001201 /* The slot remains on the free-list. Reduce its size to account
1202 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001203 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001204 }
drh0a45c272009-07-08 01:49:11 +00001205 *pIdx = pc + x;
1206 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001207 }
drh9e572e62004-04-23 23:43:10 +00001208 }
1209 }
drh43605152004-05-29 21:46:49 +00001210
drh0a45c272009-07-08 01:49:11 +00001211 /* Check to make sure there is enough space in the gap to satisfy
1212 ** the allocation. If not, defragment.
1213 */
1214 testcase( gap+2+nByte==top );
1215 if( gap+2+nByte>top ){
1216 rc = defragmentPage(pPage);
1217 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001218 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001219 assert( gap+nByte<=top );
1220 }
1221
1222
drh43605152004-05-29 21:46:49 +00001223 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001224 ** and the cell content area. The btreeInitPage() call has already
1225 ** validated the freelist. Given that the freelist is valid, there
1226 ** is no way that the allocation can extend off the end of the page.
1227 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001228 */
drh0a45c272009-07-08 01:49:11 +00001229 top -= nByte;
drh43605152004-05-29 21:46:49 +00001230 put2byte(&data[hdr+5], top);
drhc314dc72009-07-21 11:52:34 +00001231 assert( top+nByte <= pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001232 *pIdx = top;
1233 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001234}
1235
1236/*
drh9e572e62004-04-23 23:43:10 +00001237** Return a section of the pPage->aData to the freelist.
1238** The first byte of the new free block is pPage->aDisk[start]
1239** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001240**
1241** Most of the effort here is involved in coalesing adjacent
1242** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001243*/
shanedcc50b72008-11-13 18:29:50 +00001244static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001245 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001246 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001247 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001248
drh9e572e62004-04-23 23:43:10 +00001249 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001250 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001251 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
danielk1977bc6ada42004-06-30 08:20:16 +00001252 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001253 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001254 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001255
drh5b47efa2010-02-12 18:18:39 +00001256 if( pPage->pBt->secureDelete ){
1257 /* Overwrite deleted information with zeros when the secure_delete
1258 ** option is enabled */
1259 memset(&data[start], 0, size);
1260 }
drhfcce93f2006-02-22 03:08:32 +00001261
drh0a45c272009-07-08 01:49:11 +00001262 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001263 ** even though the freeblock list was checked by btreeInitPage(),
1264 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001265 ** freeblocks that overlapped cells. Nor does it detect when the
1266 ** cell content area exceeds the value in the page header. If these
1267 ** situations arise, then subsequent insert operations might corrupt
1268 ** the freelist. So we do need to check for corruption while scanning
1269 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001270 */
drh43605152004-05-29 21:46:49 +00001271 hdr = pPage->hdrOffset;
1272 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001273 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001274 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001275 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001276 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001277 return SQLITE_CORRUPT_BKPT;
1278 }
drh3aac2dd2004-04-26 14:10:20 +00001279 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001280 }
drh0a45c272009-07-08 01:49:11 +00001281 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001282 return SQLITE_CORRUPT_BKPT;
1283 }
drh3aac2dd2004-04-26 14:10:20 +00001284 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001285 put2byte(&data[addr], start);
1286 put2byte(&data[start], pbegin);
1287 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001288 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001289
1290 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001291 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001292 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001293 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001294 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001295 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001296 pnext = get2byte(&data[pbegin]);
1297 psize = get2byte(&data[pbegin+2]);
1298 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1299 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001300 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001301 return SQLITE_CORRUPT_BKPT;
1302 }
drh0a45c272009-07-08 01:49:11 +00001303 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001304 x = get2byte(&data[pnext]);
1305 put2byte(&data[pbegin], x);
1306 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1307 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001308 }else{
drh3aac2dd2004-04-26 14:10:20 +00001309 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001310 }
1311 }
drh7e3b0a02001-04-28 16:52:40 +00001312
drh43605152004-05-29 21:46:49 +00001313 /* If the cell content area begins with a freeblock, remove it. */
1314 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1315 int top;
1316 pbegin = get2byte(&data[hdr+1]);
1317 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001318 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1319 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001320 }
drhc5053fb2008-11-27 02:22:10 +00001321 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001322 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001323}
1324
1325/*
drh271efa52004-05-30 19:19:05 +00001326** Decode the flags byte (the first byte of the header) for a page
1327** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001328**
1329** Only the following combinations are supported. Anything different
1330** indicates a corrupt database files:
1331**
1332** PTF_ZERODATA
1333** PTF_ZERODATA | PTF_LEAF
1334** PTF_LEAFDATA | PTF_INTKEY
1335** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001336*/
drh44845222008-07-17 18:39:57 +00001337static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001338 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001339
1340 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001341 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001342 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001343 flagByte &= ~PTF_LEAF;
1344 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001345 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001346 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1347 pPage->intKey = 1;
1348 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001349 pPage->maxLocal = pBt->maxLeaf;
1350 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001351 }else if( flagByte==PTF_ZERODATA ){
1352 pPage->intKey = 0;
1353 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001354 pPage->maxLocal = pBt->maxLocal;
1355 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001356 }else{
1357 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001358 }
drh44845222008-07-17 18:39:57 +00001359 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001360}
1361
1362/*
drh7e3b0a02001-04-28 16:52:40 +00001363** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001364**
1365** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001366** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001367** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1368** guarantee that the page is well-formed. It only shows that
1369** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001370*/
danielk197730548662009-07-09 05:07:37 +00001371static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001372
danielk197771d5d2c2008-09-29 11:49:47 +00001373 assert( pPage->pBt!=0 );
1374 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001375 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001376 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1377 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001378
1379 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001380 u16 pc; /* Address of a freeblock within pPage->aData[] */
1381 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001382 u8 *data; /* Equal to pPage->aData */
1383 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001384 int usableSize; /* Amount of usable space on each page */
1385 int cellOffset; /* Offset from start of page to first cell pointer */
1386 int nFree; /* Number of unused bytes on the page */
1387 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001388 int iCellFirst; /* First allowable cell or freeblock offset */
1389 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001390
1391 pBt = pPage->pBt;
1392
danielk1977eaa06f62008-09-18 17:34:44 +00001393 hdr = pPage->hdrOffset;
1394 data = pPage->aData;
1395 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001396 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1397 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001398 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001399 usableSize = pBt->usableSize;
1400 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh5d433ce2010-08-14 16:02:52 +00001401 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001402 pPage->nCell = get2byte(&data[hdr+3]);
1403 if( pPage->nCell>MX_CELL(pBt) ){
1404 /* To many cells for a single page. The page must be corrupt */
1405 return SQLITE_CORRUPT_BKPT;
1406 }
drhb908d762009-07-08 16:54:40 +00001407 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001408
shane5eff7cf2009-08-10 03:57:58 +00001409 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001410 ** of page when parsing a cell.
1411 **
1412 ** The following block of code checks early to see if a cell extends
1413 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1414 ** returned if it does.
1415 */
drh0a45c272009-07-08 01:49:11 +00001416 iCellFirst = cellOffset + 2*pPage->nCell;
1417 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001418#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001419 {
drh69e931e2009-06-03 21:04:35 +00001420 int i; /* Index into the cell pointer array */
1421 int sz; /* Size of a cell */
1422
drh69e931e2009-06-03 21:04:35 +00001423 if( !pPage->leaf ) iCellLast--;
1424 for(i=0; i<pPage->nCell; i++){
1425 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001426 testcase( pc==iCellFirst );
1427 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001428 if( pc<iCellFirst || pc>iCellLast ){
1429 return SQLITE_CORRUPT_BKPT;
1430 }
1431 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001432 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001433 if( pc+sz>usableSize ){
1434 return SQLITE_CORRUPT_BKPT;
1435 }
1436 }
drh0a45c272009-07-08 01:49:11 +00001437 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001438 }
1439#endif
1440
danielk1977eaa06f62008-09-18 17:34:44 +00001441 /* Compute the total free space on the page */
1442 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001443 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001444 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001445 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001446 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001447 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001448 return SQLITE_CORRUPT_BKPT;
1449 }
1450 next = get2byte(&data[pc]);
1451 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001452 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1453 /* Free blocks must be in ascending order. And the last byte of
1454 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001455 return SQLITE_CORRUPT_BKPT;
1456 }
shane85095702009-06-15 16:27:08 +00001457 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001458 pc = next;
1459 }
danielk197793c829c2009-06-03 17:26:17 +00001460
1461 /* At this point, nFree contains the sum of the offset to the start
1462 ** of the cell-content area plus the number of free bytes within
1463 ** the cell-content area. If this is greater than the usable-size
1464 ** of the page, then the page must be corrupted. This check also
1465 ** serves to verify that the offset to the start of the cell-content
1466 ** area, according to the page header, lies within the page.
1467 */
1468 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001469 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001470 }
shane5eff7cf2009-08-10 03:57:58 +00001471 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001472 pPage->isInit = 1;
1473 }
drh9e572e62004-04-23 23:43:10 +00001474 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001475}
1476
1477/*
drh8b2f49b2001-06-08 00:21:52 +00001478** Set up a raw page so that it looks like a database page holding
1479** no entries.
drhbd03cae2001-06-02 02:40:57 +00001480*/
drh9e572e62004-04-23 23:43:10 +00001481static void zeroPage(MemPage *pPage, int flags){
1482 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001483 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001484 u8 hdr = pPage->hdrOffset;
1485 u16 first;
drh9e572e62004-04-23 23:43:10 +00001486
danielk19773b8a05f2007-03-19 17:44:26 +00001487 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001488 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1489 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001490 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001491 assert( sqlite3_mutex_held(pBt->mutex) );
drh5b47efa2010-02-12 18:18:39 +00001492 if( pBt->secureDelete ){
1493 memset(&data[hdr], 0, pBt->usableSize - hdr);
1494 }
drh1bd10f82008-12-10 21:19:56 +00001495 data[hdr] = (char)flags;
1496 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001497 memset(&data[hdr+1], 0, 4);
1498 data[hdr+7] = 0;
1499 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001500 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001501 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001502 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001503 pPage->cellOffset = first;
1504 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001505 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1506 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001507 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001508 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001509}
1510
drh897a8202008-09-18 01:08:15 +00001511
1512/*
1513** Convert a DbPage obtained from the pager into a MemPage used by
1514** the btree layer.
1515*/
1516static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1517 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1518 pPage->aData = sqlite3PagerGetData(pDbPage);
1519 pPage->pDbPage = pDbPage;
1520 pPage->pBt = pBt;
1521 pPage->pgno = pgno;
1522 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1523 return pPage;
1524}
1525
drhbd03cae2001-06-02 02:40:57 +00001526/*
drh3aac2dd2004-04-26 14:10:20 +00001527** Get a page from the pager. Initialize the MemPage.pBt and
1528** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001529**
1530** If the noContent flag is set, it means that we do not care about
1531** the content of the page at this time. So do not go to the disk
1532** to fetch the content. Just fill in the content with zeros for now.
1533** If in the future we call sqlite3PagerWrite() on this page, that
1534** means we have started to be concerned about content and the disk
1535** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001536*/
danielk197730548662009-07-09 05:07:37 +00001537static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001538 BtShared *pBt, /* The btree */
1539 Pgno pgno, /* Number of the page to fetch */
1540 MemPage **ppPage, /* Return the page in this parameter */
1541 int noContent /* Do not load page content if true */
1542){
drh3aac2dd2004-04-26 14:10:20 +00001543 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001544 DbPage *pDbPage;
1545
drh1fee73e2007-08-29 04:00:57 +00001546 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001547 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001548 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001549 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001550 return SQLITE_OK;
1551}
1552
1553/*
danielk1977bea2a942009-01-20 17:06:27 +00001554** Retrieve a page from the pager cache. If the requested page is not
1555** already in the pager cache return NULL. Initialize the MemPage.pBt and
1556** MemPage.aData elements if needed.
1557*/
1558static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1559 DbPage *pDbPage;
1560 assert( sqlite3_mutex_held(pBt->mutex) );
1561 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1562 if( pDbPage ){
1563 return btreePageFromDbPage(pDbPage, pgno, pBt);
1564 }
1565 return 0;
1566}
1567
1568/*
danielk197789d40042008-11-17 14:20:56 +00001569** Return the size of the database file in pages. If there is any kind of
1570** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001571*/
drhb1299152010-03-30 22:58:33 +00001572static Pgno btreePagecount(BtShared *pBt){
1573 return pBt->nPage;
1574}
1575u32 sqlite3BtreeLastPage(Btree *p){
1576 assert( sqlite3BtreeHoldsMutex(p) );
1577 assert( ((p->pBt->nPage)&0x8000000)==0 );
1578 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001579}
1580
1581/*
danielk197789bc4bc2009-07-21 19:25:24 +00001582** Get a page from the pager and initialize it. This routine is just a
1583** convenience wrapper around separate calls to btreeGetPage() and
1584** btreeInitPage().
1585**
1586** If an error occurs, then the value *ppPage is set to is undefined. It
1587** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001588*/
1589static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001590 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001591 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001592 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001593){
1594 int rc;
drh1fee73e2007-08-29 04:00:57 +00001595 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001596
danba3cbf32010-06-30 04:29:03 +00001597 if( pgno>btreePagecount(pBt) ){
1598 rc = SQLITE_CORRUPT_BKPT;
1599 }else{
1600 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1601 if( rc==SQLITE_OK ){
1602 rc = btreeInitPage(*ppPage);
1603 if( rc!=SQLITE_OK ){
1604 releasePage(*ppPage);
1605 }
danielk197789bc4bc2009-07-21 19:25:24 +00001606 }
drhee696e22004-08-30 16:52:17 +00001607 }
danba3cbf32010-06-30 04:29:03 +00001608
1609 testcase( pgno==0 );
1610 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001611 return rc;
1612}
1613
1614/*
drh3aac2dd2004-04-26 14:10:20 +00001615** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001616** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001617*/
drh4b70f112004-05-02 21:12:19 +00001618static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001619 if( pPage ){
1620 assert( pPage->aData );
1621 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001622 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1623 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001624 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001625 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001626 }
1627}
1628
1629/*
drha6abd042004-06-09 17:37:22 +00001630** During a rollback, when the pager reloads information into the cache
1631** so that the cache is restored to its original state at the start of
1632** the transaction, for each page restored this routine is called.
1633**
1634** This routine needs to reset the extra data section at the end of the
1635** page to agree with the restored data.
1636*/
danielk1977eaa06f62008-09-18 17:34:44 +00001637static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001638 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001639 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001640 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001641 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001642 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001643 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001644 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001645 /* pPage might not be a btree page; it might be an overflow page
1646 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001647 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001648 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001649 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001650 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001651 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001652 }
drha6abd042004-06-09 17:37:22 +00001653 }
1654}
1655
1656/*
drhe5fe6902007-12-07 18:55:28 +00001657** Invoke the busy handler for a btree.
1658*/
danielk19771ceedd32008-11-19 10:22:33 +00001659static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001660 BtShared *pBt = (BtShared*)pArg;
1661 assert( pBt->db );
1662 assert( sqlite3_mutex_held(pBt->db->mutex) );
1663 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1664}
1665
1666/*
drhad3e0102004-09-03 23:32:18 +00001667** Open a database file.
1668**
drh382c0242001-10-06 16:33:02 +00001669** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001670** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001671** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001672** If zFilename is ":memory:" then an in-memory database is created
1673** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001674**
1675** If the database is already opened in the same database connection
1676** and we are in shared cache mode, then the open will fail with an
1677** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1678** objects in the same database connection since doing so will lead
1679** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001680*/
drh23e11ca2004-05-04 17:27:28 +00001681int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001682 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001683 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001684 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001685 int flags, /* Options */
1686 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001687){
drh7555d8e2009-03-20 13:15:30 +00001688 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1689 BtShared *pBt = 0; /* Shared part of btree structure */
1690 Btree *p; /* Handle to return */
1691 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1692 int rc = SQLITE_OK; /* Result code from this function */
1693 u8 nReserve; /* Byte of unused space on each page */
1694 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001695
1696 /* Set the variable isMemdb to true for an in-memory database, or
1697 ** false for a file-based database. This symbol is only required if
1698 ** either of the shared-data or autovacuum features are compiled
1699 ** into the library.
1700 */
1701#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1702 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001703 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001704 #else
drh980b1a72006-08-16 16:42:48 +00001705 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001706 #endif
1707#endif
1708
drhe5fe6902007-12-07 18:55:28 +00001709 assert( db!=0 );
1710 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001711
drhe5fe6902007-12-07 18:55:28 +00001712 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001713 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001714 if( !p ){
1715 return SQLITE_NOMEM;
1716 }
1717 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001718 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001719#ifndef SQLITE_OMIT_SHARED_CACHE
1720 p->lock.pBtree = p;
1721 p->lock.iTable = 1;
1722#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001723
drh198bf392006-01-06 21:52:49 +00001724#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001725 /*
1726 ** If this Btree is a candidate for shared cache, try to find an
1727 ** existing BtShared object that we can share with
1728 */
danielk197720c6cc22009-04-01 18:03:00 +00001729 if( isMemdb==0 && zFilename && zFilename[0] ){
drhf1f12682009-09-09 14:17:52 +00001730 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001731 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001732 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001733 sqlite3_mutex *mutexShared;
1734 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001735 if( !zFullPathname ){
1736 sqlite3_free(p);
1737 return SQLITE_NOMEM;
1738 }
danielk1977adfb9b02007-09-17 07:02:56 +00001739 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001740 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1741 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001742 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001743 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001744 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001745 assert( pBt->nRef>0 );
1746 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1747 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001748 int iDb;
1749 for(iDb=db->nDb-1; iDb>=0; iDb--){
1750 Btree *pExisting = db->aDb[iDb].pBt;
1751 if( pExisting && pExisting->pBt==pBt ){
1752 sqlite3_mutex_leave(mutexShared);
1753 sqlite3_mutex_leave(mutexOpen);
1754 sqlite3_free(zFullPathname);
1755 sqlite3_free(p);
1756 return SQLITE_CONSTRAINT;
1757 }
1758 }
drhff0587c2007-08-29 17:43:19 +00001759 p->pBt = pBt;
1760 pBt->nRef++;
1761 break;
1762 }
1763 }
1764 sqlite3_mutex_leave(mutexShared);
1765 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001766 }
drhff0587c2007-08-29 17:43:19 +00001767#ifdef SQLITE_DEBUG
1768 else{
1769 /* In debug mode, we mark all persistent databases as sharable
1770 ** even when they are not. This exercises the locking code and
1771 ** gives more opportunity for asserts(sqlite3_mutex_held())
1772 ** statements to find locking problems.
1773 */
1774 p->sharable = 1;
1775 }
1776#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001777 }
1778#endif
drha059ad02001-04-17 20:09:11 +00001779 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001780 /*
1781 ** The following asserts make sure that structures used by the btree are
1782 ** the right size. This is to guard against size changes that result
1783 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001784 */
drhe53831d2007-08-17 01:14:38 +00001785 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1786 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1787 assert( sizeof(u32)==4 );
1788 assert( sizeof(u16)==2 );
1789 assert( sizeof(Pgno)==4 );
1790
1791 pBt = sqlite3MallocZero( sizeof(*pBt) );
1792 if( pBt==0 ){
1793 rc = SQLITE_NOMEM;
1794 goto btree_open_out;
1795 }
danielk197771d5d2c2008-09-29 11:49:47 +00001796 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001797 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001798 if( rc==SQLITE_OK ){
1799 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1800 }
1801 if( rc!=SQLITE_OK ){
1802 goto btree_open_out;
1803 }
danielk19772a50ff02009-04-10 09:47:06 +00001804 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001805 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001806 p->pBt = pBt;
1807
drhe53831d2007-08-17 01:14:38 +00001808 pBt->pCursor = 0;
1809 pBt->pPage1 = 0;
1810 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
drh5b47efa2010-02-12 18:18:39 +00001811#ifdef SQLITE_SECURE_DELETE
1812 pBt->secureDelete = 1;
1813#endif
drhb2eced52010-08-12 02:41:12 +00001814 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001815 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1816 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001817 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001818#ifndef SQLITE_OMIT_AUTOVACUUM
1819 /* If the magic name ":memory:" will create an in-memory database, then
1820 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1821 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1822 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1823 ** regular file-name. In this case the auto-vacuum applies as per normal.
1824 */
1825 if( zFilename && !isMemdb ){
1826 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1827 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1828 }
1829#endif
1830 nReserve = 0;
1831 }else{
1832 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001833 pBt->pageSizeFixed = 1;
1834#ifndef SQLITE_OMIT_AUTOVACUUM
1835 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1836 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1837#endif
1838 }
drhfa9601a2009-06-18 17:22:39 +00001839 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001840 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001841 pBt->usableSize = pBt->pageSize - nReserve;
1842 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001843
1844#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1845 /* Add the new BtShared object to the linked list sharable BtShareds.
1846 */
1847 if( p->sharable ){
1848 sqlite3_mutex *mutexShared;
1849 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001850 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001851 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001852 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001853 if( pBt->mutex==0 ){
1854 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001855 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001856 goto btree_open_out;
1857 }
drhff0587c2007-08-29 17:43:19 +00001858 }
drhe53831d2007-08-17 01:14:38 +00001859 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001860 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1861 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001862 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001863 }
drheee46cf2004-11-06 00:02:48 +00001864#endif
drh90f5ecb2004-07-22 01:19:35 +00001865 }
danielk1977aef0bf62005-12-30 16:28:01 +00001866
drhcfed7bc2006-03-13 14:28:05 +00001867#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001868 /* If the new Btree uses a sharable pBtShared, then link the new
1869 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001870 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001871 */
drhe53831d2007-08-17 01:14:38 +00001872 if( p->sharable ){
1873 int i;
1874 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001875 for(i=0; i<db->nDb; i++){
1876 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001877 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1878 if( p->pBt<pSib->pBt ){
1879 p->pNext = pSib;
1880 p->pPrev = 0;
1881 pSib->pPrev = p;
1882 }else{
drhabddb0c2007-08-20 13:14:28 +00001883 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001884 pSib = pSib->pNext;
1885 }
1886 p->pNext = pSib->pNext;
1887 p->pPrev = pSib;
1888 if( p->pNext ){
1889 p->pNext->pPrev = p;
1890 }
1891 pSib->pNext = p;
1892 }
1893 break;
1894 }
1895 }
danielk1977aef0bf62005-12-30 16:28:01 +00001896 }
danielk1977aef0bf62005-12-30 16:28:01 +00001897#endif
1898 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001899
1900btree_open_out:
1901 if( rc!=SQLITE_OK ){
1902 if( pBt && pBt->pPager ){
1903 sqlite3PagerClose(pBt->pPager);
1904 }
drh17435752007-08-16 04:30:38 +00001905 sqlite3_free(pBt);
1906 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001907 *ppBtree = 0;
1908 }
drh7555d8e2009-03-20 13:15:30 +00001909 if( mutexOpen ){
1910 assert( sqlite3_mutex_held(mutexOpen) );
1911 sqlite3_mutex_leave(mutexOpen);
1912 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001913 return rc;
drha059ad02001-04-17 20:09:11 +00001914}
1915
1916/*
drhe53831d2007-08-17 01:14:38 +00001917** Decrement the BtShared.nRef counter. When it reaches zero,
1918** remove the BtShared structure from the sharing list. Return
1919** true if the BtShared.nRef counter reaches zero and return
1920** false if it is still positive.
1921*/
1922static int removeFromSharingList(BtShared *pBt){
1923#ifndef SQLITE_OMIT_SHARED_CACHE
1924 sqlite3_mutex *pMaster;
1925 BtShared *pList;
1926 int removed = 0;
1927
drhd677b3d2007-08-20 22:48:41 +00001928 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001929 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001930 sqlite3_mutex_enter(pMaster);
1931 pBt->nRef--;
1932 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001933 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1934 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001935 }else{
drh78f82d12008-09-02 00:52:52 +00001936 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001937 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001938 pList=pList->pNext;
1939 }
drh34004ce2008-07-11 16:15:17 +00001940 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001941 pList->pNext = pBt->pNext;
1942 }
1943 }
drh3285db22007-09-03 22:00:39 +00001944 if( SQLITE_THREADSAFE ){
1945 sqlite3_mutex_free(pBt->mutex);
1946 }
drhe53831d2007-08-17 01:14:38 +00001947 removed = 1;
1948 }
1949 sqlite3_mutex_leave(pMaster);
1950 return removed;
1951#else
1952 return 1;
1953#endif
1954}
1955
1956/*
drhf7141992008-06-19 00:16:08 +00001957** Make sure pBt->pTmpSpace points to an allocation of
1958** MX_CELL_SIZE(pBt) bytes.
1959*/
1960static void allocateTempSpace(BtShared *pBt){
1961 if( !pBt->pTmpSpace ){
1962 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1963 }
1964}
1965
1966/*
1967** Free the pBt->pTmpSpace allocation
1968*/
1969static void freeTempSpace(BtShared *pBt){
1970 sqlite3PageFree( pBt->pTmpSpace);
1971 pBt->pTmpSpace = 0;
1972}
1973
1974/*
drha059ad02001-04-17 20:09:11 +00001975** Close an open database and invalidate all cursors.
1976*/
danielk1977aef0bf62005-12-30 16:28:01 +00001977int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001978 BtShared *pBt = p->pBt;
1979 BtCursor *pCur;
1980
danielk1977aef0bf62005-12-30 16:28:01 +00001981 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001982 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001983 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001984 pCur = pBt->pCursor;
1985 while( pCur ){
1986 BtCursor *pTmp = pCur;
1987 pCur = pCur->pNext;
1988 if( pTmp->pBtree==p ){
1989 sqlite3BtreeCloseCursor(pTmp);
1990 }
drha059ad02001-04-17 20:09:11 +00001991 }
danielk1977aef0bf62005-12-30 16:28:01 +00001992
danielk19778d34dfd2006-01-24 16:37:57 +00001993 /* Rollback any active transaction and free the handle structure.
1994 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1995 ** this handle.
1996 */
danielk1977b597f742006-01-15 11:39:18 +00001997 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001998 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001999
danielk1977aef0bf62005-12-30 16:28:01 +00002000 /* If there are still other outstanding references to the shared-btree
2001 ** structure, return now. The remainder of this procedure cleans
2002 ** up the shared-btree.
2003 */
drhe53831d2007-08-17 01:14:38 +00002004 assert( p->wantToLock==0 && p->locked==0 );
2005 if( !p->sharable || removeFromSharingList(pBt) ){
2006 /* The pBt is no longer on the sharing list, so we can access
2007 ** it without having to hold the mutex.
2008 **
2009 ** Clean out and delete the BtShared object.
2010 */
2011 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002012 sqlite3PagerClose(pBt->pPager);
2013 if( pBt->xFreeSchema && pBt->pSchema ){
2014 pBt->xFreeSchema(pBt->pSchema);
2015 }
drhb9755982010-07-24 16:34:37 +00002016 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002017 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002018 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002019 }
2020
drhe53831d2007-08-17 01:14:38 +00002021#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002022 assert( p->wantToLock==0 );
2023 assert( p->locked==0 );
2024 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2025 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002026#endif
2027
drhe53831d2007-08-17 01:14:38 +00002028 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002029 return SQLITE_OK;
2030}
2031
2032/*
drhda47d772002-12-02 04:25:19 +00002033** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002034**
2035** The maximum number of cache pages is set to the absolute
2036** value of mxPage. If mxPage is negative, the pager will
2037** operate asynchronously - it will not stop to do fsync()s
2038** to insure data is written to the disk surface before
2039** continuing. Transactions still work if synchronous is off,
2040** and the database cannot be corrupted if this program
2041** crashes. But if the operating system crashes or there is
2042** an abrupt power failure when synchronous is off, the database
2043** could be left in an inconsistent and unrecoverable state.
2044** Synchronous is on by default so database corruption is not
2045** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002046*/
danielk1977aef0bf62005-12-30 16:28:01 +00002047int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2048 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002049 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002050 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002051 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002052 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002053 return SQLITE_OK;
2054}
2055
2056/*
drh973b6e32003-02-12 14:09:42 +00002057** Change the way data is synced to disk in order to increase or decrease
2058** how well the database resists damage due to OS crashes and power
2059** failures. Level 1 is the same as asynchronous (no syncs() occur and
2060** there is a high probability of damage) Level 2 is the default. There
2061** is a very low but non-zero probability of damage. Level 3 reduces the
2062** probability of damage to near zero but with a write performance reduction.
2063*/
danielk197793758c82005-01-21 08:13:14 +00002064#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002065int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002066 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002067 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002068 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002069 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002070 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002071 return SQLITE_OK;
2072}
danielk197793758c82005-01-21 08:13:14 +00002073#endif
drh973b6e32003-02-12 14:09:42 +00002074
drh2c8997b2005-08-27 16:36:48 +00002075/*
2076** Return TRUE if the given btree is set to safety level 1. In other
2077** words, return TRUE if no sync() occurs on the disk files.
2078*/
danielk1977aef0bf62005-12-30 16:28:01 +00002079int sqlite3BtreeSyncDisabled(Btree *p){
2080 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002081 int rc;
drhe5fe6902007-12-07 18:55:28 +00002082 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002083 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002084 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002085 rc = sqlite3PagerNosync(pBt->pPager);
2086 sqlite3BtreeLeave(p);
2087 return rc;
drh2c8997b2005-08-27 16:36:48 +00002088}
2089
danielk1977576ec6b2005-01-21 11:55:25 +00002090#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002091/*
drh90f5ecb2004-07-22 01:19:35 +00002092** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002093** Or, if the page size has already been fixed, return SQLITE_READONLY
2094** without changing anything.
drh06f50212004-11-02 14:24:33 +00002095**
2096** The page size must be a power of 2 between 512 and 65536. If the page
2097** size supplied does not meet this constraint then the page size is not
2098** changed.
2099**
2100** Page sizes are constrained to be a power of two so that the region
2101** of the database file used for locking (beginning at PENDING_BYTE,
2102** the first byte past the 1GB boundary, 0x40000000) needs to occur
2103** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002104**
2105** If parameter nReserve is less than zero, then the number of reserved
2106** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002107**
2108** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2109** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002110*/
drhce4869f2009-04-02 20:16:58 +00002111int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002112 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002113 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002114 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002115 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002116 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002117 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002118 return SQLITE_READONLY;
2119 }
2120 if( nReserve<0 ){
2121 nReserve = pBt->pageSize - pBt->usableSize;
2122 }
drhf49661a2008-12-10 16:45:50 +00002123 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002124 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2125 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002126 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002127 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002128 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002129 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002130 }
drhfa9601a2009-06-18 17:22:39 +00002131 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002132 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002133 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002134 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002135 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002136}
2137
2138/*
2139** Return the currently defined page size
2140*/
danielk1977aef0bf62005-12-30 16:28:01 +00002141int sqlite3BtreeGetPageSize(Btree *p){
2142 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002143}
drh7f751222009-03-17 22:33:00 +00002144
2145/*
2146** Return the number of bytes of space at the end of every page that
2147** are intentually left unused. This is the "reserved" space that is
2148** sometimes used by extensions.
2149*/
danielk1977aef0bf62005-12-30 16:28:01 +00002150int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002151 int n;
2152 sqlite3BtreeEnter(p);
2153 n = p->pBt->pageSize - p->pBt->usableSize;
2154 sqlite3BtreeLeave(p);
2155 return n;
drh2011d5f2004-07-22 02:40:37 +00002156}
drhf8e632b2007-05-08 14:51:36 +00002157
2158/*
2159** Set the maximum page count for a database if mxPage is positive.
2160** No changes are made if mxPage is 0 or negative.
2161** Regardless of the value of mxPage, return the maximum page count.
2162*/
2163int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002164 int n;
2165 sqlite3BtreeEnter(p);
2166 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2167 sqlite3BtreeLeave(p);
2168 return n;
drhf8e632b2007-05-08 14:51:36 +00002169}
drh5b47efa2010-02-12 18:18:39 +00002170
2171/*
2172** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1,
2173** then make no changes. Always return the value of the secureDelete
2174** setting after the change.
2175*/
2176int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2177 int b;
drhaf034ed2010-02-12 19:46:26 +00002178 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002179 sqlite3BtreeEnter(p);
2180 if( newFlag>=0 ){
2181 p->pBt->secureDelete = (newFlag!=0) ? 1 : 0;
2182 }
2183 b = p->pBt->secureDelete;
2184 sqlite3BtreeLeave(p);
2185 return b;
2186}
danielk1977576ec6b2005-01-21 11:55:25 +00002187#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002188
2189/*
danielk1977951af802004-11-05 15:45:09 +00002190** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2191** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2192** is disabled. The default value for the auto-vacuum property is
2193** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2194*/
danielk1977aef0bf62005-12-30 16:28:01 +00002195int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002196#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002197 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002198#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002199 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002200 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002201 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002202
2203 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002204 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002205 rc = SQLITE_READONLY;
2206 }else{
drh076d4662009-02-18 20:31:18 +00002207 pBt->autoVacuum = av ?1:0;
2208 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002209 }
drhd677b3d2007-08-20 22:48:41 +00002210 sqlite3BtreeLeave(p);
2211 return rc;
danielk1977951af802004-11-05 15:45:09 +00002212#endif
2213}
2214
2215/*
2216** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2217** enabled 1 is returned. Otherwise 0.
2218*/
danielk1977aef0bf62005-12-30 16:28:01 +00002219int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002220#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002221 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002222#else
drhd677b3d2007-08-20 22:48:41 +00002223 int rc;
2224 sqlite3BtreeEnter(p);
2225 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002226 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2227 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2228 BTREE_AUTOVACUUM_INCR
2229 );
drhd677b3d2007-08-20 22:48:41 +00002230 sqlite3BtreeLeave(p);
2231 return rc;
danielk1977951af802004-11-05 15:45:09 +00002232#endif
2233}
2234
2235
2236/*
drha34b6762004-05-07 13:30:42 +00002237** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002238** also acquire a readlock on that file.
2239**
2240** SQLITE_OK is returned on success. If the file is not a
2241** well-formed database file, then SQLITE_CORRUPT is returned.
2242** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002243** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002244*/
danielk1977aef0bf62005-12-30 16:28:01 +00002245static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002246 int rc; /* Result code from subfunctions */
2247 MemPage *pPage1; /* Page 1 of the database file */
2248 int nPage; /* Number of pages in the database */
2249 int nPageFile = 0; /* Number of pages in the database file */
2250 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002251
drh1fee73e2007-08-29 04:00:57 +00002252 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002253 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002254 rc = sqlite3PagerSharedLock(pBt->pPager);
2255 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002256 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002257 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002258
2259 /* Do some checking to help insure the file we opened really is
2260 ** a valid database file.
2261 */
drhc2a4bab2010-04-02 12:46:45 +00002262 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
2263 if( (rc = sqlite3PagerPagecount(pBt->pPager, &nPageFile))!=SQLITE_OK ){;
2264 goto page1_init_failed;
2265 }
drhb28e59b2010-06-17 02:13:39 +00002266 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002267 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002268 }
2269 if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002270 int pageSize;
2271 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002272 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002273 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002274 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002275 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002276 }
dan5cf53532010-05-01 16:40:20 +00002277
2278#ifdef SQLITE_OMIT_WAL
2279 if( page1[18]>1 ){
2280 pBt->readOnly = 1;
2281 }
2282 if( page1[19]>1 ){
2283 goto page1_init_failed;
2284 }
2285#else
dane04dc882010-04-20 18:53:15 +00002286 if( page1[18]>2 ){
drh309169a2007-04-24 17:27:51 +00002287 pBt->readOnly = 1;
2288 }
dane04dc882010-04-20 18:53:15 +00002289 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002290 goto page1_init_failed;
2291 }
drhe5ae5732008-06-15 02:51:47 +00002292
dana470aeb2010-04-21 11:43:38 +00002293 /* If the write version is set to 2, this database should be accessed
2294 ** in WAL mode. If the log is not already open, open it now. Then
2295 ** return SQLITE_OK and return without populating BtShared.pPage1.
2296 ** The caller detects this and calls this function again. This is
2297 ** required as the version of page 1 currently in the page1 buffer
2298 ** may not be the latest version - there may be a newer one in the log
2299 ** file.
2300 */
danb9780022010-04-21 18:37:57 +00002301 if( page1[19]==2 && pBt->doNotUseWAL==0 ){
dane04dc882010-04-20 18:53:15 +00002302 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002303 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002304 if( rc!=SQLITE_OK ){
2305 goto page1_init_failed;
2306 }else if( isOpen==0 ){
2307 releasePage(pPage1);
2308 return SQLITE_OK;
2309 }
dan8b5444b2010-04-27 14:37:47 +00002310 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002311 }
dan5cf53532010-05-01 16:40:20 +00002312#endif
dane04dc882010-04-20 18:53:15 +00002313
drhe5ae5732008-06-15 02:51:47 +00002314 /* The maximum embedded fraction must be exactly 25%. And the minimum
2315 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2316 ** The original design allowed these amounts to vary, but as of
2317 ** version 3.6.0, we require them to be fixed.
2318 */
2319 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2320 goto page1_init_failed;
2321 }
drhb2eced52010-08-12 02:41:12 +00002322 pageSize = (page1[16]<<8) | (page1[17]<<16);
2323 if( ((pageSize-1)&pageSize)!=0
2324 || pageSize>SQLITE_MAX_PAGE_SIZE
2325 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002326 ){
drh07d183d2005-05-01 22:52:42 +00002327 goto page1_init_failed;
2328 }
2329 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002330 usableSize = pageSize - page1[20];
2331 if( pageSize!=pBt->pageSize ){
2332 /* After reading the first page of the database assuming a page size
2333 ** of BtShared.pageSize, we have discovered that the page-size is
2334 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2335 ** zero and return SQLITE_OK. The caller will call this function
2336 ** again with the correct page-size.
2337 */
2338 releasePage(pPage1);
drhb2eced52010-08-12 02:41:12 +00002339 pBt->usableSize = (u32)usableSize;
2340 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002341 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002342 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2343 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002344 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002345 }
drhc2a4bab2010-04-02 12:46:45 +00002346 if( nPageHeader>nPageFile ){
2347 rc = SQLITE_CORRUPT_BKPT;
2348 goto page1_init_failed;
2349 }
drhb33e1b92009-06-18 11:29:20 +00002350 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002351 goto page1_init_failed;
2352 }
drhb2eced52010-08-12 02:41:12 +00002353 pBt->pageSize = (u32)pageSize;
2354 pBt->usableSize = (u32)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002355#ifndef SQLITE_OMIT_AUTOVACUUM
2356 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002357 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002358#endif
drh306dc212001-05-21 13:45:10 +00002359 }
drhb6f41482004-05-14 01:58:11 +00002360
2361 /* maxLocal is the maximum amount of payload to store locally for
2362 ** a cell. Make sure it is small enough so that at least minFanout
2363 ** cells can will fit on one page. We assume a 10-byte page header.
2364 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002365 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002366 ** 4-byte child pointer
2367 ** 9-byte nKey value
2368 ** 4-byte nData value
2369 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002370 ** So a cell consists of a 2-byte poiner, a header which is as much as
2371 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2372 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002373 */
drhe5ae5732008-06-15 02:51:47 +00002374 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2375 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002376 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002377 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002378 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002379 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002380 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002381 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002382
drh72f82862001-05-24 21:06:34 +00002383page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002384 releasePage(pPage1);
2385 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002386 return rc;
drh306dc212001-05-21 13:45:10 +00002387}
2388
2389/*
drhb8ca3072001-12-05 00:21:20 +00002390** If there are no outstanding cursors and we are not in the middle
2391** of a transaction but there is a read lock on the database, then
2392** this routine unrefs the first page of the database file which
2393** has the effect of releasing the read lock.
2394**
drhb8ca3072001-12-05 00:21:20 +00002395** If there is a transaction in progress, this routine is a no-op.
2396*/
danielk1977aef0bf62005-12-30 16:28:01 +00002397static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002398 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002399 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2400 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002401 assert( pBt->pPage1->aData );
2402 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2403 assert( pBt->pPage1->aData );
2404 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002405 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002406 }
2407}
2408
2409/*
drhe39f2f92009-07-23 01:43:59 +00002410** If pBt points to an empty file then convert that empty file
2411** into a new empty database by initializing the first page of
2412** the database.
drh8b2f49b2001-06-08 00:21:52 +00002413*/
danielk1977aef0bf62005-12-30 16:28:01 +00002414static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002415 MemPage *pP1;
2416 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002417 int rc;
drhd677b3d2007-08-20 22:48:41 +00002418
drh1fee73e2007-08-29 04:00:57 +00002419 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002420 if( pBt->nPage>0 ){
2421 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002422 }
drh3aac2dd2004-04-26 14:10:20 +00002423 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002424 assert( pP1!=0 );
2425 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002426 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002427 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002428 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2429 assert( sizeof(zMagicHeader)==16 );
drhb2eced52010-08-12 02:41:12 +00002430 data[16] = (pBt->pageSize>>8)&0xff;
2431 data[17] = (pBt->pageSize>>16)&0xff;
drh9e572e62004-04-23 23:43:10 +00002432 data[18] = 1;
2433 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002434 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2435 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002436 data[21] = 64;
2437 data[22] = 32;
2438 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002439 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002440 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002441 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002442#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002443 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002444 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002445 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002446 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002447#endif
drhdd3cd972010-03-27 17:12:36 +00002448 pBt->nPage = 1;
2449 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002450 return SQLITE_OK;
2451}
2452
2453/*
danielk1977ee5741e2004-05-31 10:01:34 +00002454** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002455** is started if the second argument is nonzero, otherwise a read-
2456** transaction. If the second argument is 2 or more and exclusive
2457** transaction is started, meaning that no other process is allowed
2458** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002459** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002460** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002461**
danielk1977ee5741e2004-05-31 10:01:34 +00002462** A write-transaction must be started before attempting any
2463** changes to the database. None of the following routines
2464** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002465**
drh23e11ca2004-05-04 17:27:28 +00002466** sqlite3BtreeCreateTable()
2467** sqlite3BtreeCreateIndex()
2468** sqlite3BtreeClearTable()
2469** sqlite3BtreeDropTable()
2470** sqlite3BtreeInsert()
2471** sqlite3BtreeDelete()
2472** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002473**
drhb8ef32c2005-03-14 02:01:49 +00002474** If an initial attempt to acquire the lock fails because of lock contention
2475** and the database was previously unlocked, then invoke the busy handler
2476** if there is one. But if there was previously a read-lock, do not
2477** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2478** returned when there is already a read-lock in order to avoid a deadlock.
2479**
2480** Suppose there are two processes A and B. A has a read lock and B has
2481** a reserved lock. B tries to promote to exclusive but is blocked because
2482** of A's read lock. A tries to promote to reserved but is blocked by B.
2483** One or the other of the two processes must give way or there can be
2484** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2485** when A already has a read lock, we encourage A to give up and let B
2486** proceed.
drha059ad02001-04-17 20:09:11 +00002487*/
danielk1977aef0bf62005-12-30 16:28:01 +00002488int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002489 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002490 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002491 int rc = SQLITE_OK;
2492
drhd677b3d2007-08-20 22:48:41 +00002493 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002494 btreeIntegrity(p);
2495
danielk1977ee5741e2004-05-31 10:01:34 +00002496 /* If the btree is already in a write-transaction, or it
2497 ** is already in a read-transaction and a read-transaction
2498 ** is requested, this is a no-op.
2499 */
danielk1977aef0bf62005-12-30 16:28:01 +00002500 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002501 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002502 }
drhb8ef32c2005-03-14 02:01:49 +00002503
2504 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002505 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002506 rc = SQLITE_READONLY;
2507 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002508 }
2509
danielk1977404ca072009-03-16 13:19:36 +00002510#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002511 /* If another database handle has already opened a write transaction
2512 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002513 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002514 */
danielk1977404ca072009-03-16 13:19:36 +00002515 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2516 pBlock = pBt->pWriter->db;
2517 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002518 BtLock *pIter;
2519 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2520 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002521 pBlock = pIter->pBtree->db;
2522 break;
danielk1977641b0f42007-12-21 04:47:25 +00002523 }
2524 }
2525 }
danielk1977404ca072009-03-16 13:19:36 +00002526 if( pBlock ){
2527 sqlite3ConnectionBlocked(p->db, pBlock);
2528 rc = SQLITE_LOCKED_SHAREDCACHE;
2529 goto trans_begun;
2530 }
danielk1977641b0f42007-12-21 04:47:25 +00002531#endif
2532
danielk1977602b4662009-07-02 07:47:33 +00002533 /* Any read-only or read-write transaction implies a read-lock on
2534 ** page 1. So if some other shared-cache client already has a write-lock
2535 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002536 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2537 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002538
shaneh5eba1f62010-07-02 17:05:03 +00002539 pBt->initiallyEmpty = (u8)(pBt->nPage==0);
drhb8ef32c2005-03-14 02:01:49 +00002540 do {
danielk1977295dc102009-04-01 19:07:03 +00002541 /* Call lockBtree() until either pBt->pPage1 is populated or
2542 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2543 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2544 ** reading page 1 it discovers that the page-size of the database
2545 ** file is not pBt->pageSize. In this case lockBtree() will update
2546 ** pBt->pageSize to the page-size of the file on disk.
2547 */
2548 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002549
drhb8ef32c2005-03-14 02:01:49 +00002550 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002551 if( pBt->readOnly ){
2552 rc = SQLITE_READONLY;
2553 }else{
danielk1977d8293352009-04-30 09:10:37 +00002554 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002555 if( rc==SQLITE_OK ){
2556 rc = newDatabase(pBt);
2557 }
drhb8ef32c2005-03-14 02:01:49 +00002558 }
2559 }
2560
danielk1977bd434552009-03-18 10:33:00 +00002561 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002562 unlockBtreeIfUnused(pBt);
2563 }
danf9b76712010-06-01 14:12:45 +00002564 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002565 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002566
2567 if( rc==SQLITE_OK ){
2568 if( p->inTrans==TRANS_NONE ){
2569 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002570#ifndef SQLITE_OMIT_SHARED_CACHE
2571 if( p->sharable ){
2572 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2573 p->lock.eLock = READ_LOCK;
2574 p->lock.pNext = pBt->pLock;
2575 pBt->pLock = &p->lock;
2576 }
2577#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002578 }
2579 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2580 if( p->inTrans>pBt->inTransaction ){
2581 pBt->inTransaction = p->inTrans;
2582 }
danielk1977404ca072009-03-16 13:19:36 +00002583 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002584 MemPage *pPage1 = pBt->pPage1;
2585#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002586 assert( !pBt->pWriter );
2587 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002588 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002589#endif
dan59257dc2010-08-04 11:34:31 +00002590
2591 /* If the db-size header field is incorrect (as it may be if an old
2592 ** client has been writing the database file), update it now. Doing
2593 ** this sooner rather than later means the database size can safely
2594 ** re-read the database size from page 1 if a savepoint or transaction
2595 ** rollback occurs within the transaction.
2596 */
2597 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2598 rc = sqlite3PagerWrite(pPage1->pDbPage);
2599 if( rc==SQLITE_OK ){
2600 put4byte(&pPage1->aData[28], pBt->nPage);
2601 }
2602 }
2603 }
danielk1977aef0bf62005-12-30 16:28:01 +00002604 }
2605
drhd677b3d2007-08-20 22:48:41 +00002606
2607trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002608 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002609 /* This call makes sure that the pager has the correct number of
2610 ** open savepoints. If the second parameter is greater than 0 and
2611 ** the sub-journal is not already open, then it will be opened here.
2612 */
danielk1977fd7f0452008-12-17 17:30:26 +00002613 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2614 }
danielk197712dd5492008-12-18 15:45:07 +00002615
danielk1977aef0bf62005-12-30 16:28:01 +00002616 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002617 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002618 return rc;
drha059ad02001-04-17 20:09:11 +00002619}
2620
danielk1977687566d2004-11-02 12:56:41 +00002621#ifndef SQLITE_OMIT_AUTOVACUUM
2622
2623/*
2624** Set the pointer-map entries for all children of page pPage. Also, if
2625** pPage contains cells that point to overflow pages, set the pointer
2626** map entries for the overflow pages as well.
2627*/
2628static int setChildPtrmaps(MemPage *pPage){
2629 int i; /* Counter variable */
2630 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002631 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002632 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002633 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002634 Pgno pgno = pPage->pgno;
2635
drh1fee73e2007-08-29 04:00:57 +00002636 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002637 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002638 if( rc!=SQLITE_OK ){
2639 goto set_child_ptrmaps_out;
2640 }
danielk1977687566d2004-11-02 12:56:41 +00002641 nCell = pPage->nCell;
2642
2643 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002644 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002645
drh98add2e2009-07-20 17:11:49 +00002646 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002647
danielk1977687566d2004-11-02 12:56:41 +00002648 if( !pPage->leaf ){
2649 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002650 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002651 }
2652 }
2653
2654 if( !pPage->leaf ){
2655 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002656 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002657 }
2658
2659set_child_ptrmaps_out:
2660 pPage->isInit = isInitOrig;
2661 return rc;
2662}
2663
2664/*
drhf3aed592009-07-08 18:12:49 +00002665** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2666** that it points to iTo. Parameter eType describes the type of pointer to
2667** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002668**
2669** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2670** page of pPage.
2671**
2672** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2673** page pointed to by one of the cells on pPage.
2674**
2675** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2676** overflow page in the list.
2677*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002678static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002679 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002680 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002681 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002682 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002683 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002684 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002685 }
danielk1977f78fc082004-11-02 14:40:32 +00002686 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002687 }else{
drhf49661a2008-12-10 16:45:50 +00002688 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002689 int i;
2690 int nCell;
2691
danielk197730548662009-07-09 05:07:37 +00002692 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002693 nCell = pPage->nCell;
2694
danielk1977687566d2004-11-02 12:56:41 +00002695 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002696 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002697 if( eType==PTRMAP_OVERFLOW1 ){
2698 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002699 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002700 if( info.iOverflow ){
2701 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2702 put4byte(&pCell[info.iOverflow], iTo);
2703 break;
2704 }
2705 }
2706 }else{
2707 if( get4byte(pCell)==iFrom ){
2708 put4byte(pCell, iTo);
2709 break;
2710 }
2711 }
2712 }
2713
2714 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002715 if( eType!=PTRMAP_BTREE ||
2716 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002717 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002718 }
danielk1977687566d2004-11-02 12:56:41 +00002719 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2720 }
2721
2722 pPage->isInit = isInitOrig;
2723 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002724 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002725}
2726
danielk1977003ba062004-11-04 02:57:33 +00002727
danielk19777701e812005-01-10 12:59:51 +00002728/*
2729** Move the open database page pDbPage to location iFreePage in the
2730** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002731**
2732** The isCommit flag indicates that there is no need to remember that
2733** the journal needs to be sync()ed before database page pDbPage->pgno
2734** can be written to. The caller has already promised not to write to that
2735** page.
danielk19777701e812005-01-10 12:59:51 +00002736*/
danielk1977003ba062004-11-04 02:57:33 +00002737static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002738 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002739 MemPage *pDbPage, /* Open page to move */
2740 u8 eType, /* Pointer map 'type' entry for pDbPage */
2741 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002742 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002743 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002744){
2745 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2746 Pgno iDbPage = pDbPage->pgno;
2747 Pager *pPager = pBt->pPager;
2748 int rc;
2749
danielk1977a0bf2652004-11-04 14:30:04 +00002750 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2751 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002752 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002753 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002754
drh85b623f2007-12-13 21:54:09 +00002755 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002756 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2757 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002758 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002759 if( rc!=SQLITE_OK ){
2760 return rc;
2761 }
2762 pDbPage->pgno = iFreePage;
2763
2764 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2765 ** that point to overflow pages. The pointer map entries for all these
2766 ** pages need to be changed.
2767 **
2768 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2769 ** pointer to a subsequent overflow page. If this is the case, then
2770 ** the pointer map needs to be updated for the subsequent overflow page.
2771 */
danielk1977a0bf2652004-11-04 14:30:04 +00002772 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002773 rc = setChildPtrmaps(pDbPage);
2774 if( rc!=SQLITE_OK ){
2775 return rc;
2776 }
2777 }else{
2778 Pgno nextOvfl = get4byte(pDbPage->aData);
2779 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002780 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002781 if( rc!=SQLITE_OK ){
2782 return rc;
2783 }
2784 }
2785 }
2786
2787 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2788 ** that it points at iFreePage. Also fix the pointer map entry for
2789 ** iPtrPage.
2790 */
danielk1977a0bf2652004-11-04 14:30:04 +00002791 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002792 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002793 if( rc!=SQLITE_OK ){
2794 return rc;
2795 }
danielk19773b8a05f2007-03-19 17:44:26 +00002796 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002797 if( rc!=SQLITE_OK ){
2798 releasePage(pPtrPage);
2799 return rc;
2800 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002801 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002802 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002803 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002804 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002805 }
danielk1977003ba062004-11-04 02:57:33 +00002806 }
danielk1977003ba062004-11-04 02:57:33 +00002807 return rc;
2808}
2809
danielk1977dddbcdc2007-04-26 14:42:34 +00002810/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002811static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002812
2813/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002814** Perform a single step of an incremental-vacuum. If successful,
2815** return SQLITE_OK. If there is no work to do (and therefore no
2816** point in calling this function again), return SQLITE_DONE.
2817**
2818** More specificly, this function attempts to re-organize the
2819** database so that the last page of the file currently in use
2820** is no longer in use.
2821**
drhea8ffdf2009-07-22 00:35:23 +00002822** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002823** that the caller will keep calling incrVacuumStep() until
2824** it returns SQLITE_DONE or an error, and that nFin is the
2825** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002826** process is complete. If nFin is zero, it is assumed that
2827** incrVacuumStep() will be called a finite amount of times
2828** which may or may not empty the freelist. A full autovacuum
2829** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002830*/
danielk19773460d192008-12-27 15:23:13 +00002831static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002832 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002833 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002834
drh1fee73e2007-08-29 04:00:57 +00002835 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002836 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002837
2838 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002839 u8 eType;
2840 Pgno iPtrPage;
2841
2842 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002843 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002844 return SQLITE_DONE;
2845 }
2846
2847 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2848 if( rc!=SQLITE_OK ){
2849 return rc;
2850 }
2851 if( eType==PTRMAP_ROOTPAGE ){
2852 return SQLITE_CORRUPT_BKPT;
2853 }
2854
2855 if( eType==PTRMAP_FREEPAGE ){
2856 if( nFin==0 ){
2857 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002858 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002859 ** truncated to zero after this function returns, so it doesn't
2860 ** matter if it still contains some garbage entries.
2861 */
2862 Pgno iFreePg;
2863 MemPage *pFreePg;
2864 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2865 if( rc!=SQLITE_OK ){
2866 return rc;
2867 }
2868 assert( iFreePg==iLastPg );
2869 releasePage(pFreePg);
2870 }
2871 } else {
2872 Pgno iFreePg; /* Index of free page to move pLastPg to */
2873 MemPage *pLastPg;
2874
danielk197730548662009-07-09 05:07:37 +00002875 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002876 if( rc!=SQLITE_OK ){
2877 return rc;
2878 }
2879
danielk1977b4626a32007-04-28 15:47:43 +00002880 /* If nFin is zero, this loop runs exactly once and page pLastPg
2881 ** is swapped with the first free page pulled off the free list.
2882 **
2883 ** On the other hand, if nFin is greater than zero, then keep
2884 ** looping until a free-page located within the first nFin pages
2885 ** of the file is found.
2886 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002887 do {
2888 MemPage *pFreePg;
2889 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2890 if( rc!=SQLITE_OK ){
2891 releasePage(pLastPg);
2892 return rc;
2893 }
2894 releasePage(pFreePg);
2895 }while( nFin!=0 && iFreePg>nFin );
2896 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002897
2898 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002899 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002900 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002901 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002902 releasePage(pLastPg);
2903 if( rc!=SQLITE_OK ){
2904 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002905 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002906 }
2907 }
2908
danielk19773460d192008-12-27 15:23:13 +00002909 if( nFin==0 ){
2910 iLastPg--;
2911 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002912 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2913 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002914 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002915 if( rc!=SQLITE_OK ){
2916 return rc;
2917 }
2918 rc = sqlite3PagerWrite(pPg->pDbPage);
2919 releasePage(pPg);
2920 if( rc!=SQLITE_OK ){
2921 return rc;
2922 }
2923 }
danielk19773460d192008-12-27 15:23:13 +00002924 iLastPg--;
2925 }
2926 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002927 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002928 }
2929 return SQLITE_OK;
2930}
2931
2932/*
2933** A write-transaction must be opened before calling this function.
2934** It performs a single unit of work towards an incremental vacuum.
2935**
2936** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002937** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002938** SQLITE_OK is returned. Otherwise an SQLite error code.
2939*/
2940int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002941 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002942 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002943
2944 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002945 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2946 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002947 rc = SQLITE_DONE;
2948 }else{
2949 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00002950 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00002951 if( rc==SQLITE_OK ){
2952 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2953 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
2954 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002955 }
drhd677b3d2007-08-20 22:48:41 +00002956 sqlite3BtreeLeave(p);
2957 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002958}
2959
2960/*
danielk19773b8a05f2007-03-19 17:44:26 +00002961** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002962** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002963**
2964** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2965** the database file should be truncated to during the commit process.
2966** i.e. the database has been reorganized so that only the first *pnTrunc
2967** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002968*/
danielk19773460d192008-12-27 15:23:13 +00002969static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002970 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002971 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002972 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002973
drh1fee73e2007-08-29 04:00:57 +00002974 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002975 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002976 assert(pBt->autoVacuum);
2977 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00002978 Pgno nFin; /* Number of pages in database after autovacuuming */
2979 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00002980 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
2981 Pgno iFree; /* The next page to be freed */
2982 int nEntry; /* Number of entries on one ptrmap page */
2983 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00002984
drhb1299152010-03-30 22:58:33 +00002985 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00002986 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2987 /* It is not possible to create a database for which the final page
2988 ** is either a pointer-map page or the pending-byte page. If one
2989 ** is encountered, this indicates corruption.
2990 */
danielk19773460d192008-12-27 15:23:13 +00002991 return SQLITE_CORRUPT_BKPT;
2992 }
danielk1977ef165ce2009-04-06 17:50:03 +00002993
danielk19773460d192008-12-27 15:23:13 +00002994 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00002995 nEntry = pBt->usableSize/5;
2996 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00002997 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002998 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002999 nFin--;
3000 }
3001 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3002 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00003003 }
drhc5e47ac2009-06-04 00:11:56 +00003004 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003005
danielk19773460d192008-12-27 15:23:13 +00003006 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3007 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00003008 }
danielk19773460d192008-12-27 15:23:13 +00003009 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003010 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3011 put4byte(&pBt->pPage1->aData[32], 0);
3012 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003013 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00003014 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00003015 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003016 }
3017 if( rc!=SQLITE_OK ){
3018 sqlite3PagerRollback(pPager);
3019 }
danielk1977687566d2004-11-02 12:56:41 +00003020 }
3021
danielk19773b8a05f2007-03-19 17:44:26 +00003022 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003023 return rc;
3024}
danielk1977dddbcdc2007-04-26 14:42:34 +00003025
danielk1977a50d9aa2009-06-08 14:49:45 +00003026#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3027# define setChildPtrmaps(x) SQLITE_OK
3028#endif
danielk1977687566d2004-11-02 12:56:41 +00003029
3030/*
drh80e35f42007-03-30 14:06:34 +00003031** This routine does the first phase of a two-phase commit. This routine
3032** causes a rollback journal to be created (if it does not already exist)
3033** and populated with enough information so that if a power loss occurs
3034** the database can be restored to its original state by playing back
3035** the journal. Then the contents of the journal are flushed out to
3036** the disk. After the journal is safely on oxide, the changes to the
3037** database are written into the database file and flushed to oxide.
3038** At the end of this call, the rollback journal still exists on the
3039** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003040** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003041** commit process.
3042**
3043** This call is a no-op if no write-transaction is currently active on pBt.
3044**
3045** Otherwise, sync the database file for the btree pBt. zMaster points to
3046** the name of a master journal file that should be written into the
3047** individual journal file, or is NULL, indicating no master journal file
3048** (single database transaction).
3049**
3050** When this is called, the master journal should already have been
3051** created, populated with this journal pointer and synced to disk.
3052**
3053** Once this is routine has returned, the only thing required to commit
3054** the write-transaction for this database file is to delete the journal.
3055*/
3056int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3057 int rc = SQLITE_OK;
3058 if( p->inTrans==TRANS_WRITE ){
3059 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003060 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003061#ifndef SQLITE_OMIT_AUTOVACUUM
3062 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003063 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003064 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003065 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003066 return rc;
3067 }
3068 }
3069#endif
drh49b9d332009-01-02 18:10:42 +00003070 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003071 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003072 }
3073 return rc;
3074}
3075
3076/*
danielk197794b30732009-07-02 17:21:57 +00003077** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3078** at the conclusion of a transaction.
3079*/
3080static void btreeEndTransaction(Btree *p){
3081 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003082 assert( sqlite3BtreeHoldsMutex(p) );
3083
danielk197794b30732009-07-02 17:21:57 +00003084 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003085 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3086 /* If there are other active statements that belong to this database
3087 ** handle, downgrade to a read-only transaction. The other statements
3088 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003089 downgradeAllSharedCacheTableLocks(p);
3090 p->inTrans = TRANS_READ;
3091 }else{
3092 /* If the handle had any kind of transaction open, decrement the
3093 ** transaction count of the shared btree. If the transaction count
3094 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3095 ** call below will unlock the pager. */
3096 if( p->inTrans!=TRANS_NONE ){
3097 clearAllSharedCacheTableLocks(p);
3098 pBt->nTransaction--;
3099 if( 0==pBt->nTransaction ){
3100 pBt->inTransaction = TRANS_NONE;
3101 }
3102 }
3103
3104 /* Set the current transaction state to TRANS_NONE and unlock the
3105 ** pager if this call closed the only read or write transaction. */
3106 p->inTrans = TRANS_NONE;
3107 unlockBtreeIfUnused(pBt);
3108 }
3109
3110 btreeIntegrity(p);
3111}
3112
3113/*
drh2aa679f2001-06-25 02:11:07 +00003114** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003115**
drh6e345992007-03-30 11:12:08 +00003116** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003117** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3118** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3119** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003120** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003121** routine has to do is delete or truncate or zero the header in the
3122** the rollback journal (which causes the transaction to commit) and
3123** drop locks.
drh6e345992007-03-30 11:12:08 +00003124**
drh5e00f6c2001-09-13 13:46:56 +00003125** This will release the write lock on the database file. If there
3126** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003127*/
drh80e35f42007-03-30 14:06:34 +00003128int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003129 BtShared *pBt = p->pBt;
3130
drhd677b3d2007-08-20 22:48:41 +00003131 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003132 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003133
3134 /* If the handle has a write-transaction open, commit the shared-btrees
3135 ** transaction and set the shared state to TRANS_READ.
3136 */
3137 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003138 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003139 assert( pBt->inTransaction==TRANS_WRITE );
3140 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003141 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003142 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003143 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003144 return rc;
3145 }
danielk1977aef0bf62005-12-30 16:28:01 +00003146 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003147 }
danielk1977aef0bf62005-12-30 16:28:01 +00003148
danielk197794b30732009-07-02 17:21:57 +00003149 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003150 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003151 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003152}
3153
drh80e35f42007-03-30 14:06:34 +00003154/*
3155** Do both phases of a commit.
3156*/
3157int sqlite3BtreeCommit(Btree *p){
3158 int rc;
drhd677b3d2007-08-20 22:48:41 +00003159 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003160 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3161 if( rc==SQLITE_OK ){
3162 rc = sqlite3BtreeCommitPhaseTwo(p);
3163 }
drhd677b3d2007-08-20 22:48:41 +00003164 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003165 return rc;
3166}
3167
danielk1977fbcd5852004-06-15 02:44:18 +00003168#ifndef NDEBUG
3169/*
3170** Return the number of write-cursors open on this handle. This is for use
3171** in assert() expressions, so it is only compiled if NDEBUG is not
3172** defined.
drhfb982642007-08-30 01:19:59 +00003173**
3174** For the purposes of this routine, a write-cursor is any cursor that
3175** is capable of writing to the databse. That means the cursor was
3176** originally opened for writing and the cursor has not be disabled
3177** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003178*/
danielk1977aef0bf62005-12-30 16:28:01 +00003179static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003180 BtCursor *pCur;
3181 int r = 0;
3182 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003183 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003184 }
3185 return r;
3186}
3187#endif
3188
drhc39e0002004-05-07 23:50:57 +00003189/*
drhfb982642007-08-30 01:19:59 +00003190** This routine sets the state to CURSOR_FAULT and the error
3191** code to errCode for every cursor on BtShared that pBtree
3192** references.
3193**
3194** Every cursor is tripped, including cursors that belong
3195** to other database connections that happen to be sharing
3196** the cache with pBtree.
3197**
3198** This routine gets called when a rollback occurs.
3199** All cursors using the same cache must be tripped
3200** to prevent them from trying to use the btree after
3201** the rollback. The rollback may have deleted tables
3202** or moved root pages, so it is not sufficient to
3203** save the state of the cursor. The cursor must be
3204** invalidated.
3205*/
3206void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3207 BtCursor *p;
3208 sqlite3BtreeEnter(pBtree);
3209 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003210 int i;
danielk1977be51a652008-10-08 17:58:48 +00003211 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003212 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003213 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003214 for(i=0; i<=p->iPage; i++){
3215 releasePage(p->apPage[i]);
3216 p->apPage[i] = 0;
3217 }
drhfb982642007-08-30 01:19:59 +00003218 }
3219 sqlite3BtreeLeave(pBtree);
3220}
3221
3222/*
drhecdc7532001-09-23 02:35:53 +00003223** Rollback the transaction in progress. All cursors will be
3224** invalided by this operation. Any attempt to use a cursor
3225** that was open at the beginning of this operation will result
3226** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003227**
3228** This will release the write lock on the database file. If there
3229** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003230*/
danielk1977aef0bf62005-12-30 16:28:01 +00003231int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003232 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003233 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003234 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003235
drhd677b3d2007-08-20 22:48:41 +00003236 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003237 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003238#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003239 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003240 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003241 ** trying to save cursor positions. If this is an automatic rollback (as
3242 ** the result of a constraint, malloc() failure or IO error) then
3243 ** the cache may be internally inconsistent (not contain valid trees) so
3244 ** we cannot simply return the error to the caller. Instead, abort
3245 ** all queries that may be using any of the cursors that failed to save.
3246 */
drhfb982642007-08-30 01:19:59 +00003247 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003248 }
danielk19778d34dfd2006-01-24 16:37:57 +00003249#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003250 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003251
3252 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003253 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003254
danielk19778d34dfd2006-01-24 16:37:57 +00003255 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003256 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003257 if( rc2!=SQLITE_OK ){
3258 rc = rc2;
3259 }
3260
drh24cd67e2004-05-10 16:18:47 +00003261 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003262 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003263 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003264 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003265 int nPage = get4byte(28+(u8*)pPage1->aData);
3266 testcase( nPage==0 );
3267 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3268 testcase( pBt->nPage!=nPage );
3269 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003270 releasePage(pPage1);
3271 }
danielk1977fbcd5852004-06-15 02:44:18 +00003272 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003273 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003274 }
danielk1977aef0bf62005-12-30 16:28:01 +00003275
danielk197794b30732009-07-02 17:21:57 +00003276 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003277 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003278 return rc;
3279}
3280
3281/*
danielk1977bd434552009-03-18 10:33:00 +00003282** Start a statement subtransaction. The subtransaction can can be rolled
3283** back independently of the main transaction. You must start a transaction
3284** before starting a subtransaction. The subtransaction is ended automatically
3285** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003286**
3287** Statement subtransactions are used around individual SQL statements
3288** that are contained within a BEGIN...COMMIT block. If a constraint
3289** error occurs within the statement, the effect of that one statement
3290** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003291**
3292** A statement sub-transaction is implemented as an anonymous savepoint. The
3293** value passed as the second parameter is the total number of savepoints,
3294** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3295** are no active savepoints and no other statement-transactions open,
3296** iStatement is 1. This anonymous savepoint can be released or rolled back
3297** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003298*/
danielk1977bd434552009-03-18 10:33:00 +00003299int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003300 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003301 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003302 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003303 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003304 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003305 assert( iStatement>0 );
3306 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003307 assert( pBt->inTransaction==TRANS_WRITE );
3308 /* At the pager level, a statement transaction is a savepoint with
3309 ** an index greater than all savepoints created explicitly using
3310 ** SQL statements. It is illegal to open, release or rollback any
3311 ** such savepoints while the statement transaction savepoint is active.
3312 */
3313 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003314 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003315 return rc;
3316}
3317
3318/*
danielk1977fd7f0452008-12-17 17:30:26 +00003319** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3320** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003321** savepoint identified by parameter iSavepoint, depending on the value
3322** of op.
3323**
3324** Normally, iSavepoint is greater than or equal to zero. However, if op is
3325** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3326** contents of the entire transaction are rolled back. This is different
3327** from a normal transaction rollback, as no locks are released and the
3328** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003329*/
3330int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3331 int rc = SQLITE_OK;
3332 if( p && p->inTrans==TRANS_WRITE ){
3333 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003334 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3335 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3336 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003337 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003338 if( rc==SQLITE_OK ){
drh25a80ad2010-03-29 21:13:12 +00003339 if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0;
drh9f0bbf92009-01-02 21:08:09 +00003340 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003341 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003342
3343 /* The database size was written into the offset 28 of the header
3344 ** when the transaction started, so we know that the value at offset
3345 ** 28 is nonzero. */
3346 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003347 }
danielk1977fd7f0452008-12-17 17:30:26 +00003348 sqlite3BtreeLeave(p);
3349 }
3350 return rc;
3351}
3352
3353/*
drh8b2f49b2001-06-08 00:21:52 +00003354** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003355** iTable. If a read-only cursor is requested, it is assumed that
3356** the caller already has at least a read-only transaction open
3357** on the database already. If a write-cursor is requested, then
3358** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003359**
3360** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003361** If wrFlag==1, then the cursor can be used for reading or for
3362** writing if other conditions for writing are also met. These
3363** are the conditions that must be met in order for writing to
3364** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003365**
drhf74b8d92002-09-01 23:20:45 +00003366** 1: The cursor must have been opened with wrFlag==1
3367**
drhfe5d71d2007-03-19 11:54:10 +00003368** 2: Other database connections that share the same pager cache
3369** but which are not in the READ_UNCOMMITTED state may not have
3370** cursors open with wrFlag==0 on the same table. Otherwise
3371** the changes made by this write cursor would be visible to
3372** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003373**
3374** 3: The database must be writable (not on read-only media)
3375**
3376** 4: There must be an active transaction.
3377**
drh6446c4d2001-12-15 14:22:18 +00003378** No checking is done to make sure that page iTable really is the
3379** root page of a b-tree. If it is not, then the cursor acquired
3380** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003381**
drhf25a5072009-11-18 23:01:25 +00003382** It is assumed that the sqlite3BtreeCursorZero() has been called
3383** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003384*/
drhd677b3d2007-08-20 22:48:41 +00003385static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003386 Btree *p, /* The btree */
3387 int iTable, /* Root page of table to open */
3388 int wrFlag, /* 1 to write. 0 read-only */
3389 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3390 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003391){
danielk19773e8add92009-07-04 17:16:00 +00003392 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003393
drh1fee73e2007-08-29 04:00:57 +00003394 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003395 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003396
danielk1977602b4662009-07-02 07:47:33 +00003397 /* The following assert statements verify that if this is a sharable
3398 ** b-tree database, the connection is holding the required table locks,
3399 ** and that no other connection has any open cursor that conflicts with
3400 ** this lock. */
3401 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003402 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3403
danielk19773e8add92009-07-04 17:16:00 +00003404 /* Assert that the caller has opened the required transaction. */
3405 assert( p->inTrans>TRANS_NONE );
3406 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3407 assert( pBt->pPage1 && pBt->pPage1->aData );
3408
danielk197796d48e92009-06-29 06:00:37 +00003409 if( NEVER(wrFlag && pBt->readOnly) ){
3410 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003411 }
drhb1299152010-03-30 22:58:33 +00003412 if( iTable==1 && btreePagecount(pBt)==0 ){
danielk19773e8add92009-07-04 17:16:00 +00003413 return SQLITE_EMPTY;
3414 }
danielk1977aef0bf62005-12-30 16:28:01 +00003415
danielk1977aef0bf62005-12-30 16:28:01 +00003416 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003417 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003418 pCur->pgnoRoot = (Pgno)iTable;
3419 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003420 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003421 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003422 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003423 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003424 pCur->pNext = pBt->pCursor;
3425 if( pCur->pNext ){
3426 pCur->pNext->pPrev = pCur;
3427 }
3428 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003429 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003430 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003431 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003432}
drhd677b3d2007-08-20 22:48:41 +00003433int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003434 Btree *p, /* The btree */
3435 int iTable, /* Root page of table to open */
3436 int wrFlag, /* 1 to write. 0 read-only */
3437 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3438 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003439){
3440 int rc;
3441 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003442 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003443 sqlite3BtreeLeave(p);
3444 return rc;
3445}
drh7f751222009-03-17 22:33:00 +00003446
3447/*
3448** Return the size of a BtCursor object in bytes.
3449**
3450** This interfaces is needed so that users of cursors can preallocate
3451** sufficient storage to hold a cursor. The BtCursor object is opaque
3452** to users so they cannot do the sizeof() themselves - they must call
3453** this routine.
3454*/
3455int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003456 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003457}
3458
drh7f751222009-03-17 22:33:00 +00003459/*
drhf25a5072009-11-18 23:01:25 +00003460** Initialize memory that will be converted into a BtCursor object.
3461**
3462** The simple approach here would be to memset() the entire object
3463** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3464** do not need to be zeroed and they are large, so we can save a lot
3465** of run-time by skipping the initialization of those elements.
3466*/
3467void sqlite3BtreeCursorZero(BtCursor *p){
3468 memset(p, 0, offsetof(BtCursor, iPage));
3469}
3470
3471/*
drh7f751222009-03-17 22:33:00 +00003472** Set the cached rowid value of every cursor in the same database file
3473** as pCur and having the same root page number as pCur. The value is
3474** set to iRowid.
3475**
3476** Only positive rowid values are considered valid for this cache.
3477** The cache is initialized to zero, indicating an invalid cache.
3478** A btree will work fine with zero or negative rowids. We just cannot
3479** cache zero or negative rowids, which means tables that use zero or
3480** negative rowids might run a little slower. But in practice, zero
3481** or negative rowids are very uncommon so this should not be a problem.
3482*/
3483void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3484 BtCursor *p;
3485 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3486 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3487 }
3488 assert( pCur->cachedRowid==iRowid );
3489}
drhd677b3d2007-08-20 22:48:41 +00003490
drh7f751222009-03-17 22:33:00 +00003491/*
3492** Return the cached rowid for the given cursor. A negative or zero
3493** return value indicates that the rowid cache is invalid and should be
3494** ignored. If the rowid cache has never before been set, then a
3495** zero is returned.
3496*/
3497sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3498 return pCur->cachedRowid;
3499}
drha059ad02001-04-17 20:09:11 +00003500
3501/*
drh5e00f6c2001-09-13 13:46:56 +00003502** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003503** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003504*/
drh3aac2dd2004-04-26 14:10:20 +00003505int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003506 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003507 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003508 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003509 BtShared *pBt = pCur->pBt;
3510 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003511 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003512 if( pCur->pPrev ){
3513 pCur->pPrev->pNext = pCur->pNext;
3514 }else{
3515 pBt->pCursor = pCur->pNext;
3516 }
3517 if( pCur->pNext ){
3518 pCur->pNext->pPrev = pCur->pPrev;
3519 }
danielk197771d5d2c2008-09-29 11:49:47 +00003520 for(i=0; i<=pCur->iPage; i++){
3521 releasePage(pCur->apPage[i]);
3522 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003523 unlockBtreeIfUnused(pBt);
3524 invalidateOverflowCache(pCur);
3525 /* sqlite3_free(pCur); */
3526 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003527 }
drh8c42ca92001-06-22 19:15:00 +00003528 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003529}
3530
drh5e2f8b92001-05-28 00:41:15 +00003531/*
drh86057612007-06-26 01:04:48 +00003532** Make sure the BtCursor* given in the argument has a valid
3533** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003534** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003535**
3536** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003537** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003538**
3539** 2007-06-25: There is a bug in some versions of MSVC that cause the
3540** compiler to crash when getCellInfo() is implemented as a macro.
3541** But there is a measureable speed advantage to using the macro on gcc
3542** (when less compiler optimizations like -Os or -O0 are used and the
3543** compiler is not doing agressive inlining.) So we use a real function
3544** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003545*/
drh9188b382004-05-14 21:12:22 +00003546#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003547 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003548 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003549 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003550 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003551 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003552 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003553 }
danielk19771cc5ed82007-05-16 17:28:43 +00003554#else
3555 #define assertCellInfo(x)
3556#endif
drh86057612007-06-26 01:04:48 +00003557#ifdef _MSC_VER
3558 /* Use a real function in MSVC to work around bugs in that compiler. */
3559 static void getCellInfo(BtCursor *pCur){
3560 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003561 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003562 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003563 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003564 }else{
3565 assertCellInfo(pCur);
3566 }
3567 }
3568#else /* if not _MSC_VER */
3569 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003570#define getCellInfo(pCur) \
3571 if( pCur->info.nSize==0 ){ \
3572 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003573 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003574 pCur->validNKey = 1; \
3575 }else{ \
3576 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003577 }
3578#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003579
drhea8ffdf2009-07-22 00:35:23 +00003580#ifndef NDEBUG /* The next routine used only within assert() statements */
3581/*
3582** Return true if the given BtCursor is valid. A valid cursor is one
3583** that is currently pointing to a row in a (non-empty) table.
3584** This is a verification routine is used only within assert() statements.
3585*/
3586int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3587 return pCur && pCur->eState==CURSOR_VALID;
3588}
3589#endif /* NDEBUG */
3590
drh9188b382004-05-14 21:12:22 +00003591/*
drh3aac2dd2004-04-26 14:10:20 +00003592** Set *pSize to the size of the buffer needed to hold the value of
3593** the key for the current entry. If the cursor is not pointing
3594** to a valid entry, *pSize is set to 0.
3595**
drh4b70f112004-05-02 21:12:19 +00003596** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003597** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003598**
3599** The caller must position the cursor prior to invoking this routine.
3600**
3601** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003602*/
drh4a1c3802004-05-12 15:15:47 +00003603int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003604 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003605 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3606 if( pCur->eState!=CURSOR_VALID ){
3607 *pSize = 0;
3608 }else{
3609 getCellInfo(pCur);
3610 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003611 }
drhea8ffdf2009-07-22 00:35:23 +00003612 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003613}
drh2af926b2001-05-15 00:39:25 +00003614
drh72f82862001-05-24 21:06:34 +00003615/*
drh0e1c19e2004-05-11 00:58:56 +00003616** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003617** cursor currently points to.
3618**
3619** The caller must guarantee that the cursor is pointing to a non-NULL
3620** valid entry. In other words, the calling procedure must guarantee
3621** that the cursor has Cursor.eState==CURSOR_VALID.
3622**
3623** Failure is not possible. This function always returns SQLITE_OK.
3624** It might just as well be a procedure (returning void) but we continue
3625** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003626*/
3627int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003628 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003629 assert( pCur->eState==CURSOR_VALID );
3630 getCellInfo(pCur);
3631 *pSize = pCur->info.nData;
3632 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003633}
3634
3635/*
danielk1977d04417962007-05-02 13:16:30 +00003636** Given the page number of an overflow page in the database (parameter
3637** ovfl), this function finds the page number of the next page in the
3638** linked list of overflow pages. If possible, it uses the auto-vacuum
3639** pointer-map data instead of reading the content of page ovfl to do so.
3640**
3641** If an error occurs an SQLite error code is returned. Otherwise:
3642**
danielk1977bea2a942009-01-20 17:06:27 +00003643** The page number of the next overflow page in the linked list is
3644** written to *pPgnoNext. If page ovfl is the last page in its linked
3645** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003646**
danielk1977bea2a942009-01-20 17:06:27 +00003647** If ppPage is not NULL, and a reference to the MemPage object corresponding
3648** to page number pOvfl was obtained, then *ppPage is set to point to that
3649** reference. It is the responsibility of the caller to call releasePage()
3650** on *ppPage to free the reference. In no reference was obtained (because
3651** the pointer-map was used to obtain the value for *pPgnoNext), then
3652** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003653*/
3654static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003655 BtShared *pBt, /* The database file */
3656 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003657 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003658 Pgno *pPgnoNext /* OUT: Next overflow page number */
3659){
3660 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003661 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003662 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003663
drh1fee73e2007-08-29 04:00:57 +00003664 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003665 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003666
3667#ifndef SQLITE_OMIT_AUTOVACUUM
3668 /* Try to find the next page in the overflow list using the
3669 ** autovacuum pointer-map pages. Guess that the next page in
3670 ** the overflow list is page number (ovfl+1). If that guess turns
3671 ** out to be wrong, fall back to loading the data of page
3672 ** number ovfl to determine the next page number.
3673 */
3674 if( pBt->autoVacuum ){
3675 Pgno pgno;
3676 Pgno iGuess = ovfl+1;
3677 u8 eType;
3678
3679 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3680 iGuess++;
3681 }
3682
drhb1299152010-03-30 22:58:33 +00003683 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003684 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003685 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003686 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003687 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003688 }
3689 }
3690 }
3691#endif
3692
danielk1977d8a3f3d2009-07-11 11:45:23 +00003693 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003694 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003695 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003696 assert( rc==SQLITE_OK || pPage==0 );
3697 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003698 next = get4byte(pPage->aData);
3699 }
danielk1977443c0592009-01-16 15:21:05 +00003700 }
danielk197745d68822009-01-16 16:23:38 +00003701
danielk1977bea2a942009-01-20 17:06:27 +00003702 *pPgnoNext = next;
3703 if( ppPage ){
3704 *ppPage = pPage;
3705 }else{
3706 releasePage(pPage);
3707 }
3708 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003709}
3710
danielk1977da107192007-05-04 08:32:13 +00003711/*
3712** Copy data from a buffer to a page, or from a page to a buffer.
3713**
3714** pPayload is a pointer to data stored on database page pDbPage.
3715** If argument eOp is false, then nByte bytes of data are copied
3716** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3717** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3718** of data are copied from the buffer pBuf to pPayload.
3719**
3720** SQLITE_OK is returned on success, otherwise an error code.
3721*/
3722static int copyPayload(
3723 void *pPayload, /* Pointer to page data */
3724 void *pBuf, /* Pointer to buffer */
3725 int nByte, /* Number of bytes to copy */
3726 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3727 DbPage *pDbPage /* Page containing pPayload */
3728){
3729 if( eOp ){
3730 /* Copy data from buffer to page (a write operation) */
3731 int rc = sqlite3PagerWrite(pDbPage);
3732 if( rc!=SQLITE_OK ){
3733 return rc;
3734 }
3735 memcpy(pPayload, pBuf, nByte);
3736 }else{
3737 /* Copy data from page to buffer (a read operation) */
3738 memcpy(pBuf, pPayload, nByte);
3739 }
3740 return SQLITE_OK;
3741}
danielk1977d04417962007-05-02 13:16:30 +00003742
3743/*
danielk19779f8d6402007-05-02 17:48:45 +00003744** This function is used to read or overwrite payload information
3745** for the entry that the pCur cursor is pointing to. If the eOp
3746** parameter is 0, this is a read operation (data copied into
3747** buffer pBuf). If it is non-zero, a write (data copied from
3748** buffer pBuf).
3749**
3750** A total of "amt" bytes are read or written beginning at "offset".
3751** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003752**
drh3bcdfd22009-07-12 02:32:21 +00003753** The content being read or written might appear on the main page
3754** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003755**
danielk1977dcbb5d32007-05-04 18:36:44 +00003756** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003757** cursor entry uses one or more overflow pages, this function
3758** allocates space for and lazily popluates the overflow page-list
3759** cache array (BtCursor.aOverflow). Subsequent calls use this
3760** cache to make seeking to the supplied offset more efficient.
3761**
3762** Once an overflow page-list cache has been allocated, it may be
3763** invalidated if some other cursor writes to the same table, or if
3764** the cursor is moved to a different row. Additionally, in auto-vacuum
3765** mode, the following events may invalidate an overflow page-list cache.
3766**
3767** * An incremental vacuum,
3768** * A commit in auto_vacuum="full" mode,
3769** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003770*/
danielk19779f8d6402007-05-02 17:48:45 +00003771static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003772 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003773 u32 offset, /* Begin reading this far into payload */
3774 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003775 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003776 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003777){
3778 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003779 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003780 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003781 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003782 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003783 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003784
danielk1977da107192007-05-04 08:32:13 +00003785 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003786 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003787 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003788 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003789
drh86057612007-06-26 01:04:48 +00003790 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003791 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003792 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003793
drh3bcdfd22009-07-12 02:32:21 +00003794 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003795 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3796 ){
danielk1977da107192007-05-04 08:32:13 +00003797 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003798 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003799 }
danielk1977da107192007-05-04 08:32:13 +00003800
3801 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003802 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003803 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003804 if( a+offset>pCur->info.nLocal ){
3805 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003806 }
danielk1977da107192007-05-04 08:32:13 +00003807 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003808 offset = 0;
drha34b6762004-05-07 13:30:42 +00003809 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003810 amt -= a;
drhdd793422001-06-28 01:54:48 +00003811 }else{
drhfa1a98a2004-05-14 19:08:17 +00003812 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003813 }
danielk1977da107192007-05-04 08:32:13 +00003814
3815 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003816 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003817 Pgno nextPage;
3818
drhfa1a98a2004-05-14 19:08:17 +00003819 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003820
danielk19772dec9702007-05-02 16:48:37 +00003821#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003822 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003823 ** has not been allocated, allocate it now. The array is sized at
3824 ** one entry for each overflow page in the overflow chain. The
3825 ** page number of the first overflow page is stored in aOverflow[0],
3826 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3827 ** (the cache is lazily populated).
3828 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003829 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003830 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003831 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003832 /* nOvfl is always positive. If it were zero, fetchPayload would have
3833 ** been used instead of this routine. */
3834 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003835 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003836 }
3837 }
danielk1977da107192007-05-04 08:32:13 +00003838
3839 /* If the overflow page-list cache has been allocated and the
3840 ** entry for the first required overflow page is valid, skip
3841 ** directly to it.
3842 */
danielk19772dec9702007-05-02 16:48:37 +00003843 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3844 iIdx = (offset/ovflSize);
3845 nextPage = pCur->aOverflow[iIdx];
3846 offset = (offset%ovflSize);
3847 }
3848#endif
danielk1977da107192007-05-04 08:32:13 +00003849
3850 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3851
3852#ifndef SQLITE_OMIT_INCRBLOB
3853 /* If required, populate the overflow page-list cache. */
3854 if( pCur->aOverflow ){
3855 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3856 pCur->aOverflow[iIdx] = nextPage;
3857 }
3858#endif
3859
danielk1977d04417962007-05-02 13:16:30 +00003860 if( offset>=ovflSize ){
3861 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003862 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003863 ** data is not required. So first try to lookup the overflow
3864 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003865 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003866 */
danielk19772dec9702007-05-02 16:48:37 +00003867#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003868 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3869 nextPage = pCur->aOverflow[iIdx+1];
3870 } else
danielk19772dec9702007-05-02 16:48:37 +00003871#endif
danielk1977da107192007-05-04 08:32:13 +00003872 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003873 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003874 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003875 /* Need to read this page properly. It contains some of the
3876 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003877 */
3878 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003879 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003880 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003881 if( rc==SQLITE_OK ){
3882 aPayload = sqlite3PagerGetData(pDbPage);
3883 nextPage = get4byte(aPayload);
3884 if( a + offset > ovflSize ){
3885 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003886 }
danielk1977da107192007-05-04 08:32:13 +00003887 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3888 sqlite3PagerUnref(pDbPage);
3889 offset = 0;
3890 amt -= a;
3891 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003892 }
danielk1977cfe9a692004-06-16 12:00:29 +00003893 }
drh2af926b2001-05-15 00:39:25 +00003894 }
drh2af926b2001-05-15 00:39:25 +00003895 }
danielk1977cfe9a692004-06-16 12:00:29 +00003896
danielk1977da107192007-05-04 08:32:13 +00003897 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003898 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003899 }
danielk1977da107192007-05-04 08:32:13 +00003900 return rc;
drh2af926b2001-05-15 00:39:25 +00003901}
3902
drh72f82862001-05-24 21:06:34 +00003903/*
drh3aac2dd2004-04-26 14:10:20 +00003904** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003905** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003906** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003907**
drh5d1a8722009-07-22 18:07:40 +00003908** The caller must ensure that pCur is pointing to a valid row
3909** in the table.
3910**
drh3aac2dd2004-04-26 14:10:20 +00003911** Return SQLITE_OK on success or an error code if anything goes
3912** wrong. An error is returned if "offset+amt" is larger than
3913** the available payload.
drh72f82862001-05-24 21:06:34 +00003914*/
drha34b6762004-05-07 13:30:42 +00003915int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00003916 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00003917 assert( pCur->eState==CURSOR_VALID );
3918 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3919 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
3920 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00003921}
3922
3923/*
drh3aac2dd2004-04-26 14:10:20 +00003924** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003925** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003926** begins at "offset".
3927**
3928** Return SQLITE_OK on success or an error code if anything goes
3929** wrong. An error is returned if "offset+amt" is larger than
3930** the available payload.
drh72f82862001-05-24 21:06:34 +00003931*/
drh3aac2dd2004-04-26 14:10:20 +00003932int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003933 int rc;
3934
danielk19773588ceb2008-06-10 17:30:26 +00003935#ifndef SQLITE_OMIT_INCRBLOB
3936 if ( pCur->eState==CURSOR_INVALID ){
3937 return SQLITE_ABORT;
3938 }
3939#endif
3940
drh1fee73e2007-08-29 04:00:57 +00003941 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003942 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003943 if( rc==SQLITE_OK ){
3944 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003945 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3946 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003947 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00003948 }
3949 return rc;
drh2af926b2001-05-15 00:39:25 +00003950}
3951
drh72f82862001-05-24 21:06:34 +00003952/*
drh0e1c19e2004-05-11 00:58:56 +00003953** Return a pointer to payload information from the entry that the
3954** pCur cursor is pointing to. The pointer is to the beginning of
3955** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003956** skipKey==1. The number of bytes of available key/data is written
3957** into *pAmt. If *pAmt==0, then the value returned will not be
3958** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003959**
3960** This routine is an optimization. It is common for the entire key
3961** and data to fit on the local page and for there to be no overflow
3962** pages. When that is so, this routine can be used to access the
3963** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003964** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003965** the key/data and copy it into a preallocated buffer.
3966**
3967** The pointer returned by this routine looks directly into the cached
3968** page of the database. The data might change or move the next time
3969** any btree routine is called.
3970*/
3971static const unsigned char *fetchPayload(
3972 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003973 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003974 int skipKey /* read beginning at data if this is true */
3975){
3976 unsigned char *aPayload;
3977 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003978 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003979 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003980
danielk197771d5d2c2008-09-29 11:49:47 +00003981 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003982 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003983 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003984 pPage = pCur->apPage[pCur->iPage];
3985 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00003986 if( NEVER(pCur->info.nSize==0) ){
3987 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
3988 &pCur->info);
3989 }
drh43605152004-05-29 21:46:49 +00003990 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003991 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003992 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003993 nKey = 0;
3994 }else{
drhf49661a2008-12-10 16:45:50 +00003995 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003996 }
drh0e1c19e2004-05-11 00:58:56 +00003997 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003998 aPayload += nKey;
3999 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004000 }else{
drhfa1a98a2004-05-14 19:08:17 +00004001 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004002 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004003 }
drhe51c44f2004-05-30 20:46:09 +00004004 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004005 return aPayload;
4006}
4007
4008
4009/*
drhe51c44f2004-05-30 20:46:09 +00004010** For the entry that cursor pCur is point to, return as
4011** many bytes of the key or data as are available on the local
4012** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004013**
4014** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004015** or be destroyed on the next call to any Btree routine,
4016** including calls from other threads against the same cache.
4017** Hence, a mutex on the BtShared should be held prior to calling
4018** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004019**
4020** These routines is used to get quick access to key and data
4021** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004022*/
drhe51c44f2004-05-30 20:46:09 +00004023const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004024 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004025 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004026 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004027 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4028 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004029 }
drhfe3313f2009-07-21 19:02:20 +00004030 return p;
drh0e1c19e2004-05-11 00:58:56 +00004031}
drhe51c44f2004-05-30 20:46:09 +00004032const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004033 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004034 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004035 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004036 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4037 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004038 }
drhfe3313f2009-07-21 19:02:20 +00004039 return p;
drh0e1c19e2004-05-11 00:58:56 +00004040}
4041
4042
4043/*
drh8178a752003-01-05 21:41:40 +00004044** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004045** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004046**
4047** This function returns SQLITE_CORRUPT if the page-header flags field of
4048** the new child page does not match the flags field of the parent (i.e.
4049** if an intkey page appears to be the parent of a non-intkey page, or
4050** vice-versa).
drh72f82862001-05-24 21:06:34 +00004051*/
drh3aac2dd2004-04-26 14:10:20 +00004052static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004053 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004054 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004055 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004056 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004057
drh1fee73e2007-08-29 04:00:57 +00004058 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004059 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004060 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4061 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4062 return SQLITE_CORRUPT_BKPT;
4063 }
4064 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004065 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004066 pCur->apPage[i+1] = pNewPage;
4067 pCur->aiIdx[i+1] = 0;
4068 pCur->iPage++;
4069
drh271efa52004-05-30 19:19:05 +00004070 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004071 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004072 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004073 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004074 }
drh72f82862001-05-24 21:06:34 +00004075 return SQLITE_OK;
4076}
4077
danielk1977bf93c562008-09-29 15:53:25 +00004078#ifndef NDEBUG
4079/*
4080** Page pParent is an internal (non-leaf) tree page. This function
4081** asserts that page number iChild is the left-child if the iIdx'th
4082** cell in page pParent. Or, if iIdx is equal to the total number of
4083** cells in pParent, that page number iChild is the right-child of
4084** the page.
4085*/
4086static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4087 assert( iIdx<=pParent->nCell );
4088 if( iIdx==pParent->nCell ){
4089 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4090 }else{
4091 assert( get4byte(findCell(pParent, iIdx))==iChild );
4092 }
4093}
4094#else
4095# define assertParentIndex(x,y,z)
4096#endif
4097
drh72f82862001-05-24 21:06:34 +00004098/*
drh5e2f8b92001-05-28 00:41:15 +00004099** Move the cursor up to the parent page.
4100**
4101** pCur->idx is set to the cell index that contains the pointer
4102** to the page we are coming from. If we are coming from the
4103** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004104** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004105*/
danielk197730548662009-07-09 05:07:37 +00004106static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004107 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004108 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004109 assert( pCur->iPage>0 );
4110 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004111 assertParentIndex(
4112 pCur->apPage[pCur->iPage-1],
4113 pCur->aiIdx[pCur->iPage-1],
4114 pCur->apPage[pCur->iPage]->pgno
4115 );
danielk197771d5d2c2008-09-29 11:49:47 +00004116 releasePage(pCur->apPage[pCur->iPage]);
4117 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004118 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004119 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004120}
4121
4122/*
danielk19778f880a82009-07-13 09:41:45 +00004123** Move the cursor to point to the root page of its b-tree structure.
4124**
4125** If the table has a virtual root page, then the cursor is moved to point
4126** to the virtual root page instead of the actual root page. A table has a
4127** virtual root page when the actual root page contains no cells and a
4128** single child page. This can only happen with the table rooted at page 1.
4129**
4130** If the b-tree structure is empty, the cursor state is set to
4131** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4132** cell located on the root (or virtual root) page and the cursor state
4133** is set to CURSOR_VALID.
4134**
4135** If this function returns successfully, it may be assumed that the
4136** page-header flags indicate that the [virtual] root-page is the expected
4137** kind of b-tree page (i.e. if when opening the cursor the caller did not
4138** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4139** indicating a table b-tree, or if the caller did specify a KeyInfo
4140** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4141** b-tree).
drh72f82862001-05-24 21:06:34 +00004142*/
drh5e2f8b92001-05-28 00:41:15 +00004143static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004144 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004145 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004146 Btree *p = pCur->pBtree;
4147 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004148
drh1fee73e2007-08-29 04:00:57 +00004149 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004150 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4151 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4152 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4153 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4154 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004155 assert( pCur->skipNext!=SQLITE_OK );
4156 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004157 }
danielk1977be51a652008-10-08 17:58:48 +00004158 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004159 }
danielk197771d5d2c2008-09-29 11:49:47 +00004160
4161 if( pCur->iPage>=0 ){
4162 int i;
4163 for(i=1; i<=pCur->iPage; i++){
4164 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004165 }
danielk1977172114a2009-07-07 15:47:12 +00004166 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004167 }else{
drh4c301aa2009-07-15 17:25:45 +00004168 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4169 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004170 pCur->eState = CURSOR_INVALID;
4171 return rc;
4172 }
danielk1977172114a2009-07-07 15:47:12 +00004173 pCur->iPage = 0;
4174
4175 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4176 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4177 ** NULL, the caller expects a table b-tree. If this is not the case,
4178 ** return an SQLITE_CORRUPT error. */
4179 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4180 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4181 return SQLITE_CORRUPT_BKPT;
4182 }
drhc39e0002004-05-07 23:50:57 +00004183 }
danielk197771d5d2c2008-09-29 11:49:47 +00004184
danielk19778f880a82009-07-13 09:41:45 +00004185 /* Assert that the root page is of the correct type. This must be the
4186 ** case as the call to this function that loaded the root-page (either
4187 ** this call or a previous invocation) would have detected corruption
4188 ** if the assumption were not true, and it is not possible for the flags
4189 ** byte to have been modified while this cursor is holding a reference
4190 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004191 pRoot = pCur->apPage[0];
4192 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004193 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4194
danielk197771d5d2c2008-09-29 11:49:47 +00004195 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004196 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004197 pCur->atLast = 0;
4198 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004199
drh8856d6a2004-04-29 14:42:46 +00004200 if( pRoot->nCell==0 && !pRoot->leaf ){
4201 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004202 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004203 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004204 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004205 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004206 }else{
4207 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004208 }
4209 return rc;
drh72f82862001-05-24 21:06:34 +00004210}
drh2af926b2001-05-15 00:39:25 +00004211
drh5e2f8b92001-05-28 00:41:15 +00004212/*
4213** Move the cursor down to the left-most leaf entry beneath the
4214** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004215**
4216** The left-most leaf is the one with the smallest key - the first
4217** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004218*/
4219static int moveToLeftmost(BtCursor *pCur){
4220 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004221 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004222 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004223
drh1fee73e2007-08-29 04:00:57 +00004224 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004225 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004226 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4227 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4228 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004229 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004230 }
drhd677b3d2007-08-20 22:48:41 +00004231 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004232}
4233
drh2dcc9aa2002-12-04 13:40:25 +00004234/*
4235** Move the cursor down to the right-most leaf entry beneath the
4236** page to which it is currently pointing. Notice the difference
4237** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4238** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4239** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004240**
4241** The right-most entry is the one with the largest key - the last
4242** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004243*/
4244static int moveToRightmost(BtCursor *pCur){
4245 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004246 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004247 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004248
drh1fee73e2007-08-29 04:00:57 +00004249 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004250 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004251 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004252 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004253 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004254 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004255 }
drhd677b3d2007-08-20 22:48:41 +00004256 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004257 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004258 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004259 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004260 }
danielk1977518002e2008-09-05 05:02:46 +00004261 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004262}
4263
drh5e00f6c2001-09-13 13:46:56 +00004264/* Move the cursor to the first entry in the table. Return SQLITE_OK
4265** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004266** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004267*/
drh3aac2dd2004-04-26 14:10:20 +00004268int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004269 int rc;
drhd677b3d2007-08-20 22:48:41 +00004270
drh1fee73e2007-08-29 04:00:57 +00004271 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004272 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004273 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004274 if( rc==SQLITE_OK ){
4275 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004276 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004277 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004278 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004279 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004280 *pRes = 0;
4281 rc = moveToLeftmost(pCur);
4282 }
drh5e00f6c2001-09-13 13:46:56 +00004283 }
drh5e00f6c2001-09-13 13:46:56 +00004284 return rc;
4285}
drh5e2f8b92001-05-28 00:41:15 +00004286
drh9562b552002-02-19 15:00:07 +00004287/* Move the cursor to the last entry in the table. Return SQLITE_OK
4288** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004289** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004290*/
drh3aac2dd2004-04-26 14:10:20 +00004291int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004292 int rc;
drhd677b3d2007-08-20 22:48:41 +00004293
drh1fee73e2007-08-29 04:00:57 +00004294 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004295 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004296
4297 /* If the cursor already points to the last entry, this is a no-op. */
4298 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4299#ifdef SQLITE_DEBUG
4300 /* This block serves to assert() that the cursor really does point
4301 ** to the last entry in the b-tree. */
4302 int ii;
4303 for(ii=0; ii<pCur->iPage; ii++){
4304 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4305 }
4306 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4307 assert( pCur->apPage[pCur->iPage]->leaf );
4308#endif
4309 return SQLITE_OK;
4310 }
4311
drh9562b552002-02-19 15:00:07 +00004312 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004313 if( rc==SQLITE_OK ){
4314 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004315 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004316 *pRes = 1;
4317 }else{
4318 assert( pCur->eState==CURSOR_VALID );
4319 *pRes = 0;
4320 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004321 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004322 }
drh9562b552002-02-19 15:00:07 +00004323 }
drh9562b552002-02-19 15:00:07 +00004324 return rc;
4325}
4326
drhe14006d2008-03-25 17:23:32 +00004327/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004328** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004329**
drhe63d9992008-08-13 19:11:48 +00004330** For INTKEY tables, the intKey parameter is used. pIdxKey
4331** must be NULL. For index tables, pIdxKey is used and intKey
4332** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004333**
drh5e2f8b92001-05-28 00:41:15 +00004334** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004335** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004336** were present. The cursor might point to an entry that comes
4337** before or after the key.
4338**
drh64022502009-01-09 14:11:04 +00004339** An integer is written into *pRes which is the result of
4340** comparing the key with the entry to which the cursor is
4341** pointing. The meaning of the integer written into
4342** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004343**
4344** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004345** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004346** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004347**
4348** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004349** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004350**
4351** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004352** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004353**
drha059ad02001-04-17 20:09:11 +00004354*/
drhe63d9992008-08-13 19:11:48 +00004355int sqlite3BtreeMovetoUnpacked(
4356 BtCursor *pCur, /* The cursor to be moved */
4357 UnpackedRecord *pIdxKey, /* Unpacked index key */
4358 i64 intKey, /* The table key */
4359 int biasRight, /* If true, bias the search to the high end */
4360 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004361){
drh72f82862001-05-24 21:06:34 +00004362 int rc;
drhd677b3d2007-08-20 22:48:41 +00004363
drh1fee73e2007-08-29 04:00:57 +00004364 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004365 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004366 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004367 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004368
4369 /* If the cursor is already positioned at the point we are trying
4370 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004371 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4372 && pCur->apPage[0]->intKey
4373 ){
drhe63d9992008-08-13 19:11:48 +00004374 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004375 *pRes = 0;
4376 return SQLITE_OK;
4377 }
drhe63d9992008-08-13 19:11:48 +00004378 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004379 *pRes = -1;
4380 return SQLITE_OK;
4381 }
4382 }
4383
drh5e2f8b92001-05-28 00:41:15 +00004384 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004385 if( rc ){
4386 return rc;
4387 }
danielk197771d5d2c2008-09-29 11:49:47 +00004388 assert( pCur->apPage[pCur->iPage] );
4389 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004390 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004391 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004392 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004393 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004394 return SQLITE_OK;
4395 }
danielk197771d5d2c2008-09-29 11:49:47 +00004396 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004397 for(;;){
drh72f82862001-05-24 21:06:34 +00004398 int lwr, upr;
4399 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004400 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004401 int c;
4402
4403 /* pPage->nCell must be greater than zero. If this is the root-page
4404 ** the cursor would have been INVALID above and this for(;;) loop
4405 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004406 ** would have already detected db corruption. Similarly, pPage must
4407 ** be the right kind (index or table) of b-tree page. Otherwise
4408 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004409 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004410 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004411 lwr = 0;
4412 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004413 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004414 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004415 }else{
drhf49661a2008-12-10 16:45:50 +00004416 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004417 }
drh64022502009-01-09 14:11:04 +00004418 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004419 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4420 u8 *pCell; /* Pointer to current cell in pPage */
4421
drh366fda62006-01-13 02:35:09 +00004422 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004423 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004424 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004425 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004426 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004427 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004428 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004429 }
drha2c20e42008-03-29 16:01:04 +00004430 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004431 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004432 c = 0;
drhe63d9992008-08-13 19:11:48 +00004433 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004434 c = -1;
4435 }else{
drhe63d9992008-08-13 19:11:48 +00004436 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004437 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004438 }
danielk197711c327a2009-05-04 19:01:26 +00004439 pCur->validNKey = 1;
4440 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004441 }else{
drhb2eced52010-08-12 02:41:12 +00004442 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004443 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004444 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004445 ** varint. This information is used to attempt to avoid parsing
4446 ** the entire cell by checking for the cases where the record is
4447 ** stored entirely within the b-tree page by inspecting the first
4448 ** 2 bytes of the cell.
4449 */
4450 int nCell = pCell[0];
4451 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4452 /* This branch runs if the record-size field of the cell is a
4453 ** single byte varint and the record fits entirely on the main
4454 ** b-tree page. */
4455 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4456 }else if( !(pCell[1] & 0x80)
4457 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4458 ){
4459 /* The record-size field is a 2 byte varint and the record
4460 ** fits entirely on the main b-tree page. */
4461 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004462 }else{
danielk197711c327a2009-05-04 19:01:26 +00004463 /* The record flows over onto one or more overflow pages. In
4464 ** this case the whole cell needs to be parsed, a buffer allocated
4465 ** and accessPayload() used to retrieve the record into the
4466 ** buffer before VdbeRecordCompare() can be called. */
4467 void *pCellKey;
4468 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004469 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004470 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004471 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004472 if( pCellKey==0 ){
4473 rc = SQLITE_NOMEM;
4474 goto moveto_finish;
4475 }
drhfb192682009-07-11 18:26:28 +00004476 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004477 if( rc ){
4478 sqlite3_free(pCellKey);
4479 goto moveto_finish;
4480 }
danielk197711c327a2009-05-04 19:01:26 +00004481 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004482 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004483 }
drh3aac2dd2004-04-26 14:10:20 +00004484 }
drh72f82862001-05-24 21:06:34 +00004485 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004486 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004487 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004488 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004489 break;
4490 }else{
drh64022502009-01-09 14:11:04 +00004491 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004492 rc = SQLITE_OK;
4493 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004494 }
drh72f82862001-05-24 21:06:34 +00004495 }
4496 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004497 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004498 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004499 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004500 }
drhf1d68b32007-03-29 04:43:26 +00004501 if( lwr>upr ){
4502 break;
4503 }
drhf49661a2008-12-10 16:45:50 +00004504 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004505 }
4506 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004507 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004508 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004509 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004510 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004511 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004512 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004513 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004514 }
4515 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004516 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004517 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004518 rc = SQLITE_OK;
4519 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004520 }
drhf49661a2008-12-10 16:45:50 +00004521 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004522 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004523 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004524 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004525 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004526 }
drh1e968a02008-03-25 00:22:21 +00004527moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004528 return rc;
4529}
4530
drhd677b3d2007-08-20 22:48:41 +00004531
drh72f82862001-05-24 21:06:34 +00004532/*
drhc39e0002004-05-07 23:50:57 +00004533** Return TRUE if the cursor is not pointing at an entry of the table.
4534**
4535** TRUE will be returned after a call to sqlite3BtreeNext() moves
4536** past the last entry in the table or sqlite3BtreePrev() moves past
4537** the first entry. TRUE is also returned if the table is empty.
4538*/
4539int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004540 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4541 ** have been deleted? This API will need to change to return an error code
4542 ** as well as the boolean result value.
4543 */
4544 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004545}
4546
4547/*
drhbd03cae2001-06-02 02:40:57 +00004548** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004549** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004550** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004551** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004552*/
drhd094db12008-04-03 21:46:57 +00004553int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004554 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004555 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004556 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004557
drh1fee73e2007-08-29 04:00:57 +00004558 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004559 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004560 if( rc!=SQLITE_OK ){
4561 return rc;
4562 }
drh8c4d3a62007-04-06 01:03:32 +00004563 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004564 if( CURSOR_INVALID==pCur->eState ){
4565 *pRes = 1;
4566 return SQLITE_OK;
4567 }
drh4c301aa2009-07-15 17:25:45 +00004568 if( pCur->skipNext>0 ){
4569 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004570 *pRes = 0;
4571 return SQLITE_OK;
4572 }
drh4c301aa2009-07-15 17:25:45 +00004573 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004574
danielk197771d5d2c2008-09-29 11:49:47 +00004575 pPage = pCur->apPage[pCur->iPage];
4576 idx = ++pCur->aiIdx[pCur->iPage];
4577 assert( pPage->isInit );
4578 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004579
drh271efa52004-05-30 19:19:05 +00004580 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004581 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004582 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004583 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004584 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004585 if( rc ) return rc;
4586 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004587 *pRes = 0;
4588 return rc;
drh72f82862001-05-24 21:06:34 +00004589 }
drh5e2f8b92001-05-28 00:41:15 +00004590 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004591 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004592 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004593 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004594 return SQLITE_OK;
4595 }
danielk197730548662009-07-09 05:07:37 +00004596 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004597 pPage = pCur->apPage[pCur->iPage];
4598 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004599 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004600 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004601 rc = sqlite3BtreeNext(pCur, pRes);
4602 }else{
4603 rc = SQLITE_OK;
4604 }
4605 return rc;
drh8178a752003-01-05 21:41:40 +00004606 }
4607 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004608 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004609 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004610 }
drh5e2f8b92001-05-28 00:41:15 +00004611 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004612 return rc;
drh72f82862001-05-24 21:06:34 +00004613}
drhd677b3d2007-08-20 22:48:41 +00004614
drh72f82862001-05-24 21:06:34 +00004615
drh3b7511c2001-05-26 13:15:44 +00004616/*
drh2dcc9aa2002-12-04 13:40:25 +00004617** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004618** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004619** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004620** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004621*/
drhd094db12008-04-03 21:46:57 +00004622int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004623 int rc;
drh8178a752003-01-05 21:41:40 +00004624 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004625
drh1fee73e2007-08-29 04:00:57 +00004626 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004627 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004628 if( rc!=SQLITE_OK ){
4629 return rc;
4630 }
drha2c20e42008-03-29 16:01:04 +00004631 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004632 if( CURSOR_INVALID==pCur->eState ){
4633 *pRes = 1;
4634 return SQLITE_OK;
4635 }
drh4c301aa2009-07-15 17:25:45 +00004636 if( pCur->skipNext<0 ){
4637 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004638 *pRes = 0;
4639 return SQLITE_OK;
4640 }
drh4c301aa2009-07-15 17:25:45 +00004641 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004642
danielk197771d5d2c2008-09-29 11:49:47 +00004643 pPage = pCur->apPage[pCur->iPage];
4644 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004645 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004646 int idx = pCur->aiIdx[pCur->iPage];
4647 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004648 if( rc ){
4649 return rc;
4650 }
drh2dcc9aa2002-12-04 13:40:25 +00004651 rc = moveToRightmost(pCur);
4652 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004653 while( pCur->aiIdx[pCur->iPage]==0 ){
4654 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004655 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004656 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004657 return SQLITE_OK;
4658 }
danielk197730548662009-07-09 05:07:37 +00004659 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004660 }
drh271efa52004-05-30 19:19:05 +00004661 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004662 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004663
4664 pCur->aiIdx[pCur->iPage]--;
4665 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004666 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004667 rc = sqlite3BtreePrevious(pCur, pRes);
4668 }else{
4669 rc = SQLITE_OK;
4670 }
drh2dcc9aa2002-12-04 13:40:25 +00004671 }
drh8178a752003-01-05 21:41:40 +00004672 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004673 return rc;
4674}
4675
4676/*
drh3b7511c2001-05-26 13:15:44 +00004677** Allocate a new page from the database file.
4678**
danielk19773b8a05f2007-03-19 17:44:26 +00004679** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004680** has already been called on the new page.) The new page has also
4681** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004682** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004683**
4684** SQLITE_OK is returned on success. Any other return value indicates
4685** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004686** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004687**
drh199e3cf2002-07-18 11:01:47 +00004688** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4689** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004690** attempt to keep related pages close to each other in the database file,
4691** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004692**
4693** If the "exact" parameter is not 0, and the page-number nearby exists
4694** anywhere on the free-list, then it is guarenteed to be returned. This
4695** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004696*/
drh4f0c5872007-03-26 22:05:01 +00004697static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004698 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004699 MemPage **ppPage,
4700 Pgno *pPgno,
4701 Pgno nearby,
4702 u8 exact
4703){
drh3aac2dd2004-04-26 14:10:20 +00004704 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004705 int rc;
drh35cd6432009-06-05 14:17:21 +00004706 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004707 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004708 MemPage *pTrunk = 0;
4709 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004710 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004711
drh1fee73e2007-08-29 04:00:57 +00004712 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004713 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004714 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004715 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004716 testcase( n==mxPage-1 );
4717 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004718 return SQLITE_CORRUPT_BKPT;
4719 }
drh3aac2dd2004-04-26 14:10:20 +00004720 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004721 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004722 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004723 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4724
4725 /* If the 'exact' parameter was true and a query of the pointer-map
4726 ** shows that the page 'nearby' is somewhere on the free-list, then
4727 ** the entire-list will be searched for that page.
4728 */
4729#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004730 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004731 u8 eType;
4732 assert( nearby>0 );
4733 assert( pBt->autoVacuum );
4734 rc = ptrmapGet(pBt, nearby, &eType, 0);
4735 if( rc ) return rc;
4736 if( eType==PTRMAP_FREEPAGE ){
4737 searchList = 1;
4738 }
4739 *pPgno = nearby;
4740 }
4741#endif
4742
4743 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4744 ** first free-list trunk page. iPrevTrunk is initially 1.
4745 */
danielk19773b8a05f2007-03-19 17:44:26 +00004746 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004747 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004748 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004749
4750 /* The code within this loop is run only once if the 'searchList' variable
4751 ** is not true. Otherwise, it runs once for each trunk-page on the
4752 ** free-list until the page 'nearby' is located.
4753 */
4754 do {
4755 pPrevTrunk = pTrunk;
4756 if( pPrevTrunk ){
4757 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004758 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004759 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004760 }
drhdf35a082009-07-09 02:24:35 +00004761 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004762 if( iTrunk>mxPage ){
4763 rc = SQLITE_CORRUPT_BKPT;
4764 }else{
danielk197730548662009-07-09 05:07:37 +00004765 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004766 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004767 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004768 pTrunk = 0;
4769 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004770 }
4771
4772 k = get4byte(&pTrunk->aData[4]);
4773 if( k==0 && !searchList ){
4774 /* The trunk has no leaves and the list is not being searched.
4775 ** So extract the trunk page itself and use it as the newly
4776 ** allocated page */
4777 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004778 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004779 if( rc ){
4780 goto end_allocate_page;
4781 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004782 *pPgno = iTrunk;
4783 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4784 *ppPage = pTrunk;
4785 pTrunk = 0;
4786 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004787 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004788 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004789 rc = SQLITE_CORRUPT_BKPT;
4790 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004791#ifndef SQLITE_OMIT_AUTOVACUUM
4792 }else if( searchList && nearby==iTrunk ){
4793 /* The list is being searched and this trunk page is the page
4794 ** to allocate, regardless of whether it has leaves.
4795 */
4796 assert( *pPgno==iTrunk );
4797 *ppPage = pTrunk;
4798 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004799 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004800 if( rc ){
4801 goto end_allocate_page;
4802 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004803 if( k==0 ){
4804 if( !pPrevTrunk ){
4805 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4806 }else{
4807 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4808 }
4809 }else{
4810 /* The trunk page is required by the caller but it contains
4811 ** pointers to free-list leaves. The first leaf becomes a trunk
4812 ** page in this case.
4813 */
4814 MemPage *pNewTrunk;
4815 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004816 if( iNewTrunk>mxPage ){
4817 rc = SQLITE_CORRUPT_BKPT;
4818 goto end_allocate_page;
4819 }
drhdf35a082009-07-09 02:24:35 +00004820 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004821 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004822 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004823 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004824 }
danielk19773b8a05f2007-03-19 17:44:26 +00004825 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004826 if( rc!=SQLITE_OK ){
4827 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004828 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004829 }
4830 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4831 put4byte(&pNewTrunk->aData[4], k-1);
4832 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004833 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004834 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004835 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004836 put4byte(&pPage1->aData[32], iNewTrunk);
4837 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004838 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004839 if( rc ){
4840 goto end_allocate_page;
4841 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004842 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4843 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004844 }
4845 pTrunk = 0;
4846 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4847#endif
danielk1977e5765212009-06-17 11:13:28 +00004848 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004849 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004850 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004851 Pgno iPage;
4852 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004853 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004854 if( rc ){
4855 goto end_allocate_page;
4856 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004857 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004858 u32 i;
4859 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004860 closest = 0;
4861 dist = get4byte(&aData[8]) - nearby;
4862 if( dist<0 ) dist = -dist;
4863 for(i=1; i<k; i++){
4864 int d2 = get4byte(&aData[8+i*4]) - nearby;
4865 if( d2<0 ) d2 = -d2;
4866 if( d2<dist ){
4867 closest = i;
4868 dist = d2;
4869 }
4870 }
4871 }else{
4872 closest = 0;
4873 }
4874
4875 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004876 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004877 if( iPage>mxPage ){
4878 rc = SQLITE_CORRUPT_BKPT;
4879 goto end_allocate_page;
4880 }
drhdf35a082009-07-09 02:24:35 +00004881 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004882 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004883 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004884 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004885 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4886 ": %d more free pages\n",
4887 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4888 if( closest<k-1 ){
4889 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4890 }
4891 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004892 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004893 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004894 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004895 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004896 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004897 if( rc!=SQLITE_OK ){
4898 releasePage(*ppPage);
4899 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004900 }
4901 searchList = 0;
4902 }
drhee696e22004-08-30 16:52:17 +00004903 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004904 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004905 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004906 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004907 }else{
drh3aac2dd2004-04-26 14:10:20 +00004908 /* There are no pages on the freelist, so create a new page at the
4909 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00004910 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4911 if( rc ) return rc;
4912 pBt->nPage++;
4913 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00004914
danielk1977afcdd022004-10-31 16:25:42 +00004915#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00004916 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00004917 /* If *pPgno refers to a pointer-map page, allocate two new pages
4918 ** at the end of the file instead of one. The first allocated page
4919 ** becomes a new pointer-map page, the second is used by the caller.
4920 */
danielk1977ac861692009-03-28 10:54:22 +00004921 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00004922 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
4923 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004924 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00004925 if( rc==SQLITE_OK ){
4926 rc = sqlite3PagerWrite(pPg->pDbPage);
4927 releasePage(pPg);
4928 }
4929 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00004930 pBt->nPage++;
4931 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00004932 }
4933#endif
drhdd3cd972010-03-27 17:12:36 +00004934 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
4935 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00004936
danielk1977599fcba2004-11-08 07:13:13 +00004937 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004938 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00004939 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004940 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004941 if( rc!=SQLITE_OK ){
4942 releasePage(*ppPage);
4943 }
drh3a4c1412004-05-09 20:40:11 +00004944 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004945 }
danielk1977599fcba2004-11-08 07:13:13 +00004946
4947 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004948
4949end_allocate_page:
4950 releasePage(pTrunk);
4951 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004952 if( rc==SQLITE_OK ){
4953 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4954 releasePage(*ppPage);
4955 return SQLITE_CORRUPT_BKPT;
4956 }
4957 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004958 }else{
4959 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004960 }
drh3b7511c2001-05-26 13:15:44 +00004961 return rc;
4962}
4963
4964/*
danielk1977bea2a942009-01-20 17:06:27 +00004965** This function is used to add page iPage to the database file free-list.
4966** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004967**
danielk1977bea2a942009-01-20 17:06:27 +00004968** The value passed as the second argument to this function is optional.
4969** If the caller happens to have a pointer to the MemPage object
4970** corresponding to page iPage handy, it may pass it as the second value.
4971** Otherwise, it may pass NULL.
4972**
4973** If a pointer to a MemPage object is passed as the second argument,
4974** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004975*/
danielk1977bea2a942009-01-20 17:06:27 +00004976static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4977 MemPage *pTrunk = 0; /* Free-list trunk page */
4978 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4979 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4980 MemPage *pPage; /* Page being freed. May be NULL. */
4981 int rc; /* Return Code */
4982 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004983
danielk1977bea2a942009-01-20 17:06:27 +00004984 assert( sqlite3_mutex_held(pBt->mutex) );
4985 assert( iPage>1 );
4986 assert( !pMemPage || pMemPage->pgno==iPage );
4987
4988 if( pMemPage ){
4989 pPage = pMemPage;
4990 sqlite3PagerRef(pPage->pDbPage);
4991 }else{
4992 pPage = btreePageLookup(pBt, iPage);
4993 }
drh3aac2dd2004-04-26 14:10:20 +00004994
drha34b6762004-05-07 13:30:42 +00004995 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004996 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004997 if( rc ) goto freepage_out;
4998 nFree = get4byte(&pPage1->aData[36]);
4999 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005000
drh5b47efa2010-02-12 18:18:39 +00005001 if( pBt->secureDelete ){
5002 /* If the secure_delete option is enabled, then
5003 ** always fully overwrite deleted information with zeros.
5004 */
shaneh84f4b2f2010-02-26 01:46:54 +00005005 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5006 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005007 ){
5008 goto freepage_out;
5009 }
5010 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005011 }
drhfcce93f2006-02-22 03:08:32 +00005012
danielk1977687566d2004-11-02 12:56:41 +00005013 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005014 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005015 */
danielk197785d90ca2008-07-19 14:25:15 +00005016 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005017 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005018 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005019 }
danielk1977687566d2004-11-02 12:56:41 +00005020
danielk1977bea2a942009-01-20 17:06:27 +00005021 /* Now manipulate the actual database free-list structure. There are two
5022 ** possibilities. If the free-list is currently empty, or if the first
5023 ** trunk page in the free-list is full, then this page will become a
5024 ** new free-list trunk page. Otherwise, it will become a leaf of the
5025 ** first trunk page in the current free-list. This block tests if it
5026 ** is possible to add the page as a new free-list leaf.
5027 */
5028 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005029 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005030
5031 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005032 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005033 if( rc!=SQLITE_OK ){
5034 goto freepage_out;
5035 }
5036
5037 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005038 assert( pBt->usableSize>32 );
5039 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005040 rc = SQLITE_CORRUPT_BKPT;
5041 goto freepage_out;
5042 }
drheeb844a2009-08-08 18:01:07 +00005043 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005044 /* In this case there is room on the trunk page to insert the page
5045 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005046 **
5047 ** Note that the trunk page is not really full until it contains
5048 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5049 ** coded. But due to a coding error in versions of SQLite prior to
5050 ** 3.6.0, databases with freelist trunk pages holding more than
5051 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5052 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005053 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005054 ** for now. At some point in the future (once everyone has upgraded
5055 ** to 3.6.0 or later) we should consider fixing the conditional above
5056 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5057 */
danielk19773b8a05f2007-03-19 17:44:26 +00005058 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005059 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005060 put4byte(&pTrunk->aData[4], nLeaf+1);
5061 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drh5b47efa2010-02-12 18:18:39 +00005062 if( pPage && !pBt->secureDelete ){
danielk1977bea2a942009-01-20 17:06:27 +00005063 sqlite3PagerDontWrite(pPage->pDbPage);
5064 }
danielk1977bea2a942009-01-20 17:06:27 +00005065 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005066 }
drh3a4c1412004-05-09 20:40:11 +00005067 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005068 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005069 }
drh3b7511c2001-05-26 13:15:44 +00005070 }
danielk1977bea2a942009-01-20 17:06:27 +00005071
5072 /* If control flows to this point, then it was not possible to add the
5073 ** the page being freed as a leaf page of the first trunk in the free-list.
5074 ** Possibly because the free-list is empty, or possibly because the
5075 ** first trunk in the free-list is full. Either way, the page being freed
5076 ** will become the new first trunk page in the free-list.
5077 */
drhc046e3e2009-07-15 11:26:44 +00005078 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5079 goto freepage_out;
5080 }
5081 rc = sqlite3PagerWrite(pPage->pDbPage);
5082 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005083 goto freepage_out;
5084 }
5085 put4byte(pPage->aData, iTrunk);
5086 put4byte(&pPage->aData[4], 0);
5087 put4byte(&pPage1->aData[32], iPage);
5088 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5089
5090freepage_out:
5091 if( pPage ){
5092 pPage->isInit = 0;
5093 }
5094 releasePage(pPage);
5095 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005096 return rc;
5097}
drhc314dc72009-07-21 11:52:34 +00005098static void freePage(MemPage *pPage, int *pRC){
5099 if( (*pRC)==SQLITE_OK ){
5100 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5101 }
danielk1977bea2a942009-01-20 17:06:27 +00005102}
drh3b7511c2001-05-26 13:15:44 +00005103
5104/*
drh3aac2dd2004-04-26 14:10:20 +00005105** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005106*/
drh3aac2dd2004-04-26 14:10:20 +00005107static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005108 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005109 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005110 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005111 int rc;
drh94440812007-03-06 11:42:19 +00005112 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00005113 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005114
drh1fee73e2007-08-29 04:00:57 +00005115 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005116 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005117 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005118 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005119 }
drh6f11bef2004-05-13 01:12:56 +00005120 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005121 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005122 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005123 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5124 assert( ovflPgno==0 || nOvfl>0 );
5125 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005126 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005127 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005128 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005129 /* 0 is not a legal page number and page 1 cannot be an
5130 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5131 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005132 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005133 }
danielk1977bea2a942009-01-20 17:06:27 +00005134 if( nOvfl ){
5135 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5136 if( rc ) return rc;
5137 }
dan887d4b22010-02-25 12:09:16 +00005138
shaneh1da207e2010-03-09 14:41:12 +00005139 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005140 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5141 ){
5142 /* There is no reason any cursor should have an outstanding reference
5143 ** to an overflow page belonging to a cell that is being deleted/updated.
5144 ** So if there exists more than one reference to this page, then it
5145 ** must not really be an overflow page and the database must be corrupt.
5146 ** It is helpful to detect this before calling freePage2(), as
5147 ** freePage2() may zero the page contents if secure-delete mode is
5148 ** enabled. If this 'overflow' page happens to be a page that the
5149 ** caller is iterating through or using in some other way, this
5150 ** can be problematic.
5151 */
5152 rc = SQLITE_CORRUPT_BKPT;
5153 }else{
5154 rc = freePage2(pBt, pOvfl, ovflPgno);
5155 }
5156
danielk1977bea2a942009-01-20 17:06:27 +00005157 if( pOvfl ){
5158 sqlite3PagerUnref(pOvfl->pDbPage);
5159 }
drh3b7511c2001-05-26 13:15:44 +00005160 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005161 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005162 }
drh5e2f8b92001-05-28 00:41:15 +00005163 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005164}
5165
5166/*
drh91025292004-05-03 19:49:32 +00005167** Create the byte sequence used to represent a cell on page pPage
5168** and write that byte sequence into pCell[]. Overflow pages are
5169** allocated and filled in as necessary. The calling procedure
5170** is responsible for making sure sufficient space has been allocated
5171** for pCell[].
5172**
5173** Note that pCell does not necessary need to point to the pPage->aData
5174** area. pCell might point to some temporary storage. The cell will
5175** be constructed in this temporary area then copied into pPage->aData
5176** later.
drh3b7511c2001-05-26 13:15:44 +00005177*/
5178static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005179 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005180 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005181 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005182 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005183 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005184 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005185){
drh3b7511c2001-05-26 13:15:44 +00005186 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005187 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005188 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005189 int spaceLeft;
5190 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005191 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005192 unsigned char *pPrior;
5193 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005194 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005195 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005196 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005197 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005198
drh1fee73e2007-08-29 04:00:57 +00005199 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005200
drhc5053fb2008-11-27 02:22:10 +00005201 /* pPage is not necessarily writeable since pCell might be auxiliary
5202 ** buffer space that is separate from the pPage buffer area */
5203 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5204 || sqlite3PagerIswriteable(pPage->pDbPage) );
5205
drh91025292004-05-03 19:49:32 +00005206 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005207 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005208 if( !pPage->leaf ){
5209 nHeader += 4;
5210 }
drh8b18dd42004-05-12 19:18:15 +00005211 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005212 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005213 }else{
drhb026e052007-05-02 01:34:31 +00005214 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005215 }
drh6f11bef2004-05-13 01:12:56 +00005216 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005217 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005218 assert( info.nHeader==nHeader );
5219 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005220 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005221
5222 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005223 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005224 if( pPage->intKey ){
5225 pSrc = pData;
5226 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005227 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005228 }else{
danielk197731d31b82009-07-13 13:18:07 +00005229 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5230 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005231 }
drhf49661a2008-12-10 16:45:50 +00005232 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005233 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005234 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005235 }
drh6f11bef2004-05-13 01:12:56 +00005236 *pnSize = info.nSize;
5237 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005238 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005239 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005240
drh3b7511c2001-05-26 13:15:44 +00005241 while( nPayload>0 ){
5242 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005243#ifndef SQLITE_OMIT_AUTOVACUUM
5244 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005245 if( pBt->autoVacuum ){
5246 do{
5247 pgnoOvfl++;
5248 } while(
5249 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5250 );
danielk1977b39f70b2007-05-17 18:28:11 +00005251 }
danielk1977afcdd022004-10-31 16:25:42 +00005252#endif
drhf49661a2008-12-10 16:45:50 +00005253 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005254#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005255 /* If the database supports auto-vacuum, and the second or subsequent
5256 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005257 ** for that page now.
5258 **
5259 ** If this is the first overflow page, then write a partial entry
5260 ** to the pointer-map. If we write nothing to this pointer-map slot,
5261 ** then the optimistic overflow chain processing in clearCell()
5262 ** may misinterpret the uninitialised values and delete the
5263 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005264 */
danielk19774ef24492007-05-23 09:52:41 +00005265 if( pBt->autoVacuum && rc==SQLITE_OK ){
5266 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005267 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005268 if( rc ){
5269 releasePage(pOvfl);
5270 }
danielk1977afcdd022004-10-31 16:25:42 +00005271 }
5272#endif
drh3b7511c2001-05-26 13:15:44 +00005273 if( rc ){
drh9b171272004-05-08 02:03:22 +00005274 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005275 return rc;
5276 }
drhc5053fb2008-11-27 02:22:10 +00005277
5278 /* If pToRelease is not zero than pPrior points into the data area
5279 ** of pToRelease. Make sure pToRelease is still writeable. */
5280 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5281
5282 /* If pPrior is part of the data area of pPage, then make sure pPage
5283 ** is still writeable */
5284 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5285 || sqlite3PagerIswriteable(pPage->pDbPage) );
5286
drh3aac2dd2004-04-26 14:10:20 +00005287 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005288 releasePage(pToRelease);
5289 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005290 pPrior = pOvfl->aData;
5291 put4byte(pPrior, 0);
5292 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005293 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005294 }
5295 n = nPayload;
5296 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005297
5298 /* If pToRelease is not zero than pPayload points into the data area
5299 ** of pToRelease. Make sure pToRelease is still writeable. */
5300 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5301
5302 /* If pPayload is part of the data area of pPage, then make sure pPage
5303 ** is still writeable */
5304 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5305 || sqlite3PagerIswriteable(pPage->pDbPage) );
5306
drhb026e052007-05-02 01:34:31 +00005307 if( nSrc>0 ){
5308 if( n>nSrc ) n = nSrc;
5309 assert( pSrc );
5310 memcpy(pPayload, pSrc, n);
5311 }else{
5312 memset(pPayload, 0, n);
5313 }
drh3b7511c2001-05-26 13:15:44 +00005314 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005315 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005316 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005317 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005318 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005319 if( nSrc==0 ){
5320 nSrc = nData;
5321 pSrc = pData;
5322 }
drhdd793422001-06-28 01:54:48 +00005323 }
drh9b171272004-05-08 02:03:22 +00005324 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005325 return SQLITE_OK;
5326}
5327
drh14acc042001-06-10 19:56:58 +00005328/*
5329** Remove the i-th cell from pPage. This routine effects pPage only.
5330** The cell content is not freed or deallocated. It is assumed that
5331** the cell content has been copied someplace else. This routine just
5332** removes the reference to the cell from pPage.
5333**
5334** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005335*/
drh98add2e2009-07-20 17:11:49 +00005336static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43605152004-05-29 21:46:49 +00005337 int i; /* Loop counter */
5338 int pc; /* Offset to cell content of cell being deleted */
5339 u8 *data; /* pPage->aData */
5340 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005341 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005342 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005343
drh98add2e2009-07-20 17:11:49 +00005344 if( *pRC ) return;
5345
drh8c42ca92001-06-22 19:15:00 +00005346 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005347 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005348 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005349 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005350 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005351 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005352 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005353 hdr = pPage->hdrOffset;
5354 testcase( pc==get2byte(&data[hdr+5]) );
5355 testcase( pc+sz==pPage->pBt->usableSize );
5356 if( pc < get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005357 *pRC = SQLITE_CORRUPT_BKPT;
5358 return;
shane0af3f892008-11-12 04:55:34 +00005359 }
shanedcc50b72008-11-13 18:29:50 +00005360 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005361 if( rc ){
5362 *pRC = rc;
5363 return;
shanedcc50b72008-11-13 18:29:50 +00005364 }
drh43605152004-05-29 21:46:49 +00005365 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5366 ptr[0] = ptr[2];
5367 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005368 }
5369 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005370 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005371 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005372}
5373
5374/*
5375** Insert a new cell on pPage at cell index "i". pCell points to the
5376** content of the cell.
5377**
5378** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005379** will not fit, then make a copy of the cell content into pTemp if
5380** pTemp is not null. Regardless of pTemp, allocate a new entry
5381** in pPage->aOvfl[] and make it point to the cell content (either
5382** in pTemp or the original pCell) and also record its index.
5383** Allocating a new entry in pPage->aCell[] implies that
5384** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005385**
5386** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5387** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005388** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005389** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005390*/
drh98add2e2009-07-20 17:11:49 +00005391static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005392 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005393 int i, /* New cell becomes the i-th cell of the page */
5394 u8 *pCell, /* Content of the new cell */
5395 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005396 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005397 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5398 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005399){
drh383d30f2010-02-26 13:07:37 +00005400 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005401 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005402 int end; /* First byte past the last cell pointer in data[] */
5403 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005404 int cellOffset; /* Address of first cell pointer in data[] */
5405 u8 *data; /* The content of the whole page */
5406 u8 *ptr; /* Used for moving information around in data[] */
5407
danielk19774dbaa892009-06-16 16:50:22 +00005408 int nSkip = (iChild ? 4 : 0);
5409
drh98add2e2009-07-20 17:11:49 +00005410 if( *pRC ) return;
5411
drh43605152004-05-29 21:46:49 +00005412 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005413 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drhf49661a2008-12-10 16:45:50 +00005414 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005415 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005416 /* The cell should normally be sized correctly. However, when moving a
5417 ** malformed cell from a leaf page to an interior page, if the cell size
5418 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5419 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5420 ** the term after the || in the following assert(). */
5421 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005422 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005423 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005424 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005425 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005426 }
danielk19774dbaa892009-06-16 16:50:22 +00005427 if( iChild ){
5428 put4byte(pCell, iChild);
5429 }
drh43605152004-05-29 21:46:49 +00005430 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005431 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005432 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005433 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005434 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005435 int rc = sqlite3PagerWrite(pPage->pDbPage);
5436 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005437 *pRC = rc;
5438 return;
danielk19776e465eb2007-08-21 13:11:00 +00005439 }
5440 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005441 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005442 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005443 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005444 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005445 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005446 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005447 /* The allocateSpace() routine guarantees the following two properties
5448 ** if it returns success */
5449 assert( idx >= end+2 );
5450 assert( idx+sz <= pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005451 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005452 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005453 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005454 if( iChild ){
5455 put4byte(&data[idx], iChild);
5456 }
drh0a45c272009-07-08 01:49:11 +00005457 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005458 ptr[0] = ptr[-2];
5459 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005460 }
drh43605152004-05-29 21:46:49 +00005461 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005462 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005463#ifndef SQLITE_OMIT_AUTOVACUUM
5464 if( pPage->pBt->autoVacuum ){
5465 /* The cell may contain a pointer to an overflow page. If so, write
5466 ** the entry for the overflow page into the pointer map.
5467 */
drh98add2e2009-07-20 17:11:49 +00005468 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005469 }
5470#endif
drh14acc042001-06-10 19:56:58 +00005471 }
5472}
5473
5474/*
drhfa1a98a2004-05-14 19:08:17 +00005475** Add a list of cells to a page. The page should be initially empty.
5476** The cells are guaranteed to fit on the page.
5477*/
5478static void assemblePage(
5479 MemPage *pPage, /* The page to be assemblied */
5480 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005481 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005482 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005483){
5484 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005485 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005486 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005487 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5488 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5489 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005490
drh43605152004-05-29 21:46:49 +00005491 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005492 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb2eced52010-08-12 02:41:12 +00005493 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005494 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005495
5496 /* Check that the page has just been zeroed by zeroPage() */
5497 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005498 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005499
5500 pCellptr = &data[pPage->cellOffset + nCell*2];
5501 cellbody = nUsable;
5502 for(i=nCell-1; i>=0; i--){
5503 pCellptr -= 2;
5504 cellbody -= aSize[i];
5505 put2byte(pCellptr, cellbody);
5506 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005507 }
danielk1977fad91942009-04-29 17:49:59 +00005508 put2byte(&data[hdr+3], nCell);
5509 put2byte(&data[hdr+5], cellbody);
5510 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005511 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005512}
5513
drh14acc042001-06-10 19:56:58 +00005514/*
drhc3b70572003-01-04 19:44:07 +00005515** The following parameters determine how many adjacent pages get involved
5516** in a balancing operation. NN is the number of neighbors on either side
5517** of the page that participate in the balancing operation. NB is the
5518** total number of pages that participate, including the target page and
5519** NN neighbors on either side.
5520**
5521** The minimum value of NN is 1 (of course). Increasing NN above 1
5522** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5523** in exchange for a larger degradation in INSERT and UPDATE performance.
5524** The value of NN appears to give the best results overall.
5525*/
5526#define NN 1 /* Number of neighbors on either side of pPage */
5527#define NB (NN*2+1) /* Total pages involved in the balance */
5528
danielk1977ac245ec2005-01-14 13:50:11 +00005529
drh615ae552005-01-16 23:21:00 +00005530#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005531/*
5532** This version of balance() handles the common special case where
5533** a new entry is being inserted on the extreme right-end of the
5534** tree, in other words, when the new entry will become the largest
5535** entry in the tree.
5536**
drhc314dc72009-07-21 11:52:34 +00005537** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005538** a new page to the right-hand side and put the one new entry in
5539** that page. This leaves the right side of the tree somewhat
5540** unbalanced. But odds are that we will be inserting new entries
5541** at the end soon afterwards so the nearly empty page will quickly
5542** fill up. On average.
5543**
5544** pPage is the leaf page which is the right-most page in the tree.
5545** pParent is its parent. pPage must have a single overflow entry
5546** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005547**
5548** The pSpace buffer is used to store a temporary copy of the divider
5549** cell that will be inserted into pParent. Such a cell consists of a 4
5550** byte page number followed by a variable length integer. In other
5551** words, at most 13 bytes. Hence the pSpace buffer must be at
5552** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005553*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005554static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5555 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005556 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005557 int rc; /* Return Code */
5558 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005559
drh1fee73e2007-08-29 04:00:57 +00005560 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005561 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005562 assert( pPage->nOverflow==1 );
5563
drh5d433ce2010-08-14 16:02:52 +00005564 /* This error condition is now caught prior to reaching this function */
5565 if( NEVER(pPage->nCell<=0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005566
danielk1977a50d9aa2009-06-08 14:49:45 +00005567 /* Allocate a new page. This page will become the right-sibling of
5568 ** pPage. Make the parent page writable, so that the new divider cell
5569 ** may be inserted. If both these operations are successful, proceed.
5570 */
drh4f0c5872007-03-26 22:05:01 +00005571 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005572
danielk1977eaa06f62008-09-18 17:34:44 +00005573 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005574
5575 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005576 u8 *pCell = pPage->aOvfl[0].pCell;
5577 u16 szCell = cellSizePtr(pPage, pCell);
5578 u8 *pStop;
5579
drhc5053fb2008-11-27 02:22:10 +00005580 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005581 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5582 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005583 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005584
5585 /* If this is an auto-vacuum database, update the pointer map
5586 ** with entries for the new page, and any pointer from the
5587 ** cell on the page to an overflow page. If either of these
5588 ** operations fails, the return code is set, but the contents
5589 ** of the parent page are still manipulated by thh code below.
5590 ** That is Ok, at this point the parent page is guaranteed to
5591 ** be marked as dirty. Returning an error code will cause a
5592 ** rollback, undoing any changes made to the parent page.
5593 */
5594 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005595 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5596 if( szCell>pNew->minLocal ){
5597 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005598 }
5599 }
danielk1977eaa06f62008-09-18 17:34:44 +00005600
danielk19776f235cc2009-06-04 14:46:08 +00005601 /* Create a divider cell to insert into pParent. The divider cell
5602 ** consists of a 4-byte page number (the page number of pPage) and
5603 ** a variable length key value (which must be the same value as the
5604 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005605 **
danielk19776f235cc2009-06-04 14:46:08 +00005606 ** To find the largest key value on pPage, first find the right-most
5607 ** cell on pPage. The first two fields of this cell are the
5608 ** record-length (a variable length integer at most 32-bits in size)
5609 ** and the key value (a variable length integer, may have any value).
5610 ** The first of the while(...) loops below skips over the record-length
5611 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005612 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005613 */
danielk1977eaa06f62008-09-18 17:34:44 +00005614 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005615 pStop = &pCell[9];
5616 while( (*(pCell++)&0x80) && pCell<pStop );
5617 pStop = &pCell[9];
5618 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5619
danielk19774dbaa892009-06-16 16:50:22 +00005620 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005621 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5622 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005623
5624 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005625 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5626
danielk1977e08a3c42008-09-18 18:17:03 +00005627 /* Release the reference to the new page. */
5628 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005629 }
5630
danielk1977eaa06f62008-09-18 17:34:44 +00005631 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005632}
drh615ae552005-01-16 23:21:00 +00005633#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005634
danielk19774dbaa892009-06-16 16:50:22 +00005635#if 0
drhc3b70572003-01-04 19:44:07 +00005636/*
danielk19774dbaa892009-06-16 16:50:22 +00005637** This function does not contribute anything to the operation of SQLite.
5638** it is sometimes activated temporarily while debugging code responsible
5639** for setting pointer-map entries.
5640*/
5641static int ptrmapCheckPages(MemPage **apPage, int nPage){
5642 int i, j;
5643 for(i=0; i<nPage; i++){
5644 Pgno n;
5645 u8 e;
5646 MemPage *pPage = apPage[i];
5647 BtShared *pBt = pPage->pBt;
5648 assert( pPage->isInit );
5649
5650 for(j=0; j<pPage->nCell; j++){
5651 CellInfo info;
5652 u8 *z;
5653
5654 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005655 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005656 if( info.iOverflow ){
5657 Pgno ovfl = get4byte(&z[info.iOverflow]);
5658 ptrmapGet(pBt, ovfl, &e, &n);
5659 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5660 }
5661 if( !pPage->leaf ){
5662 Pgno child = get4byte(z);
5663 ptrmapGet(pBt, child, &e, &n);
5664 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5665 }
5666 }
5667 if( !pPage->leaf ){
5668 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5669 ptrmapGet(pBt, child, &e, &n);
5670 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5671 }
5672 }
5673 return 1;
5674}
5675#endif
5676
danielk1977cd581a72009-06-23 15:43:39 +00005677/*
5678** This function is used to copy the contents of the b-tree node stored
5679** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5680** the pointer-map entries for each child page are updated so that the
5681** parent page stored in the pointer map is page pTo. If pFrom contained
5682** any cells with overflow page pointers, then the corresponding pointer
5683** map entries are also updated so that the parent page is page pTo.
5684**
5685** If pFrom is currently carrying any overflow cells (entries in the
5686** MemPage.aOvfl[] array), they are not copied to pTo.
5687**
danielk197730548662009-07-09 05:07:37 +00005688** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005689**
5690** The performance of this function is not critical. It is only used by
5691** the balance_shallower() and balance_deeper() procedures, neither of
5692** which are called often under normal circumstances.
5693*/
drhc314dc72009-07-21 11:52:34 +00005694static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5695 if( (*pRC)==SQLITE_OK ){
5696 BtShared * const pBt = pFrom->pBt;
5697 u8 * const aFrom = pFrom->aData;
5698 u8 * const aTo = pTo->aData;
5699 int const iFromHdr = pFrom->hdrOffset;
5700 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005701 int rc;
drhc314dc72009-07-21 11:52:34 +00005702 int iData;
5703
5704
5705 assert( pFrom->isInit );
5706 assert( pFrom->nFree>=iToHdr );
5707 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5708
5709 /* Copy the b-tree node content from page pFrom to page pTo. */
5710 iData = get2byte(&aFrom[iFromHdr+5]);
5711 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5712 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5713
5714 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005715 ** match the new data. The initialization of pTo can actually fail under
5716 ** fairly obscure circumstances, even though it is a copy of initialized
5717 ** page pFrom.
5718 */
drhc314dc72009-07-21 11:52:34 +00005719 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005720 rc = btreeInitPage(pTo);
5721 if( rc!=SQLITE_OK ){
5722 *pRC = rc;
5723 return;
5724 }
drhc314dc72009-07-21 11:52:34 +00005725
5726 /* If this is an auto-vacuum database, update the pointer-map entries
5727 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5728 */
5729 if( ISAUTOVACUUM ){
5730 *pRC = setChildPtrmaps(pTo);
5731 }
danielk1977cd581a72009-06-23 15:43:39 +00005732 }
danielk1977cd581a72009-06-23 15:43:39 +00005733}
5734
5735/*
danielk19774dbaa892009-06-16 16:50:22 +00005736** This routine redistributes cells on the iParentIdx'th child of pParent
5737** (hereafter "the page") and up to 2 siblings so that all pages have about the
5738** same amount of free space. Usually a single sibling on either side of the
5739** page are used in the balancing, though both siblings might come from one
5740** side if the page is the first or last child of its parent. If the page
5741** has fewer than 2 siblings (something which can only happen if the page
5742** is a root page or a child of a root page) then all available siblings
5743** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005744**
danielk19774dbaa892009-06-16 16:50:22 +00005745** The number of siblings of the page might be increased or decreased by
5746** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005747**
danielk19774dbaa892009-06-16 16:50:22 +00005748** Note that when this routine is called, some of the cells on the page
5749** might not actually be stored in MemPage.aData[]. This can happen
5750** if the page is overfull. This routine ensures that all cells allocated
5751** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005752**
danielk19774dbaa892009-06-16 16:50:22 +00005753** In the course of balancing the page and its siblings, cells may be
5754** inserted into or removed from the parent page (pParent). Doing so
5755** may cause the parent page to become overfull or underfull. If this
5756** happens, it is the responsibility of the caller to invoke the correct
5757** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005758**
drh5e00f6c2001-09-13 13:46:56 +00005759** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005760** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005761** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005762**
5763** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005764** buffer big enough to hold one page. If while inserting cells into the parent
5765** page (pParent) the parent page becomes overfull, this buffer is
5766** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005767** a maximum of four divider cells into the parent page, and the maximum
5768** size of a cell stored within an internal node is always less than 1/4
5769** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5770** enough for all overflow cells.
5771**
5772** If aOvflSpace is set to a null pointer, this function returns
5773** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005774*/
danielk19774dbaa892009-06-16 16:50:22 +00005775static int balance_nonroot(
5776 MemPage *pParent, /* Parent page of siblings being balanced */
5777 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005778 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5779 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005780){
drh16a9b832007-05-05 18:39:25 +00005781 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005782 int nCell = 0; /* Number of cells in apCell[] */
5783 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005784 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005785 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005786 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005787 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005788 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005789 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005790 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005791 int usableSpace; /* Bytes in pPage beyond the header */
5792 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005793 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005794 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005795 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005796 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005797 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005798 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005799 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005800 u8 *pRight; /* Location in parent of right-sibling pointer */
5801 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005802 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5803 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005804 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005805 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005806 u8 *aSpace1; /* Space for copies of dividers cells */
5807 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005808
danielk1977a50d9aa2009-06-08 14:49:45 +00005809 pBt = pParent->pBt;
5810 assert( sqlite3_mutex_held(pBt->mutex) );
5811 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005812
danielk1977e5765212009-06-17 11:13:28 +00005813#if 0
drh43605152004-05-29 21:46:49 +00005814 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005815#endif
drh2e38c322004-09-03 18:38:44 +00005816
danielk19774dbaa892009-06-16 16:50:22 +00005817 /* At this point pParent may have at most one overflow cell. And if
5818 ** this overflow cell is present, it must be the cell with
5819 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005820 ** is called (indirectly) from sqlite3BtreeDelete().
5821 */
danielk19774dbaa892009-06-16 16:50:22 +00005822 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5823 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5824
danielk197711a8a862009-06-17 11:49:52 +00005825 if( !aOvflSpace ){
5826 return SQLITE_NOMEM;
5827 }
5828
danielk1977a50d9aa2009-06-08 14:49:45 +00005829 /* Find the sibling pages to balance. Also locate the cells in pParent
5830 ** that divide the siblings. An attempt is made to find NN siblings on
5831 ** either side of pPage. More siblings are taken from one side, however,
5832 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005833 ** has NB or fewer children then all children of pParent are taken.
5834 **
5835 ** This loop also drops the divider cells from the parent page. This
5836 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005837 ** overflow cells in the parent page, since if any existed they will
5838 ** have already been removed.
5839 */
danielk19774dbaa892009-06-16 16:50:22 +00005840 i = pParent->nOverflow + pParent->nCell;
5841 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005842 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005843 nOld = i+1;
5844 }else{
5845 nOld = 3;
5846 if( iParentIdx==0 ){
5847 nxDiv = 0;
5848 }else if( iParentIdx==i ){
5849 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005850 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005851 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005852 }
danielk19774dbaa892009-06-16 16:50:22 +00005853 i = 2;
5854 }
5855 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5856 pRight = &pParent->aData[pParent->hdrOffset+8];
5857 }else{
5858 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5859 }
5860 pgno = get4byte(pRight);
5861 while( 1 ){
5862 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5863 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00005864 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00005865 goto balance_cleanup;
5866 }
danielk1977634f2982005-03-28 08:44:07 +00005867 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005868 if( (i--)==0 ) break;
5869
drhcd09c532009-07-20 19:30:00 +00005870 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00005871 apDiv[i] = pParent->aOvfl[0].pCell;
5872 pgno = get4byte(apDiv[i]);
5873 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5874 pParent->nOverflow = 0;
5875 }else{
5876 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5877 pgno = get4byte(apDiv[i]);
5878 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5879
5880 /* Drop the cell from the parent page. apDiv[i] still points to
5881 ** the cell within the parent, even though it has been dropped.
5882 ** This is safe because dropping a cell only overwrites the first
5883 ** four bytes of it, and this function does not need the first
5884 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005885 ** later on.
5886 **
5887 ** Unless SQLite is compiled in secure-delete mode. In this case,
5888 ** the dropCell() routine will overwrite the entire cell with zeroes.
5889 ** In this case, temporarily copy the cell into the aOvflSpace[]
5890 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5891 ** is allocated. */
drh5b47efa2010-02-12 18:18:39 +00005892 if( pBt->secureDelete ){
shaneh1da207e2010-03-09 14:41:12 +00005893 int iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
dan2ed11e72010-02-26 15:09:19 +00005894 if( (iOff+szNew[i])>pBt->usableSize ){
5895 rc = SQLITE_CORRUPT_BKPT;
5896 memset(apOld, 0, (i+1)*sizeof(MemPage*));
5897 goto balance_cleanup;
5898 }else{
5899 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
5900 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5901 }
drh5b47efa2010-02-12 18:18:39 +00005902 }
drh98add2e2009-07-20 17:11:49 +00005903 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005904 }
drh8b2f49b2001-06-08 00:21:52 +00005905 }
5906
drha9121e42008-02-19 14:59:35 +00005907 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005908 ** alignment */
drha9121e42008-02-19 14:59:35 +00005909 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005910
drh8b2f49b2001-06-08 00:21:52 +00005911 /*
danielk1977634f2982005-03-28 08:44:07 +00005912 ** Allocate space for memory structures
5913 */
danielk19774dbaa892009-06-16 16:50:22 +00005914 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005915 szScratch =
drha9121e42008-02-19 14:59:35 +00005916 nMaxCells*sizeof(u8*) /* apCell */
5917 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005918 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005919 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005920 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005921 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005922 rc = SQLITE_NOMEM;
5923 goto balance_cleanup;
5924 }
drha9121e42008-02-19 14:59:35 +00005925 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005926 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005927 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005928
5929 /*
5930 ** Load pointers to all cells on sibling pages and the divider cells
5931 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005932 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005933 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005934 **
5935 ** If the siblings are on leaf pages, then the child pointers of the
5936 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005937 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005938 ** child pointers. If siblings are not leaves, then all cell in
5939 ** apCell[] include child pointers. Either way, all cells in apCell[]
5940 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005941 **
5942 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5943 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005944 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005945 leafCorrection = apOld[0]->leaf*4;
5946 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005947 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005948 int limit;
5949
5950 /* Before doing anything else, take a copy of the i'th original sibling
5951 ** The rest of this function will use data from the copies rather
5952 ** that the original pages since the original pages will be in the
5953 ** process of being overwritten. */
5954 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5955 memcpy(pOld, apOld[i], sizeof(MemPage));
5956 pOld->aData = (void*)&pOld[1];
5957 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5958
5959 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005960 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005961 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005962 apCell[nCell] = findOverflowCell(pOld, j);
5963 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005964 nCell++;
5965 }
5966 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005967 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005968 u8 *pTemp;
5969 assert( nCell<nMaxCells );
5970 szCell[nCell] = sz;
5971 pTemp = &aSpace1[iSpace1];
5972 iSpace1 += sz;
5973 assert( sz<=pBt->pageSize/4 );
5974 assert( iSpace1<=pBt->pageSize );
5975 memcpy(pTemp, apDiv[i], sz);
5976 apCell[nCell] = pTemp+leafCorrection;
5977 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005978 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005979 if( !pOld->leaf ){
5980 assert( leafCorrection==0 );
5981 assert( pOld->hdrOffset==0 );
5982 /* The right pointer of the child page pOld becomes the left
5983 ** pointer of the divider cell */
5984 memcpy(apCell[nCell], &pOld->aData[8], 4);
5985 }else{
5986 assert( leafCorrection==4 );
5987 if( szCell[nCell]<4 ){
5988 /* Do not allow any cells smaller than 4 bytes. */
5989 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005990 }
5991 }
drh14acc042001-06-10 19:56:58 +00005992 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005993 }
drh8b2f49b2001-06-08 00:21:52 +00005994 }
5995
5996 /*
drh6019e162001-07-02 17:51:45 +00005997 ** Figure out the number of pages needed to hold all nCell cells.
5998 ** Store this number in "k". Also compute szNew[] which is the total
5999 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006000 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006001 ** cntNew[k] should equal nCell.
6002 **
drh96f5b762004-05-16 16:24:36 +00006003 ** Values computed by this block:
6004 **
6005 ** k: The total number of sibling pages
6006 ** szNew[i]: Spaced used on the i-th sibling page.
6007 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6008 ** the right of the i-th sibling page.
6009 ** usableSpace: Number of bytes of space available on each sibling.
6010 **
drh8b2f49b2001-06-08 00:21:52 +00006011 */
drh43605152004-05-29 21:46:49 +00006012 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006013 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006014 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006015 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006016 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006017 szNew[k] = subtotal - szCell[i];
6018 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006019 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006020 subtotal = 0;
6021 k++;
drh9978c972010-02-23 17:36:32 +00006022 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006023 }
6024 }
6025 szNew[k] = subtotal;
6026 cntNew[k] = nCell;
6027 k++;
drh96f5b762004-05-16 16:24:36 +00006028
6029 /*
6030 ** The packing computed by the previous block is biased toward the siblings
6031 ** on the left side. The left siblings are always nearly full, while the
6032 ** right-most sibling might be nearly empty. This block of code attempts
6033 ** to adjust the packing of siblings to get a better balance.
6034 **
6035 ** This adjustment is more than an optimization. The packing above might
6036 ** be so out of balance as to be illegal. For example, the right-most
6037 ** sibling might be completely empty. This adjustment is not optional.
6038 */
drh6019e162001-07-02 17:51:45 +00006039 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006040 int szRight = szNew[i]; /* Size of sibling on the right */
6041 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6042 int r; /* Index of right-most cell in left sibling */
6043 int d; /* Index of first cell to the left of right sibling */
6044
6045 r = cntNew[i-1] - 1;
6046 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006047 assert( d<nMaxCells );
6048 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00006049 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
6050 szRight += szCell[d] + 2;
6051 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006052 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006053 r = cntNew[i-1] - 1;
6054 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006055 }
drh96f5b762004-05-16 16:24:36 +00006056 szNew[i] = szRight;
6057 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006058 }
drh09d0deb2005-08-02 17:13:09 +00006059
danielk19776f235cc2009-06-04 14:46:08 +00006060 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006061 ** a virtual root page. A virtual root page is when the real root
6062 ** page is page 1 and we are the only child of that page.
6063 */
6064 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00006065
danielk1977e5765212009-06-17 11:13:28 +00006066 TRACE(("BALANCE: old: %d %d %d ",
6067 apOld[0]->pgno,
6068 nOld>=2 ? apOld[1]->pgno : 0,
6069 nOld>=3 ? apOld[2]->pgno : 0
6070 ));
6071
drh8b2f49b2001-06-08 00:21:52 +00006072 /*
drh6b308672002-07-08 02:16:37 +00006073 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006074 */
drheac74422009-06-14 12:47:11 +00006075 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006076 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006077 goto balance_cleanup;
6078 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006079 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006080 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006081 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006082 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006083 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006084 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006085 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006086 nNew++;
danielk197728129562005-01-11 10:25:06 +00006087 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006088 }else{
drh7aa8f852006-03-28 00:24:44 +00006089 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006090 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006091 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006092 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006093 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006094
6095 /* Set the pointer-map entry for the new sibling page. */
6096 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006097 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006098 if( rc!=SQLITE_OK ){
6099 goto balance_cleanup;
6100 }
6101 }
drh6b308672002-07-08 02:16:37 +00006102 }
drh8b2f49b2001-06-08 00:21:52 +00006103 }
6104
danielk1977299b1872004-11-22 10:02:10 +00006105 /* Free any old pages that were not reused as new pages.
6106 */
6107 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006108 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006109 if( rc ) goto balance_cleanup;
6110 releasePage(apOld[i]);
6111 apOld[i] = 0;
6112 i++;
6113 }
6114
drh8b2f49b2001-06-08 00:21:52 +00006115 /*
drhf9ffac92002-03-02 19:00:31 +00006116 ** Put the new pages in accending order. This helps to
6117 ** keep entries in the disk file in order so that a scan
6118 ** of the table is a linear scan through the file. That
6119 ** in turn helps the operating system to deliver pages
6120 ** from the disk more rapidly.
6121 **
6122 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006123 ** n is never more than NB (a small constant), that should
6124 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006125 **
drhc3b70572003-01-04 19:44:07 +00006126 ** When NB==3, this one optimization makes the database
6127 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006128 */
6129 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006130 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006131 int minI = i;
6132 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006133 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006134 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006135 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006136 }
6137 }
6138 if( minI>i ){
6139 int t;
6140 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00006141 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006142 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006143 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006144 apNew[minI] = pT;
6145 }
6146 }
danielk1977e5765212009-06-17 11:13:28 +00006147 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006148 apNew[0]->pgno, szNew[0],
6149 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6150 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6151 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6152 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6153
6154 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6155 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006156
drhf9ffac92002-03-02 19:00:31 +00006157 /*
drh14acc042001-06-10 19:56:58 +00006158 ** Evenly distribute the data in apCell[] across the new pages.
6159 ** Insert divider cells into pParent as necessary.
6160 */
6161 j = 0;
6162 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006163 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006164 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006165 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006166 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006167 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006168 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006169 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006170
danielk1977ac11ee62005-01-15 12:45:51 +00006171 j = cntNew[i];
6172
6173 /* If the sibling page assembled above was not the right-most sibling,
6174 ** insert a divider cell into the parent page.
6175 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006176 assert( i<nNew-1 || j==nCell );
6177 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006178 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006179 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006180 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006181
6182 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006183 pCell = apCell[j];
6184 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006185 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006186 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006187 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006188 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006189 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006190 ** then there is no divider cell in apCell[]. Instead, the divider
6191 ** cell consists of the integer key for the right-most cell of
6192 ** the sibling-page assembled above only.
6193 */
drh6f11bef2004-05-13 01:12:56 +00006194 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006195 j--;
danielk197730548662009-07-09 05:07:37 +00006196 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006197 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006198 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006199 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006200 }else{
6201 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006202 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006203 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006204 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006205 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006206 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006207 ** insertCell(), so reparse the cell now.
6208 **
6209 ** Note that this can never happen in an SQLite data file, as all
6210 ** cells are at least 4 bytes. It only happens in b-trees used
6211 ** to evaluate "IN (SELECT ...)" and similar clauses.
6212 */
6213 if( szCell[j]==4 ){
6214 assert(leafCorrection==4);
6215 sz = cellSizePtr(pParent, pCell);
6216 }
drh4b70f112004-05-02 21:12:19 +00006217 }
danielk19776067a9b2009-06-09 09:41:00 +00006218 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00006219 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006220 assert( iOvflSpace<=pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006221 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006222 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006223 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006224
drh14acc042001-06-10 19:56:58 +00006225 j++;
6226 nxDiv++;
6227 }
6228 }
drh6019e162001-07-02 17:51:45 +00006229 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006230 assert( nOld>0 );
6231 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006232 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006233 u8 *zChild = &apCopy[nOld-1]->aData[8];
6234 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006235 }
6236
danielk197713bd99f2009-06-24 05:40:34 +00006237 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6238 /* The root page of the b-tree now contains no cells. The only sibling
6239 ** page is the right-child of the parent. Copy the contents of the
6240 ** child page into the parent, decreasing the overall height of the
6241 ** b-tree structure by one. This is described as the "balance-shallower"
6242 ** sub-algorithm in some documentation.
6243 **
6244 ** If this is an auto-vacuum database, the call to copyNodeContent()
6245 ** sets all pointer-map entries corresponding to database image pages
6246 ** for which the pointer is stored within the content being copied.
6247 **
6248 ** The second assert below verifies that the child page is defragmented
6249 ** (it must be, as it was just reconstructed using assemblePage()). This
6250 ** is important if the parent page happens to be page 1 of the database
6251 ** image. */
6252 assert( nNew==1 );
6253 assert( apNew[0]->nFree ==
6254 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6255 );
drhc314dc72009-07-21 11:52:34 +00006256 copyNodeContent(apNew[0], pParent, &rc);
6257 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006258 }else if( ISAUTOVACUUM ){
6259 /* Fix the pointer-map entries for all the cells that were shifted around.
6260 ** There are several different types of pointer-map entries that need to
6261 ** be dealt with by this routine. Some of these have been set already, but
6262 ** many have not. The following is a summary:
6263 **
6264 ** 1) The entries associated with new sibling pages that were not
6265 ** siblings when this function was called. These have already
6266 ** been set. We don't need to worry about old siblings that were
6267 ** moved to the free-list - the freePage() code has taken care
6268 ** of those.
6269 **
6270 ** 2) The pointer-map entries associated with the first overflow
6271 ** page in any overflow chains used by new divider cells. These
6272 ** have also already been taken care of by the insertCell() code.
6273 **
6274 ** 3) If the sibling pages are not leaves, then the child pages of
6275 ** cells stored on the sibling pages may need to be updated.
6276 **
6277 ** 4) If the sibling pages are not internal intkey nodes, then any
6278 ** overflow pages used by these cells may need to be updated
6279 ** (internal intkey nodes never contain pointers to overflow pages).
6280 **
6281 ** 5) If the sibling pages are not leaves, then the pointer-map
6282 ** entries for the right-child pages of each sibling may need
6283 ** to be updated.
6284 **
6285 ** Cases 1 and 2 are dealt with above by other code. The next
6286 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6287 ** setting a pointer map entry is a relatively expensive operation, this
6288 ** code only sets pointer map entries for child or overflow pages that have
6289 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006290 MemPage *pNew = apNew[0];
6291 MemPage *pOld = apCopy[0];
6292 int nOverflow = pOld->nOverflow;
6293 int iNextOld = pOld->nCell + nOverflow;
6294 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6295 j = 0; /* Current 'old' sibling page */
6296 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006297 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006298 int isDivider = 0;
6299 while( i==iNextOld ){
6300 /* Cell i is the cell immediately following the last cell on old
6301 ** sibling page j. If the siblings are not leaf pages of an
6302 ** intkey b-tree, then cell i was a divider cell. */
6303 pOld = apCopy[++j];
6304 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6305 if( pOld->nOverflow ){
6306 nOverflow = pOld->nOverflow;
6307 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6308 }
6309 isDivider = !leafData;
6310 }
6311
6312 assert(nOverflow>0 || iOverflow<i );
6313 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6314 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6315 if( i==iOverflow ){
6316 isDivider = 1;
6317 if( (--nOverflow)>0 ){
6318 iOverflow++;
6319 }
6320 }
6321
6322 if( i==cntNew[k] ){
6323 /* Cell i is the cell immediately following the last cell on new
6324 ** sibling page k. If the siblings are not leaf pages of an
6325 ** intkey b-tree, then cell i is a divider cell. */
6326 pNew = apNew[++k];
6327 if( !leafData ) continue;
6328 }
danielk19774dbaa892009-06-16 16:50:22 +00006329 assert( j<nOld );
6330 assert( k<nNew );
6331
6332 /* If the cell was originally divider cell (and is not now) or
6333 ** an overflow cell, or if the cell was located on a different sibling
6334 ** page before the balancing, then the pointer map entries associated
6335 ** with any child or overflow pages need to be updated. */
6336 if( isDivider || pOld->pgno!=pNew->pgno ){
6337 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006338 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006339 }
drh98add2e2009-07-20 17:11:49 +00006340 if( szCell[i]>pNew->minLocal ){
6341 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006342 }
6343 }
6344 }
6345
6346 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006347 for(i=0; i<nNew; i++){
6348 u32 key = get4byte(&apNew[i]->aData[8]);
6349 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006350 }
6351 }
6352
6353#if 0
6354 /* The ptrmapCheckPages() contains assert() statements that verify that
6355 ** all pointer map pages are set correctly. This is helpful while
6356 ** debugging. This is usually disabled because a corrupt database may
6357 ** cause an assert() statement to fail. */
6358 ptrmapCheckPages(apNew, nNew);
6359 ptrmapCheckPages(&pParent, 1);
6360#endif
6361 }
6362
danielk197771d5d2c2008-09-29 11:49:47 +00006363 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006364 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6365 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006366
drh8b2f49b2001-06-08 00:21:52 +00006367 /*
drh14acc042001-06-10 19:56:58 +00006368 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006369 */
drh14acc042001-06-10 19:56:58 +00006370balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006371 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006372 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006373 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006374 }
drh14acc042001-06-10 19:56:58 +00006375 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006376 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006377 }
danielk1977eaa06f62008-09-18 17:34:44 +00006378
drh8b2f49b2001-06-08 00:21:52 +00006379 return rc;
6380}
6381
drh43605152004-05-29 21:46:49 +00006382
6383/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006384** This function is called when the root page of a b-tree structure is
6385** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006386**
danielk1977a50d9aa2009-06-08 14:49:45 +00006387** A new child page is allocated and the contents of the current root
6388** page, including overflow cells, are copied into the child. The root
6389** page is then overwritten to make it an empty page with the right-child
6390** pointer pointing to the new page.
6391**
6392** Before returning, all pointer-map entries corresponding to pages
6393** that the new child-page now contains pointers to are updated. The
6394** entry corresponding to the new right-child pointer of the root
6395** page is also updated.
6396**
6397** If successful, *ppChild is set to contain a reference to the child
6398** page and SQLITE_OK is returned. In this case the caller is required
6399** to call releasePage() on *ppChild exactly once. If an error occurs,
6400** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006401*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006402static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6403 int rc; /* Return value from subprocedures */
6404 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006405 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006406 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006407
danielk1977a50d9aa2009-06-08 14:49:45 +00006408 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006409 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006410
danielk1977a50d9aa2009-06-08 14:49:45 +00006411 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6412 ** page that will become the new right-child of pPage. Copy the contents
6413 ** of the node stored on pRoot into the new child page.
6414 */
drh98add2e2009-07-20 17:11:49 +00006415 rc = sqlite3PagerWrite(pRoot->pDbPage);
6416 if( rc==SQLITE_OK ){
6417 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006418 copyNodeContent(pRoot, pChild, &rc);
6419 if( ISAUTOVACUUM ){
6420 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006421 }
6422 }
6423 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006424 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006425 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006426 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006427 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006428 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6429 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6430 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006431
danielk1977a50d9aa2009-06-08 14:49:45 +00006432 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6433
6434 /* Copy the overflow cells from pRoot to pChild */
6435 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6436 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006437
6438 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6439 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6440 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6441
6442 *ppChild = pChild;
6443 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006444}
6445
6446/*
danielk197771d5d2c2008-09-29 11:49:47 +00006447** The page that pCur currently points to has just been modified in
6448** some way. This function figures out if this modification means the
6449** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006450** routine. Balancing routines are:
6451**
6452** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006453** balance_deeper()
6454** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006455*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006456static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006457 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006458 const int nMin = pCur->pBt->usableSize * 2 / 3;
6459 u8 aBalanceQuickSpace[13];
6460 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006461
shane75ac1de2009-06-09 18:58:52 +00006462 TESTONLY( int balance_quick_called = 0 );
6463 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006464
6465 do {
6466 int iPage = pCur->iPage;
6467 MemPage *pPage = pCur->apPage[iPage];
6468
6469 if( iPage==0 ){
6470 if( pPage->nOverflow ){
6471 /* The root page of the b-tree is overfull. In this case call the
6472 ** balance_deeper() function to create a new child for the root-page
6473 ** and copy the current contents of the root-page to it. The
6474 ** next iteration of the do-loop will balance the child page.
6475 */
6476 assert( (balance_deeper_called++)==0 );
6477 rc = balance_deeper(pPage, &pCur->apPage[1]);
6478 if( rc==SQLITE_OK ){
6479 pCur->iPage = 1;
6480 pCur->aiIdx[0] = 0;
6481 pCur->aiIdx[1] = 0;
6482 assert( pCur->apPage[1]->nOverflow );
6483 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006484 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006485 break;
6486 }
6487 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6488 break;
6489 }else{
6490 MemPage * const pParent = pCur->apPage[iPage-1];
6491 int const iIdx = pCur->aiIdx[iPage-1];
6492
6493 rc = sqlite3PagerWrite(pParent->pDbPage);
6494 if( rc==SQLITE_OK ){
6495#ifndef SQLITE_OMIT_QUICKBALANCE
6496 if( pPage->hasData
6497 && pPage->nOverflow==1
6498 && pPage->aOvfl[0].idx==pPage->nCell
6499 && pParent->pgno!=1
6500 && pParent->nCell==iIdx
6501 ){
6502 /* Call balance_quick() to create a new sibling of pPage on which
6503 ** to store the overflow cell. balance_quick() inserts a new cell
6504 ** into pParent, which may cause pParent overflow. If this
6505 ** happens, the next interation of the do-loop will balance pParent
6506 ** use either balance_nonroot() or balance_deeper(). Until this
6507 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6508 ** buffer.
6509 **
6510 ** The purpose of the following assert() is to check that only a
6511 ** single call to balance_quick() is made for each call to this
6512 ** function. If this were not verified, a subtle bug involving reuse
6513 ** of the aBalanceQuickSpace[] might sneak in.
6514 */
6515 assert( (balance_quick_called++)==0 );
6516 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6517 }else
6518#endif
6519 {
6520 /* In this case, call balance_nonroot() to redistribute cells
6521 ** between pPage and up to 2 of its sibling pages. This involves
6522 ** modifying the contents of pParent, which may cause pParent to
6523 ** become overfull or underfull. The next iteration of the do-loop
6524 ** will balance the parent page to correct this.
6525 **
6526 ** If the parent page becomes overfull, the overflow cell or cells
6527 ** are stored in the pSpace buffer allocated immediately below.
6528 ** A subsequent iteration of the do-loop will deal with this by
6529 ** calling balance_nonroot() (balance_deeper() may be called first,
6530 ** but it doesn't deal with overflow cells - just moves them to a
6531 ** different page). Once this subsequent call to balance_nonroot()
6532 ** has completed, it is safe to release the pSpace buffer used by
6533 ** the previous call, as the overflow cell data will have been
6534 ** copied either into the body of a database page or into the new
6535 ** pSpace buffer passed to the latter call to balance_nonroot().
6536 */
6537 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006538 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006539 if( pFree ){
6540 /* If pFree is not NULL, it points to the pSpace buffer used
6541 ** by a previous call to balance_nonroot(). Its contents are
6542 ** now stored either on real database pages or within the
6543 ** new pSpace buffer, so it may be safely freed here. */
6544 sqlite3PageFree(pFree);
6545 }
6546
danielk19774dbaa892009-06-16 16:50:22 +00006547 /* The pSpace buffer will be freed after the next call to
6548 ** balance_nonroot(), or just before this function returns, whichever
6549 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006550 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006551 }
6552 }
6553
6554 pPage->nOverflow = 0;
6555
6556 /* The next iteration of the do-loop balances the parent page. */
6557 releasePage(pPage);
6558 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006559 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006560 }while( rc==SQLITE_OK );
6561
6562 if( pFree ){
6563 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006564 }
6565 return rc;
6566}
6567
drhf74b8d92002-09-01 23:20:45 +00006568
6569/*
drh3b7511c2001-05-26 13:15:44 +00006570** Insert a new record into the BTree. The key is given by (pKey,nKey)
6571** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006572** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006573** is left pointing at a random location.
6574**
6575** For an INTKEY table, only the nKey value of the key is used. pKey is
6576** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006577**
6578** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006579** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006580** been performed. seekResult is the search result returned (a negative
6581** number if pCur points at an entry that is smaller than (pKey, nKey), or
6582** a positive value if pCur points at an etry that is larger than
6583** (pKey, nKey)).
6584**
drh3e9ca092009-09-08 01:14:48 +00006585** If the seekResult parameter is non-zero, then the caller guarantees that
6586** cursor pCur is pointing at the existing copy of a row that is to be
6587** overwritten. If the seekResult parameter is 0, then cursor pCur may
6588** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006589** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006590*/
drh3aac2dd2004-04-26 14:10:20 +00006591int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006592 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006593 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006594 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006595 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006596 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006597 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006598){
drh3b7511c2001-05-26 13:15:44 +00006599 int rc;
drh3e9ca092009-09-08 01:14:48 +00006600 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006601 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006602 int idx;
drh3b7511c2001-05-26 13:15:44 +00006603 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006604 Btree *p = pCur->pBtree;
6605 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006606 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006607 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006608
drh98add2e2009-07-20 17:11:49 +00006609 if( pCur->eState==CURSOR_FAULT ){
6610 assert( pCur->skipNext!=SQLITE_OK );
6611 return pCur->skipNext;
6612 }
6613
drh1fee73e2007-08-29 04:00:57 +00006614 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006615 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006616 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6617
danielk197731d31b82009-07-13 13:18:07 +00006618 /* Assert that the caller has been consistent. If this cursor was opened
6619 ** expecting an index b-tree, then the caller should be inserting blob
6620 ** keys with no associated data. If the cursor was opened expecting an
6621 ** intkey table, the caller should be inserting integer keys with a
6622 ** blob of associated data. */
6623 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6624
danielk197796d48e92009-06-29 06:00:37 +00006625 /* If this is an insert into a table b-tree, invalidate any incrblob
6626 ** cursors open on the row being replaced (assuming this is a replace
6627 ** operation - if it is not, the following is a no-op). */
6628 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006629 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006630 }
danielk197796d48e92009-06-29 06:00:37 +00006631
danielk19779c3acf32009-05-02 07:36:49 +00006632 /* Save the positions of any other cursors open on this table.
6633 **
danielk19773509a652009-07-06 18:56:13 +00006634 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006635 ** example, when inserting data into a table with auto-generated integer
6636 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6637 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006638 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006639 ** that the cursor is already where it needs to be and returns without
6640 ** doing any work. To avoid thwarting these optimizations, it is important
6641 ** not to clear the cursor here.
6642 */
drh4c301aa2009-07-15 17:25:45 +00006643 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6644 if( rc ) return rc;
6645 if( !loc ){
6646 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6647 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006648 }
danielk1977b980d2212009-06-22 18:03:51 +00006649 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006650
danielk197771d5d2c2008-09-29 11:49:47 +00006651 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006652 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006653 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006654
drh3a4c1412004-05-09 20:40:11 +00006655 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6656 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6657 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006658 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006659 allocateTempSpace(pBt);
6660 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006661 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006662 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006663 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006664 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006665 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006666 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006667 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006668 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006669 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006670 rc = sqlite3PagerWrite(pPage->pDbPage);
6671 if( rc ){
6672 goto end_insert;
6673 }
danielk197771d5d2c2008-09-29 11:49:47 +00006674 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006675 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006676 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006677 }
drh43605152004-05-29 21:46:49 +00006678 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006679 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006680 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006681 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006682 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006683 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006684 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006685 }else{
drh4b70f112004-05-02 21:12:19 +00006686 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006687 }
drh98add2e2009-07-20 17:11:49 +00006688 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006689 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006690
danielk1977a50d9aa2009-06-08 14:49:45 +00006691 /* If no error has occured and pPage has an overflow cell, call balance()
6692 ** to redistribute the cells within the tree. Since balance() may move
6693 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6694 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006695 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006696 ** Previous versions of SQLite called moveToRoot() to move the cursor
6697 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006698 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6699 ** set the cursor state to "invalid". This makes common insert operations
6700 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006701 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006702 ** There is a subtle but important optimization here too. When inserting
6703 ** multiple records into an intkey b-tree using a single cursor (as can
6704 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6705 ** is advantageous to leave the cursor pointing to the last entry in
6706 ** the b-tree if possible. If the cursor is left pointing to the last
6707 ** entry in the table, and the next row inserted has an integer key
6708 ** larger than the largest existing key, it is possible to insert the
6709 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006710 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006711 pCur->info.nSize = 0;
6712 pCur->validNKey = 0;
6713 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006714 rc = balance(pCur);
6715
6716 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006717 ** fails. Internal data structure corruption will result otherwise.
6718 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6719 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006720 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006721 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006722 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006723 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006724
drh2e38c322004-09-03 18:38:44 +00006725end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006726 return rc;
6727}
6728
6729/*
drh4b70f112004-05-02 21:12:19 +00006730** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006731** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006732*/
drh3aac2dd2004-04-26 14:10:20 +00006733int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006734 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006735 BtShared *pBt = p->pBt;
6736 int rc; /* Return code */
6737 MemPage *pPage; /* Page to delete cell from */
6738 unsigned char *pCell; /* Pointer to cell to delete */
6739 int iCellIdx; /* Index of cell to delete */
6740 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006741
drh1fee73e2007-08-29 04:00:57 +00006742 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006743 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006744 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006745 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006746 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6747 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6748
danielk19774dbaa892009-06-16 16:50:22 +00006749 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6750 || NEVER(pCur->eState!=CURSOR_VALID)
6751 ){
6752 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006753 }
danielk1977da184232006-01-05 11:34:32 +00006754
danielk197796d48e92009-06-29 06:00:37 +00006755 /* If this is a delete operation to remove a row from a table b-tree,
6756 ** invalidate any incrblob cursors open on the row being deleted. */
6757 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006758 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006759 }
6760
6761 iCellDepth = pCur->iPage;
6762 iCellIdx = pCur->aiIdx[iCellDepth];
6763 pPage = pCur->apPage[iCellDepth];
6764 pCell = findCell(pPage, iCellIdx);
6765
6766 /* If the page containing the entry to delete is not a leaf page, move
6767 ** the cursor to the largest entry in the tree that is smaller than
6768 ** the entry being deleted. This cell will replace the cell being deleted
6769 ** from the internal node. The 'previous' entry is used for this instead
6770 ** of the 'next' entry, as the previous entry is always a part of the
6771 ** sub-tree headed by the child page of the cell being deleted. This makes
6772 ** balancing the tree following the delete operation easier. */
6773 if( !pPage->leaf ){
6774 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006775 rc = sqlite3BtreePrevious(pCur, &notUsed);
6776 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006777 }
6778
6779 /* Save the positions of any other cursors open on this table before
6780 ** making any modifications. Make the page containing the entry to be
6781 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006782 ** entry and finally remove the cell itself from within the page.
6783 */
6784 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6785 if( rc ) return rc;
6786 rc = sqlite3PagerWrite(pPage->pDbPage);
6787 if( rc ) return rc;
6788 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006789 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006790 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006791
danielk19774dbaa892009-06-16 16:50:22 +00006792 /* If the cell deleted was not located on a leaf page, then the cursor
6793 ** is currently pointing to the largest entry in the sub-tree headed
6794 ** by the child-page of the cell that was just deleted from an internal
6795 ** node. The cell from the leaf node needs to be moved to the internal
6796 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006797 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006798 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6799 int nCell;
6800 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6801 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006802
danielk19774dbaa892009-06-16 16:50:22 +00006803 pCell = findCell(pLeaf, pLeaf->nCell-1);
6804 nCell = cellSizePtr(pLeaf, pCell);
6805 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006806
danielk19774dbaa892009-06-16 16:50:22 +00006807 allocateTempSpace(pBt);
6808 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006809
drha4ec1d42009-07-11 13:13:11 +00006810 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006811 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6812 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006813 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006814 }
danielk19774dbaa892009-06-16 16:50:22 +00006815
6816 /* Balance the tree. If the entry deleted was located on a leaf page,
6817 ** then the cursor still points to that page. In this case the first
6818 ** call to balance() repairs the tree, and the if(...) condition is
6819 ** never true.
6820 **
6821 ** Otherwise, if the entry deleted was on an internal node page, then
6822 ** pCur is pointing to the leaf page from which a cell was removed to
6823 ** replace the cell deleted from the internal node. This is slightly
6824 ** tricky as the leaf node may be underfull, and the internal node may
6825 ** be either under or overfull. In this case run the balancing algorithm
6826 ** on the leaf node first. If the balance proceeds far enough up the
6827 ** tree that we can be sure that any problem in the internal node has
6828 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6829 ** walk the cursor up the tree to the internal node and balance it as
6830 ** well. */
6831 rc = balance(pCur);
6832 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6833 while( pCur->iPage>iCellDepth ){
6834 releasePage(pCur->apPage[pCur->iPage--]);
6835 }
6836 rc = balance(pCur);
6837 }
6838
danielk19776b456a22005-03-21 04:04:02 +00006839 if( rc==SQLITE_OK ){
6840 moveToRoot(pCur);
6841 }
drh5e2f8b92001-05-28 00:41:15 +00006842 return rc;
drh3b7511c2001-05-26 13:15:44 +00006843}
drh8b2f49b2001-06-08 00:21:52 +00006844
6845/*
drhc6b52df2002-01-04 03:09:29 +00006846** Create a new BTree table. Write into *piTable the page
6847** number for the root page of the new table.
6848**
drhab01f612004-05-22 02:55:23 +00006849** The type of type is determined by the flags parameter. Only the
6850** following values of flags are currently in use. Other values for
6851** flags might not work:
6852**
6853** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6854** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006855*/
drhd677b3d2007-08-20 22:48:41 +00006856static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006857 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006858 MemPage *pRoot;
6859 Pgno pgnoRoot;
6860 int rc;
drhd677b3d2007-08-20 22:48:41 +00006861
drh1fee73e2007-08-29 04:00:57 +00006862 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006863 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006864 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006865
danielk1977003ba062004-11-04 02:57:33 +00006866#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006867 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006868 if( rc ){
6869 return rc;
6870 }
danielk1977003ba062004-11-04 02:57:33 +00006871#else
danielk1977687566d2004-11-02 12:56:41 +00006872 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006873 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6874 MemPage *pPageMove; /* The page to move to. */
6875
danielk197720713f32007-05-03 11:43:33 +00006876 /* Creating a new table may probably require moving an existing database
6877 ** to make room for the new tables root page. In case this page turns
6878 ** out to be an overflow page, delete all overflow page-map caches
6879 ** held by open cursors.
6880 */
danielk197792d4d7a2007-05-04 12:05:56 +00006881 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006882
danielk1977003ba062004-11-04 02:57:33 +00006883 /* Read the value of meta[3] from the database to determine where the
6884 ** root page of the new table should go. meta[3] is the largest root-page
6885 ** created so far, so the new root-page is (meta[3]+1).
6886 */
danielk1977602b4662009-07-02 07:47:33 +00006887 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006888 pgnoRoot++;
6889
danielk1977599fcba2004-11-08 07:13:13 +00006890 /* The new root-page may not be allocated on a pointer-map page, or the
6891 ** PENDING_BYTE page.
6892 */
drh72190432008-01-31 14:54:43 +00006893 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006894 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006895 pgnoRoot++;
6896 }
6897 assert( pgnoRoot>=3 );
6898
6899 /* Allocate a page. The page that currently resides at pgnoRoot will
6900 ** be moved to the allocated page (unless the allocated page happens
6901 ** to reside at pgnoRoot).
6902 */
drh4f0c5872007-03-26 22:05:01 +00006903 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006904 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006905 return rc;
6906 }
danielk1977003ba062004-11-04 02:57:33 +00006907
6908 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006909 /* pgnoRoot is the page that will be used for the root-page of
6910 ** the new table (assuming an error did not occur). But we were
6911 ** allocated pgnoMove. If required (i.e. if it was not allocated
6912 ** by extending the file), the current page at position pgnoMove
6913 ** is already journaled.
6914 */
drheeb844a2009-08-08 18:01:07 +00006915 u8 eType = 0;
6916 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00006917
6918 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006919
6920 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006921 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006922 if( rc!=SQLITE_OK ){
6923 return rc;
6924 }
6925 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006926 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6927 rc = SQLITE_CORRUPT_BKPT;
6928 }
6929 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006930 releasePage(pRoot);
6931 return rc;
6932 }
drhccae6022005-02-26 17:31:26 +00006933 assert( eType!=PTRMAP_ROOTPAGE );
6934 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006935 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006936 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006937
6938 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006939 if( rc!=SQLITE_OK ){
6940 return rc;
6941 }
danielk197730548662009-07-09 05:07:37 +00006942 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006943 if( rc!=SQLITE_OK ){
6944 return rc;
6945 }
danielk19773b8a05f2007-03-19 17:44:26 +00006946 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006947 if( rc!=SQLITE_OK ){
6948 releasePage(pRoot);
6949 return rc;
6950 }
6951 }else{
6952 pRoot = pPageMove;
6953 }
6954
danielk197742741be2005-01-08 12:42:39 +00006955 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00006956 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00006957 if( rc ){
6958 releasePage(pRoot);
6959 return rc;
6960 }
drhbf592832010-03-30 15:51:12 +00006961
6962 /* When the new root page was allocated, page 1 was made writable in
6963 ** order either to increase the database filesize, or to decrement the
6964 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
6965 */
6966 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00006967 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00006968 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00006969 releasePage(pRoot);
6970 return rc;
6971 }
danielk197742741be2005-01-08 12:42:39 +00006972
danielk1977003ba062004-11-04 02:57:33 +00006973 }else{
drh4f0c5872007-03-26 22:05:01 +00006974 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006975 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006976 }
6977#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006978 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006979 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006980 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006981 *piTable = (int)pgnoRoot;
6982 return SQLITE_OK;
6983}
drhd677b3d2007-08-20 22:48:41 +00006984int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6985 int rc;
6986 sqlite3BtreeEnter(p);
6987 rc = btreeCreateTable(p, piTable, flags);
6988 sqlite3BtreeLeave(p);
6989 return rc;
6990}
drh8b2f49b2001-06-08 00:21:52 +00006991
6992/*
6993** Erase the given database page and all its children. Return
6994** the page to the freelist.
6995*/
drh4b70f112004-05-02 21:12:19 +00006996static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006997 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00006998 Pgno pgno, /* Page number to clear */
6999 int freePageFlag, /* Deallocate page if true */
7000 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007001){
danielk1977146ba992009-07-22 14:08:13 +00007002 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007003 int rc;
drh4b70f112004-05-02 21:12:19 +00007004 unsigned char *pCell;
7005 int i;
drh8b2f49b2001-06-08 00:21:52 +00007006
drh1fee73e2007-08-29 04:00:57 +00007007 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007008 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007009 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007010 }
7011
danielk197771d5d2c2008-09-29 11:49:47 +00007012 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007013 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007014 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007015 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007016 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007017 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007018 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007019 }
drh4b70f112004-05-02 21:12:19 +00007020 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007021 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007022 }
drha34b6762004-05-07 13:30:42 +00007023 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007024 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007025 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007026 }else if( pnChange ){
7027 assert( pPage->intKey );
7028 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007029 }
7030 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007031 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007032 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007033 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007034 }
danielk19776b456a22005-03-21 04:04:02 +00007035
7036cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007037 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007038 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007039}
7040
7041/*
drhab01f612004-05-22 02:55:23 +00007042** Delete all information from a single table in the database. iTable is
7043** the page number of the root of the table. After this routine returns,
7044** the root page is empty, but still exists.
7045**
7046** This routine will fail with SQLITE_LOCKED if there are any open
7047** read cursors on the table. Open write cursors are moved to the
7048** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007049**
7050** If pnChange is not NULL, then table iTable must be an intkey table. The
7051** integer value pointed to by pnChange is incremented by the number of
7052** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007053*/
danielk1977c7af4842008-10-27 13:59:33 +00007054int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007055 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007056 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007057 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007058 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007059
7060 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7061 ** is the root of a table b-tree - if it is not, the following call is
7062 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00007063 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00007064
drhc046e3e2009-07-15 11:26:44 +00007065 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7066 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00007067 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007068 }
drhd677b3d2007-08-20 22:48:41 +00007069 sqlite3BtreeLeave(p);
7070 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007071}
7072
7073/*
7074** Erase all information in a table and add the root of the table to
7075** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007076** page 1) is never added to the freelist.
7077**
7078** This routine will fail with SQLITE_LOCKED if there are any open
7079** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007080**
7081** If AUTOVACUUM is enabled and the page at iTable is not the last
7082** root page in the database file, then the last root page
7083** in the database file is moved into the slot formerly occupied by
7084** iTable and that last slot formerly occupied by the last root page
7085** is added to the freelist instead of iTable. In this say, all
7086** root pages are kept at the beginning of the database file, which
7087** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7088** page number that used to be the last root page in the file before
7089** the move. If no page gets moved, *piMoved is set to 0.
7090** The last root page is recorded in meta[3] and the value of
7091** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007092*/
danielk197789d40042008-11-17 14:20:56 +00007093static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007094 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007095 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007096 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007097
drh1fee73e2007-08-29 04:00:57 +00007098 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007099 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007100
danielk1977e6efa742004-11-10 11:55:10 +00007101 /* It is illegal to drop a table if any cursors are open on the
7102 ** database. This is because in auto-vacuum mode the backend may
7103 ** need to move another root-page to fill a gap left by the deleted
7104 ** root page. If an open cursor was using this page a problem would
7105 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007106 **
7107 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007108 */
drhc046e3e2009-07-15 11:26:44 +00007109 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007110 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7111 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007112 }
danielk1977a0bf2652004-11-04 14:30:04 +00007113
danielk197730548662009-07-09 05:07:37 +00007114 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007115 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007116 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007117 if( rc ){
7118 releasePage(pPage);
7119 return rc;
7120 }
danielk1977a0bf2652004-11-04 14:30:04 +00007121
drh205f48e2004-11-05 00:43:11 +00007122 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007123
drh4b70f112004-05-02 21:12:19 +00007124 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007125#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007126 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007127 releasePage(pPage);
7128#else
7129 if( pBt->autoVacuum ){
7130 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007131 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007132
7133 if( iTable==maxRootPgno ){
7134 /* If the table being dropped is the table with the largest root-page
7135 ** number in the database, put the root page on the free list.
7136 */
drhc314dc72009-07-21 11:52:34 +00007137 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007138 releasePage(pPage);
7139 if( rc!=SQLITE_OK ){
7140 return rc;
7141 }
7142 }else{
7143 /* The table being dropped does not have the largest root-page
7144 ** number in the database. So move the page that does into the
7145 ** gap left by the deleted root-page.
7146 */
7147 MemPage *pMove;
7148 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007149 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007150 if( rc!=SQLITE_OK ){
7151 return rc;
7152 }
danielk19774c999992008-07-16 18:17:55 +00007153 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007154 releasePage(pMove);
7155 if( rc!=SQLITE_OK ){
7156 return rc;
7157 }
drhfe3313f2009-07-21 19:02:20 +00007158 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007159 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007160 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007161 releasePage(pMove);
7162 if( rc!=SQLITE_OK ){
7163 return rc;
7164 }
7165 *piMoved = maxRootPgno;
7166 }
7167
danielk1977599fcba2004-11-08 07:13:13 +00007168 /* Set the new 'max-root-page' value in the database header. This
7169 ** is the old value less one, less one more if that happens to
7170 ** be a root-page number, less one again if that is the
7171 ** PENDING_BYTE_PAGE.
7172 */
danielk197787a6e732004-11-05 12:58:25 +00007173 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007174 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7175 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007176 maxRootPgno--;
7177 }
danielk1977599fcba2004-11-08 07:13:13 +00007178 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7179
danielk1977aef0bf62005-12-30 16:28:01 +00007180 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007181 }else{
drhc314dc72009-07-21 11:52:34 +00007182 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007183 releasePage(pPage);
7184 }
7185#endif
drh2aa679f2001-06-25 02:11:07 +00007186 }else{
drhc046e3e2009-07-15 11:26:44 +00007187 /* If sqlite3BtreeDropTable was called on page 1.
7188 ** This really never should happen except in a corrupt
7189 ** database.
7190 */
drha34b6762004-05-07 13:30:42 +00007191 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007192 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007193 }
drh8b2f49b2001-06-08 00:21:52 +00007194 return rc;
7195}
drhd677b3d2007-08-20 22:48:41 +00007196int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7197 int rc;
7198 sqlite3BtreeEnter(p);
7199 rc = btreeDropTable(p, iTable, piMoved);
7200 sqlite3BtreeLeave(p);
7201 return rc;
7202}
drh8b2f49b2001-06-08 00:21:52 +00007203
drh001bbcb2003-03-19 03:14:00 +00007204
drh8b2f49b2001-06-08 00:21:52 +00007205/*
danielk1977602b4662009-07-02 07:47:33 +00007206** This function may only be called if the b-tree connection already
7207** has a read or write transaction open on the database.
7208**
drh23e11ca2004-05-04 17:27:28 +00007209** Read the meta-information out of a database file. Meta[0]
7210** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007211** through meta[15] are available for use by higher layers. Meta[0]
7212** is read-only, the others are read/write.
7213**
7214** The schema layer numbers meta values differently. At the schema
7215** layer (and the SetCookie and ReadCookie opcodes) the number of
7216** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007217*/
danielk1977602b4662009-07-02 07:47:33 +00007218void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007219 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007220
drhd677b3d2007-08-20 22:48:41 +00007221 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007222 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007223 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007224 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007225 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007226
danielk1977602b4662009-07-02 07:47:33 +00007227 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007228
danielk1977602b4662009-07-02 07:47:33 +00007229 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7230 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007231#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007232 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007233#endif
drhae157872004-08-14 19:20:09 +00007234
drhd677b3d2007-08-20 22:48:41 +00007235 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007236}
7237
7238/*
drh23e11ca2004-05-04 17:27:28 +00007239** Write meta-information back into the database. Meta[0] is
7240** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007241*/
danielk1977aef0bf62005-12-30 16:28:01 +00007242int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7243 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007244 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007245 int rc;
drh23e11ca2004-05-04 17:27:28 +00007246 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007247 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007248 assert( p->inTrans==TRANS_WRITE );
7249 assert( pBt->pPage1!=0 );
7250 pP1 = pBt->pPage1->aData;
7251 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7252 if( rc==SQLITE_OK ){
7253 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007254#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007255 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007256 assert( pBt->autoVacuum || iMeta==0 );
7257 assert( iMeta==0 || iMeta==1 );
7258 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007259 }
drh64022502009-01-09 14:11:04 +00007260#endif
drh5df72a52002-06-06 23:16:05 +00007261 }
drhd677b3d2007-08-20 22:48:41 +00007262 sqlite3BtreeLeave(p);
7263 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007264}
drh8c42ca92001-06-22 19:15:00 +00007265
danielk1977a5533162009-02-24 10:01:51 +00007266#ifndef SQLITE_OMIT_BTREECOUNT
7267/*
7268** The first argument, pCur, is a cursor opened on some b-tree. Count the
7269** number of entries in the b-tree and write the result to *pnEntry.
7270**
7271** SQLITE_OK is returned if the operation is successfully executed.
7272** Otherwise, if an error is encountered (i.e. an IO error or database
7273** corruption) an SQLite error code is returned.
7274*/
7275int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7276 i64 nEntry = 0; /* Value to return in *pnEntry */
7277 int rc; /* Return code */
7278 rc = moveToRoot(pCur);
7279
7280 /* Unless an error occurs, the following loop runs one iteration for each
7281 ** page in the B-Tree structure (not including overflow pages).
7282 */
7283 while( rc==SQLITE_OK ){
7284 int iIdx; /* Index of child node in parent */
7285 MemPage *pPage; /* Current page of the b-tree */
7286
7287 /* If this is a leaf page or the tree is not an int-key tree, then
7288 ** this page contains countable entries. Increment the entry counter
7289 ** accordingly.
7290 */
7291 pPage = pCur->apPage[pCur->iPage];
7292 if( pPage->leaf || !pPage->intKey ){
7293 nEntry += pPage->nCell;
7294 }
7295
7296 /* pPage is a leaf node. This loop navigates the cursor so that it
7297 ** points to the first interior cell that it points to the parent of
7298 ** the next page in the tree that has not yet been visited. The
7299 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7300 ** of the page, or to the number of cells in the page if the next page
7301 ** to visit is the right-child of its parent.
7302 **
7303 ** If all pages in the tree have been visited, return SQLITE_OK to the
7304 ** caller.
7305 */
7306 if( pPage->leaf ){
7307 do {
7308 if( pCur->iPage==0 ){
7309 /* All pages of the b-tree have been visited. Return successfully. */
7310 *pnEntry = nEntry;
7311 return SQLITE_OK;
7312 }
danielk197730548662009-07-09 05:07:37 +00007313 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007314 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7315
7316 pCur->aiIdx[pCur->iPage]++;
7317 pPage = pCur->apPage[pCur->iPage];
7318 }
7319
7320 /* Descend to the child node of the cell that the cursor currently
7321 ** points at. This is the right-child if (iIdx==pPage->nCell).
7322 */
7323 iIdx = pCur->aiIdx[pCur->iPage];
7324 if( iIdx==pPage->nCell ){
7325 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7326 }else{
7327 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7328 }
7329 }
7330
shanebe217792009-03-05 04:20:31 +00007331 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007332 return rc;
7333}
7334#endif
drhdd793422001-06-28 01:54:48 +00007335
drhdd793422001-06-28 01:54:48 +00007336/*
drh5eddca62001-06-30 21:53:53 +00007337** Return the pager associated with a BTree. This routine is used for
7338** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007339*/
danielk1977aef0bf62005-12-30 16:28:01 +00007340Pager *sqlite3BtreePager(Btree *p){
7341 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007342}
drh5eddca62001-06-30 21:53:53 +00007343
drhb7f91642004-10-31 02:22:47 +00007344#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007345/*
7346** Append a message to the error message string.
7347*/
drh2e38c322004-09-03 18:38:44 +00007348static void checkAppendMsg(
7349 IntegrityCk *pCheck,
7350 char *zMsg1,
7351 const char *zFormat,
7352 ...
7353){
7354 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007355 if( !pCheck->mxErr ) return;
7356 pCheck->mxErr--;
7357 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007358 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007359 if( pCheck->errMsg.nChar ){
7360 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007361 }
drhf089aa42008-07-08 19:34:06 +00007362 if( zMsg1 ){
7363 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7364 }
7365 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7366 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007367 if( pCheck->errMsg.mallocFailed ){
7368 pCheck->mallocFailed = 1;
7369 }
drh5eddca62001-06-30 21:53:53 +00007370}
drhb7f91642004-10-31 02:22:47 +00007371#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007372
drhb7f91642004-10-31 02:22:47 +00007373#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007374/*
7375** Add 1 to the reference count for page iPage. If this is the second
7376** reference to the page, add an error message to pCheck->zErrMsg.
7377** Return 1 if there are 2 ore more references to the page and 0 if
7378** if this is the first reference to the page.
7379**
7380** Also check that the page number is in bounds.
7381*/
danielk197789d40042008-11-17 14:20:56 +00007382static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007383 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007384 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007385 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007386 return 1;
7387 }
7388 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007389 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007390 return 1;
7391 }
7392 return (pCheck->anRef[iPage]++)>1;
7393}
7394
danielk1977afcdd022004-10-31 16:25:42 +00007395#ifndef SQLITE_OMIT_AUTOVACUUM
7396/*
7397** Check that the entry in the pointer-map for page iChild maps to
7398** page iParent, pointer type ptrType. If not, append an error message
7399** to pCheck.
7400*/
7401static void checkPtrmap(
7402 IntegrityCk *pCheck, /* Integrity check context */
7403 Pgno iChild, /* Child page number */
7404 u8 eType, /* Expected pointer map type */
7405 Pgno iParent, /* Expected pointer map parent page number */
7406 char *zContext /* Context description (used for error msg) */
7407){
7408 int rc;
7409 u8 ePtrmapType;
7410 Pgno iPtrmapParent;
7411
7412 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7413 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007414 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007415 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7416 return;
7417 }
7418
7419 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7420 checkAppendMsg(pCheck, zContext,
7421 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7422 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7423 }
7424}
7425#endif
7426
drh5eddca62001-06-30 21:53:53 +00007427/*
7428** Check the integrity of the freelist or of an overflow page list.
7429** Verify that the number of pages on the list is N.
7430*/
drh30e58752002-03-02 20:41:57 +00007431static void checkList(
7432 IntegrityCk *pCheck, /* Integrity checking context */
7433 int isFreeList, /* True for a freelist. False for overflow page list */
7434 int iPage, /* Page number for first page in the list */
7435 int N, /* Expected number of pages in the list */
7436 char *zContext /* Context for error messages */
7437){
7438 int i;
drh3a4c1412004-05-09 20:40:11 +00007439 int expected = N;
7440 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007441 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007442 DbPage *pOvflPage;
7443 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007444 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007445 checkAppendMsg(pCheck, zContext,
7446 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007447 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007448 break;
7449 }
7450 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007451 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007452 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007453 break;
7454 }
danielk19773b8a05f2007-03-19 17:44:26 +00007455 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007456 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007457 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007458#ifndef SQLITE_OMIT_AUTOVACUUM
7459 if( pCheck->pBt->autoVacuum ){
7460 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7461 }
7462#endif
drh45b1fac2008-07-04 17:52:42 +00007463 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007464 checkAppendMsg(pCheck, zContext,
7465 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007466 N--;
7467 }else{
7468 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007469 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007470#ifndef SQLITE_OMIT_AUTOVACUUM
7471 if( pCheck->pBt->autoVacuum ){
7472 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7473 }
7474#endif
7475 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007476 }
7477 N -= n;
drh30e58752002-03-02 20:41:57 +00007478 }
drh30e58752002-03-02 20:41:57 +00007479 }
danielk1977afcdd022004-10-31 16:25:42 +00007480#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007481 else{
7482 /* If this database supports auto-vacuum and iPage is not the last
7483 ** page in this overflow list, check that the pointer-map entry for
7484 ** the following page matches iPage.
7485 */
7486 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007487 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007488 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7489 }
danielk1977afcdd022004-10-31 16:25:42 +00007490 }
7491#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007492 iPage = get4byte(pOvflData);
7493 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007494 }
7495}
drhb7f91642004-10-31 02:22:47 +00007496#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007497
drhb7f91642004-10-31 02:22:47 +00007498#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007499/*
7500** Do various sanity checks on a single page of a tree. Return
7501** the tree depth. Root pages return 0. Parents of root pages
7502** return 1, and so forth.
7503**
7504** These checks are done:
7505**
7506** 1. Make sure that cells and freeblocks do not overlap
7507** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007508** NO 2. Make sure cell keys are in order.
7509** NO 3. Make sure no key is less than or equal to zLowerBound.
7510** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007511** 5. Check the integrity of overflow pages.
7512** 6. Recursively call checkTreePage on all children.
7513** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007514** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007515** the root of the tree.
7516*/
7517static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007518 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007519 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007520 char *zParentContext, /* Parent context */
7521 i64 *pnParentMinKey,
7522 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007523){
7524 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007525 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007526 int hdr, cellStart;
7527 int nCell;
drhda200cc2004-05-09 11:51:38 +00007528 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007529 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007530 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007531 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007532 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007533 i64 nMinKey = 0;
7534 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007535
drh5bb3eb92007-05-04 13:15:55 +00007536 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007537
drh5eddca62001-06-30 21:53:53 +00007538 /* Check that the page exists
7539 */
drhd9cb6ac2005-10-20 07:28:17 +00007540 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007541 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007542 if( iPage==0 ) return 0;
7543 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007544 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007545 checkAppendMsg(pCheck, zContext,
7546 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007547 return 0;
7548 }
danielk197793caf5a2009-07-11 06:55:33 +00007549
7550 /* Clear MemPage.isInit to make sure the corruption detection code in
7551 ** btreeInitPage() is executed. */
7552 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007553 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007554 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007555 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007556 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007557 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007558 return 0;
7559 }
7560
7561 /* Check out all the cells.
7562 */
7563 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007564 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007565 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007566 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007567 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007568
7569 /* Check payload overflow pages
7570 */
drh5bb3eb92007-05-04 13:15:55 +00007571 sqlite3_snprintf(sizeof(zContext), zContext,
7572 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007573 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007574 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007575 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007576 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007577 /* For intKey pages, check that the keys are in order.
7578 */
7579 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7580 else{
7581 if( info.nKey <= nMaxKey ){
7582 checkAppendMsg(pCheck, zContext,
7583 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7584 }
7585 nMaxKey = info.nKey;
7586 }
drh72365832007-03-06 15:53:44 +00007587 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007588 if( (sz>info.nLocal)
7589 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7590 ){
drhb6f41482004-05-14 01:58:11 +00007591 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007592 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7593#ifndef SQLITE_OMIT_AUTOVACUUM
7594 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007595 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007596 }
7597#endif
7598 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007599 }
7600
7601 /* Check sanity of left child page.
7602 */
drhda200cc2004-05-09 11:51:38 +00007603 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007604 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007605#ifndef SQLITE_OMIT_AUTOVACUUM
7606 if( pBt->autoVacuum ){
7607 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7608 }
7609#endif
shaneh195475d2010-02-19 04:28:08 +00007610 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007611 if( i>0 && d2!=depth ){
7612 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7613 }
7614 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007615 }
drh5eddca62001-06-30 21:53:53 +00007616 }
shaneh195475d2010-02-19 04:28:08 +00007617
drhda200cc2004-05-09 11:51:38 +00007618 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007619 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007620 sqlite3_snprintf(sizeof(zContext), zContext,
7621 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007622#ifndef SQLITE_OMIT_AUTOVACUUM
7623 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007624 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007625 }
7626#endif
shaneh195475d2010-02-19 04:28:08 +00007627 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007628 }
drh5eddca62001-06-30 21:53:53 +00007629
shaneh195475d2010-02-19 04:28:08 +00007630 /* For intKey leaf pages, check that the min/max keys are in order
7631 ** with any left/parent/right pages.
7632 */
7633 if( pPage->leaf && pPage->intKey ){
7634 /* if we are a left child page */
7635 if( pnParentMinKey ){
7636 /* if we are the left most child page */
7637 if( !pnParentMaxKey ){
7638 if( nMaxKey > *pnParentMinKey ){
7639 checkAppendMsg(pCheck, zContext,
7640 "Rowid %lld out of order (max larger than parent min of %lld)",
7641 nMaxKey, *pnParentMinKey);
7642 }
7643 }else{
7644 if( nMinKey <= *pnParentMinKey ){
7645 checkAppendMsg(pCheck, zContext,
7646 "Rowid %lld out of order (min less than parent min of %lld)",
7647 nMinKey, *pnParentMinKey);
7648 }
7649 if( nMaxKey > *pnParentMaxKey ){
7650 checkAppendMsg(pCheck, zContext,
7651 "Rowid %lld out of order (max larger than parent max of %lld)",
7652 nMaxKey, *pnParentMaxKey);
7653 }
7654 *pnParentMinKey = nMaxKey;
7655 }
7656 /* else if we're a right child page */
7657 } else if( pnParentMaxKey ){
7658 if( nMinKey <= *pnParentMaxKey ){
7659 checkAppendMsg(pCheck, zContext,
7660 "Rowid %lld out of order (min less than parent max of %lld)",
7661 nMinKey, *pnParentMaxKey);
7662 }
7663 }
7664 }
7665
drh5eddca62001-06-30 21:53:53 +00007666 /* Check for complete coverage of the page
7667 */
drhda200cc2004-05-09 11:51:38 +00007668 data = pPage->aData;
7669 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007670 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007671 if( hit==0 ){
7672 pCheck->mallocFailed = 1;
7673 }else{
drh5d433ce2010-08-14 16:02:52 +00007674 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007675 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007676 memset(hit+contentOffset, 0, usableSize-contentOffset);
7677 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007678 nCell = get2byte(&data[hdr+3]);
7679 cellStart = hdr + 12 - 4*pPage->leaf;
7680 for(i=0; i<nCell; i++){
7681 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007682 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007683 int j;
drh8c2bbb62009-07-10 02:52:20 +00007684 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007685 size = cellSizePtr(pPage, &data[pc]);
7686 }
drhd7c7ecd2009-07-14 17:48:06 +00007687 if( (pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007688 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007689 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007690 }else{
7691 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7692 }
drh2e38c322004-09-03 18:38:44 +00007693 }
drh8c2bbb62009-07-10 02:52:20 +00007694 i = get2byte(&data[hdr+1]);
7695 while( i>0 ){
7696 int size, j;
7697 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7698 size = get2byte(&data[i+2]);
7699 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7700 for(j=i+size-1; j>=i; j--) hit[j]++;
7701 j = get2byte(&data[i]);
7702 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7703 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7704 i = j;
drh2e38c322004-09-03 18:38:44 +00007705 }
7706 for(i=cnt=0; i<usableSize; i++){
7707 if( hit[i]==0 ){
7708 cnt++;
7709 }else if( hit[i]>1 ){
7710 checkAppendMsg(pCheck, 0,
7711 "Multiple uses for byte %d of page %d", i, iPage);
7712 break;
7713 }
7714 }
7715 if( cnt!=data[hdr+7] ){
7716 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007717 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007718 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007719 }
7720 }
drh8c2bbb62009-07-10 02:52:20 +00007721 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007722 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007723 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007724}
drhb7f91642004-10-31 02:22:47 +00007725#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007726
drhb7f91642004-10-31 02:22:47 +00007727#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007728/*
7729** This routine does a complete check of the given BTree file. aRoot[] is
7730** an array of pages numbers were each page number is the root page of
7731** a table. nRoot is the number of entries in aRoot.
7732**
danielk19773509a652009-07-06 18:56:13 +00007733** A read-only or read-write transaction must be opened before calling
7734** this function.
7735**
drhc890fec2008-08-01 20:10:08 +00007736** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007737** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007738** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007739** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007740*/
drh1dcdbc02007-01-27 02:24:54 +00007741char *sqlite3BtreeIntegrityCheck(
7742 Btree *p, /* The btree to be checked */
7743 int *aRoot, /* An array of root pages numbers for individual trees */
7744 int nRoot, /* Number of entries in aRoot[] */
7745 int mxErr, /* Stop reporting errors after this many */
7746 int *pnErr /* Write number of errors seen to this variable */
7747){
danielk197789d40042008-11-17 14:20:56 +00007748 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007749 int nRef;
drhaaab5722002-02-19 13:39:21 +00007750 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007751 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007752 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007753
drhd677b3d2007-08-20 22:48:41 +00007754 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007755 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007756 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007757 sCheck.pBt = pBt;
7758 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007759 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007760 sCheck.mxErr = mxErr;
7761 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007762 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007763 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007764 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007765 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007766 return 0;
7767 }
drhe5ae5732008-06-15 02:51:47 +00007768 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007769 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007770 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007771 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007772 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007773 }
drhda200cc2004-05-09 11:51:38 +00007774 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007775 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007776 if( i<=sCheck.nPage ){
7777 sCheck.anRef[i] = 1;
7778 }
drhf089aa42008-07-08 19:34:06 +00007779 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drhb9755982010-07-24 16:34:37 +00007780 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00007781
7782 /* Check the integrity of the freelist
7783 */
drha34b6762004-05-07 13:30:42 +00007784 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7785 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007786
7787 /* Check all the tables.
7788 */
danielk197789d40042008-11-17 14:20:56 +00007789 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007790 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007791#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007792 if( pBt->autoVacuum && aRoot[i]>1 ){
7793 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7794 }
7795#endif
shaneh195475d2010-02-19 04:28:08 +00007796 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007797 }
7798
7799 /* Make sure every page in the file is referenced
7800 */
drh1dcdbc02007-01-27 02:24:54 +00007801 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007802#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007803 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007804 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007805 }
danielk1977afcdd022004-10-31 16:25:42 +00007806#else
7807 /* If the database supports auto-vacuum, make sure no tables contain
7808 ** references to pointer-map pages.
7809 */
7810 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007811 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007812 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7813 }
7814 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007815 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007816 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7817 }
7818#endif
drh5eddca62001-06-30 21:53:53 +00007819 }
7820
drh64022502009-01-09 14:11:04 +00007821 /* Make sure this analysis did not leave any unref() pages.
7822 ** This is an internal consistency check; an integrity check
7823 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007824 */
drh64022502009-01-09 14:11:04 +00007825 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007826 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007827 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007828 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007829 );
drh5eddca62001-06-30 21:53:53 +00007830 }
7831
7832 /* Clean up and report errors.
7833 */
drhd677b3d2007-08-20 22:48:41 +00007834 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007835 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007836 if( sCheck.mallocFailed ){
7837 sqlite3StrAccumReset(&sCheck.errMsg);
7838 *pnErr = sCheck.nErr+1;
7839 return 0;
7840 }
drh1dcdbc02007-01-27 02:24:54 +00007841 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007842 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7843 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007844}
drhb7f91642004-10-31 02:22:47 +00007845#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007846
drh73509ee2003-04-06 20:44:45 +00007847/*
7848** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007849**
7850** The pager filename is invariant as long as the pager is
7851** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007852*/
danielk1977aef0bf62005-12-30 16:28:01 +00007853const char *sqlite3BtreeGetFilename(Btree *p){
7854 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007855 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007856}
7857
7858/*
danielk19775865e3d2004-06-14 06:03:57 +00007859** Return the pathname of the journal file for this database. The return
7860** value of this routine is the same regardless of whether the journal file
7861** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007862**
7863** The pager journal filename is invariant as long as the pager is
7864** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007865*/
danielk1977aef0bf62005-12-30 16:28:01 +00007866const char *sqlite3BtreeGetJournalname(Btree *p){
7867 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007868 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007869}
7870
danielk19771d850a72004-05-31 08:26:49 +00007871/*
7872** Return non-zero if a transaction is active.
7873*/
danielk1977aef0bf62005-12-30 16:28:01 +00007874int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007875 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007876 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007877}
7878
dana550f2d2010-08-02 10:47:05 +00007879#ifndef SQLITE_OMIT_WAL
7880/*
7881** Run a checkpoint on the Btree passed as the first argument.
7882**
7883** Return SQLITE_LOCKED if this or any other connection has an open
7884** transaction on the shared-cache the argument Btree is connected to.
7885*/
7886int sqlite3BtreeCheckpoint(Btree *p){
7887 int rc = SQLITE_OK;
7888 if( p ){
7889 BtShared *pBt = p->pBt;
7890 sqlite3BtreeEnter(p);
7891 if( pBt->inTransaction!=TRANS_NONE ){
7892 rc = SQLITE_LOCKED;
7893 }else{
7894 rc = sqlite3PagerCheckpoint(pBt->pPager);
7895 }
7896 sqlite3BtreeLeave(p);
7897 }
7898 return rc;
7899}
7900#endif
7901
danielk19771d850a72004-05-31 08:26:49 +00007902/*
danielk19772372c2b2006-06-27 16:34:56 +00007903** Return non-zero if a read (or write) transaction is active.
7904*/
7905int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007906 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007907 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007908 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007909}
7910
danielk197704103022009-02-03 16:51:24 +00007911int sqlite3BtreeIsInBackup(Btree *p){
7912 assert( p );
7913 assert( sqlite3_mutex_held(p->db->mutex) );
7914 return p->nBackup!=0;
7915}
7916
danielk19772372c2b2006-06-27 16:34:56 +00007917/*
danielk1977da184232006-01-05 11:34:32 +00007918** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007919** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007920** purposes (for example, to store a high-level schema associated with
7921** the shared-btree). The btree layer manages reference counting issues.
7922**
7923** The first time this is called on a shared-btree, nBytes bytes of memory
7924** are allocated, zeroed, and returned to the caller. For each subsequent
7925** call the nBytes parameter is ignored and a pointer to the same blob
7926** of memory returned.
7927**
danielk1977171bfed2008-06-23 09:50:50 +00007928** If the nBytes parameter is 0 and the blob of memory has not yet been
7929** allocated, a null pointer is returned. If the blob has already been
7930** allocated, it is returned as normal.
7931**
danielk1977da184232006-01-05 11:34:32 +00007932** Just before the shared-btree is closed, the function passed as the
7933** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007934** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007935** on the memory, the btree layer does that.
7936*/
7937void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7938 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007939 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007940 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00007941 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00007942 pBt->xFreeSchema = xFree;
7943 }
drh27641702007-08-22 02:56:42 +00007944 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007945 return pBt->pSchema;
7946}
7947
danielk1977c87d34d2006-01-06 13:00:28 +00007948/*
danielk1977404ca072009-03-16 13:19:36 +00007949** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7950** btree as the argument handle holds an exclusive lock on the
7951** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007952*/
7953int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007954 int rc;
drhe5fe6902007-12-07 18:55:28 +00007955 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007956 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007957 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7958 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007959 sqlite3BtreeLeave(p);
7960 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007961}
7962
drha154dcd2006-03-22 22:10:07 +00007963
7964#ifndef SQLITE_OMIT_SHARED_CACHE
7965/*
7966** Obtain a lock on the table whose root page is iTab. The
7967** lock is a write lock if isWritelock is true or a read lock
7968** if it is false.
7969*/
danielk1977c00da102006-01-07 13:21:04 +00007970int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007971 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00007972 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00007973 if( p->sharable ){
7974 u8 lockType = READ_LOCK + isWriteLock;
7975 assert( READ_LOCK+1==WRITE_LOCK );
7976 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00007977
drh6a9ad3d2008-04-02 16:29:30 +00007978 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007979 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007980 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007981 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007982 }
7983 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007984 }
7985 return rc;
7986}
drha154dcd2006-03-22 22:10:07 +00007987#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007988
danielk1977b4e9af92007-05-01 17:49:49 +00007989#ifndef SQLITE_OMIT_INCRBLOB
7990/*
7991** Argument pCsr must be a cursor opened for writing on an
7992** INTKEY table currently pointing at a valid table entry.
7993** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00007994**
7995** Only the data content may only be modified, it is not possible to
7996** change the length of the data stored. If this function is called with
7997** parameters that attempt to write past the end of the existing data,
7998** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00007999*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008000int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008001 int rc;
drh1fee73e2007-08-29 04:00:57 +00008002 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008003 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008004 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008005
danielk1977c9000e62009-07-08 13:55:28 +00008006 rc = restoreCursorPosition(pCsr);
8007 if( rc!=SQLITE_OK ){
8008 return rc;
8009 }
danielk19773588ceb2008-06-10 17:30:26 +00008010 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8011 if( pCsr->eState!=CURSOR_VALID ){
8012 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008013 }
8014
danielk1977c9000e62009-07-08 13:55:28 +00008015 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008016 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008017 ** (b) there is a read/write transaction open,
8018 ** (c) the connection holds a write-lock on the table (if required),
8019 ** (d) there are no conflicting read-locks, and
8020 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008021 */
danielk19774f029602009-07-08 18:45:37 +00008022 if( !pCsr->wrFlag ){
8023 return SQLITE_READONLY;
8024 }
danielk197796d48e92009-06-29 06:00:37 +00008025 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
8026 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8027 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008028 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008029
drhfb192682009-07-11 18:26:28 +00008030 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008031}
danielk19772dec9702007-05-02 16:48:37 +00008032
8033/*
8034** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008035** overflow list for the current row. This is used by cursors opened
8036** for incremental blob IO only.
8037**
8038** This function sets a flag only. The actual page location cache
8039** (stored in BtCursor.aOverflow[]) is allocated and used by function
8040** accessPayload() (the worker function for sqlite3BtreeData() and
8041** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008042*/
8043void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008044 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008045 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00008046 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00008047 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00008048 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008049}
danielk1977b4e9af92007-05-01 17:49:49 +00008050#endif
dane04dc882010-04-20 18:53:15 +00008051
8052/*
8053** Set both the "read version" (single byte at byte offset 18) and
8054** "write version" (single byte at byte offset 19) fields in the database
8055** header to iVersion.
8056*/
8057int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8058 BtShared *pBt = pBtree->pBt;
8059 int rc; /* Return code */
8060
danb9780022010-04-21 18:37:57 +00008061 assert( pBtree->inTrans==TRANS_NONE );
dane04dc882010-04-20 18:53:15 +00008062 assert( iVersion==1 || iVersion==2 );
8063
danb9780022010-04-21 18:37:57 +00008064 /* If setting the version fields to 1, do not automatically open the
8065 ** WAL connection, even if the version fields are currently set to 2.
8066 */
shaneh5eba1f62010-07-02 17:05:03 +00008067 pBt->doNotUseWAL = (u8)(iVersion==1);
danb9780022010-04-21 18:37:57 +00008068
8069 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008070 if( rc==SQLITE_OK ){
8071 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008072 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008073 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008074 if( rc==SQLITE_OK ){
8075 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8076 if( rc==SQLITE_OK ){
8077 aData[18] = (u8)iVersion;
8078 aData[19] = (u8)iVersion;
8079 }
8080 }
8081 }
dane04dc882010-04-20 18:53:15 +00008082 }
8083
danb9780022010-04-21 18:37:57 +00008084 pBt->doNotUseWAL = 0;
dane04dc882010-04-20 18:53:15 +00008085 return rc;
8086}