blob: 8ebe0ccb3740ed89b8237dfe3d4f3bae22668063 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
daneebf2f52017-11-18 17:30:08 +0000115/*
116** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118**
119** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122** with the page number and filename associated with the (MemPage*).
123*/
124#ifdef SQLITE_DEBUG
125int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000126 char *zMsg;
127 sqlite3BeginBenignMalloc();
128 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130 );
drh8bfe66a2018-01-22 15:45:12 +0000131 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000132 if( zMsg ){
133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134 }
135 sqlite3_free(zMsg);
136 return SQLITE_CORRUPT_BKPT;
137}
138# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139#else
140# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141#endif
142
drhe53831d2007-08-17 01:14:38 +0000143#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000144
145#ifdef SQLITE_DEBUG
146/*
drh0ee3dbe2009-10-16 15:05:18 +0000147**** This function is only used as part of an assert() statement. ***
148**
149** Check to see if pBtree holds the required locks to read or write to the
150** table with root page iRoot. Return 1 if it does and 0 if not.
151**
152** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000153** Btree connection pBtree:
154**
155** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156**
drh0ee3dbe2009-10-16 15:05:18 +0000157** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000158** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000159** the corresponding table. This makes things a bit more complicated,
160** as this module treats each table as a separate structure. To determine
161** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000162** function has to search through the database schema.
163**
drh0ee3dbe2009-10-16 15:05:18 +0000164** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000165** hold a write-lock on the schema table (root page 1). This is also
166** acceptable.
167*/
168static int hasSharedCacheTableLock(
169 Btree *pBtree, /* Handle that must hold lock */
170 Pgno iRoot, /* Root page of b-tree */
171 int isIndex, /* True if iRoot is the root of an index b-tree */
172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
173){
174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175 Pgno iTab = 0;
176 BtLock *pLock;
177
drh0ee3dbe2009-10-16 15:05:18 +0000178 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000179 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000180 ** Return true immediately.
181 */
danielk197796d48e92009-06-29 06:00:37 +0000182 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000184 ){
185 return 1;
186 }
187
drh0ee3dbe2009-10-16 15:05:18 +0000188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
192 */
drh2c5e35f2014-08-05 11:04:21 +0000193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000194 return 1;
195 }
196
danielk197796d48e92009-06-29 06:00:37 +0000197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
200 ** table. */
201 if( isIndex ){
202 HashElem *p;
203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000205 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000206 if( iTab ){
207 /* Two or more indexes share the same root page. There must
208 ** be imposter tables. So just return true. The assert is not
209 ** useful in that case. */
210 return 1;
211 }
shane5eff7cf2009-08-10 03:57:58 +0000212 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000213 }
214 }
215 }else{
216 iTab = iRoot;
217 }
218
219 /* Search for the required lock. Either a write-lock on root-page iTab, a
220 ** write-lock on the schema table, or (if the client is reading) a
221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223 if( pLock->pBtree==pBtree
224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225 && pLock->eLock>=eLockType
226 ){
227 return 1;
228 }
229 }
230
231 /* Failed to find the required lock. */
232 return 0;
233}
drh0ee3dbe2009-10-16 15:05:18 +0000234#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000235
drh0ee3dbe2009-10-16 15:05:18 +0000236#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000237/*
drh0ee3dbe2009-10-16 15:05:18 +0000238**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000239**
drh0ee3dbe2009-10-16 15:05:18 +0000240** Return true if it would be illegal for pBtree to write into the
241** table or index rooted at iRoot because other shared connections are
242** simultaneously reading that same table or index.
243**
244** It is illegal for pBtree to write if some other Btree object that
245** shares the same BtShared object is currently reading or writing
246** the iRoot table. Except, if the other Btree object has the
247** read-uncommitted flag set, then it is OK for the other object to
248** have a read cursor.
249**
250** For example, before writing to any part of the table or index
251** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000252**
253** assert( !hasReadConflicts(pBtree, iRoot) );
254*/
255static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256 BtCursor *p;
257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258 if( p->pgnoRoot==iRoot
259 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000261 ){
262 return 1;
263 }
264 }
265 return 0;
266}
267#endif /* #ifdef SQLITE_DEBUG */
268
danielk1977da184232006-01-05 11:34:32 +0000269/*
drh0ee3dbe2009-10-16 15:05:18 +0000270** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000271** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000272** SQLITE_OK if the lock may be obtained (by calling
273** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000274*/
drhc25eabe2009-02-24 18:57:31 +0000275static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000276 BtShared *pBt = p->pBt;
277 BtLock *pIter;
278
drh1fee73e2007-08-29 04:00:57 +0000279 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000283
danielk19775b413d72009-04-01 09:41:54 +0000284 /* If requesting a write-lock, then the Btree must have an open write
285 ** transaction on this file. And, obviously, for this to be so there
286 ** must be an open write transaction on the file itself.
287 */
288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290
drh0ee3dbe2009-10-16 15:05:18 +0000291 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000292 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000293 return SQLITE_OK;
294 }
295
danielk1977641b0f42007-12-21 04:47:25 +0000296 /* If some other connection is holding an exclusive lock, the
297 ** requested lock may not be obtained.
298 */
drhc9166342012-01-05 23:32:06 +0000299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000302 }
303
danielk1977e0d9e6f2009-07-03 16:25:06 +0000304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305 /* The condition (pIter->eLock!=eLock) in the following if(...)
306 ** statement is a simplification of:
307 **
308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309 **
310 ** since we know that if eLock==WRITE_LOCK, then no other connection
311 ** may hold a WRITE_LOCK on any table in this file (since there can
312 ** only be a single writer).
313 */
314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318 if( eLock==WRITE_LOCK ){
319 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000320 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000321 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000323 }
324 }
325 return SQLITE_OK;
326}
drhe53831d2007-08-17 01:14:38 +0000327#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000328
drhe53831d2007-08-17 01:14:38 +0000329#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000330/*
331** Add a lock on the table with root-page iTable to the shared-btree used
332** by Btree handle p. Parameter eLock must be either READ_LOCK or
333** WRITE_LOCK.
334**
danielk19779d104862009-07-09 08:27:14 +0000335** This function assumes the following:
336**
drh0ee3dbe2009-10-16 15:05:18 +0000337** (a) The specified Btree object p is connected to a sharable
338** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000339**
drh0ee3dbe2009-10-16 15:05:18 +0000340** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000341** with the requested lock (i.e. querySharedCacheTableLock() has
342** already been called and returned SQLITE_OK).
343**
344** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000346*/
drhc25eabe2009-02-24 18:57:31 +0000347static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000348 BtShared *pBt = p->pBt;
349 BtLock *pLock = 0;
350 BtLock *pIter;
351
drh1fee73e2007-08-29 04:00:57 +0000352 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000355
danielk1977e0d9e6f2009-07-03 16:25:06 +0000356 /* A connection with the read-uncommitted flag set will never try to
357 ** obtain a read-lock using this function. The only read-lock obtained
358 ** by a connection in read-uncommitted mode is on the sqlite_master
359 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000361
danielk19779d104862009-07-09 08:27:14 +0000362 /* This function should only be called on a sharable b-tree after it
363 ** has been determined that no other b-tree holds a conflicting lock. */
364 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000366
367 /* First search the list for an existing lock on this table. */
368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369 if( pIter->iTable==iTable && pIter->pBtree==p ){
370 pLock = pIter;
371 break;
372 }
373 }
374
375 /* If the above search did not find a BtLock struct associating Btree p
376 ** with table iTable, allocate one and link it into the list.
377 */
378 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000380 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000381 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000382 }
383 pLock->iTable = iTable;
384 pLock->pBtree = p;
385 pLock->pNext = pBt->pLock;
386 pBt->pLock = pLock;
387 }
388
389 /* Set the BtLock.eLock variable to the maximum of the current lock
390 ** and the requested lock. This means if a write-lock was already held
391 ** and a read-lock requested, we don't incorrectly downgrade the lock.
392 */
393 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000394 if( eLock>pLock->eLock ){
395 pLock->eLock = eLock;
396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397
398 return SQLITE_OK;
399}
drhe53831d2007-08-17 01:14:38 +0000400#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000401
drhe53831d2007-08-17 01:14:38 +0000402#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000403/*
drhc25eabe2009-02-24 18:57:31 +0000404** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000405** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000406**
drh0ee3dbe2009-10-16 15:05:18 +0000407** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000408** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000409** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000410*/
drhc25eabe2009-02-24 18:57:31 +0000411static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000412 BtShared *pBt = p->pBt;
413 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000414
drh1fee73e2007-08-29 04:00:57 +0000415 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000416 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000417 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000418
danielk1977aef0bf62005-12-30 16:28:01 +0000419 while( *ppIter ){
420 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000422 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000423 if( pLock->pBtree==p ){
424 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000425 assert( pLock->iTable!=1 || pLock==&p->lock );
426 if( pLock->iTable!=1 ){
427 sqlite3_free(pLock);
428 }
danielk1977aef0bf62005-12-30 16:28:01 +0000429 }else{
430 ppIter = &pLock->pNext;
431 }
432 }
danielk1977641b0f42007-12-21 04:47:25 +0000433
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000435 if( pBt->pWriter==p ){
436 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000438 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000439 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000440 ** transaction. If there currently exists a writer, and p is not
441 ** that writer, then the number of locks held by connections other
442 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000443 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000444 **
drhc9166342012-01-05 23:32:06 +0000445 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000446 ** be zero already. So this next line is harmless in that case.
447 */
drhc9166342012-01-05 23:32:06 +0000448 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000449 }
danielk1977aef0bf62005-12-30 16:28:01 +0000450}
danielk197794b30732009-07-02 17:21:57 +0000451
danielk1977e0d9e6f2009-07-03 16:25:06 +0000452/*
drh0ee3dbe2009-10-16 15:05:18 +0000453** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000454*/
danielk197794b30732009-07-02 17:21:57 +0000455static void downgradeAllSharedCacheTableLocks(Btree *p){
456 BtShared *pBt = p->pBt;
457 if( pBt->pWriter==p ){
458 BtLock *pLock;
459 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463 pLock->eLock = READ_LOCK;
464 }
465 }
466}
467
danielk1977aef0bf62005-12-30 16:28:01 +0000468#endif /* SQLITE_OMIT_SHARED_CACHE */
469
drh3908fe92017-09-01 14:50:19 +0000470static void releasePage(MemPage *pPage); /* Forward reference */
471static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000472static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000473
drh1fee73e2007-08-29 04:00:57 +0000474/*
drh0ee3dbe2009-10-16 15:05:18 +0000475***** This routine is used inside of assert() only ****
476**
477** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000478*/
drh0ee3dbe2009-10-16 15:05:18 +0000479#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000480static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000481 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000482}
drh5e08d0f2016-06-04 21:05:54 +0000483
484/* Verify that the cursor and the BtShared agree about what is the current
485** database connetion. This is important in shared-cache mode. If the database
486** connection pointers get out-of-sync, it is possible for routines like
487** btreeInitPage() to reference an stale connection pointer that references a
488** a connection that has already closed. This routine is used inside assert()
489** statements only and for the purpose of double-checking that the btree code
490** does keep the database connection pointers up-to-date.
491*/
dan7a2347e2016-01-07 16:43:54 +0000492static int cursorOwnsBtShared(BtCursor *p){
493 assert( cursorHoldsMutex(p) );
494 return (p->pBtree->db==p->pBt->db);
495}
drh1fee73e2007-08-29 04:00:57 +0000496#endif
497
danielk197792d4d7a2007-05-04 12:05:56 +0000498/*
dan5a500af2014-03-11 20:33:04 +0000499** Invalidate the overflow cache of the cursor passed as the first argument.
500** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000501*/
drh036dbec2014-03-11 23:40:44 +0000502#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000503
504/*
505** Invalidate the overflow page-list cache for all cursors opened
506** on the shared btree structure pBt.
507*/
508static void invalidateAllOverflowCache(BtShared *pBt){
509 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000510 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000511 for(p=pBt->pCursor; p; p=p->pNext){
512 invalidateOverflowCache(p);
513 }
514}
danielk197796d48e92009-06-29 06:00:37 +0000515
dan5a500af2014-03-11 20:33:04 +0000516#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000517/*
518** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000519** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000520** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000521**
522** If argument isClearTable is true, then the entire contents of the
523** table is about to be deleted. In this case invalidate all incrblob
524** cursors open on any row within the table with root-page pgnoRoot.
525**
526** Otherwise, if argument isClearTable is false, then the row with
527** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000528** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000529*/
530static void invalidateIncrblobCursors(
531 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000532 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000533 i64 iRow, /* The rowid that might be changing */
534 int isClearTable /* True if all rows are being deleted */
535){
536 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000537 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000538 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000539 pBtree->hasIncrblobCur = 0;
540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541 if( (p->curFlags & BTCF_Incrblob)!=0 ){
542 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000544 p->eState = CURSOR_INVALID;
545 }
danielk197796d48e92009-06-29 06:00:37 +0000546 }
547 }
548}
549
danielk197792d4d7a2007-05-04 12:05:56 +0000550#else
dan5a500af2014-03-11 20:33:04 +0000551 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000552 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000553#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000554
drh980b1a72006-08-16 16:42:48 +0000555/*
danielk1977bea2a942009-01-20 17:06:27 +0000556** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557** when a page that previously contained data becomes a free-list leaf
558** page.
559**
560** The BtShared.pHasContent bitvec exists to work around an obscure
561** bug caused by the interaction of two useful IO optimizations surrounding
562** free-list leaf pages:
563**
564** 1) When all data is deleted from a page and the page becomes
565** a free-list leaf page, the page is not written to the database
566** (as free-list leaf pages contain no meaningful data). Sometimes
567** such a page is not even journalled (as it will not be modified,
568** why bother journalling it?).
569**
570** 2) When a free-list leaf page is reused, its content is not read
571** from the database or written to the journal file (why should it
572** be, if it is not at all meaningful?).
573**
574** By themselves, these optimizations work fine and provide a handy
575** performance boost to bulk delete or insert operations. However, if
576** a page is moved to the free-list and then reused within the same
577** transaction, a problem comes up. If the page is not journalled when
578** it is moved to the free-list and it is also not journalled when it
579** is extracted from the free-list and reused, then the original data
580** may be lost. In the event of a rollback, it may not be possible
581** to restore the database to its original configuration.
582**
583** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584** moved to become a free-list leaf page, the corresponding bit is
585** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000586** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000587** set in BtShared.pHasContent. The contents of the bitvec are cleared
588** at the end of every transaction.
589*/
590static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591 int rc = SQLITE_OK;
592 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000593 assert( pgno<=pBt->nPage );
594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000595 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000596 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000597 }
598 }
599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601 }
602 return rc;
603}
604
605/*
606** Query the BtShared.pHasContent vector.
607**
608** This function is called when a free-list leaf page is removed from the
609** free-list for reuse. It returns false if it is safe to retrieve the
610** page from the pager layer with the 'no-content' flag set. True otherwise.
611*/
612static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613 Bitvec *p = pBt->pHasContent;
614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615}
616
617/*
618** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619** invoked at the conclusion of each write-transaction.
620*/
621static void btreeClearHasContent(BtShared *pBt){
622 sqlite3BitvecDestroy(pBt->pHasContent);
623 pBt->pHasContent = 0;
624}
625
626/*
drh138eeeb2013-03-27 03:15:23 +0000627** Release all of the apPage[] pages for a cursor.
628*/
629static void btreeReleaseAllCursorPages(BtCursor *pCur){
630 int i;
drh352a35a2017-08-15 03:46:47 +0000631 if( pCur->iPage>=0 ){
632 for(i=0; i<pCur->iPage; i++){
633 releasePageNotNull(pCur->apPage[i]);
634 }
635 releasePageNotNull(pCur->pPage);
636 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000637 }
drh138eeeb2013-03-27 03:15:23 +0000638}
639
danf0ee1d32015-09-12 19:26:11 +0000640/*
641** The cursor passed as the only argument must point to a valid entry
642** when this function is called (i.e. have eState==CURSOR_VALID). This
643** function saves the current cursor key in variables pCur->nKey and
644** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645** code otherwise.
646**
647** If the cursor is open on an intkey table, then the integer key
648** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650** set to point to a malloced buffer pCur->nKey bytes in size containing
651** the key.
652*/
653static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000654 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000655 assert( CURSOR_VALID==pCur->eState );
656 assert( 0==pCur->pKey );
657 assert( cursorHoldsMutex(pCur) );
658
drha7c90c42016-06-04 20:37:10 +0000659 if( pCur->curIntKey ){
660 /* Only the rowid is required for a table btree */
661 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662 }else{
danfffaf232018-12-14 13:18:35 +0000663 /* For an index btree, save the complete key content. It is possible
664 ** that the current key is corrupt. In that case, it is possible that
665 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666 ** up to the size of 1 varint plus 1 8-byte value when the cursor
667 ** position is restored. Hence the 17 bytes of padding allocated
668 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000669 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000670 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000671 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000672 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000673 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000674 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000675 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000676 pCur->pKey = pKey;
677 }else{
678 sqlite3_free(pKey);
679 }
680 }else{
mistachkinfad30392016-02-13 23:43:46 +0000681 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000682 }
683 }
684 assert( !pCur->curIntKey || !pCur->pKey );
685 return rc;
686}
drh138eeeb2013-03-27 03:15:23 +0000687
688/*
drh980b1a72006-08-16 16:42:48 +0000689** Save the current cursor position in the variables BtCursor.nKey
690** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000691**
692** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
693** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000694*/
695static int saveCursorPosition(BtCursor *pCur){
696 int rc;
697
drhd2f83132015-03-25 17:35:01 +0000698 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000699 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000700 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000701
drhd2f83132015-03-25 17:35:01 +0000702 if( pCur->eState==CURSOR_SKIPNEXT ){
703 pCur->eState = CURSOR_VALID;
704 }else{
705 pCur->skipNext = 0;
706 }
drh980b1a72006-08-16 16:42:48 +0000707
danf0ee1d32015-09-12 19:26:11 +0000708 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000709 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000710 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000711 pCur->eState = CURSOR_REQUIRESEEK;
712 }
713
dane755e102015-09-30 12:59:12 +0000714 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000715 return rc;
716}
717
drh637f3d82014-08-22 22:26:07 +0000718/* Forward reference */
719static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
720
drh980b1a72006-08-16 16:42:48 +0000721/*
drh0ee3dbe2009-10-16 15:05:18 +0000722** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000723** the table with root-page iRoot. "Saving the cursor position" means that
724** the location in the btree is remembered in such a way that it can be
725** moved back to the same spot after the btree has been modified. This
726** routine is called just before cursor pExcept is used to modify the
727** table, for example in BtreeDelete() or BtreeInsert().
728**
drh27fb7462015-06-30 02:47:36 +0000729** If there are two or more cursors on the same btree, then all such
730** cursors should have their BTCF_Multiple flag set. The btreeCursor()
731** routine enforces that rule. This routine only needs to be called in
732** the uncommon case when pExpect has the BTCF_Multiple flag set.
733**
734** If pExpect!=NULL and if no other cursors are found on the same root-page,
735** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
736** pointless call to this routine.
737**
drh637f3d82014-08-22 22:26:07 +0000738** Implementation note: This routine merely checks to see if any cursors
739** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
740** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000741*/
742static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
743 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000744 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000745 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000746 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000747 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
748 }
drh27fb7462015-06-30 02:47:36 +0000749 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
750 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
751 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000752}
753
754/* This helper routine to saveAllCursors does the actual work of saving
755** the cursors if and when a cursor is found that actually requires saving.
756** The common case is that no cursors need to be saved, so this routine is
757** broken out from its caller to avoid unnecessary stack pointer movement.
758*/
759static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000760 BtCursor *p, /* The first cursor that needs saving */
761 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
762 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000763){
764 do{
drh138eeeb2013-03-27 03:15:23 +0000765 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000766 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000767 int rc = saveCursorPosition(p);
768 if( SQLITE_OK!=rc ){
769 return rc;
770 }
771 }else{
drh85ef6302017-08-02 15:50:09 +0000772 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000773 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000774 }
775 }
drh637f3d82014-08-22 22:26:07 +0000776 p = p->pNext;
777 }while( p );
drh980b1a72006-08-16 16:42:48 +0000778 return SQLITE_OK;
779}
780
781/*
drhbf700f32007-03-31 02:36:44 +0000782** Clear the current cursor position.
783*/
danielk1977be51a652008-10-08 17:58:48 +0000784void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000785 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000786 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000787 pCur->pKey = 0;
788 pCur->eState = CURSOR_INVALID;
789}
790
791/*
danielk19773509a652009-07-06 18:56:13 +0000792** In this version of BtreeMoveto, pKey is a packed index record
793** such as is generated by the OP_MakeRecord opcode. Unpack the
794** record and then call BtreeMovetoUnpacked() to do the work.
795*/
796static int btreeMoveto(
797 BtCursor *pCur, /* Cursor open on the btree to be searched */
798 const void *pKey, /* Packed key if the btree is an index */
799 i64 nKey, /* Integer key for tables. Size of pKey for indices */
800 int bias, /* Bias search to the high end */
801 int *pRes /* Write search results here */
802){
803 int rc; /* Status code */
804 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000805
806 if( pKey ){
danb0c4c942019-01-24 15:16:17 +0000807 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +0000808 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +0000809 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000810 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +0000811 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
812 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +0000813 rc = SQLITE_CORRUPT_BKPT;
drha582b012016-12-21 19:45:54 +0000814 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000815 }
danielk19773509a652009-07-06 18:56:13 +0000816 }else{
817 pIdxKey = 0;
818 }
819 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000820moveto_done:
821 if( pIdxKey ){
822 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000823 }
824 return rc;
825}
826
827/*
drh980b1a72006-08-16 16:42:48 +0000828** Restore the cursor to the position it was in (or as close to as possible)
829** when saveCursorPosition() was called. Note that this call deletes the
830** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000831** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000832** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000833*/
danielk197730548662009-07-09 05:07:37 +0000834static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000835 int rc;
mistachkin4e2d3d42019-04-01 03:07:21 +0000836 int skipNext = 0;
dan7a2347e2016-01-07 16:43:54 +0000837 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000838 assert( pCur->eState>=CURSOR_REQUIRESEEK );
839 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000840 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000841 }
drh980b1a72006-08-16 16:42:48 +0000842 pCur->eState = CURSOR_INVALID;
drhb336d1a2019-03-30 19:17:35 +0000843 if( sqlite3FaultSim(410) ){
844 rc = SQLITE_IOERR;
845 }else{
846 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
847 }
drh980b1a72006-08-16 16:42:48 +0000848 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000849 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000850 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000851 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +0000852 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +0000853 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
854 pCur->eState = CURSOR_SKIPNEXT;
855 }
drh980b1a72006-08-16 16:42:48 +0000856 }
857 return rc;
858}
859
drha3460582008-07-11 21:02:53 +0000860#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000861 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000862 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000863 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000864
drha3460582008-07-11 21:02:53 +0000865/*
drh6848dad2014-08-22 23:33:03 +0000866** Determine whether or not a cursor has moved from the position where
867** it was last placed, or has been invalidated for any other reason.
868** Cursors can move when the row they are pointing at is deleted out
869** from under them, for example. Cursor might also move if a btree
870** is rebalanced.
drha3460582008-07-11 21:02:53 +0000871**
drh6848dad2014-08-22 23:33:03 +0000872** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000873**
drh6848dad2014-08-22 23:33:03 +0000874** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
875** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000876*/
drh6848dad2014-08-22 23:33:03 +0000877int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000878 assert( EIGHT_BYTE_ALIGNMENT(pCur)
879 || pCur==sqlite3BtreeFakeValidCursor() );
880 assert( offsetof(BtCursor, eState)==0 );
881 assert( sizeof(pCur->eState)==1 );
882 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000883}
884
885/*
drhfe0cf7a2017-08-16 19:20:20 +0000886** Return a pointer to a fake BtCursor object that will always answer
887** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
888** cursor returned must not be used with any other Btree interface.
889*/
890BtCursor *sqlite3BtreeFakeValidCursor(void){
891 static u8 fakeCursor = CURSOR_VALID;
892 assert( offsetof(BtCursor, eState)==0 );
893 return (BtCursor*)&fakeCursor;
894}
895
896/*
drh6848dad2014-08-22 23:33:03 +0000897** This routine restores a cursor back to its original position after it
898** has been moved by some outside activity (such as a btree rebalance or
899** a row having been deleted out from under the cursor).
900**
901** On success, the *pDifferentRow parameter is false if the cursor is left
902** pointing at exactly the same row. *pDifferntRow is the row the cursor
903** was pointing to has been deleted, forcing the cursor to point to some
904** nearby row.
905**
906** This routine should only be called for a cursor that just returned
907** TRUE from sqlite3BtreeCursorHasMoved().
908*/
909int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000910 int rc;
911
drh6848dad2014-08-22 23:33:03 +0000912 assert( pCur!=0 );
913 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000914 rc = restoreCursorPosition(pCur);
915 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000916 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000917 return rc;
918 }
drh606a3572015-03-25 18:29:10 +0000919 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000920 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000921 }else{
drh6848dad2014-08-22 23:33:03 +0000922 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000923 }
924 return SQLITE_OK;
925}
926
drhf7854c72015-10-27 13:24:37 +0000927#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000928/*
drh0df57012015-08-14 15:05:55 +0000929** Provide hints to the cursor. The particular hint given (and the type
930** and number of the varargs parameters) is determined by the eHintType
931** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000932*/
drh0df57012015-08-14 15:05:55 +0000933void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000934 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000935}
drhf7854c72015-10-27 13:24:37 +0000936#endif
937
938/*
939** Provide flag hints to the cursor.
940*/
941void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
942 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
943 pCur->hints = x;
944}
945
drh28935362013-12-07 20:39:19 +0000946
danielk1977599fcba2004-11-08 07:13:13 +0000947#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000948/*
drha3152892007-05-05 11:48:52 +0000949** Given a page number of a regular database page, return the page
950** number for the pointer-map page that contains the entry for the
951** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000952**
953** Return 0 (not a valid page) for pgno==1 since there is
954** no pointer map associated with page 1. The integrity_check logic
955** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000956*/
danielk1977266664d2006-02-10 08:24:21 +0000957static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000958 int nPagesPerMapPage;
959 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000960 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000961 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000962 nPagesPerMapPage = (pBt->usableSize/5)+1;
963 iPtrMap = (pgno-2)/nPagesPerMapPage;
964 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000965 if( ret==PENDING_BYTE_PAGE(pBt) ){
966 ret++;
967 }
968 return ret;
969}
danielk1977a19df672004-11-03 11:37:07 +0000970
danielk1977afcdd022004-10-31 16:25:42 +0000971/*
danielk1977afcdd022004-10-31 16:25:42 +0000972** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000973**
974** This routine updates the pointer map entry for page number 'key'
975** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000976**
977** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
978** a no-op. If an error occurs, the appropriate error code is written
979** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000980*/
drh98add2e2009-07-20 17:11:49 +0000981static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000982 DbPage *pDbPage; /* The pointer map page */
983 u8 *pPtrmap; /* The pointer map data */
984 Pgno iPtrmap; /* The pointer map page number */
985 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000986 int rc; /* Return code from subfunctions */
987
988 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000989
drh1fee73e2007-08-29 04:00:57 +0000990 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000991 /* The master-journal page number must never be used as a pointer map page */
992 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
993
danielk1977ac11ee62005-01-15 12:45:51 +0000994 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000995 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000996 *pRC = SQLITE_CORRUPT_BKPT;
997 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000998 }
danielk1977266664d2006-02-10 08:24:21 +0000999 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001000 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00001001 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00001002 *pRC = rc;
1003 return;
danielk1977afcdd022004-10-31 16:25:42 +00001004 }
drh203b1ea2018-12-14 03:14:18 +00001005 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1006 /* The first byte of the extra data is the MemPage.isInit byte.
1007 ** If that byte is set, it means this page is also being used
1008 ** as a btree page. */
1009 *pRC = SQLITE_CORRUPT_BKPT;
1010 goto ptrmap_exit;
1011 }
danielk19778c666b12008-07-18 09:34:57 +00001012 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001013 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001014 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001015 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001016 }
drhfc243732011-05-17 15:21:56 +00001017 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001018 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001019
drh615ae552005-01-16 23:21:00 +00001020 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1021 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001022 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001023 if( rc==SQLITE_OK ){
1024 pPtrmap[offset] = eType;
1025 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001026 }
danielk1977afcdd022004-10-31 16:25:42 +00001027 }
1028
drh4925a552009-07-07 11:39:58 +00001029ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001030 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001031}
1032
1033/*
1034** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001035**
1036** This routine retrieves the pointer map entry for page 'key', writing
1037** the type and parent page number to *pEType and *pPgno respectively.
1038** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001039*/
danielk1977aef0bf62005-12-30 16:28:01 +00001040static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001041 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001042 int iPtrmap; /* Pointer map page index */
1043 u8 *pPtrmap; /* Pointer map page data */
1044 int offset; /* Offset of entry in pointer map */
1045 int rc;
1046
drh1fee73e2007-08-29 04:00:57 +00001047 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001048
danielk1977266664d2006-02-10 08:24:21 +00001049 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001050 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001051 if( rc!=0 ){
1052 return rc;
1053 }
danielk19773b8a05f2007-03-19 17:44:26 +00001054 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001055
danielk19778c666b12008-07-18 09:34:57 +00001056 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001057 if( offset<0 ){
1058 sqlite3PagerUnref(pDbPage);
1059 return SQLITE_CORRUPT_BKPT;
1060 }
1061 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001062 assert( pEType!=0 );
1063 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001064 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001065
danielk19773b8a05f2007-03-19 17:44:26 +00001066 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001067 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001068 return SQLITE_OK;
1069}
1070
danielk197785d90ca2008-07-19 14:25:15 +00001071#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001072 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001073 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001074 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001075#endif
danielk1977afcdd022004-10-31 16:25:42 +00001076
drh0d316a42002-08-11 20:10:47 +00001077/*
drh271efa52004-05-30 19:19:05 +00001078** Given a btree page and a cell index (0 means the first cell on
1079** the page, 1 means the second cell, and so forth) return a pointer
1080** to the cell content.
1081**
drhf44890a2015-06-27 03:58:15 +00001082** findCellPastPtr() does the same except it skips past the initial
1083** 4-byte child pointer found on interior pages, if there is one.
1084**
drh271efa52004-05-30 19:19:05 +00001085** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001086*/
drh1688c862008-07-18 02:44:17 +00001087#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001088 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001089#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001090 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001091
drh43605152004-05-29 21:46:49 +00001092
1093/*
drh5fa60512015-06-19 17:19:34 +00001094** This is common tail processing for btreeParseCellPtr() and
1095** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1096** on a single B-tree page. Make necessary adjustments to the CellInfo
1097** structure.
drh43605152004-05-29 21:46:49 +00001098*/
drh5fa60512015-06-19 17:19:34 +00001099static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1100 MemPage *pPage, /* Page containing the cell */
1101 u8 *pCell, /* Pointer to the cell text. */
1102 CellInfo *pInfo /* Fill in this structure */
1103){
1104 /* If the payload will not fit completely on the local page, we have
1105 ** to decide how much to store locally and how much to spill onto
1106 ** overflow pages. The strategy is to minimize the amount of unused
1107 ** space on overflow pages while keeping the amount of local storage
1108 ** in between minLocal and maxLocal.
1109 **
1110 ** Warning: changing the way overflow payload is distributed in any
1111 ** way will result in an incompatible file format.
1112 */
1113 int minLocal; /* Minimum amount of payload held locally */
1114 int maxLocal; /* Maximum amount of payload held locally */
1115 int surplus; /* Overflow payload available for local storage */
1116
1117 minLocal = pPage->minLocal;
1118 maxLocal = pPage->maxLocal;
1119 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1120 testcase( surplus==maxLocal );
1121 testcase( surplus==maxLocal+1 );
1122 if( surplus <= maxLocal ){
1123 pInfo->nLocal = (u16)surplus;
1124 }else{
1125 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001126 }
drh45ac1c72015-12-18 03:59:16 +00001127 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001128}
1129
1130/*
drh5fa60512015-06-19 17:19:34 +00001131** The following routines are implementations of the MemPage.xParseCell()
1132** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001133**
drh5fa60512015-06-19 17:19:34 +00001134** Parse a cell content block and fill in the CellInfo structure.
1135**
1136** btreeParseCellPtr() => table btree leaf nodes
1137** btreeParseCellNoPayload() => table btree internal nodes
1138** btreeParseCellPtrIndex() => index btree nodes
1139**
1140** There is also a wrapper function btreeParseCell() that works for
1141** all MemPage types and that references the cell by index rather than
1142** by pointer.
drh43605152004-05-29 21:46:49 +00001143*/
drh5fa60512015-06-19 17:19:34 +00001144static void btreeParseCellPtrNoPayload(
1145 MemPage *pPage, /* Page containing the cell */
1146 u8 *pCell, /* Pointer to the cell text. */
1147 CellInfo *pInfo /* Fill in this structure */
1148){
1149 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1150 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001151 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001152#ifndef SQLITE_DEBUG
1153 UNUSED_PARAMETER(pPage);
1154#endif
drh5fa60512015-06-19 17:19:34 +00001155 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1156 pInfo->nPayload = 0;
1157 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001158 pInfo->pPayload = 0;
1159 return;
1160}
danielk197730548662009-07-09 05:07:37 +00001161static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001162 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001163 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001164 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001165){
drh3e28ff52014-09-24 00:59:08 +00001166 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001167 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001168 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001169
drh1fee73e2007-08-29 04:00:57 +00001170 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001171 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001172 assert( pPage->intKeyLeaf );
1173 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001174 pIter = pCell;
1175
1176 /* The next block of code is equivalent to:
1177 **
1178 ** pIter += getVarint32(pIter, nPayload);
1179 **
1180 ** The code is inlined to avoid a function call.
1181 */
1182 nPayload = *pIter;
1183 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001184 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001185 nPayload &= 0x7f;
1186 do{
1187 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1188 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001189 }
drh56cb04e2015-06-19 18:24:37 +00001190 pIter++;
1191
1192 /* The next block of code is equivalent to:
1193 **
1194 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1195 **
1196 ** The code is inlined to avoid a function call.
1197 */
1198 iKey = *pIter;
1199 if( iKey>=0x80 ){
1200 u8 *pEnd = &pIter[7];
1201 iKey &= 0x7f;
1202 while(1){
1203 iKey = (iKey<<7) | (*++pIter & 0x7f);
1204 if( (*pIter)<0x80 ) break;
1205 if( pIter>=pEnd ){
1206 iKey = (iKey<<8) | *++pIter;
1207 break;
1208 }
1209 }
1210 }
1211 pIter++;
1212
1213 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001214 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001215 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001216 testcase( nPayload==pPage->maxLocal );
1217 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001218 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001219 /* This is the (easy) common case where the entire payload fits
1220 ** on the local page. No overflow is required.
1221 */
drhab1cc582014-09-23 21:25:19 +00001222 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1223 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001224 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001225 }else{
drh5fa60512015-06-19 17:19:34 +00001226 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001227 }
drh3aac2dd2004-04-26 14:10:20 +00001228}
drh5fa60512015-06-19 17:19:34 +00001229static void btreeParseCellPtrIndex(
1230 MemPage *pPage, /* Page containing the cell */
1231 u8 *pCell, /* Pointer to the cell text. */
1232 CellInfo *pInfo /* Fill in this structure */
1233){
1234 u8 *pIter; /* For scanning through pCell */
1235 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001236
drh5fa60512015-06-19 17:19:34 +00001237 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1238 assert( pPage->leaf==0 || pPage->leaf==1 );
1239 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001240 pIter = pCell + pPage->childPtrSize;
1241 nPayload = *pIter;
1242 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001243 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001244 nPayload &= 0x7f;
1245 do{
1246 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1247 }while( *(pIter)>=0x80 && pIter<pEnd );
1248 }
1249 pIter++;
1250 pInfo->nKey = nPayload;
1251 pInfo->nPayload = nPayload;
1252 pInfo->pPayload = pIter;
1253 testcase( nPayload==pPage->maxLocal );
1254 testcase( nPayload==pPage->maxLocal+1 );
1255 if( nPayload<=pPage->maxLocal ){
1256 /* This is the (easy) common case where the entire payload fits
1257 ** on the local page. No overflow is required.
1258 */
1259 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1260 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1261 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001262 }else{
1263 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001264 }
1265}
danielk197730548662009-07-09 05:07:37 +00001266static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001267 MemPage *pPage, /* Page containing the cell */
1268 int iCell, /* The cell index. First cell is 0 */
1269 CellInfo *pInfo /* Fill in this structure */
1270){
drh5fa60512015-06-19 17:19:34 +00001271 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001272}
drh3aac2dd2004-04-26 14:10:20 +00001273
1274/*
drh5fa60512015-06-19 17:19:34 +00001275** The following routines are implementations of the MemPage.xCellSize
1276** method.
1277**
drh43605152004-05-29 21:46:49 +00001278** Compute the total number of bytes that a Cell needs in the cell
1279** data area of the btree-page. The return number includes the cell
1280** data header and the local payload, but not any overflow page or
1281** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001282**
drh5fa60512015-06-19 17:19:34 +00001283** cellSizePtrNoPayload() => table internal nodes
1284** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001285*/
danielk1977ae5558b2009-04-29 11:31:47 +00001286static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001287 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1288 u8 *pEnd; /* End mark for a varint */
1289 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001290
1291#ifdef SQLITE_DEBUG
1292 /* The value returned by this function should always be the same as
1293 ** the (CellInfo.nSize) value found by doing a full parse of the
1294 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1295 ** this function verifies that this invariant is not violated. */
1296 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001297 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001298#endif
1299
drh3e28ff52014-09-24 00:59:08 +00001300 nSize = *pIter;
1301 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001302 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001303 nSize &= 0x7f;
1304 do{
1305 nSize = (nSize<<7) | (*++pIter & 0x7f);
1306 }while( *(pIter)>=0x80 && pIter<pEnd );
1307 }
1308 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001309 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001310 /* pIter now points at the 64-bit integer key value, a variable length
1311 ** integer. The following block moves pIter to point at the first byte
1312 ** past the end of the key value. */
1313 pEnd = &pIter[9];
1314 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001315 }
drh0a45c272009-07-08 01:49:11 +00001316 testcase( nSize==pPage->maxLocal );
1317 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001318 if( nSize<=pPage->maxLocal ){
1319 nSize += (u32)(pIter - pCell);
1320 if( nSize<4 ) nSize = 4;
1321 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001322 int minLocal = pPage->minLocal;
1323 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001324 testcase( nSize==pPage->maxLocal );
1325 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001326 if( nSize>pPage->maxLocal ){
1327 nSize = minLocal;
1328 }
drh3e28ff52014-09-24 00:59:08 +00001329 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001330 }
drhdc41d602014-09-22 19:51:35 +00001331 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001332 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001333}
drh25ada072015-06-19 15:07:14 +00001334static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1335 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1336 u8 *pEnd; /* End mark for a varint */
1337
1338#ifdef SQLITE_DEBUG
1339 /* The value returned by this function should always be the same as
1340 ** the (CellInfo.nSize) value found by doing a full parse of the
1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1342 ** this function verifies that this invariant is not violated. */
1343 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001344 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001345#else
1346 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001347#endif
1348
1349 assert( pPage->childPtrSize==4 );
1350 pEnd = pIter + 9;
1351 while( (*pIter++)&0x80 && pIter<pEnd );
1352 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1353 return (u16)(pIter - pCell);
1354}
1355
drh0ee3dbe2009-10-16 15:05:18 +00001356
1357#ifdef SQLITE_DEBUG
1358/* This variation on cellSizePtr() is used inside of assert() statements
1359** only. */
drha9121e42008-02-19 14:59:35 +00001360static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001361 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001362}
danielk1977bc6ada42004-06-30 08:20:16 +00001363#endif
drh3b7511c2001-05-26 13:15:44 +00001364
danielk197779a40da2005-01-16 08:00:01 +00001365#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001366/*
drh0f1bf4c2019-01-13 20:17:21 +00001367** The cell pCell is currently part of page pSrc but will ultimately be part
1368** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1369** pointer to an overflow page, insert an entry into the pointer-map for
1370** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001371*/
drh0f1bf4c2019-01-13 20:17:21 +00001372static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001373 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001374 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001375 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001376 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001377 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001378 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001379 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1380 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001381 *pRC = SQLITE_CORRUPT_BKPT;
1382 return;
1383 }
1384 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001385 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001386 }
danielk1977ac11ee62005-01-15 12:45:51 +00001387}
danielk197779a40da2005-01-16 08:00:01 +00001388#endif
1389
danielk1977ac11ee62005-01-15 12:45:51 +00001390
drhda200cc2004-05-09 11:51:38 +00001391/*
dane6d065a2017-02-24 19:58:22 +00001392** Defragment the page given. This routine reorganizes cells within the
1393** page so that there are no free-blocks on the free-block list.
1394**
1395** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1396** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001397**
1398** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1399** b-tree page so that there are no freeblocks or fragment bytes, all
1400** unused bytes are contained in the unallocated space region, and all
1401** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001402*/
dane6d065a2017-02-24 19:58:22 +00001403static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001404 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001405 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001406 int hdr; /* Offset to the page header */
1407 int size; /* Size of a cell */
1408 int usableSize; /* Number of usable bytes on a page */
1409 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001410 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001411 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001412 unsigned char *data; /* The page data */
1413 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001414 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001415 int iCellFirst; /* First allowable cell index */
1416 int iCellLast; /* Last possible cell index */
1417
danielk19773b8a05f2007-03-19 17:44:26 +00001418 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001419 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001420 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001421 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001422 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001423 temp = 0;
1424 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001425 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001426 cellOffset = pPage->cellOffset;
1427 nCell = pPage->nCell;
drh45616c72019-02-28 13:21:36 +00001428 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001429 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001430 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001431
1432 /* This block handles pages with two or fewer free blocks and nMaxFrag
1433 ** or fewer fragmented bytes. In this case it is faster to move the
1434 ** two (or one) blocks of cells using memmove() and add the required
1435 ** offsets to each pointer in the cell-pointer array than it is to
1436 ** reconstruct the entire page. */
1437 if( (int)data[hdr+7]<=nMaxFrag ){
1438 int iFree = get2byte(&data[hdr+1]);
drh119e1ff2019-03-30 18:39:13 +00001439 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001440 if( iFree ){
1441 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001442 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001443 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1444 u8 *pEnd = &data[cellOffset + nCell*2];
1445 u8 *pAddr;
1446 int sz2 = 0;
1447 int sz = get2byte(&data[iFree+2]);
1448 int top = get2byte(&data[hdr+5]);
drh4e6cec12017-09-28 13:47:35 +00001449 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001450 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001451 }
dane6d065a2017-02-24 19:58:22 +00001452 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001453 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001454 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001455 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001456 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1457 sz += sz2;
dandcc427c2019-03-21 21:18:36 +00001458 }else if( iFree+sz>usableSize ){
1459 return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001460 }
dandcc427c2019-03-21 21:18:36 +00001461
dane6d065a2017-02-24 19:58:22 +00001462 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001463 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001464 memmove(&data[cbrk], &data[top], iFree-top);
1465 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1466 pc = get2byte(pAddr);
1467 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1468 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1469 }
1470 goto defragment_out;
1471 }
1472 }
1473 }
1474
drh281b21d2008-08-22 12:57:08 +00001475 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001476 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001477 for(i=0; i<nCell; i++){
1478 u8 *pAddr; /* The i-th cell pointer */
1479 pAddr = &data[cellOffset + i*2];
1480 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001481 testcase( pc==iCellFirst );
1482 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001483 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001484 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001485 */
1486 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001487 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001488 }
drh17146622009-07-07 17:38:38 +00001489 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001490 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001491 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001492 if( cbrk<iCellFirst || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001493 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001494 }
drh7157e1d2009-07-09 13:25:32 +00001495 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001496 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001497 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001498 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001499 if( temp==0 ){
1500 int x;
1501 if( cbrk==pc ) continue;
1502 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1503 x = get2byte(&data[hdr+5]);
1504 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1505 src = temp;
1506 }
1507 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001508 }
dane6d065a2017-02-24 19:58:22 +00001509 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001510
1511 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001512 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001513 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001514 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001515 }
drh17146622009-07-07 17:38:38 +00001516 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001517 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001518 data[hdr+1] = 0;
1519 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001520 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001521 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001522 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001523}
1524
drha059ad02001-04-17 20:09:11 +00001525/*
dan8e9ba0c2014-10-14 17:27:04 +00001526** Search the free-list on page pPg for space to store a cell nByte bytes in
1527** size. If one can be found, return a pointer to the space and remove it
1528** from the free-list.
1529**
1530** If no suitable space can be found on the free-list, return NULL.
1531**
drhba0f9992014-10-30 20:48:44 +00001532** This function may detect corruption within pPg. If corruption is
1533** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001534**
drhb7580e82015-06-25 18:36:13 +00001535** Slots on the free list that are between 1 and 3 bytes larger than nByte
1536** will be ignored if adding the extra space to the fragmentation count
1537** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001538*/
drhb7580e82015-06-25 18:36:13 +00001539static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001540 const int hdr = pPg->hdrOffset; /* Offset to page header */
1541 u8 * const aData = pPg->aData; /* Page data */
1542 int iAddr = hdr + 1; /* Address of ptr to pc */
1543 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */
1544 int x; /* Excess size of the slot */
1545 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1546 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001547
drhb7580e82015-06-25 18:36:13 +00001548 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001549 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001550 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1551 ** freeblock form a big-endian integer which is the size of the freeblock
1552 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001553 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001554 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001555 testcase( x==4 );
1556 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001557 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001558 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1559 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001560 if( aData[hdr+7]>57 ) return 0;
1561
dan8e9ba0c2014-10-14 17:27:04 +00001562 /* Remove the slot from the free-list. Update the number of
1563 ** fragmented bytes within the page. */
1564 memcpy(&aData[iAddr], &aData[pc], 2);
1565 aData[hdr+7] += (u8)x;
drh298f45c2019-02-08 22:34:59 +00001566 }else if( x+pc > maxPC ){
1567 /* This slot extends off the end of the usable part of the page */
1568 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1569 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001570 }else{
1571 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001572 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001573 put2byte(&aData[pc+2], x);
1574 }
1575 return &aData[pc + x];
1576 }
drhb7580e82015-06-25 18:36:13 +00001577 iAddr = pc;
1578 pc = get2byte(&aData[pc]);
drh2a934d72019-03-13 10:29:16 +00001579 if( pc<=iAddr+size ){
drh298f45c2019-02-08 22:34:59 +00001580 if( pc ){
1581 /* The next slot in the chain is not past the end of the current slot */
1582 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1583 }
1584 return 0;
1585 }
drh87d63c92017-08-23 23:09:03 +00001586 }
drh298f45c2019-02-08 22:34:59 +00001587 if( pc>maxPC+nByte-4 ){
1588 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001589 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001590 }
dan8e9ba0c2014-10-14 17:27:04 +00001591 return 0;
1592}
1593
1594/*
danielk19776011a752009-04-01 16:25:32 +00001595** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001596** as the first argument. Write into *pIdx the index into pPage->aData[]
1597** of the first byte of allocated space. Return either SQLITE_OK or
1598** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001599**
drh0a45c272009-07-08 01:49:11 +00001600** The caller guarantees that there is sufficient space to make the
1601** allocation. This routine might need to defragment in order to bring
1602** all the space together, however. This routine will avoid using
1603** the first two bytes past the cell pointer area since presumably this
1604** allocation is being made in order to insert a new cell, so we will
1605** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001606*/
drh0a45c272009-07-08 01:49:11 +00001607static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001608 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1609 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001610 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001611 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001612 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001613
danielk19773b8a05f2007-03-19 17:44:26 +00001614 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001615 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001616 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001617 assert( nByte>=0 ); /* Minimum cell size is 4 */
1618 assert( pPage->nFree>=nByte );
1619 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001620 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001621
drh0a45c272009-07-08 01:49:11 +00001622 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1623 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001624 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001625 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1626 ** and the reserved space is zero (the usual value for reserved space)
1627 ** then the cell content offset of an empty page wants to be 65536.
1628 ** However, that integer is too large to be stored in a 2-byte unsigned
1629 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001630 top = get2byte(&data[hdr+5]);
drhdfcecdf2019-05-08 00:17:45 +00001631 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
drhded340e2015-06-25 15:04:56 +00001632 if( gap>top ){
drh291508f2019-05-08 04:33:17 +00001633 if( top==0 && pPage->pBt->usableSize==65536 ){
drhded340e2015-06-25 15:04:56 +00001634 top = 65536;
1635 }else{
daneebf2f52017-11-18 17:30:08 +00001636 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001637 }
1638 }
drh43605152004-05-29 21:46:49 +00001639
drhd4a67442019-02-11 19:27:36 +00001640 /* If there is enough space between gap and top for one more cell pointer,
1641 ** and if the freelist is not empty, then search the
1642 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001643 */
drh5e2f8b92001-05-28 00:41:15 +00001644 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001645 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001646 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001647 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001648 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001649 if( pSpace ){
drh2b96b692019-08-05 16:22:20 +00001650 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1651 if( (*pIdx = (int)(pSpace-data))<=gap ){
1652 return SQLITE_CORRUPT_PAGE(pPage);
1653 }else{
1654 return SQLITE_OK;
1655 }
drhb7580e82015-06-25 18:36:13 +00001656 }else if( rc ){
1657 return rc;
drh9e572e62004-04-23 23:43:10 +00001658 }
1659 }
drh43605152004-05-29 21:46:49 +00001660
drh4c04f3c2014-08-20 11:56:14 +00001661 /* The request could not be fulfilled using a freelist slot. Check
1662 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001663 */
1664 testcase( gap+2+nByte==top );
1665 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001666 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001667 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001668 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001669 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001670 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001671 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001672 }
1673
1674
drh43605152004-05-29 21:46:49 +00001675 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001676 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001677 ** validated the freelist. Given that the freelist is valid, there
1678 ** is no way that the allocation can extend off the end of the page.
1679 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001680 */
drh0a45c272009-07-08 01:49:11 +00001681 top -= nByte;
drh43605152004-05-29 21:46:49 +00001682 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001683 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001684 *pIdx = top;
1685 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001686}
1687
1688/*
drh9e572e62004-04-23 23:43:10 +00001689** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001690** The first byte of the new free block is pPage->aData[iStart]
1691** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001692**
drh5f5c7532014-08-20 17:56:27 +00001693** Adjacent freeblocks are coalesced.
1694**
drh5860a612019-02-12 16:58:26 +00001695** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001696** that routine will not detect overlap between cells or freeblocks. Nor
1697** does it detect cells or freeblocks that encrouch into the reserved bytes
1698** at the end of the page. So do additional corruption checks inside this
1699** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001700*/
drh5f5c7532014-08-20 17:56:27 +00001701static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001702 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001703 u16 iFreeBlk; /* Address of the next freeblock */
1704 u8 hdr; /* Page header size. 0 or 100 */
1705 u8 nFrag = 0; /* Reduction in fragmentation */
1706 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001707 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001708 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001709 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001710
drh9e572e62004-04-23 23:43:10 +00001711 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001712 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001713 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001714 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001715 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001716 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001717 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001718
drh5f5c7532014-08-20 17:56:27 +00001719 /* The list of freeblocks must be in ascending order. Find the
1720 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001721 */
drh43605152004-05-29 21:46:49 +00001722 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001723 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001724 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1725 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1726 }else{
drh85f071b2016-09-17 19:34:32 +00001727 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1728 if( iFreeBlk<iPtr+4 ){
1729 if( iFreeBlk==0 ) break;
daneebf2f52017-11-18 17:30:08 +00001730 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001731 }
drh7bc4c452014-08-20 18:43:44 +00001732 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001733 }
drh5e398e42017-08-23 20:36:06 +00001734 if( iFreeBlk>pPage->pBt->usableSize-4 ){
daneebf2f52017-11-18 17:30:08 +00001735 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001736 }
drh7bc4c452014-08-20 18:43:44 +00001737 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1738
1739 /* At this point:
1740 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001741 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001742 **
1743 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1744 */
1745 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1746 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001747 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001748 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhcc97ca42017-06-07 22:32:59 +00001749 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001750 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001751 }
drh7bc4c452014-08-20 18:43:44 +00001752 iSize = iEnd - iStart;
1753 iFreeBlk = get2byte(&data[iFreeBlk]);
1754 }
1755
drh3f387402014-09-24 01:23:00 +00001756 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1757 ** pointer in the page header) then check to see if iStart should be
1758 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001759 */
1760 if( iPtr>hdr+1 ){
1761 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1762 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001763 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001764 nFrag += iStart - iPtrEnd;
1765 iSize = iEnd - iPtr;
1766 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001767 }
drh9e572e62004-04-23 23:43:10 +00001768 }
daneebf2f52017-11-18 17:30:08 +00001769 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001770 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001771 }
drh5e398e42017-08-23 20:36:06 +00001772 x = get2byte(&data[hdr+5]);
1773 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001774 /* The new freeblock is at the beginning of the cell content area,
1775 ** so just extend the cell content area rather than create another
1776 ** freelist entry */
daneebf2f52017-11-18 17:30:08 +00001777 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001778 put2byte(&data[hdr+1], iFreeBlk);
1779 put2byte(&data[hdr+5], iEnd);
1780 }else{
1781 /* Insert the new freeblock into the freelist */
1782 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001783 }
drh5e398e42017-08-23 20:36:06 +00001784 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1785 /* Overwrite deleted information with zeros when the secure_delete
1786 ** option is enabled */
1787 memset(&data[iStart], 0, iSize);
1788 }
1789 put2byte(&data[iStart], iFreeBlk);
1790 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001791 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001792 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001793}
1794
1795/*
drh271efa52004-05-30 19:19:05 +00001796** Decode the flags byte (the first byte of the header) for a page
1797** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001798**
1799** Only the following combinations are supported. Anything different
1800** indicates a corrupt database files:
1801**
1802** PTF_ZERODATA
1803** PTF_ZERODATA | PTF_LEAF
1804** PTF_LEAFDATA | PTF_INTKEY
1805** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001806*/
drh44845222008-07-17 18:39:57 +00001807static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001808 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001809
1810 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001811 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001812 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001813 flagByte &= ~PTF_LEAF;
1814 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001815 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001816 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001817 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001818 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1819 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001820 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001821 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1822 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001823 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001824 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001825 if( pPage->leaf ){
1826 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001827 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001828 }else{
1829 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001830 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001831 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001832 }
drh271efa52004-05-30 19:19:05 +00001833 pPage->maxLocal = pBt->maxLeaf;
1834 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001835 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001836 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1837 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001838 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001839 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1840 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001841 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001842 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001843 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001844 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001845 pPage->maxLocal = pBt->maxLocal;
1846 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001847 }else{
drhfdab0262014-11-20 15:30:50 +00001848 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1849 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001850 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001851 }
drhc9166342012-01-05 23:32:06 +00001852 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001853 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001854}
1855
1856/*
drhb0ea9432019-02-09 21:06:40 +00001857** Compute the amount of freespace on the page. In other words, fill
1858** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00001859*/
drhb0ea9432019-02-09 21:06:40 +00001860static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001861 int pc; /* Address of a freeblock within pPage->aData[] */
1862 u8 hdr; /* Offset to beginning of page header */
1863 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00001864 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00001865 int nFree; /* Number of unused bytes on the page */
1866 int top; /* First byte of the cell content area */
1867 int iCellFirst; /* First allowable cell or freeblock offset */
1868 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001869
danielk197771d5d2c2008-09-29 11:49:47 +00001870 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001871 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001872 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001873 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001874 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1875 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00001876 assert( pPage->isInit==1 );
1877 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001878
drhb0ea9432019-02-09 21:06:40 +00001879 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00001880 hdr = pPage->hdrOffset;
1881 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00001882 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1883 ** the start of the cell content area. A zero value for this integer is
1884 ** interpreted as 65536. */
1885 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00001886 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00001887 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00001888
drh14e845a2017-05-25 21:35:56 +00001889 /* Compute the total free space on the page
1890 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1891 ** start of the first freeblock on the page, or is zero if there are no
1892 ** freeblocks. */
1893 pc = get2byte(&data[hdr+1]);
1894 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1895 if( pc>0 ){
1896 u32 next, size;
1897 if( pc<iCellFirst ){
1898 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1899 ** always be at least one cell before the first freeblock.
1900 */
daneebf2f52017-11-18 17:30:08 +00001901 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001902 }
drh14e845a2017-05-25 21:35:56 +00001903 while( 1 ){
1904 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001905 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001906 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001907 }
1908 next = get2byte(&data[pc]);
1909 size = get2byte(&data[pc+2]);
1910 nFree = nFree + size;
1911 if( next<=pc+size+3 ) break;
1912 pc = next;
1913 }
1914 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001915 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001916 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001917 }
1918 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001919 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001920 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001921 }
danielk197771d5d2c2008-09-29 11:49:47 +00001922 }
drh14e845a2017-05-25 21:35:56 +00001923
1924 /* At this point, nFree contains the sum of the offset to the start
1925 ** of the cell-content area plus the number of free bytes within
1926 ** the cell-content area. If this is greater than the usable-size
1927 ** of the page, then the page must be corrupted. This check also
1928 ** serves to verify that the offset to the start of the cell-content
1929 ** area, according to the page header, lies within the page.
1930 */
drhdfcecdf2019-05-08 00:17:45 +00001931 if( nFree>usableSize || nFree<iCellFirst ){
daneebf2f52017-11-18 17:30:08 +00001932 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001933 }
1934 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00001935 return SQLITE_OK;
1936}
1937
1938/*
drh5860a612019-02-12 16:58:26 +00001939** Do additional sanity check after btreeInitPage() if
1940** PRAGMA cell_size_check=ON
1941*/
1942static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1943 int iCellFirst; /* First allowable cell or freeblock offset */
1944 int iCellLast; /* Last possible cell or freeblock offset */
1945 int i; /* Index into the cell pointer array */
1946 int sz; /* Size of a cell */
1947 int pc; /* Address of a freeblock within pPage->aData[] */
1948 u8 *data; /* Equal to pPage->aData */
1949 int usableSize; /* Maximum usable space on the page */
1950 int cellOffset; /* Start of cell content area */
1951
1952 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1953 usableSize = pPage->pBt->usableSize;
1954 iCellLast = usableSize - 4;
1955 data = pPage->aData;
1956 cellOffset = pPage->cellOffset;
1957 if( !pPage->leaf ) iCellLast--;
1958 for(i=0; i<pPage->nCell; i++){
1959 pc = get2byteAligned(&data[cellOffset+i*2]);
1960 testcase( pc==iCellFirst );
1961 testcase( pc==iCellLast );
1962 if( pc<iCellFirst || pc>iCellLast ){
1963 return SQLITE_CORRUPT_PAGE(pPage);
1964 }
1965 sz = pPage->xCellSize(pPage, &data[pc]);
1966 testcase( pc+sz==usableSize );
1967 if( pc+sz>usableSize ){
1968 return SQLITE_CORRUPT_PAGE(pPage);
1969 }
1970 }
1971 return SQLITE_OK;
1972}
1973
1974/*
drhb0ea9432019-02-09 21:06:40 +00001975** Initialize the auxiliary information for a disk block.
1976**
1977** Return SQLITE_OK on success. If we see that the page does
1978** not contain a well-formed database page, then return
1979** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1980** guarantee that the page is well-formed. It only shows that
1981** we failed to detect any corruption.
1982*/
1983static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00001984 u8 *data; /* Equal to pPage->aData */
1985 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00001986
1987 assert( pPage->pBt!=0 );
1988 assert( pPage->pBt->db!=0 );
1989 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1990 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1991 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1992 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1993 assert( pPage->isInit==0 );
1994
1995 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00001996 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00001997 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1998 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00001999 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00002000 return SQLITE_CORRUPT_PAGE(pPage);
2001 }
2002 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2003 pPage->maskPage = (u16)(pBt->pageSize - 1);
2004 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00002005 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2006 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2007 pPage->aDataEnd = pPage->aData + pBt->usableSize;
2008 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002009 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2010 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002011 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002012 if( pPage->nCell>MX_CELL(pBt) ){
2013 /* To many cells for a single page. The page must be corrupt */
2014 return SQLITE_CORRUPT_PAGE(pPage);
2015 }
2016 testcase( pPage->nCell==MX_CELL(pBt) );
2017 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2018 ** possible for a root page of a table that contains no rows) then the
2019 ** offset to the cell content area will equal the page size minus the
2020 ** bytes of reserved space. */
2021 assert( pPage->nCell>0
mistachkin065f3bf2019-03-20 05:45:03 +00002022 || get2byteNotZero(&data[5])==(int)pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002023 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002024 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002025 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002026 if( pBt->db->flags & SQLITE_CellSizeCk ){
2027 return btreeCellSizeCheck(pPage);
2028 }
drh9e572e62004-04-23 23:43:10 +00002029 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002030}
2031
2032/*
drh8b2f49b2001-06-08 00:21:52 +00002033** Set up a raw page so that it looks like a database page holding
2034** no entries.
drhbd03cae2001-06-02 02:40:57 +00002035*/
drh9e572e62004-04-23 23:43:10 +00002036static void zeroPage(MemPage *pPage, int flags){
2037 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002038 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002039 u8 hdr = pPage->hdrOffset;
2040 u16 first;
drh9e572e62004-04-23 23:43:10 +00002041
danielk19773b8a05f2007-03-19 17:44:26 +00002042 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00002043 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2044 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002045 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002046 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002047 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002048 memset(&data[hdr], 0, pBt->usableSize - hdr);
2049 }
drh1bd10f82008-12-10 21:19:56 +00002050 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002051 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002052 memset(&data[hdr+1], 0, 4);
2053 data[hdr+7] = 0;
2054 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002055 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002056 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002057 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002058 pPage->aDataEnd = &data[pBt->usableSize];
2059 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002060 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002061 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002062 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2063 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002064 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002065 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002066}
2067
drh897a8202008-09-18 01:08:15 +00002068
2069/*
2070** Convert a DbPage obtained from the pager into a MemPage used by
2071** the btree layer.
2072*/
2073static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2074 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002075 if( pgno!=pPage->pgno ){
2076 pPage->aData = sqlite3PagerGetData(pDbPage);
2077 pPage->pDbPage = pDbPage;
2078 pPage->pBt = pBt;
2079 pPage->pgno = pgno;
2080 pPage->hdrOffset = pgno==1 ? 100 : 0;
2081 }
2082 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002083 return pPage;
2084}
2085
drhbd03cae2001-06-02 02:40:57 +00002086/*
drh3aac2dd2004-04-26 14:10:20 +00002087** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002088** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002089**
drh7e8c6f12015-05-28 03:28:27 +00002090** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2091** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002092** to fetch the content. Just fill in the content with zeros for now.
2093** If in the future we call sqlite3PagerWrite() on this page, that
2094** means we have started to be concerned about content and the disk
2095** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002096*/
danielk197730548662009-07-09 05:07:37 +00002097static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002098 BtShared *pBt, /* The btree */
2099 Pgno pgno, /* Number of the page to fetch */
2100 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002101 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002102){
drh3aac2dd2004-04-26 14:10:20 +00002103 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002104 DbPage *pDbPage;
2105
drhb00fc3b2013-08-21 23:42:32 +00002106 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002107 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002108 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002109 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002110 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002111 return SQLITE_OK;
2112}
2113
2114/*
danielk1977bea2a942009-01-20 17:06:27 +00002115** Retrieve a page from the pager cache. If the requested page is not
2116** already in the pager cache return NULL. Initialize the MemPage.pBt and
2117** MemPage.aData elements if needed.
2118*/
2119static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2120 DbPage *pDbPage;
2121 assert( sqlite3_mutex_held(pBt->mutex) );
2122 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2123 if( pDbPage ){
2124 return btreePageFromDbPage(pDbPage, pgno, pBt);
2125 }
2126 return 0;
2127}
2128
2129/*
danielk197789d40042008-11-17 14:20:56 +00002130** Return the size of the database file in pages. If there is any kind of
2131** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002132*/
drhb1299152010-03-30 22:58:33 +00002133static Pgno btreePagecount(BtShared *pBt){
2134 return pBt->nPage;
2135}
2136u32 sqlite3BtreeLastPage(Btree *p){
2137 assert( sqlite3BtreeHoldsMutex(p) );
drh8a181002017-10-12 01:19:06 +00002138 assert( ((p->pBt->nPage)&0x80000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002139 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002140}
2141
2142/*
drh28f58dd2015-06-27 19:45:03 +00002143** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002144**
drh15a00212015-06-27 20:55:00 +00002145** If pCur!=0 then the page is being fetched as part of a moveToChild()
2146** call. Do additional sanity checking on the page in this case.
2147** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002148**
2149** The page is fetched as read-write unless pCur is not NULL and is
2150** a read-only cursor.
2151**
2152** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002153** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002154*/
2155static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002156 BtShared *pBt, /* The database file */
2157 Pgno pgno, /* Number of the page to get */
2158 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002159 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2160 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002161){
2162 int rc;
drh28f58dd2015-06-27 19:45:03 +00002163 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002164 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002165 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002166 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002167 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002168
danba3cbf32010-06-30 04:29:03 +00002169 if( pgno>btreePagecount(pBt) ){
2170 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002171 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002172 }
drh9584f582015-11-04 20:22:37 +00002173 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002174 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002175 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002176 }
drh8dd1c252015-11-04 22:31:02 +00002177 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002178 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002179 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002180 rc = btreeInitPage(*ppPage);
2181 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002182 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002183 }
drhee696e22004-08-30 16:52:17 +00002184 }
drh8dd1c252015-11-04 22:31:02 +00002185 assert( (*ppPage)->pgno==pgno );
2186 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002187
drh15a00212015-06-27 20:55:00 +00002188 /* If obtaining a child page for a cursor, we must verify that the page is
2189 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002190 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002191 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002192 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002193 }
drh28f58dd2015-06-27 19:45:03 +00002194 return SQLITE_OK;
2195
drhb0ea9432019-02-09 21:06:40 +00002196getAndInitPage_error2:
2197 releasePage(*ppPage);
2198getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002199 if( pCur ){
2200 pCur->iPage--;
2201 pCur->pPage = pCur->apPage[pCur->iPage];
2202 }
danba3cbf32010-06-30 04:29:03 +00002203 testcase( pgno==0 );
2204 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002205 return rc;
2206}
2207
2208/*
drh3aac2dd2004-04-26 14:10:20 +00002209** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002210** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002211**
2212** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002213*/
drhbbf0f862015-06-27 14:59:26 +00002214static void releasePageNotNull(MemPage *pPage){
2215 assert( pPage->aData );
2216 assert( pPage->pBt );
2217 assert( pPage->pDbPage!=0 );
2218 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2219 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2220 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2221 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002222}
drh3aac2dd2004-04-26 14:10:20 +00002223static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002224 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002225}
drh3908fe92017-09-01 14:50:19 +00002226static void releasePageOne(MemPage *pPage){
2227 assert( pPage!=0 );
2228 assert( pPage->aData );
2229 assert( pPage->pBt );
2230 assert( pPage->pDbPage!=0 );
2231 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2232 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2233 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2234 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2235}
drh3aac2dd2004-04-26 14:10:20 +00002236
2237/*
drh7e8c6f12015-05-28 03:28:27 +00002238** Get an unused page.
2239**
2240** This works just like btreeGetPage() with the addition:
2241**
2242** * If the page is already in use for some other purpose, immediately
2243** release it and return an SQLITE_CURRUPT error.
2244** * Make sure the isInit flag is clear
2245*/
2246static int btreeGetUnusedPage(
2247 BtShared *pBt, /* The btree */
2248 Pgno pgno, /* Number of the page to fetch */
2249 MemPage **ppPage, /* Return the page in this parameter */
2250 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2251){
2252 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2253 if( rc==SQLITE_OK ){
2254 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2255 releasePage(*ppPage);
2256 *ppPage = 0;
2257 return SQLITE_CORRUPT_BKPT;
2258 }
2259 (*ppPage)->isInit = 0;
2260 }else{
2261 *ppPage = 0;
2262 }
2263 return rc;
2264}
2265
drha059ad02001-04-17 20:09:11 +00002266
2267/*
drha6abd042004-06-09 17:37:22 +00002268** During a rollback, when the pager reloads information into the cache
2269** so that the cache is restored to its original state at the start of
2270** the transaction, for each page restored this routine is called.
2271**
2272** This routine needs to reset the extra data section at the end of the
2273** page to agree with the restored data.
2274*/
danielk1977eaa06f62008-09-18 17:34:44 +00002275static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002276 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002277 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002278 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002279 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002280 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002281 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002282 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002283 /* pPage might not be a btree page; it might be an overflow page
2284 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002285 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002286 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002287 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002288 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002289 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002290 }
drha6abd042004-06-09 17:37:22 +00002291 }
2292}
2293
2294/*
drhe5fe6902007-12-07 18:55:28 +00002295** Invoke the busy handler for a btree.
2296*/
danielk19771ceedd32008-11-19 10:22:33 +00002297static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002298 BtShared *pBt = (BtShared*)pArg;
2299 assert( pBt->db );
2300 assert( sqlite3_mutex_held(pBt->db->mutex) );
drhf0119b22018-03-26 17:40:53 +00002301 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2302 sqlite3PagerFile(pBt->pPager));
drhe5fe6902007-12-07 18:55:28 +00002303}
2304
2305/*
drhad3e0102004-09-03 23:32:18 +00002306** Open a database file.
2307**
drh382c0242001-10-06 16:33:02 +00002308** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002309** then an ephemeral database is created. The ephemeral database might
2310** be exclusively in memory, or it might use a disk-based memory cache.
2311** Either way, the ephemeral database will be automatically deleted
2312** when sqlite3BtreeClose() is called.
2313**
drhe53831d2007-08-17 01:14:38 +00002314** If zFilename is ":memory:" then an in-memory database is created
2315** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002316**
drh33f111d2012-01-17 15:29:14 +00002317** The "flags" parameter is a bitmask that might contain bits like
2318** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002319**
drhc47fd8e2009-04-30 13:30:32 +00002320** If the database is already opened in the same database connection
2321** and we are in shared cache mode, then the open will fail with an
2322** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2323** objects in the same database connection since doing so will lead
2324** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002325*/
drh23e11ca2004-05-04 17:27:28 +00002326int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002327 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002328 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002329 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002330 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002331 int flags, /* Options */
2332 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002333){
drh7555d8e2009-03-20 13:15:30 +00002334 BtShared *pBt = 0; /* Shared part of btree structure */
2335 Btree *p; /* Handle to return */
2336 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2337 int rc = SQLITE_OK; /* Result code from this function */
2338 u8 nReserve; /* Byte of unused space on each page */
2339 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002340
drh75c014c2010-08-30 15:02:28 +00002341 /* True if opening an ephemeral, temporary database */
2342 const int isTempDb = zFilename==0 || zFilename[0]==0;
2343
danielk1977aef0bf62005-12-30 16:28:01 +00002344 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002345 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002346 */
drhb0a7c9c2010-12-06 21:09:59 +00002347#ifdef SQLITE_OMIT_MEMORYDB
2348 const int isMemdb = 0;
2349#else
2350 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002351 || (isTempDb && sqlite3TempInMemory(db))
2352 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002353#endif
2354
drhe5fe6902007-12-07 18:55:28 +00002355 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002356 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002357 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002358 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2359
2360 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2361 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2362
2363 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2364 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002365
drh75c014c2010-08-30 15:02:28 +00002366 if( isMemdb ){
2367 flags |= BTREE_MEMORY;
2368 }
2369 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2370 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2371 }
drh17435752007-08-16 04:30:38 +00002372 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002373 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002374 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002375 }
2376 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002377 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002378#ifndef SQLITE_OMIT_SHARED_CACHE
2379 p->lock.pBtree = p;
2380 p->lock.iTable = 1;
2381#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002382
drh198bf392006-01-06 21:52:49 +00002383#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002384 /*
2385 ** If this Btree is a candidate for shared cache, try to find an
2386 ** existing BtShared object that we can share with
2387 */
drh4ab9d252012-05-26 20:08:49 +00002388 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002389 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002390 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002391 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002392 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002393 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002394
drhff0587c2007-08-29 17:43:19 +00002395 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002396 if( !zFullPathname ){
2397 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002398 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002399 }
drhafc8b7f2012-05-26 18:06:38 +00002400 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002401 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002402 }else{
2403 rc = sqlite3OsFullPathname(pVfs, zFilename,
2404 nFullPathname, zFullPathname);
2405 if( rc ){
2406 sqlite3_free(zFullPathname);
2407 sqlite3_free(p);
2408 return rc;
2409 }
drh070ad6b2011-11-17 11:43:19 +00002410 }
drh30ddce62011-10-15 00:16:30 +00002411#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002412 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2413 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002414 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002415 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002416#endif
drh78f82d12008-09-02 00:52:52 +00002417 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002418 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002419 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002420 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002421 int iDb;
2422 for(iDb=db->nDb-1; iDb>=0; iDb--){
2423 Btree *pExisting = db->aDb[iDb].pBt;
2424 if( pExisting && pExisting->pBt==pBt ){
2425 sqlite3_mutex_leave(mutexShared);
2426 sqlite3_mutex_leave(mutexOpen);
2427 sqlite3_free(zFullPathname);
2428 sqlite3_free(p);
2429 return SQLITE_CONSTRAINT;
2430 }
2431 }
drhff0587c2007-08-29 17:43:19 +00002432 p->pBt = pBt;
2433 pBt->nRef++;
2434 break;
2435 }
2436 }
2437 sqlite3_mutex_leave(mutexShared);
2438 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002439 }
drhff0587c2007-08-29 17:43:19 +00002440#ifdef SQLITE_DEBUG
2441 else{
2442 /* In debug mode, we mark all persistent databases as sharable
2443 ** even when they are not. This exercises the locking code and
2444 ** gives more opportunity for asserts(sqlite3_mutex_held())
2445 ** statements to find locking problems.
2446 */
2447 p->sharable = 1;
2448 }
2449#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002450 }
2451#endif
drha059ad02001-04-17 20:09:11 +00002452 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002453 /*
2454 ** The following asserts make sure that structures used by the btree are
2455 ** the right size. This is to guard against size changes that result
2456 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002457 */
drh062cf272015-03-23 19:03:51 +00002458 assert( sizeof(i64)==8 );
2459 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002460 assert( sizeof(u32)==4 );
2461 assert( sizeof(u16)==2 );
2462 assert( sizeof(Pgno)==4 );
2463
2464 pBt = sqlite3MallocZero( sizeof(*pBt) );
2465 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002466 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002467 goto btree_open_out;
2468 }
danielk197771d5d2c2008-09-29 11:49:47 +00002469 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002470 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002471 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002472 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002473 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2474 }
2475 if( rc!=SQLITE_OK ){
2476 goto btree_open_out;
2477 }
shanehbd2aaf92010-09-01 02:38:21 +00002478 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002479 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002480 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002481 p->pBt = pBt;
2482
drhe53831d2007-08-17 01:14:38 +00002483 pBt->pCursor = 0;
2484 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002485 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002486#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002487 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002488#elif defined(SQLITE_FAST_SECURE_DELETE)
2489 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002490#endif
drh113762a2014-11-19 16:36:25 +00002491 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2492 ** determined by the 2-byte integer located at an offset of 16 bytes from
2493 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002494 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002495 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2496 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002497 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002498#ifndef SQLITE_OMIT_AUTOVACUUM
2499 /* If the magic name ":memory:" will create an in-memory database, then
2500 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2501 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2502 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2503 ** regular file-name. In this case the auto-vacuum applies as per normal.
2504 */
2505 if( zFilename && !isMemdb ){
2506 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2507 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2508 }
2509#endif
2510 nReserve = 0;
2511 }else{
drh113762a2014-11-19 16:36:25 +00002512 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2513 ** determined by the one-byte unsigned integer found at an offset of 20
2514 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002515 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002516 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002517#ifndef SQLITE_OMIT_AUTOVACUUM
2518 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2519 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2520#endif
2521 }
drhfa9601a2009-06-18 17:22:39 +00002522 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002523 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002524 pBt->usableSize = pBt->pageSize - nReserve;
2525 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002526
2527#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2528 /* Add the new BtShared object to the linked list sharable BtShareds.
2529 */
dan272989b2016-07-06 10:12:02 +00002530 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002531 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002532 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002533 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002534 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002535 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002536 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002537 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002538 goto btree_open_out;
2539 }
drhff0587c2007-08-29 17:43:19 +00002540 }
drhe53831d2007-08-17 01:14:38 +00002541 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002542 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2543 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002544 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002545 }
drheee46cf2004-11-06 00:02:48 +00002546#endif
drh90f5ecb2004-07-22 01:19:35 +00002547 }
danielk1977aef0bf62005-12-30 16:28:01 +00002548
drhcfed7bc2006-03-13 14:28:05 +00002549#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002550 /* If the new Btree uses a sharable pBtShared, then link the new
2551 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002552 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002553 */
drhe53831d2007-08-17 01:14:38 +00002554 if( p->sharable ){
2555 int i;
2556 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002557 for(i=0; i<db->nDb; i++){
2558 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002559 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002560 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002561 p->pNext = pSib;
2562 p->pPrev = 0;
2563 pSib->pPrev = p;
2564 }else{
drh3bfa7e82016-03-22 14:37:59 +00002565 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002566 pSib = pSib->pNext;
2567 }
2568 p->pNext = pSib->pNext;
2569 p->pPrev = pSib;
2570 if( p->pNext ){
2571 p->pNext->pPrev = p;
2572 }
2573 pSib->pNext = p;
2574 }
2575 break;
2576 }
2577 }
danielk1977aef0bf62005-12-30 16:28:01 +00002578 }
danielk1977aef0bf62005-12-30 16:28:01 +00002579#endif
2580 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002581
2582btree_open_out:
2583 if( rc!=SQLITE_OK ){
2584 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002585 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002586 }
drh17435752007-08-16 04:30:38 +00002587 sqlite3_free(pBt);
2588 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002589 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002590 }else{
dan0f5a1862016-08-13 14:30:23 +00002591 sqlite3_file *pFile;
2592
drh75c014c2010-08-30 15:02:28 +00002593 /* If the B-Tree was successfully opened, set the pager-cache size to the
2594 ** default value. Except, when opening on an existing shared pager-cache,
2595 ** do not change the pager-cache size.
2596 */
2597 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2598 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2599 }
dan0f5a1862016-08-13 14:30:23 +00002600
2601 pFile = sqlite3PagerFile(pBt->pPager);
2602 if( pFile->pMethods ){
2603 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2604 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002605 }
drh7555d8e2009-03-20 13:15:30 +00002606 if( mutexOpen ){
2607 assert( sqlite3_mutex_held(mutexOpen) );
2608 sqlite3_mutex_leave(mutexOpen);
2609 }
dan272989b2016-07-06 10:12:02 +00002610 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002611 return rc;
drha059ad02001-04-17 20:09:11 +00002612}
2613
2614/*
drhe53831d2007-08-17 01:14:38 +00002615** Decrement the BtShared.nRef counter. When it reaches zero,
2616** remove the BtShared structure from the sharing list. Return
2617** true if the BtShared.nRef counter reaches zero and return
2618** false if it is still positive.
2619*/
2620static int removeFromSharingList(BtShared *pBt){
2621#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002622 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002623 BtShared *pList;
2624 int removed = 0;
2625
drhd677b3d2007-08-20 22:48:41 +00002626 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002627 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002628 sqlite3_mutex_enter(pMaster);
2629 pBt->nRef--;
2630 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002631 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2632 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002633 }else{
drh78f82d12008-09-02 00:52:52 +00002634 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002635 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002636 pList=pList->pNext;
2637 }
drh34004ce2008-07-11 16:15:17 +00002638 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002639 pList->pNext = pBt->pNext;
2640 }
2641 }
drh3285db22007-09-03 22:00:39 +00002642 if( SQLITE_THREADSAFE ){
2643 sqlite3_mutex_free(pBt->mutex);
2644 }
drhe53831d2007-08-17 01:14:38 +00002645 removed = 1;
2646 }
2647 sqlite3_mutex_leave(pMaster);
2648 return removed;
2649#else
2650 return 1;
2651#endif
2652}
2653
2654/*
drhf7141992008-06-19 00:16:08 +00002655** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002656** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2657** pointer.
drhf7141992008-06-19 00:16:08 +00002658*/
2659static void allocateTempSpace(BtShared *pBt){
2660 if( !pBt->pTmpSpace ){
2661 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002662
2663 /* One of the uses of pBt->pTmpSpace is to format cells before
2664 ** inserting them into a leaf page (function fillInCell()). If
2665 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2666 ** by the various routines that manipulate binary cells. Which
2667 ** can mean that fillInCell() only initializes the first 2 or 3
2668 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2669 ** it into a database page. This is not actually a problem, but it
2670 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2671 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002672 ** zero the first 4 bytes of temp space here.
2673 **
2674 ** Also: Provide four bytes of initialized space before the
2675 ** beginning of pTmpSpace as an area available to prepend the
2676 ** left-child pointer to the beginning of a cell.
2677 */
2678 if( pBt->pTmpSpace ){
2679 memset(pBt->pTmpSpace, 0, 8);
2680 pBt->pTmpSpace += 4;
2681 }
drhf7141992008-06-19 00:16:08 +00002682 }
2683}
2684
2685/*
2686** Free the pBt->pTmpSpace allocation
2687*/
2688static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002689 if( pBt->pTmpSpace ){
2690 pBt->pTmpSpace -= 4;
2691 sqlite3PageFree(pBt->pTmpSpace);
2692 pBt->pTmpSpace = 0;
2693 }
drhf7141992008-06-19 00:16:08 +00002694}
2695
2696/*
drha059ad02001-04-17 20:09:11 +00002697** Close an open database and invalidate all cursors.
2698*/
danielk1977aef0bf62005-12-30 16:28:01 +00002699int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002700 BtShared *pBt = p->pBt;
2701 BtCursor *pCur;
2702
danielk1977aef0bf62005-12-30 16:28:01 +00002703 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002704 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002705 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002706 pCur = pBt->pCursor;
2707 while( pCur ){
2708 BtCursor *pTmp = pCur;
2709 pCur = pCur->pNext;
2710 if( pTmp->pBtree==p ){
2711 sqlite3BtreeCloseCursor(pTmp);
2712 }
drha059ad02001-04-17 20:09:11 +00002713 }
danielk1977aef0bf62005-12-30 16:28:01 +00002714
danielk19778d34dfd2006-01-24 16:37:57 +00002715 /* Rollback any active transaction and free the handle structure.
2716 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2717 ** this handle.
2718 */
drh47b7fc72014-11-11 01:33:57 +00002719 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002720 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002721
danielk1977aef0bf62005-12-30 16:28:01 +00002722 /* If there are still other outstanding references to the shared-btree
2723 ** structure, return now. The remainder of this procedure cleans
2724 ** up the shared-btree.
2725 */
drhe53831d2007-08-17 01:14:38 +00002726 assert( p->wantToLock==0 && p->locked==0 );
2727 if( !p->sharable || removeFromSharingList(pBt) ){
2728 /* The pBt is no longer on the sharing list, so we can access
2729 ** it without having to hold the mutex.
2730 **
2731 ** Clean out and delete the BtShared object.
2732 */
2733 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002734 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002735 if( pBt->xFreeSchema && pBt->pSchema ){
2736 pBt->xFreeSchema(pBt->pSchema);
2737 }
drhb9755982010-07-24 16:34:37 +00002738 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002739 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002740 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002741 }
2742
drhe53831d2007-08-17 01:14:38 +00002743#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002744 assert( p->wantToLock==0 );
2745 assert( p->locked==0 );
2746 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2747 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002748#endif
2749
drhe53831d2007-08-17 01:14:38 +00002750 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002751 return SQLITE_OK;
2752}
2753
2754/*
drh9b0cf342015-11-12 14:57:19 +00002755** Change the "soft" limit on the number of pages in the cache.
2756** Unused and unmodified pages will be recycled when the number of
2757** pages in the cache exceeds this soft limit. But the size of the
2758** cache is allowed to grow larger than this limit if it contains
2759** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002760*/
danielk1977aef0bf62005-12-30 16:28:01 +00002761int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2762 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002763 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002764 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002765 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002766 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002767 return SQLITE_OK;
2768}
2769
drh9b0cf342015-11-12 14:57:19 +00002770/*
2771** Change the "spill" limit on the number of pages in the cache.
2772** If the number of pages exceeds this limit during a write transaction,
2773** the pager might attempt to "spill" pages to the journal early in
2774** order to free up memory.
2775**
2776** The value returned is the current spill size. If zero is passed
2777** as an argument, no changes are made to the spill size setting, so
2778** using mxPage of 0 is a way to query the current spill size.
2779*/
2780int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2781 BtShared *pBt = p->pBt;
2782 int res;
2783 assert( sqlite3_mutex_held(p->db->mutex) );
2784 sqlite3BtreeEnter(p);
2785 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2786 sqlite3BtreeLeave(p);
2787 return res;
2788}
2789
drh18c7e402014-03-14 11:46:10 +00002790#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002791/*
dan5d8a1372013-03-19 19:28:06 +00002792** Change the limit on the amount of the database file that may be
2793** memory mapped.
2794*/
drh9b4c59f2013-04-15 17:03:42 +00002795int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002796 BtShared *pBt = p->pBt;
2797 assert( sqlite3_mutex_held(p->db->mutex) );
2798 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002799 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002800 sqlite3BtreeLeave(p);
2801 return SQLITE_OK;
2802}
drh18c7e402014-03-14 11:46:10 +00002803#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002804
2805/*
drh973b6e32003-02-12 14:09:42 +00002806** Change the way data is synced to disk in order to increase or decrease
2807** how well the database resists damage due to OS crashes and power
2808** failures. Level 1 is the same as asynchronous (no syncs() occur and
2809** there is a high probability of damage) Level 2 is the default. There
2810** is a very low but non-zero probability of damage. Level 3 reduces the
2811** probability of damage to near zero but with a write performance reduction.
2812*/
danielk197793758c82005-01-21 08:13:14 +00002813#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002814int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002815 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002816 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002817){
danielk1977aef0bf62005-12-30 16:28:01 +00002818 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002819 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002820 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002821 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002822 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002823 return SQLITE_OK;
2824}
danielk197793758c82005-01-21 08:13:14 +00002825#endif
drh973b6e32003-02-12 14:09:42 +00002826
drh2c8997b2005-08-27 16:36:48 +00002827/*
drh90f5ecb2004-07-22 01:19:35 +00002828** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002829** Or, if the page size has already been fixed, return SQLITE_READONLY
2830** without changing anything.
drh06f50212004-11-02 14:24:33 +00002831**
2832** The page size must be a power of 2 between 512 and 65536. If the page
2833** size supplied does not meet this constraint then the page size is not
2834** changed.
2835**
2836** Page sizes are constrained to be a power of two so that the region
2837** of the database file used for locking (beginning at PENDING_BYTE,
2838** the first byte past the 1GB boundary, 0x40000000) needs to occur
2839** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002840**
2841** If parameter nReserve is less than zero, then the number of reserved
2842** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002843**
drhc9166342012-01-05 23:32:06 +00002844** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002845** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002846*/
drhce4869f2009-04-02 20:16:58 +00002847int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002848 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002849 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002850 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002851 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002852#if SQLITE_HAS_CODEC
2853 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2854#endif
drhc9166342012-01-05 23:32:06 +00002855 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002856 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002857 return SQLITE_READONLY;
2858 }
2859 if( nReserve<0 ){
2860 nReserve = pBt->pageSize - pBt->usableSize;
2861 }
drhf49661a2008-12-10 16:45:50 +00002862 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002863 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2864 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002865 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002866 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002867 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002868 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002869 }
drhfa9601a2009-06-18 17:22:39 +00002870 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002871 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002872 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002873 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002874 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002875}
2876
2877/*
2878** Return the currently defined page size
2879*/
danielk1977aef0bf62005-12-30 16:28:01 +00002880int sqlite3BtreeGetPageSize(Btree *p){
2881 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002882}
drh7f751222009-03-17 22:33:00 +00002883
dan0094f372012-09-28 20:23:42 +00002884/*
2885** This function is similar to sqlite3BtreeGetReserve(), except that it
2886** may only be called if it is guaranteed that the b-tree mutex is already
2887** held.
2888**
2889** This is useful in one special case in the backup API code where it is
2890** known that the shared b-tree mutex is held, but the mutex on the
2891** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2892** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002893** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002894*/
2895int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002896 int n;
dan0094f372012-09-28 20:23:42 +00002897 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002898 n = p->pBt->pageSize - p->pBt->usableSize;
2899 return n;
dan0094f372012-09-28 20:23:42 +00002900}
2901
drh7f751222009-03-17 22:33:00 +00002902/*
2903** Return the number of bytes of space at the end of every page that
2904** are intentually left unused. This is the "reserved" space that is
2905** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002906**
2907** If SQLITE_HAS_MUTEX is defined then the number returned is the
2908** greater of the current reserved space and the maximum requested
2909** reserve space.
drh7f751222009-03-17 22:33:00 +00002910*/
drhad0961b2015-02-21 00:19:25 +00002911int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002912 int n;
2913 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002914 n = sqlite3BtreeGetReserveNoMutex(p);
2915#ifdef SQLITE_HAS_CODEC
2916 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2917#endif
drhd677b3d2007-08-20 22:48:41 +00002918 sqlite3BtreeLeave(p);
2919 return n;
drh2011d5f2004-07-22 02:40:37 +00002920}
drhf8e632b2007-05-08 14:51:36 +00002921
drhad0961b2015-02-21 00:19:25 +00002922
drhf8e632b2007-05-08 14:51:36 +00002923/*
2924** Set the maximum page count for a database if mxPage is positive.
2925** No changes are made if mxPage is 0 or negative.
2926** Regardless of the value of mxPage, return the maximum page count.
2927*/
2928int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002929 int n;
2930 sqlite3BtreeEnter(p);
2931 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2932 sqlite3BtreeLeave(p);
2933 return n;
drhf8e632b2007-05-08 14:51:36 +00002934}
drh5b47efa2010-02-12 18:18:39 +00002935
2936/*
drha5907a82017-06-19 11:44:22 +00002937** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2938**
2939** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2940** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2941** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2942** newFlag==(-1) No changes
2943**
2944** This routine acts as a query if newFlag is less than zero
2945**
2946** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2947** freelist leaf pages are not written back to the database. Thus in-page
2948** deleted content is cleared, but freelist deleted content is not.
2949**
2950** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2951** that freelist leaf pages are written back into the database, increasing
2952** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002953*/
2954int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2955 int b;
drhaf034ed2010-02-12 19:46:26 +00002956 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002957 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002958 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2959 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002960 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002961 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2962 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2963 }
2964 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002965 sqlite3BtreeLeave(p);
2966 return b;
2967}
drh90f5ecb2004-07-22 01:19:35 +00002968
2969/*
danielk1977951af802004-11-05 15:45:09 +00002970** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2971** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2972** is disabled. The default value for the auto-vacuum property is
2973** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2974*/
danielk1977aef0bf62005-12-30 16:28:01 +00002975int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002976#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002977 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002978#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002979 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002980 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002981 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002982
2983 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002984 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002985 rc = SQLITE_READONLY;
2986 }else{
drh076d4662009-02-18 20:31:18 +00002987 pBt->autoVacuum = av ?1:0;
2988 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002989 }
drhd677b3d2007-08-20 22:48:41 +00002990 sqlite3BtreeLeave(p);
2991 return rc;
danielk1977951af802004-11-05 15:45:09 +00002992#endif
2993}
2994
2995/*
2996** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2997** enabled 1 is returned. Otherwise 0.
2998*/
danielk1977aef0bf62005-12-30 16:28:01 +00002999int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00003000#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003001 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00003002#else
drhd677b3d2007-08-20 22:48:41 +00003003 int rc;
3004 sqlite3BtreeEnter(p);
3005 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003006 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3007 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3008 BTREE_AUTOVACUUM_INCR
3009 );
drhd677b3d2007-08-20 22:48:41 +00003010 sqlite3BtreeLeave(p);
3011 return rc;
danielk1977951af802004-11-05 15:45:09 +00003012#endif
3013}
3014
danf5da7db2017-03-16 18:14:39 +00003015/*
3016** If the user has not set the safety-level for this database connection
3017** using "PRAGMA synchronous", and if the safety-level is not already
3018** set to the value passed to this function as the second parameter,
3019** set it so.
3020*/
drh2ed57372017-10-05 20:57:38 +00003021#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3022 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003023static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3024 sqlite3 *db;
3025 Db *pDb;
3026 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3027 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3028 if( pDb->bSyncSet==0
3029 && pDb->safety_level!=safety_level
3030 && pDb!=&db->aDb[1]
3031 ){
3032 pDb->safety_level = safety_level;
3033 sqlite3PagerSetFlags(pBt->pPager,
3034 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3035 }
3036 }
3037}
3038#else
danfc8f4b62017-03-16 18:54:42 +00003039# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003040#endif
danielk1977951af802004-11-05 15:45:09 +00003041
drh0314cf32018-04-28 01:27:09 +00003042/* Forward declaration */
3043static int newDatabase(BtShared*);
3044
3045
danielk1977951af802004-11-05 15:45:09 +00003046/*
drha34b6762004-05-07 13:30:42 +00003047** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003048** also acquire a readlock on that file.
3049**
3050** SQLITE_OK is returned on success. If the file is not a
3051** well-formed database file, then SQLITE_CORRUPT is returned.
3052** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003053** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003054*/
danielk1977aef0bf62005-12-30 16:28:01 +00003055static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003056 int rc; /* Result code from subfunctions */
3057 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003058 u32 nPage; /* Number of pages in the database */
3059 u32 nPageFile = 0; /* Number of pages in the database file */
3060 u32 nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00003061
drh1fee73e2007-08-29 04:00:57 +00003062 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003063 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003064 rc = sqlite3PagerSharedLock(pBt->pPager);
3065 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003066 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003067 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003068
3069 /* Do some checking to help insure the file we opened really is
3070 ** a valid database file.
3071 */
drhc2a4bab2010-04-02 12:46:45 +00003072 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003073 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003074 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003075 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003076 }
drh0314cf32018-04-28 01:27:09 +00003077 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3078 nPage = 0;
3079 }
drh97b59a52010-03-31 02:31:33 +00003080 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003081 u32 pageSize;
3082 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003083 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003084 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003085 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3086 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3087 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003088 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003089 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003090 }
dan5cf53532010-05-01 16:40:20 +00003091
3092#ifdef SQLITE_OMIT_WAL
3093 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003094 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003095 }
3096 if( page1[19]>1 ){
3097 goto page1_init_failed;
3098 }
3099#else
dane04dc882010-04-20 18:53:15 +00003100 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003101 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003102 }
dane04dc882010-04-20 18:53:15 +00003103 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003104 goto page1_init_failed;
3105 }
drhe5ae5732008-06-15 02:51:47 +00003106
dana470aeb2010-04-21 11:43:38 +00003107 /* If the write version is set to 2, this database should be accessed
3108 ** in WAL mode. If the log is not already open, open it now. Then
3109 ** return SQLITE_OK and return without populating BtShared.pPage1.
3110 ** The caller detects this and calls this function again. This is
3111 ** required as the version of page 1 currently in the page1 buffer
3112 ** may not be the latest version - there may be a newer one in the log
3113 ** file.
3114 */
drhc9166342012-01-05 23:32:06 +00003115 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003116 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003117 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003118 if( rc!=SQLITE_OK ){
3119 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003120 }else{
danf5da7db2017-03-16 18:14:39 +00003121 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003122 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003123 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003124 return SQLITE_OK;
3125 }
dane04dc882010-04-20 18:53:15 +00003126 }
dan8b5444b2010-04-27 14:37:47 +00003127 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003128 }else{
3129 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003130 }
dan5cf53532010-05-01 16:40:20 +00003131#endif
dane04dc882010-04-20 18:53:15 +00003132
drh113762a2014-11-19 16:36:25 +00003133 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3134 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3135 **
drhe5ae5732008-06-15 02:51:47 +00003136 ** The original design allowed these amounts to vary, but as of
3137 ** version 3.6.0, we require them to be fixed.
3138 */
3139 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3140 goto page1_init_failed;
3141 }
drh113762a2014-11-19 16:36:25 +00003142 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3143 ** determined by the 2-byte integer located at an offset of 16 bytes from
3144 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003145 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003146 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3147 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003148 if( ((pageSize-1)&pageSize)!=0
3149 || pageSize>SQLITE_MAX_PAGE_SIZE
3150 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003151 ){
drh07d183d2005-05-01 22:52:42 +00003152 goto page1_init_failed;
3153 }
drhdcc27002019-01-06 02:06:31 +00003154 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003155 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003156 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3157 ** integer at offset 20 is the number of bytes of space at the end of
3158 ** each page to reserve for extensions.
3159 **
3160 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3161 ** determined by the one-byte unsigned integer found at an offset of 20
3162 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003163 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003164 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003165 /* After reading the first page of the database assuming a page size
3166 ** of BtShared.pageSize, we have discovered that the page-size is
3167 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3168 ** zero and return SQLITE_OK. The caller will call this function
3169 ** again with the correct page-size.
3170 */
drh3908fe92017-09-01 14:50:19 +00003171 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003172 pBt->usableSize = usableSize;
3173 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003174 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003175 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3176 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003177 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003178 }
drh0f1c2eb2018-11-03 17:31:48 +00003179 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003180 rc = SQLITE_CORRUPT_BKPT;
3181 goto page1_init_failed;
3182 }
drh113762a2014-11-19 16:36:25 +00003183 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3184 ** be less than 480. In other words, if the page size is 512, then the
3185 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003186 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003187 goto page1_init_failed;
3188 }
drh43b18e12010-08-17 19:40:08 +00003189 pBt->pageSize = pageSize;
3190 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003191#ifndef SQLITE_OMIT_AUTOVACUUM
3192 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003193 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003194#endif
drh306dc212001-05-21 13:45:10 +00003195 }
drhb6f41482004-05-14 01:58:11 +00003196
3197 /* maxLocal is the maximum amount of payload to store locally for
3198 ** a cell. Make sure it is small enough so that at least minFanout
3199 ** cells can will fit on one page. We assume a 10-byte page header.
3200 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003201 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003202 ** 4-byte child pointer
3203 ** 9-byte nKey value
3204 ** 4-byte nData value
3205 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003206 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003207 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3208 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003209 */
shaneh1df2db72010-08-18 02:28:48 +00003210 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3211 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3212 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3213 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003214 if( pBt->maxLocal>127 ){
3215 pBt->max1bytePayload = 127;
3216 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003217 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003218 }
drh2e38c322004-09-03 18:38:44 +00003219 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003220 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003221 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003222 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003223
drh72f82862001-05-24 21:06:34 +00003224page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003225 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003226 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003227 return rc;
drh306dc212001-05-21 13:45:10 +00003228}
3229
drh85ec3b62013-05-14 23:12:06 +00003230#ifndef NDEBUG
3231/*
3232** Return the number of cursors open on pBt. This is for use
3233** in assert() expressions, so it is only compiled if NDEBUG is not
3234** defined.
3235**
3236** Only write cursors are counted if wrOnly is true. If wrOnly is
3237** false then all cursors are counted.
3238**
3239** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003240** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003241** have been tripped into the CURSOR_FAULT state are not counted.
3242*/
3243static int countValidCursors(BtShared *pBt, int wrOnly){
3244 BtCursor *pCur;
3245 int r = 0;
3246 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003247 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3248 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003249 }
3250 return r;
3251}
3252#endif
3253
drh306dc212001-05-21 13:45:10 +00003254/*
drhb8ca3072001-12-05 00:21:20 +00003255** If there are no outstanding cursors and we are not in the middle
3256** of a transaction but there is a read lock on the database, then
3257** this routine unrefs the first page of the database file which
3258** has the effect of releasing the read lock.
3259**
drhb8ca3072001-12-05 00:21:20 +00003260** If there is a transaction in progress, this routine is a no-op.
3261*/
danielk1977aef0bf62005-12-30 16:28:01 +00003262static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003263 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003264 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003265 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003266 MemPage *pPage1 = pBt->pPage1;
3267 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003268 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003269 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003270 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003271 }
3272}
3273
3274/*
drhe39f2f92009-07-23 01:43:59 +00003275** If pBt points to an empty file then convert that empty file
3276** into a new empty database by initializing the first page of
3277** the database.
drh8b2f49b2001-06-08 00:21:52 +00003278*/
danielk1977aef0bf62005-12-30 16:28:01 +00003279static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003280 MemPage *pP1;
3281 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003282 int rc;
drhd677b3d2007-08-20 22:48:41 +00003283
drh1fee73e2007-08-29 04:00:57 +00003284 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003285 if( pBt->nPage>0 ){
3286 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003287 }
drh3aac2dd2004-04-26 14:10:20 +00003288 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003289 assert( pP1!=0 );
3290 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003291 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003292 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003293 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3294 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003295 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3296 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003297 data[18] = 1;
3298 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003299 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3300 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003301 data[21] = 64;
3302 data[22] = 32;
3303 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003304 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003305 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003306 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003307#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003308 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003309 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003310 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003311 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003312#endif
drhdd3cd972010-03-27 17:12:36 +00003313 pBt->nPage = 1;
3314 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003315 return SQLITE_OK;
3316}
3317
3318/*
danb483eba2012-10-13 19:58:11 +00003319** Initialize the first page of the database file (creating a database
3320** consisting of a single page and no schema objects). Return SQLITE_OK
3321** if successful, or an SQLite error code otherwise.
3322*/
3323int sqlite3BtreeNewDb(Btree *p){
3324 int rc;
3325 sqlite3BtreeEnter(p);
3326 p->pBt->nPage = 0;
3327 rc = newDatabase(p->pBt);
3328 sqlite3BtreeLeave(p);
3329 return rc;
3330}
3331
3332/*
danielk1977ee5741e2004-05-31 10:01:34 +00003333** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003334** is started if the second argument is nonzero, otherwise a read-
3335** transaction. If the second argument is 2 or more and exclusive
3336** transaction is started, meaning that no other process is allowed
3337** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003338** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003339** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003340**
danielk1977ee5741e2004-05-31 10:01:34 +00003341** A write-transaction must be started before attempting any
3342** changes to the database. None of the following routines
3343** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003344**
drh23e11ca2004-05-04 17:27:28 +00003345** sqlite3BtreeCreateTable()
3346** sqlite3BtreeCreateIndex()
3347** sqlite3BtreeClearTable()
3348** sqlite3BtreeDropTable()
3349** sqlite3BtreeInsert()
3350** sqlite3BtreeDelete()
3351** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003352**
drhb8ef32c2005-03-14 02:01:49 +00003353** If an initial attempt to acquire the lock fails because of lock contention
3354** and the database was previously unlocked, then invoke the busy handler
3355** if there is one. But if there was previously a read-lock, do not
3356** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3357** returned when there is already a read-lock in order to avoid a deadlock.
3358**
3359** Suppose there are two processes A and B. A has a read lock and B has
3360** a reserved lock. B tries to promote to exclusive but is blocked because
3361** of A's read lock. A tries to promote to reserved but is blocked by B.
3362** One or the other of the two processes must give way or there can be
3363** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3364** when A already has a read lock, we encourage A to give up and let B
3365** proceed.
drha059ad02001-04-17 20:09:11 +00003366*/
drhbb2d9b12018-06-06 16:28:40 +00003367int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003368 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003369 int rc = SQLITE_OK;
3370
drhd677b3d2007-08-20 22:48:41 +00003371 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003372 btreeIntegrity(p);
3373
danielk1977ee5741e2004-05-31 10:01:34 +00003374 /* If the btree is already in a write-transaction, or it
3375 ** is already in a read-transaction and a read-transaction
3376 ** is requested, this is a no-op.
3377 */
danielk1977aef0bf62005-12-30 16:28:01 +00003378 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003379 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003380 }
dan56c517a2013-09-26 11:04:33 +00003381 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003382
danea933f02018-07-19 11:44:02 +00003383 if( (p->db->flags & SQLITE_ResetDatabase)
3384 && sqlite3PagerIsreadonly(pBt->pPager)==0
3385 ){
3386 pBt->btsFlags &= ~BTS_READ_ONLY;
3387 }
3388
drhb8ef32c2005-03-14 02:01:49 +00003389 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003390 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003391 rc = SQLITE_READONLY;
3392 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003393 }
3394
danielk1977404ca072009-03-16 13:19:36 +00003395#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003396 {
3397 sqlite3 *pBlock = 0;
3398 /* If another database handle has already opened a write transaction
3399 ** on this shared-btree structure and a second write transaction is
3400 ** requested, return SQLITE_LOCKED.
3401 */
3402 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3403 || (pBt->btsFlags & BTS_PENDING)!=0
3404 ){
3405 pBlock = pBt->pWriter->db;
3406 }else if( wrflag>1 ){
3407 BtLock *pIter;
3408 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3409 if( pIter->pBtree!=p ){
3410 pBlock = pIter->pBtree->db;
3411 break;
3412 }
danielk1977641b0f42007-12-21 04:47:25 +00003413 }
3414 }
drh5a1fb182016-01-08 19:34:39 +00003415 if( pBlock ){
3416 sqlite3ConnectionBlocked(p->db, pBlock);
3417 rc = SQLITE_LOCKED_SHAREDCACHE;
3418 goto trans_begun;
3419 }
danielk1977404ca072009-03-16 13:19:36 +00003420 }
danielk1977641b0f42007-12-21 04:47:25 +00003421#endif
3422
danielk1977602b4662009-07-02 07:47:33 +00003423 /* Any read-only or read-write transaction implies a read-lock on
3424 ** page 1. So if some other shared-cache client already has a write-lock
3425 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003426 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3427 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003428
drhc9166342012-01-05 23:32:06 +00003429 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3430 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003431 do {
danielk1977295dc102009-04-01 19:07:03 +00003432 /* Call lockBtree() until either pBt->pPage1 is populated or
3433 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3434 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3435 ** reading page 1 it discovers that the page-size of the database
3436 ** file is not pBt->pageSize. In this case lockBtree() will update
3437 ** pBt->pageSize to the page-size of the file on disk.
3438 */
3439 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003440
drhb8ef32c2005-03-14 02:01:49 +00003441 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003442 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003443 rc = SQLITE_READONLY;
3444 }else{
danielk1977d8293352009-04-30 09:10:37 +00003445 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003446 if( rc==SQLITE_OK ){
3447 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003448 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3449 /* if there was no transaction opened when this function was
3450 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3451 ** code to SQLITE_BUSY. */
3452 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003453 }
drhb8ef32c2005-03-14 02:01:49 +00003454 }
3455 }
3456
danielk1977bd434552009-03-18 10:33:00 +00003457 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003458 unlockBtreeIfUnused(pBt);
3459 }
danf9b76712010-06-01 14:12:45 +00003460 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003461 btreeInvokeBusyHandler(pBt) );
drhfd725632018-03-26 20:43:05 +00003462 sqlite3PagerResetLockTimeout(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00003463
3464 if( rc==SQLITE_OK ){
3465 if( p->inTrans==TRANS_NONE ){
3466 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003467#ifndef SQLITE_OMIT_SHARED_CACHE
3468 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003469 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003470 p->lock.eLock = READ_LOCK;
3471 p->lock.pNext = pBt->pLock;
3472 pBt->pLock = &p->lock;
3473 }
3474#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003475 }
3476 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3477 if( p->inTrans>pBt->inTransaction ){
3478 pBt->inTransaction = p->inTrans;
3479 }
danielk1977404ca072009-03-16 13:19:36 +00003480 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003481 MemPage *pPage1 = pBt->pPage1;
3482#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003483 assert( !pBt->pWriter );
3484 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003485 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3486 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003487#endif
dan59257dc2010-08-04 11:34:31 +00003488
3489 /* If the db-size header field is incorrect (as it may be if an old
3490 ** client has been writing the database file), update it now. Doing
3491 ** this sooner rather than later means the database size can safely
3492 ** re-read the database size from page 1 if a savepoint or transaction
3493 ** rollback occurs within the transaction.
3494 */
3495 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3496 rc = sqlite3PagerWrite(pPage1->pDbPage);
3497 if( rc==SQLITE_OK ){
3498 put4byte(&pPage1->aData[28], pBt->nPage);
3499 }
3500 }
3501 }
danielk1977aef0bf62005-12-30 16:28:01 +00003502 }
3503
drhd677b3d2007-08-20 22:48:41 +00003504trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003505 if( rc==SQLITE_OK ){
3506 if( pSchemaVersion ){
3507 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3508 }
3509 if( wrflag ){
3510 /* This call makes sure that the pager has the correct number of
3511 ** open savepoints. If the second parameter is greater than 0 and
3512 ** the sub-journal is not already open, then it will be opened here.
3513 */
3514 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3515 }
danielk1977fd7f0452008-12-17 17:30:26 +00003516 }
danielk197712dd5492008-12-18 15:45:07 +00003517
danielk1977aef0bf62005-12-30 16:28:01 +00003518 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003519 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003520 return rc;
drha059ad02001-04-17 20:09:11 +00003521}
3522
danielk1977687566d2004-11-02 12:56:41 +00003523#ifndef SQLITE_OMIT_AUTOVACUUM
3524
3525/*
3526** Set the pointer-map entries for all children of page pPage. Also, if
3527** pPage contains cells that point to overflow pages, set the pointer
3528** map entries for the overflow pages as well.
3529*/
3530static int setChildPtrmaps(MemPage *pPage){
3531 int i; /* Counter variable */
3532 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003533 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003534 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003535 Pgno pgno = pPage->pgno;
3536
drh1fee73e2007-08-29 04:00:57 +00003537 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003538 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003539 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003540 nCell = pPage->nCell;
3541
3542 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003543 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003544
drh0f1bf4c2019-01-13 20:17:21 +00003545 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003546
danielk1977687566d2004-11-02 12:56:41 +00003547 if( !pPage->leaf ){
3548 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003549 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003550 }
3551 }
3552
3553 if( !pPage->leaf ){
3554 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003555 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003556 }
3557
danielk1977687566d2004-11-02 12:56:41 +00003558 return rc;
3559}
3560
3561/*
drhf3aed592009-07-08 18:12:49 +00003562** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3563** that it points to iTo. Parameter eType describes the type of pointer to
3564** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003565**
3566** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3567** page of pPage.
3568**
3569** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3570** page pointed to by one of the cells on pPage.
3571**
3572** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3573** overflow page in the list.
3574*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003575static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003576 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003577 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003578 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003579 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003580 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003581 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003582 }
danielk1977f78fc082004-11-02 14:40:32 +00003583 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003584 }else{
danielk1977687566d2004-11-02 12:56:41 +00003585 int i;
3586 int nCell;
drha1f75d92015-05-24 10:18:12 +00003587 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003588
drh14e845a2017-05-25 21:35:56 +00003589 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003590 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003591 nCell = pPage->nCell;
3592
danielk1977687566d2004-11-02 12:56:41 +00003593 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003594 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003595 if( eType==PTRMAP_OVERFLOW1 ){
3596 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003597 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003598 if( info.nLocal<info.nPayload ){
3599 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003600 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003601 }
3602 if( iFrom==get4byte(pCell+info.nSize-4) ){
3603 put4byte(pCell+info.nSize-4, iTo);
3604 break;
3605 }
danielk1977687566d2004-11-02 12:56:41 +00003606 }
3607 }else{
3608 if( get4byte(pCell)==iFrom ){
3609 put4byte(pCell, iTo);
3610 break;
3611 }
3612 }
3613 }
3614
3615 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003616 if( eType!=PTRMAP_BTREE ||
3617 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003618 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003619 }
danielk1977687566d2004-11-02 12:56:41 +00003620 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3621 }
danielk1977687566d2004-11-02 12:56:41 +00003622 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003623 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003624}
3625
danielk1977003ba062004-11-04 02:57:33 +00003626
danielk19777701e812005-01-10 12:59:51 +00003627/*
3628** Move the open database page pDbPage to location iFreePage in the
3629** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003630**
3631** The isCommit flag indicates that there is no need to remember that
3632** the journal needs to be sync()ed before database page pDbPage->pgno
3633** can be written to. The caller has already promised not to write to that
3634** page.
danielk19777701e812005-01-10 12:59:51 +00003635*/
danielk1977003ba062004-11-04 02:57:33 +00003636static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003637 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003638 MemPage *pDbPage, /* Open page to move */
3639 u8 eType, /* Pointer map 'type' entry for pDbPage */
3640 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003641 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003642 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003643){
3644 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3645 Pgno iDbPage = pDbPage->pgno;
3646 Pager *pPager = pBt->pPager;
3647 int rc;
3648
danielk1977a0bf2652004-11-04 14:30:04 +00003649 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3650 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003651 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003652 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003653 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003654
drh85b623f2007-12-13 21:54:09 +00003655 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003656 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3657 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003658 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003659 if( rc!=SQLITE_OK ){
3660 return rc;
3661 }
3662 pDbPage->pgno = iFreePage;
3663
3664 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3665 ** that point to overflow pages. The pointer map entries for all these
3666 ** pages need to be changed.
3667 **
3668 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3669 ** pointer to a subsequent overflow page. If this is the case, then
3670 ** the pointer map needs to be updated for the subsequent overflow page.
3671 */
danielk1977a0bf2652004-11-04 14:30:04 +00003672 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003673 rc = setChildPtrmaps(pDbPage);
3674 if( rc!=SQLITE_OK ){
3675 return rc;
3676 }
3677 }else{
3678 Pgno nextOvfl = get4byte(pDbPage->aData);
3679 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003680 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003681 if( rc!=SQLITE_OK ){
3682 return rc;
3683 }
3684 }
3685 }
3686
3687 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3688 ** that it points at iFreePage. Also fix the pointer map entry for
3689 ** iPtrPage.
3690 */
danielk1977a0bf2652004-11-04 14:30:04 +00003691 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003692 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003693 if( rc!=SQLITE_OK ){
3694 return rc;
3695 }
danielk19773b8a05f2007-03-19 17:44:26 +00003696 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003697 if( rc!=SQLITE_OK ){
3698 releasePage(pPtrPage);
3699 return rc;
3700 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003701 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003702 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003703 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003704 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003705 }
danielk1977003ba062004-11-04 02:57:33 +00003706 }
danielk1977003ba062004-11-04 02:57:33 +00003707 return rc;
3708}
3709
danielk1977dddbcdc2007-04-26 14:42:34 +00003710/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003711static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003712
3713/*
dan51f0b6d2013-02-22 20:16:34 +00003714** Perform a single step of an incremental-vacuum. If successful, return
3715** SQLITE_OK. If there is no work to do (and therefore no point in
3716** calling this function again), return SQLITE_DONE. Or, if an error
3717** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003718**
peter.d.reid60ec9142014-09-06 16:39:46 +00003719** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003720** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003721**
dan51f0b6d2013-02-22 20:16:34 +00003722** Parameter nFin is the number of pages that this database would contain
3723** were this function called until it returns SQLITE_DONE.
3724**
3725** If the bCommit parameter is non-zero, this function assumes that the
3726** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003727** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003728** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003729*/
dan51f0b6d2013-02-22 20:16:34 +00003730static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003731 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003732 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003733
drh1fee73e2007-08-29 04:00:57 +00003734 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003735 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003736
3737 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003738 u8 eType;
3739 Pgno iPtrPage;
3740
3741 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003742 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003743 return SQLITE_DONE;
3744 }
3745
3746 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3747 if( rc!=SQLITE_OK ){
3748 return rc;
3749 }
3750 if( eType==PTRMAP_ROOTPAGE ){
3751 return SQLITE_CORRUPT_BKPT;
3752 }
3753
3754 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003755 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003756 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003757 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003758 ** truncated to zero after this function returns, so it doesn't
3759 ** matter if it still contains some garbage entries.
3760 */
3761 Pgno iFreePg;
3762 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003763 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003764 if( rc!=SQLITE_OK ){
3765 return rc;
3766 }
3767 assert( iFreePg==iLastPg );
3768 releasePage(pFreePg);
3769 }
3770 } else {
3771 Pgno iFreePg; /* Index of free page to move pLastPg to */
3772 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003773 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3774 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003775
drhb00fc3b2013-08-21 23:42:32 +00003776 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003777 if( rc!=SQLITE_OK ){
3778 return rc;
3779 }
3780
dan51f0b6d2013-02-22 20:16:34 +00003781 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003782 ** is swapped with the first free page pulled off the free list.
3783 **
dan51f0b6d2013-02-22 20:16:34 +00003784 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003785 ** looping until a free-page located within the first nFin pages
3786 ** of the file is found.
3787 */
dan51f0b6d2013-02-22 20:16:34 +00003788 if( bCommit==0 ){
3789 eMode = BTALLOC_LE;
3790 iNear = nFin;
3791 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003792 do {
3793 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003794 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003795 if( rc!=SQLITE_OK ){
3796 releasePage(pLastPg);
3797 return rc;
3798 }
3799 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003800 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003801 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003802
dane1df4e32013-03-05 11:27:04 +00003803 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003804 releasePage(pLastPg);
3805 if( rc!=SQLITE_OK ){
3806 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003807 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003808 }
3809 }
3810
dan51f0b6d2013-02-22 20:16:34 +00003811 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003812 do {
danielk19773460d192008-12-27 15:23:13 +00003813 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003814 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3815 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003816 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003817 }
3818 return SQLITE_OK;
3819}
3820
3821/*
dan51f0b6d2013-02-22 20:16:34 +00003822** The database opened by the first argument is an auto-vacuum database
3823** nOrig pages in size containing nFree free pages. Return the expected
3824** size of the database in pages following an auto-vacuum operation.
3825*/
3826static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3827 int nEntry; /* Number of entries on one ptrmap page */
3828 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3829 Pgno nFin; /* Return value */
3830
3831 nEntry = pBt->usableSize/5;
3832 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3833 nFin = nOrig - nFree - nPtrmap;
3834 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3835 nFin--;
3836 }
3837 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3838 nFin--;
3839 }
dan51f0b6d2013-02-22 20:16:34 +00003840
3841 return nFin;
3842}
3843
3844/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003845** A write-transaction must be opened before calling this function.
3846** It performs a single unit of work towards an incremental vacuum.
3847**
3848** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003849** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003850** SQLITE_OK is returned. Otherwise an SQLite error code.
3851*/
3852int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003853 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003854 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003855
3856 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003857 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3858 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003859 rc = SQLITE_DONE;
3860 }else{
dan51f0b6d2013-02-22 20:16:34 +00003861 Pgno nOrig = btreePagecount(pBt);
3862 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3863 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3864
dan91384712013-02-24 11:50:43 +00003865 if( nOrig<nFin ){
3866 rc = SQLITE_CORRUPT_BKPT;
3867 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003868 rc = saveAllCursors(pBt, 0, 0);
3869 if( rc==SQLITE_OK ){
3870 invalidateAllOverflowCache(pBt);
3871 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3872 }
dan51f0b6d2013-02-22 20:16:34 +00003873 if( rc==SQLITE_OK ){
3874 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3875 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3876 }
3877 }else{
3878 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003879 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003880 }
drhd677b3d2007-08-20 22:48:41 +00003881 sqlite3BtreeLeave(p);
3882 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003883}
3884
3885/*
danielk19773b8a05f2007-03-19 17:44:26 +00003886** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003887** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003888**
3889** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3890** the database file should be truncated to during the commit process.
3891** i.e. the database has been reorganized so that only the first *pnTrunc
3892** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003893*/
danielk19773460d192008-12-27 15:23:13 +00003894static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003895 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003896 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003897 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003898
drh1fee73e2007-08-29 04:00:57 +00003899 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003900 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003901 assert(pBt->autoVacuum);
3902 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003903 Pgno nFin; /* Number of pages in database after autovacuuming */
3904 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003905 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003906 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003907
drhb1299152010-03-30 22:58:33 +00003908 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003909 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3910 /* It is not possible to create a database for which the final page
3911 ** is either a pointer-map page or the pending-byte page. If one
3912 ** is encountered, this indicates corruption.
3913 */
danielk19773460d192008-12-27 15:23:13 +00003914 return SQLITE_CORRUPT_BKPT;
3915 }
danielk1977ef165ce2009-04-06 17:50:03 +00003916
danielk19773460d192008-12-27 15:23:13 +00003917 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003918 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003919 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003920 if( nFin<nOrig ){
3921 rc = saveAllCursors(pBt, 0, 0);
3922 }
danielk19773460d192008-12-27 15:23:13 +00003923 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003924 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003925 }
danielk19773460d192008-12-27 15:23:13 +00003926 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003927 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3928 put4byte(&pBt->pPage1->aData[32], 0);
3929 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003930 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003931 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003932 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003933 }
3934 if( rc!=SQLITE_OK ){
3935 sqlite3PagerRollback(pPager);
3936 }
danielk1977687566d2004-11-02 12:56:41 +00003937 }
3938
dan0aed84d2013-03-26 14:16:20 +00003939 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003940 return rc;
3941}
danielk1977dddbcdc2007-04-26 14:42:34 +00003942
danielk1977a50d9aa2009-06-08 14:49:45 +00003943#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3944# define setChildPtrmaps(x) SQLITE_OK
3945#endif
danielk1977687566d2004-11-02 12:56:41 +00003946
3947/*
drh80e35f42007-03-30 14:06:34 +00003948** This routine does the first phase of a two-phase commit. This routine
3949** causes a rollback journal to be created (if it does not already exist)
3950** and populated with enough information so that if a power loss occurs
3951** the database can be restored to its original state by playing back
3952** the journal. Then the contents of the journal are flushed out to
3953** the disk. After the journal is safely on oxide, the changes to the
3954** database are written into the database file and flushed to oxide.
3955** At the end of this call, the rollback journal still exists on the
3956** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003957** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003958** commit process.
3959**
3960** This call is a no-op if no write-transaction is currently active on pBt.
3961**
3962** Otherwise, sync the database file for the btree pBt. zMaster points to
3963** the name of a master journal file that should be written into the
3964** individual journal file, or is NULL, indicating no master journal file
3965** (single database transaction).
3966**
3967** When this is called, the master journal should already have been
3968** created, populated with this journal pointer and synced to disk.
3969**
3970** Once this is routine has returned, the only thing required to commit
3971** the write-transaction for this database file is to delete the journal.
3972*/
3973int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3974 int rc = SQLITE_OK;
3975 if( p->inTrans==TRANS_WRITE ){
3976 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003977 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003978#ifndef SQLITE_OMIT_AUTOVACUUM
3979 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003980 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003981 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003982 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003983 return rc;
3984 }
3985 }
danbc1a3c62013-02-23 16:40:46 +00003986 if( pBt->bDoTruncate ){
3987 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3988 }
drh80e35f42007-03-30 14:06:34 +00003989#endif
drh49b9d332009-01-02 18:10:42 +00003990 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003991 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003992 }
3993 return rc;
3994}
3995
3996/*
danielk197794b30732009-07-02 17:21:57 +00003997** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3998** at the conclusion of a transaction.
3999*/
4000static void btreeEndTransaction(Btree *p){
4001 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00004002 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004003 assert( sqlite3BtreeHoldsMutex(p) );
4004
danbc1a3c62013-02-23 16:40:46 +00004005#ifndef SQLITE_OMIT_AUTOVACUUM
4006 pBt->bDoTruncate = 0;
4007#endif
danc0537fe2013-06-28 19:41:43 +00004008 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004009 /* If there are other active statements that belong to this database
4010 ** handle, downgrade to a read-only transaction. The other statements
4011 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004012 downgradeAllSharedCacheTableLocks(p);
4013 p->inTrans = TRANS_READ;
4014 }else{
4015 /* If the handle had any kind of transaction open, decrement the
4016 ** transaction count of the shared btree. If the transaction count
4017 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4018 ** call below will unlock the pager. */
4019 if( p->inTrans!=TRANS_NONE ){
4020 clearAllSharedCacheTableLocks(p);
4021 pBt->nTransaction--;
4022 if( 0==pBt->nTransaction ){
4023 pBt->inTransaction = TRANS_NONE;
4024 }
4025 }
4026
4027 /* Set the current transaction state to TRANS_NONE and unlock the
4028 ** pager if this call closed the only read or write transaction. */
4029 p->inTrans = TRANS_NONE;
4030 unlockBtreeIfUnused(pBt);
4031 }
4032
4033 btreeIntegrity(p);
4034}
4035
4036/*
drh2aa679f2001-06-25 02:11:07 +00004037** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004038**
drh6e345992007-03-30 11:12:08 +00004039** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004040** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4041** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4042** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004043** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004044** routine has to do is delete or truncate or zero the header in the
4045** the rollback journal (which causes the transaction to commit) and
4046** drop locks.
drh6e345992007-03-30 11:12:08 +00004047**
dan60939d02011-03-29 15:40:55 +00004048** Normally, if an error occurs while the pager layer is attempting to
4049** finalize the underlying journal file, this function returns an error and
4050** the upper layer will attempt a rollback. However, if the second argument
4051** is non-zero then this b-tree transaction is part of a multi-file
4052** transaction. In this case, the transaction has already been committed
4053** (by deleting a master journal file) and the caller will ignore this
4054** functions return code. So, even if an error occurs in the pager layer,
4055** reset the b-tree objects internal state to indicate that the write
4056** transaction has been closed. This is quite safe, as the pager will have
4057** transitioned to the error state.
4058**
drh5e00f6c2001-09-13 13:46:56 +00004059** This will release the write lock on the database file. If there
4060** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004061*/
dan60939d02011-03-29 15:40:55 +00004062int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004063
drh075ed302010-10-14 01:17:30 +00004064 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004065 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004066 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004067
4068 /* If the handle has a write-transaction open, commit the shared-btrees
4069 ** transaction and set the shared state to TRANS_READ.
4070 */
4071 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004072 int rc;
drh075ed302010-10-14 01:17:30 +00004073 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004074 assert( pBt->inTransaction==TRANS_WRITE );
4075 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004076 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004077 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004078 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004079 return rc;
4080 }
drh3da9c042014-12-22 18:41:21 +00004081 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004082 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004083 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004084 }
danielk1977aef0bf62005-12-30 16:28:01 +00004085
danielk197794b30732009-07-02 17:21:57 +00004086 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004087 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004088 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004089}
4090
drh80e35f42007-03-30 14:06:34 +00004091/*
4092** Do both phases of a commit.
4093*/
4094int sqlite3BtreeCommit(Btree *p){
4095 int rc;
drhd677b3d2007-08-20 22:48:41 +00004096 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004097 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4098 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004099 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004100 }
drhd677b3d2007-08-20 22:48:41 +00004101 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004102 return rc;
4103}
4104
drhc39e0002004-05-07 23:50:57 +00004105/*
drhfb982642007-08-30 01:19:59 +00004106** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004107** code to errCode for every cursor on any BtShared that pBtree
4108** references. Or if the writeOnly flag is set to 1, then only
4109** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004110**
drh47b7fc72014-11-11 01:33:57 +00004111** Every cursor is a candidate to be tripped, including cursors
4112** that belong to other database connections that happen to be
4113** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004114**
dan80231042014-11-12 14:56:02 +00004115** This routine gets called when a rollback occurs. If the writeOnly
4116** flag is true, then only write-cursors need be tripped - read-only
4117** cursors save their current positions so that they may continue
4118** following the rollback. Or, if writeOnly is false, all cursors are
4119** tripped. In general, writeOnly is false if the transaction being
4120** rolled back modified the database schema. In this case b-tree root
4121** pages may be moved or deleted from the database altogether, making
4122** it unsafe for read cursors to continue.
4123**
4124** If the writeOnly flag is true and an error is encountered while
4125** saving the current position of a read-only cursor, all cursors,
4126** including all read-cursors are tripped.
4127**
4128** SQLITE_OK is returned if successful, or if an error occurs while
4129** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004130*/
dan80231042014-11-12 14:56:02 +00004131int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004132 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004133 int rc = SQLITE_OK;
4134
drh47b7fc72014-11-11 01:33:57 +00004135 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004136 if( pBtree ){
4137 sqlite3BtreeEnter(pBtree);
4138 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004139 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004140 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004141 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004142 if( rc!=SQLITE_OK ){
4143 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4144 break;
4145 }
4146 }
4147 }else{
4148 sqlite3BtreeClearCursor(p);
4149 p->eState = CURSOR_FAULT;
4150 p->skipNext = errCode;
4151 }
drh85ef6302017-08-02 15:50:09 +00004152 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004153 }
dan80231042014-11-12 14:56:02 +00004154 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004155 }
dan80231042014-11-12 14:56:02 +00004156 return rc;
drhfb982642007-08-30 01:19:59 +00004157}
4158
4159/*
drh41422652019-05-10 14:34:18 +00004160** Set the pBt->nPage field correctly, according to the current
4161** state of the database. Assume pBt->pPage1 is valid.
4162*/
4163static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4164 int nPage = get4byte(&pPage1->aData[28]);
4165 testcase( nPage==0 );
4166 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4167 testcase( pBt->nPage!=nPage );
4168 pBt->nPage = nPage;
4169}
4170
4171/*
drh47b7fc72014-11-11 01:33:57 +00004172** Rollback the transaction in progress.
4173**
4174** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4175** Only write cursors are tripped if writeOnly is true but all cursors are
4176** tripped if writeOnly is false. Any attempt to use
4177** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004178**
4179** This will release the write lock on the database file. If there
4180** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004181*/
drh47b7fc72014-11-11 01:33:57 +00004182int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004183 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004184 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004185 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004186
drh47b7fc72014-11-11 01:33:57 +00004187 assert( writeOnly==1 || writeOnly==0 );
4188 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004189 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004190 if( tripCode==SQLITE_OK ){
4191 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004192 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004193 }else{
4194 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004195 }
drh0f198a72012-02-13 16:43:16 +00004196 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004197 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4198 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4199 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004200 }
danielk1977aef0bf62005-12-30 16:28:01 +00004201 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004202
4203 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004204 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004205
danielk19778d34dfd2006-01-24 16:37:57 +00004206 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004207 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004208 if( rc2!=SQLITE_OK ){
4209 rc = rc2;
4210 }
4211
drh24cd67e2004-05-10 16:18:47 +00004212 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004213 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004214 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004215 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh41422652019-05-10 14:34:18 +00004216 btreeSetNPage(pBt, pPage1);
drh3908fe92017-09-01 14:50:19 +00004217 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004218 }
drh85ec3b62013-05-14 23:12:06 +00004219 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004220 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004221 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004222 }
danielk1977aef0bf62005-12-30 16:28:01 +00004223
danielk197794b30732009-07-02 17:21:57 +00004224 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004225 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004226 return rc;
4227}
4228
4229/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004230** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004231** back independently of the main transaction. You must start a transaction
4232** before starting a subtransaction. The subtransaction is ended automatically
4233** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004234**
4235** Statement subtransactions are used around individual SQL statements
4236** that are contained within a BEGIN...COMMIT block. If a constraint
4237** error occurs within the statement, the effect of that one statement
4238** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004239**
4240** A statement sub-transaction is implemented as an anonymous savepoint. The
4241** value passed as the second parameter is the total number of savepoints,
4242** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4243** are no active savepoints and no other statement-transactions open,
4244** iStatement is 1. This anonymous savepoint can be released or rolled back
4245** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004246*/
danielk1977bd434552009-03-18 10:33:00 +00004247int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004248 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004249 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004250 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004251 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004252 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004253 assert( iStatement>0 );
4254 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004255 assert( pBt->inTransaction==TRANS_WRITE );
4256 /* At the pager level, a statement transaction is a savepoint with
4257 ** an index greater than all savepoints created explicitly using
4258 ** SQL statements. It is illegal to open, release or rollback any
4259 ** such savepoints while the statement transaction savepoint is active.
4260 */
4261 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004262 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004263 return rc;
4264}
4265
4266/*
danielk1977fd7f0452008-12-17 17:30:26 +00004267** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4268** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004269** savepoint identified by parameter iSavepoint, depending on the value
4270** of op.
4271**
4272** Normally, iSavepoint is greater than or equal to zero. However, if op is
4273** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4274** contents of the entire transaction are rolled back. This is different
4275** from a normal transaction rollback, as no locks are released and the
4276** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004277*/
4278int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4279 int rc = SQLITE_OK;
4280 if( p && p->inTrans==TRANS_WRITE ){
4281 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004282 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4283 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4284 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004285 if( op==SAVEPOINT_ROLLBACK ){
4286 rc = saveAllCursors(pBt, 0, 0);
4287 }
4288 if( rc==SQLITE_OK ){
4289 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4290 }
drh9f0bbf92009-01-02 21:08:09 +00004291 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004292 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4293 pBt->nPage = 0;
4294 }
drh9f0bbf92009-01-02 21:08:09 +00004295 rc = newDatabase(pBt);
drh41422652019-05-10 14:34:18 +00004296 btreeSetNPage(pBt, pBt->pPage1);
drhb9b49bf2010-08-05 03:21:39 +00004297
dana9a54652019-04-22 11:47:40 +00004298 /* pBt->nPage might be zero if the database was corrupt when
4299 ** the transaction was started. Otherwise, it must be at least 1. */
4300 assert( CORRUPT_DB || pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004301 }
danielk1977fd7f0452008-12-17 17:30:26 +00004302 sqlite3BtreeLeave(p);
4303 }
4304 return rc;
4305}
4306
4307/*
drh8b2f49b2001-06-08 00:21:52 +00004308** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004309** iTable. If a read-only cursor is requested, it is assumed that
4310** the caller already has at least a read-only transaction open
4311** on the database already. If a write-cursor is requested, then
4312** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004313**
drhe807bdb2016-01-21 17:06:33 +00004314** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4315** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4316** can be used for reading or for writing if other conditions for writing
4317** are also met. These are the conditions that must be met in order
4318** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004319**
drhe807bdb2016-01-21 17:06:33 +00004320** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004321**
drhfe5d71d2007-03-19 11:54:10 +00004322** 2: Other database connections that share the same pager cache
4323** but which are not in the READ_UNCOMMITTED state may not have
4324** cursors open with wrFlag==0 on the same table. Otherwise
4325** the changes made by this write cursor would be visible to
4326** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004327**
4328** 3: The database must be writable (not on read-only media)
4329**
4330** 4: There must be an active transaction.
4331**
drhe807bdb2016-01-21 17:06:33 +00004332** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4333** is set. If FORDELETE is set, that is a hint to the implementation that
4334** this cursor will only be used to seek to and delete entries of an index
4335** as part of a larger DELETE statement. The FORDELETE hint is not used by
4336** this implementation. But in a hypothetical alternative storage engine
4337** in which index entries are automatically deleted when corresponding table
4338** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4339** operations on this cursor can be no-ops and all READ operations can
4340** return a null row (2-bytes: 0x01 0x00).
4341**
drh6446c4d2001-12-15 14:22:18 +00004342** No checking is done to make sure that page iTable really is the
4343** root page of a b-tree. If it is not, then the cursor acquired
4344** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004345**
drhf25a5072009-11-18 23:01:25 +00004346** It is assumed that the sqlite3BtreeCursorZero() has been called
4347** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004348*/
drhd677b3d2007-08-20 22:48:41 +00004349static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004350 Btree *p, /* The btree */
4351 int iTable, /* Root page of table to open */
4352 int wrFlag, /* 1 to write. 0 read-only */
4353 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4354 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004355){
danielk19773e8add92009-07-04 17:16:00 +00004356 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004357 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004358
drh1fee73e2007-08-29 04:00:57 +00004359 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004360 assert( wrFlag==0
4361 || wrFlag==BTREE_WRCSR
4362 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4363 );
danielk197796d48e92009-06-29 06:00:37 +00004364
danielk1977602b4662009-07-02 07:47:33 +00004365 /* The following assert statements verify that if this is a sharable
4366 ** b-tree database, the connection is holding the required table locks,
4367 ** and that no other connection has any open cursor that conflicts with
4368 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004369 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004370 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4371
danielk19773e8add92009-07-04 17:16:00 +00004372 /* Assert that the caller has opened the required transaction. */
4373 assert( p->inTrans>TRANS_NONE );
4374 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4375 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004376 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004377
drh3fbb0222014-09-24 19:47:27 +00004378 if( wrFlag ){
4379 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004380 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004381 }
drhb1299152010-03-30 22:58:33 +00004382 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004383 assert( wrFlag==0 );
4384 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004385 }
danielk1977aef0bf62005-12-30 16:28:01 +00004386
danielk1977aef0bf62005-12-30 16:28:01 +00004387 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004388 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004389 pCur->pgnoRoot = (Pgno)iTable;
4390 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004391 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004392 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004393 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004394 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004395 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004396 /* If there are two or more cursors on the same btree, then all such
4397 ** cursors *must* have the BTCF_Multiple flag set. */
4398 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4399 if( pX->pgnoRoot==(Pgno)iTable ){
4400 pX->curFlags |= BTCF_Multiple;
4401 pCur->curFlags |= BTCF_Multiple;
4402 }
drha059ad02001-04-17 20:09:11 +00004403 }
drh27fb7462015-06-30 02:47:36 +00004404 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004405 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004406 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004407 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004408}
drhd677b3d2007-08-20 22:48:41 +00004409int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004410 Btree *p, /* The btree */
4411 int iTable, /* Root page of table to open */
4412 int wrFlag, /* 1 to write. 0 read-only */
4413 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4414 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004415){
4416 int rc;
dan08f901b2015-05-25 19:24:36 +00004417 if( iTable<1 ){
4418 rc = SQLITE_CORRUPT_BKPT;
4419 }else{
4420 sqlite3BtreeEnter(p);
4421 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4422 sqlite3BtreeLeave(p);
4423 }
drhd677b3d2007-08-20 22:48:41 +00004424 return rc;
4425}
drh7f751222009-03-17 22:33:00 +00004426
4427/*
4428** Return the size of a BtCursor object in bytes.
4429**
4430** This interfaces is needed so that users of cursors can preallocate
4431** sufficient storage to hold a cursor. The BtCursor object is opaque
4432** to users so they cannot do the sizeof() themselves - they must call
4433** this routine.
4434*/
4435int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004436 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004437}
4438
drh7f751222009-03-17 22:33:00 +00004439/*
drhf25a5072009-11-18 23:01:25 +00004440** Initialize memory that will be converted into a BtCursor object.
4441**
4442** The simple approach here would be to memset() the entire object
4443** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4444** do not need to be zeroed and they are large, so we can save a lot
4445** of run-time by skipping the initialization of those elements.
4446*/
4447void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004448 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004449}
4450
4451/*
drh5e00f6c2001-09-13 13:46:56 +00004452** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004453** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004454*/
drh3aac2dd2004-04-26 14:10:20 +00004455int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004456 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004457 if( pBtree ){
4458 BtShared *pBt = pCur->pBt;
4459 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004460 assert( pBt->pCursor!=0 );
4461 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004462 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004463 }else{
4464 BtCursor *pPrev = pBt->pCursor;
4465 do{
4466 if( pPrev->pNext==pCur ){
4467 pPrev->pNext = pCur->pNext;
4468 break;
4469 }
4470 pPrev = pPrev->pNext;
4471 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004472 }
drh352a35a2017-08-15 03:46:47 +00004473 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004474 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004475 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004476 sqlite3_free(pCur->pKey);
danielk1977cd3e8f72008-03-25 09:47:35 +00004477 sqlite3BtreeLeave(pBtree);
dan97c8cb32019-01-01 18:00:17 +00004478 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004479 }
drh8c42ca92001-06-22 19:15:00 +00004480 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004481}
4482
drh5e2f8b92001-05-28 00:41:15 +00004483/*
drh86057612007-06-26 01:04:48 +00004484** Make sure the BtCursor* given in the argument has a valid
4485** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004486** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004487**
4488** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004489** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004490*/
drh9188b382004-05-14 21:12:22 +00004491#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004492 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4493 if( a->nKey!=b->nKey ) return 0;
4494 if( a->pPayload!=b->pPayload ) return 0;
4495 if( a->nPayload!=b->nPayload ) return 0;
4496 if( a->nLocal!=b->nLocal ) return 0;
4497 if( a->nSize!=b->nSize ) return 0;
4498 return 1;
4499 }
danielk19771cc5ed82007-05-16 17:28:43 +00004500 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004501 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004502 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004503 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004504 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004505 }
danielk19771cc5ed82007-05-16 17:28:43 +00004506#else
4507 #define assertCellInfo(x)
4508#endif
drhc5b41ac2015-06-17 02:11:46 +00004509static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4510 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004511 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004512 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004513 }else{
4514 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004515 }
drhc5b41ac2015-06-17 02:11:46 +00004516}
drh9188b382004-05-14 21:12:22 +00004517
drhea8ffdf2009-07-22 00:35:23 +00004518#ifndef NDEBUG /* The next routine used only within assert() statements */
4519/*
4520** Return true if the given BtCursor is valid. A valid cursor is one
4521** that is currently pointing to a row in a (non-empty) table.
4522** This is a verification routine is used only within assert() statements.
4523*/
4524int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4525 return pCur && pCur->eState==CURSOR_VALID;
4526}
4527#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004528int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4529 assert( pCur!=0 );
4530 return pCur->eState==CURSOR_VALID;
4531}
drhea8ffdf2009-07-22 00:35:23 +00004532
drh9188b382004-05-14 21:12:22 +00004533/*
drha7c90c42016-06-04 20:37:10 +00004534** Return the value of the integer key or "rowid" for a table btree.
4535** This routine is only valid for a cursor that is pointing into a
4536** ordinary table btree. If the cursor points to an index btree or
4537** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004538*/
drha7c90c42016-06-04 20:37:10 +00004539i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004540 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004541 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004542 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004543 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004544 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004545}
drh2af926b2001-05-15 00:39:25 +00004546
drh092457b2017-12-29 15:04:49 +00004547#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004548/*
drh2fc865c2017-12-16 20:20:37 +00004549** Return the offset into the database file for the start of the
4550** payload to which the cursor is pointing.
4551*/
drh092457b2017-12-29 15:04:49 +00004552i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004553 assert( cursorHoldsMutex(pCur) );
4554 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004555 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004556 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004557 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4558}
drh092457b2017-12-29 15:04:49 +00004559#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004560
4561/*
drha7c90c42016-06-04 20:37:10 +00004562** Return the number of bytes of payload for the entry that pCur is
4563** currently pointing to. For table btrees, this will be the amount
4564** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004565**
4566** The caller must guarantee that the cursor is pointing to a non-NULL
4567** valid entry. In other words, the calling procedure must guarantee
4568** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004569*/
drha7c90c42016-06-04 20:37:10 +00004570u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4571 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004572 assert( pCur->eState==CURSOR_VALID );
4573 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004574 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004575}
4576
4577/*
drh53d30dd2019-02-04 21:10:24 +00004578** Return an upper bound on the size of any record for the table
4579** that the cursor is pointing into.
4580**
4581** This is an optimization. Everything will still work if this
4582** routine always returns 2147483647 (which is the largest record
4583** that SQLite can handle) or more. But returning a smaller value might
4584** prevent large memory allocations when trying to interpret a
4585** corrupt datrabase.
4586**
4587** The current implementation merely returns the size of the underlying
4588** database file.
4589*/
4590sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4591 assert( cursorHoldsMutex(pCur) );
4592 assert( pCur->eState==CURSOR_VALID );
4593 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4594}
4595
4596/*
danielk1977d04417962007-05-02 13:16:30 +00004597** Given the page number of an overflow page in the database (parameter
4598** ovfl), this function finds the page number of the next page in the
4599** linked list of overflow pages. If possible, it uses the auto-vacuum
4600** pointer-map data instead of reading the content of page ovfl to do so.
4601**
4602** If an error occurs an SQLite error code is returned. Otherwise:
4603**
danielk1977bea2a942009-01-20 17:06:27 +00004604** The page number of the next overflow page in the linked list is
4605** written to *pPgnoNext. If page ovfl is the last page in its linked
4606** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004607**
danielk1977bea2a942009-01-20 17:06:27 +00004608** If ppPage is not NULL, and a reference to the MemPage object corresponding
4609** to page number pOvfl was obtained, then *ppPage is set to point to that
4610** reference. It is the responsibility of the caller to call releasePage()
4611** on *ppPage to free the reference. In no reference was obtained (because
4612** the pointer-map was used to obtain the value for *pPgnoNext), then
4613** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004614*/
4615static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004616 BtShared *pBt, /* The database file */
4617 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004618 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004619 Pgno *pPgnoNext /* OUT: Next overflow page number */
4620){
4621 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004622 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004623 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004624
drh1fee73e2007-08-29 04:00:57 +00004625 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004626 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004627
4628#ifndef SQLITE_OMIT_AUTOVACUUM
4629 /* Try to find the next page in the overflow list using the
4630 ** autovacuum pointer-map pages. Guess that the next page in
4631 ** the overflow list is page number (ovfl+1). If that guess turns
4632 ** out to be wrong, fall back to loading the data of page
4633 ** number ovfl to determine the next page number.
4634 */
4635 if( pBt->autoVacuum ){
4636 Pgno pgno;
4637 Pgno iGuess = ovfl+1;
4638 u8 eType;
4639
4640 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4641 iGuess++;
4642 }
4643
drhb1299152010-03-30 22:58:33 +00004644 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004645 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004646 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004647 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004648 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004649 }
4650 }
4651 }
4652#endif
4653
danielk1977d8a3f3d2009-07-11 11:45:23 +00004654 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004655 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004656 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004657 assert( rc==SQLITE_OK || pPage==0 );
4658 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004659 next = get4byte(pPage->aData);
4660 }
danielk1977443c0592009-01-16 15:21:05 +00004661 }
danielk197745d68822009-01-16 16:23:38 +00004662
danielk1977bea2a942009-01-20 17:06:27 +00004663 *pPgnoNext = next;
4664 if( ppPage ){
4665 *ppPage = pPage;
4666 }else{
4667 releasePage(pPage);
4668 }
4669 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004670}
4671
danielk1977da107192007-05-04 08:32:13 +00004672/*
4673** Copy data from a buffer to a page, or from a page to a buffer.
4674**
4675** pPayload is a pointer to data stored on database page pDbPage.
4676** If argument eOp is false, then nByte bytes of data are copied
4677** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4678** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4679** of data are copied from the buffer pBuf to pPayload.
4680**
4681** SQLITE_OK is returned on success, otherwise an error code.
4682*/
4683static int copyPayload(
4684 void *pPayload, /* Pointer to page data */
4685 void *pBuf, /* Pointer to buffer */
4686 int nByte, /* Number of bytes to copy */
4687 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4688 DbPage *pDbPage /* Page containing pPayload */
4689){
4690 if( eOp ){
4691 /* Copy data from buffer to page (a write operation) */
4692 int rc = sqlite3PagerWrite(pDbPage);
4693 if( rc!=SQLITE_OK ){
4694 return rc;
4695 }
4696 memcpy(pPayload, pBuf, nByte);
4697 }else{
4698 /* Copy data from page to buffer (a read operation) */
4699 memcpy(pBuf, pPayload, nByte);
4700 }
4701 return SQLITE_OK;
4702}
danielk1977d04417962007-05-02 13:16:30 +00004703
4704/*
danielk19779f8d6402007-05-02 17:48:45 +00004705** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004706** for the entry that the pCur cursor is pointing to. The eOp
4707** argument is interpreted as follows:
4708**
4709** 0: The operation is a read. Populate the overflow cache.
4710** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004711**
4712** A total of "amt" bytes are read or written beginning at "offset".
4713** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004714**
drh3bcdfd22009-07-12 02:32:21 +00004715** The content being read or written might appear on the main page
4716** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004717**
drh42e28f12017-01-27 00:31:59 +00004718** If the current cursor entry uses one or more overflow pages
4719** this function may allocate space for and lazily populate
4720** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004721** Subsequent calls use this cache to make seeking to the supplied offset
4722** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004723**
drh42e28f12017-01-27 00:31:59 +00004724** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004725** invalidated if some other cursor writes to the same table, or if
4726** the cursor is moved to a different row. Additionally, in auto-vacuum
4727** mode, the following events may invalidate an overflow page-list cache.
4728**
4729** * An incremental vacuum,
4730** * A commit in auto_vacuum="full" mode,
4731** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004732*/
danielk19779f8d6402007-05-02 17:48:45 +00004733static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004734 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004735 u32 offset, /* Begin reading this far into payload */
4736 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004737 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004738 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004739){
4740 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004741 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004742 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004743 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004744 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004745#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004746 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004747#endif
drh3aac2dd2004-04-26 14:10:20 +00004748
danielk1977da107192007-05-04 08:32:13 +00004749 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004750 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004751 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004752 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004753 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004754
drh86057612007-06-26 01:04:48 +00004755 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004756 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004757 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004758
drh0b982072016-03-22 14:10:45 +00004759 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004760 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004761 /* Trying to read or write past the end of the data is an error. The
4762 ** conditional above is really:
4763 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4764 ** but is recast into its current form to avoid integer overflow problems
4765 */
daneebf2f52017-11-18 17:30:08 +00004766 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004767 }
danielk1977da107192007-05-04 08:32:13 +00004768
4769 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004770 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004771 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004772 if( a+offset>pCur->info.nLocal ){
4773 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004774 }
drh42e28f12017-01-27 00:31:59 +00004775 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004776 offset = 0;
drha34b6762004-05-07 13:30:42 +00004777 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004778 amt -= a;
drhdd793422001-06-28 01:54:48 +00004779 }else{
drhfa1a98a2004-05-14 19:08:17 +00004780 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004781 }
danielk1977da107192007-05-04 08:32:13 +00004782
dan85753662014-12-11 16:38:18 +00004783
danielk1977da107192007-05-04 08:32:13 +00004784 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004785 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004786 Pgno nextPage;
4787
drhfa1a98a2004-05-14 19:08:17 +00004788 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004789
drha38c9512014-04-01 01:24:34 +00004790 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004791 **
4792 ** The aOverflow[] array is sized at one entry for each overflow page
4793 ** in the overflow chain. The page number of the first overflow page is
4794 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4795 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004796 */
drh42e28f12017-01-27 00:31:59 +00004797 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004798 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004799 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004800 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004801 ){
dan85753662014-12-11 16:38:18 +00004802 Pgno *aNew = (Pgno*)sqlite3Realloc(
4803 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004804 );
4805 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004806 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004807 }else{
dan5a500af2014-03-11 20:33:04 +00004808 pCur->aOverflow = aNew;
4809 }
4810 }
drhcd645532017-01-20 20:43:14 +00004811 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4812 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004813 }else{
4814 /* If the overflow page-list cache has been allocated and the
4815 ** entry for the first required overflow page is valid, skip
4816 ** directly to it.
4817 */
4818 if( pCur->aOverflow[offset/ovflSize] ){
4819 iIdx = (offset/ovflSize);
4820 nextPage = pCur->aOverflow[iIdx];
4821 offset = (offset%ovflSize);
4822 }
danielk19772dec9702007-05-02 16:48:37 +00004823 }
danielk1977da107192007-05-04 08:32:13 +00004824
drhcd645532017-01-20 20:43:14 +00004825 assert( rc==SQLITE_OK && amt>0 );
4826 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004827 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004828 assert( pCur->aOverflow[iIdx]==0
4829 || pCur->aOverflow[iIdx]==nextPage
4830 || CORRUPT_DB );
4831 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004832
danielk1977d04417962007-05-02 13:16:30 +00004833 if( offset>=ovflSize ){
4834 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004835 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004836 ** data is not required. So first try to lookup the overflow
4837 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004838 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004839 */
drha38c9512014-04-01 01:24:34 +00004840 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004841 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004842 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004843 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004844 }else{
danielk1977da107192007-05-04 08:32:13 +00004845 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004846 }
danielk1977da107192007-05-04 08:32:13 +00004847 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004848 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004849 /* Need to read this page properly. It contains some of the
4850 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004851 */
danielk1977cfe9a692004-06-16 12:00:29 +00004852 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004853 if( a + offset > ovflSize ){
4854 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004855 }
danf4ba1092011-10-08 14:57:07 +00004856
4857#ifdef SQLITE_DIRECT_OVERFLOW_READ
4858 /* If all the following are true:
4859 **
4860 ** 1) this is a read operation, and
4861 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00004862 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00004863 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004864 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004865 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004866 **
4867 ** then data can be read directly from the database file into the
4868 ** output buffer, bypassing the page-cache altogether. This speeds
4869 ** up loading large records that span many overflow pages.
4870 */
drh42e28f12017-01-27 00:31:59 +00004871 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004872 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00004873 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00004874 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004875 ){
dan09236752018-11-22 19:10:14 +00004876 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00004877 u8 aSave[4];
4878 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004879 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004880 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004881 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004882 nextPage = get4byte(aWrite);
4883 memcpy(aWrite, aSave, 4);
4884 }else
4885#endif
4886
4887 {
4888 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004889 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004890 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004891 );
danf4ba1092011-10-08 14:57:07 +00004892 if( rc==SQLITE_OK ){
4893 aPayload = sqlite3PagerGetData(pDbPage);
4894 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004895 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004896 sqlite3PagerUnref(pDbPage);
4897 offset = 0;
4898 }
4899 }
4900 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004901 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004902 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004903 }
drhcd645532017-01-20 20:43:14 +00004904 if( rc ) break;
4905 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004906 }
drh2af926b2001-05-15 00:39:25 +00004907 }
danielk1977cfe9a692004-06-16 12:00:29 +00004908
danielk1977da107192007-05-04 08:32:13 +00004909 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004910 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00004911 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00004912 }
danielk1977da107192007-05-04 08:32:13 +00004913 return rc;
drh2af926b2001-05-15 00:39:25 +00004914}
4915
drh72f82862001-05-24 21:06:34 +00004916/*
drhcb3cabd2016-11-25 19:18:28 +00004917** Read part of the payload for the row at which that cursor pCur is currently
4918** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004919** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004920**
drhcb3cabd2016-11-25 19:18:28 +00004921** pCur can be pointing to either a table or an index b-tree.
4922** If pointing to a table btree, then the content section is read. If
4923** pCur is pointing to an index b-tree then the key section is read.
4924**
4925** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4926** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4927** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004928**
drh3aac2dd2004-04-26 14:10:20 +00004929** Return SQLITE_OK on success or an error code if anything goes
4930** wrong. An error is returned if "offset+amt" is larger than
4931** the available payload.
drh72f82862001-05-24 21:06:34 +00004932*/
drhcb3cabd2016-11-25 19:18:28 +00004933int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004934 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004935 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00004936 assert( pCur->iPage>=0 && pCur->pPage );
4937 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00004938 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004939}
drh83ec2762017-01-26 16:54:47 +00004940
4941/*
4942** This variant of sqlite3BtreePayload() works even if the cursor has not
4943** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4944** interface.
4945*/
danielk19773588ceb2008-06-10 17:30:26 +00004946#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004947static SQLITE_NOINLINE int accessPayloadChecked(
4948 BtCursor *pCur,
4949 u32 offset,
4950 u32 amt,
4951 void *pBuf
4952){
drhcb3cabd2016-11-25 19:18:28 +00004953 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004954 if ( pCur->eState==CURSOR_INVALID ){
4955 return SQLITE_ABORT;
4956 }
dan7a2347e2016-01-07 16:43:54 +00004957 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004958 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004959 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4960}
4961int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4962 if( pCur->eState==CURSOR_VALID ){
4963 assert( cursorOwnsBtShared(pCur) );
4964 return accessPayload(pCur, offset, amt, pBuf, 0);
4965 }else{
4966 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004967 }
drh2af926b2001-05-15 00:39:25 +00004968}
drhcb3cabd2016-11-25 19:18:28 +00004969#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004970
drh72f82862001-05-24 21:06:34 +00004971/*
drh0e1c19e2004-05-11 00:58:56 +00004972** Return a pointer to payload information from the entry that the
4973** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004974** the key if index btrees (pPage->intKey==0) and is the data for
4975** table btrees (pPage->intKey==1). The number of bytes of available
4976** key/data is written into *pAmt. If *pAmt==0, then the value
4977** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004978**
4979** This routine is an optimization. It is common for the entire key
4980** and data to fit on the local page and for there to be no overflow
4981** pages. When that is so, this routine can be used to access the
4982** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004983** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004984** the key/data and copy it into a preallocated buffer.
4985**
4986** The pointer returned by this routine looks directly into the cached
4987** page of the database. The data might change or move the next time
4988** any btree routine is called.
4989*/
drh2a8d2262013-12-09 20:43:22 +00004990static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004991 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004992 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004993){
danf2f72a02017-10-19 15:17:38 +00004994 int amt;
drh352a35a2017-08-15 03:46:47 +00004995 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00004996 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004997 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004998 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00004999 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00005000 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00005001 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5002 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00005003 amt = pCur->info.nLocal;
5004 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5005 /* There is too little space on the page for the expected amount
5006 ** of local content. Database must be corrupt. */
5007 assert( CORRUPT_DB );
5008 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5009 }
5010 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00005011 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00005012}
5013
5014
5015/*
drhe51c44f2004-05-30 20:46:09 +00005016** For the entry that cursor pCur is point to, return as
5017** many bytes of the key or data as are available on the local
5018** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005019**
5020** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005021** or be destroyed on the next call to any Btree routine,
5022** including calls from other threads against the same cache.
5023** Hence, a mutex on the BtShared should be held prior to calling
5024** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005025**
5026** These routines is used to get quick access to key and data
5027** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005028*/
drha7c90c42016-06-04 20:37:10 +00005029const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005030 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005031}
5032
5033
5034/*
drh8178a752003-01-05 21:41:40 +00005035** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005036** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005037**
5038** This function returns SQLITE_CORRUPT if the page-header flags field of
5039** the new child page does not match the flags field of the parent (i.e.
5040** if an intkey page appears to be the parent of a non-intkey page, or
5041** vice-versa).
drh72f82862001-05-24 21:06:34 +00005042*/
drh3aac2dd2004-04-26 14:10:20 +00005043static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005044 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005045
dan7a2347e2016-01-07 16:43:54 +00005046 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005047 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005048 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005049 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005050 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5051 return SQLITE_CORRUPT_BKPT;
5052 }
drh271efa52004-05-30 19:19:05 +00005053 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005054 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005055 pCur->aiIdx[pCur->iPage] = pCur->ix;
5056 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005057 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005058 pCur->iPage++;
5059 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005060}
5061
drhd879e3e2017-02-13 13:35:55 +00005062#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005063/*
5064** Page pParent is an internal (non-leaf) tree page. This function
5065** asserts that page number iChild is the left-child if the iIdx'th
5066** cell in page pParent. Or, if iIdx is equal to the total number of
5067** cells in pParent, that page number iChild is the right-child of
5068** the page.
5069*/
5070static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005071 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5072 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005073 assert( iIdx<=pParent->nCell );
5074 if( iIdx==pParent->nCell ){
5075 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5076 }else{
5077 assert( get4byte(findCell(pParent, iIdx))==iChild );
5078 }
5079}
5080#else
5081# define assertParentIndex(x,y,z)
5082#endif
5083
drh72f82862001-05-24 21:06:34 +00005084/*
drh5e2f8b92001-05-28 00:41:15 +00005085** Move the cursor up to the parent page.
5086**
5087** pCur->idx is set to the cell index that contains the pointer
5088** to the page we are coming from. If we are coming from the
5089** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005090** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005091*/
danielk197730548662009-07-09 05:07:37 +00005092static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005093 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005094 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005095 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005096 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005097 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005098 assertParentIndex(
5099 pCur->apPage[pCur->iPage-1],
5100 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005101 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005102 );
dan6c2688c2012-01-12 15:05:03 +00005103 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005104 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005105 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005106 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005107 pLeaf = pCur->pPage;
5108 pCur->pPage = pCur->apPage[--pCur->iPage];
5109 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005110}
5111
5112/*
danielk19778f880a82009-07-13 09:41:45 +00005113** Move the cursor to point to the root page of its b-tree structure.
5114**
5115** If the table has a virtual root page, then the cursor is moved to point
5116** to the virtual root page instead of the actual root page. A table has a
5117** virtual root page when the actual root page contains no cells and a
5118** single child page. This can only happen with the table rooted at page 1.
5119**
5120** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005121** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5122** the cursor is set to point to the first cell located on the root
5123** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005124**
5125** If this function returns successfully, it may be assumed that the
5126** page-header flags indicate that the [virtual] root-page is the expected
5127** kind of b-tree page (i.e. if when opening the cursor the caller did not
5128** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5129** indicating a table b-tree, or if the caller did specify a KeyInfo
5130** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5131** b-tree).
drh72f82862001-05-24 21:06:34 +00005132*/
drh5e2f8b92001-05-28 00:41:15 +00005133static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005134 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005135 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005136
dan7a2347e2016-01-07 16:43:54 +00005137 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005138 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5139 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5140 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005141 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005142 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005143
5144 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005145 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005146 releasePageNotNull(pCur->pPage);
5147 while( --pCur->iPage ){
5148 releasePageNotNull(pCur->apPage[pCur->iPage]);
5149 }
5150 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005151 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005152 }
dana205a482011-08-27 18:48:57 +00005153 }else if( pCur->pgnoRoot==0 ){
5154 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005155 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005156 }else{
drh28f58dd2015-06-27 19:45:03 +00005157 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005158 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5159 if( pCur->eState==CURSOR_FAULT ){
5160 assert( pCur->skipNext!=SQLITE_OK );
5161 return pCur->skipNext;
5162 }
5163 sqlite3BtreeClearCursor(pCur);
5164 }
drh352a35a2017-08-15 03:46:47 +00005165 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005166 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005167 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005168 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005169 return rc;
drh777e4c42006-01-13 04:31:58 +00005170 }
danielk1977172114a2009-07-07 15:47:12 +00005171 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005172 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005173 }
drh352a35a2017-08-15 03:46:47 +00005174 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005175 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005176
5177 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5178 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5179 ** NULL, the caller expects a table b-tree. If this is not the case,
5180 ** return an SQLITE_CORRUPT error.
5181 **
5182 ** Earlier versions of SQLite assumed that this test could not fail
5183 ** if the root page was already loaded when this function was called (i.e.
5184 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5185 ** in such a way that page pRoot is linked into a second b-tree table
5186 ** (or the freelist). */
5187 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5188 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005189 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005190 }
danielk19778f880a82009-07-13 09:41:45 +00005191
drh7ad3eb62016-10-24 01:01:09 +00005192skip_init:
drh75e96b32017-04-01 00:20:06 +00005193 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005194 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005195 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005196
drh352a35a2017-08-15 03:46:47 +00005197 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005198 if( pRoot->nCell>0 ){
5199 pCur->eState = CURSOR_VALID;
5200 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005201 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005202 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005203 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005204 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005205 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005206 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005207 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005208 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005209 }
5210 return rc;
drh72f82862001-05-24 21:06:34 +00005211}
drh2af926b2001-05-15 00:39:25 +00005212
drh5e2f8b92001-05-28 00:41:15 +00005213/*
5214** Move the cursor down to the left-most leaf entry beneath the
5215** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005216**
5217** The left-most leaf is the one with the smallest key - the first
5218** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005219*/
5220static int moveToLeftmost(BtCursor *pCur){
5221 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005222 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005223 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005224
dan7a2347e2016-01-07 16:43:54 +00005225 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005226 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005227 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005228 assert( pCur->ix<pPage->nCell );
5229 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005230 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005231 }
drhd677b3d2007-08-20 22:48:41 +00005232 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005233}
5234
drh2dcc9aa2002-12-04 13:40:25 +00005235/*
5236** Move the cursor down to the right-most leaf entry beneath the
5237** page to which it is currently pointing. Notice the difference
5238** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5239** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5240** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005241**
5242** The right-most entry is the one with the largest key - the last
5243** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005244*/
5245static int moveToRightmost(BtCursor *pCur){
5246 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005247 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005248 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005249
dan7a2347e2016-01-07 16:43:54 +00005250 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005251 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005252 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005253 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005254 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005255 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005256 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005257 }
drh75e96b32017-04-01 00:20:06 +00005258 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005259 assert( pCur->info.nSize==0 );
5260 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5261 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005262}
5263
drh5e00f6c2001-09-13 13:46:56 +00005264/* Move the cursor to the first entry in the table. Return SQLITE_OK
5265** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005266** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005267*/
drh3aac2dd2004-04-26 14:10:20 +00005268int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005269 int rc;
drhd677b3d2007-08-20 22:48:41 +00005270
dan7a2347e2016-01-07 16:43:54 +00005271 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005272 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005273 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005274 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005275 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005276 *pRes = 0;
5277 rc = moveToLeftmost(pCur);
5278 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005279 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005280 *pRes = 1;
5281 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005282 }
drh5e00f6c2001-09-13 13:46:56 +00005283 return rc;
5284}
drh5e2f8b92001-05-28 00:41:15 +00005285
drh9562b552002-02-19 15:00:07 +00005286/* Move the cursor to the last entry in the table. Return SQLITE_OK
5287** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005288** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005289*/
drh3aac2dd2004-04-26 14:10:20 +00005290int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005291 int rc;
drhd677b3d2007-08-20 22:48:41 +00005292
dan7a2347e2016-01-07 16:43:54 +00005293 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005294 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005295
5296 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005297 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005298#ifdef SQLITE_DEBUG
5299 /* This block serves to assert() that the cursor really does point
5300 ** to the last entry in the b-tree. */
5301 int ii;
5302 for(ii=0; ii<pCur->iPage; ii++){
5303 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5304 }
drh352a35a2017-08-15 03:46:47 +00005305 assert( pCur->ix==pCur->pPage->nCell-1 );
5306 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005307#endif
drheb265342019-05-08 23:55:04 +00005308 *pRes = 0;
danielk19773f632d52009-05-02 10:03:09 +00005309 return SQLITE_OK;
5310 }
5311
drh9562b552002-02-19 15:00:07 +00005312 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005313 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005314 assert( pCur->eState==CURSOR_VALID );
5315 *pRes = 0;
5316 rc = moveToRightmost(pCur);
5317 if( rc==SQLITE_OK ){
5318 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005319 }else{
drh44548e72017-08-14 18:13:52 +00005320 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005321 }
drh44548e72017-08-14 18:13:52 +00005322 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005323 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005324 *pRes = 1;
5325 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005326 }
drh9562b552002-02-19 15:00:07 +00005327 return rc;
5328}
5329
drhe14006d2008-03-25 17:23:32 +00005330/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005331** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005332**
drhe63d9992008-08-13 19:11:48 +00005333** For INTKEY tables, the intKey parameter is used. pIdxKey
5334** must be NULL. For index tables, pIdxKey is used and intKey
5335** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005336**
drh5e2f8b92001-05-28 00:41:15 +00005337** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005338** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005339** were present. The cursor might point to an entry that comes
5340** before or after the key.
5341**
drh64022502009-01-09 14:11:04 +00005342** An integer is written into *pRes which is the result of
5343** comparing the key with the entry to which the cursor is
5344** pointing. The meaning of the integer written into
5345** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005346**
5347** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005348** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005349** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005350**
5351** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005352** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005353**
5354** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005355** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005356**
drhb1d607d2015-11-05 22:30:54 +00005357** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5358** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005359*/
drhe63d9992008-08-13 19:11:48 +00005360int sqlite3BtreeMovetoUnpacked(
5361 BtCursor *pCur, /* The cursor to be moved */
5362 UnpackedRecord *pIdxKey, /* Unpacked index key */
5363 i64 intKey, /* The table key */
5364 int biasRight, /* If true, bias the search to the high end */
5365 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005366){
drh72f82862001-05-24 21:06:34 +00005367 int rc;
dan3b9330f2014-02-27 20:44:18 +00005368 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005369
dan7a2347e2016-01-07 16:43:54 +00005370 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005371 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005372 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005373 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005374 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005375
5376 /* If the cursor is already positioned at the point we are trying
5377 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005378 if( pIdxKey==0
5379 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005380 ){
drhe63d9992008-08-13 19:11:48 +00005381 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005382 *pRes = 0;
5383 return SQLITE_OK;
5384 }
drh451e76d2017-01-21 16:54:19 +00005385 if( pCur->info.nKey<intKey ){
5386 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5387 *pRes = -1;
5388 return SQLITE_OK;
5389 }
drh7f11afa2017-01-21 21:47:54 +00005390 /* If the requested key is one more than the previous key, then
5391 ** try to get there using sqlite3BtreeNext() rather than a full
5392 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005393 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005394 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005395 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005396 rc = sqlite3BtreeNext(pCur, 0);
5397 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005398 getCellInfo(pCur);
5399 if( pCur->info.nKey==intKey ){
5400 return SQLITE_OK;
5401 }
drh2ab792e2017-05-30 18:34:07 +00005402 }else if( rc==SQLITE_DONE ){
5403 rc = SQLITE_OK;
5404 }else{
5405 return rc;
drh451e76d2017-01-21 16:54:19 +00005406 }
5407 }
drha2c20e42008-03-29 16:01:04 +00005408 }
5409 }
5410
dan1fed5da2014-02-25 21:01:25 +00005411 if( pIdxKey ){
5412 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005413 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005414 assert( pIdxKey->default_rc==1
5415 || pIdxKey->default_rc==0
5416 || pIdxKey->default_rc==-1
5417 );
drh13a747e2014-03-03 21:46:55 +00005418 }else{
drhb6e8fd12014-03-06 01:56:33 +00005419 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005420 }
5421
drh5e2f8b92001-05-28 00:41:15 +00005422 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005423 if( rc ){
drh44548e72017-08-14 18:13:52 +00005424 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005425 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005426 *pRes = -1;
5427 return SQLITE_OK;
5428 }
drhd677b3d2007-08-20 22:48:41 +00005429 return rc;
5430 }
drh352a35a2017-08-15 03:46:47 +00005431 assert( pCur->pPage );
5432 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005433 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005434 assert( pCur->pPage->nCell > 0 );
5435 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005436 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005437 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005438 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005439 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005440 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005441 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005442
5443 /* pPage->nCell must be greater than zero. If this is the root-page
5444 ** the cursor would have been INVALID above and this for(;;) loop
5445 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005446 ** would have already detected db corruption. Similarly, pPage must
5447 ** be the right kind (index or table) of b-tree page. Otherwise
5448 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005449 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005450 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005451 lwr = 0;
5452 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005453 assert( biasRight==0 || biasRight==1 );
5454 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005455 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005456 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005457 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005458 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005459 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005460 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005461 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005462 if( pCell>=pPage->aDataEnd ){
daneebf2f52017-11-18 17:30:08 +00005463 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00005464 }
drh9b2fc612013-11-25 20:14:13 +00005465 }
drhd172f862006-01-12 15:01:15 +00005466 }
drha2c20e42008-03-29 16:01:04 +00005467 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005468 if( nCellKey<intKey ){
5469 lwr = idx+1;
5470 if( lwr>upr ){ c = -1; break; }
5471 }else if( nCellKey>intKey ){
5472 upr = idx-1;
5473 if( lwr>upr ){ c = +1; break; }
5474 }else{
5475 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005476 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005477 if( !pPage->leaf ){
5478 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005479 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005480 }else{
drhd95ef5c2016-11-11 18:19:05 +00005481 pCur->curFlags |= BTCF_ValidNKey;
5482 pCur->info.nKey = nCellKey;
5483 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005484 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005485 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005486 }
drhd793f442013-11-25 14:10:15 +00005487 }
drhebf10b12013-11-25 17:38:26 +00005488 assert( lwr+upr>=0 );
5489 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005490 }
5491 }else{
5492 for(;;){
drhc6827502015-05-28 15:14:32 +00005493 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005494 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005495
drhb2eced52010-08-12 02:41:12 +00005496 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005497 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005498 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005499 ** varint. This information is used to attempt to avoid parsing
5500 ** the entire cell by checking for the cases where the record is
5501 ** stored entirely within the b-tree page by inspecting the first
5502 ** 2 bytes of the cell.
5503 */
drhec3e6b12013-11-25 02:38:55 +00005504 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005505 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005506 /* This branch runs if the record-size field of the cell is a
5507 ** single byte varint and the record fits entirely on the main
5508 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005509 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005510 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005511 }else if( !(pCell[1] & 0x80)
5512 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5513 ){
5514 /* The record-size field is a 2 byte varint and the record
5515 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005516 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005517 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005518 }else{
danielk197711c327a2009-05-04 19:01:26 +00005519 /* The record flows over onto one or more overflow pages. In
5520 ** this case the whole cell needs to be parsed, a buffer allocated
5521 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005522 ** buffer before VdbeRecordCompare() can be called.
5523 **
5524 ** If the record is corrupt, the xRecordCompare routine may read
5525 ** up to two varints past the end of the buffer. An extra 18
5526 ** bytes of padding is allocated at the end of the buffer in
5527 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005528 void *pCellKey;
5529 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5c2f2202019-05-16 20:36:07 +00005530 const int nOverrun = 18; /* Size of the overrun padding */
drh5fa60512015-06-19 17:19:34 +00005531 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005532 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005533 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5534 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5535 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5536 testcase( nCell==2 ); /* Minimum legal index key size */
drh87c3ad42019-01-21 23:18:22 +00005537 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
daneebf2f52017-11-18 17:30:08 +00005538 rc = SQLITE_CORRUPT_PAGE(pPage);
dan3548db72015-05-27 14:21:05 +00005539 goto moveto_finish;
5540 }
drh5c2f2202019-05-16 20:36:07 +00005541 pCellKey = sqlite3Malloc( nCell+nOverrun );
danielk19776507ecb2008-03-25 09:56:44 +00005542 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005543 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005544 goto moveto_finish;
5545 }
drh75e96b32017-04-01 00:20:06 +00005546 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005547 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drh5c2f2202019-05-16 20:36:07 +00005548 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
drh42e28f12017-01-27 00:31:59 +00005549 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005550 if( rc ){
5551 sqlite3_free(pCellKey);
5552 goto moveto_finish;
5553 }
drh0a31dc22019-03-05 14:39:00 +00005554 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005555 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005556 }
dan38fdead2014-04-01 10:19:02 +00005557 assert(
5558 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005559 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005560 );
drhbb933ef2013-11-25 15:01:38 +00005561 if( c<0 ){
5562 lwr = idx+1;
5563 }else if( c>0 ){
5564 upr = idx-1;
5565 }else{
5566 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005567 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005568 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005569 pCur->ix = (u16)idx;
mistachkin88a79732017-09-04 19:31:54 +00005570 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
drh1e968a02008-03-25 00:22:21 +00005571 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005572 }
drhebf10b12013-11-25 17:38:26 +00005573 if( lwr>upr ) break;
5574 assert( lwr+upr>=0 );
5575 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005576 }
drh72f82862001-05-24 21:06:34 +00005577 }
drhb07028f2011-10-14 21:49:18 +00005578 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005579 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005580 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005581 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005582 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005583 *pRes = c;
5584 rc = SQLITE_OK;
5585 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005586 }
5587moveto_next_layer:
5588 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005589 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005590 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005591 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005592 }
drh75e96b32017-04-01 00:20:06 +00005593 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005594 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005595 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005596 }
drh1e968a02008-03-25 00:22:21 +00005597moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005598 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005599 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005600 return rc;
5601}
5602
drhd677b3d2007-08-20 22:48:41 +00005603
drh72f82862001-05-24 21:06:34 +00005604/*
drhc39e0002004-05-07 23:50:57 +00005605** Return TRUE if the cursor is not pointing at an entry of the table.
5606**
5607** TRUE will be returned after a call to sqlite3BtreeNext() moves
5608** past the last entry in the table or sqlite3BtreePrev() moves past
5609** the first entry. TRUE is also returned if the table is empty.
5610*/
5611int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005612 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5613 ** have been deleted? This API will need to change to return an error code
5614 ** as well as the boolean result value.
5615 */
5616 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005617}
5618
5619/*
drh5e98e832017-02-17 19:24:06 +00005620** Return an estimate for the number of rows in the table that pCur is
5621** pointing to. Return a negative number if no estimate is currently
5622** available.
5623*/
5624i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5625 i64 n;
5626 u8 i;
5627
5628 assert( cursorOwnsBtShared(pCur) );
5629 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005630
5631 /* Currently this interface is only called by the OP_IfSmaller
5632 ** opcode, and it that case the cursor will always be valid and
5633 ** will always point to a leaf node. */
5634 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005635 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005636
drh352a35a2017-08-15 03:46:47 +00005637 n = pCur->pPage->nCell;
5638 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005639 n *= pCur->apPage[i]->nCell;
5640 }
5641 return n;
5642}
5643
5644/*
drh2ab792e2017-05-30 18:34:07 +00005645** Advance the cursor to the next entry in the database.
5646** Return value:
5647**
5648** SQLITE_OK success
5649** SQLITE_DONE cursor is already pointing at the last element
5650** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005651**
drhee6438d2014-09-01 13:29:32 +00005652** The main entry point is sqlite3BtreeNext(). That routine is optimized
5653** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5654** to the next cell on the current page. The (slower) btreeNext() helper
5655** routine is called when it is necessary to move to a different page or
5656** to restore the cursor.
5657**
drh89997982017-07-11 18:11:33 +00005658** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5659** cursor corresponds to an SQL index and this routine could have been
5660** skipped if the SQL index had been a unique index. The F argument
5661** is a hint to the implement. SQLite btree implementation does not use
5662** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005663*/
drh89997982017-07-11 18:11:33 +00005664static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005665 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005666 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005667 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005668
dan7a2347e2016-01-07 16:43:54 +00005669 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00005670 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005671 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005672 rc = restoreCursorPosition(pCur);
5673 if( rc!=SQLITE_OK ){
5674 return rc;
5675 }
5676 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005677 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005678 }
drh0c873bf2019-01-28 00:42:06 +00005679 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00005680 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005681 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005682 }
danielk1977da184232006-01-05 11:34:32 +00005683 }
danielk1977da184232006-01-05 11:34:32 +00005684
drh352a35a2017-08-15 03:46:47 +00005685 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005686 idx = ++pCur->ix;
drhf3cd0c82018-06-08 19:13:57 +00005687 if( !pPage->isInit ){
5688 /* The only known way for this to happen is for there to be a
5689 ** recursive SQL function that does a DELETE operation as part of a
5690 ** SELECT which deletes content out from under an active cursor
5691 ** in a corrupt database file where the table being DELETE-ed from
5692 ** has pages in common with the table being queried. See TH3
5693 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5694 ** example. */
5695 return SQLITE_CORRUPT_BKPT;
5696 }
danbb246c42012-01-12 14:25:55 +00005697
5698 /* If the database file is corrupt, it is possible for the value of idx
5699 ** to be invalid here. This can only occur if a second cursor modifies
5700 ** the page while cursor pCur is holding a reference to it. Which can
5701 ** only happen if the database is corrupt in such a way as to link the
5702 ** page into more than one b-tree structure. */
5703 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005704
danielk197771d5d2c2008-09-29 11:49:47 +00005705 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005706 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005707 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005708 if( rc ) return rc;
5709 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005710 }
drh5e2f8b92001-05-28 00:41:15 +00005711 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005712 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005713 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005714 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005715 }
danielk197730548662009-07-09 05:07:37 +00005716 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005717 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005718 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005719 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005720 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005721 }else{
drhee6438d2014-09-01 13:29:32 +00005722 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005723 }
drh8178a752003-01-05 21:41:40 +00005724 }
drh3aac2dd2004-04-26 14:10:20 +00005725 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005726 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005727 }else{
5728 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005729 }
drh72f82862001-05-24 21:06:34 +00005730}
drh2ab792e2017-05-30 18:34:07 +00005731int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005732 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005733 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005734 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005735 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005736 pCur->info.nSize = 0;
5737 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005738 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005739 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005740 if( (++pCur->ix)>=pPage->nCell ){
5741 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005742 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005743 }
5744 if( pPage->leaf ){
5745 return SQLITE_OK;
5746 }else{
5747 return moveToLeftmost(pCur);
5748 }
5749}
drh72f82862001-05-24 21:06:34 +00005750
drh3b7511c2001-05-26 13:15:44 +00005751/*
drh2ab792e2017-05-30 18:34:07 +00005752** Step the cursor to the back to the previous entry in the database.
5753** Return values:
5754**
5755** SQLITE_OK success
5756** SQLITE_DONE the cursor is already on the first element of the table
5757** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005758**
drhee6438d2014-09-01 13:29:32 +00005759** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5760** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005761** to the previous cell on the current page. The (slower) btreePrevious()
5762** helper routine is called when it is necessary to move to a different page
5763** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005764**
drh89997982017-07-11 18:11:33 +00005765** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5766** the cursor corresponds to an SQL index and this routine could have been
5767** skipped if the SQL index had been a unique index. The F argument is a
5768** hint to the implement. The native SQLite btree implementation does not
5769** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005770*/
drh89997982017-07-11 18:11:33 +00005771static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005772 int rc;
drh8178a752003-01-05 21:41:40 +00005773 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005774
dan7a2347e2016-01-07 16:43:54 +00005775 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005776 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5777 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005778 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005779 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005780 if( rc!=SQLITE_OK ){
5781 return rc;
drhf66f26a2013-08-19 20:04:10 +00005782 }
5783 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005784 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005785 }
drh0c873bf2019-01-28 00:42:06 +00005786 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00005787 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005788 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005789 }
danielk1977da184232006-01-05 11:34:32 +00005790 }
danielk1977da184232006-01-05 11:34:32 +00005791
drh352a35a2017-08-15 03:46:47 +00005792 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005793 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005794 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005795 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005796 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005797 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005798 rc = moveToRightmost(pCur);
5799 }else{
drh75e96b32017-04-01 00:20:06 +00005800 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005801 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005802 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005803 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005804 }
danielk197730548662009-07-09 05:07:37 +00005805 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005806 }
drhee6438d2014-09-01 13:29:32 +00005807 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005808 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005809
drh75e96b32017-04-01 00:20:06 +00005810 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005811 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005812 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005813 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005814 }else{
5815 rc = SQLITE_OK;
5816 }
drh2dcc9aa2002-12-04 13:40:25 +00005817 }
drh2dcc9aa2002-12-04 13:40:25 +00005818 return rc;
5819}
drh2ab792e2017-05-30 18:34:07 +00005820int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005821 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005822 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00005823 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005824 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5825 pCur->info.nSize = 0;
5826 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005827 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005828 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005829 ){
drh89997982017-07-11 18:11:33 +00005830 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005831 }
drh75e96b32017-04-01 00:20:06 +00005832 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005833 return SQLITE_OK;
5834}
drh2dcc9aa2002-12-04 13:40:25 +00005835
5836/*
drh3b7511c2001-05-26 13:15:44 +00005837** Allocate a new page from the database file.
5838**
danielk19773b8a05f2007-03-19 17:44:26 +00005839** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005840** has already been called on the new page.) The new page has also
5841** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005842** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005843**
5844** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005845** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005846**
drh82e647d2013-03-02 03:25:55 +00005847** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005848** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005849** attempt to keep related pages close to each other in the database file,
5850** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005851**
drh82e647d2013-03-02 03:25:55 +00005852** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5853** anywhere on the free-list, then it is guaranteed to be returned. If
5854** eMode is BTALLOC_LT then the page returned will be less than or equal
5855** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5856** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005857*/
drh4f0c5872007-03-26 22:05:01 +00005858static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005859 BtShared *pBt, /* The btree */
5860 MemPage **ppPage, /* Store pointer to the allocated page here */
5861 Pgno *pPgno, /* Store the page number here */
5862 Pgno nearby, /* Search for a page near this one */
5863 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005864){
drh3aac2dd2004-04-26 14:10:20 +00005865 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005866 int rc;
drh35cd6432009-06-05 14:17:21 +00005867 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005868 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005869 MemPage *pTrunk = 0;
5870 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005871 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005872
drh1fee73e2007-08-29 04:00:57 +00005873 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005874 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005875 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005876 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005877 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5878 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005879 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005880 testcase( n==mxPage-1 );
5881 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005882 return SQLITE_CORRUPT_BKPT;
5883 }
drh3aac2dd2004-04-26 14:10:20 +00005884 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005885 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005886 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005887 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005888 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005889
drh82e647d2013-03-02 03:25:55 +00005890 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005891 ** shows that the page 'nearby' is somewhere on the free-list, then
5892 ** the entire-list will be searched for that page.
5893 */
5894#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005895 if( eMode==BTALLOC_EXACT ){
5896 if( nearby<=mxPage ){
5897 u8 eType;
5898 assert( nearby>0 );
5899 assert( pBt->autoVacuum );
5900 rc = ptrmapGet(pBt, nearby, &eType, 0);
5901 if( rc ) return rc;
5902 if( eType==PTRMAP_FREEPAGE ){
5903 searchList = 1;
5904 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005905 }
dan51f0b6d2013-02-22 20:16:34 +00005906 }else if( eMode==BTALLOC_LE ){
5907 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005908 }
5909#endif
5910
5911 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5912 ** first free-list trunk page. iPrevTrunk is initially 1.
5913 */
danielk19773b8a05f2007-03-19 17:44:26 +00005914 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005915 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005916 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005917
5918 /* The code within this loop is run only once if the 'searchList' variable
5919 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005920 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5921 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005922 */
5923 do {
5924 pPrevTrunk = pTrunk;
5925 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005926 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5927 ** is the page number of the next freelist trunk page in the list or
5928 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005929 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005930 }else{
drh113762a2014-11-19 16:36:25 +00005931 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5932 ** stores the page number of the first page of the freelist, or zero if
5933 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005934 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005935 }
drhdf35a082009-07-09 02:24:35 +00005936 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005937 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005938 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005939 }else{
drh7e8c6f12015-05-28 03:28:27 +00005940 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005941 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005942 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005943 pTrunk = 0;
5944 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005945 }
drhb07028f2011-10-14 21:49:18 +00005946 assert( pTrunk!=0 );
5947 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005948 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5949 ** is the number of leaf page pointers to follow. */
5950 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005951 if( k==0 && !searchList ){
5952 /* The trunk has no leaves and the list is not being searched.
5953 ** So extract the trunk page itself and use it as the newly
5954 ** allocated page */
5955 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005956 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005957 if( rc ){
5958 goto end_allocate_page;
5959 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005960 *pPgno = iTrunk;
5961 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5962 *ppPage = pTrunk;
5963 pTrunk = 0;
5964 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005965 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005966 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00005967 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00005968 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005969#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005970 }else if( searchList
5971 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5972 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005973 /* The list is being searched and this trunk page is the page
5974 ** to allocate, regardless of whether it has leaves.
5975 */
dan51f0b6d2013-02-22 20:16:34 +00005976 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005977 *ppPage = pTrunk;
5978 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005979 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005980 if( rc ){
5981 goto end_allocate_page;
5982 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005983 if( k==0 ){
5984 if( !pPrevTrunk ){
5985 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5986 }else{
danf48c3552010-08-23 15:41:24 +00005987 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5988 if( rc!=SQLITE_OK ){
5989 goto end_allocate_page;
5990 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005991 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5992 }
5993 }else{
5994 /* The trunk page is required by the caller but it contains
5995 ** pointers to free-list leaves. The first leaf becomes a trunk
5996 ** page in this case.
5997 */
5998 MemPage *pNewTrunk;
5999 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00006000 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006001 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006002 goto end_allocate_page;
6003 }
drhdf35a082009-07-09 02:24:35 +00006004 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00006005 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006006 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00006007 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006008 }
danielk19773b8a05f2007-03-19 17:44:26 +00006009 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006010 if( rc!=SQLITE_OK ){
6011 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00006012 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006013 }
6014 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6015 put4byte(&pNewTrunk->aData[4], k-1);
6016 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006017 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006018 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006019 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006020 put4byte(&pPage1->aData[32], iNewTrunk);
6021 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006022 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006023 if( rc ){
6024 goto end_allocate_page;
6025 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006026 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6027 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006028 }
6029 pTrunk = 0;
6030 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6031#endif
danielk1977e5765212009-06-17 11:13:28 +00006032 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006033 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006034 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006035 Pgno iPage;
6036 unsigned char *aData = pTrunk->aData;
6037 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006038 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006039 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006040 if( eMode==BTALLOC_LE ){
6041 for(i=0; i<k; i++){
6042 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006043 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006044 closest = i;
6045 break;
6046 }
6047 }
6048 }else{
6049 int dist;
6050 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6051 for(i=1; i<k; i++){
6052 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6053 if( d2<dist ){
6054 closest = i;
6055 dist = d2;
6056 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006057 }
6058 }
6059 }else{
6060 closest = 0;
6061 }
6062
6063 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006064 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00006065 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006066 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006067 goto end_allocate_page;
6068 }
drhdf35a082009-07-09 02:24:35 +00006069 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006070 if( !searchList
6071 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6072 ){
danielk1977bea2a942009-01-20 17:06:27 +00006073 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006074 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006075 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6076 ": %d more free pages\n",
6077 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006078 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6079 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006080 if( closest<k-1 ){
6081 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6082 }
6083 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006084 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006085 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006086 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006087 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006088 if( rc!=SQLITE_OK ){
6089 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006090 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006091 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006092 }
6093 searchList = 0;
6094 }
drhee696e22004-08-30 16:52:17 +00006095 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006096 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006097 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006098 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006099 }else{
danbc1a3c62013-02-23 16:40:46 +00006100 /* There are no pages on the freelist, so append a new page to the
6101 ** database image.
6102 **
6103 ** Normally, new pages allocated by this block can be requested from the
6104 ** pager layer with the 'no-content' flag set. This prevents the pager
6105 ** from trying to read the pages content from disk. However, if the
6106 ** current transaction has already run one or more incremental-vacuum
6107 ** steps, then the page we are about to allocate may contain content
6108 ** that is required in the event of a rollback. In this case, do
6109 ** not set the no-content flag. This causes the pager to load and journal
6110 ** the current page content before overwriting it.
6111 **
6112 ** Note that the pager will not actually attempt to load or journal
6113 ** content for any page that really does lie past the end of the database
6114 ** file on disk. So the effects of disabling the no-content optimization
6115 ** here are confined to those pages that lie between the end of the
6116 ** database image and the end of the database file.
6117 */
drh3f387402014-09-24 01:23:00 +00006118 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006119
drhdd3cd972010-03-27 17:12:36 +00006120 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6121 if( rc ) return rc;
6122 pBt->nPage++;
6123 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006124
danielk1977afcdd022004-10-31 16:25:42 +00006125#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006126 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006127 /* If *pPgno refers to a pointer-map page, allocate two new pages
6128 ** at the end of the file instead of one. The first allocated page
6129 ** becomes a new pointer-map page, the second is used by the caller.
6130 */
danielk1977ac861692009-03-28 10:54:22 +00006131 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006132 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6133 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006134 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006135 if( rc==SQLITE_OK ){
6136 rc = sqlite3PagerWrite(pPg->pDbPage);
6137 releasePage(pPg);
6138 }
6139 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006140 pBt->nPage++;
6141 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006142 }
6143#endif
drhdd3cd972010-03-27 17:12:36 +00006144 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6145 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006146
danielk1977599fcba2004-11-08 07:13:13 +00006147 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006148 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006149 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006150 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006151 if( rc!=SQLITE_OK ){
6152 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006153 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006154 }
drh3a4c1412004-05-09 20:40:11 +00006155 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006156 }
danielk1977599fcba2004-11-08 07:13:13 +00006157
danba14c692019-01-25 13:42:12 +00006158 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006159
6160end_allocate_page:
6161 releasePage(pTrunk);
6162 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006163 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6164 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006165 return rc;
6166}
6167
6168/*
danielk1977bea2a942009-01-20 17:06:27 +00006169** This function is used to add page iPage to the database file free-list.
6170** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006171**
danielk1977bea2a942009-01-20 17:06:27 +00006172** The value passed as the second argument to this function is optional.
6173** If the caller happens to have a pointer to the MemPage object
6174** corresponding to page iPage handy, it may pass it as the second value.
6175** Otherwise, it may pass NULL.
6176**
6177** If a pointer to a MemPage object is passed as the second argument,
6178** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006179*/
danielk1977bea2a942009-01-20 17:06:27 +00006180static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6181 MemPage *pTrunk = 0; /* Free-list trunk page */
6182 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6183 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6184 MemPage *pPage; /* Page being freed. May be NULL. */
6185 int rc; /* Return Code */
drh25050f22019-04-09 01:26:31 +00006186 u32 nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006187
danielk1977bea2a942009-01-20 17:06:27 +00006188 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006189 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006190 assert( !pMemPage || pMemPage->pgno==iPage );
6191
drh58b42ad2019-03-25 19:50:19 +00006192 if( iPage<2 || iPage>pBt->nPage ){
6193 return SQLITE_CORRUPT_BKPT;
6194 }
danielk1977bea2a942009-01-20 17:06:27 +00006195 if( pMemPage ){
6196 pPage = pMemPage;
6197 sqlite3PagerRef(pPage->pDbPage);
6198 }else{
6199 pPage = btreePageLookup(pBt, iPage);
6200 }
drh3aac2dd2004-04-26 14:10:20 +00006201
drha34b6762004-05-07 13:30:42 +00006202 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006203 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006204 if( rc ) goto freepage_out;
6205 nFree = get4byte(&pPage1->aData[36]);
6206 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006207
drhc9166342012-01-05 23:32:06 +00006208 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006209 /* If the secure_delete option is enabled, then
6210 ** always fully overwrite deleted information with zeros.
6211 */
drhb00fc3b2013-08-21 23:42:32 +00006212 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006213 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006214 ){
6215 goto freepage_out;
6216 }
6217 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006218 }
drhfcce93f2006-02-22 03:08:32 +00006219
danielk1977687566d2004-11-02 12:56:41 +00006220 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006221 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006222 */
danielk197785d90ca2008-07-19 14:25:15 +00006223 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006224 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006225 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006226 }
danielk1977687566d2004-11-02 12:56:41 +00006227
danielk1977bea2a942009-01-20 17:06:27 +00006228 /* Now manipulate the actual database free-list structure. There are two
6229 ** possibilities. If the free-list is currently empty, or if the first
6230 ** trunk page in the free-list is full, then this page will become a
6231 ** new free-list trunk page. Otherwise, it will become a leaf of the
6232 ** first trunk page in the current free-list. This block tests if it
6233 ** is possible to add the page as a new free-list leaf.
6234 */
6235 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006236 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006237
6238 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006239 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006240 if( rc!=SQLITE_OK ){
6241 goto freepage_out;
6242 }
6243
6244 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006245 assert( pBt->usableSize>32 );
6246 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006247 rc = SQLITE_CORRUPT_BKPT;
6248 goto freepage_out;
6249 }
drheeb844a2009-08-08 18:01:07 +00006250 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006251 /* In this case there is room on the trunk page to insert the page
6252 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006253 **
6254 ** Note that the trunk page is not really full until it contains
6255 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6256 ** coded. But due to a coding error in versions of SQLite prior to
6257 ** 3.6.0, databases with freelist trunk pages holding more than
6258 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6259 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006260 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006261 ** for now. At some point in the future (once everyone has upgraded
6262 ** to 3.6.0 or later) we should consider fixing the conditional above
6263 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006264 **
6265 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6266 ** avoid using the last six entries in the freelist trunk page array in
6267 ** order that database files created by newer versions of SQLite can be
6268 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006269 */
danielk19773b8a05f2007-03-19 17:44:26 +00006270 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006271 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006272 put4byte(&pTrunk->aData[4], nLeaf+1);
6273 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006274 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006275 sqlite3PagerDontWrite(pPage->pDbPage);
6276 }
danielk1977bea2a942009-01-20 17:06:27 +00006277 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006278 }
drh3a4c1412004-05-09 20:40:11 +00006279 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006280 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006281 }
drh3b7511c2001-05-26 13:15:44 +00006282 }
danielk1977bea2a942009-01-20 17:06:27 +00006283
6284 /* If control flows to this point, then it was not possible to add the
6285 ** the page being freed as a leaf page of the first trunk in the free-list.
6286 ** Possibly because the free-list is empty, or possibly because the
6287 ** first trunk in the free-list is full. Either way, the page being freed
6288 ** will become the new first trunk page in the free-list.
6289 */
drhb00fc3b2013-08-21 23:42:32 +00006290 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006291 goto freepage_out;
6292 }
6293 rc = sqlite3PagerWrite(pPage->pDbPage);
6294 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006295 goto freepage_out;
6296 }
6297 put4byte(pPage->aData, iTrunk);
6298 put4byte(&pPage->aData[4], 0);
6299 put4byte(&pPage1->aData[32], iPage);
6300 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6301
6302freepage_out:
6303 if( pPage ){
6304 pPage->isInit = 0;
6305 }
6306 releasePage(pPage);
6307 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006308 return rc;
6309}
drhc314dc72009-07-21 11:52:34 +00006310static void freePage(MemPage *pPage, int *pRC){
6311 if( (*pRC)==SQLITE_OK ){
6312 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6313 }
danielk1977bea2a942009-01-20 17:06:27 +00006314}
drh3b7511c2001-05-26 13:15:44 +00006315
6316/*
drh8d7f1632018-01-23 13:30:38 +00006317** Free any overflow pages associated with the given Cell. Store
6318** size information about the cell in pInfo.
drh3b7511c2001-05-26 13:15:44 +00006319*/
drh9bfdc252014-09-24 02:05:41 +00006320static int clearCell(
6321 MemPage *pPage, /* The page that contains the Cell */
6322 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006323 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006324){
drh60172a52017-08-02 18:27:50 +00006325 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006326 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006327 int rc;
drh94440812007-03-06 11:42:19 +00006328 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006329 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006330
drh1fee73e2007-08-29 04:00:57 +00006331 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006332 pPage->xParseCell(pPage, pCell, pInfo);
6333 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006334 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006335 }
drh6fcf83a2018-05-05 01:23:28 +00006336 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6337 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6338 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006339 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006340 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006341 }
drh80159da2016-12-09 17:32:51 +00006342 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006343 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006344 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006345 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006346 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006347 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006348 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006349 );
drh72365832007-03-06 15:53:44 +00006350 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006351 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006352 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006353 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006354 /* 0 is not a legal page number and page 1 cannot be an
6355 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6356 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006357 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006358 }
danielk1977bea2a942009-01-20 17:06:27 +00006359 if( nOvfl ){
6360 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6361 if( rc ) return rc;
6362 }
dan887d4b22010-02-25 12:09:16 +00006363
shaneh1da207e2010-03-09 14:41:12 +00006364 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006365 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6366 ){
6367 /* There is no reason any cursor should have an outstanding reference
6368 ** to an overflow page belonging to a cell that is being deleted/updated.
6369 ** So if there exists more than one reference to this page, then it
6370 ** must not really be an overflow page and the database must be corrupt.
6371 ** It is helpful to detect this before calling freePage2(), as
6372 ** freePage2() may zero the page contents if secure-delete mode is
6373 ** enabled. If this 'overflow' page happens to be a page that the
6374 ** caller is iterating through or using in some other way, this
6375 ** can be problematic.
6376 */
6377 rc = SQLITE_CORRUPT_BKPT;
6378 }else{
6379 rc = freePage2(pBt, pOvfl, ovflPgno);
6380 }
6381
danielk1977bea2a942009-01-20 17:06:27 +00006382 if( pOvfl ){
6383 sqlite3PagerUnref(pOvfl->pDbPage);
6384 }
drh3b7511c2001-05-26 13:15:44 +00006385 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006386 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006387 }
drh5e2f8b92001-05-28 00:41:15 +00006388 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006389}
6390
6391/*
drh91025292004-05-03 19:49:32 +00006392** Create the byte sequence used to represent a cell on page pPage
6393** and write that byte sequence into pCell[]. Overflow pages are
6394** allocated and filled in as necessary. The calling procedure
6395** is responsible for making sure sufficient space has been allocated
6396** for pCell[].
6397**
6398** Note that pCell does not necessary need to point to the pPage->aData
6399** area. pCell might point to some temporary storage. The cell will
6400** be constructed in this temporary area then copied into pPage->aData
6401** later.
drh3b7511c2001-05-26 13:15:44 +00006402*/
6403static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006404 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006405 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006406 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006407 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006408){
drh3b7511c2001-05-26 13:15:44 +00006409 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006410 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006411 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006412 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006413 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006414 unsigned char *pPrior;
6415 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006416 BtShared *pBt;
6417 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006418 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006419
drh1fee73e2007-08-29 04:00:57 +00006420 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006421
drhc5053fb2008-11-27 02:22:10 +00006422 /* pPage is not necessarily writeable since pCell might be auxiliary
6423 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006424 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006425 || sqlite3PagerIswriteable(pPage->pDbPage) );
6426
drh91025292004-05-03 19:49:32 +00006427 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006428 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006429 if( pPage->intKey ){
6430 nPayload = pX->nData + pX->nZero;
6431 pSrc = pX->pData;
6432 nSrc = pX->nData;
6433 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006434 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006435 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006436 }else{
drh8eeb4462016-05-21 20:03:42 +00006437 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6438 nSrc = nPayload = (int)pX->nKey;
6439 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006440 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006441 }
drhdfc2daa2016-05-21 23:25:29 +00006442
6443 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006444 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006445 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006446 /* This is the common case where everything fits on the btree page
6447 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006448 n = nHeader + nPayload;
6449 testcase( n==3 );
6450 testcase( n==4 );
6451 if( n<4 ) n = 4;
6452 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006453 assert( nSrc<=nPayload );
6454 testcase( nSrc<nPayload );
6455 memcpy(pPayload, pSrc, nSrc);
6456 memset(pPayload+nSrc, 0, nPayload-nSrc);
6457 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006458 }
drh5e27e1d2017-08-23 14:45:59 +00006459
6460 /* If we reach this point, it means that some of the content will need
6461 ** to spill onto overflow pages.
6462 */
6463 mn = pPage->minLocal;
6464 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6465 testcase( n==pPage->maxLocal );
6466 testcase( n==pPage->maxLocal+1 );
6467 if( n > pPage->maxLocal ) n = mn;
6468 spaceLeft = n;
6469 *pnSize = n + nHeader + 4;
6470 pPrior = &pCell[nHeader+n];
6471 pToRelease = 0;
6472 pgnoOvfl = 0;
6473 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006474
drh6200c882014-09-23 22:36:25 +00006475 /* At this point variables should be set as follows:
6476 **
6477 ** nPayload Total payload size in bytes
6478 ** pPayload Begin writing payload here
6479 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6480 ** that means content must spill into overflow pages.
6481 ** *pnSize Size of the local cell (not counting overflow pages)
6482 ** pPrior Where to write the pgno of the first overflow page
6483 **
6484 ** Use a call to btreeParseCellPtr() to verify that the values above
6485 ** were computed correctly.
6486 */
drhd879e3e2017-02-13 13:35:55 +00006487#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006488 {
6489 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006490 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006491 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006492 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006493 assert( *pnSize == info.nSize );
6494 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006495 }
6496#endif
6497
6498 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006499 while( 1 ){
6500 n = nPayload;
6501 if( n>spaceLeft ) n = spaceLeft;
6502
6503 /* If pToRelease is not zero than pPayload points into the data area
6504 ** of pToRelease. Make sure pToRelease is still writeable. */
6505 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6506
6507 /* If pPayload is part of the data area of pPage, then make sure pPage
6508 ** is still writeable */
6509 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6510 || sqlite3PagerIswriteable(pPage->pDbPage) );
6511
6512 if( nSrc>=n ){
6513 memcpy(pPayload, pSrc, n);
6514 }else if( nSrc>0 ){
6515 n = nSrc;
6516 memcpy(pPayload, pSrc, n);
6517 }else{
6518 memset(pPayload, 0, n);
6519 }
6520 nPayload -= n;
6521 if( nPayload<=0 ) break;
6522 pPayload += n;
6523 pSrc += n;
6524 nSrc -= n;
6525 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006526 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006527 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006528#ifndef SQLITE_OMIT_AUTOVACUUM
6529 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006530 if( pBt->autoVacuum ){
6531 do{
6532 pgnoOvfl++;
6533 } while(
6534 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6535 );
danielk1977b39f70b2007-05-17 18:28:11 +00006536 }
danielk1977afcdd022004-10-31 16:25:42 +00006537#endif
drhf49661a2008-12-10 16:45:50 +00006538 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006539#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006540 /* If the database supports auto-vacuum, and the second or subsequent
6541 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006542 ** for that page now.
6543 **
6544 ** If this is the first overflow page, then write a partial entry
6545 ** to the pointer-map. If we write nothing to this pointer-map slot,
6546 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006547 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006548 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006549 */
danielk19774ef24492007-05-23 09:52:41 +00006550 if( pBt->autoVacuum && rc==SQLITE_OK ){
6551 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006552 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006553 if( rc ){
6554 releasePage(pOvfl);
6555 }
danielk1977afcdd022004-10-31 16:25:42 +00006556 }
6557#endif
drh3b7511c2001-05-26 13:15:44 +00006558 if( rc ){
drh9b171272004-05-08 02:03:22 +00006559 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006560 return rc;
6561 }
drhc5053fb2008-11-27 02:22:10 +00006562
6563 /* If pToRelease is not zero than pPrior points into the data area
6564 ** of pToRelease. Make sure pToRelease is still writeable. */
6565 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6566
6567 /* If pPrior is part of the data area of pPage, then make sure pPage
6568 ** is still writeable */
6569 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6570 || sqlite3PagerIswriteable(pPage->pDbPage) );
6571
drh3aac2dd2004-04-26 14:10:20 +00006572 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006573 releasePage(pToRelease);
6574 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006575 pPrior = pOvfl->aData;
6576 put4byte(pPrior, 0);
6577 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006578 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006579 }
drhdd793422001-06-28 01:54:48 +00006580 }
drh9b171272004-05-08 02:03:22 +00006581 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006582 return SQLITE_OK;
6583}
6584
drh14acc042001-06-10 19:56:58 +00006585/*
6586** Remove the i-th cell from pPage. This routine effects pPage only.
6587** The cell content is not freed or deallocated. It is assumed that
6588** the cell content has been copied someplace else. This routine just
6589** removes the reference to the cell from pPage.
6590**
6591** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006592*/
drh98add2e2009-07-20 17:11:49 +00006593static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006594 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006595 u8 *data; /* pPage->aData */
6596 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006597 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006598 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006599
drh98add2e2009-07-20 17:11:49 +00006600 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006601 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006602 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006603 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006604 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00006605 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00006606 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006607 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006608 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006609 hdr = pPage->hdrOffset;
6610 testcase( pc==get2byte(&data[hdr+5]) );
6611 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006612 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006613 *pRC = SQLITE_CORRUPT_BKPT;
6614 return;
shane0af3f892008-11-12 04:55:34 +00006615 }
shanedcc50b72008-11-13 18:29:50 +00006616 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006617 if( rc ){
6618 *pRC = rc;
6619 return;
shanedcc50b72008-11-13 18:29:50 +00006620 }
drh14acc042001-06-10 19:56:58 +00006621 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006622 if( pPage->nCell==0 ){
6623 memset(&data[hdr+1], 0, 4);
6624 data[hdr+7] = 0;
6625 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6626 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6627 - pPage->childPtrSize - 8;
6628 }else{
6629 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6630 put2byte(&data[hdr+3], pPage->nCell);
6631 pPage->nFree += 2;
6632 }
drh14acc042001-06-10 19:56:58 +00006633}
6634
6635/*
6636** Insert a new cell on pPage at cell index "i". pCell points to the
6637** content of the cell.
6638**
6639** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006640** will not fit, then make a copy of the cell content into pTemp if
6641** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006642** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006643** in pTemp or the original pCell) and also record its index.
6644** Allocating a new entry in pPage->aCell[] implies that
6645** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006646**
6647** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006648*/
drh98add2e2009-07-20 17:11:49 +00006649static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006650 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006651 int i, /* New cell becomes the i-th cell of the page */
6652 u8 *pCell, /* Content of the new cell */
6653 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006654 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006655 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6656 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006657){
drh383d30f2010-02-26 13:07:37 +00006658 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006659 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006660 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006661 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006662
drhcb89f4a2016-05-21 11:23:26 +00006663 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006664 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006665 assert( MX_CELL(pPage->pBt)<=10921 );
6666 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006667 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6668 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006669 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh996f5cc2019-07-17 16:18:01 +00006670 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00006671 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00006672 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006673 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006674 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006675 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006676 }
danielk19774dbaa892009-06-16 16:50:22 +00006677 if( iChild ){
6678 put4byte(pCell, iChild);
6679 }
drh43605152004-05-29 21:46:49 +00006680 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006681 /* Comparison against ArraySize-1 since we hold back one extra slot
6682 ** as a contingency. In other words, never need more than 3 overflow
6683 ** slots but 4 are allocated, just to be safe. */
6684 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006685 pPage->apOvfl[j] = pCell;
6686 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006687
6688 /* When multiple overflows occur, they are always sequential and in
6689 ** sorted order. This invariants arise because multiple overflows can
6690 ** only occur when inserting divider cells into the parent page during
6691 ** balancing, and the dividers are adjacent and sorted.
6692 */
6693 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6694 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006695 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006696 int rc = sqlite3PagerWrite(pPage->pDbPage);
6697 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006698 *pRC = rc;
6699 return;
danielk19776e465eb2007-08-21 13:11:00 +00006700 }
6701 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006702 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006703 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006704 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006705 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006706 /* The allocateSpace() routine guarantees the following properties
6707 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006708 assert( idx >= 0 );
6709 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006710 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006711 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00006712 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00006713 /* In a corrupt database where an entry in the cell index section of
6714 ** a btree page has a value of 3 or less, the pCell value might point
6715 ** as many as 4 bytes in front of the start of the aData buffer for
6716 ** the source page. Make sure this does not cause problems by not
6717 ** reading the first 4 bytes */
6718 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00006719 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00006720 }else{
6721 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006722 }
drh2c8fb922015-06-25 19:53:48 +00006723 pIns = pPage->aCellIdx + i*2;
6724 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6725 put2byte(pIns, idx);
6726 pPage->nCell++;
6727 /* increment the cell count */
6728 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00006729 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
danielk1977a19df672004-11-03 11:37:07 +00006730#ifndef SQLITE_OMIT_AUTOVACUUM
6731 if( pPage->pBt->autoVacuum ){
6732 /* The cell may contain a pointer to an overflow page. If so, write
6733 ** the entry for the overflow page into the pointer map.
6734 */
drh0f1bf4c2019-01-13 20:17:21 +00006735 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006736 }
6737#endif
drh14acc042001-06-10 19:56:58 +00006738 }
6739}
6740
6741/*
drhe3dadac2019-01-23 19:25:59 +00006742** The following parameters determine how many adjacent pages get involved
6743** in a balancing operation. NN is the number of neighbors on either side
6744** of the page that participate in the balancing operation. NB is the
6745** total number of pages that participate, including the target page and
6746** NN neighbors on either side.
6747**
6748** The minimum value of NN is 1 (of course). Increasing NN above 1
6749** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6750** in exchange for a larger degradation in INSERT and UPDATE performance.
6751** The value of NN appears to give the best results overall.
6752**
6753** (Later:) The description above makes it seem as if these values are
6754** tunable - as if you could change them and recompile and it would all work.
6755** But that is unlikely. NB has been 3 since the inception of SQLite and
6756** we have never tested any other value.
6757*/
6758#define NN 1 /* Number of neighbors on either side of pPage */
6759#define NB 3 /* (NN*2+1): Total pages involved in the balance */
6760
6761/*
drh1ffd2472015-06-23 02:37:30 +00006762** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006763** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00006764**
6765** The cells in this array are the divider cell or cells from the pParent
6766** page plus up to three child pages. There are a total of nCell cells.
6767**
6768** pRef is a pointer to one of the pages that contributes cells. This is
6769** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6770** which should be common to all pages that contribute cells to this array.
6771**
6772** apCell[] and szCell[] hold, respectively, pointers to the start of each
6773** cell and the size of each cell. Some of the apCell[] pointers might refer
6774** to overflow cells. In other words, some apCel[] pointers might not point
6775** to content area of the pages.
6776**
6777** A szCell[] of zero means the size of that cell has not yet been computed.
6778**
6779** The cells come from as many as four different pages:
6780**
6781** -----------
6782** | Parent |
6783** -----------
6784** / | \
6785** / | \
6786** --------- --------- ---------
6787** |Child-1| |Child-2| |Child-3|
6788** --------- --------- ---------
6789**
drh26b7ec82019-02-01 14:50:43 +00006790** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00006791**
6792** 1. All cells from Child-1 in order
6793** 2. The first divider cell from Parent
6794** 3. All cells from Child-2 in order
6795** 4. The second divider cell from Parent
6796** 5. All cells from Child-3 in order
6797**
drh26b7ec82019-02-01 14:50:43 +00006798** For a table-btree (with rowids) the items 2 and 4 are empty because
6799** content exists only in leaves and there are no divider cells.
6800**
6801** For an index btree, the apEnd[] array holds pointer to the end of page
6802** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6803** respectively. The ixNx[] array holds the number of cells contained in
6804** each of these 5 stages, and all stages to the left. Hence:
6805**
drhe3dadac2019-01-23 19:25:59 +00006806** ixNx[0] = Number of cells in Child-1.
6807** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6808** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6809** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6810** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00006811**
6812** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6813** are used and they point to the leaf pages only, and the ixNx value are:
6814**
6815** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00006816** ixNx[1] = Number of cells in Child-1 and Child-2.
6817** ixNx[2] = Total number of cells.
6818**
6819** Sometimes when deleting, a child page can have zero cells. In those
6820** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6821** entries, shift down. The end result is that each ixNx[] entry should
6822** be larger than the previous
drhfa1a98a2004-05-14 19:08:17 +00006823*/
drh1ffd2472015-06-23 02:37:30 +00006824typedef struct CellArray CellArray;
6825struct CellArray {
6826 int nCell; /* Number of cells in apCell[] */
6827 MemPage *pRef; /* Reference page */
6828 u8 **apCell; /* All cells begin balanced */
6829 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00006830 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
6831 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00006832};
drhfa1a98a2004-05-14 19:08:17 +00006833
drh1ffd2472015-06-23 02:37:30 +00006834/*
6835** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6836** computed.
6837*/
6838static void populateCellCache(CellArray *p, int idx, int N){
6839 assert( idx>=0 && idx+N<=p->nCell );
6840 while( N>0 ){
6841 assert( p->apCell[idx]!=0 );
6842 if( p->szCell[idx]==0 ){
6843 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6844 }else{
6845 assert( CORRUPT_DB ||
6846 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6847 }
6848 idx++;
6849 N--;
drhfa1a98a2004-05-14 19:08:17 +00006850 }
drh1ffd2472015-06-23 02:37:30 +00006851}
6852
6853/*
6854** Return the size of the Nth element of the cell array
6855*/
6856static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6857 assert( N>=0 && N<p->nCell );
6858 assert( p->szCell[N]==0 );
6859 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6860 return p->szCell[N];
6861}
6862static u16 cachedCellSize(CellArray *p, int N){
6863 assert( N>=0 && N<p->nCell );
6864 if( p->szCell[N] ) return p->szCell[N];
6865 return computeCellSize(p, N);
6866}
6867
6868/*
dan8e9ba0c2014-10-14 17:27:04 +00006869** Array apCell[] contains pointers to nCell b-tree page cells. The
6870** szCell[] array contains the size in bytes of each cell. This function
6871** replaces the current contents of page pPg with the contents of the cell
6872** array.
6873**
6874** Some of the cells in apCell[] may currently be stored in pPg. This
6875** function works around problems caused by this by making a copy of any
6876** such cells before overwriting the page data.
6877**
6878** The MemPage.nFree field is invalidated by this function. It is the
6879** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006880*/
drh658873b2015-06-22 20:02:04 +00006881static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00006882 CellArray *pCArray, /* Content to be added to page pPg */
6883 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00006884 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00006885 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00006886){
6887 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6888 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6889 const int usableSize = pPg->pBt->usableSize;
6890 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00006891 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00006892 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00006893 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00006894 u8 *pCellptr = pPg->aCellIdx;
6895 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6896 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00006897 int k; /* Current slot in pCArray->apEnd[] */
6898 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00006899
drhe3dadac2019-01-23 19:25:59 +00006900 assert( i<iEnd );
6901 j = get2byte(&aData[hdr+5]);
drh2b96b692019-08-05 16:22:20 +00006902 if( NEVER(j>(u32)usableSize) ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00006903 memcpy(&pTmp[j], &aData[j], usableSize - j);
6904
6905 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6906 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00006907
dan8e9ba0c2014-10-14 17:27:04 +00006908 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00006909 while( 1/*exit by break*/ ){
6910 u8 *pCell = pCArray->apCell[i];
6911 u16 sz = pCArray->szCell[i];
6912 assert( sz>0 );
drh8b0ba7b2015-12-16 13:07:35 +00006913 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
drhe3dadac2019-01-23 19:25:59 +00006914 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006915 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00006916 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
6917 && (uptr)(pCell)<(uptr)pSrcEnd
6918 ){
6919 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006920 }
drhe3dadac2019-01-23 19:25:59 +00006921
6922 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00006923 put2byte(pCellptr, (pData - aData));
6924 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006925 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drhe3dadac2019-01-23 19:25:59 +00006926 memcpy(pData, pCell, sz);
6927 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6928 testcase( sz!=pPg->xCellSize(pPg,pCell) );
6929 i++;
6930 if( i>=iEnd ) break;
6931 if( pCArray->ixNx[k]<=i ){
6932 k++;
6933 pSrcEnd = pCArray->apEnd[k];
6934 }
dan33ea4862014-10-09 19:35:37 +00006935 }
6936
dand7b545b2014-10-13 18:03:27 +00006937 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006938 pPg->nCell = nCell;
6939 pPg->nOverflow = 0;
6940
6941 put2byte(&aData[hdr+1], 0);
6942 put2byte(&aData[hdr+3], pPg->nCell);
6943 put2byte(&aData[hdr+5], pData - aData);
6944 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006945 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006946}
6947
dan8e9ba0c2014-10-14 17:27:04 +00006948/*
drhe3dadac2019-01-23 19:25:59 +00006949** The pCArray objects contains pointers to b-tree cells and the cell sizes.
6950** This function attempts to add the cells stored in the array to page pPg.
6951** If it cannot (because the page needs to be defragmented before the cells
6952** will fit), non-zero is returned. Otherwise, if the cells are added
6953** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00006954**
6955** Argument pCellptr points to the first entry in the cell-pointer array
6956** (part of page pPg) to populate. After cell apCell[0] is written to the
6957** page body, a 16-bit offset is written to pCellptr. And so on, for each
6958** cell in the array. It is the responsibility of the caller to ensure
6959** that it is safe to overwrite this part of the cell-pointer array.
6960**
6961** When this function is called, *ppData points to the start of the
6962** content area on page pPg. If the size of the content area is extended,
6963** *ppData is updated to point to the new start of the content area
6964** before returning.
6965**
6966** Finally, argument pBegin points to the byte immediately following the
6967** end of the space required by this page for the cell-pointer area (for
6968** all cells - not just those inserted by the current call). If the content
6969** area must be extended to before this point in order to accomodate all
6970** cells in apCell[], then the cells do not fit and non-zero is returned.
6971*/
dand7b545b2014-10-13 18:03:27 +00006972static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006973 MemPage *pPg, /* Page to add cells to */
6974 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00006975 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00006976 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006977 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006978 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006979 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006980){
drhe3dadac2019-01-23 19:25:59 +00006981 int i = iFirst; /* Loop counter - cell index to insert */
6982 u8 *aData = pPg->aData; /* Complete page */
6983 u8 *pData = *ppData; /* Content area. A subset of aData[] */
6984 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
6985 int k; /* Current slot in pCArray->apEnd[] */
6986 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00006987 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00006988 if( iEnd<=iFirst ) return 0;
6989 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6990 pEnd = pCArray->apEnd[k];
6991 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00006992 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006993 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006994 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006995 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006996 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006997 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006998 pSlot = pData;
6999 }
drh48310f82015-10-10 16:41:28 +00007000 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7001 ** database. But they might for a corrupt database. Hence use memmove()
7002 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7003 assert( (pSlot+sz)<=pCArray->apCell[i]
7004 || pSlot>=(pCArray->apCell[i]+sz)
7005 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007006 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7007 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7008 ){
7009 assert( CORRUPT_DB );
7010 (void)SQLITE_CORRUPT_BKPT;
7011 return 1;
7012 }
drh48310f82015-10-10 16:41:28 +00007013 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007014 put2byte(pCellptr, (pSlot - aData));
7015 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007016 i++;
7017 if( i>=iEnd ) break;
7018 if( pCArray->ixNx[k]<=i ){
7019 k++;
7020 pEnd = pCArray->apEnd[k];
7021 }
dand7b545b2014-10-13 18:03:27 +00007022 }
7023 *ppData = pData;
7024 return 0;
7025}
7026
dan8e9ba0c2014-10-14 17:27:04 +00007027/*
drhe3dadac2019-01-23 19:25:59 +00007028** The pCArray object contains pointers to b-tree cells and their sizes.
7029**
7030** This function adds the space associated with each cell in the array
7031** that is currently stored within the body of pPg to the pPg free-list.
7032** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007033**
7034** This function returns the total number of cells added to the free-list.
7035*/
dand7b545b2014-10-13 18:03:27 +00007036static int pageFreeArray(
7037 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007038 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007039 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007040 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007041){
7042 u8 * const aData = pPg->aData;
7043 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007044 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007045 int nRet = 0;
7046 int i;
drhf7838932015-06-23 15:36:34 +00007047 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007048 u8 *pFree = 0;
7049 int szFree = 0;
7050
drhf7838932015-06-23 15:36:34 +00007051 for(i=iFirst; i<iEnd; i++){
7052 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007053 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007054 int sz;
7055 /* No need to use cachedCellSize() here. The sizes of all cells that
7056 ** are to be freed have already been computing while deciding which
7057 ** cells need freeing */
7058 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007059 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007060 if( pFree ){
7061 assert( pFree>aData && (pFree - aData)<65536 );
7062 freeSpace(pPg, (u16)(pFree - aData), szFree);
7063 }
dand7b545b2014-10-13 18:03:27 +00007064 pFree = pCell;
7065 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00007066 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00007067 }else{
7068 pFree = pCell;
7069 szFree += sz;
7070 }
7071 nRet++;
7072 }
7073 }
drhfefa0942014-11-05 21:21:08 +00007074 if( pFree ){
7075 assert( pFree>aData && (pFree - aData)<65536 );
7076 freeSpace(pPg, (u16)(pFree - aData), szFree);
7077 }
dand7b545b2014-10-13 18:03:27 +00007078 return nRet;
7079}
7080
dand7b545b2014-10-13 18:03:27 +00007081/*
drha0466432019-01-29 16:41:13 +00007082** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007083** balanced. The current page, pPg, has pPg->nCell cells starting with
7084** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007085** starting at apCell[iNew].
7086**
7087** This routine makes the necessary adjustments to pPg so that it contains
7088** the correct cells after being balanced.
7089**
dand7b545b2014-10-13 18:03:27 +00007090** The pPg->nFree field is invalid when this function returns. It is the
7091** responsibility of the caller to set it correctly.
7092*/
drh658873b2015-06-22 20:02:04 +00007093static int editPage(
dan09c68402014-10-11 20:00:24 +00007094 MemPage *pPg, /* Edit this page */
7095 int iOld, /* Index of first cell currently on page */
7096 int iNew, /* Index of new first cell on page */
7097 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007098 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007099){
dand7b545b2014-10-13 18:03:27 +00007100 u8 * const aData = pPg->aData;
7101 const int hdr = pPg->hdrOffset;
7102 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7103 int nCell = pPg->nCell; /* Cells stored on pPg */
7104 u8 *pData;
7105 u8 *pCellptr;
7106 int i;
7107 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7108 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007109
7110#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007111 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7112 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007113#endif
7114
dand7b545b2014-10-13 18:03:27 +00007115 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007116 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007117 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007118 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drha0466432019-01-29 16:41:13 +00007119 if( nShift>nCell ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007120 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7121 nCell -= nShift;
7122 }
7123 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007124 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7125 assert( nCell>=nTail );
7126 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007127 }
dan09c68402014-10-11 20:00:24 +00007128
drh5ab63772014-11-27 03:46:04 +00007129 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007130 if( pData<pBegin ) goto editpage_fail;
7131
7132 /* Add cells to the start of the page */
7133 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007134 int nAdd = MIN(nNew,iOld-iNew);
7135 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007136 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007137 pCellptr = pPg->aCellIdx;
7138 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7139 if( pageInsertArray(
7140 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007141 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007142 ) ) goto editpage_fail;
7143 nCell += nAdd;
7144 }
7145
7146 /* Add any overflow cells */
7147 for(i=0; i<pPg->nOverflow; i++){
7148 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7149 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007150 pCellptr = &pPg->aCellIdx[iCell * 2];
drh4b986b22019-03-08 14:02:11 +00007151 if( nCell>iCell ){
7152 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7153 }
dand7b545b2014-10-13 18:03:27 +00007154 nCell++;
7155 if( pageInsertArray(
7156 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007157 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007158 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007159 }
dand7b545b2014-10-13 18:03:27 +00007160 }
dan09c68402014-10-11 20:00:24 +00007161
dand7b545b2014-10-13 18:03:27 +00007162 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007163 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007164 pCellptr = &pPg->aCellIdx[nCell*2];
7165 if( pageInsertArray(
7166 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007167 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007168 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007169
dand7b545b2014-10-13 18:03:27 +00007170 pPg->nCell = nNew;
7171 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007172
dand7b545b2014-10-13 18:03:27 +00007173 put2byte(&aData[hdr+3], pPg->nCell);
7174 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007175
7176#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007177 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007178 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007179 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007180 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007181 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007182 }
drh1ffd2472015-06-23 02:37:30 +00007183 assert( 0==memcmp(pCell, &aData[iOff],
7184 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007185 }
dan09c68402014-10-11 20:00:24 +00007186#endif
7187
drh658873b2015-06-22 20:02:04 +00007188 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007189 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007190 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007191 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007192 return rebuildPage(pCArray, iNew, nNew, pPg);
drhfa1a98a2004-05-14 19:08:17 +00007193}
7194
danielk1977ac245ec2005-01-14 13:50:11 +00007195
drh615ae552005-01-16 23:21:00 +00007196#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007197/*
7198** This version of balance() handles the common special case where
7199** a new entry is being inserted on the extreme right-end of the
7200** tree, in other words, when the new entry will become the largest
7201** entry in the tree.
7202**
drhc314dc72009-07-21 11:52:34 +00007203** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007204** a new page to the right-hand side and put the one new entry in
7205** that page. This leaves the right side of the tree somewhat
7206** unbalanced. But odds are that we will be inserting new entries
7207** at the end soon afterwards so the nearly empty page will quickly
7208** fill up. On average.
7209**
7210** pPage is the leaf page which is the right-most page in the tree.
7211** pParent is its parent. pPage must have a single overflow entry
7212** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007213**
7214** The pSpace buffer is used to store a temporary copy of the divider
7215** cell that will be inserted into pParent. Such a cell consists of a 4
7216** byte page number followed by a variable length integer. In other
7217** words, at most 13 bytes. Hence the pSpace buffer must be at
7218** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007219*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007220static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7221 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007222 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007223 int rc; /* Return Code */
7224 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007225
drh1fee73e2007-08-29 04:00:57 +00007226 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007227 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007228 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007229
drh6301c432018-12-13 21:52:18 +00007230 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007231 assert( pPage->nFree>=0 );
7232 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007233
danielk1977a50d9aa2009-06-08 14:49:45 +00007234 /* Allocate a new page. This page will become the right-sibling of
7235 ** pPage. Make the parent page writable, so that the new divider cell
7236 ** may be inserted. If both these operations are successful, proceed.
7237 */
drh4f0c5872007-03-26 22:05:01 +00007238 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007239
danielk1977eaa06f62008-09-18 17:34:44 +00007240 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007241
7242 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007243 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007244 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007245 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007246 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007247
drhc5053fb2008-11-27 02:22:10 +00007248 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007249 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007250 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007251 b.nCell = 1;
7252 b.pRef = pPage;
7253 b.apCell = &pCell;
7254 b.szCell = &szCell;
7255 b.apEnd[0] = pPage->aDataEnd;
7256 b.ixNx[0] = 2;
7257 rc = rebuildPage(&b, 0, 1, pNew);
7258 if( NEVER(rc) ){
7259 releasePage(pNew);
7260 return rc;
7261 }
dan8e9ba0c2014-10-14 17:27:04 +00007262 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007263
7264 /* If this is an auto-vacuum database, update the pointer map
7265 ** with entries for the new page, and any pointer from the
7266 ** cell on the page to an overflow page. If either of these
7267 ** operations fails, the return code is set, but the contents
7268 ** of the parent page are still manipulated by thh code below.
7269 ** That is Ok, at this point the parent page is guaranteed to
7270 ** be marked as dirty. Returning an error code will cause a
7271 ** rollback, undoing any changes made to the parent page.
7272 */
7273 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007274 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7275 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007276 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007277 }
7278 }
danielk1977eaa06f62008-09-18 17:34:44 +00007279
danielk19776f235cc2009-06-04 14:46:08 +00007280 /* Create a divider cell to insert into pParent. The divider cell
7281 ** consists of a 4-byte page number (the page number of pPage) and
7282 ** a variable length key value (which must be the same value as the
7283 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007284 **
danielk19776f235cc2009-06-04 14:46:08 +00007285 ** To find the largest key value on pPage, first find the right-most
7286 ** cell on pPage. The first two fields of this cell are the
7287 ** record-length (a variable length integer at most 32-bits in size)
7288 ** and the key value (a variable length integer, may have any value).
7289 ** The first of the while(...) loops below skips over the record-length
7290 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007291 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007292 */
danielk1977eaa06f62008-09-18 17:34:44 +00007293 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007294 pStop = &pCell[9];
7295 while( (*(pCell++)&0x80) && pCell<pStop );
7296 pStop = &pCell[9];
7297 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7298
danielk19774dbaa892009-06-16 16:50:22 +00007299 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007300 if( rc==SQLITE_OK ){
7301 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7302 0, pPage->pgno, &rc);
7303 }
danielk19776f235cc2009-06-04 14:46:08 +00007304
7305 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007306 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7307
danielk1977e08a3c42008-09-18 18:17:03 +00007308 /* Release the reference to the new page. */
7309 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007310 }
7311
danielk1977eaa06f62008-09-18 17:34:44 +00007312 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007313}
drh615ae552005-01-16 23:21:00 +00007314#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007315
danielk19774dbaa892009-06-16 16:50:22 +00007316#if 0
drhc3b70572003-01-04 19:44:07 +00007317/*
danielk19774dbaa892009-06-16 16:50:22 +00007318** This function does not contribute anything to the operation of SQLite.
7319** it is sometimes activated temporarily while debugging code responsible
7320** for setting pointer-map entries.
7321*/
7322static int ptrmapCheckPages(MemPage **apPage, int nPage){
7323 int i, j;
7324 for(i=0; i<nPage; i++){
7325 Pgno n;
7326 u8 e;
7327 MemPage *pPage = apPage[i];
7328 BtShared *pBt = pPage->pBt;
7329 assert( pPage->isInit );
7330
7331 for(j=0; j<pPage->nCell; j++){
7332 CellInfo info;
7333 u8 *z;
7334
7335 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007336 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007337 if( info.nLocal<info.nPayload ){
7338 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007339 ptrmapGet(pBt, ovfl, &e, &n);
7340 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7341 }
7342 if( !pPage->leaf ){
7343 Pgno child = get4byte(z);
7344 ptrmapGet(pBt, child, &e, &n);
7345 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7346 }
7347 }
7348 if( !pPage->leaf ){
7349 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7350 ptrmapGet(pBt, child, &e, &n);
7351 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7352 }
7353 }
7354 return 1;
7355}
7356#endif
7357
danielk1977cd581a72009-06-23 15:43:39 +00007358/*
7359** This function is used to copy the contents of the b-tree node stored
7360** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7361** the pointer-map entries for each child page are updated so that the
7362** parent page stored in the pointer map is page pTo. If pFrom contained
7363** any cells with overflow page pointers, then the corresponding pointer
7364** map entries are also updated so that the parent page is page pTo.
7365**
7366** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007367** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007368**
danielk197730548662009-07-09 05:07:37 +00007369** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007370**
7371** The performance of this function is not critical. It is only used by
7372** the balance_shallower() and balance_deeper() procedures, neither of
7373** which are called often under normal circumstances.
7374*/
drhc314dc72009-07-21 11:52:34 +00007375static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7376 if( (*pRC)==SQLITE_OK ){
7377 BtShared * const pBt = pFrom->pBt;
7378 u8 * const aFrom = pFrom->aData;
7379 u8 * const aTo = pTo->aData;
7380 int const iFromHdr = pFrom->hdrOffset;
7381 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007382 int rc;
drhc314dc72009-07-21 11:52:34 +00007383 int iData;
7384
7385
7386 assert( pFrom->isInit );
7387 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007388 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007389
7390 /* Copy the b-tree node content from page pFrom to page pTo. */
7391 iData = get2byte(&aFrom[iFromHdr+5]);
7392 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7393 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7394
7395 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007396 ** match the new data. The initialization of pTo can actually fail under
7397 ** fairly obscure circumstances, even though it is a copy of initialized
7398 ** page pFrom.
7399 */
drhc314dc72009-07-21 11:52:34 +00007400 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007401 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00007402 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00007403 if( rc!=SQLITE_OK ){
7404 *pRC = rc;
7405 return;
7406 }
drhc314dc72009-07-21 11:52:34 +00007407
7408 /* If this is an auto-vacuum database, update the pointer-map entries
7409 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7410 */
7411 if( ISAUTOVACUUM ){
7412 *pRC = setChildPtrmaps(pTo);
7413 }
danielk1977cd581a72009-06-23 15:43:39 +00007414 }
danielk1977cd581a72009-06-23 15:43:39 +00007415}
7416
7417/*
danielk19774dbaa892009-06-16 16:50:22 +00007418** This routine redistributes cells on the iParentIdx'th child of pParent
7419** (hereafter "the page") and up to 2 siblings so that all pages have about the
7420** same amount of free space. Usually a single sibling on either side of the
7421** page are used in the balancing, though both siblings might come from one
7422** side if the page is the first or last child of its parent. If the page
7423** has fewer than 2 siblings (something which can only happen if the page
7424** is a root page or a child of a root page) then all available siblings
7425** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007426**
danielk19774dbaa892009-06-16 16:50:22 +00007427** The number of siblings of the page might be increased or decreased by
7428** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007429**
danielk19774dbaa892009-06-16 16:50:22 +00007430** Note that when this routine is called, some of the cells on the page
7431** might not actually be stored in MemPage.aData[]. This can happen
7432** if the page is overfull. This routine ensures that all cells allocated
7433** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007434**
danielk19774dbaa892009-06-16 16:50:22 +00007435** In the course of balancing the page and its siblings, cells may be
7436** inserted into or removed from the parent page (pParent). Doing so
7437** may cause the parent page to become overfull or underfull. If this
7438** happens, it is the responsibility of the caller to invoke the correct
7439** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007440**
drh5e00f6c2001-09-13 13:46:56 +00007441** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007442** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007443** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007444**
7445** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007446** buffer big enough to hold one page. If while inserting cells into the parent
7447** page (pParent) the parent page becomes overfull, this buffer is
7448** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007449** a maximum of four divider cells into the parent page, and the maximum
7450** size of a cell stored within an internal node is always less than 1/4
7451** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7452** enough for all overflow cells.
7453**
7454** If aOvflSpace is set to a null pointer, this function returns
7455** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007456*/
danielk19774dbaa892009-06-16 16:50:22 +00007457static int balance_nonroot(
7458 MemPage *pParent, /* Parent page of siblings being balanced */
7459 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007460 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007461 int isRoot, /* True if pParent is a root-page */
7462 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007463){
drh16a9b832007-05-05 18:39:25 +00007464 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007465 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007466 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007467 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007468 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007469 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007470 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007471 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007472 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007473 int usableSpace; /* Bytes in pPage beyond the header */
7474 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007475 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007476 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007477 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007478 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007479 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007480 u8 *pRight; /* Location in parent of right-sibling pointer */
7481 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007482 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7483 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007484 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007485 u8 *aSpace1; /* Space for copies of dividers cells */
7486 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007487 u8 abDone[NB+2]; /* True after i'th new page is populated */
7488 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007489 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007490 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007491 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007492
dan33ea4862014-10-09 19:35:37 +00007493 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007494 b.nCell = 0;
7495 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007496 pBt = pParent->pBt;
7497 assert( sqlite3_mutex_held(pBt->mutex) );
7498 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007499
danielk19774dbaa892009-06-16 16:50:22 +00007500 /* At this point pParent may have at most one overflow cell. And if
7501 ** this overflow cell is present, it must be the cell with
7502 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007503 ** is called (indirectly) from sqlite3BtreeDelete().
7504 */
danielk19774dbaa892009-06-16 16:50:22 +00007505 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007506 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007507
danielk197711a8a862009-06-17 11:49:52 +00007508 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007509 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007510 }
drh68133502019-02-11 17:22:30 +00007511 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00007512
danielk1977a50d9aa2009-06-08 14:49:45 +00007513 /* Find the sibling pages to balance. Also locate the cells in pParent
7514 ** that divide the siblings. An attempt is made to find NN siblings on
7515 ** either side of pPage. More siblings are taken from one side, however,
7516 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007517 ** has NB or fewer children then all children of pParent are taken.
7518 **
7519 ** This loop also drops the divider cells from the parent page. This
7520 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007521 ** overflow cells in the parent page, since if any existed they will
7522 ** have already been removed.
7523 */
danielk19774dbaa892009-06-16 16:50:22 +00007524 i = pParent->nOverflow + pParent->nCell;
7525 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007526 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007527 }else{
dan7d6885a2012-08-08 14:04:56 +00007528 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007529 if( iParentIdx==0 ){
7530 nxDiv = 0;
7531 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007532 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007533 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007534 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007535 }
dan7d6885a2012-08-08 14:04:56 +00007536 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007537 }
dan7d6885a2012-08-08 14:04:56 +00007538 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007539 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7540 pRight = &pParent->aData[pParent->hdrOffset+8];
7541 }else{
7542 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7543 }
7544 pgno = get4byte(pRight);
7545 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007546 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007547 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007548 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007549 goto balance_cleanup;
7550 }
drh85a379b2019-02-09 22:33:44 +00007551 if( apOld[i]->nFree<0 ){
7552 rc = btreeComputeFreeSpace(apOld[i]);
7553 if( rc ){
7554 memset(apOld, 0, (i)*sizeof(MemPage*));
7555 goto balance_cleanup;
7556 }
7557 }
danielk19774dbaa892009-06-16 16:50:22 +00007558 if( (i--)==0 ) break;
7559
drh9cc5b4e2016-12-26 01:41:33 +00007560 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007561 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007562 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007563 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007564 pParent->nOverflow = 0;
7565 }else{
7566 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7567 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007568 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007569
7570 /* Drop the cell from the parent page. apDiv[i] still points to
7571 ** the cell within the parent, even though it has been dropped.
7572 ** This is safe because dropping a cell only overwrites the first
7573 ** four bytes of it, and this function does not need the first
7574 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007575 ** later on.
7576 **
drh8a575d92011-10-12 17:00:28 +00007577 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007578 ** the dropCell() routine will overwrite the entire cell with zeroes.
7579 ** In this case, temporarily copy the cell into the aOvflSpace[]
7580 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7581 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007582 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007583 int iOff;
7584
7585 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007586 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007587 rc = SQLITE_CORRUPT_BKPT;
7588 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7589 goto balance_cleanup;
7590 }else{
7591 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7592 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7593 }
drh5b47efa2010-02-12 18:18:39 +00007594 }
drh98add2e2009-07-20 17:11:49 +00007595 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007596 }
drh8b2f49b2001-06-08 00:21:52 +00007597 }
7598
drha9121e42008-02-19 14:59:35 +00007599 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007600 ** alignment */
drhf012dc42019-03-19 15:36:46 +00007601 nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl));
drha9121e42008-02-19 14:59:35 +00007602 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007603
drh8b2f49b2001-06-08 00:21:52 +00007604 /*
danielk1977634f2982005-03-28 08:44:07 +00007605 ** Allocate space for memory structures
7606 */
drhfacf0302008-06-17 15:12:00 +00007607 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007608 nMaxCells*sizeof(u8*) /* b.apCell */
7609 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007610 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007611
drhf012dc42019-03-19 15:36:46 +00007612 assert( szScratch<=7*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007613 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007614 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007615 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007616 goto balance_cleanup;
7617 }
drh1ffd2472015-06-23 02:37:30 +00007618 b.szCell = (u16*)&b.apCell[nMaxCells];
7619 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007620 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007621
7622 /*
7623 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007624 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007625 ** into space obtained from aSpace1[]. The divider cells have already
7626 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007627 **
7628 ** If the siblings are on leaf pages, then the child pointers of the
7629 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007630 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007631 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007632 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007633 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007634 **
7635 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7636 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007637 */
drh1ffd2472015-06-23 02:37:30 +00007638 b.pRef = apOld[0];
7639 leafCorrection = b.pRef->leaf*4;
7640 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007641 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007642 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007643 int limit = pOld->nCell;
7644 u8 *aData = pOld->aData;
7645 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007646 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007647 u8 *piEnd;
drhe12ca5a2019-05-02 15:56:39 +00007648 VVA_ONLY( int nCellAtStart = b.nCell; )
danielk19774dbaa892009-06-16 16:50:22 +00007649
drh73d340a2015-05-28 11:23:11 +00007650 /* Verify that all sibling pages are of the same "type" (table-leaf,
7651 ** table-interior, index-leaf, or index-interior).
7652 */
7653 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7654 rc = SQLITE_CORRUPT_BKPT;
7655 goto balance_cleanup;
7656 }
7657
drhfe647dc2015-06-23 18:24:25 +00007658 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007659 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007660 ** in the correct spot.
7661 **
7662 ** Note that when there are multiple overflow cells, it is always the
7663 ** case that they are sequential and adjacent. This invariant arises
7664 ** because multiple overflows can only occurs when inserting divider
7665 ** cells into a parent on a prior balance, and divider cells are always
7666 ** adjacent and are inserted in order. There is an assert() tagged
7667 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7668 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007669 **
7670 ** This must be done in advance. Once the balance starts, the cell
7671 ** offset section of the btree page will be overwritten and we will no
7672 ** long be able to find the cells if a pointer to each cell is not saved
7673 ** first.
7674 */
drh36b78ee2016-01-20 01:32:00 +00007675 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007676 if( pOld->nOverflow>0 ){
drhe12ca5a2019-05-02 15:56:39 +00007677 if( limit<pOld->aiOvfl[0] ){
7678 rc = SQLITE_CORRUPT_BKPT;
7679 goto balance_cleanup;
7680 }
drhfe647dc2015-06-23 18:24:25 +00007681 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007682 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007683 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007684 piCell += 2;
7685 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007686 }
drhfe647dc2015-06-23 18:24:25 +00007687 for(k=0; k<pOld->nOverflow; k++){
7688 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007689 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007690 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007691 }
drh1ffd2472015-06-23 02:37:30 +00007692 }
drhfe647dc2015-06-23 18:24:25 +00007693 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7694 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007695 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007696 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007697 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007698 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007699 }
drhe12ca5a2019-05-02 15:56:39 +00007700 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
drh4edfdd32015-06-23 14:49:42 +00007701
drh1ffd2472015-06-23 02:37:30 +00007702 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007703 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007704 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007705 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007706 assert( b.nCell<nMaxCells );
7707 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007708 pTemp = &aSpace1[iSpace1];
7709 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007710 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007711 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007712 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007713 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007714 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007715 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007716 if( !pOld->leaf ){
7717 assert( leafCorrection==0 );
7718 assert( pOld->hdrOffset==0 );
7719 /* The right pointer of the child page pOld becomes the left
7720 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007721 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007722 }else{
7723 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007724 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007725 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7726 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007727 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7728 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007729 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007730 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007731 }
7732 }
drh1ffd2472015-06-23 02:37:30 +00007733 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007734 }
drh8b2f49b2001-06-08 00:21:52 +00007735 }
7736
7737 /*
drh1ffd2472015-06-23 02:37:30 +00007738 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007739 ** Store this number in "k". Also compute szNew[] which is the total
7740 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007741 ** in b.apCell[] of the cell that divides page i from page i+1.
7742 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007743 **
drh96f5b762004-05-16 16:24:36 +00007744 ** Values computed by this block:
7745 **
7746 ** k: The total number of sibling pages
7747 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007748 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007749 ** the right of the i-th sibling page.
7750 ** usableSpace: Number of bytes of space available on each sibling.
7751 **
drh8b2f49b2001-06-08 00:21:52 +00007752 */
drh43605152004-05-29 21:46:49 +00007753 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00007754 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00007755 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00007756 b.apEnd[k] = p->aDataEnd;
7757 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00007758 if( k && b.ixNx[k]==b.ixNx[k-1] ){
7759 k--; /* Omit b.ixNx[] entry for child pages with no cells */
7760 }
drh26b7ec82019-02-01 14:50:43 +00007761 if( !leafData ){
7762 k++;
7763 b.apEnd[k] = pParent->aDataEnd;
7764 b.ixNx[k] = cntOld[i]+1;
7765 }
drhb0ea9432019-02-09 21:06:40 +00007766 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00007767 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007768 for(j=0; j<p->nOverflow; j++){
7769 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7770 }
7771 cntNew[i] = cntOld[i];
7772 }
7773 k = nOld;
7774 for(i=0; i<k; i++){
7775 int sz;
7776 while( szNew[i]>usableSpace ){
7777 if( i+1>=k ){
7778 k = i+2;
7779 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7780 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007781 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007782 }
drh1ffd2472015-06-23 02:37:30 +00007783 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007784 szNew[i] -= sz;
7785 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007786 if( cntNew[i]<b.nCell ){
7787 sz = 2 + cachedCellSize(&b, cntNew[i]);
7788 }else{
7789 sz = 0;
7790 }
drh658873b2015-06-22 20:02:04 +00007791 }
7792 szNew[i+1] += sz;
7793 cntNew[i]--;
7794 }
drh1ffd2472015-06-23 02:37:30 +00007795 while( cntNew[i]<b.nCell ){
7796 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007797 if( szNew[i]+sz>usableSpace ) break;
7798 szNew[i] += sz;
7799 cntNew[i]++;
7800 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007801 if( cntNew[i]<b.nCell ){
7802 sz = 2 + cachedCellSize(&b, cntNew[i]);
7803 }else{
7804 sz = 0;
7805 }
drh658873b2015-06-22 20:02:04 +00007806 }
7807 szNew[i+1] -= sz;
7808 }
drh1ffd2472015-06-23 02:37:30 +00007809 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007810 k = i+1;
drh672073a2015-06-24 12:07:40 +00007811 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007812 rc = SQLITE_CORRUPT_BKPT;
7813 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007814 }
7815 }
drh96f5b762004-05-16 16:24:36 +00007816
7817 /*
7818 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007819 ** on the left side (siblings with smaller keys). The left siblings are
7820 ** always nearly full, while the right-most sibling might be nearly empty.
7821 ** The next block of code attempts to adjust the packing of siblings to
7822 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007823 **
7824 ** This adjustment is more than an optimization. The packing above might
7825 ** be so out of balance as to be illegal. For example, the right-most
7826 ** sibling might be completely empty. This adjustment is not optional.
7827 */
drh6019e162001-07-02 17:51:45 +00007828 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007829 int szRight = szNew[i]; /* Size of sibling on the right */
7830 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7831 int r; /* Index of right-most cell in left sibling */
7832 int d; /* Index of first cell to the left of right sibling */
7833
7834 r = cntNew[i-1] - 1;
7835 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007836 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007837 do{
drh1ffd2472015-06-23 02:37:30 +00007838 assert( d<nMaxCells );
7839 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007840 (void)cachedCellSize(&b, r);
7841 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007842 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007843 break;
7844 }
7845 szRight += b.szCell[d] + 2;
7846 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007847 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007848 r--;
7849 d--;
drh672073a2015-06-24 12:07:40 +00007850 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007851 szNew[i] = szRight;
7852 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007853 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7854 rc = SQLITE_CORRUPT_BKPT;
7855 goto balance_cleanup;
7856 }
drh6019e162001-07-02 17:51:45 +00007857 }
drh09d0deb2005-08-02 17:13:09 +00007858
drh2a0df922014-10-30 23:14:56 +00007859 /* Sanity check: For a non-corrupt database file one of the follwing
7860 ** must be true:
7861 ** (1) We found one or more cells (cntNew[0])>0), or
7862 ** (2) pPage is a virtual root page. A virtual root page is when
7863 ** the real root page is page 1 and we are the only child of
7864 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007865 */
drh2a0df922014-10-30 23:14:56 +00007866 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007867 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7868 apOld[0]->pgno, apOld[0]->nCell,
7869 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7870 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007871 ));
7872
drh8b2f49b2001-06-08 00:21:52 +00007873 /*
drh6b308672002-07-08 02:16:37 +00007874 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007875 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007876 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007877 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007878 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007879 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007880 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007881 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007882 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007883 nNew++;
danielk197728129562005-01-11 10:25:06 +00007884 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007885 }else{
drh7aa8f852006-03-28 00:24:44 +00007886 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007887 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007888 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007889 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007890 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007891 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007892 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007893
7894 /* Set the pointer-map entry for the new sibling page. */
7895 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007896 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007897 if( rc!=SQLITE_OK ){
7898 goto balance_cleanup;
7899 }
7900 }
drh6b308672002-07-08 02:16:37 +00007901 }
drh8b2f49b2001-06-08 00:21:52 +00007902 }
7903
7904 /*
dan33ea4862014-10-09 19:35:37 +00007905 ** Reassign page numbers so that the new pages are in ascending order.
7906 ** This helps to keep entries in the disk file in order so that a scan
7907 ** of the table is closer to a linear scan through the file. That in turn
7908 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007909 **
dan33ea4862014-10-09 19:35:37 +00007910 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7911 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007912 **
dan33ea4862014-10-09 19:35:37 +00007913 ** When NB==3, this one optimization makes the database about 25% faster
7914 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007915 */
dan33ea4862014-10-09 19:35:37 +00007916 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007917 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007918 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007919 for(j=0; j<i; j++){
7920 if( aPgno[j]==aPgno[i] ){
7921 /* This branch is taken if the set of sibling pages somehow contains
7922 ** duplicate entries. This can happen if the database is corrupt.
7923 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007924 ** we do the detection here in order to avoid populating the pager
7925 ** cache with two separate objects associated with the same
7926 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007927 assert( CORRUPT_DB );
7928 rc = SQLITE_CORRUPT_BKPT;
7929 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007930 }
7931 }
dan33ea4862014-10-09 19:35:37 +00007932 }
7933 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007934 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007935 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007936 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007937 }
drh00fe08a2014-10-31 00:05:23 +00007938 pgno = aPgOrder[iBest];
7939 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007940 if( iBest!=i ){
7941 if( iBest>i ){
7942 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7943 }
7944 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7945 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007946 }
7947 }
dan33ea4862014-10-09 19:35:37 +00007948
7949 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7950 "%d(%d nc=%d) %d(%d nc=%d)\n",
7951 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007952 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007953 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007954 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007955 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007956 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007957 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7958 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7959 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7960 ));
danielk19774dbaa892009-06-16 16:50:22 +00007961
7962 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh55f66b32019-07-16 19:44:32 +00007963 assert( nNew>=1 && nNew<=ArraySize(apNew) );
7964 assert( apNew[nNew-1]!=0 );
danielk19774dbaa892009-06-16 16:50:22 +00007965 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007966
dan33ea4862014-10-09 19:35:37 +00007967 /* If the sibling pages are not leaves, ensure that the right-child pointer
7968 ** of the right-most new sibling page is set to the value that was
7969 ** originally in the same field of the right-most old sibling page. */
7970 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7971 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7972 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7973 }
danielk1977ac11ee62005-01-15 12:45:51 +00007974
dan33ea4862014-10-09 19:35:37 +00007975 /* Make any required updates to pointer map entries associated with
7976 ** cells stored on sibling pages following the balance operation. Pointer
7977 ** map entries associated with divider cells are set by the insertCell()
7978 ** routine. The associated pointer map entries are:
7979 **
7980 ** a) if the cell contains a reference to an overflow chain, the
7981 ** entry associated with the first page in the overflow chain, and
7982 **
7983 ** b) if the sibling pages are not leaves, the child page associated
7984 ** with the cell.
7985 **
7986 ** If the sibling pages are not leaves, then the pointer map entry
7987 ** associated with the right-child of each sibling may also need to be
7988 ** updated. This happens below, after the sibling pages have been
7989 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007990 */
dan33ea4862014-10-09 19:35:37 +00007991 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00007992 MemPage *pOld;
7993 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00007994 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00007995 int iNew = 0;
7996 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007997
drh1ffd2472015-06-23 02:37:30 +00007998 for(i=0; i<b.nCell; i++){
7999 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00008000 while( i==cntOldNext ){
8001 iOld++;
8002 assert( iOld<nNew || iOld<nOld );
drhdd2d9a32019-05-07 17:47:43 +00008003 assert( iOld>=0 && iOld<NB );
drh9c7e44c2019-02-14 15:27:12 +00008004 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00008005 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
drh4b70f112004-05-02 21:12:19 +00008006 }
dan33ea4862014-10-09 19:35:37 +00008007 if( i==cntNew[iNew] ){
8008 pNew = apNew[++iNew];
8009 if( !leafData ) continue;
8010 }
danielk197785d90ca2008-07-19 14:25:15 +00008011
dan33ea4862014-10-09 19:35:37 +00008012 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00008013 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00008014 ** or else the divider cell to the left of sibling page iOld. So,
8015 ** if sibling page iOld had the same page number as pNew, and if
8016 ** pCell really was a part of sibling page iOld (not a divider or
8017 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008018 if( iOld>=nNew
8019 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008020 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008021 ){
dan33ea4862014-10-09 19:35:37 +00008022 if( !leafCorrection ){
8023 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8024 }
drh1ffd2472015-06-23 02:37:30 +00008025 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008026 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00008027 }
drhea82b372015-06-23 21:35:28 +00008028 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00008029 }
drh14acc042001-06-10 19:56:58 +00008030 }
8031 }
dan33ea4862014-10-09 19:35:37 +00008032
8033 /* Insert new divider cells into pParent. */
8034 for(i=0; i<nNew-1; i++){
8035 u8 *pCell;
8036 u8 *pTemp;
8037 int sz;
8038 MemPage *pNew = apNew[i];
8039 j = cntNew[i];
8040
8041 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008042 assert( b.apCell[j]!=0 );
8043 pCell = b.apCell[j];
8044 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008045 pTemp = &aOvflSpace[iOvflSpace];
8046 if( !pNew->leaf ){
8047 memcpy(&pNew->aData[8], pCell, 4);
8048 }else if( leafData ){
8049 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008050 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008051 ** cell consists of the integer key for the right-most cell of
8052 ** the sibling-page assembled above only.
8053 */
8054 CellInfo info;
8055 j--;
drh1ffd2472015-06-23 02:37:30 +00008056 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008057 pCell = pTemp;
8058 sz = 4 + putVarint(&pCell[4], info.nKey);
8059 pTemp = 0;
8060 }else{
8061 pCell -= 4;
8062 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8063 ** previously stored on a leaf node, and its reported size was 4
8064 ** bytes, then it may actually be smaller than this
8065 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8066 ** any cell). But it is important to pass the correct size to
8067 ** insertCell(), so reparse the cell now.
8068 **
drhc1fb2b82016-03-09 03:29:27 +00008069 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8070 ** and WITHOUT ROWID tables with exactly one column which is the
8071 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008072 */
drh1ffd2472015-06-23 02:37:30 +00008073 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008074 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008075 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008076 }
8077 }
8078 iOvflSpace += sz;
8079 assert( sz<=pBt->maxLocal+23 );
8080 assert( iOvflSpace <= (int)pBt->pageSize );
8081 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
drhd2cfbea2019-05-08 03:34:53 +00008082 if( rc!=SQLITE_OK ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008083 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8084 }
8085
8086 /* Now update the actual sibling pages. The order in which they are updated
8087 ** is important, as this code needs to avoid disrupting any page from which
8088 ** cells may still to be read. In practice, this means:
8089 **
drhd836d422014-10-31 14:26:36 +00008090 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8091 ** then it is not safe to update page apNew[iPg] until after
8092 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008093 **
drhd836d422014-10-31 14:26:36 +00008094 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8095 ** then it is not safe to update page apNew[iPg] until after
8096 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008097 **
8098 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008099 **
8100 ** The iPg value in the following loop starts at nNew-1 goes down
8101 ** to 0, then back up to nNew-1 again, thus making two passes over
8102 ** the pages. On the initial downward pass, only condition (1) above
8103 ** needs to be tested because (2) will always be true from the previous
8104 ** step. On the upward pass, both conditions are always true, so the
8105 ** upwards pass simply processes pages that were missed on the downward
8106 ** pass.
dan33ea4862014-10-09 19:35:37 +00008107 */
drhbec021b2014-10-31 12:22:00 +00008108 for(i=1-nNew; i<nNew; i++){
8109 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008110 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008111 if( abDone[iPg] ) continue; /* Skip pages already processed */
8112 if( i>=0 /* On the upwards pass, or... */
8113 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008114 ){
dan09c68402014-10-11 20:00:24 +00008115 int iNew;
8116 int iOld;
8117 int nNewCell;
8118
drhd836d422014-10-31 14:26:36 +00008119 /* Verify condition (1): If cells are moving left, update iPg
8120 ** only after iPg-1 has already been updated. */
8121 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8122
8123 /* Verify condition (2): If cells are moving right, update iPg
8124 ** only after iPg+1 has already been updated. */
8125 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8126
dan09c68402014-10-11 20:00:24 +00008127 if( iPg==0 ){
8128 iNew = iOld = 0;
8129 nNewCell = cntNew[0];
8130 }else{
drh1ffd2472015-06-23 02:37:30 +00008131 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008132 iNew = cntNew[iPg-1] + !leafData;
8133 nNewCell = cntNew[iPg] - iNew;
8134 }
8135
drh1ffd2472015-06-23 02:37:30 +00008136 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008137 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008138 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008139 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008140 assert( apNew[iPg]->nOverflow==0 );
8141 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008142 }
8143 }
drhd836d422014-10-31 14:26:36 +00008144
8145 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008146 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8147
drh7aa8f852006-03-28 00:24:44 +00008148 assert( nOld>0 );
8149 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008150
danielk197713bd99f2009-06-24 05:40:34 +00008151 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8152 /* The root page of the b-tree now contains no cells. The only sibling
8153 ** page is the right-child of the parent. Copy the contents of the
8154 ** child page into the parent, decreasing the overall height of the
8155 ** b-tree structure by one. This is described as the "balance-shallower"
8156 ** sub-algorithm in some documentation.
8157 **
8158 ** If this is an auto-vacuum database, the call to copyNodeContent()
8159 ** sets all pointer-map entries corresponding to database image pages
8160 ** for which the pointer is stored within the content being copied.
8161 **
drh768f2902014-10-31 02:51:41 +00008162 ** It is critical that the child page be defragmented before being
8163 ** copied into the parent, because if the parent is page 1 then it will
8164 ** by smaller than the child due to the database header, and so all the
8165 ** free space needs to be up front.
8166 */
drh9b5351d2015-09-30 14:19:08 +00008167 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008168 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008169 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00008170 assert( apNew[0]->nFree ==
drh1c960262019-03-25 18:44:08 +00008171 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8172 - apNew[0]->nCell*2)
drh768f2902014-10-31 02:51:41 +00008173 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00008174 );
drhc314dc72009-07-21 11:52:34 +00008175 copyNodeContent(apNew[0], pParent, &rc);
8176 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00008177 }else if( ISAUTOVACUUM && !leafCorrection ){
8178 /* Fix the pointer map entries associated with the right-child of each
8179 ** sibling page. All other pointer map entries have already been taken
8180 ** care of. */
8181 for(i=0; i<nNew; i++){
8182 u32 key = get4byte(&apNew[i]->aData[8]);
8183 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008184 }
dan33ea4862014-10-09 19:35:37 +00008185 }
danielk19774dbaa892009-06-16 16:50:22 +00008186
dan33ea4862014-10-09 19:35:37 +00008187 assert( pParent->isInit );
8188 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008189 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008190
dan33ea4862014-10-09 19:35:37 +00008191 /* Free any old pages that were not reused as new pages.
8192 */
8193 for(i=nNew; i<nOld; i++){
8194 freePage(apOld[i], &rc);
8195 }
danielk19774dbaa892009-06-16 16:50:22 +00008196
8197#if 0
dan33ea4862014-10-09 19:35:37 +00008198 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008199 /* The ptrmapCheckPages() contains assert() statements that verify that
8200 ** all pointer map pages are set correctly. This is helpful while
8201 ** debugging. This is usually disabled because a corrupt database may
8202 ** cause an assert() statement to fail. */
8203 ptrmapCheckPages(apNew, nNew);
8204 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008205 }
dan33ea4862014-10-09 19:35:37 +00008206#endif
danielk1977cd581a72009-06-23 15:43:39 +00008207
drh8b2f49b2001-06-08 00:21:52 +00008208 /*
drh14acc042001-06-10 19:56:58 +00008209 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008210 */
drh14acc042001-06-10 19:56:58 +00008211balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008212 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008213 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008214 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008215 }
drh14acc042001-06-10 19:56:58 +00008216 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008217 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008218 }
danielk1977eaa06f62008-09-18 17:34:44 +00008219
drh8b2f49b2001-06-08 00:21:52 +00008220 return rc;
8221}
8222
drh43605152004-05-29 21:46:49 +00008223
8224/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008225** This function is called when the root page of a b-tree structure is
8226** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008227**
danielk1977a50d9aa2009-06-08 14:49:45 +00008228** A new child page is allocated and the contents of the current root
8229** page, including overflow cells, are copied into the child. The root
8230** page is then overwritten to make it an empty page with the right-child
8231** pointer pointing to the new page.
8232**
8233** Before returning, all pointer-map entries corresponding to pages
8234** that the new child-page now contains pointers to are updated. The
8235** entry corresponding to the new right-child pointer of the root
8236** page is also updated.
8237**
8238** If successful, *ppChild is set to contain a reference to the child
8239** page and SQLITE_OK is returned. In this case the caller is required
8240** to call releasePage() on *ppChild exactly once. If an error occurs,
8241** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008242*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008243static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8244 int rc; /* Return value from subprocedures */
8245 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008246 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008247 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008248
danielk1977a50d9aa2009-06-08 14:49:45 +00008249 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008250 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008251
danielk1977a50d9aa2009-06-08 14:49:45 +00008252 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8253 ** page that will become the new right-child of pPage. Copy the contents
8254 ** of the node stored on pRoot into the new child page.
8255 */
drh98add2e2009-07-20 17:11:49 +00008256 rc = sqlite3PagerWrite(pRoot->pDbPage);
8257 if( rc==SQLITE_OK ){
8258 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008259 copyNodeContent(pRoot, pChild, &rc);
8260 if( ISAUTOVACUUM ){
8261 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008262 }
8263 }
8264 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008265 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008266 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008267 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008268 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008269 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8270 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drh12fe9a02019-02-19 16:42:54 +00008271 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00008272
danielk1977a50d9aa2009-06-08 14:49:45 +00008273 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8274
8275 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008276 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8277 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8278 memcpy(pChild->apOvfl, pRoot->apOvfl,
8279 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008280 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008281
8282 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8283 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8284 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8285
8286 *ppChild = pChild;
8287 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008288}
8289
8290/*
danielk197771d5d2c2008-09-29 11:49:47 +00008291** The page that pCur currently points to has just been modified in
8292** some way. This function figures out if this modification means the
8293** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008294** routine. Balancing routines are:
8295**
8296** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008297** balance_deeper()
8298** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008299*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008300static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008301 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008302 const int nMin = pCur->pBt->usableSize * 2 / 3;
8303 u8 aBalanceQuickSpace[13];
8304 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008305
drhcc5f8a42016-02-06 22:32:06 +00008306 VVA_ONLY( int balance_quick_called = 0 );
8307 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008308
8309 do {
dan01fd42b2019-07-13 09:55:33 +00008310 int iPage;
drh352a35a2017-08-15 03:46:47 +00008311 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008312
drha941ff72019-02-12 00:58:10 +00008313 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
dan01fd42b2019-07-13 09:55:33 +00008314 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8315 break;
8316 }else if( (iPage = pCur->iPage)==0 ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008317 if( pPage->nOverflow ){
8318 /* The root page of the b-tree is overfull. In this case call the
8319 ** balance_deeper() function to create a new child for the root-page
8320 ** and copy the current contents of the root-page to it. The
8321 ** next iteration of the do-loop will balance the child page.
8322 */
drhcc5f8a42016-02-06 22:32:06 +00008323 assert( balance_deeper_called==0 );
8324 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008325 rc = balance_deeper(pPage, &pCur->apPage[1]);
8326 if( rc==SQLITE_OK ){
8327 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008328 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008329 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008330 pCur->apPage[0] = pPage;
8331 pCur->pPage = pCur->apPage[1];
8332 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008333 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008334 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008335 break;
8336 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008337 }else{
8338 MemPage * const pParent = pCur->apPage[iPage-1];
8339 int const iIdx = pCur->aiIdx[iPage-1];
8340
8341 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00008342 if( rc==SQLITE_OK && pParent->nFree<0 ){
8343 rc = btreeComputeFreeSpace(pParent);
8344 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008345 if( rc==SQLITE_OK ){
8346#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008347 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008348 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008349 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008350 && pParent->pgno!=1
8351 && pParent->nCell==iIdx
8352 ){
8353 /* Call balance_quick() to create a new sibling of pPage on which
8354 ** to store the overflow cell. balance_quick() inserts a new cell
8355 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008356 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008357 ** use either balance_nonroot() or balance_deeper(). Until this
8358 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8359 ** buffer.
8360 **
8361 ** The purpose of the following assert() is to check that only a
8362 ** single call to balance_quick() is made for each call to this
8363 ** function. If this were not verified, a subtle bug involving reuse
8364 ** of the aBalanceQuickSpace[] might sneak in.
8365 */
drhcc5f8a42016-02-06 22:32:06 +00008366 assert( balance_quick_called==0 );
8367 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008368 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8369 }else
8370#endif
8371 {
8372 /* In this case, call balance_nonroot() to redistribute cells
8373 ** between pPage and up to 2 of its sibling pages. This involves
8374 ** modifying the contents of pParent, which may cause pParent to
8375 ** become overfull or underfull. The next iteration of the do-loop
8376 ** will balance the parent page to correct this.
8377 **
8378 ** If the parent page becomes overfull, the overflow cell or cells
8379 ** are stored in the pSpace buffer allocated immediately below.
8380 ** A subsequent iteration of the do-loop will deal with this by
8381 ** calling balance_nonroot() (balance_deeper() may be called first,
8382 ** but it doesn't deal with overflow cells - just moves them to a
8383 ** different page). Once this subsequent call to balance_nonroot()
8384 ** has completed, it is safe to release the pSpace buffer used by
8385 ** the previous call, as the overflow cell data will have been
8386 ** copied either into the body of a database page or into the new
8387 ** pSpace buffer passed to the latter call to balance_nonroot().
8388 */
8389 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008390 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8391 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008392 if( pFree ){
8393 /* If pFree is not NULL, it points to the pSpace buffer used
8394 ** by a previous call to balance_nonroot(). Its contents are
8395 ** now stored either on real database pages or within the
8396 ** new pSpace buffer, so it may be safely freed here. */
8397 sqlite3PageFree(pFree);
8398 }
8399
danielk19774dbaa892009-06-16 16:50:22 +00008400 /* The pSpace buffer will be freed after the next call to
8401 ** balance_nonroot(), or just before this function returns, whichever
8402 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008403 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008404 }
8405 }
8406
8407 pPage->nOverflow = 0;
8408
8409 /* The next iteration of the do-loop balances the parent page. */
8410 releasePage(pPage);
8411 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008412 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008413 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008414 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008415 }while( rc==SQLITE_OK );
8416
8417 if( pFree ){
8418 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008419 }
8420 return rc;
8421}
8422
drh3de5d162018-05-03 03:59:02 +00008423/* Overwrite content from pX into pDest. Only do the write if the
8424** content is different from what is already there.
8425*/
8426static int btreeOverwriteContent(
8427 MemPage *pPage, /* MemPage on which writing will occur */
8428 u8 *pDest, /* Pointer to the place to start writing */
8429 const BtreePayload *pX, /* Source of data to write */
8430 int iOffset, /* Offset of first byte to write */
8431 int iAmt /* Number of bytes to be written */
8432){
8433 int nData = pX->nData - iOffset;
8434 if( nData<=0 ){
8435 /* Overwritting with zeros */
8436 int i;
8437 for(i=0; i<iAmt && pDest[i]==0; i++){}
8438 if( i<iAmt ){
8439 int rc = sqlite3PagerWrite(pPage->pDbPage);
8440 if( rc ) return rc;
8441 memset(pDest + i, 0, iAmt - i);
8442 }
8443 }else{
8444 if( nData<iAmt ){
8445 /* Mixed read data and zeros at the end. Make a recursive call
8446 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008447 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8448 iAmt-nData);
8449 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008450 iAmt = nData;
8451 }
8452 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8453 int rc = sqlite3PagerWrite(pPage->pDbPage);
8454 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00008455 /* In a corrupt database, it is possible for the source and destination
8456 ** buffers to overlap. This is harmless since the database is already
8457 ** corrupt but it does cause valgrind and ASAN warnings. So use
8458 ** memmove(). */
8459 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00008460 }
8461 }
8462 return SQLITE_OK;
8463}
8464
8465/*
8466** Overwrite the cell that cursor pCur is pointing to with fresh content
8467** contained in pX.
8468*/
8469static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8470 int iOffset; /* Next byte of pX->pData to write */
8471 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8472 int rc; /* Return code */
8473 MemPage *pPage = pCur->pPage; /* Page being written */
8474 BtShared *pBt; /* Btree */
8475 Pgno ovflPgno; /* Next overflow page to write */
8476 u32 ovflPageSize; /* Size to write on overflow page */
8477
drh4f84e9c2018-05-03 13:56:23 +00008478 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){
8479 return SQLITE_CORRUPT_BKPT;
8480 }
drh3de5d162018-05-03 03:59:02 +00008481 /* Overwrite the local portion first */
8482 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8483 0, pCur->info.nLocal);
8484 if( rc ) return rc;
8485 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8486
8487 /* Now overwrite the overflow pages */
8488 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008489 assert( nTotal>=0 );
8490 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008491 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8492 pBt = pPage->pBt;
8493 ovflPageSize = pBt->usableSize - 4;
8494 do{
8495 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8496 if( rc ) return rc;
drh4f84e9c2018-05-03 13:56:23 +00008497 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
drhd5aa9262018-05-03 16:56:06 +00008498 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008499 }else{
drh30f7a252018-05-07 11:29:59 +00008500 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008501 ovflPgno = get4byte(pPage->aData);
8502 }else{
8503 ovflPageSize = nTotal - iOffset;
8504 }
8505 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8506 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008507 }
drhd5aa9262018-05-03 16:56:06 +00008508 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008509 if( rc ) return rc;
8510 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008511 }while( iOffset<nTotal );
8512 return SQLITE_OK;
8513}
8514
drhf74b8d92002-09-01 23:20:45 +00008515
8516/*
drh8eeb4462016-05-21 20:03:42 +00008517** Insert a new record into the BTree. The content of the new record
8518** is described by the pX object. The pCur cursor is used only to
8519** define what table the record should be inserted into, and is left
8520** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008521**
drh8eeb4462016-05-21 20:03:42 +00008522** For a table btree (used for rowid tables), only the pX.nKey value of
8523** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8524** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8525** hold the content of the row.
8526**
8527** For an index btree (used for indexes and WITHOUT ROWID tables), the
8528** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8529** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008530**
8531** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008532** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8533** been performed. In other words, if seekResult!=0 then the cursor
8534** is currently pointing to a cell that will be adjacent to the cell
8535** to be inserted. If seekResult<0 then pCur points to a cell that is
8536** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8537** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008538**
drheaf6ae22016-11-09 20:14:34 +00008539** If seekResult==0, that means pCur is pointing at some unknown location.
8540** In that case, this routine must seek the cursor to the correct insertion
8541** point for (pKey,nKey) before doing the insertion. For index btrees,
8542** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8543** key values and pX->aMem can be used instead of pX->pKey to avoid having
8544** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008545*/
drh3aac2dd2004-04-26 14:10:20 +00008546int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008547 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008548 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008549 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008550 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008551){
drh3b7511c2001-05-26 13:15:44 +00008552 int rc;
drh3e9ca092009-09-08 01:14:48 +00008553 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008554 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008555 int idx;
drh3b7511c2001-05-26 13:15:44 +00008556 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008557 Btree *p = pCur->pBtree;
8558 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008559 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008560 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008561
danf91c1312017-01-10 20:04:38 +00008562 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8563
drh98add2e2009-07-20 17:11:49 +00008564 if( pCur->eState==CURSOR_FAULT ){
8565 assert( pCur->skipNext!=SQLITE_OK );
8566 return pCur->skipNext;
8567 }
8568
dan7a2347e2016-01-07 16:43:54 +00008569 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008570 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8571 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008572 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008573 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8574
danielk197731d31b82009-07-13 13:18:07 +00008575 /* Assert that the caller has been consistent. If this cursor was opened
8576 ** expecting an index b-tree, then the caller should be inserting blob
8577 ** keys with no associated data. If the cursor was opened expecting an
8578 ** intkey table, the caller should be inserting integer keys with a
8579 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008580 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008581
danielk19779c3acf32009-05-02 07:36:49 +00008582 /* Save the positions of any other cursors open on this table.
8583 **
danielk19773509a652009-07-06 18:56:13 +00008584 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008585 ** example, when inserting data into a table with auto-generated integer
8586 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8587 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008588 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008589 ** that the cursor is already where it needs to be and returns without
8590 ** doing any work. To avoid thwarting these optimizations, it is important
8591 ** not to clear the cursor here.
8592 */
drh27fb7462015-06-30 02:47:36 +00008593 if( pCur->curFlags & BTCF_Multiple ){
8594 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8595 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008596 }
8597
danielk197771d5d2c2008-09-29 11:49:47 +00008598 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008599 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008600 /* If this is an insert into a table b-tree, invalidate any incrblob
8601 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008602 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008603
danf91c1312017-01-10 20:04:38 +00008604 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008605 ** to a row with the same key as the new entry being inserted.
8606 */
8607#ifdef SQLITE_DEBUG
8608 if( flags & BTREE_SAVEPOSITION ){
8609 assert( pCur->curFlags & BTCF_ValidNKey );
8610 assert( pX->nKey==pCur->info.nKey );
8611 assert( pCur->info.nSize!=0 );
8612 assert( loc==0 );
8613 }
8614#endif
danf91c1312017-01-10 20:04:38 +00008615
drhd720d392018-05-07 17:27:04 +00008616 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8617 ** that the cursor is not pointing to a row to be overwritten.
8618 ** So do a complete check.
8619 */
drh7a1c28d2016-11-10 20:42:08 +00008620 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008621 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008622 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008623 assert( pX->nData>=0 && pX->nZero>=0 );
8624 if( pCur->info.nSize!=0
8625 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8626 ){
drhd720d392018-05-07 17:27:04 +00008627 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008628 return btreeOverwriteCell(pCur, pX);
8629 }
drhd720d392018-05-07 17:27:04 +00008630 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008631 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008632 /* The cursor is *not* pointing to the cell to be overwritten, nor
8633 ** to an adjacent cell. Move the cursor so that it is pointing either
8634 ** to the cell to be overwritten or an adjacent cell.
8635 */
danf91c1312017-01-10 20:04:38 +00008636 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008637 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008638 }
drhd720d392018-05-07 17:27:04 +00008639 }else{
8640 /* This is an index or a WITHOUT ROWID table */
8641
8642 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8643 ** to a row with the same key as the new entry being inserted.
8644 */
8645 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8646
8647 /* If the cursor is not already pointing either to the cell to be
8648 ** overwritten, or if a new cell is being inserted, if the cursor is
8649 ** not pointing to an immediately adjacent cell, then move the cursor
8650 ** so that it does.
8651 */
8652 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8653 if( pX->nMem ){
8654 UnpackedRecord r;
8655 r.pKeyInfo = pCur->pKeyInfo;
8656 r.aMem = pX->aMem;
8657 r.nField = pX->nMem;
8658 r.default_rc = 0;
8659 r.errCode = 0;
8660 r.r1 = 0;
8661 r.r2 = 0;
8662 r.eqSeen = 0;
8663 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8664 }else{
8665 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8666 }
8667 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00008668 }
drh89ee2292018-05-07 18:41:19 +00008669
8670 /* If the cursor is currently pointing to an entry to be overwritten
8671 ** and the new content is the same as as the old, then use the
8672 ** overwrite optimization.
8673 */
8674 if( loc==0 ){
8675 getCellInfo(pCur);
8676 if( pCur->info.nKey==pX->nKey ){
8677 BtreePayload x2;
8678 x2.pData = pX->pKey;
8679 x2.nData = pX->nKey;
8680 x2.nZero = 0;
8681 return btreeOverwriteCell(pCur, &x2);
8682 }
8683 }
8684
danielk1977da184232006-01-05 11:34:32 +00008685 }
danielk1977b980d2212009-06-22 18:03:51 +00008686 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008687
drh352a35a2017-08-15 03:46:47 +00008688 pPage = pCur->pPage;
drh8eeb4462016-05-21 20:03:42 +00008689 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008690 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00008691 if( pPage->nFree<0 ){
8692 rc = btreeComputeFreeSpace(pPage);
8693 if( rc ) return rc;
8694 }
danielk19778f880a82009-07-13 09:41:45 +00008695
drh3a4c1412004-05-09 20:40:11 +00008696 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008697 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008698 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008699 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008700 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008701 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008702 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008703 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008704 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008705 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008706 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008707 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008708 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008709 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008710 rc = sqlite3PagerWrite(pPage->pDbPage);
8711 if( rc ){
8712 goto end_insert;
8713 }
danielk197771d5d2c2008-09-29 11:49:47 +00008714 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008715 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008716 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008717 }
drh80159da2016-12-09 17:32:51 +00008718 rc = clearCell(pPage, oldCell, &info);
danca66f6c2017-06-08 11:14:08 +00008719 if( info.nSize==szNew && info.nLocal==info.nPayload
8720 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8721 ){
drhf9238252016-12-09 18:09:42 +00008722 /* Overwrite the old cell with the new if they are the same size.
8723 ** We could also try to do this if the old cell is smaller, then add
8724 ** the leftover space to the free list. But experiments show that
8725 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008726 ** calling dropCell() and insertCell().
8727 **
8728 ** This optimization cannot be used on an autovacuum database if the
8729 ** new entry uses overflow pages, as the insertCell() call below is
8730 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008731 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh93788182019-07-22 23:24:01 +00008732 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
8733 return SQLITE_CORRUPT_BKPT;
8734 }
8735 if( oldCell+szNew > pPage->aDataEnd ){
8736 return SQLITE_CORRUPT_BKPT;
8737 }
drh80159da2016-12-09 17:32:51 +00008738 memcpy(oldCell, newCell, szNew);
8739 return SQLITE_OK;
8740 }
8741 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008742 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008743 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008744 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008745 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008746 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008747 }else{
drh4b70f112004-05-02 21:12:19 +00008748 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008749 }
drh98add2e2009-07-20 17:11:49 +00008750 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008751 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008752 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008753
mistachkin48864df2013-03-21 21:20:32 +00008754 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008755 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008756 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008757 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008758 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008759 ** Previous versions of SQLite called moveToRoot() to move the cursor
8760 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008761 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8762 ** set the cursor state to "invalid". This makes common insert operations
8763 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008764 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008765 ** There is a subtle but important optimization here too. When inserting
8766 ** multiple records into an intkey b-tree using a single cursor (as can
8767 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8768 ** is advantageous to leave the cursor pointing to the last entry in
8769 ** the b-tree if possible. If the cursor is left pointing to the last
8770 ** entry in the table, and the next row inserted has an integer key
8771 ** larger than the largest existing key, it is possible to insert the
8772 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008773 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008774 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008775 if( pPage->nOverflow ){
8776 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008777 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008778 rc = balance(pCur);
8779
8780 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008781 ** fails. Internal data structure corruption will result otherwise.
8782 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8783 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00008784 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008785 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008786 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00008787 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00008788 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008789 assert( pCur->pKey==0 );
8790 pCur->pKey = sqlite3Malloc( pX->nKey );
8791 if( pCur->pKey==0 ){
8792 rc = SQLITE_NOMEM;
8793 }else{
8794 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8795 }
8796 }
8797 pCur->eState = CURSOR_REQUIRESEEK;
8798 pCur->nKey = pX->nKey;
8799 }
danielk19773f632d52009-05-02 10:03:09 +00008800 }
drh352a35a2017-08-15 03:46:47 +00008801 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008802
drh2e38c322004-09-03 18:38:44 +00008803end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008804 return rc;
8805}
8806
8807/*
danf0ee1d32015-09-12 19:26:11 +00008808** Delete the entry that the cursor is pointing to.
8809**
drhe807bdb2016-01-21 17:06:33 +00008810** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8811** the cursor is left pointing at an arbitrary location after the delete.
8812** But if that bit is set, then the cursor is left in a state such that
8813** the next call to BtreeNext() or BtreePrev() moves it to the same row
8814** as it would have been on if the call to BtreeDelete() had been omitted.
8815**
drhdef19e32016-01-27 16:26:25 +00008816** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8817** associated with a single table entry and its indexes. Only one of those
8818** deletes is considered the "primary" delete. The primary delete occurs
8819** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8820** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8821** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008822** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008823*/
drhe807bdb2016-01-21 17:06:33 +00008824int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008825 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008826 BtShared *pBt = p->pBt;
8827 int rc; /* Return code */
8828 MemPage *pPage; /* Page to delete cell from */
8829 unsigned char *pCell; /* Pointer to cell to delete */
8830 int iCellIdx; /* Index of cell to delete */
8831 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008832 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008833 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008834 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008835
dan7a2347e2016-01-07 16:43:54 +00008836 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008837 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008838 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008839 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008840 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8841 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drhdef19e32016-01-27 16:26:25 +00008842 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danb560a712019-03-13 15:29:14 +00008843 if( pCur->eState==CURSOR_REQUIRESEEK ){
8844 rc = btreeRestoreCursorPosition(pCur);
8845 if( rc ) return rc;
8846 }
8847 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00008848
danielk19774dbaa892009-06-16 16:50:22 +00008849 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008850 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00008851 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008852 pCell = findCell(pPage, iCellIdx);
drhb0ea9432019-02-09 21:06:40 +00008853 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
danielk19774dbaa892009-06-16 16:50:22 +00008854
drhbfc7a8b2016-04-09 17:04:05 +00008855 /* If the bPreserve flag is set to true, then the cursor position must
8856 ** be preserved following this delete operation. If the current delete
8857 ** will cause a b-tree rebalance, then this is done by saving the cursor
8858 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8859 ** returning.
8860 **
8861 ** Or, if the current delete will not cause a rebalance, then the cursor
8862 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8863 ** before or after the deleted entry. In this case set bSkipnext to true. */
8864 if( bPreserve ){
8865 if( !pPage->leaf
8866 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00008867 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00008868 ){
8869 /* A b-tree rebalance will be required after deleting this entry.
8870 ** Save the cursor key. */
8871 rc = saveCursorKey(pCur);
8872 if( rc ) return rc;
8873 }else{
8874 bSkipnext = 1;
8875 }
8876 }
8877
danielk19774dbaa892009-06-16 16:50:22 +00008878 /* If the page containing the entry to delete is not a leaf page, move
8879 ** the cursor to the largest entry in the tree that is smaller than
8880 ** the entry being deleted. This cell will replace the cell being deleted
8881 ** from the internal node. The 'previous' entry is used for this instead
8882 ** of the 'next' entry, as the previous entry is always a part of the
8883 ** sub-tree headed by the child page of the cell being deleted. This makes
8884 ** balancing the tree following the delete operation easier. */
8885 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008886 rc = sqlite3BtreePrevious(pCur, 0);
8887 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008888 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008889 }
8890
8891 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008892 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008893 if( pCur->curFlags & BTCF_Multiple ){
8894 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8895 if( rc ) return rc;
8896 }
drhd60f4f42012-03-23 14:23:52 +00008897
8898 /* If this is a delete operation to remove a row from a table b-tree,
8899 ** invalidate any incrblob cursors open on the row being deleted. */
8900 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008901 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008902 }
8903
danf0ee1d32015-09-12 19:26:11 +00008904 /* Make the page containing the entry to be deleted writable. Then free any
8905 ** overflow pages associated with the entry and finally remove the cell
8906 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008907 rc = sqlite3PagerWrite(pPage->pDbPage);
8908 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008909 rc = clearCell(pPage, pCell, &info);
8910 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008911 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008912
danielk19774dbaa892009-06-16 16:50:22 +00008913 /* If the cell deleted was not located on a leaf page, then the cursor
8914 ** is currently pointing to the largest entry in the sub-tree headed
8915 ** by the child-page of the cell that was just deleted from an internal
8916 ** node. The cell from the leaf node needs to be moved to the internal
8917 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008918 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00008919 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008920 int nCell;
drh352a35a2017-08-15 03:46:47 +00008921 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00008922 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008923
drhb0ea9432019-02-09 21:06:40 +00008924 if( pLeaf->nFree<0 ){
8925 rc = btreeComputeFreeSpace(pLeaf);
8926 if( rc ) return rc;
8927 }
drh352a35a2017-08-15 03:46:47 +00008928 if( iCellDepth<pCur->iPage-1 ){
8929 n = pCur->apPage[iCellDepth+1]->pgno;
8930 }else{
8931 n = pCur->pPage->pgno;
8932 }
danielk19774dbaa892009-06-16 16:50:22 +00008933 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008934 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008935 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008936 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008937 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008938 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008939 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008940 if( rc==SQLITE_OK ){
8941 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8942 }
drh98add2e2009-07-20 17:11:49 +00008943 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008944 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008945 }
danielk19774dbaa892009-06-16 16:50:22 +00008946
8947 /* Balance the tree. If the entry deleted was located on a leaf page,
8948 ** then the cursor still points to that page. In this case the first
8949 ** call to balance() repairs the tree, and the if(...) condition is
8950 ** never true.
8951 **
8952 ** Otherwise, if the entry deleted was on an internal node page, then
8953 ** pCur is pointing to the leaf page from which a cell was removed to
8954 ** replace the cell deleted from the internal node. This is slightly
8955 ** tricky as the leaf node may be underfull, and the internal node may
8956 ** be either under or overfull. In this case run the balancing algorithm
8957 ** on the leaf node first. If the balance proceeds far enough up the
8958 ** tree that we can be sure that any problem in the internal node has
8959 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8960 ** walk the cursor up the tree to the internal node and balance it as
8961 ** well. */
8962 rc = balance(pCur);
8963 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00008964 releasePageNotNull(pCur->pPage);
8965 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00008966 while( pCur->iPage>iCellDepth ){
8967 releasePage(pCur->apPage[pCur->iPage--]);
8968 }
drh352a35a2017-08-15 03:46:47 +00008969 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00008970 rc = balance(pCur);
8971 }
8972
danielk19776b456a22005-03-21 04:04:02 +00008973 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008974 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008975 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00008976 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008977 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008978 pCur->eState = CURSOR_SKIPNEXT;
8979 if( iCellIdx>=pPage->nCell ){
8980 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00008981 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00008982 }else{
8983 pCur->skipNext = 1;
8984 }
8985 }else{
8986 rc = moveToRoot(pCur);
8987 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00008988 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00008989 pCur->eState = CURSOR_REQUIRESEEK;
8990 }
drh44548e72017-08-14 18:13:52 +00008991 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00008992 }
danielk19776b456a22005-03-21 04:04:02 +00008993 }
drh5e2f8b92001-05-28 00:41:15 +00008994 return rc;
drh3b7511c2001-05-26 13:15:44 +00008995}
drh8b2f49b2001-06-08 00:21:52 +00008996
8997/*
drhc6b52df2002-01-04 03:09:29 +00008998** Create a new BTree table. Write into *piTable the page
8999** number for the root page of the new table.
9000**
drhab01f612004-05-22 02:55:23 +00009001** The type of type is determined by the flags parameter. Only the
9002** following values of flags are currently in use. Other values for
9003** flags might not work:
9004**
9005** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9006** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00009007*/
drhd4187c72010-08-30 22:15:45 +00009008static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00009009 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009010 MemPage *pRoot;
9011 Pgno pgnoRoot;
9012 int rc;
drhd4187c72010-08-30 22:15:45 +00009013 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00009014
drh1fee73e2007-08-29 04:00:57 +00009015 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009016 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009017 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00009018
danielk1977003ba062004-11-04 02:57:33 +00009019#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00009020 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00009021 if( rc ){
9022 return rc;
9023 }
danielk1977003ba062004-11-04 02:57:33 +00009024#else
danielk1977687566d2004-11-02 12:56:41 +00009025 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009026 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9027 MemPage *pPageMove; /* The page to move to. */
9028
danielk197720713f32007-05-03 11:43:33 +00009029 /* Creating a new table may probably require moving an existing database
9030 ** to make room for the new tables root page. In case this page turns
9031 ** out to be an overflow page, delete all overflow page-map caches
9032 ** held by open cursors.
9033 */
danielk197792d4d7a2007-05-04 12:05:56 +00009034 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009035
danielk1977003ba062004-11-04 02:57:33 +00009036 /* Read the value of meta[3] from the database to determine where the
9037 ** root page of the new table should go. meta[3] is the largest root-page
9038 ** created so far, so the new root-page is (meta[3]+1).
9039 */
danielk1977602b4662009-07-02 07:47:33 +00009040 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00009041 pgnoRoot++;
9042
danielk1977599fcba2004-11-08 07:13:13 +00009043 /* The new root-page may not be allocated on a pointer-map page, or the
9044 ** PENDING_BYTE page.
9045 */
drh72190432008-01-31 14:54:43 +00009046 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009047 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009048 pgnoRoot++;
9049 }
drh499e15b2015-05-22 12:37:37 +00009050 assert( pgnoRoot>=3 || CORRUPT_DB );
9051 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00009052
9053 /* Allocate a page. The page that currently resides at pgnoRoot will
9054 ** be moved to the allocated page (unless the allocated page happens
9055 ** to reside at pgnoRoot).
9056 */
dan51f0b6d2013-02-22 20:16:34 +00009057 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009058 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009059 return rc;
9060 }
danielk1977003ba062004-11-04 02:57:33 +00009061
9062 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009063 /* pgnoRoot is the page that will be used for the root-page of
9064 ** the new table (assuming an error did not occur). But we were
9065 ** allocated pgnoMove. If required (i.e. if it was not allocated
9066 ** by extending the file), the current page at position pgnoMove
9067 ** is already journaled.
9068 */
drheeb844a2009-08-08 18:01:07 +00009069 u8 eType = 0;
9070 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009071
danf7679ad2013-04-03 11:38:36 +00009072 /* Save the positions of any open cursors. This is required in
9073 ** case they are holding a reference to an xFetch reference
9074 ** corresponding to page pgnoRoot. */
9075 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009076 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009077 if( rc!=SQLITE_OK ){
9078 return rc;
9079 }
danielk1977f35843b2007-04-07 15:03:17 +00009080
9081 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009082 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009083 if( rc!=SQLITE_OK ){
9084 return rc;
9085 }
9086 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009087 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9088 rc = SQLITE_CORRUPT_BKPT;
9089 }
9090 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009091 releasePage(pRoot);
9092 return rc;
9093 }
drhccae6022005-02-26 17:31:26 +00009094 assert( eType!=PTRMAP_ROOTPAGE );
9095 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009096 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009097 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009098
9099 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009100 if( rc!=SQLITE_OK ){
9101 return rc;
9102 }
drhb00fc3b2013-08-21 23:42:32 +00009103 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009104 if( rc!=SQLITE_OK ){
9105 return rc;
9106 }
danielk19773b8a05f2007-03-19 17:44:26 +00009107 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009108 if( rc!=SQLITE_OK ){
9109 releasePage(pRoot);
9110 return rc;
9111 }
9112 }else{
9113 pRoot = pPageMove;
9114 }
9115
danielk197742741be2005-01-08 12:42:39 +00009116 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009117 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009118 if( rc ){
9119 releasePage(pRoot);
9120 return rc;
9121 }
drhbf592832010-03-30 15:51:12 +00009122
9123 /* When the new root page was allocated, page 1 was made writable in
9124 ** order either to increase the database filesize, or to decrement the
9125 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9126 */
9127 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009128 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009129 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009130 releasePage(pRoot);
9131 return rc;
9132 }
danielk197742741be2005-01-08 12:42:39 +00009133
danielk1977003ba062004-11-04 02:57:33 +00009134 }else{
drh4f0c5872007-03-26 22:05:01 +00009135 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009136 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009137 }
9138#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009139 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009140 if( createTabFlags & BTREE_INTKEY ){
9141 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9142 }else{
9143 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9144 }
9145 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009146 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009147 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00009148 *piTable = (int)pgnoRoot;
9149 return SQLITE_OK;
9150}
drhd677b3d2007-08-20 22:48:41 +00009151int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
9152 int rc;
9153 sqlite3BtreeEnter(p);
9154 rc = btreeCreateTable(p, piTable, flags);
9155 sqlite3BtreeLeave(p);
9156 return rc;
9157}
drh8b2f49b2001-06-08 00:21:52 +00009158
9159/*
9160** Erase the given database page and all its children. Return
9161** the page to the freelist.
9162*/
drh4b70f112004-05-02 21:12:19 +00009163static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00009164 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00009165 Pgno pgno, /* Page number to clear */
9166 int freePageFlag, /* Deallocate page if true */
9167 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00009168){
danielk1977146ba992009-07-22 14:08:13 +00009169 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00009170 int rc;
drh4b70f112004-05-02 21:12:19 +00009171 unsigned char *pCell;
9172 int i;
dan8ce71842014-01-14 20:14:09 +00009173 int hdr;
drh80159da2016-12-09 17:32:51 +00009174 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00009175
drh1fee73e2007-08-29 04:00:57 +00009176 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00009177 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00009178 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00009179 }
drh28f58dd2015-06-27 19:45:03 +00009180 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00009181 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00009182 if( pPage->bBusy ){
9183 rc = SQLITE_CORRUPT_BKPT;
9184 goto cleardatabasepage_out;
9185 }
9186 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00009187 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00009188 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00009189 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00009190 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00009191 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009192 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009193 }
drh80159da2016-12-09 17:32:51 +00009194 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00009195 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009196 }
drha34b6762004-05-07 13:30:42 +00009197 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00009198 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009199 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00009200 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00009201 assert( pPage->intKey || CORRUPT_DB );
9202 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00009203 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00009204 }
9205 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00009206 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00009207 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00009208 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00009209 }
danielk19776b456a22005-03-21 04:04:02 +00009210
9211cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00009212 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00009213 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00009214 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009215}
9216
9217/*
drhab01f612004-05-22 02:55:23 +00009218** Delete all information from a single table in the database. iTable is
9219** the page number of the root of the table. After this routine returns,
9220** the root page is empty, but still exists.
9221**
9222** This routine will fail with SQLITE_LOCKED if there are any open
9223** read cursors on the table. Open write cursors are moved to the
9224** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00009225**
9226** If pnChange is not NULL, then table iTable must be an intkey table. The
9227** integer value pointed to by pnChange is incremented by the number of
9228** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00009229*/
danielk1977c7af4842008-10-27 13:59:33 +00009230int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00009231 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009232 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009233 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009234 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009235
drhc046e3e2009-07-15 11:26:44 +00009236 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009237
drhc046e3e2009-07-15 11:26:44 +00009238 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009239 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9240 ** is the root of a table b-tree - if it is not, the following call is
9241 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00009242 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00009243 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009244 }
drhd677b3d2007-08-20 22:48:41 +00009245 sqlite3BtreeLeave(p);
9246 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009247}
9248
9249/*
drh079a3072014-03-19 14:10:55 +00009250** Delete all information from the single table that pCur is open on.
9251**
9252** This routine only work for pCur on an ephemeral table.
9253*/
9254int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9255 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9256}
9257
9258/*
drh8b2f49b2001-06-08 00:21:52 +00009259** Erase all information in a table and add the root of the table to
9260** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009261** page 1) is never added to the freelist.
9262**
9263** This routine will fail with SQLITE_LOCKED if there are any open
9264** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009265**
9266** If AUTOVACUUM is enabled and the page at iTable is not the last
9267** root page in the database file, then the last root page
9268** in the database file is moved into the slot formerly occupied by
9269** iTable and that last slot formerly occupied by the last root page
9270** is added to the freelist instead of iTable. In this say, all
9271** root pages are kept at the beginning of the database file, which
9272** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9273** page number that used to be the last root page in the file before
9274** the move. If no page gets moved, *piMoved is set to 0.
9275** The last root page is recorded in meta[3] and the value of
9276** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009277*/
danielk197789d40042008-11-17 14:20:56 +00009278static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009279 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009280 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009281 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009282
drh1fee73e2007-08-29 04:00:57 +00009283 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009284 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009285 assert( iTable>=2 );
drh9a518842019-03-08 01:52:30 +00009286 if( iTable>btreePagecount(pBt) ){
9287 return SQLITE_CORRUPT_BKPT;
9288 }
drh055f2982016-01-15 15:06:41 +00009289
drhb00fc3b2013-08-21 23:42:32 +00009290 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00009291 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00009292 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00009293 if( rc ){
9294 releasePage(pPage);
9295 return rc;
9296 }
danielk1977a0bf2652004-11-04 14:30:04 +00009297
drh205f48e2004-11-05 00:43:11 +00009298 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009299
danielk1977a0bf2652004-11-04 14:30:04 +00009300#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009301 freePage(pPage, &rc);
9302 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009303#else
drh055f2982016-01-15 15:06:41 +00009304 if( pBt->autoVacuum ){
9305 Pgno maxRootPgno;
9306 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009307
drh055f2982016-01-15 15:06:41 +00009308 if( iTable==maxRootPgno ){
9309 /* If the table being dropped is the table with the largest root-page
9310 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009311 */
drhc314dc72009-07-21 11:52:34 +00009312 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009313 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009314 if( rc!=SQLITE_OK ){
9315 return rc;
9316 }
9317 }else{
9318 /* The table being dropped does not have the largest root-page
9319 ** number in the database. So move the page that does into the
9320 ** gap left by the deleted root-page.
9321 */
9322 MemPage *pMove;
9323 releasePage(pPage);
9324 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9325 if( rc!=SQLITE_OK ){
9326 return rc;
9327 }
9328 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9329 releasePage(pMove);
9330 if( rc!=SQLITE_OK ){
9331 return rc;
9332 }
9333 pMove = 0;
9334 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9335 freePage(pMove, &rc);
9336 releasePage(pMove);
9337 if( rc!=SQLITE_OK ){
9338 return rc;
9339 }
9340 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009341 }
drh055f2982016-01-15 15:06:41 +00009342
9343 /* Set the new 'max-root-page' value in the database header. This
9344 ** is the old value less one, less one more if that happens to
9345 ** be a root-page number, less one again if that is the
9346 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009347 */
drh055f2982016-01-15 15:06:41 +00009348 maxRootPgno--;
9349 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9350 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9351 maxRootPgno--;
9352 }
9353 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9354
9355 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9356 }else{
9357 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009358 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009359 }
drh055f2982016-01-15 15:06:41 +00009360#endif
drh8b2f49b2001-06-08 00:21:52 +00009361 return rc;
9362}
drhd677b3d2007-08-20 22:48:41 +00009363int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9364 int rc;
9365 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009366 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009367 sqlite3BtreeLeave(p);
9368 return rc;
9369}
drh8b2f49b2001-06-08 00:21:52 +00009370
drh001bbcb2003-03-19 03:14:00 +00009371
drh8b2f49b2001-06-08 00:21:52 +00009372/*
danielk1977602b4662009-07-02 07:47:33 +00009373** This function may only be called if the b-tree connection already
9374** has a read or write transaction open on the database.
9375**
drh23e11ca2004-05-04 17:27:28 +00009376** Read the meta-information out of a database file. Meta[0]
9377** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009378** through meta[15] are available for use by higher layers. Meta[0]
9379** is read-only, the others are read/write.
9380**
9381** The schema layer numbers meta values differently. At the schema
9382** layer (and the SetCookie and ReadCookie opcodes) the number of
9383** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009384**
9385** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9386** of reading the value out of the header, it instead loads the "DataVersion"
9387** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9388** database file. It is a number computed by the pager. But its access
9389** pattern is the same as header meta values, and so it is convenient to
9390** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009391*/
danielk1977602b4662009-07-02 07:47:33 +00009392void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009393 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009394
drhd677b3d2007-08-20 22:48:41 +00009395 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009396 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00009397 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009398 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009399 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009400
drh91618562014-12-19 19:28:02 +00009401 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00009402 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00009403 }else{
9404 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9405 }
drhae157872004-08-14 19:20:09 +00009406
danielk1977602b4662009-07-02 07:47:33 +00009407 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9408 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009409#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009410 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9411 pBt->btsFlags |= BTS_READ_ONLY;
9412 }
danielk1977003ba062004-11-04 02:57:33 +00009413#endif
drhae157872004-08-14 19:20:09 +00009414
drhd677b3d2007-08-20 22:48:41 +00009415 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009416}
9417
9418/*
drh23e11ca2004-05-04 17:27:28 +00009419** Write meta-information back into the database. Meta[0] is
9420** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009421*/
danielk1977aef0bf62005-12-30 16:28:01 +00009422int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9423 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009424 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009425 int rc;
drh23e11ca2004-05-04 17:27:28 +00009426 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009427 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009428 assert( p->inTrans==TRANS_WRITE );
9429 assert( pBt->pPage1!=0 );
9430 pP1 = pBt->pPage1->aData;
9431 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9432 if( rc==SQLITE_OK ){
9433 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009434#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009435 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009436 assert( pBt->autoVacuum || iMeta==0 );
9437 assert( iMeta==0 || iMeta==1 );
9438 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009439 }
drh64022502009-01-09 14:11:04 +00009440#endif
drh5df72a52002-06-06 23:16:05 +00009441 }
drhd677b3d2007-08-20 22:48:41 +00009442 sqlite3BtreeLeave(p);
9443 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009444}
drh8c42ca92001-06-22 19:15:00 +00009445
danielk1977a5533162009-02-24 10:01:51 +00009446#ifndef SQLITE_OMIT_BTREECOUNT
9447/*
9448** The first argument, pCur, is a cursor opened on some b-tree. Count the
9449** number of entries in the b-tree and write the result to *pnEntry.
9450**
9451** SQLITE_OK is returned if the operation is successfully executed.
9452** Otherwise, if an error is encountered (i.e. an IO error or database
9453** corruption) an SQLite error code is returned.
9454*/
9455int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9456 i64 nEntry = 0; /* Value to return in *pnEntry */
9457 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009458
drh44548e72017-08-14 18:13:52 +00009459 rc = moveToRoot(pCur);
9460 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009461 *pnEntry = 0;
9462 return SQLITE_OK;
9463 }
danielk1977a5533162009-02-24 10:01:51 +00009464
9465 /* Unless an error occurs, the following loop runs one iteration for each
9466 ** page in the B-Tree structure (not including overflow pages).
9467 */
9468 while( rc==SQLITE_OK ){
9469 int iIdx; /* Index of child node in parent */
9470 MemPage *pPage; /* Current page of the b-tree */
9471
9472 /* If this is a leaf page or the tree is not an int-key tree, then
9473 ** this page contains countable entries. Increment the entry counter
9474 ** accordingly.
9475 */
drh352a35a2017-08-15 03:46:47 +00009476 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009477 if( pPage->leaf || !pPage->intKey ){
9478 nEntry += pPage->nCell;
9479 }
9480
9481 /* pPage is a leaf node. This loop navigates the cursor so that it
9482 ** points to the first interior cell that it points to the parent of
9483 ** the next page in the tree that has not yet been visited. The
9484 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9485 ** of the page, or to the number of cells in the page if the next page
9486 ** to visit is the right-child of its parent.
9487 **
9488 ** If all pages in the tree have been visited, return SQLITE_OK to the
9489 ** caller.
9490 */
9491 if( pPage->leaf ){
9492 do {
9493 if( pCur->iPage==0 ){
9494 /* All pages of the b-tree have been visited. Return successfully. */
9495 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009496 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009497 }
danielk197730548662009-07-09 05:07:37 +00009498 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009499 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009500
drh75e96b32017-04-01 00:20:06 +00009501 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009502 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009503 }
9504
9505 /* Descend to the child node of the cell that the cursor currently
9506 ** points at. This is the right-child if (iIdx==pPage->nCell).
9507 */
drh75e96b32017-04-01 00:20:06 +00009508 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009509 if( iIdx==pPage->nCell ){
9510 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9511 }else{
9512 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9513 }
9514 }
9515
shanebe217792009-03-05 04:20:31 +00009516 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009517 return rc;
9518}
9519#endif
drhdd793422001-06-28 01:54:48 +00009520
drhdd793422001-06-28 01:54:48 +00009521/*
drh5eddca62001-06-30 21:53:53 +00009522** Return the pager associated with a BTree. This routine is used for
9523** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009524*/
danielk1977aef0bf62005-12-30 16:28:01 +00009525Pager *sqlite3BtreePager(Btree *p){
9526 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009527}
drh5eddca62001-06-30 21:53:53 +00009528
drhb7f91642004-10-31 02:22:47 +00009529#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009530/*
9531** Append a message to the error message string.
9532*/
drh2e38c322004-09-03 18:38:44 +00009533static void checkAppendMsg(
9534 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009535 const char *zFormat,
9536 ...
9537){
9538 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009539 if( !pCheck->mxErr ) return;
9540 pCheck->mxErr--;
9541 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009542 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009543 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +00009544 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009545 }
drh867db832014-09-26 02:41:05 +00009546 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +00009547 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009548 }
drh0cdbe1a2018-05-09 13:46:26 +00009549 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009550 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +00009551 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009552 pCheck->mallocFailed = 1;
9553 }
drh5eddca62001-06-30 21:53:53 +00009554}
drhb7f91642004-10-31 02:22:47 +00009555#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009556
drhb7f91642004-10-31 02:22:47 +00009557#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009558
9559/*
9560** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9561** corresponds to page iPg is already set.
9562*/
9563static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9564 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9565 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9566}
9567
9568/*
9569** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9570*/
9571static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9572 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9573 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9574}
9575
9576
drh5eddca62001-06-30 21:53:53 +00009577/*
9578** Add 1 to the reference count for page iPage. If this is the second
9579** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009580** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009581** if this is the first reference to the page.
9582**
9583** Also check that the page number is in bounds.
9584*/
drh867db832014-09-26 02:41:05 +00009585static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +00009586 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +00009587 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009588 return 1;
9589 }
dan1235bb12012-04-03 17:43:28 +00009590 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009591 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009592 return 1;
9593 }
dan1235bb12012-04-03 17:43:28 +00009594 setPageReferenced(pCheck, iPage);
9595 return 0;
drh5eddca62001-06-30 21:53:53 +00009596}
9597
danielk1977afcdd022004-10-31 16:25:42 +00009598#ifndef SQLITE_OMIT_AUTOVACUUM
9599/*
9600** Check that the entry in the pointer-map for page iChild maps to
9601** page iParent, pointer type ptrType. If not, append an error message
9602** to pCheck.
9603*/
9604static void checkPtrmap(
9605 IntegrityCk *pCheck, /* Integrity check context */
9606 Pgno iChild, /* Child page number */
9607 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009608 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009609){
9610 int rc;
9611 u8 ePtrmapType;
9612 Pgno iPtrmapParent;
9613
9614 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9615 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009616 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009617 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009618 return;
9619 }
9620
9621 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009622 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009623 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9624 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9625 }
9626}
9627#endif
9628
drh5eddca62001-06-30 21:53:53 +00009629/*
9630** Check the integrity of the freelist or of an overflow page list.
9631** Verify that the number of pages on the list is N.
9632*/
drh30e58752002-03-02 20:41:57 +00009633static void checkList(
9634 IntegrityCk *pCheck, /* Integrity checking context */
9635 int isFreeList, /* True for a freelist. False for overflow page list */
9636 int iPage, /* Page number for first page in the list */
drheaac9992019-02-26 16:17:06 +00009637 u32 N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009638){
9639 int i;
drheaac9992019-02-26 16:17:06 +00009640 u32 expected = N;
drh91d58662018-07-20 13:39:28 +00009641 int nErrAtStart = pCheck->nErr;
9642 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009643 DbPage *pOvflPage;
9644 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +00009645 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +00009646 N--;
drh9584f582015-11-04 20:22:37 +00009647 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009648 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009649 break;
9650 }
danielk19773b8a05f2007-03-19 17:44:26 +00009651 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009652 if( isFreeList ){
drhae104742018-12-14 17:57:01 +00009653 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009654#ifndef SQLITE_OMIT_AUTOVACUUM
9655 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009656 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009657 }
9658#endif
drhae104742018-12-14 17:57:01 +00009659 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009660 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009661 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009662 N--;
9663 }else{
drhae104742018-12-14 17:57:01 +00009664 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009665 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009666#ifndef SQLITE_OMIT_AUTOVACUUM
9667 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009668 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009669 }
9670#endif
drh867db832014-09-26 02:41:05 +00009671 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009672 }
9673 N -= n;
drh30e58752002-03-02 20:41:57 +00009674 }
drh30e58752002-03-02 20:41:57 +00009675 }
danielk1977afcdd022004-10-31 16:25:42 +00009676#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009677 else{
9678 /* If this database supports auto-vacuum and iPage is not the last
9679 ** page in this overflow list, check that the pointer-map entry for
9680 ** the following page matches iPage.
9681 */
9682 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009683 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009684 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009685 }
danielk1977afcdd022004-10-31 16:25:42 +00009686 }
9687#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009688 iPage = get4byte(pOvflData);
9689 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +00009690 }
9691 if( N && nErrAtStart==pCheck->nErr ){
9692 checkAppendMsg(pCheck,
9693 "%s is %d but should be %d",
9694 isFreeList ? "size" : "overflow list length",
9695 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +00009696 }
9697}
drhb7f91642004-10-31 02:22:47 +00009698#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009699
drh67731a92015-04-16 11:56:03 +00009700/*
9701** An implementation of a min-heap.
9702**
9703** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009704** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009705** and aHeap[N*2+1].
9706**
9707** The heap property is this: Every node is less than or equal to both
9708** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009709** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009710**
9711** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9712** the heap, preserving the heap property. The btreeHeapPull() routine
9713** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009714** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009715** property.
9716**
9717** This heap is used for cell overlap and coverage testing. Each u32
9718** entry represents the span of a cell or freeblock on a btree page.
9719** The upper 16 bits are the index of the first byte of a range and the
9720** lower 16 bits are the index of the last byte of that range.
9721*/
9722static void btreeHeapInsert(u32 *aHeap, u32 x){
9723 u32 j, i = ++aHeap[0];
9724 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009725 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009726 x = aHeap[j];
9727 aHeap[j] = aHeap[i];
9728 aHeap[i] = x;
9729 i = j;
9730 }
9731}
9732static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9733 u32 j, i, x;
9734 if( (x = aHeap[0])==0 ) return 0;
9735 *pOut = aHeap[1];
9736 aHeap[1] = aHeap[x];
9737 aHeap[x] = 0xffffffff;
9738 aHeap[0]--;
9739 i = 1;
9740 while( (j = i*2)<=aHeap[0] ){
9741 if( aHeap[j]>aHeap[j+1] ) j++;
9742 if( aHeap[i]<aHeap[j] ) break;
9743 x = aHeap[i];
9744 aHeap[i] = aHeap[j];
9745 aHeap[j] = x;
9746 i = j;
9747 }
9748 return 1;
9749}
9750
drhb7f91642004-10-31 02:22:47 +00009751#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009752/*
9753** Do various sanity checks on a single page of a tree. Return
9754** the tree depth. Root pages return 0. Parents of root pages
9755** return 1, and so forth.
9756**
9757** These checks are done:
9758**
9759** 1. Make sure that cells and freeblocks do not overlap
9760** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009761** 2. Make sure integer cell keys are in order.
9762** 3. Check the integrity of overflow pages.
9763** 4. Recursively call checkTreePage on all children.
9764** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009765*/
9766static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009767 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009768 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009769 i64 *piMinKey, /* Write minimum integer primary key here */
9770 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009771){
drhcbc6b712015-07-02 16:17:30 +00009772 MemPage *pPage = 0; /* The page being analyzed */
9773 int i; /* Loop counter */
9774 int rc; /* Result code from subroutine call */
9775 int depth = -1, d2; /* Depth of a subtree */
9776 int pgno; /* Page number */
9777 int nFrag; /* Number of fragmented bytes on the page */
9778 int hdr; /* Offset to the page header */
9779 int cellStart; /* Offset to the start of the cell pointer array */
9780 int nCell; /* Number of cells */
9781 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9782 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9783 ** False if IPK must be strictly less than maxKey */
9784 u8 *data; /* Page content */
9785 u8 *pCell; /* Cell content */
9786 u8 *pCellIdx; /* Next element of the cell pointer array */
9787 BtShared *pBt; /* The BtShared object that owns pPage */
9788 u32 pc; /* Address of a cell */
9789 u32 usableSize; /* Usable size of the page */
9790 u32 contentOffset; /* Offset to the start of the cell content area */
9791 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009792 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009793 const char *saved_zPfx = pCheck->zPfx;
9794 int saved_v1 = pCheck->v1;
9795 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009796 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009797
drh5eddca62001-06-30 21:53:53 +00009798 /* Check that the page exists
9799 */
drhd9cb6ac2005-10-20 07:28:17 +00009800 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009801 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009802 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009803 if( checkRef(pCheck, iPage) ) return 0;
9804 pCheck->zPfx = "Page %d: ";
9805 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009806 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009807 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009808 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009809 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009810 }
danielk197793caf5a2009-07-11 06:55:33 +00009811
9812 /* Clear MemPage.isInit to make sure the corruption detection code in
9813 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009814 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009815 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009816 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009817 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009818 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009819 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009820 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009821 }
drhb0ea9432019-02-09 21:06:40 +00009822 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
9823 assert( rc==SQLITE_CORRUPT );
9824 checkAppendMsg(pCheck, "free space corruption", rc);
9825 goto end_of_check;
9826 }
drhcbc6b712015-07-02 16:17:30 +00009827 data = pPage->aData;
9828 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009829
drhcbc6b712015-07-02 16:17:30 +00009830 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009831 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009832 contentOffset = get2byteNotZero(&data[hdr+5]);
9833 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9834
9835 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9836 ** number of cells on the page. */
9837 nCell = get2byte(&data[hdr+3]);
9838 assert( pPage->nCell==nCell );
9839
9840 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9841 ** immediately follows the b-tree page header. */
9842 cellStart = hdr + 12 - 4*pPage->leaf;
9843 assert( pPage->aCellIdx==&data[cellStart] );
9844 pCellIdx = &data[cellStart + 2*(nCell-1)];
9845
9846 if( !pPage->leaf ){
9847 /* Analyze the right-child page of internal pages */
9848 pgno = get4byte(&data[hdr+8]);
9849#ifndef SQLITE_OMIT_AUTOVACUUM
9850 if( pBt->autoVacuum ){
9851 pCheck->zPfx = "On page %d at right child: ";
9852 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9853 }
9854#endif
9855 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9856 keyCanBeEqual = 0;
9857 }else{
9858 /* For leaf pages, the coverage check will occur in the same loop
9859 ** as the other cell checks, so initialize the heap. */
9860 heap = pCheck->heap;
9861 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009862 }
9863
drhcbc6b712015-07-02 16:17:30 +00009864 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9865 ** integer offsets to the cell contents. */
9866 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009867 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009868
drhcbc6b712015-07-02 16:17:30 +00009869 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009870 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009871 assert( pCellIdx==&data[cellStart + i*2] );
9872 pc = get2byteAligned(pCellIdx);
9873 pCellIdx -= 2;
9874 if( pc<contentOffset || pc>usableSize-4 ){
9875 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9876 pc, contentOffset, usableSize-4);
9877 doCoverageCheck = 0;
9878 continue;
shaneh195475d2010-02-19 04:28:08 +00009879 }
drhcbc6b712015-07-02 16:17:30 +00009880 pCell = &data[pc];
9881 pPage->xParseCell(pPage, pCell, &info);
9882 if( pc+info.nSize>usableSize ){
9883 checkAppendMsg(pCheck, "Extends off end of page");
9884 doCoverageCheck = 0;
9885 continue;
drh5eddca62001-06-30 21:53:53 +00009886 }
9887
drhcbc6b712015-07-02 16:17:30 +00009888 /* Check for integer primary key out of range */
9889 if( pPage->intKey ){
9890 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9891 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9892 }
9893 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009894 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009895 }
9896
9897 /* Check the content overflow list */
9898 if( info.nPayload>info.nLocal ){
drheaac9992019-02-26 16:17:06 +00009899 u32 nPage; /* Number of pages on the overflow chain */
drhcbc6b712015-07-02 16:17:30 +00009900 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009901 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009902 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009903 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009904#ifndef SQLITE_OMIT_AUTOVACUUM
9905 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009906 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009907 }
9908#endif
drh867db832014-09-26 02:41:05 +00009909 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009910 }
9911
drh5eddca62001-06-30 21:53:53 +00009912 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009913 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009914 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009915#ifndef SQLITE_OMIT_AUTOVACUUM
9916 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009917 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009918 }
9919#endif
drhcbc6b712015-07-02 16:17:30 +00009920 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9921 keyCanBeEqual = 0;
9922 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009923 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009924 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009925 }
drhcbc6b712015-07-02 16:17:30 +00009926 }else{
9927 /* Populate the coverage-checking heap for leaf pages */
9928 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009929 }
9930 }
drhcbc6b712015-07-02 16:17:30 +00009931 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009932
drh5eddca62001-06-30 21:53:53 +00009933 /* Check for complete coverage of the page
9934 */
drh867db832014-09-26 02:41:05 +00009935 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009936 if( doCoverageCheck && pCheck->mxErr>0 ){
9937 /* For leaf pages, the min-heap has already been initialized and the
9938 ** cells have already been inserted. But for internal pages, that has
9939 ** not yet been done, so do it now */
9940 if( !pPage->leaf ){
9941 heap = pCheck->heap;
9942 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009943 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009944 u32 size;
9945 pc = get2byteAligned(&data[cellStart+i*2]);
9946 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009947 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009948 }
drh2e38c322004-09-03 18:38:44 +00009949 }
drhcbc6b712015-07-02 16:17:30 +00009950 /* Add the freeblocks to the min-heap
9951 **
9952 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009953 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009954 ** freeblocks on the page.
9955 */
drh8c2bbb62009-07-10 02:52:20 +00009956 i = get2byte(&data[hdr+1]);
9957 while( i>0 ){
9958 int size, j;
drh5860a612019-02-12 16:58:26 +00009959 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +00009960 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +00009961 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +00009962 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009963 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9964 ** big-endian integer which is the offset in the b-tree page of the next
9965 ** freeblock in the chain, or zero if the freeblock is the last on the
9966 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009967 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009968 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9969 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +00009970 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
9971 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +00009972 i = j;
drh2e38c322004-09-03 18:38:44 +00009973 }
drhcbc6b712015-07-02 16:17:30 +00009974 /* Analyze the min-heap looking for overlap between cells and/or
9975 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009976 **
9977 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9978 ** There is an implied first entry the covers the page header, the cell
9979 ** pointer index, and the gap between the cell pointer index and the start
9980 ** of cell content.
9981 **
9982 ** The loop below pulls entries from the min-heap in order and compares
9983 ** the start_address against the previous end_address. If there is an
9984 ** overlap, that means bytes are used multiple times. If there is a gap,
9985 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009986 */
9987 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009988 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009989 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009990 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009991 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009992 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009993 break;
drh67731a92015-04-16 11:56:03 +00009994 }else{
drhcbc6b712015-07-02 16:17:30 +00009995 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009996 prev = x;
drh2e38c322004-09-03 18:38:44 +00009997 }
9998 }
drhcbc6b712015-07-02 16:17:30 +00009999 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +000010000 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10001 ** is stored in the fifth field of the b-tree page header.
10002 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10003 ** number of fragmented free bytes within the cell content area.
10004 */
drhcbc6b712015-07-02 16:17:30 +000010005 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +000010006 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +000010007 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +000010008 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +000010009 }
10010 }
drh867db832014-09-26 02:41:05 +000010011
10012end_of_check:
drh72e191e2015-07-04 11:14:20 +000010013 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +000010014 releasePage(pPage);
drh867db832014-09-26 02:41:05 +000010015 pCheck->zPfx = saved_zPfx;
10016 pCheck->v1 = saved_v1;
10017 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +000010018 return depth+1;
drh5eddca62001-06-30 21:53:53 +000010019}
drhb7f91642004-10-31 02:22:47 +000010020#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010021
drhb7f91642004-10-31 02:22:47 +000010022#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010023/*
10024** This routine does a complete check of the given BTree file. aRoot[] is
10025** an array of pages numbers were each page number is the root page of
10026** a table. nRoot is the number of entries in aRoot.
10027**
danielk19773509a652009-07-06 18:56:13 +000010028** A read-only or read-write transaction must be opened before calling
10029** this function.
10030**
drhc890fec2008-08-01 20:10:08 +000010031** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010032** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010033** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010034** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +000010035*/
drh1dcdbc02007-01-27 02:24:54 +000010036char *sqlite3BtreeIntegrityCheck(
10037 Btree *p, /* The btree to be checked */
10038 int *aRoot, /* An array of root pages numbers for individual trees */
10039 int nRoot, /* Number of entries in aRoot[] */
10040 int mxErr, /* Stop reporting errors after this many */
10041 int *pnErr /* Write number of errors seen to this variable */
10042){
danielk197789d40042008-11-17 14:20:56 +000010043 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010044 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010045 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010046 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010047 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +000010048 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +000010049
drhd677b3d2007-08-20 22:48:41 +000010050 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010051 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010052 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10053 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +000010054 sCheck.pBt = pBt;
10055 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010056 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010057 sCheck.mxErr = mxErr;
10058 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +000010059 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +000010060 sCheck.zPfx = 0;
10061 sCheck.v1 = 0;
10062 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010063 sCheck.aPgRef = 0;
10064 sCheck.heap = 0;
10065 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010066 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010067 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010068 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010069 }
dan1235bb12012-04-03 17:43:28 +000010070
10071 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10072 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +000010073 sCheck.mallocFailed = 1;
10074 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010075 }
drhe05b3f82015-07-01 17:53:49 +000010076 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10077 if( sCheck.heap==0 ){
10078 sCheck.mallocFailed = 1;
10079 goto integrity_ck_cleanup;
10080 }
10081
drh42cac6d2004-11-20 20:31:11 +000010082 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010083 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010084
10085 /* Check the integrity of the freelist
10086 */
drh867db832014-09-26 02:41:05 +000010087 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +000010088 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +000010089 get4byte(&pBt->pPage1->aData[36]));
10090 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +000010091
10092 /* Check all the tables.
10093 */
drh040d77a2018-07-20 15:44:09 +000010094#ifndef SQLITE_OMIT_AUTOVACUUM
10095 if( pBt->autoVacuum ){
10096 int mx = 0;
10097 int mxInHdr;
10098 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10099 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10100 if( mx!=mxInHdr ){
10101 checkAppendMsg(&sCheck,
10102 "max rootpage (%d) disagrees with header (%d)",
10103 mx, mxInHdr
10104 );
10105 }
10106 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10107 checkAppendMsg(&sCheck,
10108 "incremental_vacuum enabled with a max rootpage of zero"
10109 );
10110 }
10111#endif
drhcbc6b712015-07-02 16:17:30 +000010112 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010113 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010114 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010115 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010116 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010117#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010118 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +000010119 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010120 }
10121#endif
drhcbc6b712015-07-02 16:17:30 +000010122 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000010123 }
drhcbc6b712015-07-02 16:17:30 +000010124 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000010125
10126 /* Make sure every page in the file is referenced
10127 */
drh1dcdbc02007-01-27 02:24:54 +000010128 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000010129#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +000010130 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +000010131 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +000010132 }
danielk1977afcdd022004-10-31 16:25:42 +000010133#else
10134 /* If the database supports auto-vacuum, make sure no tables contain
10135 ** references to pointer-map pages.
10136 */
dan1235bb12012-04-03 17:43:28 +000010137 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +000010138 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010139 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +000010140 }
dan1235bb12012-04-03 17:43:28 +000010141 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +000010142 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010143 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +000010144 }
10145#endif
drh5eddca62001-06-30 21:53:53 +000010146 }
10147
drh5eddca62001-06-30 21:53:53 +000010148 /* Clean up and report errors.
10149 */
drhe05b3f82015-07-01 17:53:49 +000010150integrity_ck_cleanup:
10151 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000010152 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +000010153 if( sCheck.mallocFailed ){
drh0cdbe1a2018-05-09 13:46:26 +000010154 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010155 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000010156 }
drh1dcdbc02007-01-27 02:24:54 +000010157 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000010158 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010159 /* Make sure this analysis did not leave any unref() pages. */
10160 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10161 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000010162 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000010163}
drhb7f91642004-10-31 02:22:47 +000010164#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000010165
drh73509ee2003-04-06 20:44:45 +000010166/*
drhd4e0bb02012-05-27 01:19:04 +000010167** Return the full pathname of the underlying database file. Return
10168** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000010169**
10170** The pager filename is invariant as long as the pager is
10171** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000010172*/
danielk1977aef0bf62005-12-30 16:28:01 +000010173const char *sqlite3BtreeGetFilename(Btree *p){
10174 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000010175 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000010176}
10177
10178/*
danielk19775865e3d2004-06-14 06:03:57 +000010179** Return the pathname of the journal file for this database. The return
10180** value of this routine is the same regardless of whether the journal file
10181** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000010182**
10183** The pager journal filename is invariant as long as the pager is
10184** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000010185*/
danielk1977aef0bf62005-12-30 16:28:01 +000010186const char *sqlite3BtreeGetJournalname(Btree *p){
10187 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000010188 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000010189}
10190
danielk19771d850a72004-05-31 08:26:49 +000010191/*
10192** Return non-zero if a transaction is active.
10193*/
danielk1977aef0bf62005-12-30 16:28:01 +000010194int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000010195 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +000010196 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +000010197}
10198
dana550f2d2010-08-02 10:47:05 +000010199#ifndef SQLITE_OMIT_WAL
10200/*
10201** Run a checkpoint on the Btree passed as the first argument.
10202**
10203** Return SQLITE_LOCKED if this or any other connection has an open
10204** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000010205**
dancdc1f042010-11-18 12:11:05 +000010206** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000010207*/
dancdc1f042010-11-18 12:11:05 +000010208int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000010209 int rc = SQLITE_OK;
10210 if( p ){
10211 BtShared *pBt = p->pBt;
10212 sqlite3BtreeEnter(p);
10213 if( pBt->inTransaction!=TRANS_NONE ){
10214 rc = SQLITE_LOCKED;
10215 }else{
dan7fb89902016-08-12 16:21:15 +000010216 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000010217 }
10218 sqlite3BtreeLeave(p);
10219 }
10220 return rc;
10221}
10222#endif
10223
danielk19771d850a72004-05-31 08:26:49 +000010224/*
danielk19772372c2b2006-06-27 16:34:56 +000010225** Return non-zero if a read (or write) transaction is active.
10226*/
10227int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +000010228 assert( p );
drhe5fe6902007-12-07 18:55:28 +000010229 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +000010230 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +000010231}
10232
danielk197704103022009-02-03 16:51:24 +000010233int sqlite3BtreeIsInBackup(Btree *p){
10234 assert( p );
10235 assert( sqlite3_mutex_held(p->db->mutex) );
10236 return p->nBackup!=0;
10237}
10238
danielk19772372c2b2006-06-27 16:34:56 +000010239/*
danielk1977da184232006-01-05 11:34:32 +000010240** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010241** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010242** purposes (for example, to store a high-level schema associated with
10243** the shared-btree). The btree layer manages reference counting issues.
10244**
10245** The first time this is called on a shared-btree, nBytes bytes of memory
10246** are allocated, zeroed, and returned to the caller. For each subsequent
10247** call the nBytes parameter is ignored and a pointer to the same blob
10248** of memory returned.
10249**
danielk1977171bfed2008-06-23 09:50:50 +000010250** If the nBytes parameter is 0 and the blob of memory has not yet been
10251** allocated, a null pointer is returned. If the blob has already been
10252** allocated, it is returned as normal.
10253**
danielk1977da184232006-01-05 11:34:32 +000010254** Just before the shared-btree is closed, the function passed as the
10255** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010256** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010257** on the memory, the btree layer does that.
10258*/
10259void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10260 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010261 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010262 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010263 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010264 pBt->xFreeSchema = xFree;
10265 }
drh27641702007-08-22 02:56:42 +000010266 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010267 return pBt->pSchema;
10268}
10269
danielk1977c87d34d2006-01-06 13:00:28 +000010270/*
danielk1977404ca072009-03-16 13:19:36 +000010271** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10272** btree as the argument handle holds an exclusive lock on the
10273** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010274*/
10275int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010276 int rc;
drhe5fe6902007-12-07 18:55:28 +000010277 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010278 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +000010279 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10280 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010281 sqlite3BtreeLeave(p);
10282 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010283}
10284
drha154dcd2006-03-22 22:10:07 +000010285
10286#ifndef SQLITE_OMIT_SHARED_CACHE
10287/*
10288** Obtain a lock on the table whose root page is iTab. The
10289** lock is a write lock if isWritelock is true or a read lock
10290** if it is false.
10291*/
danielk1977c00da102006-01-07 13:21:04 +000010292int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010293 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010294 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010295 if( p->sharable ){
10296 u8 lockType = READ_LOCK + isWriteLock;
10297 assert( READ_LOCK+1==WRITE_LOCK );
10298 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010299
drh6a9ad3d2008-04-02 16:29:30 +000010300 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010301 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010302 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010303 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010304 }
10305 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010306 }
10307 return rc;
10308}
drha154dcd2006-03-22 22:10:07 +000010309#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010310
danielk1977b4e9af92007-05-01 17:49:49 +000010311#ifndef SQLITE_OMIT_INCRBLOB
10312/*
10313** Argument pCsr must be a cursor opened for writing on an
10314** INTKEY table currently pointing at a valid table entry.
10315** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010316**
10317** Only the data content may only be modified, it is not possible to
10318** change the length of the data stored. If this function is called with
10319** parameters that attempt to write past the end of the existing data,
10320** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010321*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010322int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010323 int rc;
dan7a2347e2016-01-07 16:43:54 +000010324 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010325 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010326 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010327
danielk1977c9000e62009-07-08 13:55:28 +000010328 rc = restoreCursorPosition(pCsr);
10329 if( rc!=SQLITE_OK ){
10330 return rc;
10331 }
danielk19773588ceb2008-06-10 17:30:26 +000010332 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10333 if( pCsr->eState!=CURSOR_VALID ){
10334 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010335 }
10336
dan227a1c42013-04-03 11:17:39 +000010337 /* Save the positions of all other cursors open on this table. This is
10338 ** required in case any of them are holding references to an xFetch
10339 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010340 **
drh3f387402014-09-24 01:23:00 +000010341 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010342 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10343 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010344 */
drh370c9f42013-04-03 20:04:04 +000010345 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10346 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010347
danielk1977c9000e62009-07-08 13:55:28 +000010348 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010349 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010350 ** (b) there is a read/write transaction open,
10351 ** (c) the connection holds a write-lock on the table (if required),
10352 ** (d) there are no conflicting read-locks, and
10353 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010354 */
drh036dbec2014-03-11 23:40:44 +000010355 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010356 return SQLITE_READONLY;
10357 }
drhc9166342012-01-05 23:32:06 +000010358 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10359 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010360 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10361 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010362 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010363
drhfb192682009-07-11 18:26:28 +000010364 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010365}
danielk19772dec9702007-05-02 16:48:37 +000010366
10367/*
dan5a500af2014-03-11 20:33:04 +000010368** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010369*/
dan5a500af2014-03-11 20:33:04 +000010370void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010371 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010372 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010373}
danielk1977b4e9af92007-05-01 17:49:49 +000010374#endif
dane04dc882010-04-20 18:53:15 +000010375
10376/*
10377** Set both the "read version" (single byte at byte offset 18) and
10378** "write version" (single byte at byte offset 19) fields in the database
10379** header to iVersion.
10380*/
10381int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10382 BtShared *pBt = pBtree->pBt;
10383 int rc; /* Return code */
10384
dane04dc882010-04-20 18:53:15 +000010385 assert( iVersion==1 || iVersion==2 );
10386
danb9780022010-04-21 18:37:57 +000010387 /* If setting the version fields to 1, do not automatically open the
10388 ** WAL connection, even if the version fields are currently set to 2.
10389 */
drhc9166342012-01-05 23:32:06 +000010390 pBt->btsFlags &= ~BTS_NO_WAL;
10391 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010392
drhbb2d9b12018-06-06 16:28:40 +000010393 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000010394 if( rc==SQLITE_OK ){
10395 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010396 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000010397 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000010398 if( rc==SQLITE_OK ){
10399 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10400 if( rc==SQLITE_OK ){
10401 aData[18] = (u8)iVersion;
10402 aData[19] = (u8)iVersion;
10403 }
10404 }
10405 }
dane04dc882010-04-20 18:53:15 +000010406 }
10407
drhc9166342012-01-05 23:32:06 +000010408 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010409 return rc;
10410}
dan428c2182012-08-06 18:50:11 +000010411
drhe0997b32015-03-20 14:57:50 +000010412/*
10413** Return true if the cursor has a hint specified. This routine is
10414** only used from within assert() statements
10415*/
10416int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10417 return (pCsr->hints & mask)!=0;
10418}
drhe0997b32015-03-20 14:57:50 +000010419
drh781597f2014-05-21 08:21:07 +000010420/*
10421** Return true if the given Btree is read-only.
10422*/
10423int sqlite3BtreeIsReadonly(Btree *p){
10424 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10425}
drhdef68892014-11-04 12:11:23 +000010426
10427/*
10428** Return the size of the header added to each page by this module.
10429*/
drh37c057b2014-12-30 00:57:29 +000010430int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010431
drh5a1fb182016-01-08 19:34:39 +000010432#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010433/*
10434** Return true if the Btree passed as the only argument is sharable.
10435*/
10436int sqlite3BtreeSharable(Btree *p){
10437 return p->sharable;
10438}
dan272989b2016-07-06 10:12:02 +000010439
10440/*
10441** Return the number of connections to the BtShared object accessed by
10442** the Btree handle passed as the only argument. For private caches
10443** this is always 1. For shared caches it may be 1 or greater.
10444*/
10445int sqlite3BtreeConnectionCount(Btree *p){
10446 testcase( p->sharable );
10447 return p->pBt->nRef;
10448}
drh5a1fb182016-01-08 19:34:39 +000010449#endif