blob: 8349b13bad0e3f5bbefbfb53eb061bdc656a09eb [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh86f8c192007-08-22 00:39:19 +000035
36
drhe53831d2007-08-17 01:14:38 +000037#ifndef SQLITE_OMIT_SHARED_CACHE
38/*
danielk1977502b4e02008-09-02 14:07:24 +000039** A list of BtShared objects that are eligible for participation
40** in shared cache. This variable has file scope during normal builds,
41** but the test harness needs to access it so we make it global for
42** test builds.
drh7555d8e2009-03-20 13:15:30 +000043**
44** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000045*/
46#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000047BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000048#else
drh78f82d12008-09-02 00:52:52 +000049static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#endif
drhe53831d2007-08-17 01:14:38 +000051#endif /* SQLITE_OMIT_SHARED_CACHE */
52
53#ifndef SQLITE_OMIT_SHARED_CACHE
54/*
55** Enable or disable the shared pager and schema features.
56**
57** This routine has no effect on existing database connections.
58** The shared cache setting effects only future calls to
59** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
60*/
61int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000062 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000063 return SQLITE_OK;
64}
65#endif
66
drhd677b3d2007-08-20 22:48:41 +000067
danielk1977aef0bf62005-12-30 16:28:01 +000068
69#ifdef SQLITE_OMIT_SHARED_CACHE
70 /*
drhc25eabe2009-02-24 18:57:31 +000071 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
72 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000073 ** manipulate entries in the BtShared.pLock linked list used to store
74 ** shared-cache table level locks. If the library is compiled with the
75 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000076 ** of each BtShared structure and so this locking is not necessary.
77 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000078 */
drhc25eabe2009-02-24 18:57:31 +000079 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
80 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
81 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000082 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000083 #define hasSharedCacheTableLock(a,b,c,d) 1
84 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000085#endif
danielk1977aef0bf62005-12-30 16:28:01 +000086
drhe53831d2007-08-17 01:14:38 +000087#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000088
89#ifdef SQLITE_DEBUG
90/*
drh0ee3dbe2009-10-16 15:05:18 +000091**** This function is only used as part of an assert() statement. ***
92**
93** Check to see if pBtree holds the required locks to read or write to the
94** table with root page iRoot. Return 1 if it does and 0 if not.
95**
96** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +000097** Btree connection pBtree:
98**
99** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
100**
drh0ee3dbe2009-10-16 15:05:18 +0000101** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000102** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000103** the corresponding table. This makes things a bit more complicated,
104** as this module treats each table as a separate structure. To determine
105** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000106** function has to search through the database schema.
107**
drh0ee3dbe2009-10-16 15:05:18 +0000108** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000109** hold a write-lock on the schema table (root page 1). This is also
110** acceptable.
111*/
112static int hasSharedCacheTableLock(
113 Btree *pBtree, /* Handle that must hold lock */
114 Pgno iRoot, /* Root page of b-tree */
115 int isIndex, /* True if iRoot is the root of an index b-tree */
116 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
117){
118 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
119 Pgno iTab = 0;
120 BtLock *pLock;
121
drh0ee3dbe2009-10-16 15:05:18 +0000122 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000123 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000124 ** Return true immediately.
125 */
danielk197796d48e92009-06-29 06:00:37 +0000126 if( (pBtree->sharable==0)
127 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000128 ){
129 return 1;
130 }
131
drh0ee3dbe2009-10-16 15:05:18 +0000132 /* If the client is reading or writing an index and the schema is
133 ** not loaded, then it is too difficult to actually check to see if
134 ** the correct locks are held. So do not bother - just return true.
135 ** This case does not come up very often anyhow.
136 */
137 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
138 return 1;
139 }
140
danielk197796d48e92009-06-29 06:00:37 +0000141 /* Figure out the root-page that the lock should be held on. For table
142 ** b-trees, this is just the root page of the b-tree being read or
143 ** written. For index b-trees, it is the root page of the associated
144 ** table. */
145 if( isIndex ){
146 HashElem *p;
147 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
148 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000149 if( pIdx->tnum==(int)iRoot ){
150 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000151 }
152 }
153 }else{
154 iTab = iRoot;
155 }
156
157 /* Search for the required lock. Either a write-lock on root-page iTab, a
158 ** write-lock on the schema table, or (if the client is reading) a
159 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
160 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
161 if( pLock->pBtree==pBtree
162 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
163 && pLock->eLock>=eLockType
164 ){
165 return 1;
166 }
167 }
168
169 /* Failed to find the required lock. */
170 return 0;
171}
drh0ee3dbe2009-10-16 15:05:18 +0000172#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000173
drh0ee3dbe2009-10-16 15:05:18 +0000174#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000175/*
drh0ee3dbe2009-10-16 15:05:18 +0000176**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000177**
drh0ee3dbe2009-10-16 15:05:18 +0000178** Return true if it would be illegal for pBtree to write into the
179** table or index rooted at iRoot because other shared connections are
180** simultaneously reading that same table or index.
181**
182** It is illegal for pBtree to write if some other Btree object that
183** shares the same BtShared object is currently reading or writing
184** the iRoot table. Except, if the other Btree object has the
185** read-uncommitted flag set, then it is OK for the other object to
186** have a read cursor.
187**
188** For example, before writing to any part of the table or index
189** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000190**
191** assert( !hasReadConflicts(pBtree, iRoot) );
192*/
193static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
194 BtCursor *p;
195 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
196 if( p->pgnoRoot==iRoot
197 && p->pBtree!=pBtree
198 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
199 ){
200 return 1;
201 }
202 }
203 return 0;
204}
205#endif /* #ifdef SQLITE_DEBUG */
206
danielk1977da184232006-01-05 11:34:32 +0000207/*
drh0ee3dbe2009-10-16 15:05:18 +0000208** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000209** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000210** SQLITE_OK if the lock may be obtained (by calling
211** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000212*/
drhc25eabe2009-02-24 18:57:31 +0000213static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000214 BtShared *pBt = p->pBt;
215 BtLock *pIter;
216
drh1fee73e2007-08-29 04:00:57 +0000217 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000218 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
219 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000220 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000221
danielk19775b413d72009-04-01 09:41:54 +0000222 /* If requesting a write-lock, then the Btree must have an open write
223 ** transaction on this file. And, obviously, for this to be so there
224 ** must be an open write transaction on the file itself.
225 */
226 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
227 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
228
drh0ee3dbe2009-10-16 15:05:18 +0000229 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000230 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000231 return SQLITE_OK;
232 }
233
danielk1977641b0f42007-12-21 04:47:25 +0000234 /* If some other connection is holding an exclusive lock, the
235 ** requested lock may not be obtained.
236 */
danielk1977404ca072009-03-16 13:19:36 +0000237 if( pBt->pWriter!=p && pBt->isExclusive ){
238 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
239 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000240 }
241
danielk1977e0d9e6f2009-07-03 16:25:06 +0000242 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
243 /* The condition (pIter->eLock!=eLock) in the following if(...)
244 ** statement is a simplification of:
245 **
246 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
247 **
248 ** since we know that if eLock==WRITE_LOCK, then no other connection
249 ** may hold a WRITE_LOCK on any table in this file (since there can
250 ** only be a single writer).
251 */
252 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
253 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
254 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
255 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
256 if( eLock==WRITE_LOCK ){
257 assert( p==pBt->pWriter );
258 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000259 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000260 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000261 }
262 }
263 return SQLITE_OK;
264}
drhe53831d2007-08-17 01:14:38 +0000265#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000266
drhe53831d2007-08-17 01:14:38 +0000267#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000268/*
269** Add a lock on the table with root-page iTable to the shared-btree used
270** by Btree handle p. Parameter eLock must be either READ_LOCK or
271** WRITE_LOCK.
272**
danielk19779d104862009-07-09 08:27:14 +0000273** This function assumes the following:
274**
drh0ee3dbe2009-10-16 15:05:18 +0000275** (a) The specified Btree object p is connected to a sharable
276** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000277**
drh0ee3dbe2009-10-16 15:05:18 +0000278** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000279** with the requested lock (i.e. querySharedCacheTableLock() has
280** already been called and returned SQLITE_OK).
281**
282** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
283** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000284*/
drhc25eabe2009-02-24 18:57:31 +0000285static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000286 BtShared *pBt = p->pBt;
287 BtLock *pLock = 0;
288 BtLock *pIter;
289
drh1fee73e2007-08-29 04:00:57 +0000290 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000291 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
292 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000293
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 /* A connection with the read-uncommitted flag set will never try to
295 ** obtain a read-lock using this function. The only read-lock obtained
296 ** by a connection in read-uncommitted mode is on the sqlite_master
297 ** table, and that lock is obtained in BtreeBeginTrans(). */
298 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
299
danielk19779d104862009-07-09 08:27:14 +0000300 /* This function should only be called on a sharable b-tree after it
301 ** has been determined that no other b-tree holds a conflicting lock. */
302 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000303 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000304
305 /* First search the list for an existing lock on this table. */
306 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
307 if( pIter->iTable==iTable && pIter->pBtree==p ){
308 pLock = pIter;
309 break;
310 }
311 }
312
313 /* If the above search did not find a BtLock struct associating Btree p
314 ** with table iTable, allocate one and link it into the list.
315 */
316 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000317 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000318 if( !pLock ){
319 return SQLITE_NOMEM;
320 }
321 pLock->iTable = iTable;
322 pLock->pBtree = p;
323 pLock->pNext = pBt->pLock;
324 pBt->pLock = pLock;
325 }
326
327 /* Set the BtLock.eLock variable to the maximum of the current lock
328 ** and the requested lock. This means if a write-lock was already held
329 ** and a read-lock requested, we don't incorrectly downgrade the lock.
330 */
331 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000332 if( eLock>pLock->eLock ){
333 pLock->eLock = eLock;
334 }
danielk1977aef0bf62005-12-30 16:28:01 +0000335
336 return SQLITE_OK;
337}
drhe53831d2007-08-17 01:14:38 +0000338#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000339
drhe53831d2007-08-17 01:14:38 +0000340#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000341/*
drhc25eabe2009-02-24 18:57:31 +0000342** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000343** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000344**
drh0ee3dbe2009-10-16 15:05:18 +0000345** This function assumes that Btree p has an open read or write
danielk1977fa542f12009-04-02 18:28:08 +0000346** transaction. If it does not, then the BtShared.isPending variable
347** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000348*/
drhc25eabe2009-02-24 18:57:31 +0000349static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000350 BtShared *pBt = p->pBt;
351 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000352
drh1fee73e2007-08-29 04:00:57 +0000353 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000354 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000355 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000356
danielk1977aef0bf62005-12-30 16:28:01 +0000357 while( *ppIter ){
358 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000359 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000360 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000361 if( pLock->pBtree==p ){
362 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000363 assert( pLock->iTable!=1 || pLock==&p->lock );
364 if( pLock->iTable!=1 ){
365 sqlite3_free(pLock);
366 }
danielk1977aef0bf62005-12-30 16:28:01 +0000367 }else{
368 ppIter = &pLock->pNext;
369 }
370 }
danielk1977641b0f42007-12-21 04:47:25 +0000371
danielk1977404ca072009-03-16 13:19:36 +0000372 assert( pBt->isPending==0 || pBt->pWriter );
373 if( pBt->pWriter==p ){
374 pBt->pWriter = 0;
375 pBt->isExclusive = 0;
376 pBt->isPending = 0;
377 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000378 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000379 ** transaction. If there currently exists a writer, and p is not
380 ** that writer, then the number of locks held by connections other
381 ** than the writer must be about to drop to zero. In this case
382 ** set the isPending flag to 0.
383 **
384 ** If there is not currently a writer, then BtShared.isPending must
385 ** be zero already. So this next line is harmless in that case.
386 */
387 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000388 }
danielk1977aef0bf62005-12-30 16:28:01 +0000389}
danielk197794b30732009-07-02 17:21:57 +0000390
danielk1977e0d9e6f2009-07-03 16:25:06 +0000391/*
drh0ee3dbe2009-10-16 15:05:18 +0000392** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000393*/
danielk197794b30732009-07-02 17:21:57 +0000394static void downgradeAllSharedCacheTableLocks(Btree *p){
395 BtShared *pBt = p->pBt;
396 if( pBt->pWriter==p ){
397 BtLock *pLock;
398 pBt->pWriter = 0;
399 pBt->isExclusive = 0;
400 pBt->isPending = 0;
401 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
402 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
403 pLock->eLock = READ_LOCK;
404 }
405 }
406}
407
danielk1977aef0bf62005-12-30 16:28:01 +0000408#endif /* SQLITE_OMIT_SHARED_CACHE */
409
drh980b1a72006-08-16 16:42:48 +0000410static void releasePage(MemPage *pPage); /* Forward reference */
411
drh1fee73e2007-08-29 04:00:57 +0000412/*
drh0ee3dbe2009-10-16 15:05:18 +0000413***** This routine is used inside of assert() only ****
414**
415** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000416*/
drh0ee3dbe2009-10-16 15:05:18 +0000417#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000418static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000419 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000420}
421#endif
422
423
danielk197792d4d7a2007-05-04 12:05:56 +0000424#ifndef SQLITE_OMIT_INCRBLOB
425/*
426** Invalidate the overflow page-list cache for cursor pCur, if any.
427*/
428static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000429 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000430 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000431 pCur->aOverflow = 0;
432}
433
434/*
435** Invalidate the overflow page-list cache for all cursors opened
436** on the shared btree structure pBt.
437*/
438static void invalidateAllOverflowCache(BtShared *pBt){
439 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000440 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000441 for(p=pBt->pCursor; p; p=p->pNext){
442 invalidateOverflowCache(p);
443 }
444}
danielk197796d48e92009-06-29 06:00:37 +0000445
446/*
447** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000448** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000449** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000450**
451** If argument isClearTable is true, then the entire contents of the
452** table is about to be deleted. In this case invalidate all incrblob
453** cursors open on any row within the table with root-page pgnoRoot.
454**
455** Otherwise, if argument isClearTable is false, then the row with
456** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000457** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000458*/
459static void invalidateIncrblobCursors(
460 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000461 i64 iRow, /* The rowid that might be changing */
462 int isClearTable /* True if all rows are being deleted */
463){
464 BtCursor *p;
465 BtShared *pBt = pBtree->pBt;
466 assert( sqlite3BtreeHoldsMutex(pBtree) );
467 for(p=pBt->pCursor; p; p=p->pNext){
468 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
469 p->eState = CURSOR_INVALID;
470 }
471 }
472}
473
danielk197792d4d7a2007-05-04 12:05:56 +0000474#else
drh0ee3dbe2009-10-16 15:05:18 +0000475 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000476 #define invalidateOverflowCache(x)
477 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000478 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000479#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000480
drh980b1a72006-08-16 16:42:48 +0000481/*
danielk1977bea2a942009-01-20 17:06:27 +0000482** Set bit pgno of the BtShared.pHasContent bitvec. This is called
483** when a page that previously contained data becomes a free-list leaf
484** page.
485**
486** The BtShared.pHasContent bitvec exists to work around an obscure
487** bug caused by the interaction of two useful IO optimizations surrounding
488** free-list leaf pages:
489**
490** 1) When all data is deleted from a page and the page becomes
491** a free-list leaf page, the page is not written to the database
492** (as free-list leaf pages contain no meaningful data). Sometimes
493** such a page is not even journalled (as it will not be modified,
494** why bother journalling it?).
495**
496** 2) When a free-list leaf page is reused, its content is not read
497** from the database or written to the journal file (why should it
498** be, if it is not at all meaningful?).
499**
500** By themselves, these optimizations work fine and provide a handy
501** performance boost to bulk delete or insert operations. However, if
502** a page is moved to the free-list and then reused within the same
503** transaction, a problem comes up. If the page is not journalled when
504** it is moved to the free-list and it is also not journalled when it
505** is extracted from the free-list and reused, then the original data
506** may be lost. In the event of a rollback, it may not be possible
507** to restore the database to its original configuration.
508**
509** The solution is the BtShared.pHasContent bitvec. Whenever a page is
510** moved to become a free-list leaf page, the corresponding bit is
511** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000512** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000513** set in BtShared.pHasContent. The contents of the bitvec are cleared
514** at the end of every transaction.
515*/
516static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
517 int rc = SQLITE_OK;
518 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000519 assert( pgno<=pBt->nPage );
520 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000521 if( !pBt->pHasContent ){
522 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000523 }
524 }
525 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
526 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
527 }
528 return rc;
529}
530
531/*
532** Query the BtShared.pHasContent vector.
533**
534** This function is called when a free-list leaf page is removed from the
535** free-list for reuse. It returns false if it is safe to retrieve the
536** page from the pager layer with the 'no-content' flag set. True otherwise.
537*/
538static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
539 Bitvec *p = pBt->pHasContent;
540 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
541}
542
543/*
544** Clear (destroy) the BtShared.pHasContent bitvec. This should be
545** invoked at the conclusion of each write-transaction.
546*/
547static void btreeClearHasContent(BtShared *pBt){
548 sqlite3BitvecDestroy(pBt->pHasContent);
549 pBt->pHasContent = 0;
550}
551
552/*
drh980b1a72006-08-16 16:42:48 +0000553** Save the current cursor position in the variables BtCursor.nKey
554** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000555**
556** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
557** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000558*/
559static int saveCursorPosition(BtCursor *pCur){
560 int rc;
561
562 assert( CURSOR_VALID==pCur->eState );
563 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000564 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000565
566 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000567 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000568
569 /* If this is an intKey table, then the above call to BtreeKeySize()
570 ** stores the integer key in pCur->nKey. In this case this value is
571 ** all that is required. Otherwise, if pCur is not open on an intKey
572 ** table, then malloc space for and store the pCur->nKey bytes of key
573 ** data.
574 */
drh4c301aa2009-07-15 17:25:45 +0000575 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000576 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000577 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000578 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000579 if( rc==SQLITE_OK ){
580 pCur->pKey = pKey;
581 }else{
drh17435752007-08-16 04:30:38 +0000582 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000583 }
584 }else{
585 rc = SQLITE_NOMEM;
586 }
587 }
danielk197771d5d2c2008-09-29 11:49:47 +0000588 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000589
590 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000591 int i;
592 for(i=0; i<=pCur->iPage; i++){
593 releasePage(pCur->apPage[i]);
594 pCur->apPage[i] = 0;
595 }
596 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000597 pCur->eState = CURSOR_REQUIRESEEK;
598 }
599
danielk197792d4d7a2007-05-04 12:05:56 +0000600 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000601 return rc;
602}
603
604/*
drh0ee3dbe2009-10-16 15:05:18 +0000605** Save the positions of all cursors (except pExcept) that are open on
606** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000607** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
608*/
609static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
610 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000611 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000612 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000613 for(p=pBt->pCursor; p; p=p->pNext){
614 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
615 p->eState==CURSOR_VALID ){
616 int rc = saveCursorPosition(p);
617 if( SQLITE_OK!=rc ){
618 return rc;
619 }
620 }
621 }
622 return SQLITE_OK;
623}
624
625/*
drhbf700f32007-03-31 02:36:44 +0000626** Clear the current cursor position.
627*/
danielk1977be51a652008-10-08 17:58:48 +0000628void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000629 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000630 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000631 pCur->pKey = 0;
632 pCur->eState = CURSOR_INVALID;
633}
634
635/*
danielk19773509a652009-07-06 18:56:13 +0000636** In this version of BtreeMoveto, pKey is a packed index record
637** such as is generated by the OP_MakeRecord opcode. Unpack the
638** record and then call BtreeMovetoUnpacked() to do the work.
639*/
640static int btreeMoveto(
641 BtCursor *pCur, /* Cursor open on the btree to be searched */
642 const void *pKey, /* Packed key if the btree is an index */
643 i64 nKey, /* Integer key for tables. Size of pKey for indices */
644 int bias, /* Bias search to the high end */
645 int *pRes /* Write search results here */
646){
647 int rc; /* Status code */
648 UnpackedRecord *pIdxKey; /* Unpacked index key */
649 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
650
651 if( pKey ){
652 assert( nKey==(i64)(int)nKey );
653 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
654 aSpace, sizeof(aSpace));
655 if( pIdxKey==0 ) return SQLITE_NOMEM;
656 }else{
657 pIdxKey = 0;
658 }
659 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
660 if( pKey ){
661 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
662 }
663 return rc;
664}
665
666/*
drh980b1a72006-08-16 16:42:48 +0000667** Restore the cursor to the position it was in (or as close to as possible)
668** when saveCursorPosition() was called. Note that this call deletes the
669** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000670** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000671** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000672*/
danielk197730548662009-07-09 05:07:37 +0000673static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000674 int rc;
drh1fee73e2007-08-29 04:00:57 +0000675 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000676 assert( pCur->eState>=CURSOR_REQUIRESEEK );
677 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000678 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000679 }
drh980b1a72006-08-16 16:42:48 +0000680 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000681 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000682 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000683 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000684 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000685 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000686 }
687 return rc;
688}
689
drha3460582008-07-11 21:02:53 +0000690#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000691 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000692 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000693 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000694
drha3460582008-07-11 21:02:53 +0000695/*
696** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000697** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000698** at is deleted out from under them.
699**
700** This routine returns an error code if something goes wrong. The
701** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
702*/
703int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
704 int rc;
705
706 rc = restoreCursorPosition(pCur);
707 if( rc ){
708 *pHasMoved = 1;
709 return rc;
710 }
drh4c301aa2009-07-15 17:25:45 +0000711 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000712 *pHasMoved = 1;
713 }else{
714 *pHasMoved = 0;
715 }
716 return SQLITE_OK;
717}
718
danielk1977599fcba2004-11-08 07:13:13 +0000719#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000720/*
drha3152892007-05-05 11:48:52 +0000721** Given a page number of a regular database page, return the page
722** number for the pointer-map page that contains the entry for the
723** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000724*/
danielk1977266664d2006-02-10 08:24:21 +0000725static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000726 int nPagesPerMapPage;
727 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000728 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000729 nPagesPerMapPage = (pBt->usableSize/5)+1;
730 iPtrMap = (pgno-2)/nPagesPerMapPage;
731 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000732 if( ret==PENDING_BYTE_PAGE(pBt) ){
733 ret++;
734 }
735 return ret;
736}
danielk1977a19df672004-11-03 11:37:07 +0000737
danielk1977afcdd022004-10-31 16:25:42 +0000738/*
danielk1977afcdd022004-10-31 16:25:42 +0000739** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000740**
741** This routine updates the pointer map entry for page number 'key'
742** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000743**
744** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
745** a no-op. If an error occurs, the appropriate error code is written
746** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000747*/
drh98add2e2009-07-20 17:11:49 +0000748static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000749 DbPage *pDbPage; /* The pointer map page */
750 u8 *pPtrmap; /* The pointer map data */
751 Pgno iPtrmap; /* The pointer map page number */
752 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000753 int rc; /* Return code from subfunctions */
754
755 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000756
drh1fee73e2007-08-29 04:00:57 +0000757 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000758 /* The master-journal page number must never be used as a pointer map page */
759 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
760
danielk1977ac11ee62005-01-15 12:45:51 +0000761 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000762 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000763 *pRC = SQLITE_CORRUPT_BKPT;
764 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000765 }
danielk1977266664d2006-02-10 08:24:21 +0000766 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000767 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000768 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000769 *pRC = rc;
770 return;
danielk1977afcdd022004-10-31 16:25:42 +0000771 }
danielk19778c666b12008-07-18 09:34:57 +0000772 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000773 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000774 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000775 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000776 }
danielk19773b8a05f2007-03-19 17:44:26 +0000777 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000778
drh615ae552005-01-16 23:21:00 +0000779 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
780 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000781 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000782 if( rc==SQLITE_OK ){
783 pPtrmap[offset] = eType;
784 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000785 }
danielk1977afcdd022004-10-31 16:25:42 +0000786 }
787
drh4925a552009-07-07 11:39:58 +0000788ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000789 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000790}
791
792/*
793** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000794**
795** This routine retrieves the pointer map entry for page 'key', writing
796** the type and parent page number to *pEType and *pPgno respectively.
797** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000798*/
danielk1977aef0bf62005-12-30 16:28:01 +0000799static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000800 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000801 int iPtrmap; /* Pointer map page index */
802 u8 *pPtrmap; /* Pointer map page data */
803 int offset; /* Offset of entry in pointer map */
804 int rc;
805
drh1fee73e2007-08-29 04:00:57 +0000806 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000807
danielk1977266664d2006-02-10 08:24:21 +0000808 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000809 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000810 if( rc!=0 ){
811 return rc;
812 }
danielk19773b8a05f2007-03-19 17:44:26 +0000813 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000814
danielk19778c666b12008-07-18 09:34:57 +0000815 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000816 assert( pEType!=0 );
817 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000818 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000819
danielk19773b8a05f2007-03-19 17:44:26 +0000820 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000821 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000822 return SQLITE_OK;
823}
824
danielk197785d90ca2008-07-19 14:25:15 +0000825#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000826 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000827 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000828 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000829#endif
danielk1977afcdd022004-10-31 16:25:42 +0000830
drh0d316a42002-08-11 20:10:47 +0000831/*
drh271efa52004-05-30 19:19:05 +0000832** Given a btree page and a cell index (0 means the first cell on
833** the page, 1 means the second cell, and so forth) return a pointer
834** to the cell content.
835**
836** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000837*/
drh1688c862008-07-18 02:44:17 +0000838#define findCell(P,I) \
839 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000840
841/*
drh93a960a2008-07-10 00:32:42 +0000842** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000843** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000844*/
845static u8 *findOverflowCell(MemPage *pPage, int iCell){
846 int i;
drh1fee73e2007-08-29 04:00:57 +0000847 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000848 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000849 int k;
850 struct _OvflCell *pOvfl;
851 pOvfl = &pPage->aOvfl[i];
852 k = pOvfl->idx;
853 if( k<=iCell ){
854 if( k==iCell ){
855 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000856 }
857 iCell--;
858 }
859 }
danielk19771cc5ed82007-05-16 17:28:43 +0000860 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000861}
862
863/*
864** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000865** are two versions of this function. btreeParseCell() takes a
866** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000867** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000868**
869** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000870** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000871*/
danielk197730548662009-07-09 05:07:37 +0000872static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000873 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000874 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000875 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000876){
drhf49661a2008-12-10 16:45:50 +0000877 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000878 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000879
drh1fee73e2007-08-29 04:00:57 +0000880 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000881
drh43605152004-05-29 21:46:49 +0000882 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000883 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000884 n = pPage->childPtrSize;
885 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000886 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000887 if( pPage->hasData ){
888 n += getVarint32(&pCell[n], nPayload);
889 }else{
890 nPayload = 0;
891 }
drh1bd10f82008-12-10 21:19:56 +0000892 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000893 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000894 }else{
drh79df1f42008-07-18 00:57:33 +0000895 pInfo->nData = 0;
896 n += getVarint32(&pCell[n], nPayload);
897 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000898 }
drh72365832007-03-06 15:53:44 +0000899 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000900 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000901 testcase( nPayload==pPage->maxLocal );
902 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000903 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000904 /* This is the (easy) common case where the entire payload fits
905 ** on the local page. No overflow is required.
906 */
907 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000908 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000909 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000910 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000911 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000912 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000913 }
drh1bd10f82008-12-10 21:19:56 +0000914 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000915 }else{
drh271efa52004-05-30 19:19:05 +0000916 /* If the payload will not fit completely on the local page, we have
917 ** to decide how much to store locally and how much to spill onto
918 ** overflow pages. The strategy is to minimize the amount of unused
919 ** space on overflow pages while keeping the amount of local storage
920 ** in between minLocal and maxLocal.
921 **
922 ** Warning: changing the way overflow payload is distributed in any
923 ** way will result in an incompatible file format.
924 */
925 int minLocal; /* Minimum amount of payload held locally */
926 int maxLocal; /* Maximum amount of payload held locally */
927 int surplus; /* Overflow payload available for local storage */
928
929 minLocal = pPage->minLocal;
930 maxLocal = pPage->maxLocal;
931 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000932 testcase( surplus==maxLocal );
933 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000934 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000935 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000936 }else{
drhf49661a2008-12-10 16:45:50 +0000937 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000938 }
drhf49661a2008-12-10 16:45:50 +0000939 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000940 pInfo->nSize = pInfo->iOverflow + 4;
941 }
drh3aac2dd2004-04-26 14:10:20 +0000942}
danielk19771cc5ed82007-05-16 17:28:43 +0000943#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000944 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
945static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000946 MemPage *pPage, /* Page containing the cell */
947 int iCell, /* The cell index. First cell is 0 */
948 CellInfo *pInfo /* Fill in this structure */
949){
danielk19771cc5ed82007-05-16 17:28:43 +0000950 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000951}
drh3aac2dd2004-04-26 14:10:20 +0000952
953/*
drh43605152004-05-29 21:46:49 +0000954** Compute the total number of bytes that a Cell needs in the cell
955** data area of the btree-page. The return number includes the cell
956** data header and the local payload, but not any overflow page or
957** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000958*/
danielk1977ae5558b2009-04-29 11:31:47 +0000959static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
960 u8 *pIter = &pCell[pPage->childPtrSize];
961 u32 nSize;
962
963#ifdef SQLITE_DEBUG
964 /* The value returned by this function should always be the same as
965 ** the (CellInfo.nSize) value found by doing a full parse of the
966 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
967 ** this function verifies that this invariant is not violated. */
968 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000969 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000970#endif
971
972 if( pPage->intKey ){
973 u8 *pEnd;
974 if( pPage->hasData ){
975 pIter += getVarint32(pIter, nSize);
976 }else{
977 nSize = 0;
978 }
979
980 /* pIter now points at the 64-bit integer key value, a variable length
981 ** integer. The following block moves pIter to point at the first byte
982 ** past the end of the key value. */
983 pEnd = &pIter[9];
984 while( (*pIter++)&0x80 && pIter<pEnd );
985 }else{
986 pIter += getVarint32(pIter, nSize);
987 }
988
drh0a45c272009-07-08 01:49:11 +0000989 testcase( nSize==pPage->maxLocal );
990 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000991 if( nSize>pPage->maxLocal ){
992 int minLocal = pPage->minLocal;
993 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000994 testcase( nSize==pPage->maxLocal );
995 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000996 if( nSize>pPage->maxLocal ){
997 nSize = minLocal;
998 }
999 nSize += 4;
1000 }
shane75ac1de2009-06-09 18:58:52 +00001001 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001002
1003 /* The minimum size of any cell is 4 bytes. */
1004 if( nSize<4 ){
1005 nSize = 4;
1006 }
1007
1008 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001009 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001010}
drh0ee3dbe2009-10-16 15:05:18 +00001011
1012#ifdef SQLITE_DEBUG
1013/* This variation on cellSizePtr() is used inside of assert() statements
1014** only. */
drha9121e42008-02-19 14:59:35 +00001015static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001016 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001017}
danielk1977bc6ada42004-06-30 08:20:16 +00001018#endif
drh3b7511c2001-05-26 13:15:44 +00001019
danielk197779a40da2005-01-16 08:00:01 +00001020#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001021/*
danielk197726836652005-01-17 01:33:13 +00001022** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001023** to an overflow page, insert an entry into the pointer-map
1024** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001025*/
drh98add2e2009-07-20 17:11:49 +00001026static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001027 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001028 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001029 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001030 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001031 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001032 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001033 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001034 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001035 }
danielk1977ac11ee62005-01-15 12:45:51 +00001036}
danielk197779a40da2005-01-16 08:00:01 +00001037#endif
1038
danielk1977ac11ee62005-01-15 12:45:51 +00001039
drhda200cc2004-05-09 11:51:38 +00001040/*
drh72f82862001-05-24 21:06:34 +00001041** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001042** end of the page and all free space is collected into one
1043** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001044** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001045*/
shane0af3f892008-11-12 04:55:34 +00001046static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001047 int i; /* Loop counter */
1048 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001049 int hdr; /* Offset to the page header */
1050 int size; /* Size of a cell */
1051 int usableSize; /* Number of usable bytes on a page */
1052 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001053 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001054 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001055 unsigned char *data; /* The page data */
1056 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001057 int iCellFirst; /* First allowable cell index */
1058 int iCellLast; /* Last possible cell index */
1059
drh2af926b2001-05-15 00:39:25 +00001060
danielk19773b8a05f2007-03-19 17:44:26 +00001061 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001062 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001063 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001064 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001065 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001066 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001067 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001068 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001069 cellOffset = pPage->cellOffset;
1070 nCell = pPage->nCell;
1071 assert( nCell==get2byte(&data[hdr+3]) );
1072 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001073 cbrk = get2byte(&data[hdr+5]);
1074 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1075 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001076 iCellFirst = cellOffset + 2*nCell;
1077 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001078 for(i=0; i<nCell; i++){
1079 u8 *pAddr; /* The i-th cell pointer */
1080 pAddr = &data[cellOffset + i*2];
1081 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001082 testcase( pc==iCellFirst );
1083 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001084#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001085 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001086 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1087 */
1088 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001089 return SQLITE_CORRUPT_BKPT;
1090 }
drh17146622009-07-07 17:38:38 +00001091#endif
1092 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001093 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001094 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001095#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1096 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001097 return SQLITE_CORRUPT_BKPT;
1098 }
drh17146622009-07-07 17:38:38 +00001099#else
1100 if( cbrk<iCellFirst || pc+size>usableSize ){
1101 return SQLITE_CORRUPT_BKPT;
1102 }
1103#endif
drh7157e1d2009-07-09 13:25:32 +00001104 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001105 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001106 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001107 memcpy(&data[cbrk], &temp[pc], size);
1108 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001109 }
drh17146622009-07-07 17:38:38 +00001110 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001111 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001112 data[hdr+1] = 0;
1113 data[hdr+2] = 0;
1114 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001115 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001116 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001117 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001118 return SQLITE_CORRUPT_BKPT;
1119 }
shane0af3f892008-11-12 04:55:34 +00001120 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001121}
1122
drha059ad02001-04-17 20:09:11 +00001123/*
danielk19776011a752009-04-01 16:25:32 +00001124** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001125** as the first argument. Write into *pIdx the index into pPage->aData[]
1126** of the first byte of allocated space. Return either SQLITE_OK or
1127** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001128**
drh0a45c272009-07-08 01:49:11 +00001129** The caller guarantees that there is sufficient space to make the
1130** allocation. This routine might need to defragment in order to bring
1131** all the space together, however. This routine will avoid using
1132** the first two bytes past the cell pointer area since presumably this
1133** allocation is being made in order to insert a new cell, so we will
1134** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001135*/
drh0a45c272009-07-08 01:49:11 +00001136static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001137 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1138 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1139 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001140 int top; /* First byte of cell content area */
1141 int gap; /* First byte of gap between cell pointers and cell content */
1142 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001143 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001144
danielk19773b8a05f2007-03-19 17:44:26 +00001145 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001146 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001147 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001148 assert( nByte>=0 ); /* Minimum cell size is 4 */
1149 assert( pPage->nFree>=nByte );
1150 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001151 usableSize = pPage->pBt->usableSize;
1152 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001153
1154 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001155 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1156 gap = pPage->cellOffset + 2*pPage->nCell;
1157 top = get2byte(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001158 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001159 testcase( gap+2==top );
1160 testcase( gap+1==top );
1161 testcase( gap==top );
1162
danielk19776011a752009-04-01 16:25:32 +00001163 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001164 /* Always defragment highly fragmented pages */
1165 rc = defragmentPage(pPage);
1166 if( rc ) return rc;
1167 top = get2byte(&data[hdr+5]);
1168 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001169 /* Search the freelist looking for a free slot big enough to satisfy
1170 ** the request. The allocation is made from the first free slot in
1171 ** the list that is large enough to accomadate it.
1172 */
1173 int pc, addr;
1174 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001175 int size; /* Size of the free slot */
1176 if( pc>usableSize-4 || pc<addr+4 ){
1177 return SQLITE_CORRUPT_BKPT;
1178 }
1179 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001180 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001181 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001182 testcase( x==4 );
1183 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001184 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001185 /* Remove the slot from the free-list. Update the number of
1186 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001187 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001188 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001189 }else if( size+pc > usableSize ){
1190 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001191 }else{
danielk1977fad91942009-04-29 17:49:59 +00001192 /* The slot remains on the free-list. Reduce its size to account
1193 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001194 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001195 }
drh0a45c272009-07-08 01:49:11 +00001196 *pIdx = pc + x;
1197 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001198 }
drh9e572e62004-04-23 23:43:10 +00001199 }
1200 }
drh43605152004-05-29 21:46:49 +00001201
drh0a45c272009-07-08 01:49:11 +00001202 /* Check to make sure there is enough space in the gap to satisfy
1203 ** the allocation. If not, defragment.
1204 */
1205 testcase( gap+2+nByte==top );
1206 if( gap+2+nByte>top ){
1207 rc = defragmentPage(pPage);
1208 if( rc ) return rc;
1209 top = get2byte(&data[hdr+5]);
1210 assert( gap+nByte<=top );
1211 }
1212
1213
drh43605152004-05-29 21:46:49 +00001214 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001215 ** and the cell content area. The btreeInitPage() call has already
1216 ** validated the freelist. Given that the freelist is valid, there
1217 ** is no way that the allocation can extend off the end of the page.
1218 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001219 */
drh0a45c272009-07-08 01:49:11 +00001220 top -= nByte;
drh43605152004-05-29 21:46:49 +00001221 put2byte(&data[hdr+5], top);
drhc314dc72009-07-21 11:52:34 +00001222 assert( top+nByte <= pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001223 *pIdx = top;
1224 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001225}
1226
1227/*
drh9e572e62004-04-23 23:43:10 +00001228** Return a section of the pPage->aData to the freelist.
1229** The first byte of the new free block is pPage->aDisk[start]
1230** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001231**
1232** Most of the effort here is involved in coalesing adjacent
1233** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001234*/
shanedcc50b72008-11-13 18:29:50 +00001235static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001236 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001237 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001238 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001239
drh9e572e62004-04-23 23:43:10 +00001240 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001241 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001242 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
danielk1977bc6ada42004-06-30 08:20:16 +00001243 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001244 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001245 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001246
drh5b47efa2010-02-12 18:18:39 +00001247 if( pPage->pBt->secureDelete ){
1248 /* Overwrite deleted information with zeros when the secure_delete
1249 ** option is enabled */
1250 memset(&data[start], 0, size);
1251 }
drhfcce93f2006-02-22 03:08:32 +00001252
drh0a45c272009-07-08 01:49:11 +00001253 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001254 ** even though the freeblock list was checked by btreeInitPage(),
1255 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001256 ** freeblocks that overlapped cells. Nor does it detect when the
1257 ** cell content area exceeds the value in the page header. If these
1258 ** situations arise, then subsequent insert operations might corrupt
1259 ** the freelist. So we do need to check for corruption while scanning
1260 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001261 */
drh43605152004-05-29 21:46:49 +00001262 hdr = pPage->hdrOffset;
1263 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001264 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001265 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001266 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001267 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001268 return SQLITE_CORRUPT_BKPT;
1269 }
drh3aac2dd2004-04-26 14:10:20 +00001270 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001271 }
drh0a45c272009-07-08 01:49:11 +00001272 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001273 return SQLITE_CORRUPT_BKPT;
1274 }
drh3aac2dd2004-04-26 14:10:20 +00001275 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001276 put2byte(&data[addr], start);
1277 put2byte(&data[start], pbegin);
1278 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001279 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001280
1281 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001282 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001283 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001284 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001285 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001286 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001287 pnext = get2byte(&data[pbegin]);
1288 psize = get2byte(&data[pbegin+2]);
1289 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1290 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001291 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001292 return SQLITE_CORRUPT_BKPT;
1293 }
drh0a45c272009-07-08 01:49:11 +00001294 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001295 x = get2byte(&data[pnext]);
1296 put2byte(&data[pbegin], x);
1297 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1298 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001299 }else{
drh3aac2dd2004-04-26 14:10:20 +00001300 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001301 }
1302 }
drh7e3b0a02001-04-28 16:52:40 +00001303
drh43605152004-05-29 21:46:49 +00001304 /* If the cell content area begins with a freeblock, remove it. */
1305 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1306 int top;
1307 pbegin = get2byte(&data[hdr+1]);
1308 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001309 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1310 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001311 }
drhc5053fb2008-11-27 02:22:10 +00001312 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001313 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001314}
1315
1316/*
drh271efa52004-05-30 19:19:05 +00001317** Decode the flags byte (the first byte of the header) for a page
1318** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001319**
1320** Only the following combinations are supported. Anything different
1321** indicates a corrupt database files:
1322**
1323** PTF_ZERODATA
1324** PTF_ZERODATA | PTF_LEAF
1325** PTF_LEAFDATA | PTF_INTKEY
1326** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001327*/
drh44845222008-07-17 18:39:57 +00001328static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001329 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001330
1331 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001332 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001333 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001334 flagByte &= ~PTF_LEAF;
1335 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001336 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001337 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1338 pPage->intKey = 1;
1339 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001340 pPage->maxLocal = pBt->maxLeaf;
1341 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001342 }else if( flagByte==PTF_ZERODATA ){
1343 pPage->intKey = 0;
1344 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001345 pPage->maxLocal = pBt->maxLocal;
1346 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001347 }else{
1348 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001349 }
drh44845222008-07-17 18:39:57 +00001350 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001351}
1352
1353/*
drh7e3b0a02001-04-28 16:52:40 +00001354** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001355**
1356** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001357** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001358** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1359** guarantee that the page is well-formed. It only shows that
1360** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001361*/
danielk197730548662009-07-09 05:07:37 +00001362static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001363
danielk197771d5d2c2008-09-29 11:49:47 +00001364 assert( pPage->pBt!=0 );
1365 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001366 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001367 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1368 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001369
1370 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001371 u16 pc; /* Address of a freeblock within pPage->aData[] */
1372 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001373 u8 *data; /* Equal to pPage->aData */
1374 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001375 u16 usableSize; /* Amount of usable space on each page */
1376 u16 cellOffset; /* Offset from start of page to first cell pointer */
1377 u16 nFree; /* Number of unused bytes on the page */
1378 u16 top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001379 int iCellFirst; /* First allowable cell or freeblock offset */
1380 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001381
1382 pBt = pPage->pBt;
1383
danielk1977eaa06f62008-09-18 17:34:44 +00001384 hdr = pPage->hdrOffset;
1385 data = pPage->aData;
1386 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1387 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1388 pPage->maskPage = pBt->pageSize - 1;
1389 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001390 usableSize = pBt->usableSize;
1391 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1392 top = get2byte(&data[hdr+5]);
1393 pPage->nCell = get2byte(&data[hdr+3]);
1394 if( pPage->nCell>MX_CELL(pBt) ){
1395 /* To many cells for a single page. The page must be corrupt */
1396 return SQLITE_CORRUPT_BKPT;
1397 }
drhb908d762009-07-08 16:54:40 +00001398 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001399
shane5eff7cf2009-08-10 03:57:58 +00001400 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001401 ** of page when parsing a cell.
1402 **
1403 ** The following block of code checks early to see if a cell extends
1404 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1405 ** returned if it does.
1406 */
drh0a45c272009-07-08 01:49:11 +00001407 iCellFirst = cellOffset + 2*pPage->nCell;
1408 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001409#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001410 {
drh69e931e2009-06-03 21:04:35 +00001411 int i; /* Index into the cell pointer array */
1412 int sz; /* Size of a cell */
1413
drh69e931e2009-06-03 21:04:35 +00001414 if( !pPage->leaf ) iCellLast--;
1415 for(i=0; i<pPage->nCell; i++){
1416 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001417 testcase( pc==iCellFirst );
1418 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001419 if( pc<iCellFirst || pc>iCellLast ){
1420 return SQLITE_CORRUPT_BKPT;
1421 }
1422 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001423 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001424 if( pc+sz>usableSize ){
1425 return SQLITE_CORRUPT_BKPT;
1426 }
1427 }
drh0a45c272009-07-08 01:49:11 +00001428 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001429 }
1430#endif
1431
danielk1977eaa06f62008-09-18 17:34:44 +00001432 /* Compute the total free space on the page */
1433 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001434 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001435 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001436 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001437 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001438 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001439 return SQLITE_CORRUPT_BKPT;
1440 }
1441 next = get2byte(&data[pc]);
1442 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001443 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1444 /* Free blocks must be in ascending order. And the last byte of
1445 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001446 return SQLITE_CORRUPT_BKPT;
1447 }
shane85095702009-06-15 16:27:08 +00001448 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001449 pc = next;
1450 }
danielk197793c829c2009-06-03 17:26:17 +00001451
1452 /* At this point, nFree contains the sum of the offset to the start
1453 ** of the cell-content area plus the number of free bytes within
1454 ** the cell-content area. If this is greater than the usable-size
1455 ** of the page, then the page must be corrupted. This check also
1456 ** serves to verify that the offset to the start of the cell-content
1457 ** area, according to the page header, lies within the page.
1458 */
1459 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001460 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001461 }
shane5eff7cf2009-08-10 03:57:58 +00001462 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001463 pPage->isInit = 1;
1464 }
drh9e572e62004-04-23 23:43:10 +00001465 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001466}
1467
1468/*
drh8b2f49b2001-06-08 00:21:52 +00001469** Set up a raw page so that it looks like a database page holding
1470** no entries.
drhbd03cae2001-06-02 02:40:57 +00001471*/
drh9e572e62004-04-23 23:43:10 +00001472static void zeroPage(MemPage *pPage, int flags){
1473 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001474 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001475 u8 hdr = pPage->hdrOffset;
1476 u16 first;
drh9e572e62004-04-23 23:43:10 +00001477
danielk19773b8a05f2007-03-19 17:44:26 +00001478 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001479 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1480 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001481 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001482 assert( sqlite3_mutex_held(pBt->mutex) );
drh5b47efa2010-02-12 18:18:39 +00001483 if( pBt->secureDelete ){
1484 memset(&data[hdr], 0, pBt->usableSize - hdr);
1485 }
drh1bd10f82008-12-10 21:19:56 +00001486 data[hdr] = (char)flags;
1487 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001488 memset(&data[hdr+1], 0, 4);
1489 data[hdr+7] = 0;
1490 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001491 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001492 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001493 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001494 pPage->cellOffset = first;
1495 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001496 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1497 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001498 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001499 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001500}
1501
drh897a8202008-09-18 01:08:15 +00001502
1503/*
1504** Convert a DbPage obtained from the pager into a MemPage used by
1505** the btree layer.
1506*/
1507static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1508 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1509 pPage->aData = sqlite3PagerGetData(pDbPage);
1510 pPage->pDbPage = pDbPage;
1511 pPage->pBt = pBt;
1512 pPage->pgno = pgno;
1513 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1514 return pPage;
1515}
1516
drhbd03cae2001-06-02 02:40:57 +00001517/*
drh3aac2dd2004-04-26 14:10:20 +00001518** Get a page from the pager. Initialize the MemPage.pBt and
1519** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001520**
1521** If the noContent flag is set, it means that we do not care about
1522** the content of the page at this time. So do not go to the disk
1523** to fetch the content. Just fill in the content with zeros for now.
1524** If in the future we call sqlite3PagerWrite() on this page, that
1525** means we have started to be concerned about content and the disk
1526** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001527*/
danielk197730548662009-07-09 05:07:37 +00001528static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001529 BtShared *pBt, /* The btree */
1530 Pgno pgno, /* Number of the page to fetch */
1531 MemPage **ppPage, /* Return the page in this parameter */
1532 int noContent /* Do not load page content if true */
1533){
drh3aac2dd2004-04-26 14:10:20 +00001534 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001535 DbPage *pDbPage;
1536
drh1fee73e2007-08-29 04:00:57 +00001537 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001538 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001539 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001540 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001541 return SQLITE_OK;
1542}
1543
1544/*
danielk1977bea2a942009-01-20 17:06:27 +00001545** Retrieve a page from the pager cache. If the requested page is not
1546** already in the pager cache return NULL. Initialize the MemPage.pBt and
1547** MemPage.aData elements if needed.
1548*/
1549static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1550 DbPage *pDbPage;
1551 assert( sqlite3_mutex_held(pBt->mutex) );
1552 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1553 if( pDbPage ){
1554 return btreePageFromDbPage(pDbPage, pgno, pBt);
1555 }
1556 return 0;
1557}
1558
1559/*
danielk197789d40042008-11-17 14:20:56 +00001560** Return the size of the database file in pages. If there is any kind of
1561** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001562*/
drhb1299152010-03-30 22:58:33 +00001563static Pgno btreePagecount(BtShared *pBt){
1564 return pBt->nPage;
1565}
1566u32 sqlite3BtreeLastPage(Btree *p){
1567 assert( sqlite3BtreeHoldsMutex(p) );
1568 assert( ((p->pBt->nPage)&0x8000000)==0 );
1569 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001570}
1571
1572/*
danielk197789bc4bc2009-07-21 19:25:24 +00001573** Get a page from the pager and initialize it. This routine is just a
1574** convenience wrapper around separate calls to btreeGetPage() and
1575** btreeInitPage().
1576**
1577** If an error occurs, then the value *ppPage is set to is undefined. It
1578** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001579*/
1580static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001581 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001582 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001583 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001584){
1585 int rc;
drhb1299152010-03-30 22:58:33 +00001586 TESTONLY( Pgno iLastPg = btreePagecount(pBt); )
drh1fee73e2007-08-29 04:00:57 +00001587 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001588
1589 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1590 if( rc==SQLITE_OK ){
1591 rc = btreeInitPage(*ppPage);
1592 if( rc!=SQLITE_OK ){
1593 releasePage(*ppPage);
1594 }
drhee696e22004-08-30 16:52:17 +00001595 }
danielk19779f580ad2008-09-10 14:45:57 +00001596
danielk197789bc4bc2009-07-21 19:25:24 +00001597 /* If the requested page number was either 0 or greater than the page
1598 ** number of the last page in the database, this function should return
1599 ** SQLITE_CORRUPT or some other error (i.e. SQLITE_FULL). Check that this
1600 ** is the case. */
1601 assert( (pgno>0 && pgno<=iLastPg) || rc!=SQLITE_OK );
1602 testcase( pgno==0 );
1603 testcase( pgno==iLastPg );
1604
drhde647132004-05-07 17:57:49 +00001605 return rc;
1606}
1607
1608/*
drh3aac2dd2004-04-26 14:10:20 +00001609** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001610** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001611*/
drh4b70f112004-05-02 21:12:19 +00001612static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001613 if( pPage ){
1614 assert( pPage->aData );
1615 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001616 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1617 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001618 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001619 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001620 }
1621}
1622
1623/*
drha6abd042004-06-09 17:37:22 +00001624** During a rollback, when the pager reloads information into the cache
1625** so that the cache is restored to its original state at the start of
1626** the transaction, for each page restored this routine is called.
1627**
1628** This routine needs to reset the extra data section at the end of the
1629** page to agree with the restored data.
1630*/
danielk1977eaa06f62008-09-18 17:34:44 +00001631static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001632 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001633 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001634 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001635 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001636 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001637 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001638 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001639 /* pPage might not be a btree page; it might be an overflow page
1640 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001641 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001642 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001643 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001644 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001645 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001646 }
drha6abd042004-06-09 17:37:22 +00001647 }
1648}
1649
1650/*
drhe5fe6902007-12-07 18:55:28 +00001651** Invoke the busy handler for a btree.
1652*/
danielk19771ceedd32008-11-19 10:22:33 +00001653static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001654 BtShared *pBt = (BtShared*)pArg;
1655 assert( pBt->db );
1656 assert( sqlite3_mutex_held(pBt->db->mutex) );
1657 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1658}
1659
1660/*
drhad3e0102004-09-03 23:32:18 +00001661** Open a database file.
1662**
drh382c0242001-10-06 16:33:02 +00001663** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001664** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001665** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001666** If zFilename is ":memory:" then an in-memory database is created
1667** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001668**
1669** If the database is already opened in the same database connection
1670** and we are in shared cache mode, then the open will fail with an
1671** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1672** objects in the same database connection since doing so will lead
1673** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001674*/
drh23e11ca2004-05-04 17:27:28 +00001675int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001676 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001677 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001678 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001679 int flags, /* Options */
1680 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001681){
drh7555d8e2009-03-20 13:15:30 +00001682 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1683 BtShared *pBt = 0; /* Shared part of btree structure */
1684 Btree *p; /* Handle to return */
1685 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1686 int rc = SQLITE_OK; /* Result code from this function */
1687 u8 nReserve; /* Byte of unused space on each page */
1688 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001689
1690 /* Set the variable isMemdb to true for an in-memory database, or
1691 ** false for a file-based database. This symbol is only required if
1692 ** either of the shared-data or autovacuum features are compiled
1693 ** into the library.
1694 */
1695#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1696 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001697 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001698 #else
drh980b1a72006-08-16 16:42:48 +00001699 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001700 #endif
1701#endif
1702
drhe5fe6902007-12-07 18:55:28 +00001703 assert( db!=0 );
1704 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001705
drhe5fe6902007-12-07 18:55:28 +00001706 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001707 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001708 if( !p ){
1709 return SQLITE_NOMEM;
1710 }
1711 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001712 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001713#ifndef SQLITE_OMIT_SHARED_CACHE
1714 p->lock.pBtree = p;
1715 p->lock.iTable = 1;
1716#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001717
drh198bf392006-01-06 21:52:49 +00001718#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001719 /*
1720 ** If this Btree is a candidate for shared cache, try to find an
1721 ** existing BtShared object that we can share with
1722 */
danielk197720c6cc22009-04-01 18:03:00 +00001723 if( isMemdb==0 && zFilename && zFilename[0] ){
drhf1f12682009-09-09 14:17:52 +00001724 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001725 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001726 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001727 sqlite3_mutex *mutexShared;
1728 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001729 if( !zFullPathname ){
1730 sqlite3_free(p);
1731 return SQLITE_NOMEM;
1732 }
danielk1977adfb9b02007-09-17 07:02:56 +00001733 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001734 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1735 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001736 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001737 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001738 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001739 assert( pBt->nRef>0 );
1740 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1741 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001742 int iDb;
1743 for(iDb=db->nDb-1; iDb>=0; iDb--){
1744 Btree *pExisting = db->aDb[iDb].pBt;
1745 if( pExisting && pExisting->pBt==pBt ){
1746 sqlite3_mutex_leave(mutexShared);
1747 sqlite3_mutex_leave(mutexOpen);
1748 sqlite3_free(zFullPathname);
1749 sqlite3_free(p);
1750 return SQLITE_CONSTRAINT;
1751 }
1752 }
drhff0587c2007-08-29 17:43:19 +00001753 p->pBt = pBt;
1754 pBt->nRef++;
1755 break;
1756 }
1757 }
1758 sqlite3_mutex_leave(mutexShared);
1759 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001760 }
drhff0587c2007-08-29 17:43:19 +00001761#ifdef SQLITE_DEBUG
1762 else{
1763 /* In debug mode, we mark all persistent databases as sharable
1764 ** even when they are not. This exercises the locking code and
1765 ** gives more opportunity for asserts(sqlite3_mutex_held())
1766 ** statements to find locking problems.
1767 */
1768 p->sharable = 1;
1769 }
1770#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001771 }
1772#endif
drha059ad02001-04-17 20:09:11 +00001773 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001774 /*
1775 ** The following asserts make sure that structures used by the btree are
1776 ** the right size. This is to guard against size changes that result
1777 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001778 */
drhe53831d2007-08-17 01:14:38 +00001779 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1780 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1781 assert( sizeof(u32)==4 );
1782 assert( sizeof(u16)==2 );
1783 assert( sizeof(Pgno)==4 );
1784
1785 pBt = sqlite3MallocZero( sizeof(*pBt) );
1786 if( pBt==0 ){
1787 rc = SQLITE_NOMEM;
1788 goto btree_open_out;
1789 }
danielk197771d5d2c2008-09-29 11:49:47 +00001790 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001791 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001792 if( rc==SQLITE_OK ){
1793 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1794 }
1795 if( rc!=SQLITE_OK ){
1796 goto btree_open_out;
1797 }
danielk19772a50ff02009-04-10 09:47:06 +00001798 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001799 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001800 p->pBt = pBt;
1801
drhe53831d2007-08-17 01:14:38 +00001802 pBt->pCursor = 0;
1803 pBt->pPage1 = 0;
1804 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
drh5b47efa2010-02-12 18:18:39 +00001805#ifdef SQLITE_SECURE_DELETE
1806 pBt->secureDelete = 1;
1807#endif
drhe53831d2007-08-17 01:14:38 +00001808 pBt->pageSize = get2byte(&zDbHeader[16]);
1809 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1810 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001811 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001812#ifndef SQLITE_OMIT_AUTOVACUUM
1813 /* If the magic name ":memory:" will create an in-memory database, then
1814 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1815 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1816 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1817 ** regular file-name. In this case the auto-vacuum applies as per normal.
1818 */
1819 if( zFilename && !isMemdb ){
1820 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1821 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1822 }
1823#endif
1824 nReserve = 0;
1825 }else{
1826 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001827 pBt->pageSizeFixed = 1;
1828#ifndef SQLITE_OMIT_AUTOVACUUM
1829 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1830 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1831#endif
1832 }
drhfa9601a2009-06-18 17:22:39 +00001833 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001834 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001835 pBt->usableSize = pBt->pageSize - nReserve;
1836 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001837
1838#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1839 /* Add the new BtShared object to the linked list sharable BtShareds.
1840 */
1841 if( p->sharable ){
1842 sqlite3_mutex *mutexShared;
1843 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001844 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001845 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001846 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001847 if( pBt->mutex==0 ){
1848 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001849 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001850 goto btree_open_out;
1851 }
drhff0587c2007-08-29 17:43:19 +00001852 }
drhe53831d2007-08-17 01:14:38 +00001853 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001854 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1855 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001856 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001857 }
drheee46cf2004-11-06 00:02:48 +00001858#endif
drh90f5ecb2004-07-22 01:19:35 +00001859 }
danielk1977aef0bf62005-12-30 16:28:01 +00001860
drhcfed7bc2006-03-13 14:28:05 +00001861#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001862 /* If the new Btree uses a sharable pBtShared, then link the new
1863 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001864 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001865 */
drhe53831d2007-08-17 01:14:38 +00001866 if( p->sharable ){
1867 int i;
1868 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001869 for(i=0; i<db->nDb; i++){
1870 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001871 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1872 if( p->pBt<pSib->pBt ){
1873 p->pNext = pSib;
1874 p->pPrev = 0;
1875 pSib->pPrev = p;
1876 }else{
drhabddb0c2007-08-20 13:14:28 +00001877 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001878 pSib = pSib->pNext;
1879 }
1880 p->pNext = pSib->pNext;
1881 p->pPrev = pSib;
1882 if( p->pNext ){
1883 p->pNext->pPrev = p;
1884 }
1885 pSib->pNext = p;
1886 }
1887 break;
1888 }
1889 }
danielk1977aef0bf62005-12-30 16:28:01 +00001890 }
danielk1977aef0bf62005-12-30 16:28:01 +00001891#endif
1892 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001893
1894btree_open_out:
1895 if( rc!=SQLITE_OK ){
1896 if( pBt && pBt->pPager ){
1897 sqlite3PagerClose(pBt->pPager);
1898 }
drh17435752007-08-16 04:30:38 +00001899 sqlite3_free(pBt);
1900 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001901 *ppBtree = 0;
1902 }
drh7555d8e2009-03-20 13:15:30 +00001903 if( mutexOpen ){
1904 assert( sqlite3_mutex_held(mutexOpen) );
1905 sqlite3_mutex_leave(mutexOpen);
1906 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001907 return rc;
drha059ad02001-04-17 20:09:11 +00001908}
1909
1910/*
drhe53831d2007-08-17 01:14:38 +00001911** Decrement the BtShared.nRef counter. When it reaches zero,
1912** remove the BtShared structure from the sharing list. Return
1913** true if the BtShared.nRef counter reaches zero and return
1914** false if it is still positive.
1915*/
1916static int removeFromSharingList(BtShared *pBt){
1917#ifndef SQLITE_OMIT_SHARED_CACHE
1918 sqlite3_mutex *pMaster;
1919 BtShared *pList;
1920 int removed = 0;
1921
drhd677b3d2007-08-20 22:48:41 +00001922 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001923 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001924 sqlite3_mutex_enter(pMaster);
1925 pBt->nRef--;
1926 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001927 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1928 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001929 }else{
drh78f82d12008-09-02 00:52:52 +00001930 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001931 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001932 pList=pList->pNext;
1933 }
drh34004ce2008-07-11 16:15:17 +00001934 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001935 pList->pNext = pBt->pNext;
1936 }
1937 }
drh3285db22007-09-03 22:00:39 +00001938 if( SQLITE_THREADSAFE ){
1939 sqlite3_mutex_free(pBt->mutex);
1940 }
drhe53831d2007-08-17 01:14:38 +00001941 removed = 1;
1942 }
1943 sqlite3_mutex_leave(pMaster);
1944 return removed;
1945#else
1946 return 1;
1947#endif
1948}
1949
1950/*
drhf7141992008-06-19 00:16:08 +00001951** Make sure pBt->pTmpSpace points to an allocation of
1952** MX_CELL_SIZE(pBt) bytes.
1953*/
1954static void allocateTempSpace(BtShared *pBt){
1955 if( !pBt->pTmpSpace ){
1956 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1957 }
1958}
1959
1960/*
1961** Free the pBt->pTmpSpace allocation
1962*/
1963static void freeTempSpace(BtShared *pBt){
1964 sqlite3PageFree( pBt->pTmpSpace);
1965 pBt->pTmpSpace = 0;
1966}
1967
1968/*
drha059ad02001-04-17 20:09:11 +00001969** Close an open database and invalidate all cursors.
1970*/
danielk1977aef0bf62005-12-30 16:28:01 +00001971int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001972 BtShared *pBt = p->pBt;
1973 BtCursor *pCur;
1974
danielk1977aef0bf62005-12-30 16:28:01 +00001975 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001976 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001977 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001978 pCur = pBt->pCursor;
1979 while( pCur ){
1980 BtCursor *pTmp = pCur;
1981 pCur = pCur->pNext;
1982 if( pTmp->pBtree==p ){
1983 sqlite3BtreeCloseCursor(pTmp);
1984 }
drha059ad02001-04-17 20:09:11 +00001985 }
danielk1977aef0bf62005-12-30 16:28:01 +00001986
danielk19778d34dfd2006-01-24 16:37:57 +00001987 /* Rollback any active transaction and free the handle structure.
1988 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1989 ** this handle.
1990 */
danielk1977b597f742006-01-15 11:39:18 +00001991 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001992 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001993
danielk1977aef0bf62005-12-30 16:28:01 +00001994 /* If there are still other outstanding references to the shared-btree
1995 ** structure, return now. The remainder of this procedure cleans
1996 ** up the shared-btree.
1997 */
drhe53831d2007-08-17 01:14:38 +00001998 assert( p->wantToLock==0 && p->locked==0 );
1999 if( !p->sharable || removeFromSharingList(pBt) ){
2000 /* The pBt is no longer on the sharing list, so we can access
2001 ** it without having to hold the mutex.
2002 **
2003 ** Clean out and delete the BtShared object.
2004 */
2005 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002006 sqlite3PagerClose(pBt->pPager);
2007 if( pBt->xFreeSchema && pBt->pSchema ){
2008 pBt->xFreeSchema(pBt->pSchema);
2009 }
2010 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002011 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002012 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002013 }
2014
drhe53831d2007-08-17 01:14:38 +00002015#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002016 assert( p->wantToLock==0 );
2017 assert( p->locked==0 );
2018 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2019 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002020#endif
2021
drhe53831d2007-08-17 01:14:38 +00002022 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002023 return SQLITE_OK;
2024}
2025
2026/*
drhda47d772002-12-02 04:25:19 +00002027** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002028**
2029** The maximum number of cache pages is set to the absolute
2030** value of mxPage. If mxPage is negative, the pager will
2031** operate asynchronously - it will not stop to do fsync()s
2032** to insure data is written to the disk surface before
2033** continuing. Transactions still work if synchronous is off,
2034** and the database cannot be corrupted if this program
2035** crashes. But if the operating system crashes or there is
2036** an abrupt power failure when synchronous is off, the database
2037** could be left in an inconsistent and unrecoverable state.
2038** Synchronous is on by default so database corruption is not
2039** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002040*/
danielk1977aef0bf62005-12-30 16:28:01 +00002041int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2042 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002043 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002044 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002045 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002046 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002047 return SQLITE_OK;
2048}
2049
2050/*
drh973b6e32003-02-12 14:09:42 +00002051** Change the way data is synced to disk in order to increase or decrease
2052** how well the database resists damage due to OS crashes and power
2053** failures. Level 1 is the same as asynchronous (no syncs() occur and
2054** there is a high probability of damage) Level 2 is the default. There
2055** is a very low but non-zero probability of damage. Level 3 reduces the
2056** probability of damage to near zero but with a write performance reduction.
2057*/
danielk197793758c82005-01-21 08:13:14 +00002058#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002059int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002060 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002061 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002062 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002063 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002064 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002065 return SQLITE_OK;
2066}
danielk197793758c82005-01-21 08:13:14 +00002067#endif
drh973b6e32003-02-12 14:09:42 +00002068
drh2c8997b2005-08-27 16:36:48 +00002069/*
2070** Return TRUE if the given btree is set to safety level 1. In other
2071** words, return TRUE if no sync() occurs on the disk files.
2072*/
danielk1977aef0bf62005-12-30 16:28:01 +00002073int sqlite3BtreeSyncDisabled(Btree *p){
2074 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002075 int rc;
drhe5fe6902007-12-07 18:55:28 +00002076 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002077 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002078 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002079 rc = sqlite3PagerNosync(pBt->pPager);
2080 sqlite3BtreeLeave(p);
2081 return rc;
drh2c8997b2005-08-27 16:36:48 +00002082}
2083
danielk1977576ec6b2005-01-21 11:55:25 +00002084#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002085/*
drh90f5ecb2004-07-22 01:19:35 +00002086** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002087** Or, if the page size has already been fixed, return SQLITE_READONLY
2088** without changing anything.
drh06f50212004-11-02 14:24:33 +00002089**
2090** The page size must be a power of 2 between 512 and 65536. If the page
2091** size supplied does not meet this constraint then the page size is not
2092** changed.
2093**
2094** Page sizes are constrained to be a power of two so that the region
2095** of the database file used for locking (beginning at PENDING_BYTE,
2096** the first byte past the 1GB boundary, 0x40000000) needs to occur
2097** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002098**
2099** If parameter nReserve is less than zero, then the number of reserved
2100** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002101**
2102** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2103** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002104*/
drhce4869f2009-04-02 20:16:58 +00002105int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002106 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002107 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002108 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002109 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002110 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002111 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002112 return SQLITE_READONLY;
2113 }
2114 if( nReserve<0 ){
2115 nReserve = pBt->pageSize - pBt->usableSize;
2116 }
drhf49661a2008-12-10 16:45:50 +00002117 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002118 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2119 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002120 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002121 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00002122 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002123 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002124 }
drhfa9601a2009-06-18 17:22:39 +00002125 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002126 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002127 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002128 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002129 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002130}
2131
2132/*
2133** Return the currently defined page size
2134*/
danielk1977aef0bf62005-12-30 16:28:01 +00002135int sqlite3BtreeGetPageSize(Btree *p){
2136 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002137}
drh7f751222009-03-17 22:33:00 +00002138
2139/*
2140** Return the number of bytes of space at the end of every page that
2141** are intentually left unused. This is the "reserved" space that is
2142** sometimes used by extensions.
2143*/
danielk1977aef0bf62005-12-30 16:28:01 +00002144int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002145 int n;
2146 sqlite3BtreeEnter(p);
2147 n = p->pBt->pageSize - p->pBt->usableSize;
2148 sqlite3BtreeLeave(p);
2149 return n;
drh2011d5f2004-07-22 02:40:37 +00002150}
drhf8e632b2007-05-08 14:51:36 +00002151
2152/*
2153** Set the maximum page count for a database if mxPage is positive.
2154** No changes are made if mxPage is 0 or negative.
2155** Regardless of the value of mxPage, return the maximum page count.
2156*/
2157int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002158 int n;
2159 sqlite3BtreeEnter(p);
2160 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2161 sqlite3BtreeLeave(p);
2162 return n;
drhf8e632b2007-05-08 14:51:36 +00002163}
drh5b47efa2010-02-12 18:18:39 +00002164
2165/*
2166** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1,
2167** then make no changes. Always return the value of the secureDelete
2168** setting after the change.
2169*/
2170int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2171 int b;
drhaf034ed2010-02-12 19:46:26 +00002172 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002173 sqlite3BtreeEnter(p);
2174 if( newFlag>=0 ){
2175 p->pBt->secureDelete = (newFlag!=0) ? 1 : 0;
2176 }
2177 b = p->pBt->secureDelete;
2178 sqlite3BtreeLeave(p);
2179 return b;
2180}
danielk1977576ec6b2005-01-21 11:55:25 +00002181#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002182
2183/*
danielk1977951af802004-11-05 15:45:09 +00002184** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2185** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2186** is disabled. The default value for the auto-vacuum property is
2187** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2188*/
danielk1977aef0bf62005-12-30 16:28:01 +00002189int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002190#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002191 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002192#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002193 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002194 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002195 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002196
2197 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002198 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002199 rc = SQLITE_READONLY;
2200 }else{
drh076d4662009-02-18 20:31:18 +00002201 pBt->autoVacuum = av ?1:0;
2202 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002203 }
drhd677b3d2007-08-20 22:48:41 +00002204 sqlite3BtreeLeave(p);
2205 return rc;
danielk1977951af802004-11-05 15:45:09 +00002206#endif
2207}
2208
2209/*
2210** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2211** enabled 1 is returned. Otherwise 0.
2212*/
danielk1977aef0bf62005-12-30 16:28:01 +00002213int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002214#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002215 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002216#else
drhd677b3d2007-08-20 22:48:41 +00002217 int rc;
2218 sqlite3BtreeEnter(p);
2219 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002220 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2221 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2222 BTREE_AUTOVACUUM_INCR
2223 );
drhd677b3d2007-08-20 22:48:41 +00002224 sqlite3BtreeLeave(p);
2225 return rc;
danielk1977951af802004-11-05 15:45:09 +00002226#endif
2227}
2228
2229
2230/*
drha34b6762004-05-07 13:30:42 +00002231** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002232** also acquire a readlock on that file.
2233**
2234** SQLITE_OK is returned on success. If the file is not a
2235** well-formed database file, then SQLITE_CORRUPT is returned.
2236** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002237** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002238*/
danielk1977aef0bf62005-12-30 16:28:01 +00002239static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00002240 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002241 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00002242 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002243
drh1fee73e2007-08-29 04:00:57 +00002244 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002245 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002246 rc = sqlite3PagerSharedLock(pBt->pPager);
2247 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002248 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002249 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002250
2251 /* Do some checking to help insure the file we opened really is
2252 ** a valid database file.
2253 */
drhdd3cd972010-03-27 17:12:36 +00002254 nPage = get4byte(28+(u8*)pPage1->aData);
drh97b59a52010-03-31 02:31:33 +00002255 if( nPage==0 ){
2256 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2257 /* The sqlite3PagerSharedLock() call above has already determined
2258 ** the database file size, so this call to sqlite3PagerPagecount()
2259 ** cannot fail. */
2260 if( NEVER(rc) ) goto page1_init_failed;
2261 }
2262 if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002263 int pageSize;
2264 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002265 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002266 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002267 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002268 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002269 }
drh309169a2007-04-24 17:27:51 +00002270 if( page1[18]>1 ){
2271 pBt->readOnly = 1;
2272 }
2273 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00002274 goto page1_init_failed;
2275 }
drhe5ae5732008-06-15 02:51:47 +00002276
2277 /* The maximum embedded fraction must be exactly 25%. And the minimum
2278 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2279 ** The original design allowed these amounts to vary, but as of
2280 ** version 3.6.0, we require them to be fixed.
2281 */
2282 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2283 goto page1_init_failed;
2284 }
drh07d183d2005-05-01 22:52:42 +00002285 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002286 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2287 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2288 ){
drh07d183d2005-05-01 22:52:42 +00002289 goto page1_init_failed;
2290 }
2291 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002292 usableSize = pageSize - page1[20];
2293 if( pageSize!=pBt->pageSize ){
2294 /* After reading the first page of the database assuming a page size
2295 ** of BtShared.pageSize, we have discovered that the page-size is
2296 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2297 ** zero and return SQLITE_OK. The caller will call this function
2298 ** again with the correct page-size.
2299 */
2300 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002301 pBt->usableSize = (u16)usableSize;
2302 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002303 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002304 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2305 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002306 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002307 }
drhb33e1b92009-06-18 11:29:20 +00002308 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002309 goto page1_init_failed;
2310 }
drh1bd10f82008-12-10 21:19:56 +00002311 pBt->pageSize = (u16)pageSize;
2312 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002313#ifndef SQLITE_OMIT_AUTOVACUUM
2314 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002315 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002316#endif
drh306dc212001-05-21 13:45:10 +00002317 }
drhb6f41482004-05-14 01:58:11 +00002318
2319 /* maxLocal is the maximum amount of payload to store locally for
2320 ** a cell. Make sure it is small enough so that at least minFanout
2321 ** cells can will fit on one page. We assume a 10-byte page header.
2322 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002323 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002324 ** 4-byte child pointer
2325 ** 9-byte nKey value
2326 ** 4-byte nData value
2327 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002328 ** So a cell consists of a 2-byte poiner, a header which is as much as
2329 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2330 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002331 */
drhe5ae5732008-06-15 02:51:47 +00002332 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2333 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002334 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002335 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002336 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002337 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002338 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002339 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002340
drh72f82862001-05-24 21:06:34 +00002341page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002342 releasePage(pPage1);
2343 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002344 return rc;
drh306dc212001-05-21 13:45:10 +00002345}
2346
2347/*
drhb8ca3072001-12-05 00:21:20 +00002348** If there are no outstanding cursors and we are not in the middle
2349** of a transaction but there is a read lock on the database, then
2350** this routine unrefs the first page of the database file which
2351** has the effect of releasing the read lock.
2352**
drhb8ca3072001-12-05 00:21:20 +00002353** If there is a transaction in progress, this routine is a no-op.
2354*/
danielk1977aef0bf62005-12-30 16:28:01 +00002355static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002356 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002357 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2358 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002359 assert( pBt->pPage1->aData );
2360 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2361 assert( pBt->pPage1->aData );
2362 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002363 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002364 }
2365}
2366
2367/*
drhe39f2f92009-07-23 01:43:59 +00002368** If pBt points to an empty file then convert that empty file
2369** into a new empty database by initializing the first page of
2370** the database.
drh8b2f49b2001-06-08 00:21:52 +00002371*/
danielk1977aef0bf62005-12-30 16:28:01 +00002372static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002373 MemPage *pP1;
2374 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002375 int rc;
drhd677b3d2007-08-20 22:48:41 +00002376
drh1fee73e2007-08-29 04:00:57 +00002377 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002378 if( pBt->nPage>0 ){
2379 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002380 }
drh3aac2dd2004-04-26 14:10:20 +00002381 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002382 assert( pP1!=0 );
2383 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002384 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002385 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002386 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2387 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002388 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002389 data[18] = 1;
2390 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002391 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2392 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002393 data[21] = 64;
2394 data[22] = 32;
2395 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002396 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002397 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002398 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002399#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002400 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002401 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002402 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002403 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002404#endif
drhdd3cd972010-03-27 17:12:36 +00002405 pBt->nPage = 1;
2406 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002407 return SQLITE_OK;
2408}
2409
2410/*
danielk1977ee5741e2004-05-31 10:01:34 +00002411** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002412** is started if the second argument is nonzero, otherwise a read-
2413** transaction. If the second argument is 2 or more and exclusive
2414** transaction is started, meaning that no other process is allowed
2415** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002416** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002417** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002418**
danielk1977ee5741e2004-05-31 10:01:34 +00002419** A write-transaction must be started before attempting any
2420** changes to the database. None of the following routines
2421** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002422**
drh23e11ca2004-05-04 17:27:28 +00002423** sqlite3BtreeCreateTable()
2424** sqlite3BtreeCreateIndex()
2425** sqlite3BtreeClearTable()
2426** sqlite3BtreeDropTable()
2427** sqlite3BtreeInsert()
2428** sqlite3BtreeDelete()
2429** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002430**
drhb8ef32c2005-03-14 02:01:49 +00002431** If an initial attempt to acquire the lock fails because of lock contention
2432** and the database was previously unlocked, then invoke the busy handler
2433** if there is one. But if there was previously a read-lock, do not
2434** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2435** returned when there is already a read-lock in order to avoid a deadlock.
2436**
2437** Suppose there are two processes A and B. A has a read lock and B has
2438** a reserved lock. B tries to promote to exclusive but is blocked because
2439** of A's read lock. A tries to promote to reserved but is blocked by B.
2440** One or the other of the two processes must give way or there can be
2441** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2442** when A already has a read lock, we encourage A to give up and let B
2443** proceed.
drha059ad02001-04-17 20:09:11 +00002444*/
danielk1977aef0bf62005-12-30 16:28:01 +00002445int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002446 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002447 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002448 int rc = SQLITE_OK;
2449
drhd677b3d2007-08-20 22:48:41 +00002450 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002451 btreeIntegrity(p);
2452
danielk1977ee5741e2004-05-31 10:01:34 +00002453 /* If the btree is already in a write-transaction, or it
2454 ** is already in a read-transaction and a read-transaction
2455 ** is requested, this is a no-op.
2456 */
danielk1977aef0bf62005-12-30 16:28:01 +00002457 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002458 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002459 }
drhb8ef32c2005-03-14 02:01:49 +00002460
2461 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002462 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002463 rc = SQLITE_READONLY;
2464 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002465 }
2466
danielk1977404ca072009-03-16 13:19:36 +00002467#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002468 /* If another database handle has already opened a write transaction
2469 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002470 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002471 */
danielk1977404ca072009-03-16 13:19:36 +00002472 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2473 pBlock = pBt->pWriter->db;
2474 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002475 BtLock *pIter;
2476 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2477 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002478 pBlock = pIter->pBtree->db;
2479 break;
danielk1977641b0f42007-12-21 04:47:25 +00002480 }
2481 }
2482 }
danielk1977404ca072009-03-16 13:19:36 +00002483 if( pBlock ){
2484 sqlite3ConnectionBlocked(p->db, pBlock);
2485 rc = SQLITE_LOCKED_SHAREDCACHE;
2486 goto trans_begun;
2487 }
danielk1977641b0f42007-12-21 04:47:25 +00002488#endif
2489
danielk1977602b4662009-07-02 07:47:33 +00002490 /* Any read-only or read-write transaction implies a read-lock on
2491 ** page 1. So if some other shared-cache client already has a write-lock
2492 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002493 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2494 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002495
drh25a80ad2010-03-29 21:13:12 +00002496 pBt->initiallyEmpty = pBt->nPage==0;
drhb8ef32c2005-03-14 02:01:49 +00002497 do {
danielk1977295dc102009-04-01 19:07:03 +00002498 /* Call lockBtree() until either pBt->pPage1 is populated or
2499 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2500 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2501 ** reading page 1 it discovers that the page-size of the database
2502 ** file is not pBt->pageSize. In this case lockBtree() will update
2503 ** pBt->pageSize to the page-size of the file on disk.
2504 */
2505 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002506
drhb8ef32c2005-03-14 02:01:49 +00002507 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002508 if( pBt->readOnly ){
2509 rc = SQLITE_READONLY;
2510 }else{
danielk1977d8293352009-04-30 09:10:37 +00002511 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002512 if( rc==SQLITE_OK ){
2513 rc = newDatabase(pBt);
2514 }
drhb8ef32c2005-03-14 02:01:49 +00002515 }
2516 }
2517
danielk1977bd434552009-03-18 10:33:00 +00002518 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002519 unlockBtreeIfUnused(pBt);
2520 }
danielk1977aef0bf62005-12-30 16:28:01 +00002521 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002522 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002523
2524 if( rc==SQLITE_OK ){
2525 if( p->inTrans==TRANS_NONE ){
2526 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002527#ifndef SQLITE_OMIT_SHARED_CACHE
2528 if( p->sharable ){
2529 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2530 p->lock.eLock = READ_LOCK;
2531 p->lock.pNext = pBt->pLock;
2532 pBt->pLock = &p->lock;
2533 }
2534#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002535 }
2536 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2537 if( p->inTrans>pBt->inTransaction ){
2538 pBt->inTransaction = p->inTrans;
2539 }
danielk1977641b0f42007-12-21 04:47:25 +00002540#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002541 if( wrflag ){
2542 assert( !pBt->pWriter );
2543 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002544 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002545 }
2546#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002547 }
2548
drhd677b3d2007-08-20 22:48:41 +00002549
2550trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002551 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002552 /* This call makes sure that the pager has the correct number of
2553 ** open savepoints. If the second parameter is greater than 0 and
2554 ** the sub-journal is not already open, then it will be opened here.
2555 */
danielk1977fd7f0452008-12-17 17:30:26 +00002556 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2557 }
danielk197712dd5492008-12-18 15:45:07 +00002558
danielk1977aef0bf62005-12-30 16:28:01 +00002559 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002560 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002561 return rc;
drha059ad02001-04-17 20:09:11 +00002562}
2563
danielk1977687566d2004-11-02 12:56:41 +00002564#ifndef SQLITE_OMIT_AUTOVACUUM
2565
2566/*
2567** Set the pointer-map entries for all children of page pPage. Also, if
2568** pPage contains cells that point to overflow pages, set the pointer
2569** map entries for the overflow pages as well.
2570*/
2571static int setChildPtrmaps(MemPage *pPage){
2572 int i; /* Counter variable */
2573 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002574 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002575 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002576 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002577 Pgno pgno = pPage->pgno;
2578
drh1fee73e2007-08-29 04:00:57 +00002579 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002580 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002581 if( rc!=SQLITE_OK ){
2582 goto set_child_ptrmaps_out;
2583 }
danielk1977687566d2004-11-02 12:56:41 +00002584 nCell = pPage->nCell;
2585
2586 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002587 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002588
drh98add2e2009-07-20 17:11:49 +00002589 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002590
danielk1977687566d2004-11-02 12:56:41 +00002591 if( !pPage->leaf ){
2592 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002593 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002594 }
2595 }
2596
2597 if( !pPage->leaf ){
2598 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002599 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002600 }
2601
2602set_child_ptrmaps_out:
2603 pPage->isInit = isInitOrig;
2604 return rc;
2605}
2606
2607/*
drhf3aed592009-07-08 18:12:49 +00002608** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2609** that it points to iTo. Parameter eType describes the type of pointer to
2610** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002611**
2612** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2613** page of pPage.
2614**
2615** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2616** page pointed to by one of the cells on pPage.
2617**
2618** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2619** overflow page in the list.
2620*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002621static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002622 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002623 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002624 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002625 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002626 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002627 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002628 }
danielk1977f78fc082004-11-02 14:40:32 +00002629 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002630 }else{
drhf49661a2008-12-10 16:45:50 +00002631 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002632 int i;
2633 int nCell;
2634
danielk197730548662009-07-09 05:07:37 +00002635 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002636 nCell = pPage->nCell;
2637
danielk1977687566d2004-11-02 12:56:41 +00002638 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002639 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002640 if( eType==PTRMAP_OVERFLOW1 ){
2641 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002642 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002643 if( info.iOverflow ){
2644 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2645 put4byte(&pCell[info.iOverflow], iTo);
2646 break;
2647 }
2648 }
2649 }else{
2650 if( get4byte(pCell)==iFrom ){
2651 put4byte(pCell, iTo);
2652 break;
2653 }
2654 }
2655 }
2656
2657 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002658 if( eType!=PTRMAP_BTREE ||
2659 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002660 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002661 }
danielk1977687566d2004-11-02 12:56:41 +00002662 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2663 }
2664
2665 pPage->isInit = isInitOrig;
2666 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002667 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002668}
2669
danielk1977003ba062004-11-04 02:57:33 +00002670
danielk19777701e812005-01-10 12:59:51 +00002671/*
2672** Move the open database page pDbPage to location iFreePage in the
2673** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002674**
2675** The isCommit flag indicates that there is no need to remember that
2676** the journal needs to be sync()ed before database page pDbPage->pgno
2677** can be written to. The caller has already promised not to write to that
2678** page.
danielk19777701e812005-01-10 12:59:51 +00002679*/
danielk1977003ba062004-11-04 02:57:33 +00002680static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002681 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002682 MemPage *pDbPage, /* Open page to move */
2683 u8 eType, /* Pointer map 'type' entry for pDbPage */
2684 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002685 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002686 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002687){
2688 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2689 Pgno iDbPage = pDbPage->pgno;
2690 Pager *pPager = pBt->pPager;
2691 int rc;
2692
danielk1977a0bf2652004-11-04 14:30:04 +00002693 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2694 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002695 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002696 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002697
drh85b623f2007-12-13 21:54:09 +00002698 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002699 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2700 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002701 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002702 if( rc!=SQLITE_OK ){
2703 return rc;
2704 }
2705 pDbPage->pgno = iFreePage;
2706
2707 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2708 ** that point to overflow pages. The pointer map entries for all these
2709 ** pages need to be changed.
2710 **
2711 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2712 ** pointer to a subsequent overflow page. If this is the case, then
2713 ** the pointer map needs to be updated for the subsequent overflow page.
2714 */
danielk1977a0bf2652004-11-04 14:30:04 +00002715 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002716 rc = setChildPtrmaps(pDbPage);
2717 if( rc!=SQLITE_OK ){
2718 return rc;
2719 }
2720 }else{
2721 Pgno nextOvfl = get4byte(pDbPage->aData);
2722 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002723 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002724 if( rc!=SQLITE_OK ){
2725 return rc;
2726 }
2727 }
2728 }
2729
2730 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2731 ** that it points at iFreePage. Also fix the pointer map entry for
2732 ** iPtrPage.
2733 */
danielk1977a0bf2652004-11-04 14:30:04 +00002734 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002735 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002736 if( rc!=SQLITE_OK ){
2737 return rc;
2738 }
danielk19773b8a05f2007-03-19 17:44:26 +00002739 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002740 if( rc!=SQLITE_OK ){
2741 releasePage(pPtrPage);
2742 return rc;
2743 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002744 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002745 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002746 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002747 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002748 }
danielk1977003ba062004-11-04 02:57:33 +00002749 }
danielk1977003ba062004-11-04 02:57:33 +00002750 return rc;
2751}
2752
danielk1977dddbcdc2007-04-26 14:42:34 +00002753/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002754static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002755
2756/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002757** Perform a single step of an incremental-vacuum. If successful,
2758** return SQLITE_OK. If there is no work to do (and therefore no
2759** point in calling this function again), return SQLITE_DONE.
2760**
2761** More specificly, this function attempts to re-organize the
2762** database so that the last page of the file currently in use
2763** is no longer in use.
2764**
drhea8ffdf2009-07-22 00:35:23 +00002765** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002766** that the caller will keep calling incrVacuumStep() until
2767** it returns SQLITE_DONE or an error, and that nFin is the
2768** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002769** process is complete. If nFin is zero, it is assumed that
2770** incrVacuumStep() will be called a finite amount of times
2771** which may or may not empty the freelist. A full autovacuum
2772** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002773*/
danielk19773460d192008-12-27 15:23:13 +00002774static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002775 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002776 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002777
drh1fee73e2007-08-29 04:00:57 +00002778 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002779 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002780
2781 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002782 u8 eType;
2783 Pgno iPtrPage;
2784
2785 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002786 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002787 return SQLITE_DONE;
2788 }
2789
2790 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2791 if( rc!=SQLITE_OK ){
2792 return rc;
2793 }
2794 if( eType==PTRMAP_ROOTPAGE ){
2795 return SQLITE_CORRUPT_BKPT;
2796 }
2797
2798 if( eType==PTRMAP_FREEPAGE ){
2799 if( nFin==0 ){
2800 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002801 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002802 ** truncated to zero after this function returns, so it doesn't
2803 ** matter if it still contains some garbage entries.
2804 */
2805 Pgno iFreePg;
2806 MemPage *pFreePg;
2807 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2808 if( rc!=SQLITE_OK ){
2809 return rc;
2810 }
2811 assert( iFreePg==iLastPg );
2812 releasePage(pFreePg);
2813 }
2814 } else {
2815 Pgno iFreePg; /* Index of free page to move pLastPg to */
2816 MemPage *pLastPg;
2817
danielk197730548662009-07-09 05:07:37 +00002818 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002819 if( rc!=SQLITE_OK ){
2820 return rc;
2821 }
2822
danielk1977b4626a32007-04-28 15:47:43 +00002823 /* If nFin is zero, this loop runs exactly once and page pLastPg
2824 ** is swapped with the first free page pulled off the free list.
2825 **
2826 ** On the other hand, if nFin is greater than zero, then keep
2827 ** looping until a free-page located within the first nFin pages
2828 ** of the file is found.
2829 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002830 do {
2831 MemPage *pFreePg;
2832 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2833 if( rc!=SQLITE_OK ){
2834 releasePage(pLastPg);
2835 return rc;
2836 }
2837 releasePage(pFreePg);
2838 }while( nFin!=0 && iFreePg>nFin );
2839 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002840
2841 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002842 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002843 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002844 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002845 releasePage(pLastPg);
2846 if( rc!=SQLITE_OK ){
2847 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002848 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002849 }
2850 }
2851
danielk19773460d192008-12-27 15:23:13 +00002852 if( nFin==0 ){
2853 iLastPg--;
2854 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002855 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2856 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002857 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002858 if( rc!=SQLITE_OK ){
2859 return rc;
2860 }
2861 rc = sqlite3PagerWrite(pPg->pDbPage);
2862 releasePage(pPg);
2863 if( rc!=SQLITE_OK ){
2864 return rc;
2865 }
2866 }
danielk19773460d192008-12-27 15:23:13 +00002867 iLastPg--;
2868 }
2869 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002870 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002871 }
2872 return SQLITE_OK;
2873}
2874
2875/*
2876** A write-transaction must be opened before calling this function.
2877** It performs a single unit of work towards an incremental vacuum.
2878**
2879** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002880** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002881** SQLITE_OK is returned. Otherwise an SQLite error code.
2882*/
2883int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002884 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002885 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002886
2887 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002888 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2889 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002890 rc = SQLITE_DONE;
2891 }else{
2892 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00002893 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00002894 if( rc==SQLITE_OK ){
2895 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2896 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
2897 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002898 }
drhd677b3d2007-08-20 22:48:41 +00002899 sqlite3BtreeLeave(p);
2900 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002901}
2902
2903/*
danielk19773b8a05f2007-03-19 17:44:26 +00002904** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002905** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002906**
2907** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2908** the database file should be truncated to during the commit process.
2909** i.e. the database has been reorganized so that only the first *pnTrunc
2910** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002911*/
danielk19773460d192008-12-27 15:23:13 +00002912static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002913 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002914 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002915 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002916
drh1fee73e2007-08-29 04:00:57 +00002917 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002918 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002919 assert(pBt->autoVacuum);
2920 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00002921 Pgno nFin; /* Number of pages in database after autovacuuming */
2922 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00002923 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
2924 Pgno iFree; /* The next page to be freed */
2925 int nEntry; /* Number of entries on one ptrmap page */
2926 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00002927
drhb1299152010-03-30 22:58:33 +00002928 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00002929 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2930 /* It is not possible to create a database for which the final page
2931 ** is either a pointer-map page or the pending-byte page. If one
2932 ** is encountered, this indicates corruption.
2933 */
danielk19773460d192008-12-27 15:23:13 +00002934 return SQLITE_CORRUPT_BKPT;
2935 }
danielk1977ef165ce2009-04-06 17:50:03 +00002936
danielk19773460d192008-12-27 15:23:13 +00002937 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00002938 nEntry = pBt->usableSize/5;
2939 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00002940 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002941 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002942 nFin--;
2943 }
2944 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2945 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002946 }
drhc5e47ac2009-06-04 00:11:56 +00002947 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002948
danielk19773460d192008-12-27 15:23:13 +00002949 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2950 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002951 }
danielk19773460d192008-12-27 15:23:13 +00002952 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00002953 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2954 put4byte(&pBt->pPage1->aData[32], 0);
2955 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00002956 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00002957 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00002958 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00002959 }
2960 if( rc!=SQLITE_OK ){
2961 sqlite3PagerRollback(pPager);
2962 }
danielk1977687566d2004-11-02 12:56:41 +00002963 }
2964
danielk19773b8a05f2007-03-19 17:44:26 +00002965 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002966 return rc;
2967}
danielk1977dddbcdc2007-04-26 14:42:34 +00002968
danielk1977a50d9aa2009-06-08 14:49:45 +00002969#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2970# define setChildPtrmaps(x) SQLITE_OK
2971#endif
danielk1977687566d2004-11-02 12:56:41 +00002972
2973/*
drh80e35f42007-03-30 14:06:34 +00002974** This routine does the first phase of a two-phase commit. This routine
2975** causes a rollback journal to be created (if it does not already exist)
2976** and populated with enough information so that if a power loss occurs
2977** the database can be restored to its original state by playing back
2978** the journal. Then the contents of the journal are flushed out to
2979** the disk. After the journal is safely on oxide, the changes to the
2980** database are written into the database file and flushed to oxide.
2981** At the end of this call, the rollback journal still exists on the
2982** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002983** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002984** commit process.
2985**
2986** This call is a no-op if no write-transaction is currently active on pBt.
2987**
2988** Otherwise, sync the database file for the btree pBt. zMaster points to
2989** the name of a master journal file that should be written into the
2990** individual journal file, or is NULL, indicating no master journal file
2991** (single database transaction).
2992**
2993** When this is called, the master journal should already have been
2994** created, populated with this journal pointer and synced to disk.
2995**
2996** Once this is routine has returned, the only thing required to commit
2997** the write-transaction for this database file is to delete the journal.
2998*/
2999int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3000 int rc = SQLITE_OK;
3001 if( p->inTrans==TRANS_WRITE ){
3002 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003003 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003004#ifndef SQLITE_OMIT_AUTOVACUUM
3005 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003006 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003007 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003008 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003009 return rc;
3010 }
3011 }
3012#endif
drh49b9d332009-01-02 18:10:42 +00003013 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003014 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003015 }
3016 return rc;
3017}
3018
3019/*
danielk197794b30732009-07-02 17:21:57 +00003020** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3021** at the conclusion of a transaction.
3022*/
3023static void btreeEndTransaction(Btree *p){
3024 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003025 assert( sqlite3BtreeHoldsMutex(p) );
3026
danielk197794b30732009-07-02 17:21:57 +00003027 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003028 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3029 /* If there are other active statements that belong to this database
3030 ** handle, downgrade to a read-only transaction. The other statements
3031 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003032 downgradeAllSharedCacheTableLocks(p);
3033 p->inTrans = TRANS_READ;
3034 }else{
3035 /* If the handle had any kind of transaction open, decrement the
3036 ** transaction count of the shared btree. If the transaction count
3037 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3038 ** call below will unlock the pager. */
3039 if( p->inTrans!=TRANS_NONE ){
3040 clearAllSharedCacheTableLocks(p);
3041 pBt->nTransaction--;
3042 if( 0==pBt->nTransaction ){
3043 pBt->inTransaction = TRANS_NONE;
3044 }
3045 }
3046
3047 /* Set the current transaction state to TRANS_NONE and unlock the
3048 ** pager if this call closed the only read or write transaction. */
3049 p->inTrans = TRANS_NONE;
3050 unlockBtreeIfUnused(pBt);
3051 }
3052
3053 btreeIntegrity(p);
3054}
3055
3056/*
drh2aa679f2001-06-25 02:11:07 +00003057** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003058**
drh6e345992007-03-30 11:12:08 +00003059** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003060** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3061** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3062** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003063** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003064** routine has to do is delete or truncate or zero the header in the
3065** the rollback journal (which causes the transaction to commit) and
3066** drop locks.
drh6e345992007-03-30 11:12:08 +00003067**
drh5e00f6c2001-09-13 13:46:56 +00003068** This will release the write lock on the database file. If there
3069** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003070*/
drh80e35f42007-03-30 14:06:34 +00003071int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003072 BtShared *pBt = p->pBt;
3073
drhd677b3d2007-08-20 22:48:41 +00003074 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003075 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003076
3077 /* If the handle has a write-transaction open, commit the shared-btrees
3078 ** transaction and set the shared state to TRANS_READ.
3079 */
3080 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003081 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003082 assert( pBt->inTransaction==TRANS_WRITE );
3083 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003084 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003085 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003086 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003087 return rc;
3088 }
danielk1977aef0bf62005-12-30 16:28:01 +00003089 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003090 }
danielk1977aef0bf62005-12-30 16:28:01 +00003091
danielk197794b30732009-07-02 17:21:57 +00003092 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003093 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003094 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003095}
3096
drh80e35f42007-03-30 14:06:34 +00003097/*
3098** Do both phases of a commit.
3099*/
3100int sqlite3BtreeCommit(Btree *p){
3101 int rc;
drhd677b3d2007-08-20 22:48:41 +00003102 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003103 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3104 if( rc==SQLITE_OK ){
3105 rc = sqlite3BtreeCommitPhaseTwo(p);
3106 }
drhd677b3d2007-08-20 22:48:41 +00003107 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003108 return rc;
3109}
3110
danielk1977fbcd5852004-06-15 02:44:18 +00003111#ifndef NDEBUG
3112/*
3113** Return the number of write-cursors open on this handle. This is for use
3114** in assert() expressions, so it is only compiled if NDEBUG is not
3115** defined.
drhfb982642007-08-30 01:19:59 +00003116**
3117** For the purposes of this routine, a write-cursor is any cursor that
3118** is capable of writing to the databse. That means the cursor was
3119** originally opened for writing and the cursor has not be disabled
3120** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003121*/
danielk1977aef0bf62005-12-30 16:28:01 +00003122static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003123 BtCursor *pCur;
3124 int r = 0;
3125 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003126 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003127 }
3128 return r;
3129}
3130#endif
3131
drhc39e0002004-05-07 23:50:57 +00003132/*
drhfb982642007-08-30 01:19:59 +00003133** This routine sets the state to CURSOR_FAULT and the error
3134** code to errCode for every cursor on BtShared that pBtree
3135** references.
3136**
3137** Every cursor is tripped, including cursors that belong
3138** to other database connections that happen to be sharing
3139** the cache with pBtree.
3140**
3141** This routine gets called when a rollback occurs.
3142** All cursors using the same cache must be tripped
3143** to prevent them from trying to use the btree after
3144** the rollback. The rollback may have deleted tables
3145** or moved root pages, so it is not sufficient to
3146** save the state of the cursor. The cursor must be
3147** invalidated.
3148*/
3149void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3150 BtCursor *p;
3151 sqlite3BtreeEnter(pBtree);
3152 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003153 int i;
danielk1977be51a652008-10-08 17:58:48 +00003154 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003155 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003156 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003157 for(i=0; i<=p->iPage; i++){
3158 releasePage(p->apPage[i]);
3159 p->apPage[i] = 0;
3160 }
drhfb982642007-08-30 01:19:59 +00003161 }
3162 sqlite3BtreeLeave(pBtree);
3163}
3164
3165/*
drhecdc7532001-09-23 02:35:53 +00003166** Rollback the transaction in progress. All cursors will be
3167** invalided by this operation. Any attempt to use a cursor
3168** that was open at the beginning of this operation will result
3169** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003170**
3171** This will release the write lock on the database file. If there
3172** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003173*/
danielk1977aef0bf62005-12-30 16:28:01 +00003174int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003175 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003176 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003177 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003178
drhd677b3d2007-08-20 22:48:41 +00003179 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003180 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003181#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003182 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003183 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003184 ** trying to save cursor positions. If this is an automatic rollback (as
3185 ** the result of a constraint, malloc() failure or IO error) then
3186 ** the cache may be internally inconsistent (not contain valid trees) so
3187 ** we cannot simply return the error to the caller. Instead, abort
3188 ** all queries that may be using any of the cursors that failed to save.
3189 */
drhfb982642007-08-30 01:19:59 +00003190 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003191 }
danielk19778d34dfd2006-01-24 16:37:57 +00003192#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003193 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003194
3195 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003196 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003197
danielk19778d34dfd2006-01-24 16:37:57 +00003198 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003199 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003200 if( rc2!=SQLITE_OK ){
3201 rc = rc2;
3202 }
3203
drh24cd67e2004-05-10 16:18:47 +00003204 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003205 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003206 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003207 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00003208 releasePage(pPage1);
3209 }
danielk1977fbcd5852004-06-15 02:44:18 +00003210 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003211 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003212 }
danielk1977aef0bf62005-12-30 16:28:01 +00003213
danielk197794b30732009-07-02 17:21:57 +00003214 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003215 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003216 return rc;
3217}
3218
3219/*
danielk1977bd434552009-03-18 10:33:00 +00003220** Start a statement subtransaction. The subtransaction can can be rolled
3221** back independently of the main transaction. You must start a transaction
3222** before starting a subtransaction. The subtransaction is ended automatically
3223** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003224**
3225** Statement subtransactions are used around individual SQL statements
3226** that are contained within a BEGIN...COMMIT block. If a constraint
3227** error occurs within the statement, the effect of that one statement
3228** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003229**
3230** A statement sub-transaction is implemented as an anonymous savepoint. The
3231** value passed as the second parameter is the total number of savepoints,
3232** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3233** are no active savepoints and no other statement-transactions open,
3234** iStatement is 1. This anonymous savepoint can be released or rolled back
3235** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003236*/
danielk1977bd434552009-03-18 10:33:00 +00003237int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003238 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003239 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003240 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003241 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003242 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003243 assert( iStatement>0 );
3244 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003245 assert( pBt->inTransaction==TRANS_WRITE );
3246 /* At the pager level, a statement transaction is a savepoint with
3247 ** an index greater than all savepoints created explicitly using
3248 ** SQL statements. It is illegal to open, release or rollback any
3249 ** such savepoints while the statement transaction savepoint is active.
3250 */
3251 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003252 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003253 return rc;
3254}
3255
3256/*
danielk1977fd7f0452008-12-17 17:30:26 +00003257** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3258** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003259** savepoint identified by parameter iSavepoint, depending on the value
3260** of op.
3261**
3262** Normally, iSavepoint is greater than or equal to zero. However, if op is
3263** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3264** contents of the entire transaction are rolled back. This is different
3265** from a normal transaction rollback, as no locks are released and the
3266** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003267*/
3268int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3269 int rc = SQLITE_OK;
3270 if( p && p->inTrans==TRANS_WRITE ){
3271 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003272 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3273 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3274 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003275 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003276 if( rc==SQLITE_OK ){
drh25a80ad2010-03-29 21:13:12 +00003277 if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0;
drh9f0bbf92009-01-02 21:08:09 +00003278 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003279 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drh9f0bbf92009-01-02 21:08:09 +00003280 }
danielk1977fd7f0452008-12-17 17:30:26 +00003281 sqlite3BtreeLeave(p);
3282 }
3283 return rc;
3284}
3285
3286/*
drh8b2f49b2001-06-08 00:21:52 +00003287** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003288** iTable. If a read-only cursor is requested, it is assumed that
3289** the caller already has at least a read-only transaction open
3290** on the database already. If a write-cursor is requested, then
3291** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003292**
3293** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003294** If wrFlag==1, then the cursor can be used for reading or for
3295** writing if other conditions for writing are also met. These
3296** are the conditions that must be met in order for writing to
3297** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003298**
drhf74b8d92002-09-01 23:20:45 +00003299** 1: The cursor must have been opened with wrFlag==1
3300**
drhfe5d71d2007-03-19 11:54:10 +00003301** 2: Other database connections that share the same pager cache
3302** but which are not in the READ_UNCOMMITTED state may not have
3303** cursors open with wrFlag==0 on the same table. Otherwise
3304** the changes made by this write cursor would be visible to
3305** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003306**
3307** 3: The database must be writable (not on read-only media)
3308**
3309** 4: There must be an active transaction.
3310**
drh6446c4d2001-12-15 14:22:18 +00003311** No checking is done to make sure that page iTable really is the
3312** root page of a b-tree. If it is not, then the cursor acquired
3313** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003314**
drhf25a5072009-11-18 23:01:25 +00003315** It is assumed that the sqlite3BtreeCursorZero() has been called
3316** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003317*/
drhd677b3d2007-08-20 22:48:41 +00003318static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003319 Btree *p, /* The btree */
3320 int iTable, /* Root page of table to open */
3321 int wrFlag, /* 1 to write. 0 read-only */
3322 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3323 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003324){
danielk19773e8add92009-07-04 17:16:00 +00003325 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003326
drh1fee73e2007-08-29 04:00:57 +00003327 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003328 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003329
danielk1977602b4662009-07-02 07:47:33 +00003330 /* The following assert statements verify that if this is a sharable
3331 ** b-tree database, the connection is holding the required table locks,
3332 ** and that no other connection has any open cursor that conflicts with
3333 ** this lock. */
3334 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003335 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3336
danielk19773e8add92009-07-04 17:16:00 +00003337 /* Assert that the caller has opened the required transaction. */
3338 assert( p->inTrans>TRANS_NONE );
3339 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3340 assert( pBt->pPage1 && pBt->pPage1->aData );
3341
danielk197796d48e92009-06-29 06:00:37 +00003342 if( NEVER(wrFlag && pBt->readOnly) ){
3343 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003344 }
drhb1299152010-03-30 22:58:33 +00003345 if( iTable==1 && btreePagecount(pBt)==0 ){
danielk19773e8add92009-07-04 17:16:00 +00003346 return SQLITE_EMPTY;
3347 }
danielk1977aef0bf62005-12-30 16:28:01 +00003348
danielk1977aef0bf62005-12-30 16:28:01 +00003349 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003350 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003351 pCur->pgnoRoot = (Pgno)iTable;
3352 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003353 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003354 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003355 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003356 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003357 pCur->pNext = pBt->pCursor;
3358 if( pCur->pNext ){
3359 pCur->pNext->pPrev = pCur;
3360 }
3361 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003362 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003363 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003364 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003365}
drhd677b3d2007-08-20 22:48:41 +00003366int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003367 Btree *p, /* The btree */
3368 int iTable, /* Root page of table to open */
3369 int wrFlag, /* 1 to write. 0 read-only */
3370 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3371 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003372){
3373 int rc;
3374 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003375 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003376 sqlite3BtreeLeave(p);
3377 return rc;
3378}
drh7f751222009-03-17 22:33:00 +00003379
3380/*
3381** Return the size of a BtCursor object in bytes.
3382**
3383** This interfaces is needed so that users of cursors can preallocate
3384** sufficient storage to hold a cursor. The BtCursor object is opaque
3385** to users so they cannot do the sizeof() themselves - they must call
3386** this routine.
3387*/
3388int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003389 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003390}
3391
drh7f751222009-03-17 22:33:00 +00003392/*
drhf25a5072009-11-18 23:01:25 +00003393** Initialize memory that will be converted into a BtCursor object.
3394**
3395** The simple approach here would be to memset() the entire object
3396** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3397** do not need to be zeroed and they are large, so we can save a lot
3398** of run-time by skipping the initialization of those elements.
3399*/
3400void sqlite3BtreeCursorZero(BtCursor *p){
3401 memset(p, 0, offsetof(BtCursor, iPage));
3402}
3403
3404/*
drh7f751222009-03-17 22:33:00 +00003405** Set the cached rowid value of every cursor in the same database file
3406** as pCur and having the same root page number as pCur. The value is
3407** set to iRowid.
3408**
3409** Only positive rowid values are considered valid for this cache.
3410** The cache is initialized to zero, indicating an invalid cache.
3411** A btree will work fine with zero or negative rowids. We just cannot
3412** cache zero or negative rowids, which means tables that use zero or
3413** negative rowids might run a little slower. But in practice, zero
3414** or negative rowids are very uncommon so this should not be a problem.
3415*/
3416void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3417 BtCursor *p;
3418 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3419 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3420 }
3421 assert( pCur->cachedRowid==iRowid );
3422}
drhd677b3d2007-08-20 22:48:41 +00003423
drh7f751222009-03-17 22:33:00 +00003424/*
3425** Return the cached rowid for the given cursor. A negative or zero
3426** return value indicates that the rowid cache is invalid and should be
3427** ignored. If the rowid cache has never before been set, then a
3428** zero is returned.
3429*/
3430sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3431 return pCur->cachedRowid;
3432}
drha059ad02001-04-17 20:09:11 +00003433
3434/*
drh5e00f6c2001-09-13 13:46:56 +00003435** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003436** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003437*/
drh3aac2dd2004-04-26 14:10:20 +00003438int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003439 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003440 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003441 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003442 BtShared *pBt = pCur->pBt;
3443 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003444 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003445 if( pCur->pPrev ){
3446 pCur->pPrev->pNext = pCur->pNext;
3447 }else{
3448 pBt->pCursor = pCur->pNext;
3449 }
3450 if( pCur->pNext ){
3451 pCur->pNext->pPrev = pCur->pPrev;
3452 }
danielk197771d5d2c2008-09-29 11:49:47 +00003453 for(i=0; i<=pCur->iPage; i++){
3454 releasePage(pCur->apPage[i]);
3455 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003456 unlockBtreeIfUnused(pBt);
3457 invalidateOverflowCache(pCur);
3458 /* sqlite3_free(pCur); */
3459 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003460 }
drh8c42ca92001-06-22 19:15:00 +00003461 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003462}
3463
drh5e2f8b92001-05-28 00:41:15 +00003464/*
drh86057612007-06-26 01:04:48 +00003465** Make sure the BtCursor* given in the argument has a valid
3466** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003467** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003468**
3469** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003470** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003471**
3472** 2007-06-25: There is a bug in some versions of MSVC that cause the
3473** compiler to crash when getCellInfo() is implemented as a macro.
3474** But there is a measureable speed advantage to using the macro on gcc
3475** (when less compiler optimizations like -Os or -O0 are used and the
3476** compiler is not doing agressive inlining.) So we use a real function
3477** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003478*/
drh9188b382004-05-14 21:12:22 +00003479#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003480 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003481 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003482 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003483 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003484 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003485 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003486 }
danielk19771cc5ed82007-05-16 17:28:43 +00003487#else
3488 #define assertCellInfo(x)
3489#endif
drh86057612007-06-26 01:04:48 +00003490#ifdef _MSC_VER
3491 /* Use a real function in MSVC to work around bugs in that compiler. */
3492 static void getCellInfo(BtCursor *pCur){
3493 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003494 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003495 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003496 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003497 }else{
3498 assertCellInfo(pCur);
3499 }
3500 }
3501#else /* if not _MSC_VER */
3502 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003503#define getCellInfo(pCur) \
3504 if( pCur->info.nSize==0 ){ \
3505 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003506 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003507 pCur->validNKey = 1; \
3508 }else{ \
3509 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003510 }
3511#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003512
drhea8ffdf2009-07-22 00:35:23 +00003513#ifndef NDEBUG /* The next routine used only within assert() statements */
3514/*
3515** Return true if the given BtCursor is valid. A valid cursor is one
3516** that is currently pointing to a row in a (non-empty) table.
3517** This is a verification routine is used only within assert() statements.
3518*/
3519int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3520 return pCur && pCur->eState==CURSOR_VALID;
3521}
3522#endif /* NDEBUG */
3523
drh9188b382004-05-14 21:12:22 +00003524/*
drh3aac2dd2004-04-26 14:10:20 +00003525** Set *pSize to the size of the buffer needed to hold the value of
3526** the key for the current entry. If the cursor is not pointing
3527** to a valid entry, *pSize is set to 0.
3528**
drh4b70f112004-05-02 21:12:19 +00003529** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003530** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003531**
3532** The caller must position the cursor prior to invoking this routine.
3533**
3534** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003535*/
drh4a1c3802004-05-12 15:15:47 +00003536int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003537 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003538 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3539 if( pCur->eState!=CURSOR_VALID ){
3540 *pSize = 0;
3541 }else{
3542 getCellInfo(pCur);
3543 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003544 }
drhea8ffdf2009-07-22 00:35:23 +00003545 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003546}
drh2af926b2001-05-15 00:39:25 +00003547
drh72f82862001-05-24 21:06:34 +00003548/*
drh0e1c19e2004-05-11 00:58:56 +00003549** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003550** cursor currently points to.
3551**
3552** The caller must guarantee that the cursor is pointing to a non-NULL
3553** valid entry. In other words, the calling procedure must guarantee
3554** that the cursor has Cursor.eState==CURSOR_VALID.
3555**
3556** Failure is not possible. This function always returns SQLITE_OK.
3557** It might just as well be a procedure (returning void) but we continue
3558** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003559*/
3560int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003561 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003562 assert( pCur->eState==CURSOR_VALID );
3563 getCellInfo(pCur);
3564 *pSize = pCur->info.nData;
3565 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003566}
3567
3568/*
danielk1977d04417962007-05-02 13:16:30 +00003569** Given the page number of an overflow page in the database (parameter
3570** ovfl), this function finds the page number of the next page in the
3571** linked list of overflow pages. If possible, it uses the auto-vacuum
3572** pointer-map data instead of reading the content of page ovfl to do so.
3573**
3574** If an error occurs an SQLite error code is returned. Otherwise:
3575**
danielk1977bea2a942009-01-20 17:06:27 +00003576** The page number of the next overflow page in the linked list is
3577** written to *pPgnoNext. If page ovfl is the last page in its linked
3578** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003579**
danielk1977bea2a942009-01-20 17:06:27 +00003580** If ppPage is not NULL, and a reference to the MemPage object corresponding
3581** to page number pOvfl was obtained, then *ppPage is set to point to that
3582** reference. It is the responsibility of the caller to call releasePage()
3583** on *ppPage to free the reference. In no reference was obtained (because
3584** the pointer-map was used to obtain the value for *pPgnoNext), then
3585** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003586*/
3587static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003588 BtShared *pBt, /* The database file */
3589 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003590 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003591 Pgno *pPgnoNext /* OUT: Next overflow page number */
3592){
3593 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003594 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003595 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003596
drh1fee73e2007-08-29 04:00:57 +00003597 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003598 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003599
3600#ifndef SQLITE_OMIT_AUTOVACUUM
3601 /* Try to find the next page in the overflow list using the
3602 ** autovacuum pointer-map pages. Guess that the next page in
3603 ** the overflow list is page number (ovfl+1). If that guess turns
3604 ** out to be wrong, fall back to loading the data of page
3605 ** number ovfl to determine the next page number.
3606 */
3607 if( pBt->autoVacuum ){
3608 Pgno pgno;
3609 Pgno iGuess = ovfl+1;
3610 u8 eType;
3611
3612 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3613 iGuess++;
3614 }
3615
drhb1299152010-03-30 22:58:33 +00003616 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003617 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003618 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003619 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003620 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003621 }
3622 }
3623 }
3624#endif
3625
danielk1977d8a3f3d2009-07-11 11:45:23 +00003626 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003627 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003628 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003629 assert( rc==SQLITE_OK || pPage==0 );
3630 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003631 next = get4byte(pPage->aData);
3632 }
danielk1977443c0592009-01-16 15:21:05 +00003633 }
danielk197745d68822009-01-16 16:23:38 +00003634
danielk1977bea2a942009-01-20 17:06:27 +00003635 *pPgnoNext = next;
3636 if( ppPage ){
3637 *ppPage = pPage;
3638 }else{
3639 releasePage(pPage);
3640 }
3641 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003642}
3643
danielk1977da107192007-05-04 08:32:13 +00003644/*
3645** Copy data from a buffer to a page, or from a page to a buffer.
3646**
3647** pPayload is a pointer to data stored on database page pDbPage.
3648** If argument eOp is false, then nByte bytes of data are copied
3649** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3650** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3651** of data are copied from the buffer pBuf to pPayload.
3652**
3653** SQLITE_OK is returned on success, otherwise an error code.
3654*/
3655static int copyPayload(
3656 void *pPayload, /* Pointer to page data */
3657 void *pBuf, /* Pointer to buffer */
3658 int nByte, /* Number of bytes to copy */
3659 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3660 DbPage *pDbPage /* Page containing pPayload */
3661){
3662 if( eOp ){
3663 /* Copy data from buffer to page (a write operation) */
3664 int rc = sqlite3PagerWrite(pDbPage);
3665 if( rc!=SQLITE_OK ){
3666 return rc;
3667 }
3668 memcpy(pPayload, pBuf, nByte);
3669 }else{
3670 /* Copy data from page to buffer (a read operation) */
3671 memcpy(pBuf, pPayload, nByte);
3672 }
3673 return SQLITE_OK;
3674}
danielk1977d04417962007-05-02 13:16:30 +00003675
3676/*
danielk19779f8d6402007-05-02 17:48:45 +00003677** This function is used to read or overwrite payload information
3678** for the entry that the pCur cursor is pointing to. If the eOp
3679** parameter is 0, this is a read operation (data copied into
3680** buffer pBuf). If it is non-zero, a write (data copied from
3681** buffer pBuf).
3682**
3683** A total of "amt" bytes are read or written beginning at "offset".
3684** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003685**
drh3bcdfd22009-07-12 02:32:21 +00003686** The content being read or written might appear on the main page
3687** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003688**
danielk1977dcbb5d32007-05-04 18:36:44 +00003689** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003690** cursor entry uses one or more overflow pages, this function
3691** allocates space for and lazily popluates the overflow page-list
3692** cache array (BtCursor.aOverflow). Subsequent calls use this
3693** cache to make seeking to the supplied offset more efficient.
3694**
3695** Once an overflow page-list cache has been allocated, it may be
3696** invalidated if some other cursor writes to the same table, or if
3697** the cursor is moved to a different row. Additionally, in auto-vacuum
3698** mode, the following events may invalidate an overflow page-list cache.
3699**
3700** * An incremental vacuum,
3701** * A commit in auto_vacuum="full" mode,
3702** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003703*/
danielk19779f8d6402007-05-02 17:48:45 +00003704static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003705 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003706 u32 offset, /* Begin reading this far into payload */
3707 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003708 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003709 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003710){
3711 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003712 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003713 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003714 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003715 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003716 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003717
danielk1977da107192007-05-04 08:32:13 +00003718 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003719 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003720 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003721 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003722
drh86057612007-06-26 01:04:48 +00003723 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003724 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003725 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003726
drh3bcdfd22009-07-12 02:32:21 +00003727 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003728 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3729 ){
danielk1977da107192007-05-04 08:32:13 +00003730 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003731 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003732 }
danielk1977da107192007-05-04 08:32:13 +00003733
3734 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003735 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003736 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003737 if( a+offset>pCur->info.nLocal ){
3738 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003739 }
danielk1977da107192007-05-04 08:32:13 +00003740 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003741 offset = 0;
drha34b6762004-05-07 13:30:42 +00003742 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003743 amt -= a;
drhdd793422001-06-28 01:54:48 +00003744 }else{
drhfa1a98a2004-05-14 19:08:17 +00003745 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003746 }
danielk1977da107192007-05-04 08:32:13 +00003747
3748 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003749 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003750 Pgno nextPage;
3751
drhfa1a98a2004-05-14 19:08:17 +00003752 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003753
danielk19772dec9702007-05-02 16:48:37 +00003754#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003755 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003756 ** has not been allocated, allocate it now. The array is sized at
3757 ** one entry for each overflow page in the overflow chain. The
3758 ** page number of the first overflow page is stored in aOverflow[0],
3759 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3760 ** (the cache is lazily populated).
3761 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003762 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003763 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003764 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003765 /* nOvfl is always positive. If it were zero, fetchPayload would have
3766 ** been used instead of this routine. */
3767 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003768 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003769 }
3770 }
danielk1977da107192007-05-04 08:32:13 +00003771
3772 /* If the overflow page-list cache has been allocated and the
3773 ** entry for the first required overflow page is valid, skip
3774 ** directly to it.
3775 */
danielk19772dec9702007-05-02 16:48:37 +00003776 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3777 iIdx = (offset/ovflSize);
3778 nextPage = pCur->aOverflow[iIdx];
3779 offset = (offset%ovflSize);
3780 }
3781#endif
danielk1977da107192007-05-04 08:32:13 +00003782
3783 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3784
3785#ifndef SQLITE_OMIT_INCRBLOB
3786 /* If required, populate the overflow page-list cache. */
3787 if( pCur->aOverflow ){
3788 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3789 pCur->aOverflow[iIdx] = nextPage;
3790 }
3791#endif
3792
danielk1977d04417962007-05-02 13:16:30 +00003793 if( offset>=ovflSize ){
3794 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003795 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003796 ** data is not required. So first try to lookup the overflow
3797 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003798 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003799 */
danielk19772dec9702007-05-02 16:48:37 +00003800#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003801 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3802 nextPage = pCur->aOverflow[iIdx+1];
3803 } else
danielk19772dec9702007-05-02 16:48:37 +00003804#endif
danielk1977da107192007-05-04 08:32:13 +00003805 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003806 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003807 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003808 /* Need to read this page properly. It contains some of the
3809 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003810 */
3811 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003812 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003813 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003814 if( rc==SQLITE_OK ){
3815 aPayload = sqlite3PagerGetData(pDbPage);
3816 nextPage = get4byte(aPayload);
3817 if( a + offset > ovflSize ){
3818 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003819 }
danielk1977da107192007-05-04 08:32:13 +00003820 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3821 sqlite3PagerUnref(pDbPage);
3822 offset = 0;
3823 amt -= a;
3824 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003825 }
danielk1977cfe9a692004-06-16 12:00:29 +00003826 }
drh2af926b2001-05-15 00:39:25 +00003827 }
drh2af926b2001-05-15 00:39:25 +00003828 }
danielk1977cfe9a692004-06-16 12:00:29 +00003829
danielk1977da107192007-05-04 08:32:13 +00003830 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003831 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003832 }
danielk1977da107192007-05-04 08:32:13 +00003833 return rc;
drh2af926b2001-05-15 00:39:25 +00003834}
3835
drh72f82862001-05-24 21:06:34 +00003836/*
drh3aac2dd2004-04-26 14:10:20 +00003837** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003838** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003839** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003840**
drh5d1a8722009-07-22 18:07:40 +00003841** The caller must ensure that pCur is pointing to a valid row
3842** in the table.
3843**
drh3aac2dd2004-04-26 14:10:20 +00003844** Return SQLITE_OK on success or an error code if anything goes
3845** wrong. An error is returned if "offset+amt" is larger than
3846** the available payload.
drh72f82862001-05-24 21:06:34 +00003847*/
drha34b6762004-05-07 13:30:42 +00003848int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00003849 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00003850 assert( pCur->eState==CURSOR_VALID );
3851 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3852 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
3853 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00003854}
3855
3856/*
drh3aac2dd2004-04-26 14:10:20 +00003857** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003858** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003859** begins at "offset".
3860**
3861** Return SQLITE_OK on success or an error code if anything goes
3862** wrong. An error is returned if "offset+amt" is larger than
3863** the available payload.
drh72f82862001-05-24 21:06:34 +00003864*/
drh3aac2dd2004-04-26 14:10:20 +00003865int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003866 int rc;
3867
danielk19773588ceb2008-06-10 17:30:26 +00003868#ifndef SQLITE_OMIT_INCRBLOB
3869 if ( pCur->eState==CURSOR_INVALID ){
3870 return SQLITE_ABORT;
3871 }
3872#endif
3873
drh1fee73e2007-08-29 04:00:57 +00003874 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003875 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003876 if( rc==SQLITE_OK ){
3877 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003878 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3879 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003880 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00003881 }
3882 return rc;
drh2af926b2001-05-15 00:39:25 +00003883}
3884
drh72f82862001-05-24 21:06:34 +00003885/*
drh0e1c19e2004-05-11 00:58:56 +00003886** Return a pointer to payload information from the entry that the
3887** pCur cursor is pointing to. The pointer is to the beginning of
3888** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003889** skipKey==1. The number of bytes of available key/data is written
3890** into *pAmt. If *pAmt==0, then the value returned will not be
3891** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003892**
3893** This routine is an optimization. It is common for the entire key
3894** and data to fit on the local page and for there to be no overflow
3895** pages. When that is so, this routine can be used to access the
3896** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003897** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003898** the key/data and copy it into a preallocated buffer.
3899**
3900** The pointer returned by this routine looks directly into the cached
3901** page of the database. The data might change or move the next time
3902** any btree routine is called.
3903*/
3904static const unsigned char *fetchPayload(
3905 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003906 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003907 int skipKey /* read beginning at data if this is true */
3908){
3909 unsigned char *aPayload;
3910 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003911 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003912 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003913
danielk197771d5d2c2008-09-29 11:49:47 +00003914 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003915 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003916 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003917 pPage = pCur->apPage[pCur->iPage];
3918 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00003919 if( NEVER(pCur->info.nSize==0) ){
3920 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
3921 &pCur->info);
3922 }
drh43605152004-05-29 21:46:49 +00003923 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003924 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003925 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003926 nKey = 0;
3927 }else{
drhf49661a2008-12-10 16:45:50 +00003928 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003929 }
drh0e1c19e2004-05-11 00:58:56 +00003930 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003931 aPayload += nKey;
3932 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003933 }else{
drhfa1a98a2004-05-14 19:08:17 +00003934 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00003935 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00003936 }
drhe51c44f2004-05-30 20:46:09 +00003937 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003938 return aPayload;
3939}
3940
3941
3942/*
drhe51c44f2004-05-30 20:46:09 +00003943** For the entry that cursor pCur is point to, return as
3944** many bytes of the key or data as are available on the local
3945** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003946**
3947** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003948** or be destroyed on the next call to any Btree routine,
3949** including calls from other threads against the same cache.
3950** Hence, a mutex on the BtShared should be held prior to calling
3951** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003952**
3953** These routines is used to get quick access to key and data
3954** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003955*/
drhe51c44f2004-05-30 20:46:09 +00003956const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00003957 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00003958 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003959 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00003960 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
3961 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00003962 }
drhfe3313f2009-07-21 19:02:20 +00003963 return p;
drh0e1c19e2004-05-11 00:58:56 +00003964}
drhe51c44f2004-05-30 20:46:09 +00003965const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00003966 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00003967 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003968 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00003969 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
3970 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00003971 }
drhfe3313f2009-07-21 19:02:20 +00003972 return p;
drh0e1c19e2004-05-11 00:58:56 +00003973}
3974
3975
3976/*
drh8178a752003-01-05 21:41:40 +00003977** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003978** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00003979**
3980** This function returns SQLITE_CORRUPT if the page-header flags field of
3981** the new child page does not match the flags field of the parent (i.e.
3982** if an intkey page appears to be the parent of a non-intkey page, or
3983** vice-versa).
drh72f82862001-05-24 21:06:34 +00003984*/
drh3aac2dd2004-04-26 14:10:20 +00003985static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003986 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003987 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003988 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003989 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003990
drh1fee73e2007-08-29 04:00:57 +00003991 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003992 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003993 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3994 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3995 return SQLITE_CORRUPT_BKPT;
3996 }
3997 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003998 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003999 pCur->apPage[i+1] = pNewPage;
4000 pCur->aiIdx[i+1] = 0;
4001 pCur->iPage++;
4002
drh271efa52004-05-30 19:19:05 +00004003 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004004 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004005 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004006 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004007 }
drh72f82862001-05-24 21:06:34 +00004008 return SQLITE_OK;
4009}
4010
danielk1977bf93c562008-09-29 15:53:25 +00004011#ifndef NDEBUG
4012/*
4013** Page pParent is an internal (non-leaf) tree page. This function
4014** asserts that page number iChild is the left-child if the iIdx'th
4015** cell in page pParent. Or, if iIdx is equal to the total number of
4016** cells in pParent, that page number iChild is the right-child of
4017** the page.
4018*/
4019static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4020 assert( iIdx<=pParent->nCell );
4021 if( iIdx==pParent->nCell ){
4022 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4023 }else{
4024 assert( get4byte(findCell(pParent, iIdx))==iChild );
4025 }
4026}
4027#else
4028# define assertParentIndex(x,y,z)
4029#endif
4030
drh72f82862001-05-24 21:06:34 +00004031/*
drh5e2f8b92001-05-28 00:41:15 +00004032** Move the cursor up to the parent page.
4033**
4034** pCur->idx is set to the cell index that contains the pointer
4035** to the page we are coming from. If we are coming from the
4036** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004037** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004038*/
danielk197730548662009-07-09 05:07:37 +00004039static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004040 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004041 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004042 assert( pCur->iPage>0 );
4043 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004044 assertParentIndex(
4045 pCur->apPage[pCur->iPage-1],
4046 pCur->aiIdx[pCur->iPage-1],
4047 pCur->apPage[pCur->iPage]->pgno
4048 );
danielk197771d5d2c2008-09-29 11:49:47 +00004049 releasePage(pCur->apPage[pCur->iPage]);
4050 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004051 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004052 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004053}
4054
4055/*
danielk19778f880a82009-07-13 09:41:45 +00004056** Move the cursor to point to the root page of its b-tree structure.
4057**
4058** If the table has a virtual root page, then the cursor is moved to point
4059** to the virtual root page instead of the actual root page. A table has a
4060** virtual root page when the actual root page contains no cells and a
4061** single child page. This can only happen with the table rooted at page 1.
4062**
4063** If the b-tree structure is empty, the cursor state is set to
4064** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4065** cell located on the root (or virtual root) page and the cursor state
4066** is set to CURSOR_VALID.
4067**
4068** If this function returns successfully, it may be assumed that the
4069** page-header flags indicate that the [virtual] root-page is the expected
4070** kind of b-tree page (i.e. if when opening the cursor the caller did not
4071** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4072** indicating a table b-tree, or if the caller did specify a KeyInfo
4073** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4074** b-tree).
drh72f82862001-05-24 21:06:34 +00004075*/
drh5e2f8b92001-05-28 00:41:15 +00004076static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004077 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004078 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004079 Btree *p = pCur->pBtree;
4080 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004081
drh1fee73e2007-08-29 04:00:57 +00004082 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004083 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4084 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4085 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4086 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4087 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004088 assert( pCur->skipNext!=SQLITE_OK );
4089 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004090 }
danielk1977be51a652008-10-08 17:58:48 +00004091 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004092 }
danielk197771d5d2c2008-09-29 11:49:47 +00004093
4094 if( pCur->iPage>=0 ){
4095 int i;
4096 for(i=1; i<=pCur->iPage; i++){
4097 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004098 }
danielk1977172114a2009-07-07 15:47:12 +00004099 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004100 }else{
drh4c301aa2009-07-15 17:25:45 +00004101 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4102 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004103 pCur->eState = CURSOR_INVALID;
4104 return rc;
4105 }
danielk1977172114a2009-07-07 15:47:12 +00004106 pCur->iPage = 0;
4107
4108 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4109 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4110 ** NULL, the caller expects a table b-tree. If this is not the case,
4111 ** return an SQLITE_CORRUPT error. */
4112 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4113 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4114 return SQLITE_CORRUPT_BKPT;
4115 }
drhc39e0002004-05-07 23:50:57 +00004116 }
danielk197771d5d2c2008-09-29 11:49:47 +00004117
danielk19778f880a82009-07-13 09:41:45 +00004118 /* Assert that the root page is of the correct type. This must be the
4119 ** case as the call to this function that loaded the root-page (either
4120 ** this call or a previous invocation) would have detected corruption
4121 ** if the assumption were not true, and it is not possible for the flags
4122 ** byte to have been modified while this cursor is holding a reference
4123 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004124 pRoot = pCur->apPage[0];
4125 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004126 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4127
danielk197771d5d2c2008-09-29 11:49:47 +00004128 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004129 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004130 pCur->atLast = 0;
4131 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004132
drh8856d6a2004-04-29 14:42:46 +00004133 if( pRoot->nCell==0 && !pRoot->leaf ){
4134 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004135 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004136 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004137 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004138 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004139 }else{
4140 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004141 }
4142 return rc;
drh72f82862001-05-24 21:06:34 +00004143}
drh2af926b2001-05-15 00:39:25 +00004144
drh5e2f8b92001-05-28 00:41:15 +00004145/*
4146** Move the cursor down to the left-most leaf entry beneath the
4147** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004148**
4149** The left-most leaf is the one with the smallest key - the first
4150** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004151*/
4152static int moveToLeftmost(BtCursor *pCur){
4153 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004154 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004155 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004156
drh1fee73e2007-08-29 04:00:57 +00004157 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004158 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004159 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4160 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4161 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004162 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004163 }
drhd677b3d2007-08-20 22:48:41 +00004164 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004165}
4166
drh2dcc9aa2002-12-04 13:40:25 +00004167/*
4168** Move the cursor down to the right-most leaf entry beneath the
4169** page to which it is currently pointing. Notice the difference
4170** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4171** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4172** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004173**
4174** The right-most entry is the one with the largest key - the last
4175** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004176*/
4177static int moveToRightmost(BtCursor *pCur){
4178 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004179 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004180 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004181
drh1fee73e2007-08-29 04:00:57 +00004182 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004183 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004184 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004185 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004186 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004187 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004188 }
drhd677b3d2007-08-20 22:48:41 +00004189 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004190 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004191 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004192 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004193 }
danielk1977518002e2008-09-05 05:02:46 +00004194 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004195}
4196
drh5e00f6c2001-09-13 13:46:56 +00004197/* Move the cursor to the first entry in the table. Return SQLITE_OK
4198** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004199** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004200*/
drh3aac2dd2004-04-26 14:10:20 +00004201int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004202 int rc;
drhd677b3d2007-08-20 22:48:41 +00004203
drh1fee73e2007-08-29 04:00:57 +00004204 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004205 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004206 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004207 if( rc==SQLITE_OK ){
4208 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004209 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004210 *pRes = 1;
4211 rc = SQLITE_OK;
4212 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004213 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004214 *pRes = 0;
4215 rc = moveToLeftmost(pCur);
4216 }
drh5e00f6c2001-09-13 13:46:56 +00004217 }
drh5e00f6c2001-09-13 13:46:56 +00004218 return rc;
4219}
drh5e2f8b92001-05-28 00:41:15 +00004220
drh9562b552002-02-19 15:00:07 +00004221/* Move the cursor to the last entry in the table. Return SQLITE_OK
4222** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004223** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004224*/
drh3aac2dd2004-04-26 14:10:20 +00004225int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004226 int rc;
drhd677b3d2007-08-20 22:48:41 +00004227
drh1fee73e2007-08-29 04:00:57 +00004228 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004229 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004230
4231 /* If the cursor already points to the last entry, this is a no-op. */
4232 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4233#ifdef SQLITE_DEBUG
4234 /* This block serves to assert() that the cursor really does point
4235 ** to the last entry in the b-tree. */
4236 int ii;
4237 for(ii=0; ii<pCur->iPage; ii++){
4238 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4239 }
4240 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4241 assert( pCur->apPage[pCur->iPage]->leaf );
4242#endif
4243 return SQLITE_OK;
4244 }
4245
drh9562b552002-02-19 15:00:07 +00004246 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004247 if( rc==SQLITE_OK ){
4248 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004249 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004250 *pRes = 1;
4251 }else{
4252 assert( pCur->eState==CURSOR_VALID );
4253 *pRes = 0;
4254 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004255 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004256 }
drh9562b552002-02-19 15:00:07 +00004257 }
drh9562b552002-02-19 15:00:07 +00004258 return rc;
4259}
4260
drhe14006d2008-03-25 17:23:32 +00004261/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004262** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004263**
drhe63d9992008-08-13 19:11:48 +00004264** For INTKEY tables, the intKey parameter is used. pIdxKey
4265** must be NULL. For index tables, pIdxKey is used and intKey
4266** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004267**
drh5e2f8b92001-05-28 00:41:15 +00004268** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004269** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004270** were present. The cursor might point to an entry that comes
4271** before or after the key.
4272**
drh64022502009-01-09 14:11:04 +00004273** An integer is written into *pRes which is the result of
4274** comparing the key with the entry to which the cursor is
4275** pointing. The meaning of the integer written into
4276** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004277**
4278** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004279** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004280** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004281**
4282** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004283** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004284**
4285** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004286** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004287**
drha059ad02001-04-17 20:09:11 +00004288*/
drhe63d9992008-08-13 19:11:48 +00004289int sqlite3BtreeMovetoUnpacked(
4290 BtCursor *pCur, /* The cursor to be moved */
4291 UnpackedRecord *pIdxKey, /* Unpacked index key */
4292 i64 intKey, /* The table key */
4293 int biasRight, /* If true, bias the search to the high end */
4294 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004295){
drh72f82862001-05-24 21:06:34 +00004296 int rc;
drhd677b3d2007-08-20 22:48:41 +00004297
drh1fee73e2007-08-29 04:00:57 +00004298 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004299 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004300 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004301 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004302
4303 /* If the cursor is already positioned at the point we are trying
4304 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004305 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4306 && pCur->apPage[0]->intKey
4307 ){
drhe63d9992008-08-13 19:11:48 +00004308 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004309 *pRes = 0;
4310 return SQLITE_OK;
4311 }
drhe63d9992008-08-13 19:11:48 +00004312 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004313 *pRes = -1;
4314 return SQLITE_OK;
4315 }
4316 }
4317
drh5e2f8b92001-05-28 00:41:15 +00004318 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004319 if( rc ){
4320 return rc;
4321 }
danielk197771d5d2c2008-09-29 11:49:47 +00004322 assert( pCur->apPage[pCur->iPage] );
4323 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004324 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004325 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004326 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004327 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004328 return SQLITE_OK;
4329 }
danielk197771d5d2c2008-09-29 11:49:47 +00004330 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004331 for(;;){
drh72f82862001-05-24 21:06:34 +00004332 int lwr, upr;
4333 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004334 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004335 int c;
4336
4337 /* pPage->nCell must be greater than zero. If this is the root-page
4338 ** the cursor would have been INVALID above and this for(;;) loop
4339 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004340 ** would have already detected db corruption. Similarly, pPage must
4341 ** be the right kind (index or table) of b-tree page. Otherwise
4342 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004343 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004344 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004345 lwr = 0;
4346 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004347 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004348 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004349 }else{
drhf49661a2008-12-10 16:45:50 +00004350 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004351 }
drh64022502009-01-09 14:11:04 +00004352 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004353 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4354 u8 *pCell; /* Pointer to current cell in pPage */
4355
drh366fda62006-01-13 02:35:09 +00004356 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004357 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004358 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004359 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004360 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004361 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004362 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004363 }
drha2c20e42008-03-29 16:01:04 +00004364 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004365 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004366 c = 0;
drhe63d9992008-08-13 19:11:48 +00004367 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004368 c = -1;
4369 }else{
drhe63d9992008-08-13 19:11:48 +00004370 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004371 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004372 }
danielk197711c327a2009-05-04 19:01:26 +00004373 pCur->validNKey = 1;
4374 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004375 }else{
danielk197711c327a2009-05-04 19:01:26 +00004376 /* The maximum supported page-size is 32768 bytes. This means that
4377 ** the maximum number of record bytes stored on an index B-Tree
4378 ** page is at most 8198 bytes, which may be stored as a 2-byte
4379 ** varint. This information is used to attempt to avoid parsing
4380 ** the entire cell by checking for the cases where the record is
4381 ** stored entirely within the b-tree page by inspecting the first
4382 ** 2 bytes of the cell.
4383 */
4384 int nCell = pCell[0];
4385 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4386 /* This branch runs if the record-size field of the cell is a
4387 ** single byte varint and the record fits entirely on the main
4388 ** b-tree page. */
4389 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4390 }else if( !(pCell[1] & 0x80)
4391 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4392 ){
4393 /* The record-size field is a 2 byte varint and the record
4394 ** fits entirely on the main b-tree page. */
4395 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004396 }else{
danielk197711c327a2009-05-04 19:01:26 +00004397 /* The record flows over onto one or more overflow pages. In
4398 ** this case the whole cell needs to be parsed, a buffer allocated
4399 ** and accessPayload() used to retrieve the record into the
4400 ** buffer before VdbeRecordCompare() can be called. */
4401 void *pCellKey;
4402 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004403 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004404 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004405 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004406 if( pCellKey==0 ){
4407 rc = SQLITE_NOMEM;
4408 goto moveto_finish;
4409 }
drhfb192682009-07-11 18:26:28 +00004410 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004411 if( rc ){
4412 sqlite3_free(pCellKey);
4413 goto moveto_finish;
4414 }
danielk197711c327a2009-05-04 19:01:26 +00004415 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004416 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004417 }
drh3aac2dd2004-04-26 14:10:20 +00004418 }
drh72f82862001-05-24 21:06:34 +00004419 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004420 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004421 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004422 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004423 break;
4424 }else{
drh64022502009-01-09 14:11:04 +00004425 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004426 rc = SQLITE_OK;
4427 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004428 }
drh72f82862001-05-24 21:06:34 +00004429 }
4430 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004431 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004432 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004433 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004434 }
drhf1d68b32007-03-29 04:43:26 +00004435 if( lwr>upr ){
4436 break;
4437 }
drhf49661a2008-12-10 16:45:50 +00004438 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004439 }
4440 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004441 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004442 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004443 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004444 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004445 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004446 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004447 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004448 }
4449 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004450 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004451 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004452 rc = SQLITE_OK;
4453 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004454 }
drhf49661a2008-12-10 16:45:50 +00004455 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004456 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004457 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004458 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004459 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004460 }
drh1e968a02008-03-25 00:22:21 +00004461moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004462 return rc;
4463}
4464
drhd677b3d2007-08-20 22:48:41 +00004465
drh72f82862001-05-24 21:06:34 +00004466/*
drhc39e0002004-05-07 23:50:57 +00004467** Return TRUE if the cursor is not pointing at an entry of the table.
4468**
4469** TRUE will be returned after a call to sqlite3BtreeNext() moves
4470** past the last entry in the table or sqlite3BtreePrev() moves past
4471** the first entry. TRUE is also returned if the table is empty.
4472*/
4473int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004474 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4475 ** have been deleted? This API will need to change to return an error code
4476 ** as well as the boolean result value.
4477 */
4478 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004479}
4480
4481/*
drhbd03cae2001-06-02 02:40:57 +00004482** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004483** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004484** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004485** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004486*/
drhd094db12008-04-03 21:46:57 +00004487int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004488 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004489 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004490 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004491
drh1fee73e2007-08-29 04:00:57 +00004492 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004493 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004494 if( rc!=SQLITE_OK ){
4495 return rc;
4496 }
drh8c4d3a62007-04-06 01:03:32 +00004497 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004498 if( CURSOR_INVALID==pCur->eState ){
4499 *pRes = 1;
4500 return SQLITE_OK;
4501 }
drh4c301aa2009-07-15 17:25:45 +00004502 if( pCur->skipNext>0 ){
4503 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004504 *pRes = 0;
4505 return SQLITE_OK;
4506 }
drh4c301aa2009-07-15 17:25:45 +00004507 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004508
danielk197771d5d2c2008-09-29 11:49:47 +00004509 pPage = pCur->apPage[pCur->iPage];
4510 idx = ++pCur->aiIdx[pCur->iPage];
4511 assert( pPage->isInit );
4512 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004513
drh271efa52004-05-30 19:19:05 +00004514 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004515 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004516 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004517 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004518 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004519 if( rc ) return rc;
4520 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004521 *pRes = 0;
4522 return rc;
drh72f82862001-05-24 21:06:34 +00004523 }
drh5e2f8b92001-05-28 00:41:15 +00004524 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004525 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004526 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004527 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004528 return SQLITE_OK;
4529 }
danielk197730548662009-07-09 05:07:37 +00004530 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004531 pPage = pCur->apPage[pCur->iPage];
4532 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004533 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004534 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004535 rc = sqlite3BtreeNext(pCur, pRes);
4536 }else{
4537 rc = SQLITE_OK;
4538 }
4539 return rc;
drh8178a752003-01-05 21:41:40 +00004540 }
4541 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004542 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004543 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004544 }
drh5e2f8b92001-05-28 00:41:15 +00004545 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004546 return rc;
drh72f82862001-05-24 21:06:34 +00004547}
drhd677b3d2007-08-20 22:48:41 +00004548
drh72f82862001-05-24 21:06:34 +00004549
drh3b7511c2001-05-26 13:15:44 +00004550/*
drh2dcc9aa2002-12-04 13:40:25 +00004551** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004552** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004553** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004554** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004555*/
drhd094db12008-04-03 21:46:57 +00004556int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004557 int rc;
drh8178a752003-01-05 21:41:40 +00004558 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004559
drh1fee73e2007-08-29 04:00:57 +00004560 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004561 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004562 if( rc!=SQLITE_OK ){
4563 return rc;
4564 }
drha2c20e42008-03-29 16:01:04 +00004565 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004566 if( CURSOR_INVALID==pCur->eState ){
4567 *pRes = 1;
4568 return SQLITE_OK;
4569 }
drh4c301aa2009-07-15 17:25:45 +00004570 if( pCur->skipNext<0 ){
4571 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004572 *pRes = 0;
4573 return SQLITE_OK;
4574 }
drh4c301aa2009-07-15 17:25:45 +00004575 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004576
danielk197771d5d2c2008-09-29 11:49:47 +00004577 pPage = pCur->apPage[pCur->iPage];
4578 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004579 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004580 int idx = pCur->aiIdx[pCur->iPage];
4581 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004582 if( rc ){
4583 return rc;
4584 }
drh2dcc9aa2002-12-04 13:40:25 +00004585 rc = moveToRightmost(pCur);
4586 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004587 while( pCur->aiIdx[pCur->iPage]==0 ){
4588 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004589 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004590 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004591 return SQLITE_OK;
4592 }
danielk197730548662009-07-09 05:07:37 +00004593 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004594 }
drh271efa52004-05-30 19:19:05 +00004595 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004596 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004597
4598 pCur->aiIdx[pCur->iPage]--;
4599 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004600 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004601 rc = sqlite3BtreePrevious(pCur, pRes);
4602 }else{
4603 rc = SQLITE_OK;
4604 }
drh2dcc9aa2002-12-04 13:40:25 +00004605 }
drh8178a752003-01-05 21:41:40 +00004606 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004607 return rc;
4608}
4609
4610/*
drh3b7511c2001-05-26 13:15:44 +00004611** Allocate a new page from the database file.
4612**
danielk19773b8a05f2007-03-19 17:44:26 +00004613** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004614** has already been called on the new page.) The new page has also
4615** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004616** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004617**
4618** SQLITE_OK is returned on success. Any other return value indicates
4619** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004620** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004621**
drh199e3cf2002-07-18 11:01:47 +00004622** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4623** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004624** attempt to keep related pages close to each other in the database file,
4625** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004626**
4627** If the "exact" parameter is not 0, and the page-number nearby exists
4628** anywhere on the free-list, then it is guarenteed to be returned. This
4629** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004630*/
drh4f0c5872007-03-26 22:05:01 +00004631static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004632 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004633 MemPage **ppPage,
4634 Pgno *pPgno,
4635 Pgno nearby,
4636 u8 exact
4637){
drh3aac2dd2004-04-26 14:10:20 +00004638 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004639 int rc;
drh35cd6432009-06-05 14:17:21 +00004640 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004641 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004642 MemPage *pTrunk = 0;
4643 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004644 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004645
drh1fee73e2007-08-29 04:00:57 +00004646 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004647 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004648 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004649 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004650 testcase( n==mxPage-1 );
4651 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004652 return SQLITE_CORRUPT_BKPT;
4653 }
drh3aac2dd2004-04-26 14:10:20 +00004654 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004655 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004656 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004657 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4658
4659 /* If the 'exact' parameter was true and a query of the pointer-map
4660 ** shows that the page 'nearby' is somewhere on the free-list, then
4661 ** the entire-list will be searched for that page.
4662 */
4663#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004664 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004665 u8 eType;
4666 assert( nearby>0 );
4667 assert( pBt->autoVacuum );
4668 rc = ptrmapGet(pBt, nearby, &eType, 0);
4669 if( rc ) return rc;
4670 if( eType==PTRMAP_FREEPAGE ){
4671 searchList = 1;
4672 }
4673 *pPgno = nearby;
4674 }
4675#endif
4676
4677 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4678 ** first free-list trunk page. iPrevTrunk is initially 1.
4679 */
danielk19773b8a05f2007-03-19 17:44:26 +00004680 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004681 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004682 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004683
4684 /* The code within this loop is run only once if the 'searchList' variable
4685 ** is not true. Otherwise, it runs once for each trunk-page on the
4686 ** free-list until the page 'nearby' is located.
4687 */
4688 do {
4689 pPrevTrunk = pTrunk;
4690 if( pPrevTrunk ){
4691 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004692 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004693 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004694 }
drhdf35a082009-07-09 02:24:35 +00004695 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004696 if( iTrunk>mxPage ){
4697 rc = SQLITE_CORRUPT_BKPT;
4698 }else{
danielk197730548662009-07-09 05:07:37 +00004699 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004700 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004701 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004702 pTrunk = 0;
4703 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004704 }
4705
4706 k = get4byte(&pTrunk->aData[4]);
4707 if( k==0 && !searchList ){
4708 /* The trunk has no leaves and the list is not being searched.
4709 ** So extract the trunk page itself and use it as the newly
4710 ** allocated page */
4711 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004712 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004713 if( rc ){
4714 goto end_allocate_page;
4715 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004716 *pPgno = iTrunk;
4717 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4718 *ppPage = pTrunk;
4719 pTrunk = 0;
4720 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004721 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004722 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004723 rc = SQLITE_CORRUPT_BKPT;
4724 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004725#ifndef SQLITE_OMIT_AUTOVACUUM
4726 }else if( searchList && nearby==iTrunk ){
4727 /* The list is being searched and this trunk page is the page
4728 ** to allocate, regardless of whether it has leaves.
4729 */
4730 assert( *pPgno==iTrunk );
4731 *ppPage = pTrunk;
4732 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004733 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004734 if( rc ){
4735 goto end_allocate_page;
4736 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004737 if( k==0 ){
4738 if( !pPrevTrunk ){
4739 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4740 }else{
4741 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4742 }
4743 }else{
4744 /* The trunk page is required by the caller but it contains
4745 ** pointers to free-list leaves. The first leaf becomes a trunk
4746 ** page in this case.
4747 */
4748 MemPage *pNewTrunk;
4749 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004750 if( iNewTrunk>mxPage ){
4751 rc = SQLITE_CORRUPT_BKPT;
4752 goto end_allocate_page;
4753 }
drhdf35a082009-07-09 02:24:35 +00004754 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004755 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004756 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004757 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004758 }
danielk19773b8a05f2007-03-19 17:44:26 +00004759 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004760 if( rc!=SQLITE_OK ){
4761 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004762 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004763 }
4764 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4765 put4byte(&pNewTrunk->aData[4], k-1);
4766 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004767 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004768 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004769 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004770 put4byte(&pPage1->aData[32], iNewTrunk);
4771 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004772 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004773 if( rc ){
4774 goto end_allocate_page;
4775 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004776 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4777 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004778 }
4779 pTrunk = 0;
4780 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4781#endif
danielk1977e5765212009-06-17 11:13:28 +00004782 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004783 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004784 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004785 Pgno iPage;
4786 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004787 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004788 if( rc ){
4789 goto end_allocate_page;
4790 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004791 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004792 u32 i;
4793 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004794 closest = 0;
4795 dist = get4byte(&aData[8]) - nearby;
4796 if( dist<0 ) dist = -dist;
4797 for(i=1; i<k; i++){
4798 int d2 = get4byte(&aData[8+i*4]) - nearby;
4799 if( d2<0 ) d2 = -d2;
4800 if( d2<dist ){
4801 closest = i;
4802 dist = d2;
4803 }
4804 }
4805 }else{
4806 closest = 0;
4807 }
4808
4809 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004810 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004811 if( iPage>mxPage ){
4812 rc = SQLITE_CORRUPT_BKPT;
4813 goto end_allocate_page;
4814 }
drhdf35a082009-07-09 02:24:35 +00004815 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004816 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004817 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004818 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004819 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4820 ": %d more free pages\n",
4821 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4822 if( closest<k-1 ){
4823 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4824 }
4825 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004826 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004827 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004828 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004829 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004830 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004831 if( rc!=SQLITE_OK ){
4832 releasePage(*ppPage);
4833 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004834 }
4835 searchList = 0;
4836 }
drhee696e22004-08-30 16:52:17 +00004837 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004838 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004839 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004840 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004841 }else{
drh3aac2dd2004-04-26 14:10:20 +00004842 /* There are no pages on the freelist, so create a new page at the
4843 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00004844 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4845 if( rc ) return rc;
4846 pBt->nPage++;
4847 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00004848
danielk1977afcdd022004-10-31 16:25:42 +00004849#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00004850 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00004851 /* If *pPgno refers to a pointer-map page, allocate two new pages
4852 ** at the end of the file instead of one. The first allocated page
4853 ** becomes a new pointer-map page, the second is used by the caller.
4854 */
danielk1977ac861692009-03-28 10:54:22 +00004855 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00004856 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
4857 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004858 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00004859 if( rc==SQLITE_OK ){
4860 rc = sqlite3PagerWrite(pPg->pDbPage);
4861 releasePage(pPg);
4862 }
4863 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00004864 pBt->nPage++;
4865 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00004866 }
4867#endif
drhdd3cd972010-03-27 17:12:36 +00004868 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
4869 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00004870
danielk1977599fcba2004-11-08 07:13:13 +00004871 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004872 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00004873 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004874 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004875 if( rc!=SQLITE_OK ){
4876 releasePage(*ppPage);
4877 }
drh3a4c1412004-05-09 20:40:11 +00004878 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004879 }
danielk1977599fcba2004-11-08 07:13:13 +00004880
4881 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004882
4883end_allocate_page:
4884 releasePage(pTrunk);
4885 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004886 if( rc==SQLITE_OK ){
4887 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4888 releasePage(*ppPage);
4889 return SQLITE_CORRUPT_BKPT;
4890 }
4891 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004892 }else{
4893 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004894 }
drh3b7511c2001-05-26 13:15:44 +00004895 return rc;
4896}
4897
4898/*
danielk1977bea2a942009-01-20 17:06:27 +00004899** This function is used to add page iPage to the database file free-list.
4900** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004901**
danielk1977bea2a942009-01-20 17:06:27 +00004902** The value passed as the second argument to this function is optional.
4903** If the caller happens to have a pointer to the MemPage object
4904** corresponding to page iPage handy, it may pass it as the second value.
4905** Otherwise, it may pass NULL.
4906**
4907** If a pointer to a MemPage object is passed as the second argument,
4908** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004909*/
danielk1977bea2a942009-01-20 17:06:27 +00004910static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4911 MemPage *pTrunk = 0; /* Free-list trunk page */
4912 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4913 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4914 MemPage *pPage; /* Page being freed. May be NULL. */
4915 int rc; /* Return Code */
4916 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004917
danielk1977bea2a942009-01-20 17:06:27 +00004918 assert( sqlite3_mutex_held(pBt->mutex) );
4919 assert( iPage>1 );
4920 assert( !pMemPage || pMemPage->pgno==iPage );
4921
4922 if( pMemPage ){
4923 pPage = pMemPage;
4924 sqlite3PagerRef(pPage->pDbPage);
4925 }else{
4926 pPage = btreePageLookup(pBt, iPage);
4927 }
drh3aac2dd2004-04-26 14:10:20 +00004928
drha34b6762004-05-07 13:30:42 +00004929 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004930 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004931 if( rc ) goto freepage_out;
4932 nFree = get4byte(&pPage1->aData[36]);
4933 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004934
drh5b47efa2010-02-12 18:18:39 +00004935 if( pBt->secureDelete ){
4936 /* If the secure_delete option is enabled, then
4937 ** always fully overwrite deleted information with zeros.
4938 */
shaneh84f4b2f2010-02-26 01:46:54 +00004939 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
4940 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00004941 ){
4942 goto freepage_out;
4943 }
4944 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00004945 }
drhfcce93f2006-02-22 03:08:32 +00004946
danielk1977687566d2004-11-02 12:56:41 +00004947 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004948 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004949 */
danielk197785d90ca2008-07-19 14:25:15 +00004950 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00004951 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00004952 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004953 }
danielk1977687566d2004-11-02 12:56:41 +00004954
danielk1977bea2a942009-01-20 17:06:27 +00004955 /* Now manipulate the actual database free-list structure. There are two
4956 ** possibilities. If the free-list is currently empty, or if the first
4957 ** trunk page in the free-list is full, then this page will become a
4958 ** new free-list trunk page. Otherwise, it will become a leaf of the
4959 ** first trunk page in the current free-list. This block tests if it
4960 ** is possible to add the page as a new free-list leaf.
4961 */
4962 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00004963 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00004964
4965 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00004966 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00004967 if( rc!=SQLITE_OK ){
4968 goto freepage_out;
4969 }
4970
4971 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00004972 assert( pBt->usableSize>32 );
4973 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00004974 rc = SQLITE_CORRUPT_BKPT;
4975 goto freepage_out;
4976 }
drheeb844a2009-08-08 18:01:07 +00004977 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00004978 /* In this case there is room on the trunk page to insert the page
4979 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004980 **
4981 ** Note that the trunk page is not really full until it contains
4982 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4983 ** coded. But due to a coding error in versions of SQLite prior to
4984 ** 3.6.0, databases with freelist trunk pages holding more than
4985 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4986 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00004987 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00004988 ** for now. At some point in the future (once everyone has upgraded
4989 ** to 3.6.0 or later) we should consider fixing the conditional above
4990 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4991 */
danielk19773b8a05f2007-03-19 17:44:26 +00004992 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004993 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004994 put4byte(&pTrunk->aData[4], nLeaf+1);
4995 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drh5b47efa2010-02-12 18:18:39 +00004996 if( pPage && !pBt->secureDelete ){
danielk1977bea2a942009-01-20 17:06:27 +00004997 sqlite3PagerDontWrite(pPage->pDbPage);
4998 }
danielk1977bea2a942009-01-20 17:06:27 +00004999 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005000 }
drh3a4c1412004-05-09 20:40:11 +00005001 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005002 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005003 }
drh3b7511c2001-05-26 13:15:44 +00005004 }
danielk1977bea2a942009-01-20 17:06:27 +00005005
5006 /* If control flows to this point, then it was not possible to add the
5007 ** the page being freed as a leaf page of the first trunk in the free-list.
5008 ** Possibly because the free-list is empty, or possibly because the
5009 ** first trunk in the free-list is full. Either way, the page being freed
5010 ** will become the new first trunk page in the free-list.
5011 */
drhc046e3e2009-07-15 11:26:44 +00005012 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5013 goto freepage_out;
5014 }
5015 rc = sqlite3PagerWrite(pPage->pDbPage);
5016 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005017 goto freepage_out;
5018 }
5019 put4byte(pPage->aData, iTrunk);
5020 put4byte(&pPage->aData[4], 0);
5021 put4byte(&pPage1->aData[32], iPage);
5022 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5023
5024freepage_out:
5025 if( pPage ){
5026 pPage->isInit = 0;
5027 }
5028 releasePage(pPage);
5029 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005030 return rc;
5031}
drhc314dc72009-07-21 11:52:34 +00005032static void freePage(MemPage *pPage, int *pRC){
5033 if( (*pRC)==SQLITE_OK ){
5034 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5035 }
danielk1977bea2a942009-01-20 17:06:27 +00005036}
drh3b7511c2001-05-26 13:15:44 +00005037
5038/*
drh3aac2dd2004-04-26 14:10:20 +00005039** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005040*/
drh3aac2dd2004-04-26 14:10:20 +00005041static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005042 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005043 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005044 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005045 int rc;
drh94440812007-03-06 11:42:19 +00005046 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00005047 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005048
drh1fee73e2007-08-29 04:00:57 +00005049 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005050 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005051 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005052 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005053 }
drh6f11bef2004-05-13 01:12:56 +00005054 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005055 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005056 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005057 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5058 assert( ovflPgno==0 || nOvfl>0 );
5059 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005060 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005061 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005062 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005063 /* 0 is not a legal page number and page 1 cannot be an
5064 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5065 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005066 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005067 }
danielk1977bea2a942009-01-20 17:06:27 +00005068 if( nOvfl ){
5069 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5070 if( rc ) return rc;
5071 }
dan887d4b22010-02-25 12:09:16 +00005072
shaneh1da207e2010-03-09 14:41:12 +00005073 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005074 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5075 ){
5076 /* There is no reason any cursor should have an outstanding reference
5077 ** to an overflow page belonging to a cell that is being deleted/updated.
5078 ** So if there exists more than one reference to this page, then it
5079 ** must not really be an overflow page and the database must be corrupt.
5080 ** It is helpful to detect this before calling freePage2(), as
5081 ** freePage2() may zero the page contents if secure-delete mode is
5082 ** enabled. If this 'overflow' page happens to be a page that the
5083 ** caller is iterating through or using in some other way, this
5084 ** can be problematic.
5085 */
5086 rc = SQLITE_CORRUPT_BKPT;
5087 }else{
5088 rc = freePage2(pBt, pOvfl, ovflPgno);
5089 }
5090
danielk1977bea2a942009-01-20 17:06:27 +00005091 if( pOvfl ){
5092 sqlite3PagerUnref(pOvfl->pDbPage);
5093 }
drh3b7511c2001-05-26 13:15:44 +00005094 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005095 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005096 }
drh5e2f8b92001-05-28 00:41:15 +00005097 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005098}
5099
5100/*
drh91025292004-05-03 19:49:32 +00005101** Create the byte sequence used to represent a cell on page pPage
5102** and write that byte sequence into pCell[]. Overflow pages are
5103** allocated and filled in as necessary. The calling procedure
5104** is responsible for making sure sufficient space has been allocated
5105** for pCell[].
5106**
5107** Note that pCell does not necessary need to point to the pPage->aData
5108** area. pCell might point to some temporary storage. The cell will
5109** be constructed in this temporary area then copied into pPage->aData
5110** later.
drh3b7511c2001-05-26 13:15:44 +00005111*/
5112static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005113 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005114 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005115 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005116 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005117 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005118 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005119){
drh3b7511c2001-05-26 13:15:44 +00005120 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005121 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005122 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005123 int spaceLeft;
5124 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005125 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005126 unsigned char *pPrior;
5127 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005128 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005129 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005130 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005131 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005132
drh1fee73e2007-08-29 04:00:57 +00005133 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005134
drhc5053fb2008-11-27 02:22:10 +00005135 /* pPage is not necessarily writeable since pCell might be auxiliary
5136 ** buffer space that is separate from the pPage buffer area */
5137 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5138 || sqlite3PagerIswriteable(pPage->pDbPage) );
5139
drh91025292004-05-03 19:49:32 +00005140 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005141 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005142 if( !pPage->leaf ){
5143 nHeader += 4;
5144 }
drh8b18dd42004-05-12 19:18:15 +00005145 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005146 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005147 }else{
drhb026e052007-05-02 01:34:31 +00005148 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005149 }
drh6f11bef2004-05-13 01:12:56 +00005150 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005151 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005152 assert( info.nHeader==nHeader );
5153 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005154 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005155
5156 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005157 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005158 if( pPage->intKey ){
5159 pSrc = pData;
5160 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005161 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005162 }else{
danielk197731d31b82009-07-13 13:18:07 +00005163 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5164 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005165 }
drhf49661a2008-12-10 16:45:50 +00005166 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005167 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005168 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005169 }
drh6f11bef2004-05-13 01:12:56 +00005170 *pnSize = info.nSize;
5171 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005172 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005173 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005174
drh3b7511c2001-05-26 13:15:44 +00005175 while( nPayload>0 ){
5176 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005177#ifndef SQLITE_OMIT_AUTOVACUUM
5178 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005179 if( pBt->autoVacuum ){
5180 do{
5181 pgnoOvfl++;
5182 } while(
5183 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5184 );
danielk1977b39f70b2007-05-17 18:28:11 +00005185 }
danielk1977afcdd022004-10-31 16:25:42 +00005186#endif
drhf49661a2008-12-10 16:45:50 +00005187 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005188#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005189 /* If the database supports auto-vacuum, and the second or subsequent
5190 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005191 ** for that page now.
5192 **
5193 ** If this is the first overflow page, then write a partial entry
5194 ** to the pointer-map. If we write nothing to this pointer-map slot,
5195 ** then the optimistic overflow chain processing in clearCell()
5196 ** may misinterpret the uninitialised values and delete the
5197 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005198 */
danielk19774ef24492007-05-23 09:52:41 +00005199 if( pBt->autoVacuum && rc==SQLITE_OK ){
5200 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005201 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005202 if( rc ){
5203 releasePage(pOvfl);
5204 }
danielk1977afcdd022004-10-31 16:25:42 +00005205 }
5206#endif
drh3b7511c2001-05-26 13:15:44 +00005207 if( rc ){
drh9b171272004-05-08 02:03:22 +00005208 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005209 return rc;
5210 }
drhc5053fb2008-11-27 02:22:10 +00005211
5212 /* If pToRelease is not zero than pPrior points into the data area
5213 ** of pToRelease. Make sure pToRelease is still writeable. */
5214 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5215
5216 /* If pPrior is part of the data area of pPage, then make sure pPage
5217 ** is still writeable */
5218 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5219 || sqlite3PagerIswriteable(pPage->pDbPage) );
5220
drh3aac2dd2004-04-26 14:10:20 +00005221 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005222 releasePage(pToRelease);
5223 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005224 pPrior = pOvfl->aData;
5225 put4byte(pPrior, 0);
5226 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005227 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005228 }
5229 n = nPayload;
5230 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005231
5232 /* If pToRelease is not zero than pPayload points into the data area
5233 ** of pToRelease. Make sure pToRelease is still writeable. */
5234 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5235
5236 /* If pPayload is part of the data area of pPage, then make sure pPage
5237 ** is still writeable */
5238 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5239 || sqlite3PagerIswriteable(pPage->pDbPage) );
5240
drhb026e052007-05-02 01:34:31 +00005241 if( nSrc>0 ){
5242 if( n>nSrc ) n = nSrc;
5243 assert( pSrc );
5244 memcpy(pPayload, pSrc, n);
5245 }else{
5246 memset(pPayload, 0, n);
5247 }
drh3b7511c2001-05-26 13:15:44 +00005248 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005249 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005250 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005251 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005252 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005253 if( nSrc==0 ){
5254 nSrc = nData;
5255 pSrc = pData;
5256 }
drhdd793422001-06-28 01:54:48 +00005257 }
drh9b171272004-05-08 02:03:22 +00005258 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005259 return SQLITE_OK;
5260}
5261
drh14acc042001-06-10 19:56:58 +00005262/*
5263** Remove the i-th cell from pPage. This routine effects pPage only.
5264** The cell content is not freed or deallocated. It is assumed that
5265** the cell content has been copied someplace else. This routine just
5266** removes the reference to the cell from pPage.
5267**
5268** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005269*/
drh98add2e2009-07-20 17:11:49 +00005270static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43605152004-05-29 21:46:49 +00005271 int i; /* Loop counter */
5272 int pc; /* Offset to cell content of cell being deleted */
5273 u8 *data; /* pPage->aData */
5274 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005275 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005276 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005277
drh98add2e2009-07-20 17:11:49 +00005278 if( *pRC ) return;
5279
drh8c42ca92001-06-22 19:15:00 +00005280 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005281 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005282 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005283 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005284 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005285 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005286 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005287 hdr = pPage->hdrOffset;
5288 testcase( pc==get2byte(&data[hdr+5]) );
5289 testcase( pc+sz==pPage->pBt->usableSize );
5290 if( pc < get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005291 *pRC = SQLITE_CORRUPT_BKPT;
5292 return;
shane0af3f892008-11-12 04:55:34 +00005293 }
shanedcc50b72008-11-13 18:29:50 +00005294 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005295 if( rc ){
5296 *pRC = rc;
5297 return;
shanedcc50b72008-11-13 18:29:50 +00005298 }
drh43605152004-05-29 21:46:49 +00005299 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5300 ptr[0] = ptr[2];
5301 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005302 }
5303 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005304 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005305 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005306}
5307
5308/*
5309** Insert a new cell on pPage at cell index "i". pCell points to the
5310** content of the cell.
5311**
5312** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005313** will not fit, then make a copy of the cell content into pTemp if
5314** pTemp is not null. Regardless of pTemp, allocate a new entry
5315** in pPage->aOvfl[] and make it point to the cell content (either
5316** in pTemp or the original pCell) and also record its index.
5317** Allocating a new entry in pPage->aCell[] implies that
5318** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005319**
5320** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5321** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005322** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005323** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005324*/
drh98add2e2009-07-20 17:11:49 +00005325static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005326 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005327 int i, /* New cell becomes the i-th cell of the page */
5328 u8 *pCell, /* Content of the new cell */
5329 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005330 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005331 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5332 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005333){
drh383d30f2010-02-26 13:07:37 +00005334 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005335 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005336 int end; /* First byte past the last cell pointer in data[] */
5337 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005338 int cellOffset; /* Address of first cell pointer in data[] */
5339 u8 *data; /* The content of the whole page */
5340 u8 *ptr; /* Used for moving information around in data[] */
5341
danielk19774dbaa892009-06-16 16:50:22 +00005342 int nSkip = (iChild ? 4 : 0);
5343
drh98add2e2009-07-20 17:11:49 +00005344 if( *pRC ) return;
5345
drh43605152004-05-29 21:46:49 +00005346 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005347 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5348 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005349 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005350 /* The cell should normally be sized correctly. However, when moving a
5351 ** malformed cell from a leaf page to an interior page, if the cell size
5352 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5353 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5354 ** the term after the || in the following assert(). */
5355 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005356 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005357 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005358 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005359 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005360 }
danielk19774dbaa892009-06-16 16:50:22 +00005361 if( iChild ){
5362 put4byte(pCell, iChild);
5363 }
drh43605152004-05-29 21:46:49 +00005364 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005365 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005366 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005367 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005368 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005369 int rc = sqlite3PagerWrite(pPage->pDbPage);
5370 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005371 *pRC = rc;
5372 return;
danielk19776e465eb2007-08-21 13:11:00 +00005373 }
5374 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005375 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005376 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005377 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005378 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005379 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005380 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005381 /* The allocateSpace() routine guarantees the following two properties
5382 ** if it returns success */
5383 assert( idx >= end+2 );
5384 assert( idx+sz <= pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005385 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005386 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005387 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005388 if( iChild ){
5389 put4byte(&data[idx], iChild);
5390 }
drh0a45c272009-07-08 01:49:11 +00005391 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005392 ptr[0] = ptr[-2];
5393 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005394 }
drh43605152004-05-29 21:46:49 +00005395 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005396 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005397#ifndef SQLITE_OMIT_AUTOVACUUM
5398 if( pPage->pBt->autoVacuum ){
5399 /* The cell may contain a pointer to an overflow page. If so, write
5400 ** the entry for the overflow page into the pointer map.
5401 */
drh98add2e2009-07-20 17:11:49 +00005402 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005403 }
5404#endif
drh14acc042001-06-10 19:56:58 +00005405 }
5406}
5407
5408/*
drhfa1a98a2004-05-14 19:08:17 +00005409** Add a list of cells to a page. The page should be initially empty.
5410** The cells are guaranteed to fit on the page.
5411*/
5412static void assemblePage(
5413 MemPage *pPage, /* The page to be assemblied */
5414 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005415 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005416 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005417){
5418 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005419 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005420 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005421 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5422 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5423 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005424
drh43605152004-05-29 21:46:49 +00005425 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005426 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005427 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005428 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005429
5430 /* Check that the page has just been zeroed by zeroPage() */
5431 assert( pPage->nCell==0 );
5432 assert( get2byte(&data[hdr+5])==nUsable );
5433
5434 pCellptr = &data[pPage->cellOffset + nCell*2];
5435 cellbody = nUsable;
5436 for(i=nCell-1; i>=0; i--){
5437 pCellptr -= 2;
5438 cellbody -= aSize[i];
5439 put2byte(pCellptr, cellbody);
5440 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005441 }
danielk1977fad91942009-04-29 17:49:59 +00005442 put2byte(&data[hdr+3], nCell);
5443 put2byte(&data[hdr+5], cellbody);
5444 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005445 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005446}
5447
drh14acc042001-06-10 19:56:58 +00005448/*
drhc3b70572003-01-04 19:44:07 +00005449** The following parameters determine how many adjacent pages get involved
5450** in a balancing operation. NN is the number of neighbors on either side
5451** of the page that participate in the balancing operation. NB is the
5452** total number of pages that participate, including the target page and
5453** NN neighbors on either side.
5454**
5455** The minimum value of NN is 1 (of course). Increasing NN above 1
5456** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5457** in exchange for a larger degradation in INSERT and UPDATE performance.
5458** The value of NN appears to give the best results overall.
5459*/
5460#define NN 1 /* Number of neighbors on either side of pPage */
5461#define NB (NN*2+1) /* Total pages involved in the balance */
5462
danielk1977ac245ec2005-01-14 13:50:11 +00005463
drh615ae552005-01-16 23:21:00 +00005464#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005465/*
5466** This version of balance() handles the common special case where
5467** a new entry is being inserted on the extreme right-end of the
5468** tree, in other words, when the new entry will become the largest
5469** entry in the tree.
5470**
drhc314dc72009-07-21 11:52:34 +00005471** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005472** a new page to the right-hand side and put the one new entry in
5473** that page. This leaves the right side of the tree somewhat
5474** unbalanced. But odds are that we will be inserting new entries
5475** at the end soon afterwards so the nearly empty page will quickly
5476** fill up. On average.
5477**
5478** pPage is the leaf page which is the right-most page in the tree.
5479** pParent is its parent. pPage must have a single overflow entry
5480** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005481**
5482** The pSpace buffer is used to store a temporary copy of the divider
5483** cell that will be inserted into pParent. Such a cell consists of a 4
5484** byte page number followed by a variable length integer. In other
5485** words, at most 13 bytes. Hence the pSpace buffer must be at
5486** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005487*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005488static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5489 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005490 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005491 int rc; /* Return Code */
5492 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005493
drh1fee73e2007-08-29 04:00:57 +00005494 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005495 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005496 assert( pPage->nOverflow==1 );
5497
drh5d1a8722009-07-22 18:07:40 +00005498 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005499
danielk1977a50d9aa2009-06-08 14:49:45 +00005500 /* Allocate a new page. This page will become the right-sibling of
5501 ** pPage. Make the parent page writable, so that the new divider cell
5502 ** may be inserted. If both these operations are successful, proceed.
5503 */
drh4f0c5872007-03-26 22:05:01 +00005504 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005505
danielk1977eaa06f62008-09-18 17:34:44 +00005506 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005507
5508 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005509 u8 *pCell = pPage->aOvfl[0].pCell;
5510 u16 szCell = cellSizePtr(pPage, pCell);
5511 u8 *pStop;
5512
drhc5053fb2008-11-27 02:22:10 +00005513 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005514 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5515 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005516 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005517
5518 /* If this is an auto-vacuum database, update the pointer map
5519 ** with entries for the new page, and any pointer from the
5520 ** cell on the page to an overflow page. If either of these
5521 ** operations fails, the return code is set, but the contents
5522 ** of the parent page are still manipulated by thh code below.
5523 ** That is Ok, at this point the parent page is guaranteed to
5524 ** be marked as dirty. Returning an error code will cause a
5525 ** rollback, undoing any changes made to the parent page.
5526 */
5527 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005528 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5529 if( szCell>pNew->minLocal ){
5530 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005531 }
5532 }
danielk1977eaa06f62008-09-18 17:34:44 +00005533
danielk19776f235cc2009-06-04 14:46:08 +00005534 /* Create a divider cell to insert into pParent. The divider cell
5535 ** consists of a 4-byte page number (the page number of pPage) and
5536 ** a variable length key value (which must be the same value as the
5537 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005538 **
danielk19776f235cc2009-06-04 14:46:08 +00005539 ** To find the largest key value on pPage, first find the right-most
5540 ** cell on pPage. The first two fields of this cell are the
5541 ** record-length (a variable length integer at most 32-bits in size)
5542 ** and the key value (a variable length integer, may have any value).
5543 ** The first of the while(...) loops below skips over the record-length
5544 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005545 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005546 */
danielk1977eaa06f62008-09-18 17:34:44 +00005547 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005548 pStop = &pCell[9];
5549 while( (*(pCell++)&0x80) && pCell<pStop );
5550 pStop = &pCell[9];
5551 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5552
danielk19774dbaa892009-06-16 16:50:22 +00005553 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005554 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5555 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005556
5557 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005558 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5559
danielk1977e08a3c42008-09-18 18:17:03 +00005560 /* Release the reference to the new page. */
5561 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005562 }
5563
danielk1977eaa06f62008-09-18 17:34:44 +00005564 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005565}
drh615ae552005-01-16 23:21:00 +00005566#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005567
danielk19774dbaa892009-06-16 16:50:22 +00005568#if 0
drhc3b70572003-01-04 19:44:07 +00005569/*
danielk19774dbaa892009-06-16 16:50:22 +00005570** This function does not contribute anything to the operation of SQLite.
5571** it is sometimes activated temporarily while debugging code responsible
5572** for setting pointer-map entries.
5573*/
5574static int ptrmapCheckPages(MemPage **apPage, int nPage){
5575 int i, j;
5576 for(i=0; i<nPage; i++){
5577 Pgno n;
5578 u8 e;
5579 MemPage *pPage = apPage[i];
5580 BtShared *pBt = pPage->pBt;
5581 assert( pPage->isInit );
5582
5583 for(j=0; j<pPage->nCell; j++){
5584 CellInfo info;
5585 u8 *z;
5586
5587 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005588 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005589 if( info.iOverflow ){
5590 Pgno ovfl = get4byte(&z[info.iOverflow]);
5591 ptrmapGet(pBt, ovfl, &e, &n);
5592 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5593 }
5594 if( !pPage->leaf ){
5595 Pgno child = get4byte(z);
5596 ptrmapGet(pBt, child, &e, &n);
5597 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5598 }
5599 }
5600 if( !pPage->leaf ){
5601 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5602 ptrmapGet(pBt, child, &e, &n);
5603 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5604 }
5605 }
5606 return 1;
5607}
5608#endif
5609
danielk1977cd581a72009-06-23 15:43:39 +00005610/*
5611** This function is used to copy the contents of the b-tree node stored
5612** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5613** the pointer-map entries for each child page are updated so that the
5614** parent page stored in the pointer map is page pTo. If pFrom contained
5615** any cells with overflow page pointers, then the corresponding pointer
5616** map entries are also updated so that the parent page is page pTo.
5617**
5618** If pFrom is currently carrying any overflow cells (entries in the
5619** MemPage.aOvfl[] array), they are not copied to pTo.
5620**
danielk197730548662009-07-09 05:07:37 +00005621** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005622**
5623** The performance of this function is not critical. It is only used by
5624** the balance_shallower() and balance_deeper() procedures, neither of
5625** which are called often under normal circumstances.
5626*/
drhc314dc72009-07-21 11:52:34 +00005627static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5628 if( (*pRC)==SQLITE_OK ){
5629 BtShared * const pBt = pFrom->pBt;
5630 u8 * const aFrom = pFrom->aData;
5631 u8 * const aTo = pTo->aData;
5632 int const iFromHdr = pFrom->hdrOffset;
5633 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005634 int rc;
drhc314dc72009-07-21 11:52:34 +00005635 int iData;
5636
5637
5638 assert( pFrom->isInit );
5639 assert( pFrom->nFree>=iToHdr );
5640 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5641
5642 /* Copy the b-tree node content from page pFrom to page pTo. */
5643 iData = get2byte(&aFrom[iFromHdr+5]);
5644 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5645 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5646
5647 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005648 ** match the new data. The initialization of pTo can actually fail under
5649 ** fairly obscure circumstances, even though it is a copy of initialized
5650 ** page pFrom.
5651 */
drhc314dc72009-07-21 11:52:34 +00005652 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005653 rc = btreeInitPage(pTo);
5654 if( rc!=SQLITE_OK ){
5655 *pRC = rc;
5656 return;
5657 }
drhc314dc72009-07-21 11:52:34 +00005658
5659 /* If this is an auto-vacuum database, update the pointer-map entries
5660 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5661 */
5662 if( ISAUTOVACUUM ){
5663 *pRC = setChildPtrmaps(pTo);
5664 }
danielk1977cd581a72009-06-23 15:43:39 +00005665 }
danielk1977cd581a72009-06-23 15:43:39 +00005666}
5667
5668/*
danielk19774dbaa892009-06-16 16:50:22 +00005669** This routine redistributes cells on the iParentIdx'th child of pParent
5670** (hereafter "the page") and up to 2 siblings so that all pages have about the
5671** same amount of free space. Usually a single sibling on either side of the
5672** page are used in the balancing, though both siblings might come from one
5673** side if the page is the first or last child of its parent. If the page
5674** has fewer than 2 siblings (something which can only happen if the page
5675** is a root page or a child of a root page) then all available siblings
5676** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005677**
danielk19774dbaa892009-06-16 16:50:22 +00005678** The number of siblings of the page might be increased or decreased by
5679** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005680**
danielk19774dbaa892009-06-16 16:50:22 +00005681** Note that when this routine is called, some of the cells on the page
5682** might not actually be stored in MemPage.aData[]. This can happen
5683** if the page is overfull. This routine ensures that all cells allocated
5684** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005685**
danielk19774dbaa892009-06-16 16:50:22 +00005686** In the course of balancing the page and its siblings, cells may be
5687** inserted into or removed from the parent page (pParent). Doing so
5688** may cause the parent page to become overfull or underfull. If this
5689** happens, it is the responsibility of the caller to invoke the correct
5690** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005691**
drh5e00f6c2001-09-13 13:46:56 +00005692** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005693** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005694** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005695**
5696** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005697** buffer big enough to hold one page. If while inserting cells into the parent
5698** page (pParent) the parent page becomes overfull, this buffer is
5699** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005700** a maximum of four divider cells into the parent page, and the maximum
5701** size of a cell stored within an internal node is always less than 1/4
5702** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5703** enough for all overflow cells.
5704**
5705** If aOvflSpace is set to a null pointer, this function returns
5706** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005707*/
danielk19774dbaa892009-06-16 16:50:22 +00005708static int balance_nonroot(
5709 MemPage *pParent, /* Parent page of siblings being balanced */
5710 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005711 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5712 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005713){
drh16a9b832007-05-05 18:39:25 +00005714 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005715 int nCell = 0; /* Number of cells in apCell[] */
5716 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005717 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005718 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005719 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005720 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005721 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005722 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005723 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005724 int usableSpace; /* Bytes in pPage beyond the header */
5725 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005726 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005727 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005728 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005729 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005730 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005731 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005732 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005733 u8 *pRight; /* Location in parent of right-sibling pointer */
5734 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005735 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5736 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005737 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005738 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005739 u8 *aSpace1; /* Space for copies of dividers cells */
5740 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005741
danielk1977a50d9aa2009-06-08 14:49:45 +00005742 pBt = pParent->pBt;
5743 assert( sqlite3_mutex_held(pBt->mutex) );
5744 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005745
danielk1977e5765212009-06-17 11:13:28 +00005746#if 0
drh43605152004-05-29 21:46:49 +00005747 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005748#endif
drh2e38c322004-09-03 18:38:44 +00005749
danielk19774dbaa892009-06-16 16:50:22 +00005750 /* At this point pParent may have at most one overflow cell. And if
5751 ** this overflow cell is present, it must be the cell with
5752 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005753 ** is called (indirectly) from sqlite3BtreeDelete().
5754 */
danielk19774dbaa892009-06-16 16:50:22 +00005755 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5756 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5757
danielk197711a8a862009-06-17 11:49:52 +00005758 if( !aOvflSpace ){
5759 return SQLITE_NOMEM;
5760 }
5761
danielk1977a50d9aa2009-06-08 14:49:45 +00005762 /* Find the sibling pages to balance. Also locate the cells in pParent
5763 ** that divide the siblings. An attempt is made to find NN siblings on
5764 ** either side of pPage. More siblings are taken from one side, however,
5765 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005766 ** has NB or fewer children then all children of pParent are taken.
5767 **
5768 ** This loop also drops the divider cells from the parent page. This
5769 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005770 ** overflow cells in the parent page, since if any existed they will
5771 ** have already been removed.
5772 */
danielk19774dbaa892009-06-16 16:50:22 +00005773 i = pParent->nOverflow + pParent->nCell;
5774 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005775 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005776 nOld = i+1;
5777 }else{
5778 nOld = 3;
5779 if( iParentIdx==0 ){
5780 nxDiv = 0;
5781 }else if( iParentIdx==i ){
5782 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005783 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005784 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005785 }
danielk19774dbaa892009-06-16 16:50:22 +00005786 i = 2;
5787 }
5788 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5789 pRight = &pParent->aData[pParent->hdrOffset+8];
5790 }else{
5791 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5792 }
5793 pgno = get4byte(pRight);
5794 while( 1 ){
5795 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5796 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00005797 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00005798 goto balance_cleanup;
5799 }
danielk1977634f2982005-03-28 08:44:07 +00005800 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005801 if( (i--)==0 ) break;
5802
drhcd09c532009-07-20 19:30:00 +00005803 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00005804 apDiv[i] = pParent->aOvfl[0].pCell;
5805 pgno = get4byte(apDiv[i]);
5806 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5807 pParent->nOverflow = 0;
5808 }else{
5809 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5810 pgno = get4byte(apDiv[i]);
5811 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5812
5813 /* Drop the cell from the parent page. apDiv[i] still points to
5814 ** the cell within the parent, even though it has been dropped.
5815 ** This is safe because dropping a cell only overwrites the first
5816 ** four bytes of it, and this function does not need the first
5817 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005818 ** later on.
5819 **
5820 ** Unless SQLite is compiled in secure-delete mode. In this case,
5821 ** the dropCell() routine will overwrite the entire cell with zeroes.
5822 ** In this case, temporarily copy the cell into the aOvflSpace[]
5823 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5824 ** is allocated. */
drh5b47efa2010-02-12 18:18:39 +00005825 if( pBt->secureDelete ){
shaneh1da207e2010-03-09 14:41:12 +00005826 int iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
dan2ed11e72010-02-26 15:09:19 +00005827 if( (iOff+szNew[i])>pBt->usableSize ){
5828 rc = SQLITE_CORRUPT_BKPT;
5829 memset(apOld, 0, (i+1)*sizeof(MemPage*));
5830 goto balance_cleanup;
5831 }else{
5832 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
5833 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5834 }
drh5b47efa2010-02-12 18:18:39 +00005835 }
drh98add2e2009-07-20 17:11:49 +00005836 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005837 }
drh8b2f49b2001-06-08 00:21:52 +00005838 }
5839
drha9121e42008-02-19 14:59:35 +00005840 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005841 ** alignment */
drha9121e42008-02-19 14:59:35 +00005842 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005843
drh8b2f49b2001-06-08 00:21:52 +00005844 /*
danielk1977634f2982005-03-28 08:44:07 +00005845 ** Allocate space for memory structures
5846 */
danielk19774dbaa892009-06-16 16:50:22 +00005847 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005848 szScratch =
drha9121e42008-02-19 14:59:35 +00005849 nMaxCells*sizeof(u8*) /* apCell */
5850 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005851 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005852 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005853 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005854 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005855 rc = SQLITE_NOMEM;
5856 goto balance_cleanup;
5857 }
drha9121e42008-02-19 14:59:35 +00005858 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005859 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005860 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005861
5862 /*
5863 ** Load pointers to all cells on sibling pages and the divider cells
5864 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005865 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005866 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005867 **
5868 ** If the siblings are on leaf pages, then the child pointers of the
5869 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005870 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005871 ** child pointers. If siblings are not leaves, then all cell in
5872 ** apCell[] include child pointers. Either way, all cells in apCell[]
5873 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005874 **
5875 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5876 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005877 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005878 leafCorrection = apOld[0]->leaf*4;
5879 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005880 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005881 int limit;
5882
5883 /* Before doing anything else, take a copy of the i'th original sibling
5884 ** The rest of this function will use data from the copies rather
5885 ** that the original pages since the original pages will be in the
5886 ** process of being overwritten. */
5887 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5888 memcpy(pOld, apOld[i], sizeof(MemPage));
5889 pOld->aData = (void*)&pOld[1];
5890 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5891
5892 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005893 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005894 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005895 apCell[nCell] = findOverflowCell(pOld, j);
5896 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005897 nCell++;
5898 }
5899 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005900 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005901 u8 *pTemp;
5902 assert( nCell<nMaxCells );
5903 szCell[nCell] = sz;
5904 pTemp = &aSpace1[iSpace1];
5905 iSpace1 += sz;
5906 assert( sz<=pBt->pageSize/4 );
5907 assert( iSpace1<=pBt->pageSize );
5908 memcpy(pTemp, apDiv[i], sz);
5909 apCell[nCell] = pTemp+leafCorrection;
5910 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005911 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005912 if( !pOld->leaf ){
5913 assert( leafCorrection==0 );
5914 assert( pOld->hdrOffset==0 );
5915 /* The right pointer of the child page pOld becomes the left
5916 ** pointer of the divider cell */
5917 memcpy(apCell[nCell], &pOld->aData[8], 4);
5918 }else{
5919 assert( leafCorrection==4 );
5920 if( szCell[nCell]<4 ){
5921 /* Do not allow any cells smaller than 4 bytes. */
5922 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005923 }
5924 }
drh14acc042001-06-10 19:56:58 +00005925 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005926 }
drh8b2f49b2001-06-08 00:21:52 +00005927 }
5928
5929 /*
drh6019e162001-07-02 17:51:45 +00005930 ** Figure out the number of pages needed to hold all nCell cells.
5931 ** Store this number in "k". Also compute szNew[] which is the total
5932 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005933 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005934 ** cntNew[k] should equal nCell.
5935 **
drh96f5b762004-05-16 16:24:36 +00005936 ** Values computed by this block:
5937 **
5938 ** k: The total number of sibling pages
5939 ** szNew[i]: Spaced used on the i-th sibling page.
5940 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5941 ** the right of the i-th sibling page.
5942 ** usableSpace: Number of bytes of space available on each sibling.
5943 **
drh8b2f49b2001-06-08 00:21:52 +00005944 */
drh43605152004-05-29 21:46:49 +00005945 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005946 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005947 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005948 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005949 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005950 szNew[k] = subtotal - szCell[i];
5951 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005952 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005953 subtotal = 0;
5954 k++;
drh9978c972010-02-23 17:36:32 +00005955 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00005956 }
5957 }
5958 szNew[k] = subtotal;
5959 cntNew[k] = nCell;
5960 k++;
drh96f5b762004-05-16 16:24:36 +00005961
5962 /*
5963 ** The packing computed by the previous block is biased toward the siblings
5964 ** on the left side. The left siblings are always nearly full, while the
5965 ** right-most sibling might be nearly empty. This block of code attempts
5966 ** to adjust the packing of siblings to get a better balance.
5967 **
5968 ** This adjustment is more than an optimization. The packing above might
5969 ** be so out of balance as to be illegal. For example, the right-most
5970 ** sibling might be completely empty. This adjustment is not optional.
5971 */
drh6019e162001-07-02 17:51:45 +00005972 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005973 int szRight = szNew[i]; /* Size of sibling on the right */
5974 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5975 int r; /* Index of right-most cell in left sibling */
5976 int d; /* Index of first cell to the left of right sibling */
5977
5978 r = cntNew[i-1] - 1;
5979 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005980 assert( d<nMaxCells );
5981 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005982 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5983 szRight += szCell[d] + 2;
5984 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005985 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005986 r = cntNew[i-1] - 1;
5987 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005988 }
drh96f5b762004-05-16 16:24:36 +00005989 szNew[i] = szRight;
5990 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005991 }
drh09d0deb2005-08-02 17:13:09 +00005992
danielk19776f235cc2009-06-04 14:46:08 +00005993 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00005994 ** a virtual root page. A virtual root page is when the real root
5995 ** page is page 1 and we are the only child of that page.
5996 */
5997 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005998
danielk1977e5765212009-06-17 11:13:28 +00005999 TRACE(("BALANCE: old: %d %d %d ",
6000 apOld[0]->pgno,
6001 nOld>=2 ? apOld[1]->pgno : 0,
6002 nOld>=3 ? apOld[2]->pgno : 0
6003 ));
6004
drh8b2f49b2001-06-08 00:21:52 +00006005 /*
drh6b308672002-07-08 02:16:37 +00006006 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006007 */
drheac74422009-06-14 12:47:11 +00006008 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006009 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006010 goto balance_cleanup;
6011 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006012 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006013 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006014 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006015 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006016 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006017 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006018 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006019 nNew++;
danielk197728129562005-01-11 10:25:06 +00006020 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006021 }else{
drh7aa8f852006-03-28 00:24:44 +00006022 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006023 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006024 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006025 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006026 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006027
6028 /* Set the pointer-map entry for the new sibling page. */
6029 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006030 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006031 if( rc!=SQLITE_OK ){
6032 goto balance_cleanup;
6033 }
6034 }
drh6b308672002-07-08 02:16:37 +00006035 }
drh8b2f49b2001-06-08 00:21:52 +00006036 }
6037
danielk1977299b1872004-11-22 10:02:10 +00006038 /* Free any old pages that were not reused as new pages.
6039 */
6040 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006041 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006042 if( rc ) goto balance_cleanup;
6043 releasePage(apOld[i]);
6044 apOld[i] = 0;
6045 i++;
6046 }
6047
drh8b2f49b2001-06-08 00:21:52 +00006048 /*
drhf9ffac92002-03-02 19:00:31 +00006049 ** Put the new pages in accending order. This helps to
6050 ** keep entries in the disk file in order so that a scan
6051 ** of the table is a linear scan through the file. That
6052 ** in turn helps the operating system to deliver pages
6053 ** from the disk more rapidly.
6054 **
6055 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006056 ** n is never more than NB (a small constant), that should
6057 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006058 **
drhc3b70572003-01-04 19:44:07 +00006059 ** When NB==3, this one optimization makes the database
6060 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006061 */
6062 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006063 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006064 int minI = i;
6065 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006066 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006067 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006068 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006069 }
6070 }
6071 if( minI>i ){
6072 int t;
6073 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00006074 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006075 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006076 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006077 apNew[minI] = pT;
6078 }
6079 }
danielk1977e5765212009-06-17 11:13:28 +00006080 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006081 apNew[0]->pgno, szNew[0],
6082 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6083 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6084 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6085 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6086
6087 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6088 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006089
drhf9ffac92002-03-02 19:00:31 +00006090 /*
drh14acc042001-06-10 19:56:58 +00006091 ** Evenly distribute the data in apCell[] across the new pages.
6092 ** Insert divider cells into pParent as necessary.
6093 */
6094 j = 0;
6095 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006096 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006097 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006098 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006099 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006100 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006101 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006102 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006103
danielk1977ac11ee62005-01-15 12:45:51 +00006104 j = cntNew[i];
6105
6106 /* If the sibling page assembled above was not the right-most sibling,
6107 ** insert a divider cell into the parent page.
6108 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006109 assert( i<nNew-1 || j==nCell );
6110 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006111 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006112 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006113 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006114
6115 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006116 pCell = apCell[j];
6117 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006118 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006119 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006120 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006121 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006122 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006123 ** then there is no divider cell in apCell[]. Instead, the divider
6124 ** cell consists of the integer key for the right-most cell of
6125 ** the sibling-page assembled above only.
6126 */
drh6f11bef2004-05-13 01:12:56 +00006127 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006128 j--;
danielk197730548662009-07-09 05:07:37 +00006129 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006130 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006131 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006132 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006133 }else{
6134 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006135 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006136 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006137 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006138 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006139 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006140 ** insertCell(), so reparse the cell now.
6141 **
6142 ** Note that this can never happen in an SQLite data file, as all
6143 ** cells are at least 4 bytes. It only happens in b-trees used
6144 ** to evaluate "IN (SELECT ...)" and similar clauses.
6145 */
6146 if( szCell[j]==4 ){
6147 assert(leafCorrection==4);
6148 sz = cellSizePtr(pParent, pCell);
6149 }
drh4b70f112004-05-02 21:12:19 +00006150 }
danielk19776067a9b2009-06-09 09:41:00 +00006151 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00006152 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006153 assert( iOvflSpace<=pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006154 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006155 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006156 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006157
drh14acc042001-06-10 19:56:58 +00006158 j++;
6159 nxDiv++;
6160 }
6161 }
drh6019e162001-07-02 17:51:45 +00006162 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006163 assert( nOld>0 );
6164 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006165 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006166 u8 *zChild = &apCopy[nOld-1]->aData[8];
6167 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006168 }
6169
danielk197713bd99f2009-06-24 05:40:34 +00006170 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6171 /* The root page of the b-tree now contains no cells. The only sibling
6172 ** page is the right-child of the parent. Copy the contents of the
6173 ** child page into the parent, decreasing the overall height of the
6174 ** b-tree structure by one. This is described as the "balance-shallower"
6175 ** sub-algorithm in some documentation.
6176 **
6177 ** If this is an auto-vacuum database, the call to copyNodeContent()
6178 ** sets all pointer-map entries corresponding to database image pages
6179 ** for which the pointer is stored within the content being copied.
6180 **
6181 ** The second assert below verifies that the child page is defragmented
6182 ** (it must be, as it was just reconstructed using assemblePage()). This
6183 ** is important if the parent page happens to be page 1 of the database
6184 ** image. */
6185 assert( nNew==1 );
6186 assert( apNew[0]->nFree ==
6187 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6188 );
drhc314dc72009-07-21 11:52:34 +00006189 copyNodeContent(apNew[0], pParent, &rc);
6190 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006191 }else if( ISAUTOVACUUM ){
6192 /* Fix the pointer-map entries for all the cells that were shifted around.
6193 ** There are several different types of pointer-map entries that need to
6194 ** be dealt with by this routine. Some of these have been set already, but
6195 ** many have not. The following is a summary:
6196 **
6197 ** 1) The entries associated with new sibling pages that were not
6198 ** siblings when this function was called. These have already
6199 ** been set. We don't need to worry about old siblings that were
6200 ** moved to the free-list - the freePage() code has taken care
6201 ** of those.
6202 **
6203 ** 2) The pointer-map entries associated with the first overflow
6204 ** page in any overflow chains used by new divider cells. These
6205 ** have also already been taken care of by the insertCell() code.
6206 **
6207 ** 3) If the sibling pages are not leaves, then the child pages of
6208 ** cells stored on the sibling pages may need to be updated.
6209 **
6210 ** 4) If the sibling pages are not internal intkey nodes, then any
6211 ** overflow pages used by these cells may need to be updated
6212 ** (internal intkey nodes never contain pointers to overflow pages).
6213 **
6214 ** 5) If the sibling pages are not leaves, then the pointer-map
6215 ** entries for the right-child pages of each sibling may need
6216 ** to be updated.
6217 **
6218 ** Cases 1 and 2 are dealt with above by other code. The next
6219 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6220 ** setting a pointer map entry is a relatively expensive operation, this
6221 ** code only sets pointer map entries for child or overflow pages that have
6222 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006223 MemPage *pNew = apNew[0];
6224 MemPage *pOld = apCopy[0];
6225 int nOverflow = pOld->nOverflow;
6226 int iNextOld = pOld->nCell + nOverflow;
6227 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6228 j = 0; /* Current 'old' sibling page */
6229 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006230 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006231 int isDivider = 0;
6232 while( i==iNextOld ){
6233 /* Cell i is the cell immediately following the last cell on old
6234 ** sibling page j. If the siblings are not leaf pages of an
6235 ** intkey b-tree, then cell i was a divider cell. */
6236 pOld = apCopy[++j];
6237 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6238 if( pOld->nOverflow ){
6239 nOverflow = pOld->nOverflow;
6240 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6241 }
6242 isDivider = !leafData;
6243 }
6244
6245 assert(nOverflow>0 || iOverflow<i );
6246 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6247 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6248 if( i==iOverflow ){
6249 isDivider = 1;
6250 if( (--nOverflow)>0 ){
6251 iOverflow++;
6252 }
6253 }
6254
6255 if( i==cntNew[k] ){
6256 /* Cell i is the cell immediately following the last cell on new
6257 ** sibling page k. If the siblings are not leaf pages of an
6258 ** intkey b-tree, then cell i is a divider cell. */
6259 pNew = apNew[++k];
6260 if( !leafData ) continue;
6261 }
danielk19774dbaa892009-06-16 16:50:22 +00006262 assert( j<nOld );
6263 assert( k<nNew );
6264
6265 /* If the cell was originally divider cell (and is not now) or
6266 ** an overflow cell, or if the cell was located on a different sibling
6267 ** page before the balancing, then the pointer map entries associated
6268 ** with any child or overflow pages need to be updated. */
6269 if( isDivider || pOld->pgno!=pNew->pgno ){
6270 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006271 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006272 }
drh98add2e2009-07-20 17:11:49 +00006273 if( szCell[i]>pNew->minLocal ){
6274 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006275 }
6276 }
6277 }
6278
6279 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006280 for(i=0; i<nNew; i++){
6281 u32 key = get4byte(&apNew[i]->aData[8]);
6282 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006283 }
6284 }
6285
6286#if 0
6287 /* The ptrmapCheckPages() contains assert() statements that verify that
6288 ** all pointer map pages are set correctly. This is helpful while
6289 ** debugging. This is usually disabled because a corrupt database may
6290 ** cause an assert() statement to fail. */
6291 ptrmapCheckPages(apNew, nNew);
6292 ptrmapCheckPages(&pParent, 1);
6293#endif
6294 }
6295
danielk197771d5d2c2008-09-29 11:49:47 +00006296 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006297 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6298 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006299
drh8b2f49b2001-06-08 00:21:52 +00006300 /*
drh14acc042001-06-10 19:56:58 +00006301 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006302 */
drh14acc042001-06-10 19:56:58 +00006303balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006304 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006305 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006306 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006307 }
drh14acc042001-06-10 19:56:58 +00006308 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006309 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006310 }
danielk1977eaa06f62008-09-18 17:34:44 +00006311
drh8b2f49b2001-06-08 00:21:52 +00006312 return rc;
6313}
6314
drh43605152004-05-29 21:46:49 +00006315
6316/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006317** This function is called when the root page of a b-tree structure is
6318** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006319**
danielk1977a50d9aa2009-06-08 14:49:45 +00006320** A new child page is allocated and the contents of the current root
6321** page, including overflow cells, are copied into the child. The root
6322** page is then overwritten to make it an empty page with the right-child
6323** pointer pointing to the new page.
6324**
6325** Before returning, all pointer-map entries corresponding to pages
6326** that the new child-page now contains pointers to are updated. The
6327** entry corresponding to the new right-child pointer of the root
6328** page is also updated.
6329**
6330** If successful, *ppChild is set to contain a reference to the child
6331** page and SQLITE_OK is returned. In this case the caller is required
6332** to call releasePage() on *ppChild exactly once. If an error occurs,
6333** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006334*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006335static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6336 int rc; /* Return value from subprocedures */
6337 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006338 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006339 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006340
danielk1977a50d9aa2009-06-08 14:49:45 +00006341 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006342 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006343
danielk1977a50d9aa2009-06-08 14:49:45 +00006344 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6345 ** page that will become the new right-child of pPage. Copy the contents
6346 ** of the node stored on pRoot into the new child page.
6347 */
drh98add2e2009-07-20 17:11:49 +00006348 rc = sqlite3PagerWrite(pRoot->pDbPage);
6349 if( rc==SQLITE_OK ){
6350 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006351 copyNodeContent(pRoot, pChild, &rc);
6352 if( ISAUTOVACUUM ){
6353 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006354 }
6355 }
6356 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006357 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006358 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006359 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006360 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006361 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6362 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6363 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006364
danielk1977a50d9aa2009-06-08 14:49:45 +00006365 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6366
6367 /* Copy the overflow cells from pRoot to pChild */
6368 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6369 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006370
6371 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6372 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6373 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6374
6375 *ppChild = pChild;
6376 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006377}
6378
6379/*
danielk197771d5d2c2008-09-29 11:49:47 +00006380** The page that pCur currently points to has just been modified in
6381** some way. This function figures out if this modification means the
6382** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006383** routine. Balancing routines are:
6384**
6385** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006386** balance_deeper()
6387** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006388*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006389static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006390 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006391 const int nMin = pCur->pBt->usableSize * 2 / 3;
6392 u8 aBalanceQuickSpace[13];
6393 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006394
shane75ac1de2009-06-09 18:58:52 +00006395 TESTONLY( int balance_quick_called = 0 );
6396 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006397
6398 do {
6399 int iPage = pCur->iPage;
6400 MemPage *pPage = pCur->apPage[iPage];
6401
6402 if( iPage==0 ){
6403 if( pPage->nOverflow ){
6404 /* The root page of the b-tree is overfull. In this case call the
6405 ** balance_deeper() function to create a new child for the root-page
6406 ** and copy the current contents of the root-page to it. The
6407 ** next iteration of the do-loop will balance the child page.
6408 */
6409 assert( (balance_deeper_called++)==0 );
6410 rc = balance_deeper(pPage, &pCur->apPage[1]);
6411 if( rc==SQLITE_OK ){
6412 pCur->iPage = 1;
6413 pCur->aiIdx[0] = 0;
6414 pCur->aiIdx[1] = 0;
6415 assert( pCur->apPage[1]->nOverflow );
6416 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006417 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006418 break;
6419 }
6420 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6421 break;
6422 }else{
6423 MemPage * const pParent = pCur->apPage[iPage-1];
6424 int const iIdx = pCur->aiIdx[iPage-1];
6425
6426 rc = sqlite3PagerWrite(pParent->pDbPage);
6427 if( rc==SQLITE_OK ){
6428#ifndef SQLITE_OMIT_QUICKBALANCE
6429 if( pPage->hasData
6430 && pPage->nOverflow==1
6431 && pPage->aOvfl[0].idx==pPage->nCell
6432 && pParent->pgno!=1
6433 && pParent->nCell==iIdx
6434 ){
6435 /* Call balance_quick() to create a new sibling of pPage on which
6436 ** to store the overflow cell. balance_quick() inserts a new cell
6437 ** into pParent, which may cause pParent overflow. If this
6438 ** happens, the next interation of the do-loop will balance pParent
6439 ** use either balance_nonroot() or balance_deeper(). Until this
6440 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6441 ** buffer.
6442 **
6443 ** The purpose of the following assert() is to check that only a
6444 ** single call to balance_quick() is made for each call to this
6445 ** function. If this were not verified, a subtle bug involving reuse
6446 ** of the aBalanceQuickSpace[] might sneak in.
6447 */
6448 assert( (balance_quick_called++)==0 );
6449 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6450 }else
6451#endif
6452 {
6453 /* In this case, call balance_nonroot() to redistribute cells
6454 ** between pPage and up to 2 of its sibling pages. This involves
6455 ** modifying the contents of pParent, which may cause pParent to
6456 ** become overfull or underfull. The next iteration of the do-loop
6457 ** will balance the parent page to correct this.
6458 **
6459 ** If the parent page becomes overfull, the overflow cell or cells
6460 ** are stored in the pSpace buffer allocated immediately below.
6461 ** A subsequent iteration of the do-loop will deal with this by
6462 ** calling balance_nonroot() (balance_deeper() may be called first,
6463 ** but it doesn't deal with overflow cells - just moves them to a
6464 ** different page). Once this subsequent call to balance_nonroot()
6465 ** has completed, it is safe to release the pSpace buffer used by
6466 ** the previous call, as the overflow cell data will have been
6467 ** copied either into the body of a database page or into the new
6468 ** pSpace buffer passed to the latter call to balance_nonroot().
6469 */
6470 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006471 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006472 if( pFree ){
6473 /* If pFree is not NULL, it points to the pSpace buffer used
6474 ** by a previous call to balance_nonroot(). Its contents are
6475 ** now stored either on real database pages or within the
6476 ** new pSpace buffer, so it may be safely freed here. */
6477 sqlite3PageFree(pFree);
6478 }
6479
danielk19774dbaa892009-06-16 16:50:22 +00006480 /* The pSpace buffer will be freed after the next call to
6481 ** balance_nonroot(), or just before this function returns, whichever
6482 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006483 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006484 }
6485 }
6486
6487 pPage->nOverflow = 0;
6488
6489 /* The next iteration of the do-loop balances the parent page. */
6490 releasePage(pPage);
6491 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006492 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006493 }while( rc==SQLITE_OK );
6494
6495 if( pFree ){
6496 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006497 }
6498 return rc;
6499}
6500
drhf74b8d92002-09-01 23:20:45 +00006501
6502/*
drh3b7511c2001-05-26 13:15:44 +00006503** Insert a new record into the BTree. The key is given by (pKey,nKey)
6504** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006505** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006506** is left pointing at a random location.
6507**
6508** For an INTKEY table, only the nKey value of the key is used. pKey is
6509** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006510**
6511** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006512** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006513** been performed. seekResult is the search result returned (a negative
6514** number if pCur points at an entry that is smaller than (pKey, nKey), or
6515** a positive value if pCur points at an etry that is larger than
6516** (pKey, nKey)).
6517**
drh3e9ca092009-09-08 01:14:48 +00006518** If the seekResult parameter is non-zero, then the caller guarantees that
6519** cursor pCur is pointing at the existing copy of a row that is to be
6520** overwritten. If the seekResult parameter is 0, then cursor pCur may
6521** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006522** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006523*/
drh3aac2dd2004-04-26 14:10:20 +00006524int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006525 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006526 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006527 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006528 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006529 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006530 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006531){
drh3b7511c2001-05-26 13:15:44 +00006532 int rc;
drh3e9ca092009-09-08 01:14:48 +00006533 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006534 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006535 int idx;
drh3b7511c2001-05-26 13:15:44 +00006536 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006537 Btree *p = pCur->pBtree;
6538 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006539 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006540 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006541
drh98add2e2009-07-20 17:11:49 +00006542 if( pCur->eState==CURSOR_FAULT ){
6543 assert( pCur->skipNext!=SQLITE_OK );
6544 return pCur->skipNext;
6545 }
6546
drh1fee73e2007-08-29 04:00:57 +00006547 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006548 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006549 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6550
danielk197731d31b82009-07-13 13:18:07 +00006551 /* Assert that the caller has been consistent. If this cursor was opened
6552 ** expecting an index b-tree, then the caller should be inserting blob
6553 ** keys with no associated data. If the cursor was opened expecting an
6554 ** intkey table, the caller should be inserting integer keys with a
6555 ** blob of associated data. */
6556 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6557
danielk197796d48e92009-06-29 06:00:37 +00006558 /* If this is an insert into a table b-tree, invalidate any incrblob
6559 ** cursors open on the row being replaced (assuming this is a replace
6560 ** operation - if it is not, the following is a no-op). */
6561 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006562 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006563 }
danielk197796d48e92009-06-29 06:00:37 +00006564
danielk19779c3acf32009-05-02 07:36:49 +00006565 /* Save the positions of any other cursors open on this table.
6566 **
danielk19773509a652009-07-06 18:56:13 +00006567 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006568 ** example, when inserting data into a table with auto-generated integer
6569 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6570 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006571 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006572 ** that the cursor is already where it needs to be and returns without
6573 ** doing any work. To avoid thwarting these optimizations, it is important
6574 ** not to clear the cursor here.
6575 */
drh4c301aa2009-07-15 17:25:45 +00006576 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6577 if( rc ) return rc;
6578 if( !loc ){
6579 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6580 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006581 }
danielk1977b980d2212009-06-22 18:03:51 +00006582 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006583
danielk197771d5d2c2008-09-29 11:49:47 +00006584 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006585 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006586 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006587
drh3a4c1412004-05-09 20:40:11 +00006588 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6589 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6590 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006591 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006592 allocateTempSpace(pBt);
6593 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006594 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006595 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006596 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006597 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006598 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006599 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006600 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006601 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006602 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006603 rc = sqlite3PagerWrite(pPage->pDbPage);
6604 if( rc ){
6605 goto end_insert;
6606 }
danielk197771d5d2c2008-09-29 11:49:47 +00006607 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006608 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006609 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006610 }
drh43605152004-05-29 21:46:49 +00006611 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006612 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006613 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006614 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006615 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006616 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006617 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006618 }else{
drh4b70f112004-05-02 21:12:19 +00006619 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006620 }
drh98add2e2009-07-20 17:11:49 +00006621 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006622 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006623
danielk1977a50d9aa2009-06-08 14:49:45 +00006624 /* If no error has occured and pPage has an overflow cell, call balance()
6625 ** to redistribute the cells within the tree. Since balance() may move
6626 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6627 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006628 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006629 ** Previous versions of SQLite called moveToRoot() to move the cursor
6630 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006631 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6632 ** set the cursor state to "invalid". This makes common insert operations
6633 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006634 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006635 ** There is a subtle but important optimization here too. When inserting
6636 ** multiple records into an intkey b-tree using a single cursor (as can
6637 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6638 ** is advantageous to leave the cursor pointing to the last entry in
6639 ** the b-tree if possible. If the cursor is left pointing to the last
6640 ** entry in the table, and the next row inserted has an integer key
6641 ** larger than the largest existing key, it is possible to insert the
6642 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006643 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006644 pCur->info.nSize = 0;
6645 pCur->validNKey = 0;
6646 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006647 rc = balance(pCur);
6648
6649 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006650 ** fails. Internal data structure corruption will result otherwise.
6651 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6652 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006653 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006654 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006655 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006656 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006657
drh2e38c322004-09-03 18:38:44 +00006658end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006659 return rc;
6660}
6661
6662/*
drh4b70f112004-05-02 21:12:19 +00006663** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006664** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006665*/
drh3aac2dd2004-04-26 14:10:20 +00006666int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006667 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006668 BtShared *pBt = p->pBt;
6669 int rc; /* Return code */
6670 MemPage *pPage; /* Page to delete cell from */
6671 unsigned char *pCell; /* Pointer to cell to delete */
6672 int iCellIdx; /* Index of cell to delete */
6673 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006674
drh1fee73e2007-08-29 04:00:57 +00006675 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006676 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006677 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006678 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006679 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6680 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6681
danielk19774dbaa892009-06-16 16:50:22 +00006682 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6683 || NEVER(pCur->eState!=CURSOR_VALID)
6684 ){
6685 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006686 }
danielk1977da184232006-01-05 11:34:32 +00006687
danielk197796d48e92009-06-29 06:00:37 +00006688 /* If this is a delete operation to remove a row from a table b-tree,
6689 ** invalidate any incrblob cursors open on the row being deleted. */
6690 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006691 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006692 }
6693
6694 iCellDepth = pCur->iPage;
6695 iCellIdx = pCur->aiIdx[iCellDepth];
6696 pPage = pCur->apPage[iCellDepth];
6697 pCell = findCell(pPage, iCellIdx);
6698
6699 /* If the page containing the entry to delete is not a leaf page, move
6700 ** the cursor to the largest entry in the tree that is smaller than
6701 ** the entry being deleted. This cell will replace the cell being deleted
6702 ** from the internal node. The 'previous' entry is used for this instead
6703 ** of the 'next' entry, as the previous entry is always a part of the
6704 ** sub-tree headed by the child page of the cell being deleted. This makes
6705 ** balancing the tree following the delete operation easier. */
6706 if( !pPage->leaf ){
6707 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006708 rc = sqlite3BtreePrevious(pCur, &notUsed);
6709 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006710 }
6711
6712 /* Save the positions of any other cursors open on this table before
6713 ** making any modifications. Make the page containing the entry to be
6714 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006715 ** entry and finally remove the cell itself from within the page.
6716 */
6717 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6718 if( rc ) return rc;
6719 rc = sqlite3PagerWrite(pPage->pDbPage);
6720 if( rc ) return rc;
6721 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006722 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006723 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006724
danielk19774dbaa892009-06-16 16:50:22 +00006725 /* If the cell deleted was not located on a leaf page, then the cursor
6726 ** is currently pointing to the largest entry in the sub-tree headed
6727 ** by the child-page of the cell that was just deleted from an internal
6728 ** node. The cell from the leaf node needs to be moved to the internal
6729 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006730 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006731 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6732 int nCell;
6733 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6734 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006735
danielk19774dbaa892009-06-16 16:50:22 +00006736 pCell = findCell(pLeaf, pLeaf->nCell-1);
6737 nCell = cellSizePtr(pLeaf, pCell);
6738 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006739
danielk19774dbaa892009-06-16 16:50:22 +00006740 allocateTempSpace(pBt);
6741 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006742
drha4ec1d42009-07-11 13:13:11 +00006743 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006744 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6745 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006746 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006747 }
danielk19774dbaa892009-06-16 16:50:22 +00006748
6749 /* Balance the tree. If the entry deleted was located on a leaf page,
6750 ** then the cursor still points to that page. In this case the first
6751 ** call to balance() repairs the tree, and the if(...) condition is
6752 ** never true.
6753 **
6754 ** Otherwise, if the entry deleted was on an internal node page, then
6755 ** pCur is pointing to the leaf page from which a cell was removed to
6756 ** replace the cell deleted from the internal node. This is slightly
6757 ** tricky as the leaf node may be underfull, and the internal node may
6758 ** be either under or overfull. In this case run the balancing algorithm
6759 ** on the leaf node first. If the balance proceeds far enough up the
6760 ** tree that we can be sure that any problem in the internal node has
6761 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6762 ** walk the cursor up the tree to the internal node and balance it as
6763 ** well. */
6764 rc = balance(pCur);
6765 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6766 while( pCur->iPage>iCellDepth ){
6767 releasePage(pCur->apPage[pCur->iPage--]);
6768 }
6769 rc = balance(pCur);
6770 }
6771
danielk19776b456a22005-03-21 04:04:02 +00006772 if( rc==SQLITE_OK ){
6773 moveToRoot(pCur);
6774 }
drh5e2f8b92001-05-28 00:41:15 +00006775 return rc;
drh3b7511c2001-05-26 13:15:44 +00006776}
drh8b2f49b2001-06-08 00:21:52 +00006777
6778/*
drhc6b52df2002-01-04 03:09:29 +00006779** Create a new BTree table. Write into *piTable the page
6780** number for the root page of the new table.
6781**
drhab01f612004-05-22 02:55:23 +00006782** The type of type is determined by the flags parameter. Only the
6783** following values of flags are currently in use. Other values for
6784** flags might not work:
6785**
6786** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6787** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006788*/
drhd677b3d2007-08-20 22:48:41 +00006789static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006790 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006791 MemPage *pRoot;
6792 Pgno pgnoRoot;
6793 int rc;
drhd677b3d2007-08-20 22:48:41 +00006794
drh1fee73e2007-08-29 04:00:57 +00006795 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006796 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006797 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006798
danielk1977003ba062004-11-04 02:57:33 +00006799#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006800 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006801 if( rc ){
6802 return rc;
6803 }
danielk1977003ba062004-11-04 02:57:33 +00006804#else
danielk1977687566d2004-11-02 12:56:41 +00006805 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006806 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6807 MemPage *pPageMove; /* The page to move to. */
6808
danielk197720713f32007-05-03 11:43:33 +00006809 /* Creating a new table may probably require moving an existing database
6810 ** to make room for the new tables root page. In case this page turns
6811 ** out to be an overflow page, delete all overflow page-map caches
6812 ** held by open cursors.
6813 */
danielk197792d4d7a2007-05-04 12:05:56 +00006814 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006815
danielk1977003ba062004-11-04 02:57:33 +00006816 /* Read the value of meta[3] from the database to determine where the
6817 ** root page of the new table should go. meta[3] is the largest root-page
6818 ** created so far, so the new root-page is (meta[3]+1).
6819 */
danielk1977602b4662009-07-02 07:47:33 +00006820 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006821 pgnoRoot++;
6822
danielk1977599fcba2004-11-08 07:13:13 +00006823 /* The new root-page may not be allocated on a pointer-map page, or the
6824 ** PENDING_BYTE page.
6825 */
drh72190432008-01-31 14:54:43 +00006826 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006827 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006828 pgnoRoot++;
6829 }
6830 assert( pgnoRoot>=3 );
6831
6832 /* Allocate a page. The page that currently resides at pgnoRoot will
6833 ** be moved to the allocated page (unless the allocated page happens
6834 ** to reside at pgnoRoot).
6835 */
drh4f0c5872007-03-26 22:05:01 +00006836 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006837 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006838 return rc;
6839 }
danielk1977003ba062004-11-04 02:57:33 +00006840
6841 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006842 /* pgnoRoot is the page that will be used for the root-page of
6843 ** the new table (assuming an error did not occur). But we were
6844 ** allocated pgnoMove. If required (i.e. if it was not allocated
6845 ** by extending the file), the current page at position pgnoMove
6846 ** is already journaled.
6847 */
drheeb844a2009-08-08 18:01:07 +00006848 u8 eType = 0;
6849 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00006850
6851 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006852
6853 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006854 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006855 if( rc!=SQLITE_OK ){
6856 return rc;
6857 }
6858 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006859 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6860 rc = SQLITE_CORRUPT_BKPT;
6861 }
6862 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006863 releasePage(pRoot);
6864 return rc;
6865 }
drhccae6022005-02-26 17:31:26 +00006866 assert( eType!=PTRMAP_ROOTPAGE );
6867 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006868 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006869 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006870
6871 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006872 if( rc!=SQLITE_OK ){
6873 return rc;
6874 }
danielk197730548662009-07-09 05:07:37 +00006875 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006876 if( rc!=SQLITE_OK ){
6877 return rc;
6878 }
danielk19773b8a05f2007-03-19 17:44:26 +00006879 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006880 if( rc!=SQLITE_OK ){
6881 releasePage(pRoot);
6882 return rc;
6883 }
6884 }else{
6885 pRoot = pPageMove;
6886 }
6887
danielk197742741be2005-01-08 12:42:39 +00006888 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00006889 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00006890 if( rc ){
6891 releasePage(pRoot);
6892 return rc;
6893 }
drhbf592832010-03-30 15:51:12 +00006894
6895 /* When the new root page was allocated, page 1 was made writable in
6896 ** order either to increase the database filesize, or to decrement the
6897 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
6898 */
6899 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00006900 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00006901 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00006902 releasePage(pRoot);
6903 return rc;
6904 }
danielk197742741be2005-01-08 12:42:39 +00006905
danielk1977003ba062004-11-04 02:57:33 +00006906 }else{
drh4f0c5872007-03-26 22:05:01 +00006907 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006908 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006909 }
6910#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006911 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006912 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006913 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006914 *piTable = (int)pgnoRoot;
6915 return SQLITE_OK;
6916}
drhd677b3d2007-08-20 22:48:41 +00006917int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6918 int rc;
6919 sqlite3BtreeEnter(p);
6920 rc = btreeCreateTable(p, piTable, flags);
6921 sqlite3BtreeLeave(p);
6922 return rc;
6923}
drh8b2f49b2001-06-08 00:21:52 +00006924
6925/*
6926** Erase the given database page and all its children. Return
6927** the page to the freelist.
6928*/
drh4b70f112004-05-02 21:12:19 +00006929static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006930 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00006931 Pgno pgno, /* Page number to clear */
6932 int freePageFlag, /* Deallocate page if true */
6933 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00006934){
danielk1977146ba992009-07-22 14:08:13 +00006935 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00006936 int rc;
drh4b70f112004-05-02 21:12:19 +00006937 unsigned char *pCell;
6938 int i;
drh8b2f49b2001-06-08 00:21:52 +00006939
drh1fee73e2007-08-29 04:00:57 +00006940 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00006941 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006942 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006943 }
6944
danielk197771d5d2c2008-09-29 11:49:47 +00006945 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00006946 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00006947 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006948 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006949 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006950 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006951 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006952 }
drh4b70f112004-05-02 21:12:19 +00006953 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006954 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006955 }
drha34b6762004-05-07 13:30:42 +00006956 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006957 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006958 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006959 }else if( pnChange ){
6960 assert( pPage->intKey );
6961 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006962 }
6963 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00006964 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00006965 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006966 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006967 }
danielk19776b456a22005-03-21 04:04:02 +00006968
6969cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006970 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006971 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006972}
6973
6974/*
drhab01f612004-05-22 02:55:23 +00006975** Delete all information from a single table in the database. iTable is
6976** the page number of the root of the table. After this routine returns,
6977** the root page is empty, but still exists.
6978**
6979** This routine will fail with SQLITE_LOCKED if there are any open
6980** read cursors on the table. Open write cursors are moved to the
6981** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006982**
6983** If pnChange is not NULL, then table iTable must be an intkey table. The
6984** integer value pointed to by pnChange is incremented by the number of
6985** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006986*/
danielk1977c7af4842008-10-27 13:59:33 +00006987int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006988 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006989 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006990 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006991 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00006992
6993 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
6994 ** is the root of a table b-tree - if it is not, the following call is
6995 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00006996 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00006997
drhc046e3e2009-07-15 11:26:44 +00006998 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
6999 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00007000 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007001 }
drhd677b3d2007-08-20 22:48:41 +00007002 sqlite3BtreeLeave(p);
7003 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007004}
7005
7006/*
7007** Erase all information in a table and add the root of the table to
7008** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007009** page 1) is never added to the freelist.
7010**
7011** This routine will fail with SQLITE_LOCKED if there are any open
7012** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007013**
7014** If AUTOVACUUM is enabled and the page at iTable is not the last
7015** root page in the database file, then the last root page
7016** in the database file is moved into the slot formerly occupied by
7017** iTable and that last slot formerly occupied by the last root page
7018** is added to the freelist instead of iTable. In this say, all
7019** root pages are kept at the beginning of the database file, which
7020** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7021** page number that used to be the last root page in the file before
7022** the move. If no page gets moved, *piMoved is set to 0.
7023** The last root page is recorded in meta[3] and the value of
7024** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007025*/
danielk197789d40042008-11-17 14:20:56 +00007026static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007027 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007028 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007029 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007030
drh1fee73e2007-08-29 04:00:57 +00007031 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007032 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007033
danielk1977e6efa742004-11-10 11:55:10 +00007034 /* It is illegal to drop a table if any cursors are open on the
7035 ** database. This is because in auto-vacuum mode the backend may
7036 ** need to move another root-page to fill a gap left by the deleted
7037 ** root page. If an open cursor was using this page a problem would
7038 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007039 **
7040 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007041 */
drhc046e3e2009-07-15 11:26:44 +00007042 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007043 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7044 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007045 }
danielk1977a0bf2652004-11-04 14:30:04 +00007046
danielk197730548662009-07-09 05:07:37 +00007047 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007048 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007049 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007050 if( rc ){
7051 releasePage(pPage);
7052 return rc;
7053 }
danielk1977a0bf2652004-11-04 14:30:04 +00007054
drh205f48e2004-11-05 00:43:11 +00007055 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007056
drh4b70f112004-05-02 21:12:19 +00007057 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007058#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007059 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007060 releasePage(pPage);
7061#else
7062 if( pBt->autoVacuum ){
7063 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007064 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007065
7066 if( iTable==maxRootPgno ){
7067 /* If the table being dropped is the table with the largest root-page
7068 ** number in the database, put the root page on the free list.
7069 */
drhc314dc72009-07-21 11:52:34 +00007070 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007071 releasePage(pPage);
7072 if( rc!=SQLITE_OK ){
7073 return rc;
7074 }
7075 }else{
7076 /* The table being dropped does not have the largest root-page
7077 ** number in the database. So move the page that does into the
7078 ** gap left by the deleted root-page.
7079 */
7080 MemPage *pMove;
7081 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007082 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007083 if( rc!=SQLITE_OK ){
7084 return rc;
7085 }
danielk19774c999992008-07-16 18:17:55 +00007086 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007087 releasePage(pMove);
7088 if( rc!=SQLITE_OK ){
7089 return rc;
7090 }
drhfe3313f2009-07-21 19:02:20 +00007091 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007092 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007093 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007094 releasePage(pMove);
7095 if( rc!=SQLITE_OK ){
7096 return rc;
7097 }
7098 *piMoved = maxRootPgno;
7099 }
7100
danielk1977599fcba2004-11-08 07:13:13 +00007101 /* Set the new 'max-root-page' value in the database header. This
7102 ** is the old value less one, less one more if that happens to
7103 ** be a root-page number, less one again if that is the
7104 ** PENDING_BYTE_PAGE.
7105 */
danielk197787a6e732004-11-05 12:58:25 +00007106 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007107 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7108 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007109 maxRootPgno--;
7110 }
danielk1977599fcba2004-11-08 07:13:13 +00007111 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7112
danielk1977aef0bf62005-12-30 16:28:01 +00007113 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007114 }else{
drhc314dc72009-07-21 11:52:34 +00007115 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007116 releasePage(pPage);
7117 }
7118#endif
drh2aa679f2001-06-25 02:11:07 +00007119 }else{
drhc046e3e2009-07-15 11:26:44 +00007120 /* If sqlite3BtreeDropTable was called on page 1.
7121 ** This really never should happen except in a corrupt
7122 ** database.
7123 */
drha34b6762004-05-07 13:30:42 +00007124 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007125 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007126 }
drh8b2f49b2001-06-08 00:21:52 +00007127 return rc;
7128}
drhd677b3d2007-08-20 22:48:41 +00007129int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7130 int rc;
7131 sqlite3BtreeEnter(p);
7132 rc = btreeDropTable(p, iTable, piMoved);
7133 sqlite3BtreeLeave(p);
7134 return rc;
7135}
drh8b2f49b2001-06-08 00:21:52 +00007136
drh001bbcb2003-03-19 03:14:00 +00007137
drh8b2f49b2001-06-08 00:21:52 +00007138/*
danielk1977602b4662009-07-02 07:47:33 +00007139** This function may only be called if the b-tree connection already
7140** has a read or write transaction open on the database.
7141**
drh23e11ca2004-05-04 17:27:28 +00007142** Read the meta-information out of a database file. Meta[0]
7143** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007144** through meta[15] are available for use by higher layers. Meta[0]
7145** is read-only, the others are read/write.
7146**
7147** The schema layer numbers meta values differently. At the schema
7148** layer (and the SetCookie and ReadCookie opcodes) the number of
7149** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007150*/
danielk1977602b4662009-07-02 07:47:33 +00007151void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007152 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007153
drhd677b3d2007-08-20 22:48:41 +00007154 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007155 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007156 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007157 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007158 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007159
danielk1977602b4662009-07-02 07:47:33 +00007160 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007161
danielk1977602b4662009-07-02 07:47:33 +00007162 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7163 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007164#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007165 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007166#endif
drhae157872004-08-14 19:20:09 +00007167
drhd677b3d2007-08-20 22:48:41 +00007168 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007169}
7170
7171/*
drh23e11ca2004-05-04 17:27:28 +00007172** Write meta-information back into the database. Meta[0] is
7173** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007174*/
danielk1977aef0bf62005-12-30 16:28:01 +00007175int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7176 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007177 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007178 int rc;
drh23e11ca2004-05-04 17:27:28 +00007179 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007180 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007181 assert( p->inTrans==TRANS_WRITE );
7182 assert( pBt->pPage1!=0 );
7183 pP1 = pBt->pPage1->aData;
7184 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7185 if( rc==SQLITE_OK ){
7186 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007187#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007188 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007189 assert( pBt->autoVacuum || iMeta==0 );
7190 assert( iMeta==0 || iMeta==1 );
7191 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007192 }
drh64022502009-01-09 14:11:04 +00007193#endif
drh5df72a52002-06-06 23:16:05 +00007194 }
drhd677b3d2007-08-20 22:48:41 +00007195 sqlite3BtreeLeave(p);
7196 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007197}
drh8c42ca92001-06-22 19:15:00 +00007198
danielk1977a5533162009-02-24 10:01:51 +00007199#ifndef SQLITE_OMIT_BTREECOUNT
7200/*
7201** The first argument, pCur, is a cursor opened on some b-tree. Count the
7202** number of entries in the b-tree and write the result to *pnEntry.
7203**
7204** SQLITE_OK is returned if the operation is successfully executed.
7205** Otherwise, if an error is encountered (i.e. an IO error or database
7206** corruption) an SQLite error code is returned.
7207*/
7208int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7209 i64 nEntry = 0; /* Value to return in *pnEntry */
7210 int rc; /* Return code */
7211 rc = moveToRoot(pCur);
7212
7213 /* Unless an error occurs, the following loop runs one iteration for each
7214 ** page in the B-Tree structure (not including overflow pages).
7215 */
7216 while( rc==SQLITE_OK ){
7217 int iIdx; /* Index of child node in parent */
7218 MemPage *pPage; /* Current page of the b-tree */
7219
7220 /* If this is a leaf page or the tree is not an int-key tree, then
7221 ** this page contains countable entries. Increment the entry counter
7222 ** accordingly.
7223 */
7224 pPage = pCur->apPage[pCur->iPage];
7225 if( pPage->leaf || !pPage->intKey ){
7226 nEntry += pPage->nCell;
7227 }
7228
7229 /* pPage is a leaf node. This loop navigates the cursor so that it
7230 ** points to the first interior cell that it points to the parent of
7231 ** the next page in the tree that has not yet been visited. The
7232 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7233 ** of the page, or to the number of cells in the page if the next page
7234 ** to visit is the right-child of its parent.
7235 **
7236 ** If all pages in the tree have been visited, return SQLITE_OK to the
7237 ** caller.
7238 */
7239 if( pPage->leaf ){
7240 do {
7241 if( pCur->iPage==0 ){
7242 /* All pages of the b-tree have been visited. Return successfully. */
7243 *pnEntry = nEntry;
7244 return SQLITE_OK;
7245 }
danielk197730548662009-07-09 05:07:37 +00007246 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007247 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7248
7249 pCur->aiIdx[pCur->iPage]++;
7250 pPage = pCur->apPage[pCur->iPage];
7251 }
7252
7253 /* Descend to the child node of the cell that the cursor currently
7254 ** points at. This is the right-child if (iIdx==pPage->nCell).
7255 */
7256 iIdx = pCur->aiIdx[pCur->iPage];
7257 if( iIdx==pPage->nCell ){
7258 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7259 }else{
7260 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7261 }
7262 }
7263
shanebe217792009-03-05 04:20:31 +00007264 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007265 return rc;
7266}
7267#endif
drhdd793422001-06-28 01:54:48 +00007268
drhdd793422001-06-28 01:54:48 +00007269/*
drh5eddca62001-06-30 21:53:53 +00007270** Return the pager associated with a BTree. This routine is used for
7271** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007272*/
danielk1977aef0bf62005-12-30 16:28:01 +00007273Pager *sqlite3BtreePager(Btree *p){
7274 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007275}
drh5eddca62001-06-30 21:53:53 +00007276
drhb7f91642004-10-31 02:22:47 +00007277#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007278/*
7279** Append a message to the error message string.
7280*/
drh2e38c322004-09-03 18:38:44 +00007281static void checkAppendMsg(
7282 IntegrityCk *pCheck,
7283 char *zMsg1,
7284 const char *zFormat,
7285 ...
7286){
7287 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007288 if( !pCheck->mxErr ) return;
7289 pCheck->mxErr--;
7290 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007291 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007292 if( pCheck->errMsg.nChar ){
7293 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007294 }
drhf089aa42008-07-08 19:34:06 +00007295 if( zMsg1 ){
7296 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7297 }
7298 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7299 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007300 if( pCheck->errMsg.mallocFailed ){
7301 pCheck->mallocFailed = 1;
7302 }
drh5eddca62001-06-30 21:53:53 +00007303}
drhb7f91642004-10-31 02:22:47 +00007304#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007305
drhb7f91642004-10-31 02:22:47 +00007306#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007307/*
7308** Add 1 to the reference count for page iPage. If this is the second
7309** reference to the page, add an error message to pCheck->zErrMsg.
7310** Return 1 if there are 2 ore more references to the page and 0 if
7311** if this is the first reference to the page.
7312**
7313** Also check that the page number is in bounds.
7314*/
danielk197789d40042008-11-17 14:20:56 +00007315static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007316 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007317 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007318 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007319 return 1;
7320 }
7321 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007322 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007323 return 1;
7324 }
7325 return (pCheck->anRef[iPage]++)>1;
7326}
7327
danielk1977afcdd022004-10-31 16:25:42 +00007328#ifndef SQLITE_OMIT_AUTOVACUUM
7329/*
7330** Check that the entry in the pointer-map for page iChild maps to
7331** page iParent, pointer type ptrType. If not, append an error message
7332** to pCheck.
7333*/
7334static void checkPtrmap(
7335 IntegrityCk *pCheck, /* Integrity check context */
7336 Pgno iChild, /* Child page number */
7337 u8 eType, /* Expected pointer map type */
7338 Pgno iParent, /* Expected pointer map parent page number */
7339 char *zContext /* Context description (used for error msg) */
7340){
7341 int rc;
7342 u8 ePtrmapType;
7343 Pgno iPtrmapParent;
7344
7345 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7346 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007347 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007348 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7349 return;
7350 }
7351
7352 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7353 checkAppendMsg(pCheck, zContext,
7354 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7355 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7356 }
7357}
7358#endif
7359
drh5eddca62001-06-30 21:53:53 +00007360/*
7361** Check the integrity of the freelist or of an overflow page list.
7362** Verify that the number of pages on the list is N.
7363*/
drh30e58752002-03-02 20:41:57 +00007364static void checkList(
7365 IntegrityCk *pCheck, /* Integrity checking context */
7366 int isFreeList, /* True for a freelist. False for overflow page list */
7367 int iPage, /* Page number for first page in the list */
7368 int N, /* Expected number of pages in the list */
7369 char *zContext /* Context for error messages */
7370){
7371 int i;
drh3a4c1412004-05-09 20:40:11 +00007372 int expected = N;
7373 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007374 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007375 DbPage *pOvflPage;
7376 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007377 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007378 checkAppendMsg(pCheck, zContext,
7379 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007380 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007381 break;
7382 }
7383 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007384 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007385 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007386 break;
7387 }
danielk19773b8a05f2007-03-19 17:44:26 +00007388 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007389 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007390 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007391#ifndef SQLITE_OMIT_AUTOVACUUM
7392 if( pCheck->pBt->autoVacuum ){
7393 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7394 }
7395#endif
drh45b1fac2008-07-04 17:52:42 +00007396 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007397 checkAppendMsg(pCheck, zContext,
7398 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007399 N--;
7400 }else{
7401 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007402 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007403#ifndef SQLITE_OMIT_AUTOVACUUM
7404 if( pCheck->pBt->autoVacuum ){
7405 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7406 }
7407#endif
7408 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007409 }
7410 N -= n;
drh30e58752002-03-02 20:41:57 +00007411 }
drh30e58752002-03-02 20:41:57 +00007412 }
danielk1977afcdd022004-10-31 16:25:42 +00007413#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007414 else{
7415 /* If this database supports auto-vacuum and iPage is not the last
7416 ** page in this overflow list, check that the pointer-map entry for
7417 ** the following page matches iPage.
7418 */
7419 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007420 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007421 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7422 }
danielk1977afcdd022004-10-31 16:25:42 +00007423 }
7424#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007425 iPage = get4byte(pOvflData);
7426 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007427 }
7428}
drhb7f91642004-10-31 02:22:47 +00007429#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007430
drhb7f91642004-10-31 02:22:47 +00007431#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007432/*
7433** Do various sanity checks on a single page of a tree. Return
7434** the tree depth. Root pages return 0. Parents of root pages
7435** return 1, and so forth.
7436**
7437** These checks are done:
7438**
7439** 1. Make sure that cells and freeblocks do not overlap
7440** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007441** NO 2. Make sure cell keys are in order.
7442** NO 3. Make sure no key is less than or equal to zLowerBound.
7443** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007444** 5. Check the integrity of overflow pages.
7445** 6. Recursively call checkTreePage on all children.
7446** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007447** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007448** the root of the tree.
7449*/
7450static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007451 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007452 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007453 char *zParentContext, /* Parent context */
7454 i64 *pnParentMinKey,
7455 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007456){
7457 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007458 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007459 int hdr, cellStart;
7460 int nCell;
drhda200cc2004-05-09 11:51:38 +00007461 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007462 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007463 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007464 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007465 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007466 i64 nMinKey = 0;
7467 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007468
drh5bb3eb92007-05-04 13:15:55 +00007469 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007470
drh5eddca62001-06-30 21:53:53 +00007471 /* Check that the page exists
7472 */
drhd9cb6ac2005-10-20 07:28:17 +00007473 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007474 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007475 if( iPage==0 ) return 0;
7476 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007477 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007478 checkAppendMsg(pCheck, zContext,
7479 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007480 return 0;
7481 }
danielk197793caf5a2009-07-11 06:55:33 +00007482
7483 /* Clear MemPage.isInit to make sure the corruption detection code in
7484 ** btreeInitPage() is executed. */
7485 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007486 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007487 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007488 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007489 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007490 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007491 return 0;
7492 }
7493
7494 /* Check out all the cells.
7495 */
7496 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007497 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007498 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007499 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007500 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007501
7502 /* Check payload overflow pages
7503 */
drh5bb3eb92007-05-04 13:15:55 +00007504 sqlite3_snprintf(sizeof(zContext), zContext,
7505 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007506 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007507 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007508 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007509 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007510 /* For intKey pages, check that the keys are in order.
7511 */
7512 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7513 else{
7514 if( info.nKey <= nMaxKey ){
7515 checkAppendMsg(pCheck, zContext,
7516 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7517 }
7518 nMaxKey = info.nKey;
7519 }
drh72365832007-03-06 15:53:44 +00007520 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007521 if( (sz>info.nLocal)
7522 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7523 ){
drhb6f41482004-05-14 01:58:11 +00007524 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007525 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7526#ifndef SQLITE_OMIT_AUTOVACUUM
7527 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007528 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007529 }
7530#endif
7531 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007532 }
7533
7534 /* Check sanity of left child page.
7535 */
drhda200cc2004-05-09 11:51:38 +00007536 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007537 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007538#ifndef SQLITE_OMIT_AUTOVACUUM
7539 if( pBt->autoVacuum ){
7540 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7541 }
7542#endif
shaneh195475d2010-02-19 04:28:08 +00007543 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007544 if( i>0 && d2!=depth ){
7545 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7546 }
7547 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007548 }
drh5eddca62001-06-30 21:53:53 +00007549 }
shaneh195475d2010-02-19 04:28:08 +00007550
drhda200cc2004-05-09 11:51:38 +00007551 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007552 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007553 sqlite3_snprintf(sizeof(zContext), zContext,
7554 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007555#ifndef SQLITE_OMIT_AUTOVACUUM
7556 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007557 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007558 }
7559#endif
shaneh195475d2010-02-19 04:28:08 +00007560 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007561 }
drh5eddca62001-06-30 21:53:53 +00007562
shaneh195475d2010-02-19 04:28:08 +00007563 /* For intKey leaf pages, check that the min/max keys are in order
7564 ** with any left/parent/right pages.
7565 */
7566 if( pPage->leaf && pPage->intKey ){
7567 /* if we are a left child page */
7568 if( pnParentMinKey ){
7569 /* if we are the left most child page */
7570 if( !pnParentMaxKey ){
7571 if( nMaxKey > *pnParentMinKey ){
7572 checkAppendMsg(pCheck, zContext,
7573 "Rowid %lld out of order (max larger than parent min of %lld)",
7574 nMaxKey, *pnParentMinKey);
7575 }
7576 }else{
7577 if( nMinKey <= *pnParentMinKey ){
7578 checkAppendMsg(pCheck, zContext,
7579 "Rowid %lld out of order (min less than parent min of %lld)",
7580 nMinKey, *pnParentMinKey);
7581 }
7582 if( nMaxKey > *pnParentMaxKey ){
7583 checkAppendMsg(pCheck, zContext,
7584 "Rowid %lld out of order (max larger than parent max of %lld)",
7585 nMaxKey, *pnParentMaxKey);
7586 }
7587 *pnParentMinKey = nMaxKey;
7588 }
7589 /* else if we're a right child page */
7590 } else if( pnParentMaxKey ){
7591 if( nMinKey <= *pnParentMaxKey ){
7592 checkAppendMsg(pCheck, zContext,
7593 "Rowid %lld out of order (min less than parent max of %lld)",
7594 nMinKey, *pnParentMaxKey);
7595 }
7596 }
7597 }
7598
drh5eddca62001-06-30 21:53:53 +00007599 /* Check for complete coverage of the page
7600 */
drhda200cc2004-05-09 11:51:38 +00007601 data = pPage->aData;
7602 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007603 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007604 if( hit==0 ){
7605 pCheck->mallocFailed = 1;
7606 }else{
shane5780ebd2008-11-11 17:36:30 +00007607 u16 contentOffset = get2byte(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007608 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007609 memset(hit+contentOffset, 0, usableSize-contentOffset);
7610 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007611 nCell = get2byte(&data[hdr+3]);
7612 cellStart = hdr + 12 - 4*pPage->leaf;
7613 for(i=0; i<nCell; i++){
7614 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007615 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007616 int j;
drh8c2bbb62009-07-10 02:52:20 +00007617 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007618 size = cellSizePtr(pPage, &data[pc]);
7619 }
drhd7c7ecd2009-07-14 17:48:06 +00007620 if( (pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007621 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007622 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007623 }else{
7624 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7625 }
drh2e38c322004-09-03 18:38:44 +00007626 }
drh8c2bbb62009-07-10 02:52:20 +00007627 i = get2byte(&data[hdr+1]);
7628 while( i>0 ){
7629 int size, j;
7630 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7631 size = get2byte(&data[i+2]);
7632 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7633 for(j=i+size-1; j>=i; j--) hit[j]++;
7634 j = get2byte(&data[i]);
7635 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7636 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7637 i = j;
drh2e38c322004-09-03 18:38:44 +00007638 }
7639 for(i=cnt=0; i<usableSize; i++){
7640 if( hit[i]==0 ){
7641 cnt++;
7642 }else if( hit[i]>1 ){
7643 checkAppendMsg(pCheck, 0,
7644 "Multiple uses for byte %d of page %d", i, iPage);
7645 break;
7646 }
7647 }
7648 if( cnt!=data[hdr+7] ){
7649 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007650 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007651 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007652 }
7653 }
drh8c2bbb62009-07-10 02:52:20 +00007654 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007655 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007656 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007657}
drhb7f91642004-10-31 02:22:47 +00007658#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007659
drhb7f91642004-10-31 02:22:47 +00007660#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007661/*
7662** This routine does a complete check of the given BTree file. aRoot[] is
7663** an array of pages numbers were each page number is the root page of
7664** a table. nRoot is the number of entries in aRoot.
7665**
danielk19773509a652009-07-06 18:56:13 +00007666** A read-only or read-write transaction must be opened before calling
7667** this function.
7668**
drhc890fec2008-08-01 20:10:08 +00007669** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007670** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007671** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007672** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007673*/
drh1dcdbc02007-01-27 02:24:54 +00007674char *sqlite3BtreeIntegrityCheck(
7675 Btree *p, /* The btree to be checked */
7676 int *aRoot, /* An array of root pages numbers for individual trees */
7677 int nRoot, /* Number of entries in aRoot[] */
7678 int mxErr, /* Stop reporting errors after this many */
7679 int *pnErr /* Write number of errors seen to this variable */
7680){
danielk197789d40042008-11-17 14:20:56 +00007681 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007682 int nRef;
drhaaab5722002-02-19 13:39:21 +00007683 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007684 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007685 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007686
drhd677b3d2007-08-20 22:48:41 +00007687 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007688 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007689 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007690 sCheck.pBt = pBt;
7691 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007692 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007693 sCheck.mxErr = mxErr;
7694 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007695 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007696 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007697 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007698 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007699 return 0;
7700 }
drhe5ae5732008-06-15 02:51:47 +00007701 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007702 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007703 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007704 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007705 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007706 }
drhda200cc2004-05-09 11:51:38 +00007707 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007708 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007709 if( i<=sCheck.nPage ){
7710 sCheck.anRef[i] = 1;
7711 }
drhf089aa42008-07-08 19:34:06 +00007712 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007713
7714 /* Check the integrity of the freelist
7715 */
drha34b6762004-05-07 13:30:42 +00007716 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7717 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007718
7719 /* Check all the tables.
7720 */
danielk197789d40042008-11-17 14:20:56 +00007721 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007722 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007723#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007724 if( pBt->autoVacuum && aRoot[i]>1 ){
7725 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7726 }
7727#endif
shaneh195475d2010-02-19 04:28:08 +00007728 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007729 }
7730
7731 /* Make sure every page in the file is referenced
7732 */
drh1dcdbc02007-01-27 02:24:54 +00007733 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007734#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007735 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007736 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007737 }
danielk1977afcdd022004-10-31 16:25:42 +00007738#else
7739 /* If the database supports auto-vacuum, make sure no tables contain
7740 ** references to pointer-map pages.
7741 */
7742 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007743 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007744 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7745 }
7746 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007747 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007748 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7749 }
7750#endif
drh5eddca62001-06-30 21:53:53 +00007751 }
7752
drh64022502009-01-09 14:11:04 +00007753 /* Make sure this analysis did not leave any unref() pages.
7754 ** This is an internal consistency check; an integrity check
7755 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007756 */
drh64022502009-01-09 14:11:04 +00007757 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007758 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007759 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007760 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007761 );
drh5eddca62001-06-30 21:53:53 +00007762 }
7763
7764 /* Clean up and report errors.
7765 */
drhd677b3d2007-08-20 22:48:41 +00007766 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007767 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007768 if( sCheck.mallocFailed ){
7769 sqlite3StrAccumReset(&sCheck.errMsg);
7770 *pnErr = sCheck.nErr+1;
7771 return 0;
7772 }
drh1dcdbc02007-01-27 02:24:54 +00007773 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007774 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7775 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007776}
drhb7f91642004-10-31 02:22:47 +00007777#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007778
drh73509ee2003-04-06 20:44:45 +00007779/*
7780** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007781**
7782** The pager filename is invariant as long as the pager is
7783** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007784*/
danielk1977aef0bf62005-12-30 16:28:01 +00007785const char *sqlite3BtreeGetFilename(Btree *p){
7786 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007787 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007788}
7789
7790/*
danielk19775865e3d2004-06-14 06:03:57 +00007791** Return the pathname of the journal file for this database. The return
7792** value of this routine is the same regardless of whether the journal file
7793** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007794**
7795** The pager journal filename is invariant as long as the pager is
7796** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007797*/
danielk1977aef0bf62005-12-30 16:28:01 +00007798const char *sqlite3BtreeGetJournalname(Btree *p){
7799 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007800 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007801}
7802
danielk19771d850a72004-05-31 08:26:49 +00007803/*
7804** Return non-zero if a transaction is active.
7805*/
danielk1977aef0bf62005-12-30 16:28:01 +00007806int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007807 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007808 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007809}
7810
7811/*
danielk19772372c2b2006-06-27 16:34:56 +00007812** Return non-zero if a read (or write) transaction is active.
7813*/
7814int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007815 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007816 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007817 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007818}
7819
danielk197704103022009-02-03 16:51:24 +00007820int sqlite3BtreeIsInBackup(Btree *p){
7821 assert( p );
7822 assert( sqlite3_mutex_held(p->db->mutex) );
7823 return p->nBackup!=0;
7824}
7825
danielk19772372c2b2006-06-27 16:34:56 +00007826/*
danielk1977da184232006-01-05 11:34:32 +00007827** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007828** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007829** purposes (for example, to store a high-level schema associated with
7830** the shared-btree). The btree layer manages reference counting issues.
7831**
7832** The first time this is called on a shared-btree, nBytes bytes of memory
7833** are allocated, zeroed, and returned to the caller. For each subsequent
7834** call the nBytes parameter is ignored and a pointer to the same blob
7835** of memory returned.
7836**
danielk1977171bfed2008-06-23 09:50:50 +00007837** If the nBytes parameter is 0 and the blob of memory has not yet been
7838** allocated, a null pointer is returned. If the blob has already been
7839** allocated, it is returned as normal.
7840**
danielk1977da184232006-01-05 11:34:32 +00007841** Just before the shared-btree is closed, the function passed as the
7842** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007843** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007844** on the memory, the btree layer does that.
7845*/
7846void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7847 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007848 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007849 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007850 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007851 pBt->xFreeSchema = xFree;
7852 }
drh27641702007-08-22 02:56:42 +00007853 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007854 return pBt->pSchema;
7855}
7856
danielk1977c87d34d2006-01-06 13:00:28 +00007857/*
danielk1977404ca072009-03-16 13:19:36 +00007858** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7859** btree as the argument handle holds an exclusive lock on the
7860** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007861*/
7862int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007863 int rc;
drhe5fe6902007-12-07 18:55:28 +00007864 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007865 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007866 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7867 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007868 sqlite3BtreeLeave(p);
7869 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007870}
7871
drha154dcd2006-03-22 22:10:07 +00007872
7873#ifndef SQLITE_OMIT_SHARED_CACHE
7874/*
7875** Obtain a lock on the table whose root page is iTab. The
7876** lock is a write lock if isWritelock is true or a read lock
7877** if it is false.
7878*/
danielk1977c00da102006-01-07 13:21:04 +00007879int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007880 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00007881 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00007882 if( p->sharable ){
7883 u8 lockType = READ_LOCK + isWriteLock;
7884 assert( READ_LOCK+1==WRITE_LOCK );
7885 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00007886
drh6a9ad3d2008-04-02 16:29:30 +00007887 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007888 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007889 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007890 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007891 }
7892 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007893 }
7894 return rc;
7895}
drha154dcd2006-03-22 22:10:07 +00007896#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007897
danielk1977b4e9af92007-05-01 17:49:49 +00007898#ifndef SQLITE_OMIT_INCRBLOB
7899/*
7900** Argument pCsr must be a cursor opened for writing on an
7901** INTKEY table currently pointing at a valid table entry.
7902** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00007903**
7904** Only the data content may only be modified, it is not possible to
7905** change the length of the data stored. If this function is called with
7906** parameters that attempt to write past the end of the existing data,
7907** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00007908*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007909int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00007910 int rc;
drh1fee73e2007-08-29 04:00:57 +00007911 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007912 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00007913 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00007914
danielk1977c9000e62009-07-08 13:55:28 +00007915 rc = restoreCursorPosition(pCsr);
7916 if( rc!=SQLITE_OK ){
7917 return rc;
7918 }
danielk19773588ceb2008-06-10 17:30:26 +00007919 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7920 if( pCsr->eState!=CURSOR_VALID ){
7921 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007922 }
7923
danielk1977c9000e62009-07-08 13:55:28 +00007924 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007925 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00007926 ** (b) there is a read/write transaction open,
7927 ** (c) the connection holds a write-lock on the table (if required),
7928 ** (d) there are no conflicting read-locks, and
7929 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007930 */
danielk19774f029602009-07-08 18:45:37 +00007931 if( !pCsr->wrFlag ){
7932 return SQLITE_READONLY;
7933 }
danielk197796d48e92009-06-29 06:00:37 +00007934 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
7935 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
7936 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00007937 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00007938
drhfb192682009-07-11 18:26:28 +00007939 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007940}
danielk19772dec9702007-05-02 16:48:37 +00007941
7942/*
7943** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007944** overflow list for the current row. This is used by cursors opened
7945** for incremental blob IO only.
7946**
7947** This function sets a flag only. The actual page location cache
7948** (stored in BtCursor.aOverflow[]) is allocated and used by function
7949** accessPayload() (the worker function for sqlite3BtreeData() and
7950** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007951*/
7952void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007953 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007954 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007955 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007956 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007957 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007958}
danielk1977b4e9af92007-05-01 17:49:49 +00007959#endif