blob: 269e548c56db6b1ea3ac31791ca8b73a1c359812 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh281b21d2008-08-22 12:57:08 +000012** $Id: btree.c,v 1.500 2008/08/22 12:57:09 drh Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000015** See the header comment on "btreeInt.h" for additional information.
16** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000017*/
drha3152892007-05-05 11:48:52 +000018#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000019
drh8c42ca92001-06-22 19:15:00 +000020/*
drha3152892007-05-05 11:48:52 +000021** The header string that appears at the beginning of every
22** SQLite database.
drh556b2a22005-06-14 16:04:05 +000023*/
drh556b2a22005-06-14 16:04:05 +000024static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000025
drh8c42ca92001-06-22 19:15:00 +000026/*
drha3152892007-05-05 11:48:52 +000027** Set this global variable to 1 to enable tracing using the TRACE
28** macro.
drh615ae552005-01-16 23:21:00 +000029*/
drhe8f52c52008-07-12 14:52:20 +000030#if 0
mlcreech3a00f902008-03-04 17:45:01 +000031int sqlite3BtreeTrace=0; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000032# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
33#else
34# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000035#endif
drh615ae552005-01-16 23:21:00 +000036
drh86f8c192007-08-22 00:39:19 +000037
38
drhe53831d2007-08-17 01:14:38 +000039#ifndef SQLITE_OMIT_SHARED_CACHE
40/*
41** A flag to indicate whether or not shared cache is enabled. Also,
42** a list of BtShared objects that are eligible for participation
drhd677b3d2007-08-20 22:48:41 +000043** in shared cache. The variables have file scope during normal builds,
drh86f8c192007-08-22 00:39:19 +000044** but the test harness needs to access these variables so we make them
drhd677b3d2007-08-20 22:48:41 +000045** global for test builds.
drhe53831d2007-08-17 01:14:38 +000046*/
47#ifdef SQLITE_TEST
48BtShared *sqlite3SharedCacheList = 0;
49int sqlite3SharedCacheEnabled = 0;
50#else
51static BtShared *sqlite3SharedCacheList = 0;
52static int sqlite3SharedCacheEnabled = 0;
53#endif
drhe53831d2007-08-17 01:14:38 +000054#endif /* SQLITE_OMIT_SHARED_CACHE */
55
56#ifndef SQLITE_OMIT_SHARED_CACHE
57/*
58** Enable or disable the shared pager and schema features.
59**
60** This routine has no effect on existing database connections.
61** The shared cache setting effects only future calls to
62** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
63*/
64int sqlite3_enable_shared_cache(int enable){
65 sqlite3SharedCacheEnabled = enable;
66 return SQLITE_OK;
67}
68#endif
69
drhd677b3d2007-08-20 22:48:41 +000070
drh615ae552005-01-16 23:21:00 +000071/*
drh66cbd152004-09-01 16:12:25 +000072** Forward declaration
73*/
danielk19773588ceb2008-06-10 17:30:26 +000074static int checkReadLocks(Btree*, Pgno, BtCursor*, i64);
drh66cbd152004-09-01 16:12:25 +000075
danielk1977aef0bf62005-12-30 16:28:01 +000076
77#ifdef SQLITE_OMIT_SHARED_CACHE
78 /*
79 ** The functions queryTableLock(), lockTable() and unlockAllTables()
80 ** manipulate entries in the BtShared.pLock linked list used to store
81 ** shared-cache table level locks. If the library is compiled with the
82 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000083 ** of each BtShared structure and so this locking is not necessary.
84 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000085 */
86 #define queryTableLock(a,b,c) SQLITE_OK
87 #define lockTable(a,b,c) SQLITE_OK
danielk1977da184232006-01-05 11:34:32 +000088 #define unlockAllTables(a)
drhe53831d2007-08-17 01:14:38 +000089#endif
danielk1977aef0bf62005-12-30 16:28:01 +000090
drhe53831d2007-08-17 01:14:38 +000091#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977da184232006-01-05 11:34:32 +000092/*
danielk1977aef0bf62005-12-30 16:28:01 +000093** Query to see if btree handle p may obtain a lock of type eLock
94** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
95** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
danielk1977c87d34d2006-01-06 13:00:28 +000096** SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +000097*/
98static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
99 BtShared *pBt = p->pBt;
100 BtLock *pIter;
101
drh1fee73e2007-08-29 04:00:57 +0000102 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000103 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
104 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000105
danielk1977da184232006-01-05 11:34:32 +0000106 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000107 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000108 return SQLITE_OK;
109 }
110
danielk1977641b0f42007-12-21 04:47:25 +0000111 /* If some other connection is holding an exclusive lock, the
112 ** requested lock may not be obtained.
113 */
114 if( pBt->pExclusive && pBt->pExclusive!=p ){
115 return SQLITE_LOCKED;
116 }
117
danielk1977da184232006-01-05 11:34:32 +0000118 /* This (along with lockTable()) is where the ReadUncommitted flag is
119 ** dealt with. If the caller is querying for a read-lock and the flag is
120 ** set, it is unconditionally granted - even if there are write-locks
121 ** on the table. If a write-lock is requested, the ReadUncommitted flag
122 ** is not considered.
123 **
124 ** In function lockTable(), if a read-lock is demanded and the
125 ** ReadUncommitted flag is set, no entry is added to the locks list
126 ** (BtShared.pLock).
127 **
128 ** To summarize: If the ReadUncommitted flag is set, then read cursors do
129 ** not create or respect table locks. The locking procedure for a
130 ** write-cursor does not change.
131 */
132 if(
drhe5fe6902007-12-07 18:55:28 +0000133 0==(p->db->flags&SQLITE_ReadUncommitted) ||
danielk1977da184232006-01-05 11:34:32 +0000134 eLock==WRITE_LOCK ||
drh47ded162006-01-06 01:42:58 +0000135 iTab==MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000136 ){
137 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
138 if( pIter->pBtree!=p && pIter->iTable==iTab &&
139 (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
danielk1977c87d34d2006-01-06 13:00:28 +0000140 return SQLITE_LOCKED;
danielk1977da184232006-01-05 11:34:32 +0000141 }
danielk1977aef0bf62005-12-30 16:28:01 +0000142 }
143 }
144 return SQLITE_OK;
145}
drhe53831d2007-08-17 01:14:38 +0000146#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000147
drhe53831d2007-08-17 01:14:38 +0000148#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000149/*
150** Add a lock on the table with root-page iTable to the shared-btree used
151** by Btree handle p. Parameter eLock must be either READ_LOCK or
152** WRITE_LOCK.
153**
154** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
155** SQLITE_NOMEM may also be returned.
156*/
157static int lockTable(Btree *p, Pgno iTable, u8 eLock){
158 BtShared *pBt = p->pBt;
159 BtLock *pLock = 0;
160 BtLock *pIter;
161
drh1fee73e2007-08-29 04:00:57 +0000162 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000163 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
164 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000165
danielk1977da184232006-01-05 11:34:32 +0000166 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000167 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000168 return SQLITE_OK;
169 }
170
danielk1977aef0bf62005-12-30 16:28:01 +0000171 assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
172
danielk1977da184232006-01-05 11:34:32 +0000173 /* If the read-uncommitted flag is set and a read-lock is requested,
174 ** return early without adding an entry to the BtShared.pLock list. See
175 ** comment in function queryTableLock() for more info on handling
176 ** the ReadUncommitted flag.
177 */
178 if(
drhe5fe6902007-12-07 18:55:28 +0000179 (p->db->flags&SQLITE_ReadUncommitted) &&
danielk1977da184232006-01-05 11:34:32 +0000180 (eLock==READ_LOCK) &&
drh47ded162006-01-06 01:42:58 +0000181 iTable!=MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000182 ){
183 return SQLITE_OK;
184 }
185
danielk1977aef0bf62005-12-30 16:28:01 +0000186 /* First search the list for an existing lock on this table. */
187 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
188 if( pIter->iTable==iTable && pIter->pBtree==p ){
189 pLock = pIter;
190 break;
191 }
192 }
193
194 /* If the above search did not find a BtLock struct associating Btree p
195 ** with table iTable, allocate one and link it into the list.
196 */
197 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000198 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000199 if( !pLock ){
200 return SQLITE_NOMEM;
201 }
202 pLock->iTable = iTable;
203 pLock->pBtree = p;
204 pLock->pNext = pBt->pLock;
205 pBt->pLock = pLock;
206 }
207
208 /* Set the BtLock.eLock variable to the maximum of the current lock
209 ** and the requested lock. This means if a write-lock was already held
210 ** and a read-lock requested, we don't incorrectly downgrade the lock.
211 */
212 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000213 if( eLock>pLock->eLock ){
214 pLock->eLock = eLock;
215 }
danielk1977aef0bf62005-12-30 16:28:01 +0000216
217 return SQLITE_OK;
218}
drhe53831d2007-08-17 01:14:38 +0000219#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000220
drhe53831d2007-08-17 01:14:38 +0000221#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000222/*
223** Release all the table locks (locks obtained via calls to the lockTable()
224** procedure) held by Btree handle p.
225*/
226static void unlockAllTables(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000227 BtShared *pBt = p->pBt;
228 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000229
drh1fee73e2007-08-29 04:00:57 +0000230 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000231 assert( p->sharable || 0==*ppIter );
danielk1977da184232006-01-05 11:34:32 +0000232
danielk1977aef0bf62005-12-30 16:28:01 +0000233 while( *ppIter ){
234 BtLock *pLock = *ppIter;
danielk1977641b0f42007-12-21 04:47:25 +0000235 assert( pBt->pExclusive==0 || pBt->pExclusive==pLock->pBtree );
danielk1977aef0bf62005-12-30 16:28:01 +0000236 if( pLock->pBtree==p ){
237 *ppIter = pLock->pNext;
drh17435752007-08-16 04:30:38 +0000238 sqlite3_free(pLock);
danielk1977aef0bf62005-12-30 16:28:01 +0000239 }else{
240 ppIter = &pLock->pNext;
241 }
242 }
danielk1977641b0f42007-12-21 04:47:25 +0000243
244 if( pBt->pExclusive==p ){
245 pBt->pExclusive = 0;
246 }
danielk1977aef0bf62005-12-30 16:28:01 +0000247}
248#endif /* SQLITE_OMIT_SHARED_CACHE */
249
drh980b1a72006-08-16 16:42:48 +0000250static void releasePage(MemPage *pPage); /* Forward reference */
251
drh1fee73e2007-08-29 04:00:57 +0000252/*
253** Verify that the cursor holds a mutex on the BtShared
254*/
255#ifndef NDEBUG
256static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000257 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000258}
259#endif
260
261
danielk197792d4d7a2007-05-04 12:05:56 +0000262#ifndef SQLITE_OMIT_INCRBLOB
263/*
264** Invalidate the overflow page-list cache for cursor pCur, if any.
265*/
266static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000267 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000268 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000269 pCur->aOverflow = 0;
270}
271
272/*
273** Invalidate the overflow page-list cache for all cursors opened
274** on the shared btree structure pBt.
275*/
276static void invalidateAllOverflowCache(BtShared *pBt){
277 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000278 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000279 for(p=pBt->pCursor; p; p=p->pNext){
280 invalidateOverflowCache(p);
281 }
282}
283#else
284 #define invalidateOverflowCache(x)
285 #define invalidateAllOverflowCache(x)
286#endif
287
drh980b1a72006-08-16 16:42:48 +0000288/*
289** Save the current cursor position in the variables BtCursor.nKey
290** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
291*/
292static int saveCursorPosition(BtCursor *pCur){
293 int rc;
294
295 assert( CURSOR_VALID==pCur->eState );
296 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000297 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000298
299 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
300
301 /* If this is an intKey table, then the above call to BtreeKeySize()
302 ** stores the integer key in pCur->nKey. In this case this value is
303 ** all that is required. Otherwise, if pCur is not open on an intKey
304 ** table, then malloc space for and store the pCur->nKey bytes of key
305 ** data.
306 */
307 if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
drhe5ae5732008-06-15 02:51:47 +0000308 void *pKey = sqlite3Malloc(pCur->nKey);
drh980b1a72006-08-16 16:42:48 +0000309 if( pKey ){
310 rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
311 if( rc==SQLITE_OK ){
312 pCur->pKey = pKey;
313 }else{
drh17435752007-08-16 04:30:38 +0000314 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000315 }
316 }else{
317 rc = SQLITE_NOMEM;
318 }
319 }
320 assert( !pCur->pPage->intKey || !pCur->pKey );
321
322 if( rc==SQLITE_OK ){
323 releasePage(pCur->pPage);
324 pCur->pPage = 0;
325 pCur->eState = CURSOR_REQUIRESEEK;
326 }
327
danielk197792d4d7a2007-05-04 12:05:56 +0000328 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000329 return rc;
330}
331
332/*
333** Save the positions of all cursors except pExcept open on the table
334** with root-page iRoot. Usually, this is called just before cursor
335** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
336*/
337static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
338 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000339 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000340 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000341 for(p=pBt->pCursor; p; p=p->pNext){
342 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
343 p->eState==CURSOR_VALID ){
344 int rc = saveCursorPosition(p);
345 if( SQLITE_OK!=rc ){
346 return rc;
347 }
348 }
349 }
350 return SQLITE_OK;
351}
352
353/*
drhbf700f32007-03-31 02:36:44 +0000354** Clear the current cursor position.
355*/
356static void clearCursorPosition(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000357 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000358 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000359 pCur->pKey = 0;
360 pCur->eState = CURSOR_INVALID;
361}
362
363/*
drh980b1a72006-08-16 16:42:48 +0000364** Restore the cursor to the position it was in (or as close to as possible)
365** when saveCursorPosition() was called. Note that this call deletes the
366** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000367** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000368** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000369*/
drha3460582008-07-11 21:02:53 +0000370int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000371 int rc;
drh1fee73e2007-08-29 04:00:57 +0000372 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000373 assert( pCur->eState>=CURSOR_REQUIRESEEK );
374 if( pCur->eState==CURSOR_FAULT ){
375 return pCur->skip;
376 }
drh980b1a72006-08-16 16:42:48 +0000377 pCur->eState = CURSOR_INVALID;
drhe63d9992008-08-13 19:11:48 +0000378 rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
drh980b1a72006-08-16 16:42:48 +0000379 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000380 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000381 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000382 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000383 }
384 return rc;
385}
386
drha3460582008-07-11 21:02:53 +0000387#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000388 (p->eState>=CURSOR_REQUIRESEEK ? \
drha3460582008-07-11 21:02:53 +0000389 sqlite3BtreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000390 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000391
drha3460582008-07-11 21:02:53 +0000392/*
393** Determine whether or not a cursor has moved from the position it
394** was last placed at. Cursor can move when the row they are pointing
395** at is deleted out from under them.
396**
397** This routine returns an error code if something goes wrong. The
398** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
399*/
400int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
401 int rc;
402
403 rc = restoreCursorPosition(pCur);
404 if( rc ){
405 *pHasMoved = 1;
406 return rc;
407 }
408 if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
409 *pHasMoved = 1;
410 }else{
411 *pHasMoved = 0;
412 }
413 return SQLITE_OK;
414}
415
danielk1977599fcba2004-11-08 07:13:13 +0000416#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000417/*
drha3152892007-05-05 11:48:52 +0000418** Given a page number of a regular database page, return the page
419** number for the pointer-map page that contains the entry for the
420** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000421*/
danielk1977266664d2006-02-10 08:24:21 +0000422static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
drhd677b3d2007-08-20 22:48:41 +0000423 int nPagesPerMapPage, iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000424 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000425 nPagesPerMapPage = (pBt->usableSize/5)+1;
426 iPtrMap = (pgno-2)/nPagesPerMapPage;
427 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000428 if( ret==PENDING_BYTE_PAGE(pBt) ){
429 ret++;
430 }
431 return ret;
432}
danielk1977a19df672004-11-03 11:37:07 +0000433
danielk1977afcdd022004-10-31 16:25:42 +0000434/*
danielk1977afcdd022004-10-31 16:25:42 +0000435** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000436**
437** This routine updates the pointer map entry for page number 'key'
438** so that it maps to type 'eType' and parent page number 'pgno'.
439** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000440*/
danielk1977aef0bf62005-12-30 16:28:01 +0000441static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000442 DbPage *pDbPage; /* The pointer map page */
443 u8 *pPtrmap; /* The pointer map data */
444 Pgno iPtrmap; /* The pointer map page number */
445 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000446 int rc;
447
drh1fee73e2007-08-29 04:00:57 +0000448 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000449 /* The master-journal page number must never be used as a pointer map page */
450 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
451
danielk1977ac11ee62005-01-15 12:45:51 +0000452 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000453 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000454 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000455 }
danielk1977266664d2006-02-10 08:24:21 +0000456 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000457 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000458 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000459 return rc;
460 }
danielk19778c666b12008-07-18 09:34:57 +0000461 offset = PTRMAP_PTROFFSET(iPtrmap, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000462 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000463
drh615ae552005-01-16 23:21:00 +0000464 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
465 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000466 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000467 if( rc==SQLITE_OK ){
468 pPtrmap[offset] = eType;
469 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000470 }
danielk1977afcdd022004-10-31 16:25:42 +0000471 }
472
danielk19773b8a05f2007-03-19 17:44:26 +0000473 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000474 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000475}
476
477/*
478** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000479**
480** This routine retrieves the pointer map entry for page 'key', writing
481** the type and parent page number to *pEType and *pPgno respectively.
482** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000483*/
danielk1977aef0bf62005-12-30 16:28:01 +0000484static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000485 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000486 int iPtrmap; /* Pointer map page index */
487 u8 *pPtrmap; /* Pointer map page data */
488 int offset; /* Offset of entry in pointer map */
489 int rc;
490
drh1fee73e2007-08-29 04:00:57 +0000491 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000492
danielk1977266664d2006-02-10 08:24:21 +0000493 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000494 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000495 if( rc!=0 ){
496 return rc;
497 }
danielk19773b8a05f2007-03-19 17:44:26 +0000498 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000499
danielk19778c666b12008-07-18 09:34:57 +0000500 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000501 assert( pEType!=0 );
502 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000503 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000504
danielk19773b8a05f2007-03-19 17:44:26 +0000505 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000506 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000507 return SQLITE_OK;
508}
509
danielk197785d90ca2008-07-19 14:25:15 +0000510#else /* if defined SQLITE_OMIT_AUTOVACUUM */
511 #define ptrmapPut(w,x,y,z) SQLITE_OK
512 #define ptrmapGet(w,x,y,z) SQLITE_OK
513 #define ptrmapPutOvfl(y,z) SQLITE_OK
514#endif
danielk1977afcdd022004-10-31 16:25:42 +0000515
drh0d316a42002-08-11 20:10:47 +0000516/*
drh271efa52004-05-30 19:19:05 +0000517** Given a btree page and a cell index (0 means the first cell on
518** the page, 1 means the second cell, and so forth) return a pointer
519** to the cell content.
520**
521** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000522*/
drh1688c862008-07-18 02:44:17 +0000523#define findCell(P,I) \
524 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000525
526/*
drh93a960a2008-07-10 00:32:42 +0000527** This a more complex version of findCell() that works for
drh43605152004-05-29 21:46:49 +0000528** pages that do contain overflow cells. See insert
529*/
530static u8 *findOverflowCell(MemPage *pPage, int iCell){
531 int i;
drh1fee73e2007-08-29 04:00:57 +0000532 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000533 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000534 int k;
535 struct _OvflCell *pOvfl;
536 pOvfl = &pPage->aOvfl[i];
537 k = pOvfl->idx;
538 if( k<=iCell ){
539 if( k==iCell ){
540 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000541 }
542 iCell--;
543 }
544 }
danielk19771cc5ed82007-05-16 17:28:43 +0000545 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000546}
547
548/*
549** Parse a cell content block and fill in the CellInfo structure. There
drh16a9b832007-05-05 18:39:25 +0000550** are two versions of this function. sqlite3BtreeParseCell() takes a
551** cell index as the second argument and sqlite3BtreeParseCellPtr()
552** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000553**
554** Within this file, the parseCell() macro can be called instead of
555** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000556*/
drh16a9b832007-05-05 18:39:25 +0000557void sqlite3BtreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000558 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000559 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000560 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000561){
drh271efa52004-05-30 19:19:05 +0000562 int n; /* Number bytes in cell content header */
563 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000564
drh1fee73e2007-08-29 04:00:57 +0000565 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000566
drh43605152004-05-29 21:46:49 +0000567 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000568 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000569 n = pPage->childPtrSize;
570 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000571 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000572 if( pPage->hasData ){
573 n += getVarint32(&pCell[n], nPayload);
574 }else{
575 nPayload = 0;
576 }
577 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
578 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000579 }else{
drh79df1f42008-07-18 00:57:33 +0000580 pInfo->nData = 0;
581 n += getVarint32(&pCell[n], nPayload);
582 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000583 }
drh72365832007-03-06 15:53:44 +0000584 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000585 pInfo->nHeader = n;
drh79df1f42008-07-18 00:57:33 +0000586 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000587 /* This is the (easy) common case where the entire payload fits
588 ** on the local page. No overflow is required.
589 */
590 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000591 nSize = nPayload + n;
drh6f11bef2004-05-13 01:12:56 +0000592 pInfo->nLocal = nPayload;
593 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000594 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000595 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000596 }
drh271efa52004-05-30 19:19:05 +0000597 pInfo->nSize = nSize;
drh6f11bef2004-05-13 01:12:56 +0000598 }else{
drh271efa52004-05-30 19:19:05 +0000599 /* If the payload will not fit completely on the local page, we have
600 ** to decide how much to store locally and how much to spill onto
601 ** overflow pages. The strategy is to minimize the amount of unused
602 ** space on overflow pages while keeping the amount of local storage
603 ** in between minLocal and maxLocal.
604 **
605 ** Warning: changing the way overflow payload is distributed in any
606 ** way will result in an incompatible file format.
607 */
608 int minLocal; /* Minimum amount of payload held locally */
609 int maxLocal; /* Maximum amount of payload held locally */
610 int surplus; /* Overflow payload available for local storage */
611
612 minLocal = pPage->minLocal;
613 maxLocal = pPage->maxLocal;
614 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000615 if( surplus <= maxLocal ){
616 pInfo->nLocal = surplus;
617 }else{
618 pInfo->nLocal = minLocal;
619 }
620 pInfo->iOverflow = pInfo->nLocal + n;
621 pInfo->nSize = pInfo->iOverflow + 4;
622 }
drh3aac2dd2004-04-26 14:10:20 +0000623}
danielk19771cc5ed82007-05-16 17:28:43 +0000624#define parseCell(pPage, iCell, pInfo) \
625 sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
drh16a9b832007-05-05 18:39:25 +0000626void sqlite3BtreeParseCell(
drh43605152004-05-29 21:46:49 +0000627 MemPage *pPage, /* Page containing the cell */
628 int iCell, /* The cell index. First cell is 0 */
629 CellInfo *pInfo /* Fill in this structure */
630){
danielk19771cc5ed82007-05-16 17:28:43 +0000631 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000632}
drh3aac2dd2004-04-26 14:10:20 +0000633
634/*
drh43605152004-05-29 21:46:49 +0000635** Compute the total number of bytes that a Cell needs in the cell
636** data area of the btree-page. The return number includes the cell
637** data header and the local payload, but not any overflow page or
638** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000639*/
danielk1977bc6ada42004-06-30 08:20:16 +0000640#ifndef NDEBUG
drha9121e42008-02-19 14:59:35 +0000641static u16 cellSize(MemPage *pPage, int iCell){
drh6f11bef2004-05-13 01:12:56 +0000642 CellInfo info;
drh16a9b832007-05-05 18:39:25 +0000643 sqlite3BtreeParseCell(pPage, iCell, &info);
drh43605152004-05-29 21:46:49 +0000644 return info.nSize;
645}
danielk1977bc6ada42004-06-30 08:20:16 +0000646#endif
drha9121e42008-02-19 14:59:35 +0000647static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh43605152004-05-29 21:46:49 +0000648 CellInfo info;
drh16a9b832007-05-05 18:39:25 +0000649 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +0000650 return info.nSize;
drh3b7511c2001-05-26 13:15:44 +0000651}
652
danielk197779a40da2005-01-16 08:00:01 +0000653#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000654/*
danielk197726836652005-01-17 01:33:13 +0000655** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +0000656** to an overflow page, insert an entry into the pointer-map
657** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +0000658*/
danielk197726836652005-01-17 01:33:13 +0000659static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
drhfa67c3c2008-07-11 02:21:40 +0000660 CellInfo info;
661 assert( pCell!=0 );
662 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
663 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
664 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
665 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
666 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +0000667 }
danielk197779a40da2005-01-16 08:00:01 +0000668 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +0000669}
danielk197726836652005-01-17 01:33:13 +0000670/*
671** If the cell with index iCell on page pPage contains a pointer
672** to an overflow page, insert an entry into the pointer-map
673** for the overflow page.
674*/
675static int ptrmapPutOvfl(MemPage *pPage, int iCell){
676 u8 *pCell;
drh1fee73e2007-08-29 04:00:57 +0000677 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197726836652005-01-17 01:33:13 +0000678 pCell = findOverflowCell(pPage, iCell);
679 return ptrmapPutOvflPtr(pPage, pCell);
680}
danielk197779a40da2005-01-16 08:00:01 +0000681#endif
682
danielk1977ac11ee62005-01-15 12:45:51 +0000683
drhda200cc2004-05-09 11:51:38 +0000684/*
drh72f82862001-05-24 21:06:34 +0000685** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +0000686** end of the page and all free space is collected into one
687** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +0000688** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +0000689*/
danielk1977474b7cc2008-07-09 11:49:46 +0000690static void defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +0000691 int i; /* Loop counter */
692 int pc; /* Address of a i-th cell */
693 int addr; /* Offset of first byte after cell pointer array */
694 int hdr; /* Offset to the page header */
695 int size; /* Size of a cell */
696 int usableSize; /* Number of usable bytes on a page */
697 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +0000698 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +0000699 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +0000700 unsigned char *data; /* The page data */
701 unsigned char *temp; /* Temp area for cell content */
drh2af926b2001-05-15 00:39:25 +0000702
danielk19773b8a05f2007-03-19 17:44:26 +0000703 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000704 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +0000705 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +0000706 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +0000707 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +0000708 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +0000709 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +0000710 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000711 cellOffset = pPage->cellOffset;
712 nCell = pPage->nCell;
713 assert( nCell==get2byte(&data[hdr+3]) );
714 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +0000715 cbrk = get2byte(&data[hdr+5]);
716 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
717 cbrk = usableSize;
drh43605152004-05-29 21:46:49 +0000718 for(i=0; i<nCell; i++){
719 u8 *pAddr; /* The i-th cell pointer */
720 pAddr = &data[cellOffset + i*2];
721 pc = get2byte(pAddr);
722 assert( pc<pPage->pBt->usableSize );
723 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +0000724 cbrk -= size;
725 memcpy(&data[cbrk], &temp[pc], size);
726 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +0000727 }
drh281b21d2008-08-22 12:57:08 +0000728 assert( cbrk>=cellOffset+2*nCell );
729 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +0000730 data[hdr+1] = 0;
731 data[hdr+2] = 0;
732 data[hdr+7] = 0;
733 addr = cellOffset+2*nCell;
drh281b21d2008-08-22 12:57:08 +0000734 memset(&data[addr], 0, cbrk-addr);
drh365d68f2001-05-11 11:02:46 +0000735}
736
drha059ad02001-04-17 20:09:11 +0000737/*
drh43605152004-05-29 21:46:49 +0000738** Allocate nByte bytes of space on a page.
drhbd03cae2001-06-02 02:40:57 +0000739**
drh9e572e62004-04-23 23:43:10 +0000740** Return the index into pPage->aData[] of the first byte of
drhfa67c3c2008-07-11 02:21:40 +0000741** the new allocation. The caller guarantees that there is enough
742** space. This routine will never fail.
drh2af926b2001-05-15 00:39:25 +0000743**
drh72f82862001-05-24 21:06:34 +0000744** If the page contains nBytes of free space but does not contain
drh8b2f49b2001-06-08 00:21:52 +0000745** nBytes of contiguous free space, then this routine automatically
746** calls defragementPage() to consolidate all free space before
747** allocating the new chunk.
drh7e3b0a02001-04-28 16:52:40 +0000748*/
drh9e572e62004-04-23 23:43:10 +0000749static int allocateSpace(MemPage *pPage, int nByte){
drh3aac2dd2004-04-26 14:10:20 +0000750 int addr, pc, hdr;
drh9e572e62004-04-23 23:43:10 +0000751 int size;
drh24cd67e2004-05-10 16:18:47 +0000752 int nFrag;
drh43605152004-05-29 21:46:49 +0000753 int top;
754 int nCell;
755 int cellOffset;
drh9e572e62004-04-23 23:43:10 +0000756 unsigned char *data;
drh43605152004-05-29 21:46:49 +0000757
drh9e572e62004-04-23 23:43:10 +0000758 data = pPage->aData;
danielk19773b8a05f2007-03-19 17:44:26 +0000759 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000760 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +0000761 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +0000762 assert( nByte>=0 ); /* Minimum cell size is 4 */
763 assert( pPage->nFree>=nByte );
764 assert( pPage->nOverflow==0 );
drh43605152004-05-29 21:46:49 +0000765 pPage->nFree -= nByte;
drh9e572e62004-04-23 23:43:10 +0000766 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000767
768 nFrag = data[hdr+7];
769 if( nFrag<60 ){
770 /* Search the freelist looking for a slot big enough to satisfy the
771 ** space request. */
772 addr = hdr+1;
773 while( (pc = get2byte(&data[addr]))>0 ){
774 size = get2byte(&data[pc+2]);
775 if( size>=nByte ){
776 if( size<nByte+4 ){
777 memcpy(&data[addr], &data[pc], 2);
778 data[hdr+7] = nFrag + size - nByte;
779 return pc;
780 }else{
781 put2byte(&data[pc+2], size-nByte);
782 return pc + size - nByte;
783 }
784 }
785 addr = pc;
drh9e572e62004-04-23 23:43:10 +0000786 }
787 }
drh43605152004-05-29 21:46:49 +0000788
789 /* Allocate memory from the gap in between the cell pointer array
790 ** and the cell content area.
791 */
792 top = get2byte(&data[hdr+5]);
793 nCell = get2byte(&data[hdr+3]);
794 cellOffset = pPage->cellOffset;
795 if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
danielk1977474b7cc2008-07-09 11:49:46 +0000796 defragmentPage(pPage);
drh43605152004-05-29 21:46:49 +0000797 top = get2byte(&data[hdr+5]);
drh2af926b2001-05-15 00:39:25 +0000798 }
drh43605152004-05-29 21:46:49 +0000799 top -= nByte;
800 assert( cellOffset + 2*nCell <= top );
801 put2byte(&data[hdr+5], top);
802 return top;
drh7e3b0a02001-04-28 16:52:40 +0000803}
804
805/*
drh9e572e62004-04-23 23:43:10 +0000806** Return a section of the pPage->aData to the freelist.
807** The first byte of the new free block is pPage->aDisk[start]
808** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +0000809**
810** Most of the effort here is involved in coalesing adjacent
811** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000812*/
drh9e572e62004-04-23 23:43:10 +0000813static void freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +0000814 int addr, pbegin, hdr;
drh9e572e62004-04-23 23:43:10 +0000815 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +0000816
drh9e572e62004-04-23 23:43:10 +0000817 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +0000818 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000819 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +0000820 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +0000821 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +0000822 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +0000823
drhfcce93f2006-02-22 03:08:32 +0000824#ifdef SQLITE_SECURE_DELETE
825 /* Overwrite deleted information with zeros when the SECURE_DELETE
826 ** option is enabled at compile-time */
827 memset(&data[start], 0, size);
828#endif
829
drh9e572e62004-04-23 23:43:10 +0000830 /* Add the space back into the linked list of freeblocks */
drh43605152004-05-29 21:46:49 +0000831 hdr = pPage->hdrOffset;
832 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +0000833 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +0000834 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000835 assert( pbegin>addr );
836 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +0000837 }
drhb6f41482004-05-14 01:58:11 +0000838 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000839 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +0000840 put2byte(&data[addr], start);
841 put2byte(&data[start], pbegin);
842 put2byte(&data[start+2], size);
drh2af926b2001-05-15 00:39:25 +0000843 pPage->nFree += size;
drh9e572e62004-04-23 23:43:10 +0000844
845 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +0000846 addr = pPage->hdrOffset + 1;
847 while( (pbegin = get2byte(&data[addr]))>0 ){
drh9e572e62004-04-23 23:43:10 +0000848 int pnext, psize;
drh3aac2dd2004-04-26 14:10:20 +0000849 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +0000850 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +0000851 pnext = get2byte(&data[pbegin]);
852 psize = get2byte(&data[pbegin+2]);
853 if( pbegin + psize + 3 >= pnext && pnext>0 ){
854 int frag = pnext - (pbegin+psize);
drh43605152004-05-29 21:46:49 +0000855 assert( frag<=data[pPage->hdrOffset+7] );
856 data[pPage->hdrOffset+7] -= frag;
drh9e572e62004-04-23 23:43:10 +0000857 put2byte(&data[pbegin], get2byte(&data[pnext]));
858 put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
859 }else{
drh3aac2dd2004-04-26 14:10:20 +0000860 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +0000861 }
862 }
drh7e3b0a02001-04-28 16:52:40 +0000863
drh43605152004-05-29 21:46:49 +0000864 /* If the cell content area begins with a freeblock, remove it. */
865 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
866 int top;
867 pbegin = get2byte(&data[hdr+1]);
868 memcpy(&data[hdr+1], &data[pbegin], 2);
869 top = get2byte(&data[hdr+5]);
870 put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
drh4b70f112004-05-02 21:12:19 +0000871 }
drh4b70f112004-05-02 21:12:19 +0000872}
873
874/*
drh271efa52004-05-30 19:19:05 +0000875** Decode the flags byte (the first byte of the header) for a page
876** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +0000877**
878** Only the following combinations are supported. Anything different
879** indicates a corrupt database files:
880**
881** PTF_ZERODATA
882** PTF_ZERODATA | PTF_LEAF
883** PTF_LEAFDATA | PTF_INTKEY
884** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +0000885*/
drh44845222008-07-17 18:39:57 +0000886static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +0000887 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +0000888
889 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +0000890 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh44845222008-07-17 18:39:57 +0000891 pPage->leaf = flagByte>>3; assert( PTF_LEAF == 1<<3 );
892 flagByte &= ~PTF_LEAF;
893 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +0000894 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +0000895 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
896 pPage->intKey = 1;
897 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +0000898 pPage->maxLocal = pBt->maxLeaf;
899 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +0000900 }else if( flagByte==PTF_ZERODATA ){
901 pPage->intKey = 0;
902 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +0000903 pPage->maxLocal = pBt->maxLocal;
904 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +0000905 }else{
906 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +0000907 }
drh44845222008-07-17 18:39:57 +0000908 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +0000909}
910
911/*
drh7e3b0a02001-04-28 16:52:40 +0000912** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +0000913**
drhbd03cae2001-06-02 02:40:57 +0000914** The pParent parameter must be a pointer to the MemPage which
drh9e572e62004-04-23 23:43:10 +0000915** is the parent of the page being initialized. The root of a
916** BTree has no parent and so for that page, pParent==NULL.
drh5e2f8b92001-05-28 00:41:15 +0000917**
drh72f82862001-05-24 21:06:34 +0000918** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +0000919** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +0000920** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
921** guarantee that the page is well-formed. It only shows that
922** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +0000923*/
drh16a9b832007-05-05 18:39:25 +0000924int sqlite3BtreeInitPage(
drh3aac2dd2004-04-26 14:10:20 +0000925 MemPage *pPage, /* The page to be initialized */
drh9e572e62004-04-23 23:43:10 +0000926 MemPage *pParent /* The parent. Might be NULL */
927){
drh271efa52004-05-30 19:19:05 +0000928 int pc; /* Address of a freeblock within pPage->aData[] */
drh271efa52004-05-30 19:19:05 +0000929 int hdr; /* Offset to beginning of page header */
930 u8 *data; /* Equal to pPage->aData */
danielk1977aef0bf62005-12-30 16:28:01 +0000931 BtShared *pBt; /* The main btree structure */
drh271efa52004-05-30 19:19:05 +0000932 int usableSize; /* Amount of usable space on each page */
933 int cellOffset; /* Offset from start of page to first cell pointer */
934 int nFree; /* Number of unused bytes on the page */
935 int top; /* First byte of the cell content area */
drh2af926b2001-05-15 00:39:25 +0000936
drh2e38c322004-09-03 18:38:44 +0000937 pBt = pPage->pBt;
938 assert( pBt!=0 );
939 assert( pParent==0 || pParent->pBt==pBt );
drh1fee73e2007-08-29 04:00:57 +0000940 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +0000941 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +0000942 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
943 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhee696e22004-08-30 16:52:17 +0000944 if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
945 /* The parent page should never change unless the file is corrupt */
drh49285702005-09-17 15:20:26 +0000946 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +0000947 }
drh10617cd2004-05-14 15:27:27 +0000948 if( pPage->isInit ) return SQLITE_OK;
drhda200cc2004-05-09 11:51:38 +0000949 if( pPage->pParent==0 && pParent!=0 ){
950 pPage->pParent = pParent;
danielk19773b8a05f2007-03-19 17:44:26 +0000951 sqlite3PagerRef(pParent->pDbPage);
drh5e2f8b92001-05-28 00:41:15 +0000952 }
drhde647132004-05-07 17:57:49 +0000953 hdr = pPage->hdrOffset;
drha34b6762004-05-07 13:30:42 +0000954 data = pPage->aData;
drh44845222008-07-17 18:39:57 +0000955 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drh1688c862008-07-18 02:44:17 +0000956 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
957 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +0000958 pPage->nOverflow = 0;
drhc8629a12004-05-08 20:07:40 +0000959 pPage->idxShift = 0;
drh2e38c322004-09-03 18:38:44 +0000960 usableSize = pBt->usableSize;
drh43605152004-05-29 21:46:49 +0000961 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
962 top = get2byte(&data[hdr+5]);
963 pPage->nCell = get2byte(&data[hdr+3]);
drh2e38c322004-09-03 18:38:44 +0000964 if( pPage->nCell>MX_CELL(pBt) ){
drhee696e22004-08-30 16:52:17 +0000965 /* To many cells for a single page. The page must be corrupt */
drh49285702005-09-17 15:20:26 +0000966 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +0000967 }
968 if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
969 /* All pages must have at least one cell, except for root pages */
drh49285702005-09-17 15:20:26 +0000970 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +0000971 }
drh9e572e62004-04-23 23:43:10 +0000972
973 /* Compute the total free space on the page */
drh9e572e62004-04-23 23:43:10 +0000974 pc = get2byte(&data[hdr+1]);
drh43605152004-05-29 21:46:49 +0000975 nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
drh9e572e62004-04-23 23:43:10 +0000976 while( pc>0 ){
977 int next, size;
drhee696e22004-08-30 16:52:17 +0000978 if( pc>usableSize-4 ){
979 /* Free block is off the page */
drh49285702005-09-17 15:20:26 +0000980 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +0000981 }
drh9e572e62004-04-23 23:43:10 +0000982 next = get2byte(&data[pc]);
983 size = get2byte(&data[pc+2]);
drhee696e22004-08-30 16:52:17 +0000984 if( next>0 && next<=pc+size+3 ){
985 /* Free blocks must be in accending order */
drh49285702005-09-17 15:20:26 +0000986 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +0000987 }
drh3add3672004-05-15 00:29:24 +0000988 nFree += size;
drh9e572e62004-04-23 23:43:10 +0000989 pc = next;
990 }
drh3add3672004-05-15 00:29:24 +0000991 pPage->nFree = nFree;
drhee696e22004-08-30 16:52:17 +0000992 if( nFree>=usableSize ){
993 /* Free space cannot exceed total page size */
drh49285702005-09-17 15:20:26 +0000994 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +0000995 }
drh9e572e62004-04-23 23:43:10 +0000996
drh1688c862008-07-18 02:44:17 +0000997#if 0
998 /* Check that all the offsets in the cell offset array are within range.
999 **
1000 ** Omitting this consistency check and using the pPage->maskPage mask
1001 ** to prevent overrunning the page buffer in findCell() results in a
1002 ** 2.5% performance gain.
1003 */
1004 {
1005 u8 *pOff; /* Iterator used to check all cell offsets are in range */
1006 u8 *pEnd; /* Pointer to end of cell offset array */
1007 u8 mask; /* Mask of bits that must be zero in MSB of cell offsets */
1008 mask = ~(((u8)(pBt->pageSize>>8))-1);
1009 pEnd = &data[cellOffset + pPage->nCell*2];
1010 for(pOff=&data[cellOffset]; pOff!=pEnd && !((*pOff)&mask); pOff+=2);
1011 if( pOff!=pEnd ){
1012 return SQLITE_CORRUPT_BKPT;
1013 }
danielk1977e16535f2008-06-11 18:15:29 +00001014 }
drh1688c862008-07-18 02:44:17 +00001015#endif
danielk1977e16535f2008-06-11 18:15:29 +00001016
drhde647132004-05-07 17:57:49 +00001017 pPage->isInit = 1;
drh9e572e62004-04-23 23:43:10 +00001018 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001019}
1020
1021/*
drh8b2f49b2001-06-08 00:21:52 +00001022** Set up a raw page so that it looks like a database page holding
1023** no entries.
drhbd03cae2001-06-02 02:40:57 +00001024*/
drh9e572e62004-04-23 23:43:10 +00001025static void zeroPage(MemPage *pPage, int flags){
1026 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001027 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00001028 int hdr = pPage->hdrOffset;
drh9e572e62004-04-23 23:43:10 +00001029 int first;
1030
danielk19773b8a05f2007-03-19 17:44:26 +00001031 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001032 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1033 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001034 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001035 assert( sqlite3_mutex_held(pBt->mutex) );
drh1af4a6e2008-07-18 03:32:51 +00001036 /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
drh9e572e62004-04-23 23:43:10 +00001037 data[hdr] = flags;
drh43605152004-05-29 21:46:49 +00001038 first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
1039 memset(&data[hdr+1], 0, 4);
1040 data[hdr+7] = 0;
1041 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001042 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001043 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001044 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001045 pPage->cellOffset = first;
1046 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001047 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1048 pPage->maskPage = pBt->pageSize - 1;
drhda200cc2004-05-09 11:51:38 +00001049 pPage->idxShift = 0;
drh43605152004-05-29 21:46:49 +00001050 pPage->nCell = 0;
drhda200cc2004-05-09 11:51:38 +00001051 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001052}
1053
1054/*
drh3aac2dd2004-04-26 14:10:20 +00001055** Get a page from the pager. Initialize the MemPage.pBt and
1056** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001057**
1058** If the noContent flag is set, it means that we do not care about
1059** the content of the page at this time. So do not go to the disk
1060** to fetch the content. Just fill in the content with zeros for now.
1061** If in the future we call sqlite3PagerWrite() on this page, that
1062** means we have started to be concerned about content and the disk
1063** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001064*/
drh16a9b832007-05-05 18:39:25 +00001065int sqlite3BtreeGetPage(
1066 BtShared *pBt, /* The btree */
1067 Pgno pgno, /* Number of the page to fetch */
1068 MemPage **ppPage, /* Return the page in this parameter */
1069 int noContent /* Do not load page content if true */
1070){
drh3aac2dd2004-04-26 14:10:20 +00001071 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001072 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001073 DbPage *pDbPage;
1074
drh1fee73e2007-08-29 04:00:57 +00001075 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001076 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001077 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001078 pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
1079 pPage->aData = sqlite3PagerGetData(pDbPage);
1080 pPage->pDbPage = pDbPage;
drh3aac2dd2004-04-26 14:10:20 +00001081 pPage->pBt = pBt;
1082 pPage->pgno = pgno;
drhde647132004-05-07 17:57:49 +00001083 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
drh3aac2dd2004-04-26 14:10:20 +00001084 *ppPage = pPage;
1085 return SQLITE_OK;
1086}
1087
1088/*
drhde647132004-05-07 17:57:49 +00001089** Get a page from the pager and initialize it. This routine
1090** is just a convenience wrapper around separate calls to
drh16a9b832007-05-05 18:39:25 +00001091** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
drhde647132004-05-07 17:57:49 +00001092*/
1093static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001094 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001095 Pgno pgno, /* Number of the page to get */
1096 MemPage **ppPage, /* Write the page pointer here */
1097 MemPage *pParent /* Parent of the page */
1098){
1099 int rc;
drh1fee73e2007-08-29 04:00:57 +00001100 assert( sqlite3_mutex_held(pBt->mutex) );
drhee696e22004-08-30 16:52:17 +00001101 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001102 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001103 }
drh16a9b832007-05-05 18:39:25 +00001104 rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
drh10617cd2004-05-14 15:27:27 +00001105 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
drh16a9b832007-05-05 18:39:25 +00001106 rc = sqlite3BtreeInitPage(*ppPage, pParent);
danielk197743e377a2008-05-05 12:09:32 +00001107 if( rc!=SQLITE_OK ){
1108 releasePage(*ppPage);
1109 *ppPage = 0;
1110 }
drhde647132004-05-07 17:57:49 +00001111 }
1112 return rc;
1113}
1114
1115/*
drh3aac2dd2004-04-26 14:10:20 +00001116** Release a MemPage. This should be called once for each prior
drh16a9b832007-05-05 18:39:25 +00001117** call to sqlite3BtreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001118*/
drh4b70f112004-05-02 21:12:19 +00001119static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001120 if( pPage ){
1121 assert( pPage->aData );
1122 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001123 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1124 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001125 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001126 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001127 }
1128}
1129
1130/*
drh72f82862001-05-24 21:06:34 +00001131** This routine is called when the reference count for a page
1132** reaches zero. We need to unref the pParent pointer when that
1133** happens.
1134*/
danielk19778c0a7912008-08-20 14:49:23 +00001135static void pageDestructor(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001136 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001137 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk19778c0a7912008-08-20 14:49:23 +00001138 if( pPage ){
1139 assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) );
1140 if( pPage->pParent ){
1141 MemPage *pParent = pPage->pParent;
1142 assert( pParent->pBt==pPage->pBt );
1143 pPage->pParent = 0;
1144 releasePage(pParent);
1145 }
1146 pPage->isInit = 0;
drh72f82862001-05-24 21:06:34 +00001147 }
1148}
1149
1150/*
drha6abd042004-06-09 17:37:22 +00001151** During a rollback, when the pager reloads information into the cache
1152** so that the cache is restored to its original state at the start of
1153** the transaction, for each page restored this routine is called.
1154**
1155** This routine needs to reset the extra data section at the end of the
1156** page to agree with the restored data.
1157*/
danielk19773b8a05f2007-03-19 17:44:26 +00001158static void pageReinit(DbPage *pData, int pageSize){
drh07d183d2005-05-01 22:52:42 +00001159 MemPage *pPage;
1160 assert( (pageSize & 7)==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001161 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
drha6abd042004-06-09 17:37:22 +00001162 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001163 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001164 pPage->isInit = 0;
drh16a9b832007-05-05 18:39:25 +00001165 sqlite3BtreeInitPage(pPage, pPage->pParent);
drha6abd042004-06-09 17:37:22 +00001166 }
1167}
1168
1169/*
drhe5fe6902007-12-07 18:55:28 +00001170** Invoke the busy handler for a btree.
1171*/
1172static int sqlite3BtreeInvokeBusyHandler(void *pArg, int n){
1173 BtShared *pBt = (BtShared*)pArg;
1174 assert( pBt->db );
1175 assert( sqlite3_mutex_held(pBt->db->mutex) );
1176 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1177}
1178
1179/*
drhad3e0102004-09-03 23:32:18 +00001180** Open a database file.
1181**
drh382c0242001-10-06 16:33:02 +00001182** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001183** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001184** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001185** If zFilename is ":memory:" then an in-memory database is created
1186** that is automatically destroyed when it is closed.
drha059ad02001-04-17 20:09:11 +00001187*/
drh23e11ca2004-05-04 17:27:28 +00001188int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001189 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001190 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001191 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001192 int flags, /* Options */
1193 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001194){
drhd677b3d2007-08-20 22:48:41 +00001195 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
drhe53831d2007-08-17 01:14:38 +00001196 BtShared *pBt = 0; /* Shared part of btree structure */
danielk1977aef0bf62005-12-30 16:28:01 +00001197 Btree *p; /* Handle to return */
danielk1977dddbcdc2007-04-26 14:42:34 +00001198 int rc = SQLITE_OK;
drh90f5ecb2004-07-22 01:19:35 +00001199 int nReserve;
1200 unsigned char zDbHeader[100];
danielk1977aef0bf62005-12-30 16:28:01 +00001201
1202 /* Set the variable isMemdb to true for an in-memory database, or
1203 ** false for a file-based database. This symbol is only required if
1204 ** either of the shared-data or autovacuum features are compiled
1205 ** into the library.
1206 */
1207#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1208 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001209 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001210 #else
drh980b1a72006-08-16 16:42:48 +00001211 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001212 #endif
1213#endif
1214
drhe5fe6902007-12-07 18:55:28 +00001215 assert( db!=0 );
1216 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001217
drhe5fe6902007-12-07 18:55:28 +00001218 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001219 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001220 if( !p ){
1221 return SQLITE_NOMEM;
1222 }
1223 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001224 p->db = db;
danielk1977aef0bf62005-12-30 16:28:01 +00001225
drh198bf392006-01-06 21:52:49 +00001226#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001227 /*
1228 ** If this Btree is a candidate for shared cache, try to find an
1229 ** existing BtShared object that we can share with
1230 */
drh34004ce2008-07-11 16:15:17 +00001231 if( isMemdb==0
drhe5fe6902007-12-07 18:55:28 +00001232 && (db->flags & SQLITE_Vtab)==0
drhe53831d2007-08-17 01:14:38 +00001233 && zFilename && zFilename[0]
drhe53831d2007-08-17 01:14:38 +00001234 ){
drhff0587c2007-08-29 17:43:19 +00001235 if( sqlite3SharedCacheEnabled ){
danielk1977adfb9b02007-09-17 07:02:56 +00001236 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001237 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001238 sqlite3_mutex *mutexShared;
1239 p->sharable = 1;
drh34004ce2008-07-11 16:15:17 +00001240 db->flags |= SQLITE_SharedCache;
drhff0587c2007-08-29 17:43:19 +00001241 if( !zFullPathname ){
1242 sqlite3_free(p);
1243 return SQLITE_NOMEM;
1244 }
danielk1977adfb9b02007-09-17 07:02:56 +00001245 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
danielk197759f8c082008-06-18 17:09:10 +00001246 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001247 sqlite3_mutex_enter(mutexShared);
1248 for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
1249 assert( pBt->nRef>0 );
1250 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1251 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
1252 p->pBt = pBt;
1253 pBt->nRef++;
1254 break;
1255 }
1256 }
1257 sqlite3_mutex_leave(mutexShared);
1258 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001259 }
drhff0587c2007-08-29 17:43:19 +00001260#ifdef SQLITE_DEBUG
1261 else{
1262 /* In debug mode, we mark all persistent databases as sharable
1263 ** even when they are not. This exercises the locking code and
1264 ** gives more opportunity for asserts(sqlite3_mutex_held())
1265 ** statements to find locking problems.
1266 */
1267 p->sharable = 1;
1268 }
1269#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001270 }
1271#endif
drha059ad02001-04-17 20:09:11 +00001272 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001273 /*
1274 ** The following asserts make sure that structures used by the btree are
1275 ** the right size. This is to guard against size changes that result
1276 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001277 */
drhe53831d2007-08-17 01:14:38 +00001278 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1279 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1280 assert( sizeof(u32)==4 );
1281 assert( sizeof(u16)==2 );
1282 assert( sizeof(Pgno)==4 );
1283
1284 pBt = sqlite3MallocZero( sizeof(*pBt) );
1285 if( pBt==0 ){
1286 rc = SQLITE_NOMEM;
1287 goto btree_open_out;
1288 }
drhe5fe6902007-12-07 18:55:28 +00001289 pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler;
1290 pBt->busyHdr.pArg = pBt;
danielk19778c0a7912008-08-20 14:49:23 +00001291 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, pageDestructor,
drh33f4e022007-09-03 15:19:34 +00001292 EXTRA_SIZE, flags, vfsFlags);
drhe53831d2007-08-17 01:14:38 +00001293 if( rc==SQLITE_OK ){
1294 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1295 }
1296 if( rc!=SQLITE_OK ){
1297 goto btree_open_out;
1298 }
drhe5fe6902007-12-07 18:55:28 +00001299 sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr);
drhe53831d2007-08-17 01:14:38 +00001300 p->pBt = pBt;
1301
danielk19778c0a7912008-08-20 14:49:23 +00001302 /* sqlite3PagerSetDestructor(pBt->pPager, pageDestructor); */
drhe53831d2007-08-17 01:14:38 +00001303 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
1304 pBt->pCursor = 0;
1305 pBt->pPage1 = 0;
1306 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1307 pBt->pageSize = get2byte(&zDbHeader[16]);
1308 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1309 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001310 pBt->pageSize = 0;
1311 sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
drhe53831d2007-08-17 01:14:38 +00001312#ifndef SQLITE_OMIT_AUTOVACUUM
1313 /* If the magic name ":memory:" will create an in-memory database, then
1314 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1315 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1316 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1317 ** regular file-name. In this case the auto-vacuum applies as per normal.
1318 */
1319 if( zFilename && !isMemdb ){
1320 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1321 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1322 }
1323#endif
1324 nReserve = 0;
1325 }else{
1326 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001327 pBt->pageSizeFixed = 1;
1328#ifndef SQLITE_OMIT_AUTOVACUUM
1329 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1330 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1331#endif
1332 }
1333 pBt->usableSize = pBt->pageSize - nReserve;
1334 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
danielk1977a1644fd2007-08-29 12:31:25 +00001335 sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
drhe53831d2007-08-17 01:14:38 +00001336
1337#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1338 /* Add the new BtShared object to the linked list sharable BtShareds.
1339 */
1340 if( p->sharable ){
1341 sqlite3_mutex *mutexShared;
1342 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001343 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
1344 if( SQLITE_THREADSAFE && sqlite3Config.bCoreMutex ){
1345 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001346 if( pBt->mutex==0 ){
1347 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001348 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001349 goto btree_open_out;
1350 }
drhff0587c2007-08-29 17:43:19 +00001351 }
drhe53831d2007-08-17 01:14:38 +00001352 sqlite3_mutex_enter(mutexShared);
1353 pBt->pNext = sqlite3SharedCacheList;
1354 sqlite3SharedCacheList = pBt;
1355 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001356 }
drheee46cf2004-11-06 00:02:48 +00001357#endif
drh90f5ecb2004-07-22 01:19:35 +00001358 }
danielk1977aef0bf62005-12-30 16:28:01 +00001359
drhcfed7bc2006-03-13 14:28:05 +00001360#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001361 /* If the new Btree uses a sharable pBtShared, then link the new
1362 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001363 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001364 */
drhe53831d2007-08-17 01:14:38 +00001365 if( p->sharable ){
1366 int i;
1367 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001368 for(i=0; i<db->nDb; i++){
1369 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001370 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1371 if( p->pBt<pSib->pBt ){
1372 p->pNext = pSib;
1373 p->pPrev = 0;
1374 pSib->pPrev = p;
1375 }else{
drhabddb0c2007-08-20 13:14:28 +00001376 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001377 pSib = pSib->pNext;
1378 }
1379 p->pNext = pSib->pNext;
1380 p->pPrev = pSib;
1381 if( p->pNext ){
1382 p->pNext->pPrev = p;
1383 }
1384 pSib->pNext = p;
1385 }
1386 break;
1387 }
1388 }
danielk1977aef0bf62005-12-30 16:28:01 +00001389 }
danielk1977aef0bf62005-12-30 16:28:01 +00001390#endif
1391 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001392
1393btree_open_out:
1394 if( rc!=SQLITE_OK ){
1395 if( pBt && pBt->pPager ){
1396 sqlite3PagerClose(pBt->pPager);
1397 }
drh17435752007-08-16 04:30:38 +00001398 sqlite3_free(pBt);
1399 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001400 *ppBtree = 0;
1401 }
1402 return rc;
drha059ad02001-04-17 20:09:11 +00001403}
1404
1405/*
drhe53831d2007-08-17 01:14:38 +00001406** Decrement the BtShared.nRef counter. When it reaches zero,
1407** remove the BtShared structure from the sharing list. Return
1408** true if the BtShared.nRef counter reaches zero and return
1409** false if it is still positive.
1410*/
1411static int removeFromSharingList(BtShared *pBt){
1412#ifndef SQLITE_OMIT_SHARED_CACHE
1413 sqlite3_mutex *pMaster;
1414 BtShared *pList;
1415 int removed = 0;
1416
drhd677b3d2007-08-20 22:48:41 +00001417 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001418 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001419 sqlite3_mutex_enter(pMaster);
1420 pBt->nRef--;
1421 if( pBt->nRef<=0 ){
1422 if( sqlite3SharedCacheList==pBt ){
1423 sqlite3SharedCacheList = pBt->pNext;
1424 }else{
1425 pList = sqlite3SharedCacheList;
drh34004ce2008-07-11 16:15:17 +00001426 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001427 pList=pList->pNext;
1428 }
drh34004ce2008-07-11 16:15:17 +00001429 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001430 pList->pNext = pBt->pNext;
1431 }
1432 }
drh3285db22007-09-03 22:00:39 +00001433 if( SQLITE_THREADSAFE ){
1434 sqlite3_mutex_free(pBt->mutex);
1435 }
drhe53831d2007-08-17 01:14:38 +00001436 removed = 1;
1437 }
1438 sqlite3_mutex_leave(pMaster);
1439 return removed;
1440#else
1441 return 1;
1442#endif
1443}
1444
1445/*
drhf7141992008-06-19 00:16:08 +00001446** Make sure pBt->pTmpSpace points to an allocation of
1447** MX_CELL_SIZE(pBt) bytes.
1448*/
1449static void allocateTempSpace(BtShared *pBt){
1450 if( !pBt->pTmpSpace ){
1451 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1452 }
1453}
1454
1455/*
1456** Free the pBt->pTmpSpace allocation
1457*/
1458static void freeTempSpace(BtShared *pBt){
1459 sqlite3PageFree( pBt->pTmpSpace);
1460 pBt->pTmpSpace = 0;
1461}
1462
1463/*
drha059ad02001-04-17 20:09:11 +00001464** Close an open database and invalidate all cursors.
1465*/
danielk1977aef0bf62005-12-30 16:28:01 +00001466int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001467 BtShared *pBt = p->pBt;
1468 BtCursor *pCur;
1469
danielk1977aef0bf62005-12-30 16:28:01 +00001470 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001471 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001472 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00001473 pBt->db = p->db;
danielk1977aef0bf62005-12-30 16:28:01 +00001474 pCur = pBt->pCursor;
1475 while( pCur ){
1476 BtCursor *pTmp = pCur;
1477 pCur = pCur->pNext;
1478 if( pTmp->pBtree==p ){
1479 sqlite3BtreeCloseCursor(pTmp);
1480 }
drha059ad02001-04-17 20:09:11 +00001481 }
danielk1977aef0bf62005-12-30 16:28:01 +00001482
danielk19778d34dfd2006-01-24 16:37:57 +00001483 /* Rollback any active transaction and free the handle structure.
1484 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1485 ** this handle.
1486 */
danielk1977b597f742006-01-15 11:39:18 +00001487 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001488 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001489
danielk1977aef0bf62005-12-30 16:28:01 +00001490 /* If there are still other outstanding references to the shared-btree
1491 ** structure, return now. The remainder of this procedure cleans
1492 ** up the shared-btree.
1493 */
drhe53831d2007-08-17 01:14:38 +00001494 assert( p->wantToLock==0 && p->locked==0 );
1495 if( !p->sharable || removeFromSharingList(pBt) ){
1496 /* The pBt is no longer on the sharing list, so we can access
1497 ** it without having to hold the mutex.
1498 **
1499 ** Clean out and delete the BtShared object.
1500 */
1501 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001502 sqlite3PagerClose(pBt->pPager);
1503 if( pBt->xFreeSchema && pBt->pSchema ){
1504 pBt->xFreeSchema(pBt->pSchema);
1505 }
1506 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00001507 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00001508 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001509 }
1510
drhe53831d2007-08-17 01:14:38 +00001511#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00001512 assert( p->wantToLock==0 );
1513 assert( p->locked==0 );
1514 if( p->pPrev ) p->pPrev->pNext = p->pNext;
1515 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00001516#endif
1517
drhe53831d2007-08-17 01:14:38 +00001518 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00001519 return SQLITE_OK;
1520}
1521
1522/*
drhda47d772002-12-02 04:25:19 +00001523** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001524**
1525** The maximum number of cache pages is set to the absolute
1526** value of mxPage. If mxPage is negative, the pager will
1527** operate asynchronously - it will not stop to do fsync()s
1528** to insure data is written to the disk surface before
1529** continuing. Transactions still work if synchronous is off,
1530** and the database cannot be corrupted if this program
1531** crashes. But if the operating system crashes or there is
1532** an abrupt power failure when synchronous is off, the database
1533** could be left in an inconsistent and unrecoverable state.
1534** Synchronous is on by default so database corruption is not
1535** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001536*/
danielk1977aef0bf62005-12-30 16:28:01 +00001537int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
1538 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00001539 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001540 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001541 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00001542 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00001543 return SQLITE_OK;
1544}
1545
1546/*
drh973b6e32003-02-12 14:09:42 +00001547** Change the way data is synced to disk in order to increase or decrease
1548** how well the database resists damage due to OS crashes and power
1549** failures. Level 1 is the same as asynchronous (no syncs() occur and
1550** there is a high probability of damage) Level 2 is the default. There
1551** is a very low but non-zero probability of damage. Level 3 reduces the
1552** probability of damage to near zero but with a write performance reduction.
1553*/
danielk197793758c82005-01-21 08:13:14 +00001554#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00001555int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00001556 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00001557 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001558 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001559 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00001560 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00001561 return SQLITE_OK;
1562}
danielk197793758c82005-01-21 08:13:14 +00001563#endif
drh973b6e32003-02-12 14:09:42 +00001564
drh2c8997b2005-08-27 16:36:48 +00001565/*
1566** Return TRUE if the given btree is set to safety level 1. In other
1567** words, return TRUE if no sync() occurs on the disk files.
1568*/
danielk1977aef0bf62005-12-30 16:28:01 +00001569int sqlite3BtreeSyncDisabled(Btree *p){
1570 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001571 int rc;
drhe5fe6902007-12-07 18:55:28 +00001572 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001573 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00001574 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00001575 rc = sqlite3PagerNosync(pBt->pPager);
1576 sqlite3BtreeLeave(p);
1577 return rc;
drh2c8997b2005-08-27 16:36:48 +00001578}
1579
danielk1977576ec6b2005-01-21 11:55:25 +00001580#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00001581/*
drh90f5ecb2004-07-22 01:19:35 +00001582** Change the default pages size and the number of reserved bytes per page.
drh06f50212004-11-02 14:24:33 +00001583**
1584** The page size must be a power of 2 between 512 and 65536. If the page
1585** size supplied does not meet this constraint then the page size is not
1586** changed.
1587**
1588** Page sizes are constrained to be a power of two so that the region
1589** of the database file used for locking (beginning at PENDING_BYTE,
1590** the first byte past the 1GB boundary, 0x40000000) needs to occur
1591** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00001592**
1593** If parameter nReserve is less than zero, then the number of reserved
1594** bytes per page is left unchanged.
drh90f5ecb2004-07-22 01:19:35 +00001595*/
danielk1977aef0bf62005-12-30 16:28:01 +00001596int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
danielk1977a1644fd2007-08-29 12:31:25 +00001597 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00001598 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001599 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00001600 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00001601 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00001602 return SQLITE_READONLY;
1603 }
1604 if( nReserve<0 ){
1605 nReserve = pBt->pageSize - pBt->usableSize;
1606 }
drh06f50212004-11-02 14:24:33 +00001607 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
1608 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00001609 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00001610 assert( !pBt->pPage1 && !pBt->pCursor );
danielk1977a1644fd2007-08-29 12:31:25 +00001611 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00001612 freeTempSpace(pBt);
danielk1977a1644fd2007-08-29 12:31:25 +00001613 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
drh90f5ecb2004-07-22 01:19:35 +00001614 }
1615 pBt->usableSize = pBt->pageSize - nReserve;
drhd677b3d2007-08-20 22:48:41 +00001616 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00001617 return rc;
drh90f5ecb2004-07-22 01:19:35 +00001618}
1619
1620/*
1621** Return the currently defined page size
1622*/
danielk1977aef0bf62005-12-30 16:28:01 +00001623int sqlite3BtreeGetPageSize(Btree *p){
1624 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00001625}
danielk1977aef0bf62005-12-30 16:28:01 +00001626int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00001627 int n;
1628 sqlite3BtreeEnter(p);
1629 n = p->pBt->pageSize - p->pBt->usableSize;
1630 sqlite3BtreeLeave(p);
1631 return n;
drh2011d5f2004-07-22 02:40:37 +00001632}
drhf8e632b2007-05-08 14:51:36 +00001633
1634/*
1635** Set the maximum page count for a database if mxPage is positive.
1636** No changes are made if mxPage is 0 or negative.
1637** Regardless of the value of mxPage, return the maximum page count.
1638*/
1639int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00001640 int n;
1641 sqlite3BtreeEnter(p);
1642 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
1643 sqlite3BtreeLeave(p);
1644 return n;
drhf8e632b2007-05-08 14:51:36 +00001645}
danielk1977576ec6b2005-01-21 11:55:25 +00001646#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00001647
1648/*
danielk1977951af802004-11-05 15:45:09 +00001649** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
1650** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
1651** is disabled. The default value for the auto-vacuum property is
1652** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
1653*/
danielk1977aef0bf62005-12-30 16:28:01 +00001654int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00001655#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00001656 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00001657#else
danielk1977dddbcdc2007-04-26 14:42:34 +00001658 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001659 int rc = SQLITE_OK;
danielk1977dddbcdc2007-04-26 14:42:34 +00001660 int av = (autoVacuum?1:0);
drhd677b3d2007-08-20 22:48:41 +00001661
1662 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001663 if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00001664 rc = SQLITE_READONLY;
1665 }else{
1666 pBt->autoVacuum = av;
danielk1977951af802004-11-05 15:45:09 +00001667 }
drhd677b3d2007-08-20 22:48:41 +00001668 sqlite3BtreeLeave(p);
1669 return rc;
danielk1977951af802004-11-05 15:45:09 +00001670#endif
1671}
1672
1673/*
1674** Return the value of the 'auto-vacuum' property. If auto-vacuum is
1675** enabled 1 is returned. Otherwise 0.
1676*/
danielk1977aef0bf62005-12-30 16:28:01 +00001677int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00001678#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00001679 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00001680#else
drhd677b3d2007-08-20 22:48:41 +00001681 int rc;
1682 sqlite3BtreeEnter(p);
1683 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00001684 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
1685 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
1686 BTREE_AUTOVACUUM_INCR
1687 );
drhd677b3d2007-08-20 22:48:41 +00001688 sqlite3BtreeLeave(p);
1689 return rc;
danielk1977951af802004-11-05 15:45:09 +00001690#endif
1691}
1692
1693
1694/*
drha34b6762004-05-07 13:30:42 +00001695** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00001696** also acquire a readlock on that file.
1697**
1698** SQLITE_OK is returned on success. If the file is not a
1699** well-formed database file, then SQLITE_CORRUPT is returned.
1700** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00001701** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00001702*/
danielk1977aef0bf62005-12-30 16:28:01 +00001703static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00001704 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001705 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00001706 int nPage;
drhd677b3d2007-08-20 22:48:41 +00001707
drh1fee73e2007-08-29 04:00:57 +00001708 assert( sqlite3_mutex_held(pBt->mutex) );
drha34b6762004-05-07 13:30:42 +00001709 if( pBt->pPage1 ) return SQLITE_OK;
drh16a9b832007-05-05 18:39:25 +00001710 rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00001711 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00001712
1713 /* Do some checking to help insure the file we opened really is
1714 ** a valid database file.
1715 */
danielk1977ad0132d2008-06-07 08:58:22 +00001716 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1717 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00001718 goto page1_init_failed;
1719 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00001720 int pageSize;
1721 int usableSize;
drhb6f41482004-05-14 01:58:11 +00001722 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00001723 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00001724 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00001725 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00001726 }
drh309169a2007-04-24 17:27:51 +00001727 if( page1[18]>1 ){
1728 pBt->readOnly = 1;
1729 }
1730 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00001731 goto page1_init_failed;
1732 }
drhe5ae5732008-06-15 02:51:47 +00001733
1734 /* The maximum embedded fraction must be exactly 25%. And the minimum
1735 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
1736 ** The original design allowed these amounts to vary, but as of
1737 ** version 3.6.0, we require them to be fixed.
1738 */
1739 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
1740 goto page1_init_failed;
1741 }
drh07d183d2005-05-01 22:52:42 +00001742 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00001743 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
1744 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
1745 ){
drh07d183d2005-05-01 22:52:42 +00001746 goto page1_init_failed;
1747 }
1748 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00001749 usableSize = pageSize - page1[20];
1750 if( pageSize!=pBt->pageSize ){
1751 /* After reading the first page of the database assuming a page size
1752 ** of BtShared.pageSize, we have discovered that the page-size is
1753 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
1754 ** zero and return SQLITE_OK. The caller will call this function
1755 ** again with the correct page-size.
1756 */
1757 releasePage(pPage1);
1758 pBt->usableSize = usableSize;
1759 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00001760 freeTempSpace(pBt);
danielk1977f653d782008-03-20 11:04:21 +00001761 sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
1762 return SQLITE_OK;
1763 }
1764 if( usableSize<500 ){
drhb6f41482004-05-14 01:58:11 +00001765 goto page1_init_failed;
1766 }
danielk1977f653d782008-03-20 11:04:21 +00001767 pBt->pageSize = pageSize;
1768 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00001769#ifndef SQLITE_OMIT_AUTOVACUUM
1770 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00001771 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00001772#endif
drh306dc212001-05-21 13:45:10 +00001773 }
drhb6f41482004-05-14 01:58:11 +00001774
1775 /* maxLocal is the maximum amount of payload to store locally for
1776 ** a cell. Make sure it is small enough so that at least minFanout
1777 ** cells can will fit on one page. We assume a 10-byte page header.
1778 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00001779 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00001780 ** 4-byte child pointer
1781 ** 9-byte nKey value
1782 ** 4-byte nData value
1783 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00001784 ** So a cell consists of a 2-byte poiner, a header which is as much as
1785 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
1786 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00001787 */
drhe5ae5732008-06-15 02:51:47 +00001788 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
1789 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00001790 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00001791 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00001792 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00001793 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00001794 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00001795
drh72f82862001-05-24 21:06:34 +00001796page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00001797 releasePage(pPage1);
1798 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00001799 return rc;
drh306dc212001-05-21 13:45:10 +00001800}
1801
1802/*
drhb8ef32c2005-03-14 02:01:49 +00001803** This routine works like lockBtree() except that it also invokes the
1804** busy callback if there is lock contention.
1805*/
danielk1977aef0bf62005-12-30 16:28:01 +00001806static int lockBtreeWithRetry(Btree *pRef){
drhb8ef32c2005-03-14 02:01:49 +00001807 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00001808
drh1fee73e2007-08-29 04:00:57 +00001809 assert( sqlite3BtreeHoldsMutex(pRef) );
danielk1977aef0bf62005-12-30 16:28:01 +00001810 if( pRef->inTrans==TRANS_NONE ){
1811 u8 inTransaction = pRef->pBt->inTransaction;
1812 btreeIntegrity(pRef);
1813 rc = sqlite3BtreeBeginTrans(pRef, 0);
1814 pRef->pBt->inTransaction = inTransaction;
1815 pRef->inTrans = TRANS_NONE;
1816 if( rc==SQLITE_OK ){
1817 pRef->pBt->nTransaction--;
1818 }
1819 btreeIntegrity(pRef);
drhb8ef32c2005-03-14 02:01:49 +00001820 }
1821 return rc;
1822}
1823
1824
1825/*
drhb8ca3072001-12-05 00:21:20 +00001826** If there are no outstanding cursors and we are not in the middle
1827** of a transaction but there is a read lock on the database, then
1828** this routine unrefs the first page of the database file which
1829** has the effect of releasing the read lock.
1830**
1831** If there are any outstanding cursors, this routine is a no-op.
1832**
1833** If there is a transaction in progress, this routine is a no-op.
1834*/
danielk1977aef0bf62005-12-30 16:28:01 +00001835static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00001836 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00001837 if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00001838 if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
drhde4fcfd2008-01-19 23:50:26 +00001839 assert( pBt->pPage1->aData );
1840#if 0
drh24c9a2e2007-01-05 02:00:47 +00001841 if( pBt->pPage1->aData==0 ){
1842 MemPage *pPage = pBt->pPage1;
drhbf4bca52007-09-06 22:19:14 +00001843 pPage->aData = sqlite3PagerGetData(pPage->pDbPage);
drh24c9a2e2007-01-05 02:00:47 +00001844 pPage->pBt = pBt;
1845 pPage->pgno = 1;
1846 }
drhde4fcfd2008-01-19 23:50:26 +00001847#endif
drh24c9a2e2007-01-05 02:00:47 +00001848 releasePage(pBt->pPage1);
drh51c6d962004-06-06 00:42:25 +00001849 }
drh3aac2dd2004-04-26 14:10:20 +00001850 pBt->pPage1 = 0;
drh3aac2dd2004-04-26 14:10:20 +00001851 pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001852 }
1853}
1854
1855/*
drh9e572e62004-04-23 23:43:10 +00001856** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00001857** file.
drh8b2f49b2001-06-08 00:21:52 +00001858*/
danielk1977aef0bf62005-12-30 16:28:01 +00001859static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00001860 MemPage *pP1;
1861 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00001862 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00001863 int nPage;
drhd677b3d2007-08-20 22:48:41 +00001864
drh1fee73e2007-08-29 04:00:57 +00001865 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00001866 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1867 if( rc!=SQLITE_OK || nPage>0 ){
1868 return rc;
1869 }
drh3aac2dd2004-04-26 14:10:20 +00001870 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00001871 assert( pP1!=0 );
1872 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00001873 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00001874 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00001875 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
1876 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00001877 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00001878 data[18] = 1;
1879 data[19] = 1;
drhb6f41482004-05-14 01:58:11 +00001880 data[20] = pBt->pageSize - pBt->usableSize;
drhe5ae5732008-06-15 02:51:47 +00001881 data[21] = 64;
1882 data[22] = 32;
1883 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00001884 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00001885 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00001886 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00001887#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00001888 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00001889 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00001890 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00001891 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00001892#endif
drh8b2f49b2001-06-08 00:21:52 +00001893 return SQLITE_OK;
1894}
1895
1896/*
danielk1977ee5741e2004-05-31 10:01:34 +00001897** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00001898** is started if the second argument is nonzero, otherwise a read-
1899** transaction. If the second argument is 2 or more and exclusive
1900** transaction is started, meaning that no other process is allowed
1901** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00001902** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00001903** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00001904**
danielk1977ee5741e2004-05-31 10:01:34 +00001905** A write-transaction must be started before attempting any
1906** changes to the database. None of the following routines
1907** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00001908**
drh23e11ca2004-05-04 17:27:28 +00001909** sqlite3BtreeCreateTable()
1910** sqlite3BtreeCreateIndex()
1911** sqlite3BtreeClearTable()
1912** sqlite3BtreeDropTable()
1913** sqlite3BtreeInsert()
1914** sqlite3BtreeDelete()
1915** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00001916**
drhb8ef32c2005-03-14 02:01:49 +00001917** If an initial attempt to acquire the lock fails because of lock contention
1918** and the database was previously unlocked, then invoke the busy handler
1919** if there is one. But if there was previously a read-lock, do not
1920** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
1921** returned when there is already a read-lock in order to avoid a deadlock.
1922**
1923** Suppose there are two processes A and B. A has a read lock and B has
1924** a reserved lock. B tries to promote to exclusive but is blocked because
1925** of A's read lock. A tries to promote to reserved but is blocked by B.
1926** One or the other of the two processes must give way or there can be
1927** no progress. By returning SQLITE_BUSY and not invoking the busy callback
1928** when A already has a read lock, we encourage A to give up and let B
1929** proceed.
drha059ad02001-04-17 20:09:11 +00001930*/
danielk1977aef0bf62005-12-30 16:28:01 +00001931int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
1932 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00001933 int rc = SQLITE_OK;
1934
drhd677b3d2007-08-20 22:48:41 +00001935 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00001936 pBt->db = p->db;
danielk1977aef0bf62005-12-30 16:28:01 +00001937 btreeIntegrity(p);
1938
danielk1977ee5741e2004-05-31 10:01:34 +00001939 /* If the btree is already in a write-transaction, or it
1940 ** is already in a read-transaction and a read-transaction
1941 ** is requested, this is a no-op.
1942 */
danielk1977aef0bf62005-12-30 16:28:01 +00001943 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00001944 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00001945 }
drhb8ef32c2005-03-14 02:01:49 +00001946
1947 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00001948 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00001949 rc = SQLITE_READONLY;
1950 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00001951 }
1952
danielk1977aef0bf62005-12-30 16:28:01 +00001953 /* If another database handle has already opened a write transaction
1954 ** on this shared-btree structure and a second write transaction is
1955 ** requested, return SQLITE_BUSY.
1956 */
1957 if( pBt->inTransaction==TRANS_WRITE && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00001958 rc = SQLITE_BUSY;
1959 goto trans_begun;
danielk1977aef0bf62005-12-30 16:28:01 +00001960 }
1961
danielk1977641b0f42007-12-21 04:47:25 +00001962#ifndef SQLITE_OMIT_SHARED_CACHE
1963 if( wrflag>1 ){
1964 BtLock *pIter;
1965 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
1966 if( pIter->pBtree!=p ){
1967 rc = SQLITE_BUSY;
1968 goto trans_begun;
1969 }
1970 }
1971 }
1972#endif
1973
drhb8ef32c2005-03-14 02:01:49 +00001974 do {
drh8a9c17f2008-05-02 14:23:54 +00001975 if( pBt->pPage1==0 ){
1976 do{
1977 rc = lockBtree(pBt);
1978 }while( pBt->pPage1==0 && rc==SQLITE_OK );
drh8c42ca92001-06-22 19:15:00 +00001979 }
drh309169a2007-04-24 17:27:51 +00001980
drhb8ef32c2005-03-14 02:01:49 +00001981 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00001982 if( pBt->readOnly ){
1983 rc = SQLITE_READONLY;
1984 }else{
1985 rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
1986 if( rc==SQLITE_OK ){
1987 rc = newDatabase(pBt);
1988 }
drhb8ef32c2005-03-14 02:01:49 +00001989 }
1990 }
1991
1992 if( rc==SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00001993 if( wrflag ) pBt->inStmt = 0;
1994 }else{
1995 unlockBtreeIfUnused(pBt);
1996 }
danielk1977aef0bf62005-12-30 16:28:01 +00001997 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
drhe5fe6902007-12-07 18:55:28 +00001998 sqlite3BtreeInvokeBusyHandler(pBt, 0) );
danielk1977aef0bf62005-12-30 16:28:01 +00001999
2000 if( rc==SQLITE_OK ){
2001 if( p->inTrans==TRANS_NONE ){
2002 pBt->nTransaction++;
2003 }
2004 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2005 if( p->inTrans>pBt->inTransaction ){
2006 pBt->inTransaction = p->inTrans;
2007 }
danielk1977641b0f42007-12-21 04:47:25 +00002008#ifndef SQLITE_OMIT_SHARED_CACHE
2009 if( wrflag>1 ){
2010 assert( !pBt->pExclusive );
2011 pBt->pExclusive = p;
2012 }
2013#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002014 }
2015
drhd677b3d2007-08-20 22:48:41 +00002016
2017trans_begun:
danielk1977aef0bf62005-12-30 16:28:01 +00002018 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002019 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002020 return rc;
drha059ad02001-04-17 20:09:11 +00002021}
2022
drh4a0611d2008-07-18 17:16:26 +00002023/*
2024** Return the size of the database file in pages. Or return -1 if
2025** there is any kind of error.
2026*/
2027static int pagerPagecount(Pager *pPager){
2028 int rc;
2029 int nPage;
2030 rc = sqlite3PagerPagecount(pPager, &nPage);
2031 return (rc==SQLITE_OK?nPage:-1);
2032}
2033
2034
danielk1977687566d2004-11-02 12:56:41 +00002035#ifndef SQLITE_OMIT_AUTOVACUUM
2036
2037/*
2038** Set the pointer-map entries for all children of page pPage. Also, if
2039** pPage contains cells that point to overflow pages, set the pointer
2040** map entries for the overflow pages as well.
2041*/
2042static int setChildPtrmaps(MemPage *pPage){
2043 int i; /* Counter variable */
2044 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002045 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002046 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00002047 int isInitOrig = pPage->isInit;
2048 Pgno pgno = pPage->pgno;
2049
drh1fee73e2007-08-29 04:00:57 +00002050 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19772df71c72007-05-24 07:22:42 +00002051 rc = sqlite3BtreeInitPage(pPage, pPage->pParent);
2052 if( rc!=SQLITE_OK ){
2053 goto set_child_ptrmaps_out;
2054 }
danielk1977687566d2004-11-02 12:56:41 +00002055 nCell = pPage->nCell;
2056
2057 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002058 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002059
danielk197726836652005-01-17 01:33:13 +00002060 rc = ptrmapPutOvflPtr(pPage, pCell);
2061 if( rc!=SQLITE_OK ){
2062 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002063 }
danielk197726836652005-01-17 01:33:13 +00002064
danielk1977687566d2004-11-02 12:56:41 +00002065 if( !pPage->leaf ){
2066 Pgno childPgno = get4byte(pCell);
2067 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
danielk19771bc71592008-07-08 17:13:59 +00002068 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002069 }
2070 }
2071
2072 if( !pPage->leaf ){
2073 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2074 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2075 }
2076
2077set_child_ptrmaps_out:
2078 pPage->isInit = isInitOrig;
2079 return rc;
2080}
2081
2082/*
2083** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
2084** page, is a pointer to page iFrom. Modify this pointer so that it points to
2085** iTo. Parameter eType describes the type of pointer to be modified, as
2086** follows:
2087**
2088** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2089** page of pPage.
2090**
2091** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2092** page pointed to by one of the cells on pPage.
2093**
2094** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2095** overflow page in the list.
2096*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002097static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002098 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977687566d2004-11-02 12:56:41 +00002099 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002100 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002101 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002102 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002103 }
danielk1977f78fc082004-11-02 14:40:32 +00002104 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002105 }else{
2106 int isInitOrig = pPage->isInit;
2107 int i;
2108 int nCell;
2109
drh16a9b832007-05-05 18:39:25 +00002110 sqlite3BtreeInitPage(pPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00002111 nCell = pPage->nCell;
2112
danielk1977687566d2004-11-02 12:56:41 +00002113 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002114 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002115 if( eType==PTRMAP_OVERFLOW1 ){
2116 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00002117 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002118 if( info.iOverflow ){
2119 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2120 put4byte(&pCell[info.iOverflow], iTo);
2121 break;
2122 }
2123 }
2124 }else{
2125 if( get4byte(pCell)==iFrom ){
2126 put4byte(pCell, iTo);
2127 break;
2128 }
2129 }
2130 }
2131
2132 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002133 if( eType!=PTRMAP_BTREE ||
2134 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002135 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002136 }
danielk1977687566d2004-11-02 12:56:41 +00002137 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2138 }
2139
2140 pPage->isInit = isInitOrig;
2141 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002142 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002143}
2144
danielk1977003ba062004-11-04 02:57:33 +00002145
danielk19777701e812005-01-10 12:59:51 +00002146/*
2147** Move the open database page pDbPage to location iFreePage in the
2148** database. The pDbPage reference remains valid.
2149*/
danielk1977003ba062004-11-04 02:57:33 +00002150static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002151 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002152 MemPage *pDbPage, /* Open page to move */
2153 u8 eType, /* Pointer map 'type' entry for pDbPage */
2154 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002155 Pgno iFreePage, /* The location to move pDbPage to */
2156 int isCommit
danielk1977003ba062004-11-04 02:57:33 +00002157){
2158 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2159 Pgno iDbPage = pDbPage->pgno;
2160 Pager *pPager = pBt->pPager;
2161 int rc;
2162
danielk1977a0bf2652004-11-04 14:30:04 +00002163 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2164 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002165 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002166 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002167
drh85b623f2007-12-13 21:54:09 +00002168 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002169 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2170 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002171 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002172 if( rc!=SQLITE_OK ){
2173 return rc;
2174 }
2175 pDbPage->pgno = iFreePage;
2176
2177 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2178 ** that point to overflow pages. The pointer map entries for all these
2179 ** pages need to be changed.
2180 **
2181 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2182 ** pointer to a subsequent overflow page. If this is the case, then
2183 ** the pointer map needs to be updated for the subsequent overflow page.
2184 */
danielk1977a0bf2652004-11-04 14:30:04 +00002185 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002186 rc = setChildPtrmaps(pDbPage);
2187 if( rc!=SQLITE_OK ){
2188 return rc;
2189 }
2190 }else{
2191 Pgno nextOvfl = get4byte(pDbPage->aData);
2192 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002193 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2194 if( rc!=SQLITE_OK ){
2195 return rc;
2196 }
2197 }
2198 }
2199
2200 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2201 ** that it points at iFreePage. Also fix the pointer map entry for
2202 ** iPtrPage.
2203 */
danielk1977a0bf2652004-11-04 14:30:04 +00002204 if( eType!=PTRMAP_ROOTPAGE ){
drh16a9b832007-05-05 18:39:25 +00002205 rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002206 if( rc!=SQLITE_OK ){
2207 return rc;
2208 }
danielk19773b8a05f2007-03-19 17:44:26 +00002209 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002210 if( rc!=SQLITE_OK ){
2211 releasePage(pPtrPage);
2212 return rc;
2213 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002214 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002215 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002216 if( rc==SQLITE_OK ){
2217 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2218 }
danielk1977003ba062004-11-04 02:57:33 +00002219 }
danielk1977003ba062004-11-04 02:57:33 +00002220 return rc;
2221}
2222
danielk1977dddbcdc2007-04-26 14:42:34 +00002223/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002224static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002225
2226/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002227** Perform a single step of an incremental-vacuum. If successful,
2228** return SQLITE_OK. If there is no work to do (and therefore no
2229** point in calling this function again), return SQLITE_DONE.
2230**
2231** More specificly, this function attempts to re-organize the
2232** database so that the last page of the file currently in use
2233** is no longer in use.
2234**
2235** If the nFin parameter is non-zero, the implementation assumes
2236** that the caller will keep calling incrVacuumStep() until
2237** it returns SQLITE_DONE or an error, and that nFin is the
2238** number of pages the database file will contain after this
2239** process is complete.
2240*/
2241static int incrVacuumStep(BtShared *pBt, Pgno nFin){
2242 Pgno iLastPg; /* Last page in the database */
2243 Pgno nFreeList; /* Number of pages still on the free-list */
2244
drh1fee73e2007-08-29 04:00:57 +00002245 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977dddbcdc2007-04-26 14:42:34 +00002246 iLastPg = pBt->nTrunc;
2247 if( iLastPg==0 ){
danielk1977ad0132d2008-06-07 08:58:22 +00002248 iLastPg = pagerPagecount(pBt->pPager);
danielk1977dddbcdc2007-04-26 14:42:34 +00002249 }
2250
2251 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2252 int rc;
2253 u8 eType;
2254 Pgno iPtrPage;
2255
2256 nFreeList = get4byte(&pBt->pPage1->aData[36]);
2257 if( nFreeList==0 || nFin==iLastPg ){
2258 return SQLITE_DONE;
2259 }
2260
2261 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2262 if( rc!=SQLITE_OK ){
2263 return rc;
2264 }
2265 if( eType==PTRMAP_ROOTPAGE ){
2266 return SQLITE_CORRUPT_BKPT;
2267 }
2268
2269 if( eType==PTRMAP_FREEPAGE ){
2270 if( nFin==0 ){
2271 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002272 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002273 ** truncated to zero after this function returns, so it doesn't
2274 ** matter if it still contains some garbage entries.
2275 */
2276 Pgno iFreePg;
2277 MemPage *pFreePg;
2278 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2279 if( rc!=SQLITE_OK ){
2280 return rc;
2281 }
2282 assert( iFreePg==iLastPg );
2283 releasePage(pFreePg);
2284 }
2285 } else {
2286 Pgno iFreePg; /* Index of free page to move pLastPg to */
2287 MemPage *pLastPg;
2288
drh16a9b832007-05-05 18:39:25 +00002289 rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002290 if( rc!=SQLITE_OK ){
2291 return rc;
2292 }
2293
danielk1977b4626a32007-04-28 15:47:43 +00002294 /* If nFin is zero, this loop runs exactly once and page pLastPg
2295 ** is swapped with the first free page pulled off the free list.
2296 **
2297 ** On the other hand, if nFin is greater than zero, then keep
2298 ** looping until a free-page located within the first nFin pages
2299 ** of the file is found.
2300 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002301 do {
2302 MemPage *pFreePg;
2303 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2304 if( rc!=SQLITE_OK ){
2305 releasePage(pLastPg);
2306 return rc;
2307 }
2308 releasePage(pFreePg);
2309 }while( nFin!=0 && iFreePg>nFin );
2310 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002311
2312 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002313 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002314 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002315 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002316 releasePage(pLastPg);
2317 if( rc!=SQLITE_OK ){
2318 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002319 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002320 }
2321 }
2322
2323 pBt->nTrunc = iLastPg - 1;
2324 while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){
2325 pBt->nTrunc--;
2326 }
2327 return SQLITE_OK;
2328}
2329
2330/*
2331** A write-transaction must be opened before calling this function.
2332** It performs a single unit of work towards an incremental vacuum.
2333**
2334** If the incremental vacuum is finished after this function has run,
2335** SQLITE_DONE is returned. If it is not finished, but no error occured,
2336** SQLITE_OK is returned. Otherwise an SQLite error code.
2337*/
2338int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002339 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002340 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002341
2342 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00002343 pBt->db = p->db;
danielk1977dddbcdc2007-04-26 14:42:34 +00002344 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2345 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002346 rc = SQLITE_DONE;
2347 }else{
2348 invalidateAllOverflowCache(pBt);
2349 rc = incrVacuumStep(pBt, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002350 }
drhd677b3d2007-08-20 22:48:41 +00002351 sqlite3BtreeLeave(p);
2352 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002353}
2354
2355/*
danielk19773b8a05f2007-03-19 17:44:26 +00002356** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002357** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002358**
2359** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2360** the database file should be truncated to during the commit process.
2361** i.e. the database has been reorganized so that only the first *pnTrunc
2362** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002363*/
danielk197724168722007-04-02 05:07:47 +00002364static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
danielk1977dddbcdc2007-04-26 14:42:34 +00002365 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002366 Pager *pPager = pBt->pPager;
danielk1977687566d2004-11-02 12:56:41 +00002367#ifndef NDEBUG
danielk19773b8a05f2007-03-19 17:44:26 +00002368 int nRef = sqlite3PagerRefcount(pPager);
danielk1977687566d2004-11-02 12:56:41 +00002369#endif
2370
drh1fee73e2007-08-29 04:00:57 +00002371 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002372 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002373 assert(pBt->autoVacuum);
2374 if( !pBt->incrVacuum ){
2375 Pgno nFin = 0;
danielk1977687566d2004-11-02 12:56:41 +00002376
danielk1977dddbcdc2007-04-26 14:42:34 +00002377 if( pBt->nTrunc==0 ){
2378 Pgno nFree;
2379 Pgno nPtrmap;
2380 const int pgsz = pBt->pageSize;
danielk1977ad0132d2008-06-07 08:58:22 +00002381 int nOrig = pagerPagecount(pBt->pPager);
danielk1977e5321f02007-04-27 07:05:44 +00002382
2383 if( PTRMAP_ISPAGE(pBt, nOrig) ){
2384 return SQLITE_CORRUPT_BKPT;
2385 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002386 if( nOrig==PENDING_BYTE_PAGE(pBt) ){
2387 nOrig--;
danielk1977687566d2004-11-02 12:56:41 +00002388 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002389 nFree = get4byte(&pBt->pPage1->aData[36]);
2390 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
2391 nFin = nOrig - nFree - nPtrmap;
2392 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
2393 nFin--;
danielk1977ac11ee62005-01-15 12:45:51 +00002394 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002395 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2396 nFin--;
2397 }
2398 }
danielk1977687566d2004-11-02 12:56:41 +00002399
danielk1977dddbcdc2007-04-26 14:42:34 +00002400 while( rc==SQLITE_OK ){
2401 rc = incrVacuumStep(pBt, nFin);
2402 }
2403 if( rc==SQLITE_DONE ){
2404 assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc);
2405 rc = SQLITE_OK;
danielk19770ba32df2008-05-07 07:13:16 +00002406 if( pBt->nTrunc && nFin ){
drh67f80b62007-07-23 19:26:17 +00002407 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
danielk1977dddbcdc2007-04-26 14:42:34 +00002408 put4byte(&pBt->pPage1->aData[32], 0);
2409 put4byte(&pBt->pPage1->aData[36], 0);
2410 pBt->nTrunc = nFin;
2411 }
2412 }
2413 if( rc!=SQLITE_OK ){
2414 sqlite3PagerRollback(pPager);
2415 }
danielk1977687566d2004-11-02 12:56:41 +00002416 }
2417
danielk1977dddbcdc2007-04-26 14:42:34 +00002418 if( rc==SQLITE_OK ){
2419 *pnTrunc = pBt->nTrunc;
2420 pBt->nTrunc = 0;
2421 }
danielk19773b8a05f2007-03-19 17:44:26 +00002422 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002423 return rc;
2424}
danielk1977dddbcdc2007-04-26 14:42:34 +00002425
danielk1977687566d2004-11-02 12:56:41 +00002426#endif
2427
2428/*
drh80e35f42007-03-30 14:06:34 +00002429** This routine does the first phase of a two-phase commit. This routine
2430** causes a rollback journal to be created (if it does not already exist)
2431** and populated with enough information so that if a power loss occurs
2432** the database can be restored to its original state by playing back
2433** the journal. Then the contents of the journal are flushed out to
2434** the disk. After the journal is safely on oxide, the changes to the
2435** database are written into the database file and flushed to oxide.
2436** At the end of this call, the rollback journal still exists on the
2437** disk and we are still holding all locks, so the transaction has not
2438** committed. See sqlite3BtreeCommit() for the second phase of the
2439** commit process.
2440**
2441** This call is a no-op if no write-transaction is currently active on pBt.
2442**
2443** Otherwise, sync the database file for the btree pBt. zMaster points to
2444** the name of a master journal file that should be written into the
2445** individual journal file, or is NULL, indicating no master journal file
2446** (single database transaction).
2447**
2448** When this is called, the master journal should already have been
2449** created, populated with this journal pointer and synced to disk.
2450**
2451** Once this is routine has returned, the only thing required to commit
2452** the write-transaction for this database file is to delete the journal.
2453*/
2454int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2455 int rc = SQLITE_OK;
2456 if( p->inTrans==TRANS_WRITE ){
2457 BtShared *pBt = p->pBt;
2458 Pgno nTrunc = 0;
drhd677b3d2007-08-20 22:48:41 +00002459 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00002460 pBt->db = p->db;
drh80e35f42007-03-30 14:06:34 +00002461#ifndef SQLITE_OMIT_AUTOVACUUM
2462 if( pBt->autoVacuum ){
2463 rc = autoVacuumCommit(pBt, &nTrunc);
2464 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002465 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002466 return rc;
2467 }
2468 }
2469#endif
danielk1977f653d782008-03-20 11:04:21 +00002470 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc, 0);
drhd677b3d2007-08-20 22:48:41 +00002471 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002472 }
2473 return rc;
2474}
2475
2476/*
drh2aa679f2001-06-25 02:11:07 +00002477** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002478**
drh6e345992007-03-30 11:12:08 +00002479** This routine implements the second phase of a 2-phase commit. The
2480** sqlite3BtreeSync() routine does the first phase and should be invoked
2481** prior to calling this routine. The sqlite3BtreeSync() routine did
2482** all the work of writing information out to disk and flushing the
2483** contents so that they are written onto the disk platter. All this
2484** routine has to do is delete or truncate the rollback journal
2485** (which causes the transaction to commit) and drop locks.
2486**
drh5e00f6c2001-09-13 13:46:56 +00002487** This will release the write lock on the database file. If there
2488** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002489*/
drh80e35f42007-03-30 14:06:34 +00002490int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002491 BtShared *pBt = p->pBt;
2492
drhd677b3d2007-08-20 22:48:41 +00002493 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00002494 pBt->db = p->db;
danielk1977aef0bf62005-12-30 16:28:01 +00002495 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002496
2497 /* If the handle has a write-transaction open, commit the shared-btrees
2498 ** transaction and set the shared state to TRANS_READ.
2499 */
2500 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00002501 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002502 assert( pBt->inTransaction==TRANS_WRITE );
2503 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00002504 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00002505 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002506 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002507 return rc;
2508 }
danielk1977aef0bf62005-12-30 16:28:01 +00002509 pBt->inTransaction = TRANS_READ;
2510 pBt->inStmt = 0;
danielk1977ee5741e2004-05-31 10:01:34 +00002511 }
danielk19777f7bc662006-01-23 13:47:47 +00002512 unlockAllTables(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002513
2514 /* If the handle has any kind of transaction open, decrement the transaction
2515 ** count of the shared btree. If the transaction count reaches 0, set
2516 ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
2517 ** will unlock the pager.
2518 */
2519 if( p->inTrans!=TRANS_NONE ){
2520 pBt->nTransaction--;
2521 if( 0==pBt->nTransaction ){
2522 pBt->inTransaction = TRANS_NONE;
2523 }
2524 }
2525
2526 /* Set the handles current transaction state to TRANS_NONE and unlock
2527 ** the pager if this call closed the only read or write transaction.
2528 */
2529 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002530 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002531
2532 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002533 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002534 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002535}
2536
drh80e35f42007-03-30 14:06:34 +00002537/*
2538** Do both phases of a commit.
2539*/
2540int sqlite3BtreeCommit(Btree *p){
2541 int rc;
drhd677b3d2007-08-20 22:48:41 +00002542 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002543 rc = sqlite3BtreeCommitPhaseOne(p, 0);
2544 if( rc==SQLITE_OK ){
2545 rc = sqlite3BtreeCommitPhaseTwo(p);
2546 }
drhd677b3d2007-08-20 22:48:41 +00002547 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002548 return rc;
2549}
2550
danielk1977fbcd5852004-06-15 02:44:18 +00002551#ifndef NDEBUG
2552/*
2553** Return the number of write-cursors open on this handle. This is for use
2554** in assert() expressions, so it is only compiled if NDEBUG is not
2555** defined.
drhfb982642007-08-30 01:19:59 +00002556**
2557** For the purposes of this routine, a write-cursor is any cursor that
2558** is capable of writing to the databse. That means the cursor was
2559** originally opened for writing and the cursor has not be disabled
2560** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00002561*/
danielk1977aef0bf62005-12-30 16:28:01 +00002562static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00002563 BtCursor *pCur;
2564 int r = 0;
2565 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00002566 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00002567 }
2568 return r;
2569}
2570#endif
2571
drhc39e0002004-05-07 23:50:57 +00002572/*
drhfb982642007-08-30 01:19:59 +00002573** This routine sets the state to CURSOR_FAULT and the error
2574** code to errCode for every cursor on BtShared that pBtree
2575** references.
2576**
2577** Every cursor is tripped, including cursors that belong
2578** to other database connections that happen to be sharing
2579** the cache with pBtree.
2580**
2581** This routine gets called when a rollback occurs.
2582** All cursors using the same cache must be tripped
2583** to prevent them from trying to use the btree after
2584** the rollback. The rollback may have deleted tables
2585** or moved root pages, so it is not sufficient to
2586** save the state of the cursor. The cursor must be
2587** invalidated.
2588*/
2589void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
2590 BtCursor *p;
2591 sqlite3BtreeEnter(pBtree);
2592 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
2593 clearCursorPosition(p);
2594 p->eState = CURSOR_FAULT;
2595 p->skip = errCode;
2596 }
2597 sqlite3BtreeLeave(pBtree);
2598}
2599
2600/*
drhecdc7532001-09-23 02:35:53 +00002601** Rollback the transaction in progress. All cursors will be
2602** invalided by this operation. Any attempt to use a cursor
2603** that was open at the beginning of this operation will result
2604** in an error.
drh5e00f6c2001-09-13 13:46:56 +00002605**
2606** This will release the write lock on the database file. If there
2607** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002608*/
danielk1977aef0bf62005-12-30 16:28:01 +00002609int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00002610 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002611 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00002612 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00002613
drhd677b3d2007-08-20 22:48:41 +00002614 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00002615 pBt->db = p->db;
danielk19772b8c13e2006-01-24 14:21:24 +00002616 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00002617#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00002618 if( rc!=SQLITE_OK ){
danielk19778d34dfd2006-01-24 16:37:57 +00002619 /* This is a horrible situation. An IO or malloc() error occured whilst
2620 ** trying to save cursor positions. If this is an automatic rollback (as
2621 ** the result of a constraint, malloc() failure or IO error) then
2622 ** the cache may be internally inconsistent (not contain valid trees) so
2623 ** we cannot simply return the error to the caller. Instead, abort
2624 ** all queries that may be using any of the cursors that failed to save.
2625 */
drhfb982642007-08-30 01:19:59 +00002626 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00002627 }
danielk19778d34dfd2006-01-24 16:37:57 +00002628#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002629 btreeIntegrity(p);
2630 unlockAllTables(p);
2631
2632 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00002633 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00002634
danielk1977dddbcdc2007-04-26 14:42:34 +00002635#ifndef SQLITE_OMIT_AUTOVACUUM
2636 pBt->nTrunc = 0;
2637#endif
2638
danielk19778d34dfd2006-01-24 16:37:57 +00002639 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00002640 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00002641 if( rc2!=SQLITE_OK ){
2642 rc = rc2;
2643 }
2644
drh24cd67e2004-05-10 16:18:47 +00002645 /* The rollback may have destroyed the pPage1->aData value. So
drh16a9b832007-05-05 18:39:25 +00002646 ** call sqlite3BtreeGetPage() on page 1 again to make
2647 ** sure pPage1->aData is set correctly. */
2648 if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00002649 releasePage(pPage1);
2650 }
danielk1977fbcd5852004-06-15 02:44:18 +00002651 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002652 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00002653 }
danielk1977aef0bf62005-12-30 16:28:01 +00002654
2655 if( p->inTrans!=TRANS_NONE ){
2656 assert( pBt->nTransaction>0 );
2657 pBt->nTransaction--;
2658 if( 0==pBt->nTransaction ){
2659 pBt->inTransaction = TRANS_NONE;
2660 }
2661 }
2662
2663 p->inTrans = TRANS_NONE;
danielk1977ee5741e2004-05-31 10:01:34 +00002664 pBt->inStmt = 0;
drh5e00f6c2001-09-13 13:46:56 +00002665 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002666
2667 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002668 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00002669 return rc;
2670}
2671
2672/*
drhab01f612004-05-22 02:55:23 +00002673** Start a statement subtransaction. The subtransaction can
2674** can be rolled back independently of the main transaction.
2675** You must start a transaction before starting a subtransaction.
2676** The subtransaction is ended automatically if the main transaction
drh663fc632002-02-02 18:49:19 +00002677** commits or rolls back.
2678**
drhab01f612004-05-22 02:55:23 +00002679** Only one subtransaction may be active at a time. It is an error to try
2680** to start a new subtransaction if another subtransaction is already active.
2681**
2682** Statement subtransactions are used around individual SQL statements
2683** that are contained within a BEGIN...COMMIT block. If a constraint
2684** error occurs within the statement, the effect of that one statement
2685** can be rolled back without having to rollback the entire transaction.
drh663fc632002-02-02 18:49:19 +00002686*/
danielk1977aef0bf62005-12-30 16:28:01 +00002687int sqlite3BtreeBeginStmt(Btree *p){
drh663fc632002-02-02 18:49:19 +00002688 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002689 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002690 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00002691 pBt->db = p->db;
danielk1977aef0bf62005-12-30 16:28:01 +00002692 if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
drhd677b3d2007-08-20 22:48:41 +00002693 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
2694 }else{
2695 assert( pBt->inTransaction==TRANS_WRITE );
2696 rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
2697 pBt->inStmt = 1;
drh0d65dc02002-02-03 00:56:09 +00002698 }
drhd677b3d2007-08-20 22:48:41 +00002699 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00002700 return rc;
2701}
2702
2703
2704/*
drhab01f612004-05-22 02:55:23 +00002705** Commit the statment subtransaction currently in progress. If no
2706** subtransaction is active, this is a no-op.
drh663fc632002-02-02 18:49:19 +00002707*/
danielk1977aef0bf62005-12-30 16:28:01 +00002708int sqlite3BtreeCommitStmt(Btree *p){
drh663fc632002-02-02 18:49:19 +00002709 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002710 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002711 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00002712 pBt->db = p->db;
drh3aac2dd2004-04-26 14:10:20 +00002713 if( pBt->inStmt && !pBt->readOnly ){
danielk19773b8a05f2007-03-19 17:44:26 +00002714 rc = sqlite3PagerStmtCommit(pBt->pPager);
drh663fc632002-02-02 18:49:19 +00002715 }else{
2716 rc = SQLITE_OK;
2717 }
drh3aac2dd2004-04-26 14:10:20 +00002718 pBt->inStmt = 0;
drhd677b3d2007-08-20 22:48:41 +00002719 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00002720 return rc;
2721}
2722
2723/*
drhab01f612004-05-22 02:55:23 +00002724** Rollback the active statement subtransaction. If no subtransaction
2725** is active this routine is a no-op.
drh663fc632002-02-02 18:49:19 +00002726**
drhab01f612004-05-22 02:55:23 +00002727** All cursors will be invalidated by this operation. Any attempt
drh663fc632002-02-02 18:49:19 +00002728** to use a cursor that was open at the beginning of this operation
2729** will result in an error.
2730*/
danielk1977aef0bf62005-12-30 16:28:01 +00002731int sqlite3BtreeRollbackStmt(Btree *p){
danielk197797a227c2006-01-20 16:32:04 +00002732 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002733 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002734 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00002735 pBt->db = p->db;
danielk197797a227c2006-01-20 16:32:04 +00002736 if( pBt->inStmt && !pBt->readOnly ){
danielk19773b8a05f2007-03-19 17:44:26 +00002737 rc = sqlite3PagerStmtRollback(pBt->pPager);
danielk197797a227c2006-01-20 16:32:04 +00002738 pBt->inStmt = 0;
2739 }
drhd677b3d2007-08-20 22:48:41 +00002740 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00002741 return rc;
2742}
2743
2744/*
drh8b2f49b2001-06-08 00:21:52 +00002745** Create a new cursor for the BTree whose root is on the page
2746** iTable. The act of acquiring a cursor gets a read lock on
2747** the database file.
drh1bee3d72001-10-15 00:44:35 +00002748**
2749** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00002750** If wrFlag==1, then the cursor can be used for reading or for
2751** writing if other conditions for writing are also met. These
2752** are the conditions that must be met in order for writing to
2753** be allowed:
drh6446c4d2001-12-15 14:22:18 +00002754**
drhf74b8d92002-09-01 23:20:45 +00002755** 1: The cursor must have been opened with wrFlag==1
2756**
drhfe5d71d2007-03-19 11:54:10 +00002757** 2: Other database connections that share the same pager cache
2758** but which are not in the READ_UNCOMMITTED state may not have
2759** cursors open with wrFlag==0 on the same table. Otherwise
2760** the changes made by this write cursor would be visible to
2761** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00002762**
2763** 3: The database must be writable (not on read-only media)
2764**
2765** 4: There must be an active transaction.
2766**
drh6446c4d2001-12-15 14:22:18 +00002767** No checking is done to make sure that page iTable really is the
2768** root page of a b-tree. If it is not, then the cursor acquired
2769** will not work correctly.
drha059ad02001-04-17 20:09:11 +00002770*/
drhd677b3d2007-08-20 22:48:41 +00002771static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00002772 Btree *p, /* The btree */
2773 int iTable, /* Root page of table to open */
2774 int wrFlag, /* 1 to write. 0 read-only */
2775 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
2776 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00002777){
drha059ad02001-04-17 20:09:11 +00002778 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002779 BtShared *pBt = p->pBt;
drhecdc7532001-09-23 02:35:53 +00002780
drh1fee73e2007-08-29 04:00:57 +00002781 assert( sqlite3BtreeHoldsMutex(p) );
drh8dcd7ca2004-08-08 19:43:29 +00002782 if( wrFlag ){
drh8dcd7ca2004-08-08 19:43:29 +00002783 if( pBt->readOnly ){
2784 return SQLITE_READONLY;
2785 }
danielk19773588ceb2008-06-10 17:30:26 +00002786 if( checkReadLocks(p, iTable, 0, 0) ){
drh8dcd7ca2004-08-08 19:43:29 +00002787 return SQLITE_LOCKED;
2788 }
drha0c9a112004-03-10 13:42:37 +00002789 }
danielk1977aef0bf62005-12-30 16:28:01 +00002790
drh4b70f112004-05-02 21:12:19 +00002791 if( pBt->pPage1==0 ){
danielk1977aef0bf62005-12-30 16:28:01 +00002792 rc = lockBtreeWithRetry(p);
drha059ad02001-04-17 20:09:11 +00002793 if( rc!=SQLITE_OK ){
drha059ad02001-04-17 20:09:11 +00002794 return rc;
2795 }
drh1831f182007-04-24 17:35:59 +00002796 if( pBt->readOnly && wrFlag ){
2797 return SQLITE_READONLY;
2798 }
drha059ad02001-04-17 20:09:11 +00002799 }
drh8b2f49b2001-06-08 00:21:52 +00002800 pCur->pgnoRoot = (Pgno)iTable;
danielk1977ad0132d2008-06-07 08:58:22 +00002801 if( iTable==1 && pagerPagecount(pBt->pPager)==0 ){
drh24cd67e2004-05-10 16:18:47 +00002802 rc = SQLITE_EMPTY;
2803 goto create_cursor_exception;
2804 }
drhde647132004-05-07 17:57:49 +00002805 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
drhbd03cae2001-06-02 02:40:57 +00002806 if( rc!=SQLITE_OK ){
2807 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00002808 }
danielk1977aef0bf62005-12-30 16:28:01 +00002809
danielk1977aef0bf62005-12-30 16:28:01 +00002810 /* Now that no other errors can occur, finish filling in the BtCursor
2811 ** variables, link the cursor into the BtShared list and set *ppCur (the
2812 ** output argument to this function).
2813 */
drh1e968a02008-03-25 00:22:21 +00002814 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00002815 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00002816 pCur->pBt = pBt;
drhecdc7532001-09-23 02:35:53 +00002817 pCur->wrFlag = wrFlag;
drha059ad02001-04-17 20:09:11 +00002818 pCur->pNext = pBt->pCursor;
2819 if( pCur->pNext ){
2820 pCur->pNext->pPrev = pCur;
2821 }
2822 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00002823 pCur->eState = CURSOR_INVALID;
drhbd03cae2001-06-02 02:40:57 +00002824
danielk1977aef0bf62005-12-30 16:28:01 +00002825 return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00002826
drhbd03cae2001-06-02 02:40:57 +00002827create_cursor_exception:
drha3460582008-07-11 21:02:53 +00002828 releasePage(pCur->pPage);
drh5e00f6c2001-09-13 13:46:56 +00002829 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00002830 return rc;
drha059ad02001-04-17 20:09:11 +00002831}
drhd677b3d2007-08-20 22:48:41 +00002832int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00002833 Btree *p, /* The btree */
2834 int iTable, /* Root page of table to open */
2835 int wrFlag, /* 1 to write. 0 read-only */
2836 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
2837 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00002838){
2839 int rc;
2840 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00002841 p->pBt->db = p->db;
danielk1977cd3e8f72008-03-25 09:47:35 +00002842 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00002843 sqlite3BtreeLeave(p);
2844 return rc;
2845}
danielk1977cd3e8f72008-03-25 09:47:35 +00002846int sqlite3BtreeCursorSize(){
2847 return sizeof(BtCursor);
2848}
2849
drhd677b3d2007-08-20 22:48:41 +00002850
drha059ad02001-04-17 20:09:11 +00002851
2852/*
drh5e00f6c2001-09-13 13:46:56 +00002853** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00002854** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00002855*/
drh3aac2dd2004-04-26 14:10:20 +00002856int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00002857 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00002858 if( pBtree ){
2859 BtShared *pBt = pCur->pBt;
2860 sqlite3BtreeEnter(pBtree);
2861 pBt->db = pBtree->db;
2862 clearCursorPosition(pCur);
2863 if( pCur->pPrev ){
2864 pCur->pPrev->pNext = pCur->pNext;
2865 }else{
2866 pBt->pCursor = pCur->pNext;
2867 }
2868 if( pCur->pNext ){
2869 pCur->pNext->pPrev = pCur->pPrev;
2870 }
2871 releasePage(pCur->pPage);
2872 unlockBtreeIfUnused(pBt);
2873 invalidateOverflowCache(pCur);
2874 /* sqlite3_free(pCur); */
2875 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00002876 }
drh8c42ca92001-06-22 19:15:00 +00002877 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002878}
2879
drh7e3b0a02001-04-28 16:52:40 +00002880/*
drh5e2f8b92001-05-28 00:41:15 +00002881** Make a temporary cursor by filling in the fields of pTempCur.
2882** The temporary cursor is not on the cursor list for the Btree.
2883*/
drh16a9b832007-05-05 18:39:25 +00002884void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
drh1fee73e2007-08-29 04:00:57 +00002885 assert( cursorHoldsMutex(pCur) );
drh5e2f8b92001-05-28 00:41:15 +00002886 memcpy(pTempCur, pCur, sizeof(*pCur));
2887 pTempCur->pNext = 0;
2888 pTempCur->pPrev = 0;
drhecdc7532001-09-23 02:35:53 +00002889 if( pTempCur->pPage ){
danielk19773b8a05f2007-03-19 17:44:26 +00002890 sqlite3PagerRef(pTempCur->pPage->pDbPage);
drhecdc7532001-09-23 02:35:53 +00002891 }
drh5e2f8b92001-05-28 00:41:15 +00002892}
2893
2894/*
drhbd03cae2001-06-02 02:40:57 +00002895** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00002896** function above.
2897*/
drh16a9b832007-05-05 18:39:25 +00002898void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00002899 assert( cursorHoldsMutex(pCur) );
drhecdc7532001-09-23 02:35:53 +00002900 if( pCur->pPage ){
danielk19773b8a05f2007-03-19 17:44:26 +00002901 sqlite3PagerUnref(pCur->pPage->pDbPage);
drhecdc7532001-09-23 02:35:53 +00002902 }
drh5e2f8b92001-05-28 00:41:15 +00002903}
2904
2905/*
drh86057612007-06-26 01:04:48 +00002906** Make sure the BtCursor* given in the argument has a valid
2907** BtCursor.info structure. If it is not already valid, call
danielk19771cc5ed82007-05-16 17:28:43 +00002908** sqlite3BtreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00002909**
2910** BtCursor.info is a cache of the information in the current cell.
drh16a9b832007-05-05 18:39:25 +00002911** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
drh86057612007-06-26 01:04:48 +00002912**
2913** 2007-06-25: There is a bug in some versions of MSVC that cause the
2914** compiler to crash when getCellInfo() is implemented as a macro.
2915** But there is a measureable speed advantage to using the macro on gcc
2916** (when less compiler optimizations like -Os or -O0 are used and the
2917** compiler is not doing agressive inlining.) So we use a real function
2918** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00002919*/
drh9188b382004-05-14 21:12:22 +00002920#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00002921 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00002922 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00002923 memset(&info, 0, sizeof(info));
drh16a9b832007-05-05 18:39:25 +00002924 sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info);
drh9188b382004-05-14 21:12:22 +00002925 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00002926 }
danielk19771cc5ed82007-05-16 17:28:43 +00002927#else
2928 #define assertCellInfo(x)
2929#endif
drh86057612007-06-26 01:04:48 +00002930#ifdef _MSC_VER
2931 /* Use a real function in MSVC to work around bugs in that compiler. */
2932 static void getCellInfo(BtCursor *pCur){
2933 if( pCur->info.nSize==0 ){
2934 sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);
drha2c20e42008-03-29 16:01:04 +00002935 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00002936 }else{
2937 assertCellInfo(pCur);
2938 }
2939 }
2940#else /* if not _MSC_VER */
2941 /* Use a macro in all other compilers so that the function is inlined */
2942#define getCellInfo(pCur) \
2943 if( pCur->info.nSize==0 ){ \
danielk19771cc5ed82007-05-16 17:28:43 +00002944 sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info); \
drha2c20e42008-03-29 16:01:04 +00002945 pCur->validNKey = 1; \
drh86057612007-06-26 01:04:48 +00002946 }else{ \
2947 assertCellInfo(pCur); \
2948 }
2949#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00002950
2951/*
drh3aac2dd2004-04-26 14:10:20 +00002952** Set *pSize to the size of the buffer needed to hold the value of
2953** the key for the current entry. If the cursor is not pointing
2954** to a valid entry, *pSize is set to 0.
2955**
drh4b70f112004-05-02 21:12:19 +00002956** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00002957** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00002958*/
drh4a1c3802004-05-12 15:15:47 +00002959int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhd677b3d2007-08-20 22:48:41 +00002960 int rc;
2961
drh1fee73e2007-08-29 04:00:57 +00002962 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00002963 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00002964 if( rc==SQLITE_OK ){
2965 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
2966 if( pCur->eState==CURSOR_INVALID ){
2967 *pSize = 0;
2968 }else{
drh86057612007-06-26 01:04:48 +00002969 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00002970 *pSize = pCur->info.nKey;
2971 }
drh72f82862001-05-24 21:06:34 +00002972 }
danielk1977da184232006-01-05 11:34:32 +00002973 return rc;
drha059ad02001-04-17 20:09:11 +00002974}
drh2af926b2001-05-15 00:39:25 +00002975
drh72f82862001-05-24 21:06:34 +00002976/*
drh0e1c19e2004-05-11 00:58:56 +00002977** Set *pSize to the number of bytes of data in the entry the
2978** cursor currently points to. Always return SQLITE_OK.
2979** Failure is not possible. If the cursor is not currently
2980** pointing to an entry (which can happen, for example, if
2981** the database is empty) then *pSize is set to 0.
2982*/
2983int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drhd677b3d2007-08-20 22:48:41 +00002984 int rc;
2985
drh1fee73e2007-08-29 04:00:57 +00002986 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00002987 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00002988 if( rc==SQLITE_OK ){
2989 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
2990 if( pCur->eState==CURSOR_INVALID ){
2991 /* Not pointing at a valid entry - set *pSize to 0. */
2992 *pSize = 0;
2993 }else{
drh86057612007-06-26 01:04:48 +00002994 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00002995 *pSize = pCur->info.nData;
2996 }
drh0e1c19e2004-05-11 00:58:56 +00002997 }
danielk1977da184232006-01-05 11:34:32 +00002998 return rc;
drh0e1c19e2004-05-11 00:58:56 +00002999}
3000
3001/*
danielk1977d04417962007-05-02 13:16:30 +00003002** Given the page number of an overflow page in the database (parameter
3003** ovfl), this function finds the page number of the next page in the
3004** linked list of overflow pages. If possible, it uses the auto-vacuum
3005** pointer-map data instead of reading the content of page ovfl to do so.
3006**
3007** If an error occurs an SQLite error code is returned. Otherwise:
3008**
3009** Unless pPgnoNext is NULL, the page number of the next overflow
3010** page in the linked list is written to *pPgnoNext. If page ovfl
drh85b623f2007-12-13 21:54:09 +00003011** is the last page in its linked list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003012**
3013** If ppPage is not NULL, *ppPage is set to the MemPage* handle
3014** for page ovfl. The underlying pager page may have been requested
3015** with the noContent flag set, so the page data accessable via
3016** this handle may not be trusted.
3017*/
3018static int getOverflowPage(
3019 BtShared *pBt,
3020 Pgno ovfl, /* Overflow page */
3021 MemPage **ppPage, /* OUT: MemPage handle */
3022 Pgno *pPgnoNext /* OUT: Next overflow page number */
3023){
3024 Pgno next = 0;
3025 int rc;
3026
drh1fee73e2007-08-29 04:00:57 +00003027 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977d04417962007-05-02 13:16:30 +00003028 /* One of these must not be NULL. Otherwise, why call this function? */
3029 assert(ppPage || pPgnoNext);
3030
3031 /* If pPgnoNext is NULL, then this function is being called to obtain
3032 ** a MemPage* reference only. No page-data is required in this case.
3033 */
3034 if( !pPgnoNext ){
drh16a9b832007-05-05 18:39:25 +00003035 return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
danielk1977d04417962007-05-02 13:16:30 +00003036 }
3037
3038#ifndef SQLITE_OMIT_AUTOVACUUM
3039 /* Try to find the next page in the overflow list using the
3040 ** autovacuum pointer-map pages. Guess that the next page in
3041 ** the overflow list is page number (ovfl+1). If that guess turns
3042 ** out to be wrong, fall back to loading the data of page
3043 ** number ovfl to determine the next page number.
3044 */
3045 if( pBt->autoVacuum ){
3046 Pgno pgno;
3047 Pgno iGuess = ovfl+1;
3048 u8 eType;
3049
3050 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3051 iGuess++;
3052 }
3053
danielk1977ad0132d2008-06-07 08:58:22 +00003054 if( iGuess<=pagerPagecount(pBt->pPager) ){
danielk1977d04417962007-05-02 13:16:30 +00003055 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
3056 if( rc!=SQLITE_OK ){
3057 return rc;
3058 }
3059 if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
3060 next = iGuess;
3061 }
3062 }
3063 }
3064#endif
3065
3066 if( next==0 || ppPage ){
3067 MemPage *pPage = 0;
3068
drh16a9b832007-05-05 18:39:25 +00003069 rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0);
danielk1977d04417962007-05-02 13:16:30 +00003070 assert(rc==SQLITE_OK || pPage==0);
3071 if( next==0 && rc==SQLITE_OK ){
3072 next = get4byte(pPage->aData);
3073 }
3074
3075 if( ppPage ){
3076 *ppPage = pPage;
3077 }else{
3078 releasePage(pPage);
3079 }
3080 }
3081 *pPgnoNext = next;
3082
3083 return rc;
3084}
3085
danielk1977da107192007-05-04 08:32:13 +00003086/*
3087** Copy data from a buffer to a page, or from a page to a buffer.
3088**
3089** pPayload is a pointer to data stored on database page pDbPage.
3090** If argument eOp is false, then nByte bytes of data are copied
3091** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3092** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3093** of data are copied from the buffer pBuf to pPayload.
3094**
3095** SQLITE_OK is returned on success, otherwise an error code.
3096*/
3097static int copyPayload(
3098 void *pPayload, /* Pointer to page data */
3099 void *pBuf, /* Pointer to buffer */
3100 int nByte, /* Number of bytes to copy */
3101 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3102 DbPage *pDbPage /* Page containing pPayload */
3103){
3104 if( eOp ){
3105 /* Copy data from buffer to page (a write operation) */
3106 int rc = sqlite3PagerWrite(pDbPage);
3107 if( rc!=SQLITE_OK ){
3108 return rc;
3109 }
3110 memcpy(pPayload, pBuf, nByte);
3111 }else{
3112 /* Copy data from page to buffer (a read operation) */
3113 memcpy(pBuf, pPayload, nByte);
3114 }
3115 return SQLITE_OK;
3116}
danielk1977d04417962007-05-02 13:16:30 +00003117
3118/*
danielk19779f8d6402007-05-02 17:48:45 +00003119** This function is used to read or overwrite payload information
3120** for the entry that the pCur cursor is pointing to. If the eOp
3121** parameter is 0, this is a read operation (data copied into
3122** buffer pBuf). If it is non-zero, a write (data copied from
3123** buffer pBuf).
3124**
3125** A total of "amt" bytes are read or written beginning at "offset".
3126** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003127**
3128** This routine does not make a distinction between key and data.
danielk19779f8d6402007-05-02 17:48:45 +00003129** It just reads or writes bytes from the payload area. Data might
3130** appear on the main page or be scattered out on multiple overflow
3131** pages.
danielk1977da107192007-05-04 08:32:13 +00003132**
danielk1977dcbb5d32007-05-04 18:36:44 +00003133** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003134** cursor entry uses one or more overflow pages, this function
3135** allocates space for and lazily popluates the overflow page-list
3136** cache array (BtCursor.aOverflow). Subsequent calls use this
3137** cache to make seeking to the supplied offset more efficient.
3138**
3139** Once an overflow page-list cache has been allocated, it may be
3140** invalidated if some other cursor writes to the same table, or if
3141** the cursor is moved to a different row. Additionally, in auto-vacuum
3142** mode, the following events may invalidate an overflow page-list cache.
3143**
3144** * An incremental vacuum,
3145** * A commit in auto_vacuum="full" mode,
3146** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003147*/
danielk19779f8d6402007-05-02 17:48:45 +00003148static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003149 BtCursor *pCur, /* Cursor pointing to entry to read from */
3150 int offset, /* Begin reading this far into payload */
3151 int amt, /* Read this many bytes */
3152 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003153 int skipKey, /* offset begins at data if this is true */
3154 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003155){
3156 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003157 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003158 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003159 int iIdx = 0;
drhd0679ed2007-08-28 22:24:34 +00003160 MemPage *pPage = pCur->pPage; /* Btree page of current cursor entry */
drh51f015e2007-10-16 19:45:29 +00003161 BtShared *pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003162
danielk1977da107192007-05-04 08:32:13 +00003163 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003164 assert( pCur->eState==CURSOR_VALID );
drh3aac2dd2004-04-26 14:10:20 +00003165 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
danielk1977da107192007-05-04 08:32:13 +00003166 assert( offset>=0 );
drh1fee73e2007-08-29 04:00:57 +00003167 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003168
drh86057612007-06-26 01:04:48 +00003169 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003170 aPayload = pCur->info.pCell + pCur->info.nHeader;
danielk1977da107192007-05-04 08:32:13 +00003171 nKey = (pPage->intKey ? 0 : pCur->info.nKey);
3172
drh3aac2dd2004-04-26 14:10:20 +00003173 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003174 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00003175 }
drhfa1a98a2004-05-14 19:08:17 +00003176 if( offset+amt > nKey+pCur->info.nData ){
danielk1977da107192007-05-04 08:32:13 +00003177 /* Trying to read or write past the end of the data is an error */
drha34b6762004-05-07 13:30:42 +00003178 return SQLITE_ERROR;
drh3aac2dd2004-04-26 14:10:20 +00003179 }
danielk1977da107192007-05-04 08:32:13 +00003180
3181 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003182 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003183 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003184 if( a+offset>pCur->info.nLocal ){
3185 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003186 }
danielk1977da107192007-05-04 08:32:13 +00003187 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003188 offset = 0;
drha34b6762004-05-07 13:30:42 +00003189 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003190 amt -= a;
drhdd793422001-06-28 01:54:48 +00003191 }else{
drhfa1a98a2004-05-14 19:08:17 +00003192 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003193 }
danielk1977da107192007-05-04 08:32:13 +00003194
drh51f015e2007-10-16 19:45:29 +00003195 pBt = pCur->pBt;
danielk1977da107192007-05-04 08:32:13 +00003196 if( rc==SQLITE_OK && amt>0 ){
3197 const int ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
3198 Pgno nextPage;
3199
drhfa1a98a2004-05-14 19:08:17 +00003200 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003201
danielk19772dec9702007-05-02 16:48:37 +00003202#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003203 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003204 ** has not been allocated, allocate it now. The array is sized at
3205 ** one entry for each overflow page in the overflow chain. The
3206 ** page number of the first overflow page is stored in aOverflow[0],
3207 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3208 ** (the cache is lazily populated).
3209 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003210 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003211 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003212 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
danielk19772dec9702007-05-02 16:48:37 +00003213 if( nOvfl && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003214 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003215 }
3216 }
danielk1977da107192007-05-04 08:32:13 +00003217
3218 /* If the overflow page-list cache has been allocated and the
3219 ** entry for the first required overflow page is valid, skip
3220 ** directly to it.
3221 */
danielk19772dec9702007-05-02 16:48:37 +00003222 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3223 iIdx = (offset/ovflSize);
3224 nextPage = pCur->aOverflow[iIdx];
3225 offset = (offset%ovflSize);
3226 }
3227#endif
danielk1977da107192007-05-04 08:32:13 +00003228
3229 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3230
3231#ifndef SQLITE_OMIT_INCRBLOB
3232 /* If required, populate the overflow page-list cache. */
3233 if( pCur->aOverflow ){
3234 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3235 pCur->aOverflow[iIdx] = nextPage;
3236 }
3237#endif
3238
danielk1977d04417962007-05-02 13:16:30 +00003239 if( offset>=ovflSize ){
3240 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003241 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003242 ** data is not required. So first try to lookup the overflow
3243 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003244 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003245 */
danielk19772dec9702007-05-02 16:48:37 +00003246#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003247 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3248 nextPage = pCur->aOverflow[iIdx+1];
3249 } else
danielk19772dec9702007-05-02 16:48:37 +00003250#endif
danielk1977da107192007-05-04 08:32:13 +00003251 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003252 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003253 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003254 /* Need to read this page properly. It contains some of the
3255 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003256 */
3257 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003258 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003259 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003260 if( rc==SQLITE_OK ){
3261 aPayload = sqlite3PagerGetData(pDbPage);
3262 nextPage = get4byte(aPayload);
3263 if( a + offset > ovflSize ){
3264 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003265 }
danielk1977da107192007-05-04 08:32:13 +00003266 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3267 sqlite3PagerUnref(pDbPage);
3268 offset = 0;
3269 amt -= a;
3270 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003271 }
danielk1977cfe9a692004-06-16 12:00:29 +00003272 }
drh2af926b2001-05-15 00:39:25 +00003273 }
drh2af926b2001-05-15 00:39:25 +00003274 }
danielk1977cfe9a692004-06-16 12:00:29 +00003275
danielk1977da107192007-05-04 08:32:13 +00003276 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003277 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003278 }
danielk1977da107192007-05-04 08:32:13 +00003279 return rc;
drh2af926b2001-05-15 00:39:25 +00003280}
3281
drh72f82862001-05-24 21:06:34 +00003282/*
drh3aac2dd2004-04-26 14:10:20 +00003283** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003284** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003285** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003286**
drh3aac2dd2004-04-26 14:10:20 +00003287** Return SQLITE_OK on success or an error code if anything goes
3288** wrong. An error is returned if "offset+amt" is larger than
3289** the available payload.
drh72f82862001-05-24 21:06:34 +00003290*/
drha34b6762004-05-07 13:30:42 +00003291int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003292 int rc;
3293
drh1fee73e2007-08-29 04:00:57 +00003294 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003295 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003296 if( rc==SQLITE_OK ){
3297 assert( pCur->eState==CURSOR_VALID );
3298 assert( pCur->pPage!=0 );
3299 if( pCur->pPage->intKey ){
3300 return SQLITE_CORRUPT_BKPT;
3301 }
3302 assert( pCur->pPage->intKey==0 );
3303 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh16a9b832007-05-05 18:39:25 +00003304 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
drh6575a222005-03-10 17:06:34 +00003305 }
danielk1977da184232006-01-05 11:34:32 +00003306 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003307}
3308
3309/*
drh3aac2dd2004-04-26 14:10:20 +00003310** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003311** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003312** begins at "offset".
3313**
3314** Return SQLITE_OK on success or an error code if anything goes
3315** wrong. An error is returned if "offset+amt" is larger than
3316** the available payload.
drh72f82862001-05-24 21:06:34 +00003317*/
drh3aac2dd2004-04-26 14:10:20 +00003318int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003319 int rc;
3320
danielk19773588ceb2008-06-10 17:30:26 +00003321#ifndef SQLITE_OMIT_INCRBLOB
3322 if ( pCur->eState==CURSOR_INVALID ){
3323 return SQLITE_ABORT;
3324 }
3325#endif
3326
drh1fee73e2007-08-29 04:00:57 +00003327 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003328 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003329 if( rc==SQLITE_OK ){
3330 assert( pCur->eState==CURSOR_VALID );
3331 assert( pCur->pPage!=0 );
3332 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh16a9b832007-05-05 18:39:25 +00003333 rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
danielk1977da184232006-01-05 11:34:32 +00003334 }
3335 return rc;
drh2af926b2001-05-15 00:39:25 +00003336}
3337
drh72f82862001-05-24 21:06:34 +00003338/*
drh0e1c19e2004-05-11 00:58:56 +00003339** Return a pointer to payload information from the entry that the
3340** pCur cursor is pointing to. The pointer is to the beginning of
3341** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003342** skipKey==1. The number of bytes of available key/data is written
3343** into *pAmt. If *pAmt==0, then the value returned will not be
3344** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003345**
3346** This routine is an optimization. It is common for the entire key
3347** and data to fit on the local page and for there to be no overflow
3348** pages. When that is so, this routine can be used to access the
3349** key and data without making a copy. If the key and/or data spills
drh16a9b832007-05-05 18:39:25 +00003350** onto overflow pages, then accessPayload() must be used to reassembly
drh0e1c19e2004-05-11 00:58:56 +00003351** the key/data and copy it into a preallocated buffer.
3352**
3353** The pointer returned by this routine looks directly into the cached
3354** page of the database. The data might change or move the next time
3355** any btree routine is called.
3356*/
3357static const unsigned char *fetchPayload(
3358 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003359 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003360 int skipKey /* read beginning at data if this is true */
3361){
3362 unsigned char *aPayload;
3363 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003364 u32 nKey;
3365 int nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003366
3367 assert( pCur!=0 && pCur->pPage!=0 );
danielk1977da184232006-01-05 11:34:32 +00003368 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003369 assert( cursorHoldsMutex(pCur) );
drh0e1c19e2004-05-11 00:58:56 +00003370 pPage = pCur->pPage;
drh0e1c19e2004-05-11 00:58:56 +00003371 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh86057612007-06-26 01:04:48 +00003372 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003373 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003374 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003375 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003376 nKey = 0;
3377 }else{
3378 nKey = pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003379 }
drh0e1c19e2004-05-11 00:58:56 +00003380 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003381 aPayload += nKey;
3382 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003383 }else{
drhfa1a98a2004-05-14 19:08:17 +00003384 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003385 if( nLocal>nKey ){
3386 nLocal = nKey;
3387 }
drh0e1c19e2004-05-11 00:58:56 +00003388 }
drhe51c44f2004-05-30 20:46:09 +00003389 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003390 return aPayload;
3391}
3392
3393
3394/*
drhe51c44f2004-05-30 20:46:09 +00003395** For the entry that cursor pCur is point to, return as
3396** many bytes of the key or data as are available on the local
3397** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003398**
3399** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003400** or be destroyed on the next call to any Btree routine,
3401** including calls from other threads against the same cache.
3402** Hence, a mutex on the BtShared should be held prior to calling
3403** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003404**
3405** These routines is used to get quick access to key and data
3406** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003407*/
drhe51c44f2004-05-30 20:46:09 +00003408const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drh1fee73e2007-08-29 04:00:57 +00003409 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003410 if( pCur->eState==CURSOR_VALID ){
3411 return (const void*)fetchPayload(pCur, pAmt, 0);
3412 }
3413 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003414}
drhe51c44f2004-05-30 20:46:09 +00003415const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drh1fee73e2007-08-29 04:00:57 +00003416 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003417 if( pCur->eState==CURSOR_VALID ){
3418 return (const void*)fetchPayload(pCur, pAmt, 1);
3419 }
3420 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003421}
3422
3423
3424/*
drh8178a752003-01-05 21:41:40 +00003425** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003426** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003427*/
drh3aac2dd2004-04-26 14:10:20 +00003428static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003429 int rc;
3430 MemPage *pNewPage;
drh3aac2dd2004-04-26 14:10:20 +00003431 MemPage *pOldPage;
drhd0679ed2007-08-28 22:24:34 +00003432 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003433
drh1fee73e2007-08-29 04:00:57 +00003434 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003435 assert( pCur->eState==CURSOR_VALID );
drhde647132004-05-07 17:57:49 +00003436 rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
drh6019e162001-07-02 17:51:45 +00003437 if( rc ) return rc;
drh428ae8c2003-01-04 16:48:09 +00003438 pNewPage->idxParent = pCur->idx;
drh3aac2dd2004-04-26 14:10:20 +00003439 pOldPage = pCur->pPage;
3440 pOldPage->idxShift = 0;
3441 releasePage(pOldPage);
drh72f82862001-05-24 21:06:34 +00003442 pCur->pPage = pNewPage;
3443 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00003444 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003445 pCur->validNKey = 0;
drh4be295b2003-12-16 03:44:47 +00003446 if( pNewPage->nCell<1 ){
drh49285702005-09-17 15:20:26 +00003447 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003448 }
drh72f82862001-05-24 21:06:34 +00003449 return SQLITE_OK;
3450}
3451
3452/*
drh8856d6a2004-04-29 14:42:46 +00003453** Return true if the page is the virtual root of its table.
3454**
3455** The virtual root page is the root page for most tables. But
3456** for the table rooted on page 1, sometime the real root page
3457** is empty except for the right-pointer. In such cases the
3458** virtual root page is the page that the right-pointer of page
3459** 1 is pointing to.
3460*/
drh16a9b832007-05-05 18:39:25 +00003461int sqlite3BtreeIsRootPage(MemPage *pPage){
drhd677b3d2007-08-20 22:48:41 +00003462 MemPage *pParent;
3463
drh1fee73e2007-08-29 04:00:57 +00003464 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00003465 pParent = pPage->pParent;
drhda200cc2004-05-09 11:51:38 +00003466 if( pParent==0 ) return 1;
3467 if( pParent->pgno>1 ) return 0;
3468 if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
drh8856d6a2004-04-29 14:42:46 +00003469 return 0;
3470}
3471
3472/*
drh5e2f8b92001-05-28 00:41:15 +00003473** Move the cursor up to the parent page.
3474**
3475** pCur->idx is set to the cell index that contains the pointer
3476** to the page we are coming from. If we are coming from the
3477** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003478** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003479*/
drh16a9b832007-05-05 18:39:25 +00003480void sqlite3BtreeMoveToParent(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00003481 MemPage *pParent;
drh8178a752003-01-05 21:41:40 +00003482 MemPage *pPage;
drh428ae8c2003-01-04 16:48:09 +00003483 int idxParent;
drh3aac2dd2004-04-26 14:10:20 +00003484
drh1fee73e2007-08-29 04:00:57 +00003485 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003486 assert( pCur->eState==CURSOR_VALID );
drh8178a752003-01-05 21:41:40 +00003487 pPage = pCur->pPage;
3488 assert( pPage!=0 );
drh16a9b832007-05-05 18:39:25 +00003489 assert( !sqlite3BtreeIsRootPage(pPage) );
drh8178a752003-01-05 21:41:40 +00003490 pParent = pPage->pParent;
3491 assert( pParent!=0 );
danielk19778c0a7912008-08-20 14:49:23 +00003492 assert( pPage->pDbPage->nRef>0 );
drh8178a752003-01-05 21:41:40 +00003493 idxParent = pPage->idxParent;
danielk19773b8a05f2007-03-19 17:44:26 +00003494 sqlite3PagerRef(pParent->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00003495 releasePage(pPage);
drh72f82862001-05-24 21:06:34 +00003496 pCur->pPage = pParent;
drh271efa52004-05-30 19:19:05 +00003497 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003498 pCur->validNKey = 0;
drh428ae8c2003-01-04 16:48:09 +00003499 assert( pParent->idxShift==0 );
drh43605152004-05-29 21:46:49 +00003500 pCur->idx = idxParent;
drh72f82862001-05-24 21:06:34 +00003501}
3502
3503/*
3504** Move the cursor to the root page
3505*/
drh5e2f8b92001-05-28 00:41:15 +00003506static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00003507 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00003508 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003509 Btree *p = pCur->pBtree;
3510 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00003511
drh1fee73e2007-08-29 04:00:57 +00003512 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00003513 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
3514 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
3515 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
3516 if( pCur->eState>=CURSOR_REQUIRESEEK ){
3517 if( pCur->eState==CURSOR_FAULT ){
3518 return pCur->skip;
3519 }
drhbf700f32007-03-31 02:36:44 +00003520 clearCursorPosition(pCur);
3521 }
drh777e4c42006-01-13 04:31:58 +00003522 pRoot = pCur->pPage;
danielk197797a227c2006-01-20 16:32:04 +00003523 if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
drh777e4c42006-01-13 04:31:58 +00003524 assert( pRoot->isInit );
3525 }else{
3526 if(
3527 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
3528 ){
3529 pCur->eState = CURSOR_INVALID;
3530 return rc;
3531 }
3532 releasePage(pCur->pPage);
drh777e4c42006-01-13 04:31:58 +00003533 pCur->pPage = pRoot;
drhc39e0002004-05-07 23:50:57 +00003534 }
drh72f82862001-05-24 21:06:34 +00003535 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00003536 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003537 pCur->atLast = 0;
3538 pCur->validNKey = 0;
drh8856d6a2004-04-29 14:42:46 +00003539 if( pRoot->nCell==0 && !pRoot->leaf ){
3540 Pgno subpage;
3541 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00003542 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00003543 assert( subpage>0 );
danielk1977da184232006-01-05 11:34:32 +00003544 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00003545 rc = moveToChild(pCur, subpage);
drh8856d6a2004-04-29 14:42:46 +00003546 }
danielk1977da184232006-01-05 11:34:32 +00003547 pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00003548 return rc;
drh72f82862001-05-24 21:06:34 +00003549}
drh2af926b2001-05-15 00:39:25 +00003550
drh5e2f8b92001-05-28 00:41:15 +00003551/*
3552** Move the cursor down to the left-most leaf entry beneath the
3553** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00003554**
3555** The left-most leaf is the one with the smallest key - the first
3556** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00003557*/
3558static int moveToLeftmost(BtCursor *pCur){
3559 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00003560 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00003561 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00003562
drh1fee73e2007-08-29 04:00:57 +00003563 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003564 assert( pCur->eState==CURSOR_VALID );
drhd677b3d2007-08-20 22:48:41 +00003565 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drha34b6762004-05-07 13:30:42 +00003566 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
danielk19771cc5ed82007-05-16 17:28:43 +00003567 pgno = get4byte(findCell(pPage, pCur->idx));
drh8178a752003-01-05 21:41:40 +00003568 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00003569 }
drhd677b3d2007-08-20 22:48:41 +00003570 return rc;
drh5e2f8b92001-05-28 00:41:15 +00003571}
3572
drh2dcc9aa2002-12-04 13:40:25 +00003573/*
3574** Move the cursor down to the right-most leaf entry beneath the
3575** page to which it is currently pointing. Notice the difference
3576** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
3577** finds the left-most entry beneath the *entry* whereas moveToRightmost()
3578** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00003579**
3580** The right-most entry is the one with the largest key - the last
3581** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00003582*/
3583static int moveToRightmost(BtCursor *pCur){
3584 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00003585 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00003586 MemPage *pPage;
drh2dcc9aa2002-12-04 13:40:25 +00003587
drh1fee73e2007-08-29 04:00:57 +00003588 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003589 assert( pCur->eState==CURSOR_VALID );
drhd677b3d2007-08-20 22:48:41 +00003590 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00003591 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh3aac2dd2004-04-26 14:10:20 +00003592 pCur->idx = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00003593 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00003594 }
drhd677b3d2007-08-20 22:48:41 +00003595 if( rc==SQLITE_OK ){
3596 pCur->idx = pPage->nCell - 1;
3597 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003598 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00003599 }
drh2dcc9aa2002-12-04 13:40:25 +00003600 return SQLITE_OK;
3601}
3602
drh5e00f6c2001-09-13 13:46:56 +00003603/* Move the cursor to the first entry in the table. Return SQLITE_OK
3604** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003605** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00003606*/
drh3aac2dd2004-04-26 14:10:20 +00003607int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00003608 int rc;
drhd677b3d2007-08-20 22:48:41 +00003609
drh1fee73e2007-08-29 04:00:57 +00003610 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003611 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00003612 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003613 if( rc==SQLITE_OK ){
3614 if( pCur->eState==CURSOR_INVALID ){
3615 assert( pCur->pPage->nCell==0 );
3616 *pRes = 1;
3617 rc = SQLITE_OK;
3618 }else{
3619 assert( pCur->pPage->nCell>0 );
3620 *pRes = 0;
3621 rc = moveToLeftmost(pCur);
3622 }
drh5e00f6c2001-09-13 13:46:56 +00003623 }
drh5e00f6c2001-09-13 13:46:56 +00003624 return rc;
3625}
drh5e2f8b92001-05-28 00:41:15 +00003626
drh9562b552002-02-19 15:00:07 +00003627/* Move the cursor to the last entry in the table. Return SQLITE_OK
3628** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003629** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00003630*/
drh3aac2dd2004-04-26 14:10:20 +00003631int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00003632 int rc;
drhd677b3d2007-08-20 22:48:41 +00003633
drh1fee73e2007-08-29 04:00:57 +00003634 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003635 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh9562b552002-02-19 15:00:07 +00003636 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003637 if( rc==SQLITE_OK ){
3638 if( CURSOR_INVALID==pCur->eState ){
3639 assert( pCur->pPage->nCell==0 );
3640 *pRes = 1;
3641 }else{
3642 assert( pCur->eState==CURSOR_VALID );
3643 *pRes = 0;
3644 rc = moveToRightmost(pCur);
drha2c20e42008-03-29 16:01:04 +00003645 getCellInfo(pCur);
3646 pCur->atLast = rc==SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003647 }
drh9562b552002-02-19 15:00:07 +00003648 }
drh9562b552002-02-19 15:00:07 +00003649 return rc;
3650}
3651
drhe14006d2008-03-25 17:23:32 +00003652/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00003653** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00003654**
drhe63d9992008-08-13 19:11:48 +00003655** For INTKEY tables, the intKey parameter is used. pIdxKey
3656** must be NULL. For index tables, pIdxKey is used and intKey
3657** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00003658**
drh5e2f8b92001-05-28 00:41:15 +00003659** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00003660** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00003661** were present. The cursor might point to an entry that comes
3662** before or after the key.
3663**
drhbd03cae2001-06-02 02:40:57 +00003664** The result of comparing the key with the entry to which the
drhab01f612004-05-22 02:55:23 +00003665** cursor is written to *pRes if pRes!=NULL. The meaning of
drhbd03cae2001-06-02 02:40:57 +00003666** this value is as follows:
3667**
3668** *pRes<0 The cursor is left pointing at an entry that
drh1a844c32002-12-04 22:29:28 +00003669** is smaller than pKey or if the table is empty
3670** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00003671**
3672** *pRes==0 The cursor is left pointing at an entry that
3673** exactly matches pKey.
3674**
3675** *pRes>0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00003676** is larger than pKey.
drhd677b3d2007-08-20 22:48:41 +00003677**
drha059ad02001-04-17 20:09:11 +00003678*/
drhe63d9992008-08-13 19:11:48 +00003679int sqlite3BtreeMovetoUnpacked(
3680 BtCursor *pCur, /* The cursor to be moved */
3681 UnpackedRecord *pIdxKey, /* Unpacked index key */
3682 i64 intKey, /* The table key */
3683 int biasRight, /* If true, bias the search to the high end */
3684 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00003685){
drh72f82862001-05-24 21:06:34 +00003686 int rc;
drhd677b3d2007-08-20 22:48:41 +00003687
drh1fee73e2007-08-29 04:00:57 +00003688 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003689 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drha2c20e42008-03-29 16:01:04 +00003690
3691 /* If the cursor is already positioned at the point we are trying
3692 ** to move to, then just return without doing any work */
3693 if( pCur->eState==CURSOR_VALID && pCur->validNKey && pCur->pPage->intKey ){
drhe63d9992008-08-13 19:11:48 +00003694 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00003695 *pRes = 0;
3696 return SQLITE_OK;
3697 }
drhe63d9992008-08-13 19:11:48 +00003698 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00003699 *pRes = -1;
3700 return SQLITE_OK;
3701 }
3702 }
3703
3704
drh5e2f8b92001-05-28 00:41:15 +00003705 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003706 if( rc ){
3707 return rc;
3708 }
drhc39e0002004-05-07 23:50:57 +00003709 assert( pCur->pPage );
3710 assert( pCur->pPage->isInit );
danielk1977da184232006-01-05 11:34:32 +00003711 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00003712 *pRes = -1;
drhc39e0002004-05-07 23:50:57 +00003713 assert( pCur->pPage->nCell==0 );
3714 return SQLITE_OK;
3715 }
drhe63d9992008-08-13 19:11:48 +00003716 assert( pCur->pPage->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00003717 for(;;){
drh72f82862001-05-24 21:06:34 +00003718 int lwr, upr;
3719 Pgno chldPg;
3720 MemPage *pPage = pCur->pPage;
drh1a844c32002-12-04 22:29:28 +00003721 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00003722 lwr = 0;
3723 upr = pPage->nCell-1;
drhe63d9992008-08-13 19:11:48 +00003724 if( !pPage->intKey && pIdxKey==0 ){
drh1e968a02008-03-25 00:22:21 +00003725 rc = SQLITE_CORRUPT_BKPT;
3726 goto moveto_finish;
drh4eec4c12005-01-21 00:22:37 +00003727 }
drhe4d90812007-03-29 05:51:49 +00003728 if( biasRight ){
3729 pCur->idx = upr;
3730 }else{
3731 pCur->idx = (upr+lwr)/2;
3732 }
drhf1d68b32007-03-29 04:43:26 +00003733 if( lwr<=upr ) for(;;){
danielk197713adf8a2004-06-03 16:08:41 +00003734 void *pCellKey;
drh4a1c3802004-05-12 15:15:47 +00003735 i64 nCellKey;
drh366fda62006-01-13 02:35:09 +00003736 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003737 pCur->validNKey = 1;
drh3aac2dd2004-04-26 14:10:20 +00003738 if( pPage->intKey ){
drh777e4c42006-01-13 04:31:58 +00003739 u8 *pCell;
danielk19771cc5ed82007-05-16 17:28:43 +00003740 pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
drhd172f862006-01-12 15:01:15 +00003741 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00003742 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00003743 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00003744 }
drha2c20e42008-03-29 16:01:04 +00003745 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00003746 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00003747 c = 0;
drhe63d9992008-08-13 19:11:48 +00003748 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00003749 c = -1;
3750 }else{
drhe63d9992008-08-13 19:11:48 +00003751 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00003752 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00003753 }
drh3aac2dd2004-04-26 14:10:20 +00003754 }else{
drhe51c44f2004-05-30 20:46:09 +00003755 int available;
danielk197713adf8a2004-06-03 16:08:41 +00003756 pCellKey = (void *)fetchPayload(pCur, &available, 0);
drh366fda62006-01-13 02:35:09 +00003757 nCellKey = pCur->info.nKey;
drhe51c44f2004-05-30 20:46:09 +00003758 if( available>=nCellKey ){
drhe63d9992008-08-13 19:11:48 +00003759 c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00003760 }else{
drhfacf0302008-06-17 15:12:00 +00003761 pCellKey = sqlite3Malloc( nCellKey );
danielk19776507ecb2008-03-25 09:56:44 +00003762 if( pCellKey==0 ){
3763 rc = SQLITE_NOMEM;
3764 goto moveto_finish;
3765 }
danielk197713adf8a2004-06-03 16:08:41 +00003766 rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
drhe63d9992008-08-13 19:11:48 +00003767 c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00003768 sqlite3_free(pCellKey);
drh1e968a02008-03-25 00:22:21 +00003769 if( rc ) goto moveto_finish;
drhe51c44f2004-05-30 20:46:09 +00003770 }
drh3aac2dd2004-04-26 14:10:20 +00003771 }
drh72f82862001-05-24 21:06:34 +00003772 if( c==0 ){
drha2c20e42008-03-29 16:01:04 +00003773 pCur->info.nKey = nCellKey;
drh44845222008-07-17 18:39:57 +00003774 if( pPage->intKey && !pPage->leaf ){
drhfc70e6f2004-05-12 21:11:27 +00003775 lwr = pCur->idx;
3776 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00003777 break;
3778 }else{
drh8b18dd42004-05-12 19:18:15 +00003779 if( pRes ) *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00003780 rc = SQLITE_OK;
3781 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00003782 }
drh72f82862001-05-24 21:06:34 +00003783 }
3784 if( c<0 ){
3785 lwr = pCur->idx+1;
3786 }else{
3787 upr = pCur->idx-1;
3788 }
drhf1d68b32007-03-29 04:43:26 +00003789 if( lwr>upr ){
drha2c20e42008-03-29 16:01:04 +00003790 pCur->info.nKey = nCellKey;
drhf1d68b32007-03-29 04:43:26 +00003791 break;
3792 }
3793 pCur->idx = (lwr+upr)/2;
drh72f82862001-05-24 21:06:34 +00003794 }
3795 assert( lwr==upr+1 );
drh7aa128d2002-06-21 13:09:16 +00003796 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00003797 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00003798 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00003799 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00003800 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00003801 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00003802 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00003803 }
3804 if( chldPg==0 ){
drhc39e0002004-05-07 23:50:57 +00003805 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh72f82862001-05-24 21:06:34 +00003806 if( pRes ) *pRes = c;
drh1e968a02008-03-25 00:22:21 +00003807 rc = SQLITE_OK;
3808 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00003809 }
drh428ae8c2003-01-04 16:48:09 +00003810 pCur->idx = lwr;
drh271efa52004-05-30 19:19:05 +00003811 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003812 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00003813 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00003814 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00003815 }
drh1e968a02008-03-25 00:22:21 +00003816moveto_finish:
drhe63d9992008-08-13 19:11:48 +00003817 return rc;
3818}
3819
3820/*
3821** In this version of BtreeMoveto, pKey is a packed index record
3822** such as is generated by the OP_MakeRecord opcode. Unpack the
3823** record and then call BtreeMovetoUnpacked() to do the work.
3824*/
3825int sqlite3BtreeMoveto(
3826 BtCursor *pCur, /* Cursor open on the btree to be searched */
3827 const void *pKey, /* Packed key if the btree is an index */
3828 i64 nKey, /* Integer key for tables. Size of pKey for indices */
3829 int bias, /* Bias search to the high end */
3830 int *pRes /* Write search results here */
3831){
3832 int rc; /* Status code */
3833 UnpackedRecord *pIdxKey; /* Unpacked index key */
drh23f79d02008-08-20 22:06:47 +00003834 UnpackedRecord aSpace[16]; /* Temp space for pIdxKey - to avoid a malloc */
drhe63d9992008-08-13 19:11:48 +00003835
drhe14006d2008-03-25 17:23:32 +00003836 if( pKey ){
drhe63d9992008-08-13 19:11:48 +00003837 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, nKey, pKey,
drh23f79d02008-08-20 22:06:47 +00003838 aSpace, sizeof(aSpace));
drhe63d9992008-08-13 19:11:48 +00003839 if( pIdxKey==0 ) return SQLITE_NOMEM;
3840 }else{
3841 pIdxKey = 0;
3842 }
3843 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
3844 if( pKey ){
3845 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
drhe14006d2008-03-25 17:23:32 +00003846 }
drh1e968a02008-03-25 00:22:21 +00003847 return rc;
drh72f82862001-05-24 21:06:34 +00003848}
3849
drhd677b3d2007-08-20 22:48:41 +00003850
drh72f82862001-05-24 21:06:34 +00003851/*
drhc39e0002004-05-07 23:50:57 +00003852** Return TRUE if the cursor is not pointing at an entry of the table.
3853**
3854** TRUE will be returned after a call to sqlite3BtreeNext() moves
3855** past the last entry in the table or sqlite3BtreePrev() moves past
3856** the first entry. TRUE is also returned if the table is empty.
3857*/
3858int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00003859 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
3860 ** have been deleted? This API will need to change to return an error code
3861 ** as well as the boolean result value.
3862 */
3863 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00003864}
3865
3866/*
drhb21c8cd2007-08-21 19:33:56 +00003867** Return the database connection handle for a cursor.
3868*/
3869sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
drhe5fe6902007-12-07 18:55:28 +00003870 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
3871 return pCur->pBtree->db;
drhb21c8cd2007-08-21 19:33:56 +00003872}
3873
3874/*
drhbd03cae2001-06-02 02:40:57 +00003875** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00003876** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00003877** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00003878** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00003879*/
drhd094db12008-04-03 21:46:57 +00003880int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00003881 int rc;
danielk197797a227c2006-01-20 16:32:04 +00003882 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00003883
drh1fee73e2007-08-29 04:00:57 +00003884 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003885 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003886 if( rc!=SQLITE_OK ){
3887 return rc;
3888 }
drh8c4d3a62007-04-06 01:03:32 +00003889 assert( pRes!=0 );
3890 pPage = pCur->pPage;
3891 if( CURSOR_INVALID==pCur->eState ){
3892 *pRes = 1;
3893 return SQLITE_OK;
3894 }
danielk1977da184232006-01-05 11:34:32 +00003895 if( pCur->skip>0 ){
3896 pCur->skip = 0;
3897 *pRes = 0;
3898 return SQLITE_OK;
3899 }
3900 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00003901
drh8178a752003-01-05 21:41:40 +00003902 assert( pPage->isInit );
drh8178a752003-01-05 21:41:40 +00003903 assert( pCur->idx<pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00003904
drh72f82862001-05-24 21:06:34 +00003905 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00003906 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003907 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00003908 if( pCur->idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00003909 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003910 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00003911 if( rc ) return rc;
3912 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00003913 *pRes = 0;
3914 return rc;
drh72f82862001-05-24 21:06:34 +00003915 }
drh5e2f8b92001-05-28 00:41:15 +00003916 do{
drh16a9b832007-05-05 18:39:25 +00003917 if( sqlite3BtreeIsRootPage(pPage) ){
drh8c1238a2003-01-02 14:43:55 +00003918 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00003919 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00003920 return SQLITE_OK;
3921 }
drh16a9b832007-05-05 18:39:25 +00003922 sqlite3BtreeMoveToParent(pCur);
drh8178a752003-01-05 21:41:40 +00003923 pPage = pCur->pPage;
3924 }while( pCur->idx>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00003925 *pRes = 0;
drh44845222008-07-17 18:39:57 +00003926 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00003927 rc = sqlite3BtreeNext(pCur, pRes);
3928 }else{
3929 rc = SQLITE_OK;
3930 }
3931 return rc;
drh8178a752003-01-05 21:41:40 +00003932 }
3933 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00003934 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00003935 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00003936 }
drh5e2f8b92001-05-28 00:41:15 +00003937 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00003938 return rc;
drh72f82862001-05-24 21:06:34 +00003939}
drhd677b3d2007-08-20 22:48:41 +00003940
drh72f82862001-05-24 21:06:34 +00003941
drh3b7511c2001-05-26 13:15:44 +00003942/*
drh2dcc9aa2002-12-04 13:40:25 +00003943** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00003944** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00003945** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00003946** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00003947*/
drhd094db12008-04-03 21:46:57 +00003948int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00003949 int rc;
3950 Pgno pgno;
drh8178a752003-01-05 21:41:40 +00003951 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00003952
drh1fee73e2007-08-29 04:00:57 +00003953 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003954 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003955 if( rc!=SQLITE_OK ){
3956 return rc;
3957 }
drha2c20e42008-03-29 16:01:04 +00003958 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00003959 if( CURSOR_INVALID==pCur->eState ){
3960 *pRes = 1;
3961 return SQLITE_OK;
3962 }
danielk1977da184232006-01-05 11:34:32 +00003963 if( pCur->skip<0 ){
3964 pCur->skip = 0;
3965 *pRes = 0;
3966 return SQLITE_OK;
3967 }
3968 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00003969
drh8178a752003-01-05 21:41:40 +00003970 pPage = pCur->pPage;
drh8178a752003-01-05 21:41:40 +00003971 assert( pPage->isInit );
drh2dcc9aa2002-12-04 13:40:25 +00003972 assert( pCur->idx>=0 );
drha34b6762004-05-07 13:30:42 +00003973 if( !pPage->leaf ){
danielk19771cc5ed82007-05-16 17:28:43 +00003974 pgno = get4byte( findCell(pPage, pCur->idx) );
drh8178a752003-01-05 21:41:40 +00003975 rc = moveToChild(pCur, pgno);
drhd677b3d2007-08-20 22:48:41 +00003976 if( rc ){
3977 return rc;
3978 }
drh2dcc9aa2002-12-04 13:40:25 +00003979 rc = moveToRightmost(pCur);
3980 }else{
3981 while( pCur->idx==0 ){
drh16a9b832007-05-05 18:39:25 +00003982 if( sqlite3BtreeIsRootPage(pPage) ){
danielk1977da184232006-01-05 11:34:32 +00003983 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00003984 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00003985 return SQLITE_OK;
3986 }
drh16a9b832007-05-05 18:39:25 +00003987 sqlite3BtreeMoveToParent(pCur);
drh8178a752003-01-05 21:41:40 +00003988 pPage = pCur->pPage;
drh2dcc9aa2002-12-04 13:40:25 +00003989 }
3990 pCur->idx--;
drh271efa52004-05-30 19:19:05 +00003991 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003992 pCur->validNKey = 0;
drh44845222008-07-17 18:39:57 +00003993 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00003994 rc = sqlite3BtreePrevious(pCur, pRes);
3995 }else{
3996 rc = SQLITE_OK;
3997 }
drh2dcc9aa2002-12-04 13:40:25 +00003998 }
drh8178a752003-01-05 21:41:40 +00003999 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004000 return rc;
4001}
4002
4003/*
drh3b7511c2001-05-26 13:15:44 +00004004** Allocate a new page from the database file.
4005**
danielk19773b8a05f2007-03-19 17:44:26 +00004006** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004007** has already been called on the new page.) The new page has also
4008** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004009** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004010**
4011** SQLITE_OK is returned on success. Any other return value indicates
4012** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004013** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004014**
drh199e3cf2002-07-18 11:01:47 +00004015** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4016** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004017** attempt to keep related pages close to each other in the database file,
4018** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004019**
4020** If the "exact" parameter is not 0, and the page-number nearby exists
4021** anywhere on the free-list, then it is guarenteed to be returned. This
4022** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004023*/
drh4f0c5872007-03-26 22:05:01 +00004024static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004025 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004026 MemPage **ppPage,
4027 Pgno *pPgno,
4028 Pgno nearby,
4029 u8 exact
4030){
drh3aac2dd2004-04-26 14:10:20 +00004031 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004032 int rc;
drh3aac2dd2004-04-26 14:10:20 +00004033 int n; /* Number of pages on the freelist */
4034 int k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004035 MemPage *pTrunk = 0;
4036 MemPage *pPrevTrunk = 0;
drh30e58752002-03-02 20:41:57 +00004037
drh1fee73e2007-08-29 04:00:57 +00004038 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004039 pPage1 = pBt->pPage1;
4040 n = get4byte(&pPage1->aData[36]);
4041 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004042 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004043 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004044 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4045
4046 /* If the 'exact' parameter was true and a query of the pointer-map
4047 ** shows that the page 'nearby' is somewhere on the free-list, then
4048 ** the entire-list will be searched for that page.
4049 */
4050#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977ad0132d2008-06-07 08:58:22 +00004051 if( exact && nearby<=pagerPagecount(pBt->pPager) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004052 u8 eType;
4053 assert( nearby>0 );
4054 assert( pBt->autoVacuum );
4055 rc = ptrmapGet(pBt, nearby, &eType, 0);
4056 if( rc ) return rc;
4057 if( eType==PTRMAP_FREEPAGE ){
4058 searchList = 1;
4059 }
4060 *pPgno = nearby;
4061 }
4062#endif
4063
4064 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4065 ** first free-list trunk page. iPrevTrunk is initially 1.
4066 */
danielk19773b8a05f2007-03-19 17:44:26 +00004067 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004068 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004069 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004070
4071 /* The code within this loop is run only once if the 'searchList' variable
4072 ** is not true. Otherwise, it runs once for each trunk-page on the
4073 ** free-list until the page 'nearby' is located.
4074 */
4075 do {
4076 pPrevTrunk = pTrunk;
4077 if( pPrevTrunk ){
4078 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004079 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004080 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004081 }
drh16a9b832007-05-05 18:39:25 +00004082 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004083 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004084 pTrunk = 0;
4085 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004086 }
4087
4088 k = get4byte(&pTrunk->aData[4]);
4089 if( k==0 && !searchList ){
4090 /* The trunk has no leaves and the list is not being searched.
4091 ** So extract the trunk page itself and use it as the newly
4092 ** allocated page */
4093 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004094 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004095 if( rc ){
4096 goto end_allocate_page;
4097 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004098 *pPgno = iTrunk;
4099 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4100 *ppPage = pTrunk;
4101 pTrunk = 0;
4102 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh45b1fac2008-07-04 17:52:42 +00004103 }else if( k>pBt->usableSize/4 - 2 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004104 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004105 rc = SQLITE_CORRUPT_BKPT;
4106 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004107#ifndef SQLITE_OMIT_AUTOVACUUM
4108 }else if( searchList && nearby==iTrunk ){
4109 /* The list is being searched and this trunk page is the page
4110 ** to allocate, regardless of whether it has leaves.
4111 */
4112 assert( *pPgno==iTrunk );
4113 *ppPage = pTrunk;
4114 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004115 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004116 if( rc ){
4117 goto end_allocate_page;
4118 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004119 if( k==0 ){
4120 if( !pPrevTrunk ){
4121 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4122 }else{
4123 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4124 }
4125 }else{
4126 /* The trunk page is required by the caller but it contains
4127 ** pointers to free-list leaves. The first leaf becomes a trunk
4128 ** page in this case.
4129 */
4130 MemPage *pNewTrunk;
4131 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh16a9b832007-05-05 18:39:25 +00004132 rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004133 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004134 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004135 }
danielk19773b8a05f2007-03-19 17:44:26 +00004136 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004137 if( rc!=SQLITE_OK ){
4138 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004139 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004140 }
4141 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4142 put4byte(&pNewTrunk->aData[4], k-1);
4143 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004144 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004145 if( !pPrevTrunk ){
4146 put4byte(&pPage1->aData[32], iNewTrunk);
4147 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004148 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004149 if( rc ){
4150 goto end_allocate_page;
4151 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004152 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4153 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004154 }
4155 pTrunk = 0;
4156 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4157#endif
4158 }else{
4159 /* Extract a leaf from the trunk */
4160 int closest;
4161 Pgno iPage;
4162 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004163 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004164 if( rc ){
4165 goto end_allocate_page;
4166 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004167 if( nearby>0 ){
4168 int i, dist;
4169 closest = 0;
4170 dist = get4byte(&aData[8]) - nearby;
4171 if( dist<0 ) dist = -dist;
4172 for(i=1; i<k; i++){
4173 int d2 = get4byte(&aData[8+i*4]) - nearby;
4174 if( d2<0 ) d2 = -d2;
4175 if( d2<dist ){
4176 closest = i;
4177 dist = d2;
4178 }
4179 }
4180 }else{
4181 closest = 0;
4182 }
4183
4184 iPage = get4byte(&aData[8+closest*4]);
4185 if( !searchList || iPage==nearby ){
danielk1977ad0132d2008-06-07 08:58:22 +00004186 int nPage;
shane1f9e6aa2008-06-09 19:27:11 +00004187 *pPgno = iPage;
danielk1977ad0132d2008-06-07 08:58:22 +00004188 nPage = pagerPagecount(pBt->pPager);
4189 if( *pPgno>nPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004190 /* Free page off the end of the file */
danielk197743e377a2008-05-05 12:09:32 +00004191 rc = SQLITE_CORRUPT_BKPT;
4192 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004193 }
4194 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4195 ": %d more free pages\n",
4196 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4197 if( closest<k-1 ){
4198 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4199 }
4200 put4byte(&aData[4], k-1);
drh16a9b832007-05-05 18:39:25 +00004201 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004202 if( rc==SQLITE_OK ){
drh538f5702007-04-13 02:14:30 +00004203 sqlite3PagerDontRollback((*ppPage)->pDbPage);
danielk19773b8a05f2007-03-19 17:44:26 +00004204 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004205 if( rc!=SQLITE_OK ){
4206 releasePage(*ppPage);
4207 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004208 }
4209 searchList = 0;
4210 }
drhee696e22004-08-30 16:52:17 +00004211 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004212 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004213 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004214 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004215 }else{
drh3aac2dd2004-04-26 14:10:20 +00004216 /* There are no pages on the freelist, so create a new page at the
4217 ** end of the file */
danielk1977ad0132d2008-06-07 08:58:22 +00004218 int nPage = pagerPagecount(pBt->pPager);
4219 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004220
4221#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00004222 if( pBt->nTrunc ){
4223 /* An incr-vacuum has already run within this transaction. So the
4224 ** page to allocate is not from the physical end of the file, but
4225 ** at pBt->nTrunc.
4226 */
4227 *pPgno = pBt->nTrunc+1;
4228 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4229 (*pPgno)++;
4230 }
4231 }
danielk1977266664d2006-02-10 08:24:21 +00004232 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004233 /* If *pPgno refers to a pointer-map page, allocate two new pages
4234 ** at the end of the file instead of one. The first allocated page
4235 ** becomes a new pointer-map page, the second is used by the caller.
4236 */
4237 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004238 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk1977afcdd022004-10-31 16:25:42 +00004239 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004240 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004241 }
danielk1977dddbcdc2007-04-26 14:42:34 +00004242 if( pBt->nTrunc ){
4243 pBt->nTrunc = *pPgno;
4244 }
danielk1977afcdd022004-10-31 16:25:42 +00004245#endif
4246
danielk1977599fcba2004-11-08 07:13:13 +00004247 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh16a9b832007-05-05 18:39:25 +00004248 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004249 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004250 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004251 if( rc!=SQLITE_OK ){
4252 releasePage(*ppPage);
4253 }
drh3a4c1412004-05-09 20:40:11 +00004254 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004255 }
danielk1977599fcba2004-11-08 07:13:13 +00004256
4257 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004258
4259end_allocate_page:
4260 releasePage(pTrunk);
4261 releasePage(pPrevTrunk);
drh3b7511c2001-05-26 13:15:44 +00004262 return rc;
4263}
4264
4265/*
drh3aac2dd2004-04-26 14:10:20 +00004266** Add a page of the database file to the freelist.
drh5e2f8b92001-05-28 00:41:15 +00004267**
danielk19773b8a05f2007-03-19 17:44:26 +00004268** sqlite3PagerUnref() is NOT called for pPage.
drh3b7511c2001-05-26 13:15:44 +00004269*/
drh3aac2dd2004-04-26 14:10:20 +00004270static int freePage(MemPage *pPage){
danielk1977aef0bf62005-12-30 16:28:01 +00004271 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00004272 MemPage *pPage1 = pBt->pPage1;
4273 int rc, n, k;
drh8b2f49b2001-06-08 00:21:52 +00004274
drh3aac2dd2004-04-26 14:10:20 +00004275 /* Prepare the page for freeing */
drh1fee73e2007-08-29 04:00:57 +00004276 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004277 assert( pPage->pgno>1 );
4278 pPage->isInit = 0;
4279 releasePage(pPage->pParent);
4280 pPage->pParent = 0;
4281
drha34b6762004-05-07 13:30:42 +00004282 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004283 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00004284 if( rc ) return rc;
4285 n = get4byte(&pPage1->aData[36]);
4286 put4byte(&pPage1->aData[36], n+1);
4287
drhfcce93f2006-02-22 03:08:32 +00004288#ifdef SQLITE_SECURE_DELETE
4289 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4290 ** always fully overwrite deleted information with zeros.
4291 */
danielk19773b8a05f2007-03-19 17:44:26 +00004292 rc = sqlite3PagerWrite(pPage->pDbPage);
drhfcce93f2006-02-22 03:08:32 +00004293 if( rc ) return rc;
4294 memset(pPage->aData, 0, pPage->pBt->pageSize);
4295#endif
4296
danielk1977687566d2004-11-02 12:56:41 +00004297 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004298 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004299 */
danielk197785d90ca2008-07-19 14:25:15 +00004300 if( ISAUTOVACUUM ){
danielk1977687566d2004-11-02 12:56:41 +00004301 rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
danielk1977a64a0352004-11-05 01:45:13 +00004302 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00004303 }
danielk1977687566d2004-11-02 12:56:41 +00004304
drh3aac2dd2004-04-26 14:10:20 +00004305 if( n==0 ){
4306 /* This is the first free page */
danielk19773b8a05f2007-03-19 17:44:26 +00004307 rc = sqlite3PagerWrite(pPage->pDbPage);
drhda200cc2004-05-09 11:51:38 +00004308 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004309 memset(pPage->aData, 0, 8);
drha34b6762004-05-07 13:30:42 +00004310 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00004311 TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
drh3aac2dd2004-04-26 14:10:20 +00004312 }else{
4313 /* Other free pages already exist. Retrive the first trunk page
4314 ** of the freelist and find out how many leaves it has. */
drha34b6762004-05-07 13:30:42 +00004315 MemPage *pTrunk;
drh16a9b832007-05-05 18:39:25 +00004316 rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
drh3b7511c2001-05-26 13:15:44 +00004317 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004318 k = get4byte(&pTrunk->aData[4]);
drhee696e22004-08-30 16:52:17 +00004319 if( k>=pBt->usableSize/4 - 8 ){
drh3aac2dd2004-04-26 14:10:20 +00004320 /* The trunk is full. Turn the page being freed into a new
drh45b1fac2008-07-04 17:52:42 +00004321 ** trunk page with no leaves.
4322 **
4323 ** Note that the trunk page is not really full until it contains
4324 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4325 ** coded. But due to a coding error in versions of SQLite prior to
4326 ** 3.6.0, databases with freelist trunk pages holding more than
4327 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4328 ** to maintain backwards compatibility with older versions of SQLite,
4329 ** we will contain to restrict the number of entries to usableSize/4 - 8
4330 ** for now. At some point in the future (once everyone has upgraded
4331 ** to 3.6.0 or later) we should consider fixing the conditional above
4332 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4333 */
danielk19773b8a05f2007-03-19 17:44:26 +00004334 rc = sqlite3PagerWrite(pPage->pDbPage);
drhb9ee4932007-09-07 14:32:06 +00004335 if( rc==SQLITE_OK ){
4336 put4byte(pPage->aData, pTrunk->pgno);
4337 put4byte(&pPage->aData[4], 0);
4338 put4byte(&pPage1->aData[32], pPage->pgno);
4339 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
4340 pPage->pgno, pTrunk->pgno));
4341 }
4342 }else if( k<0 ){
4343 rc = SQLITE_CORRUPT;
drh3aac2dd2004-04-26 14:10:20 +00004344 }else{
4345 /* Add the newly freed page as a leaf on the current trunk */
danielk19773b8a05f2007-03-19 17:44:26 +00004346 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004347 if( rc==SQLITE_OK ){
4348 put4byte(&pTrunk->aData[4], k+1);
4349 put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
drhfcce93f2006-02-22 03:08:32 +00004350#ifndef SQLITE_SECURE_DELETE
drh538f5702007-04-13 02:14:30 +00004351 sqlite3PagerDontWrite(pPage->pDbPage);
drhfcce93f2006-02-22 03:08:32 +00004352#endif
drhf5345442007-04-09 12:45:02 +00004353 }
drh3a4c1412004-05-09 20:40:11 +00004354 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00004355 }
4356 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004357 }
drh3b7511c2001-05-26 13:15:44 +00004358 return rc;
4359}
4360
4361/*
drh3aac2dd2004-04-26 14:10:20 +00004362** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00004363*/
drh3aac2dd2004-04-26 14:10:20 +00004364static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00004365 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00004366 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00004367 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00004368 int rc;
drh94440812007-03-06 11:42:19 +00004369 int nOvfl;
4370 int ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00004371
drh1fee73e2007-08-29 04:00:57 +00004372 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh16a9b832007-05-05 18:39:25 +00004373 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004374 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00004375 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00004376 }
drh6f11bef2004-05-13 01:12:56 +00004377 ovflPgno = get4byte(&pCell[info.iOverflow]);
drh94440812007-03-06 11:42:19 +00004378 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00004379 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
4380 assert( ovflPgno==0 || nOvfl>0 );
4381 while( nOvfl-- ){
drh3aac2dd2004-04-26 14:10:20 +00004382 MemPage *pOvfl;
danielk1977ad0132d2008-06-07 08:58:22 +00004383 if( ovflPgno==0 || ovflPgno>pagerPagecount(pBt->pPager) ){
drh49285702005-09-17 15:20:26 +00004384 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00004385 }
danielk19778c0a9592007-04-30 16:55:00 +00004386
4387 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno);
drh3b7511c2001-05-26 13:15:44 +00004388 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00004389 rc = freePage(pOvfl);
danielk19773b8a05f2007-03-19 17:44:26 +00004390 sqlite3PagerUnref(pOvfl->pDbPage);
danielk19776b456a22005-03-21 04:04:02 +00004391 if( rc ) return rc;
drh3b7511c2001-05-26 13:15:44 +00004392 }
drh5e2f8b92001-05-28 00:41:15 +00004393 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00004394}
4395
4396/*
drh91025292004-05-03 19:49:32 +00004397** Create the byte sequence used to represent a cell on page pPage
4398** and write that byte sequence into pCell[]. Overflow pages are
4399** allocated and filled in as necessary. The calling procedure
4400** is responsible for making sure sufficient space has been allocated
4401** for pCell[].
4402**
4403** Note that pCell does not necessary need to point to the pPage->aData
4404** area. pCell might point to some temporary storage. The cell will
4405** be constructed in this temporary area then copied into pPage->aData
4406** later.
drh3b7511c2001-05-26 13:15:44 +00004407*/
4408static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00004409 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00004410 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00004411 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00004412 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00004413 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00004414 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00004415){
drh3b7511c2001-05-26 13:15:44 +00004416 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00004417 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00004418 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00004419 int spaceLeft;
4420 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00004421 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00004422 unsigned char *pPrior;
4423 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00004424 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00004425 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00004426 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00004427 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00004428
drh1fee73e2007-08-29 04:00:57 +00004429 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00004430
drh91025292004-05-03 19:49:32 +00004431 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00004432 nHeader = 0;
drh91025292004-05-03 19:49:32 +00004433 if( !pPage->leaf ){
4434 nHeader += 4;
4435 }
drh8b18dd42004-05-12 19:18:15 +00004436 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00004437 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00004438 }else{
drhb026e052007-05-02 01:34:31 +00004439 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00004440 }
drh6f11bef2004-05-13 01:12:56 +00004441 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh16a9b832007-05-05 18:39:25 +00004442 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004443 assert( info.nHeader==nHeader );
4444 assert( info.nKey==nKey );
drhb026e052007-05-02 01:34:31 +00004445 assert( info.nData==nData+nZero );
drh6f11bef2004-05-13 01:12:56 +00004446
4447 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00004448 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00004449 if( pPage->intKey ){
4450 pSrc = pData;
4451 nSrc = nData;
drh91025292004-05-03 19:49:32 +00004452 nData = 0;
drh3aac2dd2004-04-26 14:10:20 +00004453 }else{
4454 nPayload += nKey;
4455 pSrc = pKey;
4456 nSrc = nKey;
4457 }
drh6f11bef2004-05-13 01:12:56 +00004458 *pnSize = info.nSize;
4459 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00004460 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00004461 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00004462
drh3b7511c2001-05-26 13:15:44 +00004463 while( nPayload>0 ){
4464 if( spaceLeft==0 ){
danielk1977b39f70b2007-05-17 18:28:11 +00004465 int isExact = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004466#ifndef SQLITE_OMIT_AUTOVACUUM
4467 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00004468 if( pBt->autoVacuum ){
4469 do{
4470 pgnoOvfl++;
4471 } while(
4472 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
4473 );
danielk197789a4be82007-05-23 13:34:32 +00004474 if( pgnoOvfl>1 ){
danielk1977b39f70b2007-05-17 18:28:11 +00004475 /* isExact = 1; */
4476 }
4477 }
danielk1977afcdd022004-10-31 16:25:42 +00004478#endif
danielk1977b39f70b2007-05-17 18:28:11 +00004479 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
danielk1977afcdd022004-10-31 16:25:42 +00004480#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00004481 /* If the database supports auto-vacuum, and the second or subsequent
4482 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00004483 ** for that page now.
4484 **
4485 ** If this is the first overflow page, then write a partial entry
4486 ** to the pointer-map. If we write nothing to this pointer-map slot,
4487 ** then the optimistic overflow chain processing in clearCell()
4488 ** may misinterpret the uninitialised values and delete the
4489 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00004490 */
danielk19774ef24492007-05-23 09:52:41 +00004491 if( pBt->autoVacuum && rc==SQLITE_OK ){
4492 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
4493 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
danielk197789a4be82007-05-23 13:34:32 +00004494 if( rc ){
4495 releasePage(pOvfl);
4496 }
danielk1977afcdd022004-10-31 16:25:42 +00004497 }
4498#endif
drh3b7511c2001-05-26 13:15:44 +00004499 if( rc ){
drh9b171272004-05-08 02:03:22 +00004500 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004501 return rc;
4502 }
drh3aac2dd2004-04-26 14:10:20 +00004503 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00004504 releasePage(pToRelease);
4505 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00004506 pPrior = pOvfl->aData;
4507 put4byte(pPrior, 0);
4508 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00004509 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00004510 }
4511 n = nPayload;
4512 if( n>spaceLeft ) n = spaceLeft;
drhb026e052007-05-02 01:34:31 +00004513 if( nSrc>0 ){
4514 if( n>nSrc ) n = nSrc;
4515 assert( pSrc );
4516 memcpy(pPayload, pSrc, n);
4517 }else{
4518 memset(pPayload, 0, n);
4519 }
drh3b7511c2001-05-26 13:15:44 +00004520 nPayload -= n;
drhde647132004-05-07 17:57:49 +00004521 pPayload += n;
drh9b171272004-05-08 02:03:22 +00004522 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00004523 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00004524 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00004525 if( nSrc==0 ){
4526 nSrc = nData;
4527 pSrc = pData;
4528 }
drhdd793422001-06-28 01:54:48 +00004529 }
drh9b171272004-05-08 02:03:22 +00004530 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004531 return SQLITE_OK;
4532}
4533
danielk1977f328bea2008-08-02 17:03:31 +00004534
drh3b7511c2001-05-26 13:15:44 +00004535/*
drhbd03cae2001-06-02 02:40:57 +00004536** Change the MemPage.pParent pointer on the page whose number is
drh8b2f49b2001-06-08 00:21:52 +00004537** given in the second argument so that MemPage.pParent holds the
drhbd03cae2001-06-02 02:40:57 +00004538** pointer in the third argument.
danielk197787c52b52008-07-19 11:49:07 +00004539**
4540** If the final argument, updatePtrmap, is non-zero and the database
4541** is an auto-vacuum database, then the pointer-map entry for pgno
4542** is updated.
drhbd03cae2001-06-02 02:40:57 +00004543*/
danielk197787c52b52008-07-19 11:49:07 +00004544static int reparentPage(
4545 BtShared *pBt, /* B-Tree structure */
4546 Pgno pgno, /* Page number of child being adopted */
4547 MemPage *pNewParent, /* New parent of pgno */
4548 int idx, /* Index of child page pgno in pNewParent */
4549 int updatePtrmap /* If true, update pointer-map for pgno */
4550){
drhbd03cae2001-06-02 02:40:57 +00004551 MemPage *pThis;
danielk19773b8a05f2007-03-19 17:44:26 +00004552 DbPage *pDbPage;
drhbd03cae2001-06-02 02:40:57 +00004553
drh1fee73e2007-08-29 04:00:57 +00004554 assert( sqlite3_mutex_held(pBt->mutex) );
drh43617e92006-03-06 20:55:46 +00004555 assert( pNewParent!=0 );
danielk1977afcdd022004-10-31 16:25:42 +00004556 if( pgno==0 ) return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00004557 assert( pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004558 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
4559 if( pDbPage ){
4560 pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
drhda200cc2004-05-09 11:51:38 +00004561 if( pThis->isInit ){
drhbf4bca52007-09-06 22:19:14 +00004562 assert( pThis->aData==sqlite3PagerGetData(pDbPage) );
drhda200cc2004-05-09 11:51:38 +00004563 if( pThis->pParent!=pNewParent ){
danielk19773b8a05f2007-03-19 17:44:26 +00004564 if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
drhda200cc2004-05-09 11:51:38 +00004565 pThis->pParent = pNewParent;
danielk19773b8a05f2007-03-19 17:44:26 +00004566 sqlite3PagerRef(pNewParent->pDbPage);
drhda200cc2004-05-09 11:51:38 +00004567 }
4568 pThis->idxParent = idx;
drhdd793422001-06-28 01:54:48 +00004569 }
danielk19773b8a05f2007-03-19 17:44:26 +00004570 sqlite3PagerUnref(pDbPage);
drhbd03cae2001-06-02 02:40:57 +00004571 }
danielk1977afcdd022004-10-31 16:25:42 +00004572
danielk197785d90ca2008-07-19 14:25:15 +00004573 if( ISAUTOVACUUM && updatePtrmap ){
danielk1977afcdd022004-10-31 16:25:42 +00004574 return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
4575 }
danielk197787c52b52008-07-19 11:49:07 +00004576
4577#ifndef NDEBUG
4578 /* If the updatePtrmap flag was clear, assert that the entry in the
4579 ** pointer-map is already correct.
4580 */
danielk1977a68468f2008-08-02 17:36:45 +00004581 if( ISAUTOVACUUM ){
4582 pDbPage = sqlite3PagerLookup(pBt->pPager,PTRMAP_PAGENO(pBt,pgno));
4583 if( pDbPage ){
4584 u8 eType;
4585 Pgno ii;
4586 int rc = ptrmapGet(pBt, pgno, &eType, &ii);
4587 assert( rc==SQLITE_OK && ii==pNewParent->pgno && eType==PTRMAP_BTREE );
4588 sqlite3PagerUnref(pDbPage);
4589 }
danielk197787c52b52008-07-19 11:49:07 +00004590 }
4591#endif
4592
danielk1977afcdd022004-10-31 16:25:42 +00004593 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004594}
4595
danielk1977ac11ee62005-01-15 12:45:51 +00004596
4597
drhbd03cae2001-06-02 02:40:57 +00004598/*
drh4b70f112004-05-02 21:12:19 +00004599** Change the pParent pointer of all children of pPage to point back
4600** to pPage.
4601**
drhbd03cae2001-06-02 02:40:57 +00004602** In other words, for every child of pPage, invoke reparentPage()
drh5e00f6c2001-09-13 13:46:56 +00004603** to make sure that each child knows that pPage is its parent.
drhbd03cae2001-06-02 02:40:57 +00004604**
4605** This routine gets called after you memcpy() one page into
4606** another.
danielk197787c52b52008-07-19 11:49:07 +00004607**
4608** If updatePtrmap is true, then the pointer-map entries for all child
4609** pages of pPage are updated.
drhbd03cae2001-06-02 02:40:57 +00004610*/
danielk197787c52b52008-07-19 11:49:07 +00004611static int reparentChildPages(MemPage *pPage, int updatePtrmap){
danielk1977afcdd022004-10-31 16:25:42 +00004612 int rc = SQLITE_OK;
drh1fee73e2007-08-29 04:00:57 +00004613 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197787c52b52008-07-19 11:49:07 +00004614 if( !pPage->leaf ){
4615 int i;
4616 BtShared *pBt = pPage->pBt;
4617 Pgno iRight = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk1977afcdd022004-10-31 16:25:42 +00004618
danielk197787c52b52008-07-19 11:49:07 +00004619 for(i=0; i<pPage->nCell; i++){
4620 u8 *pCell = findCell(pPage, i);
4621 rc = reparentPage(pBt, get4byte(pCell), pPage, i, updatePtrmap);
4622 if( rc!=SQLITE_OK ) return rc;
4623 }
4624 rc = reparentPage(pBt, iRight, pPage, i, updatePtrmap);
4625 pPage->idxShift = 0;
drhbd03cae2001-06-02 02:40:57 +00004626 }
danielk1977afcdd022004-10-31 16:25:42 +00004627 return rc;
drh14acc042001-06-10 19:56:58 +00004628}
4629
4630/*
4631** Remove the i-th cell from pPage. This routine effects pPage only.
4632** The cell content is not freed or deallocated. It is assumed that
4633** the cell content has been copied someplace else. This routine just
4634** removes the reference to the cell from pPage.
4635**
4636** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00004637*/
drh4b70f112004-05-02 21:12:19 +00004638static void dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00004639 int i; /* Loop counter */
4640 int pc; /* Offset to cell content of cell being deleted */
4641 u8 *data; /* pPage->aData */
4642 u8 *ptr; /* Used to move bytes around within data[] */
4643
drh8c42ca92001-06-22 19:15:00 +00004644 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00004645 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00004646 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00004647 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00004648 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00004649 ptr = &data[pPage->cellOffset + 2*idx];
4650 pc = get2byte(ptr);
4651 assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
drhde647132004-05-07 17:57:49 +00004652 freeSpace(pPage, pc, sz);
drh43605152004-05-29 21:46:49 +00004653 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
4654 ptr[0] = ptr[2];
4655 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00004656 }
4657 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00004658 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
4659 pPage->nFree += 2;
drh428ae8c2003-01-04 16:48:09 +00004660 pPage->idxShift = 1;
drh14acc042001-06-10 19:56:58 +00004661}
4662
4663/*
4664** Insert a new cell on pPage at cell index "i". pCell points to the
4665** content of the cell.
4666**
4667** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00004668** will not fit, then make a copy of the cell content into pTemp if
4669** pTemp is not null. Regardless of pTemp, allocate a new entry
4670** in pPage->aOvfl[] and make it point to the cell content (either
4671** in pTemp or the original pCell) and also record its index.
4672** Allocating a new entry in pPage->aCell[] implies that
4673** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00004674**
4675** If nSkip is non-zero, then do not copy the first nSkip bytes of the
4676** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00004677** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00004678** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00004679*/
danielk1977e80463b2004-11-03 03:01:16 +00004680static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00004681 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00004682 int i, /* New cell becomes the i-th cell of the page */
4683 u8 *pCell, /* Content of the new cell */
4684 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00004685 u8 *pTemp, /* Temp storage space for pCell, if needed */
4686 u8 nSkip /* Do not write the first nSkip bytes of the cell */
drh24cd67e2004-05-10 16:18:47 +00004687){
drh43605152004-05-29 21:46:49 +00004688 int idx; /* Where to write new cell content in data[] */
4689 int j; /* Loop counter */
4690 int top; /* First byte of content for any cell in data[] */
4691 int end; /* First byte past the last cell pointer in data[] */
4692 int ins; /* Index in data[] where new cell pointer is inserted */
4693 int hdr; /* Offset into data[] of the page header */
4694 int cellOffset; /* Address of first cell pointer in data[] */
4695 u8 *data; /* The content of the whole page */
4696 u8 *ptr; /* Used for moving information around in data[] */
4697
4698 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
4699 assert( sz==cellSizePtr(pPage, pCell) );
drh1fee73e2007-08-29 04:00:57 +00004700 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00004701 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00004702 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00004703 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00004704 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00004705 }
drh43605152004-05-29 21:46:49 +00004706 j = pPage->nOverflow++;
4707 assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
4708 pPage->aOvfl[j].pCell = pCell;
4709 pPage->aOvfl[j].idx = i;
4710 pPage->nFree = 0;
drh14acc042001-06-10 19:56:58 +00004711 }else{
danielk19776e465eb2007-08-21 13:11:00 +00004712 int rc = sqlite3PagerWrite(pPage->pDbPage);
4713 if( rc!=SQLITE_OK ){
4714 return rc;
4715 }
4716 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00004717 data = pPage->aData;
4718 hdr = pPage->hdrOffset;
4719 top = get2byte(&data[hdr+5]);
4720 cellOffset = pPage->cellOffset;
4721 end = cellOffset + 2*pPage->nCell + 2;
4722 ins = cellOffset + 2*i;
4723 if( end > top - sz ){
danielk1977474b7cc2008-07-09 11:49:46 +00004724 defragmentPage(pPage);
drh43605152004-05-29 21:46:49 +00004725 top = get2byte(&data[hdr+5]);
4726 assert( end + sz <= top );
4727 }
4728 idx = allocateSpace(pPage, sz);
4729 assert( idx>0 );
4730 assert( end <= get2byte(&data[hdr+5]) );
4731 pPage->nCell++;
4732 pPage->nFree -= 2;
danielk1977a3ad5e72005-01-07 08:56:44 +00004733 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00004734 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
4735 ptr[0] = ptr[-2];
4736 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00004737 }
drh43605152004-05-29 21:46:49 +00004738 put2byte(&data[ins], idx);
4739 put2byte(&data[hdr+3], pPage->nCell);
4740 pPage->idxShift = 1;
danielk1977a19df672004-11-03 11:37:07 +00004741#ifndef SQLITE_OMIT_AUTOVACUUM
4742 if( pPage->pBt->autoVacuum ){
4743 /* The cell may contain a pointer to an overflow page. If so, write
4744 ** the entry for the overflow page into the pointer map.
4745 */
4746 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00004747 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh72365832007-03-06 15:53:44 +00004748 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk1977a19df672004-11-03 11:37:07 +00004749 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
4750 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
danielk19776e465eb2007-08-21 13:11:00 +00004751 rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977a19df672004-11-03 11:37:07 +00004752 if( rc!=SQLITE_OK ) return rc;
4753 }
4754 }
4755#endif
drh14acc042001-06-10 19:56:58 +00004756 }
danielk1977e80463b2004-11-03 03:01:16 +00004757
danielk1977e80463b2004-11-03 03:01:16 +00004758 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00004759}
4760
4761/*
drhfa1a98a2004-05-14 19:08:17 +00004762** Add a list of cells to a page. The page should be initially empty.
4763** The cells are guaranteed to fit on the page.
4764*/
4765static void assemblePage(
4766 MemPage *pPage, /* The page to be assemblied */
4767 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00004768 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00004769 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00004770){
4771 int i; /* Loop counter */
4772 int totalSize; /* Total size of all cells */
4773 int hdr; /* Index of page header */
drh43605152004-05-29 21:46:49 +00004774 int cellptr; /* Address of next cell pointer */
4775 int cellbody; /* Address of next cell body */
drhfa1a98a2004-05-14 19:08:17 +00004776 u8 *data; /* Data for the page */
4777
drh43605152004-05-29 21:46:49 +00004778 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00004779 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa1a98a2004-05-14 19:08:17 +00004780 totalSize = 0;
4781 for(i=0; i<nCell; i++){
4782 totalSize += aSize[i];
4783 }
drh43605152004-05-29 21:46:49 +00004784 assert( totalSize+2*nCell<=pPage->nFree );
drhfa1a98a2004-05-14 19:08:17 +00004785 assert( pPage->nCell==0 );
drh43605152004-05-29 21:46:49 +00004786 cellptr = pPage->cellOffset;
drhfa1a98a2004-05-14 19:08:17 +00004787 data = pPage->aData;
4788 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00004789 put2byte(&data[hdr+3], nCell);
drh09d0deb2005-08-02 17:13:09 +00004790 if( nCell ){
4791 cellbody = allocateSpace(pPage, totalSize);
4792 assert( cellbody>0 );
4793 assert( pPage->nFree >= 2*nCell );
4794 pPage->nFree -= 2*nCell;
4795 for(i=0; i<nCell; i++){
4796 put2byte(&data[cellptr], cellbody);
4797 memcpy(&data[cellbody], apCell[i], aSize[i]);
4798 cellptr += 2;
4799 cellbody += aSize[i];
4800 }
4801 assert( cellbody==pPage->pBt->usableSize );
drhfa1a98a2004-05-14 19:08:17 +00004802 }
4803 pPage->nCell = nCell;
drhfa1a98a2004-05-14 19:08:17 +00004804}
4805
drh14acc042001-06-10 19:56:58 +00004806/*
drhc3b70572003-01-04 19:44:07 +00004807** The following parameters determine how many adjacent pages get involved
4808** in a balancing operation. NN is the number of neighbors on either side
4809** of the page that participate in the balancing operation. NB is the
4810** total number of pages that participate, including the target page and
4811** NN neighbors on either side.
4812**
4813** The minimum value of NN is 1 (of course). Increasing NN above 1
4814** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
4815** in exchange for a larger degradation in INSERT and UPDATE performance.
4816** The value of NN appears to give the best results overall.
4817*/
4818#define NN 1 /* Number of neighbors on either side of pPage */
4819#define NB (NN*2+1) /* Total pages involved in the balance */
4820
drh43605152004-05-29 21:46:49 +00004821/* Forward reference */
danielk1977ac245ec2005-01-14 13:50:11 +00004822static int balance(MemPage*, int);
4823
drh615ae552005-01-16 23:21:00 +00004824#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00004825/*
4826** This version of balance() handles the common special case where
4827** a new entry is being inserted on the extreme right-end of the
4828** tree, in other words, when the new entry will become the largest
4829** entry in the tree.
4830**
4831** Instead of trying balance the 3 right-most leaf pages, just add
4832** a new page to the right-hand side and put the one new entry in
4833** that page. This leaves the right side of the tree somewhat
4834** unbalanced. But odds are that we will be inserting new entries
4835** at the end soon afterwards so the nearly empty page will quickly
4836** fill up. On average.
4837**
4838** pPage is the leaf page which is the right-most page in the tree.
4839** pParent is its parent. pPage must have a single overflow entry
4840** which is also the right-most entry on the page.
4841*/
danielk1977ac245ec2005-01-14 13:50:11 +00004842static int balance_quick(MemPage *pPage, MemPage *pParent){
4843 int rc;
4844 MemPage *pNew;
4845 Pgno pgnoNew;
4846 u8 *pCell;
drha9121e42008-02-19 14:59:35 +00004847 u16 szCell;
danielk1977ac245ec2005-01-14 13:50:11 +00004848 CellInfo info;
danielk1977aef0bf62005-12-30 16:28:01 +00004849 BtShared *pBt = pPage->pBt;
danielk197779a40da2005-01-16 08:00:01 +00004850 int parentIdx = pParent->nCell; /* pParent new divider cell index */
4851 int parentSize; /* Size of new divider cell */
4852 u8 parentCell[64]; /* Space for the new divider cell */
danielk1977ac245ec2005-01-14 13:50:11 +00004853
drh1fee73e2007-08-29 04:00:57 +00004854 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00004855
danielk1977ac245ec2005-01-14 13:50:11 +00004856 /* Allocate a new page. Insert the overflow cell from pPage
4857 ** into it. Then remove the overflow cell from pPage.
4858 */
drh4f0c5872007-03-26 22:05:01 +00004859 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk1977ac245ec2005-01-14 13:50:11 +00004860 if( rc!=SQLITE_OK ){
4861 return rc;
4862 }
4863 pCell = pPage->aOvfl[0].pCell;
4864 szCell = cellSizePtr(pPage, pCell);
4865 zeroPage(pNew, pPage->aData[0]);
4866 assemblePage(pNew, 1, &pCell, &szCell);
4867 pPage->nOverflow = 0;
4868
danielk197779a40da2005-01-16 08:00:01 +00004869 /* Set the parent of the newly allocated page to pParent. */
4870 pNew->pParent = pParent;
danielk19773b8a05f2007-03-19 17:44:26 +00004871 sqlite3PagerRef(pParent->pDbPage);
danielk197779a40da2005-01-16 08:00:01 +00004872
danielk1977ac245ec2005-01-14 13:50:11 +00004873 /* pPage is currently the right-child of pParent. Change this
4874 ** so that the right-child is the new page allocated above and
danielk197779a40da2005-01-16 08:00:01 +00004875 ** pPage is the next-to-right child.
danielk1977474b7cc2008-07-09 11:49:46 +00004876 **
4877 ** Ignore the return value of the call to fillInCell(). fillInCell()
4878 ** may only return other than SQLITE_OK if it is required to allocate
4879 ** one or more overflow pages. Since an internal table B-Tree cell
4880 ** may never spill over onto an overflow page (it is a maximum of
4881 ** 13 bytes in size), it is not neccessary to check the return code.
4882 **
4883 ** Similarly, the insertCell() function cannot fail if the page
4884 ** being inserted into is already writable and the cell does not
4885 ** contain an overflow pointer. So ignore this return code too.
danielk1977ac245ec2005-01-14 13:50:11 +00004886 */
danielk1977ac11ee62005-01-15 12:45:51 +00004887 assert( pPage->nCell>0 );
danielk19771cc5ed82007-05-16 17:28:43 +00004888 pCell = findCell(pPage, pPage->nCell-1);
drh16a9b832007-05-05 18:39:25 +00004889 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
danielk1977474b7cc2008-07-09 11:49:46 +00004890 fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
danielk1977ac245ec2005-01-14 13:50:11 +00004891 assert( parentSize<64 );
danielk1977474b7cc2008-07-09 11:49:46 +00004892 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
4893 insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
danielk1977ac245ec2005-01-14 13:50:11 +00004894 put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
4895 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
4896
danielk197779a40da2005-01-16 08:00:01 +00004897 /* If this is an auto-vacuum database, update the pointer map
4898 ** with entries for the new page, and any pointer from the
4899 ** cell on the page to an overflow page.
4900 */
danielk197785d90ca2008-07-19 14:25:15 +00004901 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00004902 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
danielk1977deb403e2007-05-24 09:20:16 +00004903 if( rc==SQLITE_OK ){
4904 rc = ptrmapPutOvfl(pNew, 0);
danielk1977ac11ee62005-01-15 12:45:51 +00004905 }
danielk197779a40da2005-01-16 08:00:01 +00004906 if( rc!=SQLITE_OK ){
danielk1977deb403e2007-05-24 09:20:16 +00004907 releasePage(pNew);
danielk197779a40da2005-01-16 08:00:01 +00004908 return rc;
danielk1977ac11ee62005-01-15 12:45:51 +00004909 }
4910 }
4911
danielk197779a40da2005-01-16 08:00:01 +00004912 /* Release the reference to the new page and balance the parent page,
4913 ** in case the divider cell inserted caused it to become overfull.
4914 */
danielk1977ac245ec2005-01-14 13:50:11 +00004915 releasePage(pNew);
4916 return balance(pParent, 0);
4917}
drh615ae552005-01-16 23:21:00 +00004918#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00004919
drhc3b70572003-01-04 19:44:07 +00004920/*
drhab01f612004-05-22 02:55:23 +00004921** This routine redistributes Cells on pPage and up to NN*2 siblings
drh8b2f49b2001-06-08 00:21:52 +00004922** of pPage so that all pages have about the same amount of free space.
drh0c6cc4e2004-06-15 02:13:26 +00004923** Usually NN siblings on either side of pPage is used in the balancing,
4924** though more siblings might come from one side if pPage is the first
drhab01f612004-05-22 02:55:23 +00004925** or last child of its parent. If pPage has fewer than 2*NN siblings
drh8b2f49b2001-06-08 00:21:52 +00004926** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00004927** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00004928**
drh0c6cc4e2004-06-15 02:13:26 +00004929** The number of siblings of pPage might be increased or decreased by one or
4930** two in an effort to keep pages nearly full but not over full. The root page
drhab01f612004-05-22 02:55:23 +00004931** is special and is allowed to be nearly empty. If pPage is
drh8c42ca92001-06-22 19:15:00 +00004932** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00004933** or decreased by one, as necessary, to keep the root page from being
drhab01f612004-05-22 02:55:23 +00004934** overfull or completely empty.
drh14acc042001-06-10 19:56:58 +00004935**
drh8b2f49b2001-06-08 00:21:52 +00004936** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00004937** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00004938** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00004939** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00004940**
drh8c42ca92001-06-22 19:15:00 +00004941** In the course of balancing the siblings of pPage, the parent of pPage
4942** might become overfull or underfull. If that happens, then this routine
4943** is called recursively on the parent.
4944**
drh5e00f6c2001-09-13 13:46:56 +00004945** If this routine fails for any reason, it might leave the database
4946** in a corrupted state. So if this routine fails, the database should
4947** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00004948*/
drh43605152004-05-29 21:46:49 +00004949static int balance_nonroot(MemPage *pPage){
drh8b2f49b2001-06-08 00:21:52 +00004950 MemPage *pParent; /* The parent of pPage */
drh16a9b832007-05-05 18:39:25 +00004951 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00004952 int nCell = 0; /* Number of cells in apCell[] */
4953 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
drh8b2f49b2001-06-08 00:21:52 +00004954 int nOld; /* Number of pages in apOld[] */
4955 int nNew; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00004956 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00004957 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00004958 int idx; /* Index of pPage in pParent->aCell[] */
4959 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00004960 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00004961 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00004962 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00004963 int usableSpace; /* Bytes in pPage beyond the header */
4964 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00004965 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00004966 int iSpace1 = 0; /* First unused byte of aSpace1[] */
4967 int iSpace2 = 0; /* First unused byte of aSpace2[] */
drhfacf0302008-06-17 15:12:00 +00004968 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00004969 MemPage *apOld[NB]; /* pPage and up to two siblings */
4970 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00004971 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00004972 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
4973 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
drh4b70f112004-05-02 21:12:19 +00004974 u8 *apDiv[NB]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00004975 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
4976 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00004977 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00004978 u16 *szCell; /* Local size of all cells in apCell[] */
drhe5ae5732008-06-15 02:51:47 +00004979 u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
4980 u8 *aSpace1; /* Space for copies of dividers cells before balance */
4981 u8 *aSpace2 = 0; /* Space for overflow dividers cells after balance */
danielk1977ac11ee62005-01-15 12:45:51 +00004982 u8 *aFrom = 0;
drh8b2f49b2001-06-08 00:21:52 +00004983
drh1fee73e2007-08-29 04:00:57 +00004984 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00004985
drh14acc042001-06-10 19:56:58 +00004986 /*
drh43605152004-05-29 21:46:49 +00004987 ** Find the parent page.
drh8b2f49b2001-06-08 00:21:52 +00004988 */
drh3a4c1412004-05-09 20:40:11 +00004989 assert( pPage->isInit );
danielk19776e465eb2007-08-21 13:11:00 +00004990 assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
drh4b70f112004-05-02 21:12:19 +00004991 pBt = pPage->pBt;
drh14acc042001-06-10 19:56:58 +00004992 pParent = pPage->pParent;
drh43605152004-05-29 21:46:49 +00004993 assert( pParent );
danielk19773b8a05f2007-03-19 17:44:26 +00004994 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
danielk197707cb5602006-01-20 10:55:05 +00004995 return rc;
4996 }
danielk1977474b7cc2008-07-09 11:49:46 +00004997
drh43605152004-05-29 21:46:49 +00004998 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
drh2e38c322004-09-03 18:38:44 +00004999
drh615ae552005-01-16 23:21:00 +00005000#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005001 /*
5002 ** A special case: If a new entry has just been inserted into a
5003 ** table (that is, a btree with integer keys and all data at the leaves)
drh09d0deb2005-08-02 17:13:09 +00005004 ** and the new entry is the right-most entry in the tree (it has the
drhf222e712005-01-14 22:55:49 +00005005 ** largest key) then use the special balance_quick() routine for
5006 ** balancing. balance_quick() is much faster and results in a tighter
5007 ** packing of data in the common case.
5008 */
danielk1977ac245ec2005-01-14 13:50:11 +00005009 if( pPage->leaf &&
5010 pPage->intKey &&
danielk1977ac245ec2005-01-14 13:50:11 +00005011 pPage->nOverflow==1 &&
5012 pPage->aOvfl[0].idx==pPage->nCell &&
danielk1977ac11ee62005-01-15 12:45:51 +00005013 pPage->pParent->pgno!=1 &&
danielk1977ac245ec2005-01-14 13:50:11 +00005014 get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
5015 ){
drh44845222008-07-17 18:39:57 +00005016 assert( pPage->intKey );
danielk1977ac11ee62005-01-15 12:45:51 +00005017 /*
5018 ** TODO: Check the siblings to the left of pPage. It may be that
5019 ** they are not full and no new page is required.
5020 */
danielk1977ac245ec2005-01-14 13:50:11 +00005021 return balance_quick(pPage, pParent);
5022 }
5023#endif
5024
danielk19776e465eb2007-08-21 13:11:00 +00005025 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
5026 return rc;
5027 }
5028
drh2e38c322004-09-03 18:38:44 +00005029 /*
drh4b70f112004-05-02 21:12:19 +00005030 ** Find the cell in the parent page whose left child points back
drh14acc042001-06-10 19:56:58 +00005031 ** to pPage. The "idx" variable is the index of that cell. If pPage
5032 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00005033 */
drhbb49aba2003-01-04 18:53:27 +00005034 if( pParent->idxShift ){
drha34b6762004-05-07 13:30:42 +00005035 Pgno pgno;
drh4b70f112004-05-02 21:12:19 +00005036 pgno = pPage->pgno;
danielk19773b8a05f2007-03-19 17:44:26 +00005037 assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbb49aba2003-01-04 18:53:27 +00005038 for(idx=0; idx<pParent->nCell; idx++){
danielk19771cc5ed82007-05-16 17:28:43 +00005039 if( get4byte(findCell(pParent, idx))==pgno ){
drhbb49aba2003-01-04 18:53:27 +00005040 break;
5041 }
drh8b2f49b2001-06-08 00:21:52 +00005042 }
drh4b70f112004-05-02 21:12:19 +00005043 assert( idx<pParent->nCell
drh43605152004-05-29 21:46:49 +00005044 || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
drhbb49aba2003-01-04 18:53:27 +00005045 }else{
5046 idx = pPage->idxParent;
drh8b2f49b2001-06-08 00:21:52 +00005047 }
drh8b2f49b2001-06-08 00:21:52 +00005048
5049 /*
drh14acc042001-06-10 19:56:58 +00005050 ** Initialize variables so that it will be safe to jump
drh5edc3122001-09-13 21:53:09 +00005051 ** directly to balance_cleanup at any moment.
drh8b2f49b2001-06-08 00:21:52 +00005052 */
drh14acc042001-06-10 19:56:58 +00005053 nOld = nNew = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005054 sqlite3PagerRef(pParent->pDbPage);
drh14acc042001-06-10 19:56:58 +00005055
5056 /*
drh4b70f112004-05-02 21:12:19 +00005057 ** Find sibling pages to pPage and the cells in pParent that divide
drhc3b70572003-01-04 19:44:07 +00005058 ** the siblings. An attempt is made to find NN siblings on either
5059 ** side of pPage. More siblings are taken from one side, however, if
5060 ** pPage there are fewer than NN siblings on the other side. If pParent
5061 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00005062 */
drhc3b70572003-01-04 19:44:07 +00005063 nxDiv = idx - NN;
5064 if( nxDiv + NB > pParent->nCell ){
5065 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00005066 }
drhc3b70572003-01-04 19:44:07 +00005067 if( nxDiv<0 ){
5068 nxDiv = 0;
5069 }
drh8b2f49b2001-06-08 00:21:52 +00005070 nDiv = 0;
drhc3b70572003-01-04 19:44:07 +00005071 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00005072 if( k<pParent->nCell ){
danielk19771cc5ed82007-05-16 17:28:43 +00005073 apDiv[i] = findCell(pParent, k);
drh8b2f49b2001-06-08 00:21:52 +00005074 nDiv++;
drha34b6762004-05-07 13:30:42 +00005075 assert( !pParent->leaf );
drh43605152004-05-29 21:46:49 +00005076 pgnoOld[i] = get4byte(apDiv[i]);
drh14acc042001-06-10 19:56:58 +00005077 }else if( k==pParent->nCell ){
drh43605152004-05-29 21:46:49 +00005078 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
drh14acc042001-06-10 19:56:58 +00005079 }else{
5080 break;
drh8b2f49b2001-06-08 00:21:52 +00005081 }
drhde647132004-05-07 17:57:49 +00005082 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
drh6019e162001-07-02 17:51:45 +00005083 if( rc ) goto balance_cleanup;
drh428ae8c2003-01-04 16:48:09 +00005084 apOld[i]->idxParent = k;
drh91025292004-05-03 19:49:32 +00005085 apCopy[i] = 0;
5086 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00005087 nOld++;
danielk1977634f2982005-03-28 08:44:07 +00005088 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
drh8b2f49b2001-06-08 00:21:52 +00005089 }
5090
drha9121e42008-02-19 14:59:35 +00005091 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005092 ** alignment */
drha9121e42008-02-19 14:59:35 +00005093 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005094
drh8b2f49b2001-06-08 00:21:52 +00005095 /*
danielk1977634f2982005-03-28 08:44:07 +00005096 ** Allocate space for memory structures
5097 */
drhfacf0302008-06-17 15:12:00 +00005098 szScratch =
drha9121e42008-02-19 14:59:35 +00005099 nMaxCells*sizeof(u8*) /* apCell */
5100 + nMaxCells*sizeof(u16) /* szCell */
5101 + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB /* aCopy */
drhe5ae5732008-06-15 02:51:47 +00005102 + pBt->pageSize /* aSpace1 */
drhfacf0302008-06-17 15:12:00 +00005103 + (ISAUTOVACUUM ? nMaxCells : 0); /* aFrom */
5104 apCell = sqlite3ScratchMalloc( szScratch );
danielk1977634f2982005-03-28 08:44:07 +00005105 if( apCell==0 ){
5106 rc = SQLITE_NOMEM;
5107 goto balance_cleanup;
5108 }
drha9121e42008-02-19 14:59:35 +00005109 szCell = (u16*)&apCell[nMaxCells];
danielk1977634f2982005-03-28 08:44:07 +00005110 aCopy[0] = (u8*)&szCell[nMaxCells];
drhc96d8532005-05-03 12:30:33 +00005111 assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00005112 for(i=1; i<NB; i++){
drhc96d8532005-05-03 12:30:33 +00005113 aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
5114 assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00005115 }
drhe5ae5732008-06-15 02:51:47 +00005116 aSpace1 = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
5117 assert( ((aSpace1 - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
danielk197785d90ca2008-07-19 14:25:15 +00005118 if( ISAUTOVACUUM ){
drhe5ae5732008-06-15 02:51:47 +00005119 aFrom = &aSpace1[pBt->pageSize];
danielk1977634f2982005-03-28 08:44:07 +00005120 }
drhfacf0302008-06-17 15:12:00 +00005121 aSpace2 = sqlite3PageMalloc(pBt->pageSize);
drhe5ae5732008-06-15 02:51:47 +00005122 if( aSpace2==0 ){
5123 rc = SQLITE_NOMEM;
5124 goto balance_cleanup;
5125 }
danielk1977634f2982005-03-28 08:44:07 +00005126
5127 /*
drh14acc042001-06-10 19:56:58 +00005128 ** Make copies of the content of pPage and its siblings into aOld[].
5129 ** The rest of this function will use data from the copies rather
5130 ** that the original pages since the original pages will be in the
5131 ** process of being overwritten.
5132 */
5133 for(i=0; i<nOld; i++){
drhbf4bca52007-09-06 22:19:14 +00005134 MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
5135 memcpy(p, apOld[i], sizeof(MemPage));
5136 p->aData = (void*)&p[1];
5137 memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
drh14acc042001-06-10 19:56:58 +00005138 }
5139
5140 /*
5141 ** Load pointers to all cells on sibling pages and the divider cells
5142 ** into the local apCell[] array. Make copies of the divider cells
drhe5ae5732008-06-15 02:51:47 +00005143 ** into space obtained form aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005144 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005145 **
5146 ** If the siblings are on leaf pages, then the child pointers of the
5147 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005148 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005149 ** child pointers. If siblings are not leaves, then all cell in
5150 ** apCell[] include child pointers. Either way, all cells in apCell[]
5151 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005152 **
5153 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5154 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005155 */
5156 nCell = 0;
drh4b70f112004-05-02 21:12:19 +00005157 leafCorrection = pPage->leaf*4;
drh44845222008-07-17 18:39:57 +00005158 leafData = pPage->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005159 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00005160 MemPage *pOld = apCopy[i];
drh43605152004-05-29 21:46:49 +00005161 int limit = pOld->nCell+pOld->nOverflow;
5162 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005163 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005164 apCell[nCell] = findOverflowCell(pOld, j);
5165 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk197785d90ca2008-07-19 14:25:15 +00005166 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005167 int a;
5168 aFrom[nCell] = i;
5169 for(a=0; a<pOld->nOverflow; a++){
5170 if( pOld->aOvfl[a].pCell==apCell[nCell] ){
5171 aFrom[nCell] = 0xFF;
5172 break;
5173 }
5174 }
5175 }
drh14acc042001-06-10 19:56:58 +00005176 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005177 }
5178 if( i<nOld-1 ){
drha9121e42008-02-19 14:59:35 +00005179 u16 sz = cellSizePtr(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00005180 if( leafData ){
drh96f5b762004-05-16 16:24:36 +00005181 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
5182 ** are duplicates of keys on the child pages. We need to remove
5183 ** the divider cells from pParent, but the dividers cells are not
5184 ** added to apCell[] because they are duplicates of child cells.
5185 */
drh8b18dd42004-05-12 19:18:15 +00005186 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00005187 }else{
drhb6f41482004-05-14 01:58:11 +00005188 u8 *pTemp;
danielk1977634f2982005-03-28 08:44:07 +00005189 assert( nCell<nMaxCells );
drhb6f41482004-05-14 01:58:11 +00005190 szCell[nCell] = sz;
drhe5ae5732008-06-15 02:51:47 +00005191 pTemp = &aSpace1[iSpace1];
5192 iSpace1 += sz;
5193 assert( sz<=pBt->pageSize/4 );
5194 assert( iSpace1<=pBt->pageSize );
drhb6f41482004-05-14 01:58:11 +00005195 memcpy(pTemp, apDiv[i], sz);
5196 apCell[nCell] = pTemp+leafCorrection;
danielk197785d90ca2008-07-19 14:25:15 +00005197 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005198 aFrom[nCell] = 0xFF;
5199 }
drhb6f41482004-05-14 01:58:11 +00005200 dropCell(pParent, nxDiv, sz);
drh8b18dd42004-05-12 19:18:15 +00005201 szCell[nCell] -= leafCorrection;
drh43605152004-05-29 21:46:49 +00005202 assert( get4byte(pTemp)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00005203 if( !pOld->leaf ){
5204 assert( leafCorrection==0 );
5205 /* The right pointer of the child page pOld becomes the left
5206 ** pointer of the divider cell */
drh43605152004-05-29 21:46:49 +00005207 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
drh8b18dd42004-05-12 19:18:15 +00005208 }else{
5209 assert( leafCorrection==4 );
danielk197739c96042007-05-12 10:41:47 +00005210 if( szCell[nCell]<4 ){
5211 /* Do not allow any cells smaller than 4 bytes. */
5212 szCell[nCell] = 4;
5213 }
drh8b18dd42004-05-12 19:18:15 +00005214 }
5215 nCell++;
drh4b70f112004-05-02 21:12:19 +00005216 }
drh8b2f49b2001-06-08 00:21:52 +00005217 }
5218 }
5219
5220 /*
drh6019e162001-07-02 17:51:45 +00005221 ** Figure out the number of pages needed to hold all nCell cells.
5222 ** Store this number in "k". Also compute szNew[] which is the total
5223 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005224 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005225 ** cntNew[k] should equal nCell.
5226 **
drh96f5b762004-05-16 16:24:36 +00005227 ** Values computed by this block:
5228 **
5229 ** k: The total number of sibling pages
5230 ** szNew[i]: Spaced used on the i-th sibling page.
5231 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5232 ** the right of the i-th sibling page.
5233 ** usableSpace: Number of bytes of space available on each sibling.
5234 **
drh8b2f49b2001-06-08 00:21:52 +00005235 */
drh43605152004-05-29 21:46:49 +00005236 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005237 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005238 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005239 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005240 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005241 szNew[k] = subtotal - szCell[i];
5242 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005243 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005244 subtotal = 0;
5245 k++;
5246 }
5247 }
5248 szNew[k] = subtotal;
5249 cntNew[k] = nCell;
5250 k++;
drh96f5b762004-05-16 16:24:36 +00005251
5252 /*
5253 ** The packing computed by the previous block is biased toward the siblings
5254 ** on the left side. The left siblings are always nearly full, while the
5255 ** right-most sibling might be nearly empty. This block of code attempts
5256 ** to adjust the packing of siblings to get a better balance.
5257 **
5258 ** This adjustment is more than an optimization. The packing above might
5259 ** be so out of balance as to be illegal. For example, the right-most
5260 ** sibling might be completely empty. This adjustment is not optional.
5261 */
drh6019e162001-07-02 17:51:45 +00005262 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005263 int szRight = szNew[i]; /* Size of sibling on the right */
5264 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5265 int r; /* Index of right-most cell in left sibling */
5266 int d; /* Index of first cell to the left of right sibling */
5267
5268 r = cntNew[i-1] - 1;
5269 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005270 assert( d<nMaxCells );
5271 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005272 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5273 szRight += szCell[d] + 2;
5274 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005275 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005276 r = cntNew[i-1] - 1;
5277 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005278 }
drh96f5b762004-05-16 16:24:36 +00005279 szNew[i] = szRight;
5280 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005281 }
drh09d0deb2005-08-02 17:13:09 +00005282
5283 /* Either we found one or more cells (cntnew[0])>0) or we are the
5284 ** a virtual root page. A virtual root page is when the real root
5285 ** page is page 1 and we are the only child of that page.
5286 */
5287 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005288
5289 /*
drh6b308672002-07-08 02:16:37 +00005290 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005291 */
drh4b70f112004-05-02 21:12:19 +00005292 assert( pPage->pgno>1 );
5293 pageFlags = pPage->aData[0];
drh14acc042001-06-10 19:56:58 +00005294 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005295 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005296 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005297 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005298 pgnoNew[i] = pgnoOld[i];
5299 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005300 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005301 nNew++;
danielk197728129562005-01-11 10:25:06 +00005302 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005303 }else{
drh7aa8f852006-03-28 00:24:44 +00005304 assert( i>0 );
drh4f0c5872007-03-26 22:05:01 +00005305 rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
drh6b308672002-07-08 02:16:37 +00005306 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005307 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005308 nNew++;
drh6b308672002-07-08 02:16:37 +00005309 }
drh8b2f49b2001-06-08 00:21:52 +00005310 }
5311
danielk1977299b1872004-11-22 10:02:10 +00005312 /* Free any old pages that were not reused as new pages.
5313 */
5314 while( i<nOld ){
5315 rc = freePage(apOld[i]);
5316 if( rc ) goto balance_cleanup;
5317 releasePage(apOld[i]);
5318 apOld[i] = 0;
5319 i++;
5320 }
5321
drh8b2f49b2001-06-08 00:21:52 +00005322 /*
drhf9ffac92002-03-02 19:00:31 +00005323 ** Put the new pages in accending order. This helps to
5324 ** keep entries in the disk file in order so that a scan
5325 ** of the table is a linear scan through the file. That
5326 ** in turn helps the operating system to deliver pages
5327 ** from the disk more rapidly.
5328 **
5329 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005330 ** n is never more than NB (a small constant), that should
5331 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005332 **
drhc3b70572003-01-04 19:44:07 +00005333 ** When NB==3, this one optimization makes the database
5334 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00005335 */
5336 for(i=0; i<k-1; i++){
5337 int minV = pgnoNew[i];
5338 int minI = i;
5339 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00005340 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00005341 minI = j;
5342 minV = pgnoNew[j];
5343 }
5344 }
5345 if( minI>i ){
5346 int t;
5347 MemPage *pT;
5348 t = pgnoNew[i];
5349 pT = apNew[i];
5350 pgnoNew[i] = pgnoNew[minI];
5351 apNew[i] = apNew[minI];
5352 pgnoNew[minI] = t;
5353 apNew[minI] = pT;
5354 }
5355 }
drha2fce642004-06-05 00:01:44 +00005356 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
drh24cd67e2004-05-10 16:18:47 +00005357 pgnoOld[0],
5358 nOld>=2 ? pgnoOld[1] : 0,
5359 nOld>=3 ? pgnoOld[2] : 0,
drh10c0fa62004-05-18 12:50:17 +00005360 pgnoNew[0], szNew[0],
5361 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
5362 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
drha2fce642004-06-05 00:01:44 +00005363 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
5364 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
drh24cd67e2004-05-10 16:18:47 +00005365
drhf9ffac92002-03-02 19:00:31 +00005366 /*
drh14acc042001-06-10 19:56:58 +00005367 ** Evenly distribute the data in apCell[] across the new pages.
5368 ** Insert divider cells into pParent as necessary.
5369 */
5370 j = 0;
5371 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00005372 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00005373 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00005374 assert( j<nMaxCells );
drh4b70f112004-05-02 21:12:19 +00005375 assert( pNew->pgno==pgnoNew[i] );
drh10131482008-07-11 03:34:09 +00005376 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00005377 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00005378 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00005379 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00005380
danielk1977ac11ee62005-01-15 12:45:51 +00005381 /* If this is an auto-vacuum database, update the pointer map entries
5382 ** that point to the siblings that were rearranged. These can be: left
5383 ** children of cells, the right-child of the page, or overflow pages
5384 ** pointed to by cells.
5385 */
danielk197785d90ca2008-07-19 14:25:15 +00005386 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005387 for(k=j; k<cntNew[i]; k++){
danielk1977634f2982005-03-28 08:44:07 +00005388 assert( k<nMaxCells );
danielk1977ac11ee62005-01-15 12:45:51 +00005389 if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
danielk197779a40da2005-01-16 08:00:01 +00005390 rc = ptrmapPutOvfl(pNew, k-j);
danielk197787c52b52008-07-19 11:49:07 +00005391 if( rc==SQLITE_OK && leafCorrection==0 ){
5392 rc = ptrmapPut(pBt, get4byte(apCell[k]), PTRMAP_BTREE, pNew->pgno);
5393 }
danielk197779a40da2005-01-16 08:00:01 +00005394 if( rc!=SQLITE_OK ){
5395 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00005396 }
5397 }
5398 }
5399 }
danielk1977ac11ee62005-01-15 12:45:51 +00005400
5401 j = cntNew[i];
5402
5403 /* If the sibling page assembled above was not the right-most sibling,
5404 ** insert a divider cell into the parent page.
5405 */
drh14acc042001-06-10 19:56:58 +00005406 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00005407 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00005408 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00005409 int sz;
danielk1977634f2982005-03-28 08:44:07 +00005410
5411 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00005412 pCell = apCell[j];
5413 sz = szCell[j] + leafCorrection;
drhe5ae5732008-06-15 02:51:47 +00005414 pTemp = &aSpace2[iSpace2];
drh4b70f112004-05-02 21:12:19 +00005415 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00005416 memcpy(&pNew->aData[8], pCell, 4);
danielk197785d90ca2008-07-19 14:25:15 +00005417 if( ISAUTOVACUUM
danielk197787c52b52008-07-19 11:49:07 +00005418 && (aFrom[j]==0xFF || apCopy[aFrom[j]]->pgno!=pNew->pgno)
5419 ){
5420 rc = ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno);
5421 if( rc!=SQLITE_OK ){
5422 goto balance_cleanup;
5423 }
5424 }
drh8b18dd42004-05-12 19:18:15 +00005425 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00005426 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00005427 ** then there is no divider cell in apCell[]. Instead, the divider
5428 ** cell consists of the integer key for the right-most cell of
5429 ** the sibling-page assembled above only.
5430 */
drh6f11bef2004-05-13 01:12:56 +00005431 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00005432 j--;
drh16a9b832007-05-05 18:39:25 +00005433 sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00005434 pCell = pTemp;
drhb026e052007-05-02 01:34:31 +00005435 fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
drh8b18dd42004-05-12 19:18:15 +00005436 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00005437 }else{
5438 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00005439 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00005440 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00005441 ** bytes, then it may actually be smaller than this
5442 ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00005443 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00005444 ** insertCell(), so reparse the cell now.
5445 **
5446 ** Note that this can never happen in an SQLite data file, as all
5447 ** cells are at least 4 bytes. It only happens in b-trees used
5448 ** to evaluate "IN (SELECT ...)" and similar clauses.
5449 */
5450 if( szCell[j]==4 ){
5451 assert(leafCorrection==4);
5452 sz = cellSizePtr(pParent, pCell);
5453 }
drh4b70f112004-05-02 21:12:19 +00005454 }
drhe5ae5732008-06-15 02:51:47 +00005455 iSpace2 += sz;
5456 assert( sz<=pBt->pageSize/4 );
5457 assert( iSpace2<=pBt->pageSize );
danielk1977a3ad5e72005-01-07 08:56:44 +00005458 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
danielk1977e80463b2004-11-03 03:01:16 +00005459 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00005460 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
danielk197785d90ca2008-07-19 14:25:15 +00005461
danielk1977ac11ee62005-01-15 12:45:51 +00005462 /* If this is an auto-vacuum database, and not a leaf-data tree,
5463 ** then update the pointer map with an entry for the overflow page
5464 ** that the cell just inserted points to (if any).
5465 */
danielk197785d90ca2008-07-19 14:25:15 +00005466 if( ISAUTOVACUUM && !leafData ){
danielk197779a40da2005-01-16 08:00:01 +00005467 rc = ptrmapPutOvfl(pParent, nxDiv);
5468 if( rc!=SQLITE_OK ){
5469 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00005470 }
5471 }
drh14acc042001-06-10 19:56:58 +00005472 j++;
5473 nxDiv++;
5474 }
danielk197787c52b52008-07-19 11:49:07 +00005475
danielk197787c52b52008-07-19 11:49:07 +00005476 /* Set the pointer-map entry for the new sibling page. */
danielk197785d90ca2008-07-19 14:25:15 +00005477 if( ISAUTOVACUUM ){
danielk197787c52b52008-07-19 11:49:07 +00005478 rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
5479 if( rc!=SQLITE_OK ){
5480 goto balance_cleanup;
5481 }
5482 }
drh14acc042001-06-10 19:56:58 +00005483 }
drh6019e162001-07-02 17:51:45 +00005484 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00005485 assert( nOld>0 );
5486 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00005487 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00005488 u8 *zChild = &apCopy[nOld-1]->aData[8];
5489 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
danielk197785d90ca2008-07-19 14:25:15 +00005490 if( ISAUTOVACUUM ){
danielk197787c52b52008-07-19 11:49:07 +00005491 rc = ptrmapPut(pBt, get4byte(zChild), PTRMAP_BTREE, apNew[nNew-1]->pgno);
5492 if( rc!=SQLITE_OK ){
5493 goto balance_cleanup;
5494 }
5495 }
drh14acc042001-06-10 19:56:58 +00005496 }
drh43605152004-05-29 21:46:49 +00005497 if( nxDiv==pParent->nCell+pParent->nOverflow ){
drh4b70f112004-05-02 21:12:19 +00005498 /* Right-most sibling is the right-most child of pParent */
drh43605152004-05-29 21:46:49 +00005499 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
drh4b70f112004-05-02 21:12:19 +00005500 }else{
5501 /* Right-most sibling is the left child of the first entry in pParent
5502 ** past the right-most divider entry */
drh43605152004-05-29 21:46:49 +00005503 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00005504 }
5505
5506 /*
5507 ** Reparent children of all cells.
drh8b2f49b2001-06-08 00:21:52 +00005508 */
5509 for(i=0; i<nNew; i++){
danielk197787c52b52008-07-19 11:49:07 +00005510 rc = reparentChildPages(apNew[i], 0);
danielk1977afcdd022004-10-31 16:25:42 +00005511 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh8b2f49b2001-06-08 00:21:52 +00005512 }
danielk197787c52b52008-07-19 11:49:07 +00005513 rc = reparentChildPages(pParent, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005514 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh8b2f49b2001-06-08 00:21:52 +00005515
5516 /*
drh3a4c1412004-05-09 20:40:11 +00005517 ** Balance the parent page. Note that the current page (pPage) might
danielk1977ac11ee62005-01-15 12:45:51 +00005518 ** have been added to the freelist so it might no longer be initialized.
drh3a4c1412004-05-09 20:40:11 +00005519 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00005520 */
drhda200cc2004-05-09 11:51:38 +00005521 assert( pParent->isInit );
drhfacf0302008-06-17 15:12:00 +00005522 sqlite3ScratchFree(apCell);
drhe5ae5732008-06-15 02:51:47 +00005523 apCell = 0;
danielk1977ac245ec2005-01-14 13:50:11 +00005524 rc = balance(pParent, 0);
drhda200cc2004-05-09 11:51:38 +00005525
drh8b2f49b2001-06-08 00:21:52 +00005526 /*
drh14acc042001-06-10 19:56:58 +00005527 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00005528 */
drh14acc042001-06-10 19:56:58 +00005529balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00005530 sqlite3PageFree(aSpace2);
5531 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00005532 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00005533 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00005534 }
drh14acc042001-06-10 19:56:58 +00005535 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00005536 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00005537 }
drh91025292004-05-03 19:49:32 +00005538 releasePage(pParent);
drh3a4c1412004-05-09 20:40:11 +00005539 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
5540 pPage->pgno, nOld, nNew, nCell));
drh8b2f49b2001-06-08 00:21:52 +00005541 return rc;
5542}
5543
5544/*
drh43605152004-05-29 21:46:49 +00005545** This routine is called for the root page of a btree when the root
5546** page contains no cells. This is an opportunity to make the tree
5547** shallower by one level.
5548*/
5549static int balance_shallower(MemPage *pPage){
5550 MemPage *pChild; /* The only child page of pPage */
5551 Pgno pgnoChild; /* Page number for pChild */
drh2e38c322004-09-03 18:38:44 +00005552 int rc = SQLITE_OK; /* Return code from subprocedures */
danielk1977aef0bf62005-12-30 16:28:01 +00005553 BtShared *pBt; /* The main BTree structure */
drh2e38c322004-09-03 18:38:44 +00005554 int mxCellPerPage; /* Maximum number of cells per page */
5555 u8 **apCell; /* All cells from pages being balanced */
drha9121e42008-02-19 14:59:35 +00005556 u16 *szCell; /* Local size of all cells */
drh43605152004-05-29 21:46:49 +00005557
5558 assert( pPage->pParent==0 );
5559 assert( pPage->nCell==0 );
drh1fee73e2007-08-29 04:00:57 +00005560 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh2e38c322004-09-03 18:38:44 +00005561 pBt = pPage->pBt;
5562 mxCellPerPage = MX_CELL(pBt);
drhe5ae5732008-06-15 02:51:47 +00005563 apCell = sqlite3Malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) );
drh2e38c322004-09-03 18:38:44 +00005564 if( apCell==0 ) return SQLITE_NOMEM;
drha9121e42008-02-19 14:59:35 +00005565 szCell = (u16*)&apCell[mxCellPerPage];
drh43605152004-05-29 21:46:49 +00005566 if( pPage->leaf ){
5567 /* The table is completely empty */
5568 TRACE(("BALANCE: empty table %d\n", pPage->pgno));
5569 }else{
5570 /* The root page is empty but has one child. Transfer the
5571 ** information from that one child into the root page if it
5572 ** will fit. This reduces the depth of the tree by one.
5573 **
5574 ** If the root page is page 1, it has less space available than
5575 ** its child (due to the 100 byte header that occurs at the beginning
5576 ** of the database fle), so it might not be able to hold all of the
5577 ** information currently contained in the child. If this is the
5578 ** case, then do not do the transfer. Leave page 1 empty except
5579 ** for the right-pointer to the child page. The child page becomes
5580 ** the virtual root of the tree.
5581 */
5582 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5583 assert( pgnoChild>0 );
danielk1977ad0132d2008-06-07 08:58:22 +00005584 assert( pgnoChild<=pagerPagecount(pPage->pBt->pPager) );
drh16a9b832007-05-05 18:39:25 +00005585 rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
drh2e38c322004-09-03 18:38:44 +00005586 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005587 if( pPage->pgno==1 ){
drh16a9b832007-05-05 18:39:25 +00005588 rc = sqlite3BtreeInitPage(pChild, pPage);
drh2e38c322004-09-03 18:38:44 +00005589 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005590 assert( pChild->nOverflow==0 );
5591 if( pChild->nFree>=100 ){
5592 /* The child information will fit on the root page, so do the
5593 ** copy */
5594 int i;
5595 zeroPage(pPage, pChild->aData[0]);
5596 for(i=0; i<pChild->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00005597 apCell[i] = findCell(pChild,i);
drh43605152004-05-29 21:46:49 +00005598 szCell[i] = cellSizePtr(pChild, apCell[i]);
5599 }
5600 assemblePage(pPage, pChild->nCell, apCell, szCell);
danielk1977ae825582004-11-23 09:06:55 +00005601 /* Copy the right-pointer of the child to the parent. */
5602 put4byte(&pPage->aData[pPage->hdrOffset+8],
5603 get4byte(&pChild->aData[pChild->hdrOffset+8]));
drh43605152004-05-29 21:46:49 +00005604 freePage(pChild);
5605 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
5606 }else{
5607 /* The child has more information that will fit on the root.
5608 ** The tree is already balanced. Do nothing. */
5609 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
5610 }
5611 }else{
5612 memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
5613 pPage->isInit = 0;
5614 pPage->pParent = 0;
drh16a9b832007-05-05 18:39:25 +00005615 rc = sqlite3BtreeInitPage(pPage, 0);
drh43605152004-05-29 21:46:49 +00005616 assert( rc==SQLITE_OK );
5617 freePage(pChild);
5618 TRACE(("BALANCE: transfer child %d into root %d\n",
5619 pChild->pgno, pPage->pgno));
5620 }
danielk197787c52b52008-07-19 11:49:07 +00005621 rc = reparentChildPages(pPage, 1);
danielk1977ac11ee62005-01-15 12:45:51 +00005622 assert( pPage->nOverflow==0 );
danielk197785d90ca2008-07-19 14:25:15 +00005623 if( ISAUTOVACUUM ){
danielk1977aac0a382005-01-16 11:07:06 +00005624 int i;
danielk1977ac11ee62005-01-15 12:45:51 +00005625 for(i=0; i<pPage->nCell; i++){
danielk197779a40da2005-01-16 08:00:01 +00005626 rc = ptrmapPutOvfl(pPage, i);
5627 if( rc!=SQLITE_OK ){
5628 goto end_shallow_balance;
danielk1977ac11ee62005-01-15 12:45:51 +00005629 }
5630 }
5631 }
drh43605152004-05-29 21:46:49 +00005632 releasePage(pChild);
5633 }
drh2e38c322004-09-03 18:38:44 +00005634end_shallow_balance:
drh17435752007-08-16 04:30:38 +00005635 sqlite3_free(apCell);
drh2e38c322004-09-03 18:38:44 +00005636 return rc;
drh43605152004-05-29 21:46:49 +00005637}
5638
5639
5640/*
5641** The root page is overfull
5642**
5643** When this happens, Create a new child page and copy the
5644** contents of the root into the child. Then make the root
5645** page an empty page with rightChild pointing to the new
5646** child. Finally, call balance_internal() on the new child
5647** to cause it to split.
5648*/
5649static int balance_deeper(MemPage *pPage){
5650 int rc; /* Return value from subprocedures */
5651 MemPage *pChild; /* Pointer to a new child page */
5652 Pgno pgnoChild; /* Page number of the new child page */
danielk1977aef0bf62005-12-30 16:28:01 +00005653 BtShared *pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00005654 int usableSize; /* Total usable size of a page */
5655 u8 *data; /* Content of the parent page */
5656 u8 *cdata; /* Content of the child page */
5657 int hdr; /* Offset to page header in parent */
drh281b21d2008-08-22 12:57:08 +00005658 int cbrk; /* Offset to content of first cell in parent */
drh43605152004-05-29 21:46:49 +00005659
5660 assert( pPage->pParent==0 );
5661 assert( pPage->nOverflow>0 );
5662 pBt = pPage->pBt;
drh1fee73e2007-08-29 04:00:57 +00005663 assert( sqlite3_mutex_held(pBt->mutex) );
drh4f0c5872007-03-26 22:05:01 +00005664 rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
drh43605152004-05-29 21:46:49 +00005665 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005666 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
drh43605152004-05-29 21:46:49 +00005667 usableSize = pBt->usableSize;
5668 data = pPage->aData;
5669 hdr = pPage->hdrOffset;
drh281b21d2008-08-22 12:57:08 +00005670 cbrk = get2byte(&data[hdr+5]);
drh43605152004-05-29 21:46:49 +00005671 cdata = pChild->aData;
5672 memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
drh281b21d2008-08-22 12:57:08 +00005673 memcpy(&cdata[cbrk], &data[cbrk], usableSize-cbrk);
drh10131482008-07-11 03:34:09 +00005674 if( pChild->isInit ) return SQLITE_CORRUPT;
drh16a9b832007-05-05 18:39:25 +00005675 rc = sqlite3BtreeInitPage(pChild, pPage);
danielk19776b456a22005-03-21 04:04:02 +00005676 if( rc ) goto balancedeeper_out;
drh43605152004-05-29 21:46:49 +00005677 memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
5678 pChild->nOverflow = pPage->nOverflow;
5679 if( pChild->nOverflow ){
5680 pChild->nFree = 0;
5681 }
5682 assert( pChild->nCell==pPage->nCell );
5683 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
5684 put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
5685 TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
danielk197785d90ca2008-07-19 14:25:15 +00005686 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005687 int i;
5688 rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
danielk19776b456a22005-03-21 04:04:02 +00005689 if( rc ) goto balancedeeper_out;
danielk1977ac11ee62005-01-15 12:45:51 +00005690 for(i=0; i<pChild->nCell; i++){
danielk197779a40da2005-01-16 08:00:01 +00005691 rc = ptrmapPutOvfl(pChild, i);
5692 if( rc!=SQLITE_OK ){
danielk1977474b7cc2008-07-09 11:49:46 +00005693 goto balancedeeper_out;
danielk1977ac11ee62005-01-15 12:45:51 +00005694 }
5695 }
danielk197787c52b52008-07-19 11:49:07 +00005696 rc = reparentChildPages(pChild, 1);
danielk1977ac11ee62005-01-15 12:45:51 +00005697 }
danielk197787c52b52008-07-19 11:49:07 +00005698 if( rc==SQLITE_OK ){
5699 rc = balance_nonroot(pChild);
5700 }
danielk19776b456a22005-03-21 04:04:02 +00005701
5702balancedeeper_out:
drh43605152004-05-29 21:46:49 +00005703 releasePage(pChild);
5704 return rc;
5705}
5706
5707/*
5708** Decide if the page pPage needs to be balanced. If balancing is
5709** required, call the appropriate balancing routine.
5710*/
danielk1977ac245ec2005-01-14 13:50:11 +00005711static int balance(MemPage *pPage, int insert){
drh43605152004-05-29 21:46:49 +00005712 int rc = SQLITE_OK;
drh1fee73e2007-08-29 04:00:57 +00005713 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00005714 if( pPage->pParent==0 ){
danielk19776e465eb2007-08-21 13:11:00 +00005715 rc = sqlite3PagerWrite(pPage->pDbPage);
5716 if( rc==SQLITE_OK && pPage->nOverflow>0 ){
drh43605152004-05-29 21:46:49 +00005717 rc = balance_deeper(pPage);
5718 }
danielk1977687566d2004-11-02 12:56:41 +00005719 if( rc==SQLITE_OK && pPage->nCell==0 ){
drh43605152004-05-29 21:46:49 +00005720 rc = balance_shallower(pPage);
5721 }
5722 }else{
danielk1977ac245ec2005-01-14 13:50:11 +00005723 if( pPage->nOverflow>0 ||
5724 (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
drh43605152004-05-29 21:46:49 +00005725 rc = balance_nonroot(pPage);
5726 }
5727 }
5728 return rc;
5729}
5730
5731/*
drh8dcd7ca2004-08-08 19:43:29 +00005732** This routine checks all cursors that point to table pgnoRoot.
drh980b1a72006-08-16 16:42:48 +00005733** If any of those cursors were opened with wrFlag==0 in a different
5734** database connection (a database connection that shares the pager
5735** cache with the current connection) and that other connection
5736** is not in the ReadUncommmitted state, then this routine returns
5737** SQLITE_LOCKED.
danielk1977299b1872004-11-22 10:02:10 +00005738**
danielk19773588ceb2008-06-10 17:30:26 +00005739** As well as cursors with wrFlag==0, cursors with wrFlag==1 and
5740** isIncrblobHandle==1 are also considered 'read' cursors. Incremental
5741** blob cursors are used for both reading and writing.
5742**
5743** When pgnoRoot is the root page of an intkey table, this function is also
5744** responsible for invalidating incremental blob cursors when the table row
5745** on which they are opened is deleted or modified. Cursors are invalidated
5746** according to the following rules:
5747**
5748** 1) When BtreeClearTable() is called to completely delete the contents
5749** of a B-Tree table, pExclude is set to zero and parameter iRow is
5750** set to non-zero. In this case all incremental blob cursors open
5751** on the table rooted at pgnoRoot are invalidated.
5752**
5753** 2) When BtreeInsert(), BtreeDelete() or BtreePutData() is called to
5754** modify a table row via an SQL statement, pExclude is set to the
5755** write cursor used to do the modification and parameter iRow is set
5756** to the integer row id of the B-Tree entry being modified. Unless
5757** pExclude is itself an incremental blob cursor, then all incremental
5758** blob cursors open on row iRow of the B-Tree are invalidated.
5759**
5760** 3) If both pExclude and iRow are set to zero, no incremental blob
5761** cursors are invalidated.
drhf74b8d92002-09-01 23:20:45 +00005762*/
danielk19773588ceb2008-06-10 17:30:26 +00005763static int checkReadLocks(
5764 Btree *pBtree,
5765 Pgno pgnoRoot,
5766 BtCursor *pExclude,
5767 i64 iRow
5768){
danielk1977299b1872004-11-22 10:02:10 +00005769 BtCursor *p;
drh980b1a72006-08-16 16:42:48 +00005770 BtShared *pBt = pBtree->pBt;
drhe5fe6902007-12-07 18:55:28 +00005771 sqlite3 *db = pBtree->db;
drh1fee73e2007-08-29 04:00:57 +00005772 assert( sqlite3BtreeHoldsMutex(pBtree) );
danielk1977299b1872004-11-22 10:02:10 +00005773 for(p=pBt->pCursor; p; p=p->pNext){
drh980b1a72006-08-16 16:42:48 +00005774 if( p==pExclude ) continue;
drh980b1a72006-08-16 16:42:48 +00005775 if( p->pgnoRoot!=pgnoRoot ) continue;
danielk19773588ceb2008-06-10 17:30:26 +00005776#ifndef SQLITE_OMIT_INCRBLOB
5777 if( p->isIncrblobHandle && (
5778 (!pExclude && iRow)
5779 || (pExclude && !pExclude->isIncrblobHandle && p->info.nKey==iRow)
5780 )){
5781 p->eState = CURSOR_INVALID;
5782 }
5783#endif
5784 if( p->eState!=CURSOR_VALID ) continue;
5785 if( p->wrFlag==0
5786#ifndef SQLITE_OMIT_INCRBLOB
5787 || p->isIncrblobHandle
5788#endif
5789 ){
drhe5fe6902007-12-07 18:55:28 +00005790 sqlite3 *dbOther = p->pBtree->db;
drh980b1a72006-08-16 16:42:48 +00005791 if( dbOther==0 ||
5792 (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
5793 return SQLITE_LOCKED;
5794 }
danielk1977299b1872004-11-22 10:02:10 +00005795 }
5796 }
drhf74b8d92002-09-01 23:20:45 +00005797 return SQLITE_OK;
5798}
5799
5800/*
drh3b7511c2001-05-26 13:15:44 +00005801** Insert a new record into the BTree. The key is given by (pKey,nKey)
5802** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00005803** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00005804** is left pointing at a random location.
5805**
5806** For an INTKEY table, only the nKey value of the key is used. pKey is
5807** ignored. For a ZERODATA table, the pData and nData are both ignored.
drh3b7511c2001-05-26 13:15:44 +00005808*/
drh3aac2dd2004-04-26 14:10:20 +00005809int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00005810 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00005811 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00005812 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00005813 int nZero, /* Number of extra 0 bytes to append to data */
drhe4d90812007-03-29 05:51:49 +00005814 int appendBias /* True if this is likely an append */
drh3b7511c2001-05-26 13:15:44 +00005815){
drh3b7511c2001-05-26 13:15:44 +00005816 int rc;
5817 int loc;
drh14acc042001-06-10 19:56:58 +00005818 int szNew;
drh3b7511c2001-05-26 13:15:44 +00005819 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00005820 Btree *p = pCur->pBtree;
5821 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00005822 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00005823 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00005824
drh1fee73e2007-08-29 04:00:57 +00005825 assert( cursorHoldsMutex(pCur) );
danielk1977aef0bf62005-12-30 16:28:01 +00005826 if( pBt->inTransaction!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005827 /* Must start a transaction before doing an insert */
drhd677b3d2007-08-20 22:48:41 +00005828 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drhd677b3d2007-08-20 22:48:41 +00005829 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005830 }
drhf74b8d92002-09-01 23:20:45 +00005831 assert( !pBt->readOnly );
drhecdc7532001-09-23 02:35:53 +00005832 if( !pCur->wrFlag ){
5833 return SQLITE_PERM; /* Cursor not open for writing */
5834 }
danielk19773588ceb2008-06-10 17:30:26 +00005835 if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur, nKey) ){
drhf74b8d92002-09-01 23:20:45 +00005836 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
5837 }
drhfb982642007-08-30 01:19:59 +00005838 if( pCur->eState==CURSOR_FAULT ){
5839 return pCur->skip;
5840 }
danielk1977da184232006-01-05 11:34:32 +00005841
5842 /* Save the positions of any other cursors open on this table */
drhbf700f32007-03-31 02:36:44 +00005843 clearCursorPosition(pCur);
danielk19772e94d4d2006-01-09 05:36:27 +00005844 if(
danielk19772e94d4d2006-01-09 05:36:27 +00005845 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
drhe63d9992008-08-13 19:11:48 +00005846 SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
danielk19772e94d4d2006-01-09 05:36:27 +00005847 ){
danielk1977da184232006-01-05 11:34:32 +00005848 return rc;
5849 }
5850
drh14acc042001-06-10 19:56:58 +00005851 pPage = pCur->pPage;
drh4a1c3802004-05-12 15:15:47 +00005852 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00005853 assert( pPage->leaf || !pPage->intKey );
drh3a4c1412004-05-09 20:40:11 +00005854 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
5855 pCur->pgnoRoot, nKey, nData, pPage->pgno,
5856 loc==0 ? "overwrite" : "new entry"));
drh7aa128d2002-06-21 13:09:16 +00005857 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00005858 allocateTempSpace(pBt);
5859 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00005860 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00005861 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00005862 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00005863 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00005864 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk1977da184232006-01-05 11:34:32 +00005865 if( loc==0 && CURSOR_VALID==pCur->eState ){
drha9121e42008-02-19 14:59:35 +00005866 u16 szOld;
drha34b6762004-05-07 13:30:42 +00005867 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00005868 rc = sqlite3PagerWrite(pPage->pDbPage);
5869 if( rc ){
5870 goto end_insert;
5871 }
danielk19771cc5ed82007-05-16 17:28:43 +00005872 oldCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00005873 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005874 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00005875 }
drh43605152004-05-29 21:46:49 +00005876 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00005877 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00005878 if( rc ) goto end_insert;
drh4b70f112004-05-02 21:12:19 +00005879 dropCell(pPage, pCur->idx, szOld);
drh7c717f72001-06-24 20:39:41 +00005880 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00005881 assert( pPage->leaf );
drh14acc042001-06-10 19:56:58 +00005882 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00005883 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00005884 pCur->validNKey = 0;
drh14acc042001-06-10 19:56:58 +00005885 }else{
drh4b70f112004-05-02 21:12:19 +00005886 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00005887 }
danielk1977a3ad5e72005-01-07 08:56:44 +00005888 rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
danielk1977e80463b2004-11-03 03:01:16 +00005889 if( rc!=SQLITE_OK ) goto end_insert;
danielk1977ac245ec2005-01-14 13:50:11 +00005890 rc = balance(pPage, 1);
danielk1977299b1872004-11-22 10:02:10 +00005891 if( rc==SQLITE_OK ){
5892 moveToRoot(pCur);
5893 }
drh2e38c322004-09-03 18:38:44 +00005894end_insert:
drh5e2f8b92001-05-28 00:41:15 +00005895 return rc;
5896}
5897
5898/*
drh4b70f112004-05-02 21:12:19 +00005899** Delete the entry that the cursor is pointing to. The cursor
5900** is left pointing at a random location.
drh3b7511c2001-05-26 13:15:44 +00005901*/
drh3aac2dd2004-04-26 14:10:20 +00005902int sqlite3BtreeDelete(BtCursor *pCur){
drh5e2f8b92001-05-28 00:41:15 +00005903 MemPage *pPage = pCur->pPage;
drh4b70f112004-05-02 21:12:19 +00005904 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00005905 int rc;
danielk1977cfe9a692004-06-16 12:00:29 +00005906 Pgno pgnoChild = 0;
drhd677b3d2007-08-20 22:48:41 +00005907 Btree *p = pCur->pBtree;
5908 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00005909
drh1fee73e2007-08-29 04:00:57 +00005910 assert( cursorHoldsMutex(pCur) );
drh7aa128d2002-06-21 13:09:16 +00005911 assert( pPage->isInit );
danielk1977aef0bf62005-12-30 16:28:01 +00005912 if( pBt->inTransaction!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005913 /* Must start a transaction before doing a delete */
drhd677b3d2007-08-20 22:48:41 +00005914 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drhd677b3d2007-08-20 22:48:41 +00005915 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005916 }
drhf74b8d92002-09-01 23:20:45 +00005917 assert( !pBt->readOnly );
drhfb982642007-08-30 01:19:59 +00005918 if( pCur->eState==CURSOR_FAULT ){
5919 return pCur->skip;
5920 }
drhbd03cae2001-06-02 02:40:57 +00005921 if( pCur->idx >= pPage->nCell ){
5922 return SQLITE_ERROR; /* The cursor is not pointing to anything */
5923 }
drhecdc7532001-09-23 02:35:53 +00005924 if( !pCur->wrFlag ){
5925 return SQLITE_PERM; /* Did not open this cursor for writing */
5926 }
danielk19773588ceb2008-06-10 17:30:26 +00005927 if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur, pCur->info.nKey) ){
drhf74b8d92002-09-01 23:20:45 +00005928 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
5929 }
danielk1977da184232006-01-05 11:34:32 +00005930
5931 /* Restore the current cursor position (a no-op if the cursor is not in
5932 ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
danielk19773b8a05f2007-03-19 17:44:26 +00005933 ** open on the same table. Then call sqlite3PagerWrite() on the page
danielk1977da184232006-01-05 11:34:32 +00005934 ** that the entry will be deleted from.
5935 */
5936 if(
drha3460582008-07-11 21:02:53 +00005937 (rc = restoreCursorPosition(pCur))!=0 ||
drhd1167392006-01-23 13:00:35 +00005938 (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
danielk19773b8a05f2007-03-19 17:44:26 +00005939 (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
danielk1977da184232006-01-05 11:34:32 +00005940 ){
5941 return rc;
5942 }
danielk1977e6efa742004-11-10 11:55:10 +00005943
drh85b623f2007-12-13 21:54:09 +00005944 /* Locate the cell within its page and leave pCell pointing to the
danielk1977e6efa742004-11-10 11:55:10 +00005945 ** data. The clearCell() call frees any overflow pages associated with the
5946 ** cell. The cell itself is still intact.
5947 */
danielk19771cc5ed82007-05-16 17:28:43 +00005948 pCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00005949 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005950 pgnoChild = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00005951 }
danielk197728129562005-01-11 10:25:06 +00005952 rc = clearCell(pPage, pCell);
drhd677b3d2007-08-20 22:48:41 +00005953 if( rc ){
drhd677b3d2007-08-20 22:48:41 +00005954 return rc;
5955 }
danielk1977e6efa742004-11-10 11:55:10 +00005956
drh4b70f112004-05-02 21:12:19 +00005957 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00005958 /*
drh5e00f6c2001-09-13 13:46:56 +00005959 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00005960 ** do something we will leave a hole on an internal page.
5961 ** We have to fill the hole by moving in a cell from a leaf. The
5962 ** next Cell after the one to be deleted is guaranteed to exist and
danielk1977299b1872004-11-22 10:02:10 +00005963 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00005964 */
drh14acc042001-06-10 19:56:58 +00005965 BtCursor leafCur;
drh4b70f112004-05-02 21:12:19 +00005966 unsigned char *pNext;
danielk1977299b1872004-11-22 10:02:10 +00005967 int notUsed;
danielk19776b456a22005-03-21 04:04:02 +00005968 unsigned char *tempCell = 0;
drh44845222008-07-17 18:39:57 +00005969 assert( !pPage->intKey );
drh16a9b832007-05-05 18:39:25 +00005970 sqlite3BtreeGetTempCursor(pCur, &leafCur);
danielk1977299b1872004-11-22 10:02:10 +00005971 rc = sqlite3BtreeNext(&leafCur, &notUsed);
danielk19776b456a22005-03-21 04:04:02 +00005972 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005973 rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
danielk19776b456a22005-03-21 04:04:02 +00005974 }
5975 if( rc==SQLITE_OK ){
drha9121e42008-02-19 14:59:35 +00005976 u16 szNext;
danielk19776b456a22005-03-21 04:04:02 +00005977 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
5978 pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
5979 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
danielk19771cc5ed82007-05-16 17:28:43 +00005980 pNext = findCell(leafCur.pPage, leafCur.idx);
danielk19776b456a22005-03-21 04:04:02 +00005981 szNext = cellSizePtr(leafCur.pPage, pNext);
5982 assert( MX_CELL_SIZE(pBt)>=szNext+4 );
danielk197752ae7242008-03-25 14:24:56 +00005983 allocateTempSpace(pBt);
5984 tempCell = pBt->pTmpSpace;
danielk19776b456a22005-03-21 04:04:02 +00005985 if( tempCell==0 ){
5986 rc = SQLITE_NOMEM;
5987 }
danielk19778ea1cfa2008-01-01 06:19:02 +00005988 if( rc==SQLITE_OK ){
5989 rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
5990 }
5991 if( rc==SQLITE_OK ){
5992 put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
5993 rc = balance(pPage, 0);
5994 }
5995 if( rc==SQLITE_OK ){
5996 dropCell(leafCur.pPage, leafCur.idx, szNext);
5997 rc = balance(leafCur.pPage, 0);
5998 }
danielk19776b456a22005-03-21 04:04:02 +00005999 }
drh16a9b832007-05-05 18:39:25 +00006000 sqlite3BtreeReleaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00006001 }else{
danielk1977299b1872004-11-22 10:02:10 +00006002 TRACE(("DELETE: table=%d delete from leaf %d\n",
6003 pCur->pgnoRoot, pPage->pgno));
6004 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
danielk1977ac245ec2005-01-14 13:50:11 +00006005 rc = balance(pPage, 0);
drh5e2f8b92001-05-28 00:41:15 +00006006 }
danielk19776b456a22005-03-21 04:04:02 +00006007 if( rc==SQLITE_OK ){
6008 moveToRoot(pCur);
6009 }
drh5e2f8b92001-05-28 00:41:15 +00006010 return rc;
drh3b7511c2001-05-26 13:15:44 +00006011}
drh8b2f49b2001-06-08 00:21:52 +00006012
6013/*
drhc6b52df2002-01-04 03:09:29 +00006014** Create a new BTree table. Write into *piTable the page
6015** number for the root page of the new table.
6016**
drhab01f612004-05-22 02:55:23 +00006017** The type of type is determined by the flags parameter. Only the
6018** following values of flags are currently in use. Other values for
6019** flags might not work:
6020**
6021** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6022** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006023*/
drhd677b3d2007-08-20 22:48:41 +00006024static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006025 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006026 MemPage *pRoot;
6027 Pgno pgnoRoot;
6028 int rc;
drhd677b3d2007-08-20 22:48:41 +00006029
drh1fee73e2007-08-29 04:00:57 +00006030 assert( sqlite3BtreeHoldsMutex(p) );
danielk1977aef0bf62005-12-30 16:28:01 +00006031 if( pBt->inTransaction!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00006032 /* Must start a transaction first */
drhd677b3d2007-08-20 22:48:41 +00006033 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
6034 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006035 }
danielk197728129562005-01-11 10:25:06 +00006036 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006037
danielk1977003ba062004-11-04 02:57:33 +00006038#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006039 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006040 if( rc ){
6041 return rc;
6042 }
danielk1977003ba062004-11-04 02:57:33 +00006043#else
danielk1977687566d2004-11-02 12:56:41 +00006044 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006045 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6046 MemPage *pPageMove; /* The page to move to. */
6047
danielk197720713f32007-05-03 11:43:33 +00006048 /* Creating a new table may probably require moving an existing database
6049 ** to make room for the new tables root page. In case this page turns
6050 ** out to be an overflow page, delete all overflow page-map caches
6051 ** held by open cursors.
6052 */
danielk197792d4d7a2007-05-04 12:05:56 +00006053 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006054
danielk1977003ba062004-11-04 02:57:33 +00006055 /* Read the value of meta[3] from the database to determine where the
6056 ** root page of the new table should go. meta[3] is the largest root-page
6057 ** created so far, so the new root-page is (meta[3]+1).
6058 */
danielk1977aef0bf62005-12-30 16:28:01 +00006059 rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
drhd677b3d2007-08-20 22:48:41 +00006060 if( rc!=SQLITE_OK ){
6061 return rc;
6062 }
danielk1977003ba062004-11-04 02:57:33 +00006063 pgnoRoot++;
6064
danielk1977599fcba2004-11-08 07:13:13 +00006065 /* The new root-page may not be allocated on a pointer-map page, or the
6066 ** PENDING_BYTE page.
6067 */
drh72190432008-01-31 14:54:43 +00006068 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006069 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006070 pgnoRoot++;
6071 }
6072 assert( pgnoRoot>=3 );
6073
6074 /* Allocate a page. The page that currently resides at pgnoRoot will
6075 ** be moved to the allocated page (unless the allocated page happens
6076 ** to reside at pgnoRoot).
6077 */
drh4f0c5872007-03-26 22:05:01 +00006078 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006079 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006080 return rc;
6081 }
danielk1977003ba062004-11-04 02:57:33 +00006082
6083 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006084 /* pgnoRoot is the page that will be used for the root-page of
6085 ** the new table (assuming an error did not occur). But we were
6086 ** allocated pgnoMove. If required (i.e. if it was not allocated
6087 ** by extending the file), the current page at position pgnoMove
6088 ** is already journaled.
6089 */
danielk1977003ba062004-11-04 02:57:33 +00006090 u8 eType;
6091 Pgno iPtrPage;
6092
6093 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006094
6095 /* Move the page currently at pgnoRoot to pgnoMove. */
drh16a9b832007-05-05 18:39:25 +00006096 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006097 if( rc!=SQLITE_OK ){
6098 return rc;
6099 }
6100 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drhccae6022005-02-26 17:31:26 +00006101 if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00006102 releasePage(pRoot);
6103 return rc;
6104 }
drhccae6022005-02-26 17:31:26 +00006105 assert( eType!=PTRMAP_ROOTPAGE );
6106 assert( eType!=PTRMAP_FREEPAGE );
danielk19773b8a05f2007-03-19 17:44:26 +00006107 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk19775fd057a2005-03-09 13:09:43 +00006108 if( rc!=SQLITE_OK ){
6109 releasePage(pRoot);
6110 return rc;
6111 }
danielk19774c999992008-07-16 18:17:55 +00006112 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006113 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006114
6115 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006116 if( rc!=SQLITE_OK ){
6117 return rc;
6118 }
drh16a9b832007-05-05 18:39:25 +00006119 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006120 if( rc!=SQLITE_OK ){
6121 return rc;
6122 }
danielk19773b8a05f2007-03-19 17:44:26 +00006123 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006124 if( rc!=SQLITE_OK ){
6125 releasePage(pRoot);
6126 return rc;
6127 }
6128 }else{
6129 pRoot = pPageMove;
6130 }
6131
danielk197742741be2005-01-08 12:42:39 +00006132 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00006133 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
6134 if( rc ){
6135 releasePage(pRoot);
6136 return rc;
6137 }
danielk1977aef0bf62005-12-30 16:28:01 +00006138 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006139 if( rc ){
6140 releasePage(pRoot);
6141 return rc;
6142 }
danielk197742741be2005-01-08 12:42:39 +00006143
danielk1977003ba062004-11-04 02:57:33 +00006144 }else{
drh4f0c5872007-03-26 22:05:01 +00006145 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006146 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006147 }
6148#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006149 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006150 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006151 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006152 *piTable = (int)pgnoRoot;
6153 return SQLITE_OK;
6154}
drhd677b3d2007-08-20 22:48:41 +00006155int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6156 int rc;
6157 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00006158 p->pBt->db = p->db;
drhd677b3d2007-08-20 22:48:41 +00006159 rc = btreeCreateTable(p, piTable, flags);
6160 sqlite3BtreeLeave(p);
6161 return rc;
6162}
drh8b2f49b2001-06-08 00:21:52 +00006163
6164/*
6165** Erase the given database page and all its children. Return
6166** the page to the freelist.
6167*/
drh4b70f112004-05-02 21:12:19 +00006168static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006169 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00006170 Pgno pgno, /* Page number to clear */
6171 MemPage *pParent, /* Parent page. NULL for the root */
6172 int freePageFlag /* Deallocate page if true */
6173){
danielk19776b456a22005-03-21 04:04:02 +00006174 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006175 int rc;
drh4b70f112004-05-02 21:12:19 +00006176 unsigned char *pCell;
6177 int i;
drh8b2f49b2001-06-08 00:21:52 +00006178
drh1fee73e2007-08-29 04:00:57 +00006179 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00006180 if( pgno>pagerPagecount(pBt->pPager) ){
drh49285702005-09-17 15:20:26 +00006181 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006182 }
6183
drhde647132004-05-07 17:57:49 +00006184 rc = getAndInitPage(pBt, pgno, &pPage, pParent);
danielk19776b456a22005-03-21 04:04:02 +00006185 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00006186 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006187 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006188 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006189 rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
danielk19776b456a22005-03-21 04:04:02 +00006190 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006191 }
drh4b70f112004-05-02 21:12:19 +00006192 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006193 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006194 }
drha34b6762004-05-07 13:30:42 +00006195 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006196 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
danielk19776b456a22005-03-21 04:04:02 +00006197 if( rc ) goto cleardatabasepage_out;
drh2aa679f2001-06-25 02:11:07 +00006198 }
6199 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00006200 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00006201 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006202 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006203 }
danielk19776b456a22005-03-21 04:04:02 +00006204
6205cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006206 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006207 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006208}
6209
6210/*
drhab01f612004-05-22 02:55:23 +00006211** Delete all information from a single table in the database. iTable is
6212** the page number of the root of the table. After this routine returns,
6213** the root page is empty, but still exists.
6214**
6215** This routine will fail with SQLITE_LOCKED if there are any open
6216** read cursors on the table. Open write cursors are moved to the
6217** root of the table.
drh8b2f49b2001-06-08 00:21:52 +00006218*/
danielk1977aef0bf62005-12-30 16:28:01 +00006219int sqlite3BtreeClearTable(Btree *p, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00006220 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006221 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006222 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00006223 pBt->db = p->db;
danielk1977aef0bf62005-12-30 16:28:01 +00006224 if( p->inTrans!=TRANS_WRITE ){
drhd677b3d2007-08-20 22:48:41 +00006225 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
danielk19773588ceb2008-06-10 17:30:26 +00006226 }else if( (rc = checkReadLocks(p, iTable, 0, 1))!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00006227 /* nothing to do */
6228 }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
6229 /* nothing to do */
6230 }else{
6231 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
drh8b2f49b2001-06-08 00:21:52 +00006232 }
drhd677b3d2007-08-20 22:48:41 +00006233 sqlite3BtreeLeave(p);
6234 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006235}
6236
6237/*
6238** Erase all information in a table and add the root of the table to
6239** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006240** page 1) is never added to the freelist.
6241**
6242** This routine will fail with SQLITE_LOCKED if there are any open
6243** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006244**
6245** If AUTOVACUUM is enabled and the page at iTable is not the last
6246** root page in the database file, then the last root page
6247** in the database file is moved into the slot formerly occupied by
6248** iTable and that last slot formerly occupied by the last root page
6249** is added to the freelist instead of iTable. In this say, all
6250** root pages are kept at the beginning of the database file, which
6251** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6252** page number that used to be the last root page in the file before
6253** the move. If no page gets moved, *piMoved is set to 0.
6254** The last root page is recorded in meta[3] and the value of
6255** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006256*/
drhd677b3d2007-08-20 22:48:41 +00006257static int btreeDropTable(Btree *p, int iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006258 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006259 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006260 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006261
drh1fee73e2007-08-29 04:00:57 +00006262 assert( sqlite3BtreeHoldsMutex(p) );
danielk1977aef0bf62005-12-30 16:28:01 +00006263 if( p->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00006264 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00006265 }
danielk1977a0bf2652004-11-04 14:30:04 +00006266
danielk1977e6efa742004-11-10 11:55:10 +00006267 /* It is illegal to drop a table if any cursors are open on the
6268 ** database. This is because in auto-vacuum mode the backend may
6269 ** need to move another root-page to fill a gap left by the deleted
6270 ** root page. If an open cursor was using this page a problem would
6271 ** occur.
6272 */
6273 if( pBt->pCursor ){
6274 return SQLITE_LOCKED;
drh5df72a52002-06-06 23:16:05 +00006275 }
danielk1977a0bf2652004-11-04 14:30:04 +00006276
drh16a9b832007-05-05 18:39:25 +00006277 rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006278 if( rc ) return rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006279 rc = sqlite3BtreeClearTable(p, iTable);
danielk19776b456a22005-03-21 04:04:02 +00006280 if( rc ){
6281 releasePage(pPage);
6282 return rc;
6283 }
danielk1977a0bf2652004-11-04 14:30:04 +00006284
drh205f48e2004-11-05 00:43:11 +00006285 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006286
drh4b70f112004-05-02 21:12:19 +00006287 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006288#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00006289 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00006290 releasePage(pPage);
6291#else
6292 if( pBt->autoVacuum ){
6293 Pgno maxRootPgno;
danielk1977aef0bf62005-12-30 16:28:01 +00006294 rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006295 if( rc!=SQLITE_OK ){
6296 releasePage(pPage);
6297 return rc;
6298 }
6299
6300 if( iTable==maxRootPgno ){
6301 /* If the table being dropped is the table with the largest root-page
6302 ** number in the database, put the root page on the free list.
6303 */
6304 rc = freePage(pPage);
6305 releasePage(pPage);
6306 if( rc!=SQLITE_OK ){
6307 return rc;
6308 }
6309 }else{
6310 /* The table being dropped does not have the largest root-page
6311 ** number in the database. So move the page that does into the
6312 ** gap left by the deleted root-page.
6313 */
6314 MemPage *pMove;
6315 releasePage(pPage);
drh16a9b832007-05-05 18:39:25 +00006316 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006317 if( rc!=SQLITE_OK ){
6318 return rc;
6319 }
danielk19774c999992008-07-16 18:17:55 +00006320 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006321 releasePage(pMove);
6322 if( rc!=SQLITE_OK ){
6323 return rc;
6324 }
drh16a9b832007-05-05 18:39:25 +00006325 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006326 if( rc!=SQLITE_OK ){
6327 return rc;
6328 }
6329 rc = freePage(pMove);
6330 releasePage(pMove);
6331 if( rc!=SQLITE_OK ){
6332 return rc;
6333 }
6334 *piMoved = maxRootPgno;
6335 }
6336
danielk1977599fcba2004-11-08 07:13:13 +00006337 /* Set the new 'max-root-page' value in the database header. This
6338 ** is the old value less one, less one more if that happens to
6339 ** be a root-page number, less one again if that is the
6340 ** PENDING_BYTE_PAGE.
6341 */
danielk197787a6e732004-11-05 12:58:25 +00006342 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00006343 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
6344 maxRootPgno--;
6345 }
danielk1977266664d2006-02-10 08:24:21 +00006346 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00006347 maxRootPgno--;
6348 }
danielk1977599fcba2004-11-08 07:13:13 +00006349 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
6350
danielk1977aef0bf62005-12-30 16:28:01 +00006351 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006352 }else{
6353 rc = freePage(pPage);
6354 releasePage(pPage);
6355 }
6356#endif
drh2aa679f2001-06-25 02:11:07 +00006357 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00006358 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00006359 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00006360 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00006361 }
drh8b2f49b2001-06-08 00:21:52 +00006362 return rc;
6363}
drhd677b3d2007-08-20 22:48:41 +00006364int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
6365 int rc;
6366 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00006367 p->pBt->db = p->db;
drhd677b3d2007-08-20 22:48:41 +00006368 rc = btreeDropTable(p, iTable, piMoved);
6369 sqlite3BtreeLeave(p);
6370 return rc;
6371}
drh8b2f49b2001-06-08 00:21:52 +00006372
drh001bbcb2003-03-19 03:14:00 +00006373
drh8b2f49b2001-06-08 00:21:52 +00006374/*
drh23e11ca2004-05-04 17:27:28 +00006375** Read the meta-information out of a database file. Meta[0]
6376** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00006377** through meta[15] are available for use by higher layers. Meta[0]
6378** is read-only, the others are read/write.
6379**
6380** The schema layer numbers meta values differently. At the schema
6381** layer (and the SetCookie and ReadCookie opcodes) the number of
6382** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00006383*/
danielk1977aef0bf62005-12-30 16:28:01 +00006384int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk19773b8a05f2007-03-19 17:44:26 +00006385 DbPage *pDbPage;
drh8b2f49b2001-06-08 00:21:52 +00006386 int rc;
drh4b70f112004-05-02 21:12:19 +00006387 unsigned char *pP1;
danielk1977aef0bf62005-12-30 16:28:01 +00006388 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006389
drhd677b3d2007-08-20 22:48:41 +00006390 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00006391 pBt->db = p->db;
drhd677b3d2007-08-20 22:48:41 +00006392
danielk1977da184232006-01-05 11:34:32 +00006393 /* Reading a meta-data value requires a read-lock on page 1 (and hence
6394 ** the sqlite_master table. We grab this lock regardless of whether or
6395 ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
6396 ** 1 is treated as a special case by queryTableLock() and lockTable()).
6397 */
6398 rc = queryTableLock(p, 1, READ_LOCK);
6399 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00006400 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006401 return rc;
6402 }
6403
drh23e11ca2004-05-04 17:27:28 +00006404 assert( idx>=0 && idx<=15 );
danielk19773b8a05f2007-03-19 17:44:26 +00006405 rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
drhd677b3d2007-08-20 22:48:41 +00006406 if( rc ){
6407 sqlite3BtreeLeave(p);
6408 return rc;
6409 }
danielk19773b8a05f2007-03-19 17:44:26 +00006410 pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
drh23e11ca2004-05-04 17:27:28 +00006411 *pMeta = get4byte(&pP1[36 + idx*4]);
danielk19773b8a05f2007-03-19 17:44:26 +00006412 sqlite3PagerUnref(pDbPage);
drhae157872004-08-14 19:20:09 +00006413
danielk1977599fcba2004-11-08 07:13:13 +00006414 /* If autovacuumed is disabled in this build but we are trying to
6415 ** access an autovacuumed database, then make the database readonly.
6416 */
danielk1977003ba062004-11-04 02:57:33 +00006417#ifdef SQLITE_OMIT_AUTOVACUUM
drhae157872004-08-14 19:20:09 +00006418 if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00006419#endif
drhae157872004-08-14 19:20:09 +00006420
danielk1977da184232006-01-05 11:34:32 +00006421 /* Grab the read-lock on page 1. */
6422 rc = lockTable(p, 1, READ_LOCK);
drhd677b3d2007-08-20 22:48:41 +00006423 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006424 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006425}
6426
6427/*
drh23e11ca2004-05-04 17:27:28 +00006428** Write meta-information back into the database. Meta[0] is
6429** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00006430*/
danielk1977aef0bf62005-12-30 16:28:01 +00006431int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
6432 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00006433 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00006434 int rc;
drh23e11ca2004-05-04 17:27:28 +00006435 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00006436 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00006437 pBt->db = p->db;
danielk1977aef0bf62005-12-30 16:28:01 +00006438 if( p->inTrans!=TRANS_WRITE ){
drhd677b3d2007-08-20 22:48:41 +00006439 rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
6440 }else{
6441 assert( pBt->pPage1!=0 );
6442 pP1 = pBt->pPage1->aData;
6443 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6444 if( rc==SQLITE_OK ){
6445 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00006446#ifndef SQLITE_OMIT_AUTOVACUUM
drhd677b3d2007-08-20 22:48:41 +00006447 if( idx==7 ){
6448 assert( pBt->autoVacuum || iMeta==0 );
6449 assert( iMeta==0 || iMeta==1 );
6450 pBt->incrVacuum = iMeta;
6451 }
danielk19774152e672007-09-12 17:01:45 +00006452#endif
drhd677b3d2007-08-20 22:48:41 +00006453 }
drh5df72a52002-06-06 23:16:05 +00006454 }
drhd677b3d2007-08-20 22:48:41 +00006455 sqlite3BtreeLeave(p);
6456 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006457}
drh8c42ca92001-06-22 19:15:00 +00006458
drhf328bc82004-05-10 23:29:49 +00006459/*
6460** Return the flag byte at the beginning of the page that the cursor
6461** is currently pointing to.
6462*/
6463int sqlite3BtreeFlags(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00006464 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
drha3460582008-07-11 21:02:53 +00006465 ** restoreCursorPosition() here.
danielk1977da184232006-01-05 11:34:32 +00006466 */
danielk1977e448dc42008-01-02 11:50:51 +00006467 MemPage *pPage;
drha3460582008-07-11 21:02:53 +00006468 restoreCursorPosition(pCur);
danielk1977e448dc42008-01-02 11:50:51 +00006469 pPage = pCur->pPage;
drh1fee73e2007-08-29 04:00:57 +00006470 assert( cursorHoldsMutex(pCur) );
drhd0679ed2007-08-28 22:24:34 +00006471 assert( pPage->pBt==pCur->pBt );
drhf328bc82004-05-10 23:29:49 +00006472 return pPage ? pPage->aData[pPage->hdrOffset] : 0;
6473}
6474
drhdd793422001-06-28 01:54:48 +00006475
drhdd793422001-06-28 01:54:48 +00006476/*
drh5eddca62001-06-30 21:53:53 +00006477** Return the pager associated with a BTree. This routine is used for
6478** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00006479*/
danielk1977aef0bf62005-12-30 16:28:01 +00006480Pager *sqlite3BtreePager(Btree *p){
6481 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00006482}
drh5eddca62001-06-30 21:53:53 +00006483
drhb7f91642004-10-31 02:22:47 +00006484#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006485/*
6486** Append a message to the error message string.
6487*/
drh2e38c322004-09-03 18:38:44 +00006488static void checkAppendMsg(
6489 IntegrityCk *pCheck,
6490 char *zMsg1,
6491 const char *zFormat,
6492 ...
6493){
6494 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00006495 if( !pCheck->mxErr ) return;
6496 pCheck->mxErr--;
6497 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00006498 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00006499 if( pCheck->errMsg.nChar ){
6500 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00006501 }
drhf089aa42008-07-08 19:34:06 +00006502 if( zMsg1 ){
6503 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
6504 }
6505 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
6506 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00006507 if( pCheck->errMsg.mallocFailed ){
6508 pCheck->mallocFailed = 1;
6509 }
drh5eddca62001-06-30 21:53:53 +00006510}
drhb7f91642004-10-31 02:22:47 +00006511#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00006512
drhb7f91642004-10-31 02:22:47 +00006513#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006514/*
6515** Add 1 to the reference count for page iPage. If this is the second
6516** reference to the page, add an error message to pCheck->zErrMsg.
6517** Return 1 if there are 2 ore more references to the page and 0 if
6518** if this is the first reference to the page.
6519**
6520** Also check that the page number is in bounds.
6521*/
drhaaab5722002-02-19 13:39:21 +00006522static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00006523 if( iPage==0 ) return 1;
drh0de8c112002-07-06 16:32:14 +00006524 if( iPage>pCheck->nPage || iPage<0 ){
drh2e38c322004-09-03 18:38:44 +00006525 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00006526 return 1;
6527 }
6528 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00006529 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00006530 return 1;
6531 }
6532 return (pCheck->anRef[iPage]++)>1;
6533}
6534
danielk1977afcdd022004-10-31 16:25:42 +00006535#ifndef SQLITE_OMIT_AUTOVACUUM
6536/*
6537** Check that the entry in the pointer-map for page iChild maps to
6538** page iParent, pointer type ptrType. If not, append an error message
6539** to pCheck.
6540*/
6541static void checkPtrmap(
6542 IntegrityCk *pCheck, /* Integrity check context */
6543 Pgno iChild, /* Child page number */
6544 u8 eType, /* Expected pointer map type */
6545 Pgno iParent, /* Expected pointer map parent page number */
6546 char *zContext /* Context description (used for error msg) */
6547){
6548 int rc;
6549 u8 ePtrmapType;
6550 Pgno iPtrmapParent;
6551
6552 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
6553 if( rc!=SQLITE_OK ){
6554 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
6555 return;
6556 }
6557
6558 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
6559 checkAppendMsg(pCheck, zContext,
6560 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
6561 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
6562 }
6563}
6564#endif
6565
drh5eddca62001-06-30 21:53:53 +00006566/*
6567** Check the integrity of the freelist or of an overflow page list.
6568** Verify that the number of pages on the list is N.
6569*/
drh30e58752002-03-02 20:41:57 +00006570static void checkList(
6571 IntegrityCk *pCheck, /* Integrity checking context */
6572 int isFreeList, /* True for a freelist. False for overflow page list */
6573 int iPage, /* Page number for first page in the list */
6574 int N, /* Expected number of pages in the list */
6575 char *zContext /* Context for error messages */
6576){
6577 int i;
drh3a4c1412004-05-09 20:40:11 +00006578 int expected = N;
6579 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00006580 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00006581 DbPage *pOvflPage;
6582 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00006583 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00006584 checkAppendMsg(pCheck, zContext,
6585 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00006586 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00006587 break;
6588 }
6589 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00006590 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00006591 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00006592 break;
6593 }
danielk19773b8a05f2007-03-19 17:44:26 +00006594 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00006595 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00006596 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00006597#ifndef SQLITE_OMIT_AUTOVACUUM
6598 if( pCheck->pBt->autoVacuum ){
6599 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
6600 }
6601#endif
drh45b1fac2008-07-04 17:52:42 +00006602 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00006603 checkAppendMsg(pCheck, zContext,
6604 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00006605 N--;
6606 }else{
6607 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00006608 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00006609#ifndef SQLITE_OMIT_AUTOVACUUM
6610 if( pCheck->pBt->autoVacuum ){
6611 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
6612 }
6613#endif
6614 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00006615 }
6616 N -= n;
drh30e58752002-03-02 20:41:57 +00006617 }
drh30e58752002-03-02 20:41:57 +00006618 }
danielk1977afcdd022004-10-31 16:25:42 +00006619#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00006620 else{
6621 /* If this database supports auto-vacuum and iPage is not the last
6622 ** page in this overflow list, check that the pointer-map entry for
6623 ** the following page matches iPage.
6624 */
6625 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00006626 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00006627 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
6628 }
danielk1977afcdd022004-10-31 16:25:42 +00006629 }
6630#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006631 iPage = get4byte(pOvflData);
6632 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00006633 }
6634}
drhb7f91642004-10-31 02:22:47 +00006635#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00006636
drhb7f91642004-10-31 02:22:47 +00006637#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006638/*
6639** Do various sanity checks on a single page of a tree. Return
6640** the tree depth. Root pages return 0. Parents of root pages
6641** return 1, and so forth.
6642**
6643** These checks are done:
6644**
6645** 1. Make sure that cells and freeblocks do not overlap
6646** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00006647** NO 2. Make sure cell keys are in order.
6648** NO 3. Make sure no key is less than or equal to zLowerBound.
6649** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00006650** 5. Check the integrity of overflow pages.
6651** 6. Recursively call checkTreePage on all children.
6652** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00006653** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00006654** the root of the tree.
6655*/
6656static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00006657 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00006658 int iPage, /* Page number of the page to check */
6659 MemPage *pParent, /* Parent page */
drh74161702006-02-24 02:53:49 +00006660 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00006661){
6662 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00006663 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00006664 int hdr, cellStart;
6665 int nCell;
drhda200cc2004-05-09 11:51:38 +00006666 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00006667 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00006668 int usableSize;
drh5eddca62001-06-30 21:53:53 +00006669 char zContext[100];
drh2e38c322004-09-03 18:38:44 +00006670 char *hit;
drh5eddca62001-06-30 21:53:53 +00006671
drh5bb3eb92007-05-04 13:15:55 +00006672 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00006673
drh5eddca62001-06-30 21:53:53 +00006674 /* Check that the page exists
6675 */
drhd9cb6ac2005-10-20 07:28:17 +00006676 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00006677 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00006678 if( iPage==0 ) return 0;
6679 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh16a9b832007-05-05 18:39:25 +00006680 if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00006681 checkAppendMsg(pCheck, zContext,
6682 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00006683 return 0;
6684 }
drh16a9b832007-05-05 18:39:25 +00006685 if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){
6686 checkAppendMsg(pCheck, zContext,
6687 "sqlite3BtreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00006688 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00006689 return 0;
6690 }
6691
6692 /* Check out all the cells.
6693 */
6694 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00006695 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00006696 u8 *pCell;
6697 int sz;
6698 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00006699
6700 /* Check payload overflow pages
6701 */
drh5bb3eb92007-05-04 13:15:55 +00006702 sqlite3_snprintf(sizeof(zContext), zContext,
6703 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00006704 pCell = findCell(pPage,i);
drh16a9b832007-05-05 18:39:25 +00006705 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00006706 sz = info.nData;
6707 if( !pPage->intKey ) sz += info.nKey;
drh72365832007-03-06 15:53:44 +00006708 assert( sz==info.nPayload );
drh6f11bef2004-05-13 01:12:56 +00006709 if( sz>info.nLocal ){
drhb6f41482004-05-14 01:58:11 +00006710 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00006711 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
6712#ifndef SQLITE_OMIT_AUTOVACUUM
6713 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00006714 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00006715 }
6716#endif
6717 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00006718 }
6719
6720 /* Check sanity of left child page.
6721 */
drhda200cc2004-05-09 11:51:38 +00006722 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006723 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00006724#ifndef SQLITE_OMIT_AUTOVACUUM
6725 if( pBt->autoVacuum ){
6726 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
6727 }
6728#endif
drh74161702006-02-24 02:53:49 +00006729 d2 = checkTreePage(pCheck,pgno,pPage,zContext);
drhda200cc2004-05-09 11:51:38 +00006730 if( i>0 && d2!=depth ){
6731 checkAppendMsg(pCheck, zContext, "Child page depth differs");
6732 }
6733 depth = d2;
drh5eddca62001-06-30 21:53:53 +00006734 }
drh5eddca62001-06-30 21:53:53 +00006735 }
drhda200cc2004-05-09 11:51:38 +00006736 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006737 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00006738 sqlite3_snprintf(sizeof(zContext), zContext,
6739 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00006740#ifndef SQLITE_OMIT_AUTOVACUUM
6741 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00006742 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006743 }
6744#endif
drh74161702006-02-24 02:53:49 +00006745 checkTreePage(pCheck, pgno, pPage, zContext);
drhda200cc2004-05-09 11:51:38 +00006746 }
drh5eddca62001-06-30 21:53:53 +00006747
6748 /* Check for complete coverage of the page
6749 */
drhda200cc2004-05-09 11:51:38 +00006750 data = pPage->aData;
6751 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00006752 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00006753 if( hit==0 ){
6754 pCheck->mallocFailed = 1;
6755 }else{
drhf7141992008-06-19 00:16:08 +00006756 memset(hit, 0, usableSize );
drh2e38c322004-09-03 18:38:44 +00006757 memset(hit, 1, get2byte(&data[hdr+5]));
6758 nCell = get2byte(&data[hdr+3]);
6759 cellStart = hdr + 12 - 4*pPage->leaf;
6760 for(i=0; i<nCell; i++){
6761 int pc = get2byte(&data[cellStart+i*2]);
drha9121e42008-02-19 14:59:35 +00006762 u16 size = cellSizePtr(pPage, &data[pc]);
drh2e38c322004-09-03 18:38:44 +00006763 int j;
danielk19777701e812005-01-10 12:59:51 +00006764 if( (pc+size-1)>=usableSize || pc<0 ){
6765 checkAppendMsg(pCheck, 0,
6766 "Corruption detected in cell %d on page %d",i,iPage,0);
6767 }else{
6768 for(j=pc+size-1; j>=pc; j--) hit[j]++;
6769 }
drh2e38c322004-09-03 18:38:44 +00006770 }
6771 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
6772 cnt++){
6773 int size = get2byte(&data[i+2]);
6774 int j;
danielk19777701e812005-01-10 12:59:51 +00006775 if( (i+size-1)>=usableSize || i<0 ){
6776 checkAppendMsg(pCheck, 0,
6777 "Corruption detected in cell %d on page %d",i,iPage,0);
6778 }else{
6779 for(j=i+size-1; j>=i; j--) hit[j]++;
6780 }
drh2e38c322004-09-03 18:38:44 +00006781 i = get2byte(&data[i]);
6782 }
6783 for(i=cnt=0; i<usableSize; i++){
6784 if( hit[i]==0 ){
6785 cnt++;
6786 }else if( hit[i]>1 ){
6787 checkAppendMsg(pCheck, 0,
6788 "Multiple uses for byte %d of page %d", i, iPage);
6789 break;
6790 }
6791 }
6792 if( cnt!=data[hdr+7] ){
6793 checkAppendMsg(pCheck, 0,
6794 "Fragmented space is %d byte reported as %d on page %d",
6795 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00006796 }
6797 }
drhf7141992008-06-19 00:16:08 +00006798 sqlite3PageFree(hit);
drh6019e162001-07-02 17:51:45 +00006799
drh4b70f112004-05-02 21:12:19 +00006800 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00006801 return depth+1;
drh5eddca62001-06-30 21:53:53 +00006802}
drhb7f91642004-10-31 02:22:47 +00006803#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00006804
drhb7f91642004-10-31 02:22:47 +00006805#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006806/*
6807** This routine does a complete check of the given BTree file. aRoot[] is
6808** an array of pages numbers were each page number is the root page of
6809** a table. nRoot is the number of entries in aRoot.
6810**
drhc890fec2008-08-01 20:10:08 +00006811** Write the number of error seen in *pnErr. Except for some memory
6812** allocation errors, nn error message is held in memory obtained from
6813** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
6814** returned.
drh5eddca62001-06-30 21:53:53 +00006815*/
drh1dcdbc02007-01-27 02:24:54 +00006816char *sqlite3BtreeIntegrityCheck(
6817 Btree *p, /* The btree to be checked */
6818 int *aRoot, /* An array of root pages numbers for individual trees */
6819 int nRoot, /* Number of entries in aRoot[] */
6820 int mxErr, /* Stop reporting errors after this many */
6821 int *pnErr /* Write number of errors seen to this variable */
6822){
drh5eddca62001-06-30 21:53:53 +00006823 int i;
6824 int nRef;
drhaaab5722002-02-19 13:39:21 +00006825 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00006826 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00006827 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00006828
drhd677b3d2007-08-20 22:48:41 +00006829 sqlite3BtreeEnter(p);
drhe5fe6902007-12-07 18:55:28 +00006830 pBt->db = p->db;
danielk19773b8a05f2007-03-19 17:44:26 +00006831 nRef = sqlite3PagerRefcount(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00006832 if( lockBtreeWithRetry(p)!=SQLITE_OK ){
drhc890fec2008-08-01 20:10:08 +00006833 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00006834 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00006835 return sqlite3DbStrDup(0, "cannot acquire a read lock on the database");
drhefc251d2001-07-01 22:12:01 +00006836 }
drh5eddca62001-06-30 21:53:53 +00006837 sCheck.pBt = pBt;
6838 sCheck.pPager = pBt->pPager;
danielk1977ad0132d2008-06-07 08:58:22 +00006839 sCheck.nPage = pagerPagecount(sCheck.pPager);
drh1dcdbc02007-01-27 02:24:54 +00006840 sCheck.mxErr = mxErr;
6841 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00006842 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00006843 *pnErr = 0;
danielk1977e5321f02007-04-27 07:05:44 +00006844#ifndef SQLITE_OMIT_AUTOVACUUM
6845 if( pBt->nTrunc!=0 ){
6846 sCheck.nPage = pBt->nTrunc;
6847 }
6848#endif
drh0de8c112002-07-06 16:32:14 +00006849 if( sCheck.nPage==0 ){
6850 unlockBtreeIfUnused(pBt);
drhd677b3d2007-08-20 22:48:41 +00006851 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00006852 return 0;
6853 }
drhe5ae5732008-06-15 02:51:47 +00006854 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00006855 if( !sCheck.anRef ){
6856 unlockBtreeIfUnused(pBt);
drh1dcdbc02007-01-27 02:24:54 +00006857 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00006858 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00006859 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00006860 }
drhda200cc2004-05-09 11:51:38 +00006861 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00006862 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00006863 if( i<=sCheck.nPage ){
6864 sCheck.anRef[i] = 1;
6865 }
drhf089aa42008-07-08 19:34:06 +00006866 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00006867
6868 /* Check the integrity of the freelist
6869 */
drha34b6762004-05-07 13:30:42 +00006870 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
6871 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00006872
6873 /* Check all the tables.
6874 */
drh1dcdbc02007-01-27 02:24:54 +00006875 for(i=0; i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00006876 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00006877#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00006878 if( pBt->autoVacuum && aRoot[i]>1 ){
6879 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
6880 }
6881#endif
drh74161702006-02-24 02:53:49 +00006882 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00006883 }
6884
6885 /* Make sure every page in the file is referenced
6886 */
drh1dcdbc02007-01-27 02:24:54 +00006887 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00006888#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00006889 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00006890 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00006891 }
danielk1977afcdd022004-10-31 16:25:42 +00006892#else
6893 /* If the database supports auto-vacuum, make sure no tables contain
6894 ** references to pointer-map pages.
6895 */
6896 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00006897 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00006898 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
6899 }
6900 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00006901 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00006902 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
6903 }
6904#endif
drh5eddca62001-06-30 21:53:53 +00006905 }
6906
6907 /* Make sure this analysis did not leave any unref() pages
6908 */
drh5e00f6c2001-09-13 13:46:56 +00006909 unlockBtreeIfUnused(pBt);
danielk19773b8a05f2007-03-19 17:44:26 +00006910 if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
drh2e38c322004-09-03 18:38:44 +00006911 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00006912 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00006913 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00006914 );
drh5eddca62001-06-30 21:53:53 +00006915 }
6916
6917 /* Clean up and report errors.
6918 */
drhd677b3d2007-08-20 22:48:41 +00006919 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00006920 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00006921 if( sCheck.mallocFailed ){
6922 sqlite3StrAccumReset(&sCheck.errMsg);
6923 *pnErr = sCheck.nErr+1;
6924 return 0;
6925 }
drh1dcdbc02007-01-27 02:24:54 +00006926 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00006927 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
6928 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00006929}
drhb7f91642004-10-31 02:22:47 +00006930#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00006931
drh73509ee2003-04-06 20:44:45 +00006932/*
6933** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00006934**
6935** The pager filename is invariant as long as the pager is
6936** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00006937*/
danielk1977aef0bf62005-12-30 16:28:01 +00006938const char *sqlite3BtreeGetFilename(Btree *p){
6939 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006940 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00006941}
6942
6943/*
danielk19775865e3d2004-06-14 06:03:57 +00006944** Return the pathname of the directory that contains the database file.
drhd0679ed2007-08-28 22:24:34 +00006945**
6946** The pager directory name is invariant as long as the pager is
6947** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00006948*/
danielk1977aef0bf62005-12-30 16:28:01 +00006949const char *sqlite3BtreeGetDirname(Btree *p){
6950 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006951 return sqlite3PagerDirname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00006952}
6953
6954/*
6955** Return the pathname of the journal file for this database. The return
6956** value of this routine is the same regardless of whether the journal file
6957** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00006958**
6959** The pager journal filename is invariant as long as the pager is
6960** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00006961*/
danielk1977aef0bf62005-12-30 16:28:01 +00006962const char *sqlite3BtreeGetJournalname(Btree *p){
6963 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006964 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00006965}
6966
drhb7f91642004-10-31 02:22:47 +00006967#ifndef SQLITE_OMIT_VACUUM
danielk19775865e3d2004-06-14 06:03:57 +00006968/*
drhf7c57532003-04-25 13:22:51 +00006969** Copy the complete content of pBtFrom into pBtTo. A transaction
6970** must be active for both files.
6971**
danielk1977f653d782008-03-20 11:04:21 +00006972** The size of file pTo may be reduced by this operation.
6973** If anything goes wrong, the transaction on pTo is rolled back.
6974**
6975** If successful, CommitPhaseOne() may be called on pTo before returning.
6976** The caller should finish committing the transaction on pTo by calling
6977** sqlite3BtreeCommit().
drh73509ee2003-04-06 20:44:45 +00006978*/
drhd677b3d2007-08-20 22:48:41 +00006979static int btreeCopyFile(Btree *pTo, Btree *pFrom){
drhf7c57532003-04-25 13:22:51 +00006980 int rc = SQLITE_OK;
danielk1977f653d782008-03-20 11:04:21 +00006981 Pgno i;
6982
6983 Pgno nFromPage; /* Number of pages in pFrom */
6984 Pgno nToPage; /* Number of pages in pTo */
6985 Pgno nNewPage; /* Number of pages in pTo after the copy */
6986
6987 Pgno iSkip; /* Pending byte page in pTo */
6988 int nToPageSize; /* Page size of pTo in bytes */
6989 int nFromPageSize; /* Page size of pFrom in bytes */
drhf7c57532003-04-25 13:22:51 +00006990
danielk1977aef0bf62005-12-30 16:28:01 +00006991 BtShared *pBtTo = pTo->pBt;
6992 BtShared *pBtFrom = pFrom->pBt;
drhe5fe6902007-12-07 18:55:28 +00006993 pBtTo->db = pTo->db;
6994 pBtFrom->db = pFrom->db;
danielk1977f653d782008-03-20 11:04:21 +00006995
6996 nToPageSize = pBtTo->pageSize;
6997 nFromPageSize = pBtFrom->pageSize;
danielk1977aef0bf62005-12-30 16:28:01 +00006998
6999 if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
danielk1977ee5741e2004-05-31 10:01:34 +00007000 return SQLITE_ERROR;
7001 }
danielk1977f653d782008-03-20 11:04:21 +00007002 if( pBtTo->pCursor ){
7003 return SQLITE_BUSY;
drhf7c57532003-04-25 13:22:51 +00007004 }
drh538f5702007-04-13 02:14:30 +00007005
danielk1977ad0132d2008-06-07 08:58:22 +00007006 nToPage = pagerPagecount(pBtTo->pPager);
7007 nFromPage = pagerPagecount(pBtFrom->pPager);
danielk1977f653d782008-03-20 11:04:21 +00007008 iSkip = PENDING_BYTE_PAGE(pBtTo);
7009
7010 /* Variable nNewPage is the number of pages required to store the
7011 ** contents of pFrom using the current page-size of pTo.
drh538f5702007-04-13 02:14:30 +00007012 */
danielk1977f653d782008-03-20 11:04:21 +00007013 nNewPage = ((i64)nFromPage * (i64)nFromPageSize + (i64)nToPageSize - 1) /
7014 (i64)nToPageSize;
7015
7016 for(i=1; rc==SQLITE_OK && (i<=nToPage || i<=nNewPage); i++){
7017
7018 /* Journal the original page.
7019 **
7020 ** iSkip is the page number of the locking page (PENDING_BYTE_PAGE)
7021 ** in database *pTo (before the copy). This page is never written
7022 ** into the journal file. Unless i==iSkip or the page was not
7023 ** present in pTo before the copy operation, journal page i from pTo.
7024 */
7025 if( i!=iSkip && i<=nToPage ){
danielk19774abd5442008-05-05 15:26:50 +00007026 DbPage *pDbPage = 0;
danielk1977f653d782008-03-20 11:04:21 +00007027 rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
danielk19774abd5442008-05-05 15:26:50 +00007028 if( rc==SQLITE_OK ){
7029 rc = sqlite3PagerWrite(pDbPage);
danielk1977df2566a2008-05-07 19:11:03 +00007030 if( rc==SQLITE_OK && i>nFromPage ){
7031 /* Yeah. It seems wierd to call DontWrite() right after Write(). But
7032 ** that is because the names of those procedures do not exactly
7033 ** represent what they do. Write() really means "put this page in the
7034 ** rollback journal and mark it as dirty so that it will be written
7035 ** to the database file later." DontWrite() undoes the second part of
7036 ** that and prevents the page from being written to the database. The
7037 ** page is still on the rollback journal, though. And that is the
7038 ** whole point of this block: to put pages on the rollback journal.
7039 */
7040 sqlite3PagerDontWrite(pDbPage);
7041 }
7042 sqlite3PagerUnref(pDbPage);
danielk1977f653d782008-03-20 11:04:21 +00007043 }
danielk1977f653d782008-03-20 11:04:21 +00007044 }
7045
7046 /* Overwrite the data in page i of the target database */
7047 if( rc==SQLITE_OK && i!=iSkip && i<=nNewPage ){
7048
7049 DbPage *pToPage = 0;
7050 sqlite3_int64 iOff;
7051
7052 rc = sqlite3PagerGet(pBtTo->pPager, i, &pToPage);
7053 if( rc==SQLITE_OK ){
7054 rc = sqlite3PagerWrite(pToPage);
7055 }
7056
7057 for(
7058 iOff=(i-1)*nToPageSize;
7059 rc==SQLITE_OK && iOff<i*nToPageSize;
7060 iOff += nFromPageSize
7061 ){
7062 DbPage *pFromPage = 0;
7063 Pgno iFrom = (iOff/nFromPageSize)+1;
7064
7065 if( iFrom==PENDING_BYTE_PAGE(pBtFrom) ){
7066 continue;
7067 }
7068
7069 rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
7070 if( rc==SQLITE_OK ){
7071 char *zTo = sqlite3PagerGetData(pToPage);
7072 char *zFrom = sqlite3PagerGetData(pFromPage);
7073 int nCopy;
7074
7075 if( nFromPageSize>=nToPageSize ){
7076 zFrom += ((i-1)*nToPageSize - ((iFrom-1)*nFromPageSize));
7077 nCopy = nToPageSize;
7078 }else{
7079 zTo += (((iFrom-1)*nFromPageSize) - (i-1)*nToPageSize);
7080 nCopy = nFromPageSize;
7081 }
7082
7083 memcpy(zTo, zFrom, nCopy);
7084 sqlite3PagerUnref(pFromPage);
7085 }
7086 }
7087
7088 if( pToPage ) sqlite3PagerUnref(pToPage);
7089 }
drh2e6d11b2003-04-25 15:37:57 +00007090 }
danielk1977f653d782008-03-20 11:04:21 +00007091
7092 /* If things have worked so far, the database file may need to be
7093 ** truncated. The complex part is that it may need to be truncated to
7094 ** a size that is not an integer multiple of nToPageSize - the current
7095 ** page size used by the pager associated with B-Tree pTo.
7096 **
7097 ** For example, say the page-size of pTo is 2048 bytes and the original
7098 ** number of pages is 5 (10 KB file). If pFrom has a page size of 1024
7099 ** bytes and 9 pages, then the file needs to be truncated to 9KB.
7100 */
7101 if( rc==SQLITE_OK ){
7102 if( nFromPageSize!=nToPageSize ){
7103 sqlite3_file *pFile = sqlite3PagerFile(pBtTo->pPager);
7104 i64 iSize = (i64)nFromPageSize * (i64)nFromPage;
7105 i64 iNow = (i64)((nToPage>nNewPage)?nToPage:nNewPage) * (i64)nToPageSize;
7106 i64 iPending = ((i64)PENDING_BYTE_PAGE(pBtTo)-1) *(i64)nToPageSize;
7107
7108 assert( iSize<=iNow );
7109
7110 /* Commit phase one syncs the journal file associated with pTo
7111 ** containing the original data. It does not sync the database file
7112 ** itself. After doing this it is safe to use OsTruncate() and other
7113 ** file APIs on the database file directly.
7114 */
7115 pBtTo->db = pTo->db;
7116 rc = sqlite3PagerCommitPhaseOne(pBtTo->pPager, 0, 0, 1);
7117 if( iSize<iNow && rc==SQLITE_OK ){
7118 rc = sqlite3OsTruncate(pFile, iSize);
7119 }
7120
7121 /* The loop that copied data from database pFrom to pTo did not
7122 ** populate the locking page of database pTo. If the page-size of
7123 ** pFrom is smaller than that of pTo, this means some data will
7124 ** not have been copied.
7125 **
7126 ** This block copies the missing data from database pFrom to pTo
7127 ** using file APIs. This is safe because at this point we know that
7128 ** all of the original data from pTo has been synced into the
7129 ** journal file. At this point it would be safe to do anything at
7130 ** all to the database file except truncate it to zero bytes.
7131 */
7132 if( rc==SQLITE_OK && nFromPageSize<nToPageSize && iSize>iPending){
7133 i64 iOff;
7134 for(
7135 iOff=iPending;
7136 rc==SQLITE_OK && iOff<(iPending+nToPageSize);
7137 iOff += nFromPageSize
7138 ){
7139 DbPage *pFromPage = 0;
7140 Pgno iFrom = (iOff/nFromPageSize)+1;
7141
7142 if( iFrom==PENDING_BYTE_PAGE(pBtFrom) || iFrom>nFromPage ){
7143 continue;
7144 }
7145
7146 rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
7147 if( rc==SQLITE_OK ){
7148 char *zFrom = sqlite3PagerGetData(pFromPage);
7149 rc = sqlite3OsWrite(pFile, zFrom, nFromPageSize, iOff);
7150 sqlite3PagerUnref(pFromPage);
7151 }
7152 }
7153 }
7154
7155 /* Sync the database file */
7156 if( rc==SQLITE_OK ){
7157 rc = sqlite3PagerSync(pBtTo->pPager);
7158 }
7159 }else{
7160 rc = sqlite3PagerTruncate(pBtTo->pPager, nNewPage);
7161 }
7162 if( rc==SQLITE_OK ){
7163 pBtTo->pageSizeFixed = 0;
7164 }
drh2e6d11b2003-04-25 15:37:57 +00007165 }
drh538f5702007-04-13 02:14:30 +00007166
drhf7c57532003-04-25 13:22:51 +00007167 if( rc ){
danielk1977aef0bf62005-12-30 16:28:01 +00007168 sqlite3BtreeRollback(pTo);
drhf7c57532003-04-25 13:22:51 +00007169 }
danielk1977f653d782008-03-20 11:04:21 +00007170
drhf7c57532003-04-25 13:22:51 +00007171 return rc;
drh73509ee2003-04-06 20:44:45 +00007172}
drhd677b3d2007-08-20 22:48:41 +00007173int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
7174 int rc;
7175 sqlite3BtreeEnter(pTo);
7176 sqlite3BtreeEnter(pFrom);
7177 rc = btreeCopyFile(pTo, pFrom);
7178 sqlite3BtreeLeave(pFrom);
7179 sqlite3BtreeLeave(pTo);
7180 return rc;
7181}
7182
drhb7f91642004-10-31 02:22:47 +00007183#endif /* SQLITE_OMIT_VACUUM */
danielk19771d850a72004-05-31 08:26:49 +00007184
7185/*
7186** Return non-zero if a transaction is active.
7187*/
danielk1977aef0bf62005-12-30 16:28:01 +00007188int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007189 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007190 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007191}
7192
7193/*
7194** Return non-zero if a statement transaction is active.
7195*/
danielk1977aef0bf62005-12-30 16:28:01 +00007196int sqlite3BtreeIsInStmt(Btree *p){
drh1fee73e2007-08-29 04:00:57 +00007197 assert( sqlite3BtreeHoldsMutex(p) );
danielk1977aef0bf62005-12-30 16:28:01 +00007198 return (p->pBt && p->pBt->inStmt);
danielk19771d850a72004-05-31 08:26:49 +00007199}
danielk197713adf8a2004-06-03 16:08:41 +00007200
7201/*
danielk19772372c2b2006-06-27 16:34:56 +00007202** Return non-zero if a read (or write) transaction is active.
7203*/
7204int sqlite3BtreeIsInReadTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007205 assert( sqlite3_mutex_held(p->db->mutex) );
danielk19772372c2b2006-06-27 16:34:56 +00007206 return (p && (p->inTrans!=TRANS_NONE));
7207}
7208
7209/*
danielk1977da184232006-01-05 11:34:32 +00007210** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007211** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007212** purposes (for example, to store a high-level schema associated with
7213** the shared-btree). The btree layer manages reference counting issues.
7214**
7215** The first time this is called on a shared-btree, nBytes bytes of memory
7216** are allocated, zeroed, and returned to the caller. For each subsequent
7217** call the nBytes parameter is ignored and a pointer to the same blob
7218** of memory returned.
7219**
danielk1977171bfed2008-06-23 09:50:50 +00007220** If the nBytes parameter is 0 and the blob of memory has not yet been
7221** allocated, a null pointer is returned. If the blob has already been
7222** allocated, it is returned as normal.
7223**
danielk1977da184232006-01-05 11:34:32 +00007224** Just before the shared-btree is closed, the function passed as the
7225** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007226** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007227** on the memory, the btree layer does that.
7228*/
7229void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7230 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007231 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007232 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007233 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007234 pBt->xFreeSchema = xFree;
7235 }
drh27641702007-08-22 02:56:42 +00007236 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007237 return pBt->pSchema;
7238}
7239
danielk1977c87d34d2006-01-06 13:00:28 +00007240/*
7241** Return true if another user of the same shared btree as the argument
7242** handle holds an exclusive lock on the sqlite_master table.
7243*/
7244int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007245 int rc;
drhe5fe6902007-12-07 18:55:28 +00007246 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007247 sqlite3BtreeEnter(p);
7248 rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
7249 sqlite3BtreeLeave(p);
7250 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007251}
7252
drha154dcd2006-03-22 22:10:07 +00007253
7254#ifndef SQLITE_OMIT_SHARED_CACHE
7255/*
7256** Obtain a lock on the table whose root page is iTab. The
7257** lock is a write lock if isWritelock is true or a read lock
7258** if it is false.
7259*/
danielk1977c00da102006-01-07 13:21:04 +00007260int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007261 int rc = SQLITE_OK;
drh6a9ad3d2008-04-02 16:29:30 +00007262 if( p->sharable ){
7263 u8 lockType = READ_LOCK + isWriteLock;
7264 assert( READ_LOCK+1==WRITE_LOCK );
7265 assert( isWriteLock==0 || isWriteLock==1 );
7266 sqlite3BtreeEnter(p);
7267 rc = queryTableLock(p, iTab, lockType);
7268 if( rc==SQLITE_OK ){
7269 rc = lockTable(p, iTab, lockType);
7270 }
7271 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007272 }
7273 return rc;
7274}
drha154dcd2006-03-22 22:10:07 +00007275#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007276
danielk1977b4e9af92007-05-01 17:49:49 +00007277#ifndef SQLITE_OMIT_INCRBLOB
7278/*
7279** Argument pCsr must be a cursor opened for writing on an
7280** INTKEY table currently pointing at a valid table entry.
7281** This function modifies the data stored as part of that entry.
7282** Only the data content may only be modified, it is not possible
7283** to change the length of the data stored.
7284*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007285int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
drh1fee73e2007-08-29 04:00:57 +00007286 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007287 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007288 assert(pCsr->isIncrblobHandle);
danielk19773588ceb2008-06-10 17:30:26 +00007289
drha3460582008-07-11 21:02:53 +00007290 restoreCursorPosition(pCsr);
danielk19773588ceb2008-06-10 17:30:26 +00007291 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7292 if( pCsr->eState!=CURSOR_VALID ){
7293 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007294 }
7295
danielk1977d04417962007-05-02 13:16:30 +00007296 /* Check some preconditions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007297 ** (a) the cursor is open for writing,
7298 ** (b) there is no read-lock on the table being modified and
7299 ** (c) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007300 */
danielk1977d04417962007-05-02 13:16:30 +00007301 if( !pCsr->wrFlag ){
danielk1977dcbb5d32007-05-04 18:36:44 +00007302 return SQLITE_READONLY;
danielk1977d04417962007-05-02 13:16:30 +00007303 }
drhd0679ed2007-08-28 22:24:34 +00007304 assert( !pCsr->pBt->readOnly
7305 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk19773588ceb2008-06-10 17:30:26 +00007306 if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr, 0) ){
danielk1977d04417962007-05-02 13:16:30 +00007307 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
7308 }
7309 if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
7310 return SQLITE_ERROR;
danielk1977b4e9af92007-05-01 17:49:49 +00007311 }
7312
danielk19779f8d6402007-05-02 17:48:45 +00007313 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007314}
danielk19772dec9702007-05-02 16:48:37 +00007315
7316/*
7317** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007318** overflow list for the current row. This is used by cursors opened
7319** for incremental blob IO only.
7320**
7321** This function sets a flag only. The actual page location cache
7322** (stored in BtCursor.aOverflow[]) is allocated and used by function
7323** accessPayload() (the worker function for sqlite3BtreeData() and
7324** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007325*/
7326void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007327 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007328 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007329 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007330 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007331 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007332}
danielk1977b4e9af92007-05-01 17:49:49 +00007333#endif