blob: a137da3c7ef960dd838303761ee86465a133d82b [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
daneebf2f52017-11-18 17:30:08 +0000115/*
116** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118**
119** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122** with the page number and filename associated with the (MemPage*).
123*/
124#ifdef SQLITE_DEBUG
125int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000126 char *zMsg;
127 sqlite3BeginBenignMalloc();
128 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130 );
drh8bfe66a2018-01-22 15:45:12 +0000131 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000132 if( zMsg ){
133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134 }
135 sqlite3_free(zMsg);
136 return SQLITE_CORRUPT_BKPT;
137}
138# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139#else
140# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141#endif
142
drhe53831d2007-08-17 01:14:38 +0000143#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000144
145#ifdef SQLITE_DEBUG
146/*
drh0ee3dbe2009-10-16 15:05:18 +0000147**** This function is only used as part of an assert() statement. ***
148**
149** Check to see if pBtree holds the required locks to read or write to the
150** table with root page iRoot. Return 1 if it does and 0 if not.
151**
152** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000153** Btree connection pBtree:
154**
155** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156**
drh0ee3dbe2009-10-16 15:05:18 +0000157** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000158** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000159** the corresponding table. This makes things a bit more complicated,
160** as this module treats each table as a separate structure. To determine
161** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000162** function has to search through the database schema.
163**
drh0ee3dbe2009-10-16 15:05:18 +0000164** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000165** hold a write-lock on the schema table (root page 1). This is also
166** acceptable.
167*/
168static int hasSharedCacheTableLock(
169 Btree *pBtree, /* Handle that must hold lock */
170 Pgno iRoot, /* Root page of b-tree */
171 int isIndex, /* True if iRoot is the root of an index b-tree */
172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
173){
174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175 Pgno iTab = 0;
176 BtLock *pLock;
177
drh0ee3dbe2009-10-16 15:05:18 +0000178 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000179 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000180 ** Return true immediately.
181 */
danielk197796d48e92009-06-29 06:00:37 +0000182 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000184 ){
185 return 1;
186 }
187
drh0ee3dbe2009-10-16 15:05:18 +0000188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
192 */
drh2c5e35f2014-08-05 11:04:21 +0000193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000194 return 1;
195 }
196
danielk197796d48e92009-06-29 06:00:37 +0000197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
200 ** table. */
201 if( isIndex ){
202 HashElem *p;
203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000205 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000206 if( iTab ){
207 /* Two or more indexes share the same root page. There must
208 ** be imposter tables. So just return true. The assert is not
209 ** useful in that case. */
210 return 1;
211 }
shane5eff7cf2009-08-10 03:57:58 +0000212 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000213 }
214 }
215 }else{
216 iTab = iRoot;
217 }
218
219 /* Search for the required lock. Either a write-lock on root-page iTab, a
220 ** write-lock on the schema table, or (if the client is reading) a
221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223 if( pLock->pBtree==pBtree
224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225 && pLock->eLock>=eLockType
226 ){
227 return 1;
228 }
229 }
230
231 /* Failed to find the required lock. */
232 return 0;
233}
drh0ee3dbe2009-10-16 15:05:18 +0000234#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000235
drh0ee3dbe2009-10-16 15:05:18 +0000236#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000237/*
drh0ee3dbe2009-10-16 15:05:18 +0000238**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000239**
drh0ee3dbe2009-10-16 15:05:18 +0000240** Return true if it would be illegal for pBtree to write into the
241** table or index rooted at iRoot because other shared connections are
242** simultaneously reading that same table or index.
243**
244** It is illegal for pBtree to write if some other Btree object that
245** shares the same BtShared object is currently reading or writing
246** the iRoot table. Except, if the other Btree object has the
247** read-uncommitted flag set, then it is OK for the other object to
248** have a read cursor.
249**
250** For example, before writing to any part of the table or index
251** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000252**
253** assert( !hasReadConflicts(pBtree, iRoot) );
254*/
255static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256 BtCursor *p;
257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258 if( p->pgnoRoot==iRoot
259 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000261 ){
262 return 1;
263 }
264 }
265 return 0;
266}
267#endif /* #ifdef SQLITE_DEBUG */
268
danielk1977da184232006-01-05 11:34:32 +0000269/*
drh0ee3dbe2009-10-16 15:05:18 +0000270** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000271** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000272** SQLITE_OK if the lock may be obtained (by calling
273** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000274*/
drhc25eabe2009-02-24 18:57:31 +0000275static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000276 BtShared *pBt = p->pBt;
277 BtLock *pIter;
278
drh1fee73e2007-08-29 04:00:57 +0000279 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000283
danielk19775b413d72009-04-01 09:41:54 +0000284 /* If requesting a write-lock, then the Btree must have an open write
285 ** transaction on this file. And, obviously, for this to be so there
286 ** must be an open write transaction on the file itself.
287 */
288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290
drh0ee3dbe2009-10-16 15:05:18 +0000291 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000292 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000293 return SQLITE_OK;
294 }
295
danielk1977641b0f42007-12-21 04:47:25 +0000296 /* If some other connection is holding an exclusive lock, the
297 ** requested lock may not be obtained.
298 */
drhc9166342012-01-05 23:32:06 +0000299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000302 }
303
danielk1977e0d9e6f2009-07-03 16:25:06 +0000304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305 /* The condition (pIter->eLock!=eLock) in the following if(...)
306 ** statement is a simplification of:
307 **
308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309 **
310 ** since we know that if eLock==WRITE_LOCK, then no other connection
311 ** may hold a WRITE_LOCK on any table in this file (since there can
312 ** only be a single writer).
313 */
314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318 if( eLock==WRITE_LOCK ){
319 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000320 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000321 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000323 }
324 }
325 return SQLITE_OK;
326}
drhe53831d2007-08-17 01:14:38 +0000327#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000328
drhe53831d2007-08-17 01:14:38 +0000329#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000330/*
331** Add a lock on the table with root-page iTable to the shared-btree used
332** by Btree handle p. Parameter eLock must be either READ_LOCK or
333** WRITE_LOCK.
334**
danielk19779d104862009-07-09 08:27:14 +0000335** This function assumes the following:
336**
drh0ee3dbe2009-10-16 15:05:18 +0000337** (a) The specified Btree object p is connected to a sharable
338** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000339**
drh0ee3dbe2009-10-16 15:05:18 +0000340** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000341** with the requested lock (i.e. querySharedCacheTableLock() has
342** already been called and returned SQLITE_OK).
343**
344** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000346*/
drhc25eabe2009-02-24 18:57:31 +0000347static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000348 BtShared *pBt = p->pBt;
349 BtLock *pLock = 0;
350 BtLock *pIter;
351
drh1fee73e2007-08-29 04:00:57 +0000352 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000355
danielk1977e0d9e6f2009-07-03 16:25:06 +0000356 /* A connection with the read-uncommitted flag set will never try to
357 ** obtain a read-lock using this function. The only read-lock obtained
358 ** by a connection in read-uncommitted mode is on the sqlite_master
359 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000361
danielk19779d104862009-07-09 08:27:14 +0000362 /* This function should only be called on a sharable b-tree after it
363 ** has been determined that no other b-tree holds a conflicting lock. */
364 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000366
367 /* First search the list for an existing lock on this table. */
368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369 if( pIter->iTable==iTable && pIter->pBtree==p ){
370 pLock = pIter;
371 break;
372 }
373 }
374
375 /* If the above search did not find a BtLock struct associating Btree p
376 ** with table iTable, allocate one and link it into the list.
377 */
378 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000380 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000381 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000382 }
383 pLock->iTable = iTable;
384 pLock->pBtree = p;
385 pLock->pNext = pBt->pLock;
386 pBt->pLock = pLock;
387 }
388
389 /* Set the BtLock.eLock variable to the maximum of the current lock
390 ** and the requested lock. This means if a write-lock was already held
391 ** and a read-lock requested, we don't incorrectly downgrade the lock.
392 */
393 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000394 if( eLock>pLock->eLock ){
395 pLock->eLock = eLock;
396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397
398 return SQLITE_OK;
399}
drhe53831d2007-08-17 01:14:38 +0000400#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000401
drhe53831d2007-08-17 01:14:38 +0000402#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000403/*
drhc25eabe2009-02-24 18:57:31 +0000404** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000405** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000406**
drh0ee3dbe2009-10-16 15:05:18 +0000407** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000408** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000409** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000410*/
drhc25eabe2009-02-24 18:57:31 +0000411static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000412 BtShared *pBt = p->pBt;
413 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000414
drh1fee73e2007-08-29 04:00:57 +0000415 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000416 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000417 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000418
danielk1977aef0bf62005-12-30 16:28:01 +0000419 while( *ppIter ){
420 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000422 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000423 if( pLock->pBtree==p ){
424 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000425 assert( pLock->iTable!=1 || pLock==&p->lock );
426 if( pLock->iTable!=1 ){
427 sqlite3_free(pLock);
428 }
danielk1977aef0bf62005-12-30 16:28:01 +0000429 }else{
430 ppIter = &pLock->pNext;
431 }
432 }
danielk1977641b0f42007-12-21 04:47:25 +0000433
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000435 if( pBt->pWriter==p ){
436 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000438 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000439 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000440 ** transaction. If there currently exists a writer, and p is not
441 ** that writer, then the number of locks held by connections other
442 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000443 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000444 **
drhc9166342012-01-05 23:32:06 +0000445 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000446 ** be zero already. So this next line is harmless in that case.
447 */
drhc9166342012-01-05 23:32:06 +0000448 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000449 }
danielk1977aef0bf62005-12-30 16:28:01 +0000450}
danielk197794b30732009-07-02 17:21:57 +0000451
danielk1977e0d9e6f2009-07-03 16:25:06 +0000452/*
drh0ee3dbe2009-10-16 15:05:18 +0000453** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000454*/
danielk197794b30732009-07-02 17:21:57 +0000455static void downgradeAllSharedCacheTableLocks(Btree *p){
456 BtShared *pBt = p->pBt;
457 if( pBt->pWriter==p ){
458 BtLock *pLock;
459 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463 pLock->eLock = READ_LOCK;
464 }
465 }
466}
467
danielk1977aef0bf62005-12-30 16:28:01 +0000468#endif /* SQLITE_OMIT_SHARED_CACHE */
469
drh3908fe92017-09-01 14:50:19 +0000470static void releasePage(MemPage *pPage); /* Forward reference */
471static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000472static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000473
drh1fee73e2007-08-29 04:00:57 +0000474/*
drh0ee3dbe2009-10-16 15:05:18 +0000475***** This routine is used inside of assert() only ****
476**
477** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000478*/
drh0ee3dbe2009-10-16 15:05:18 +0000479#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000480static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000481 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000482}
drh5e08d0f2016-06-04 21:05:54 +0000483
484/* Verify that the cursor and the BtShared agree about what is the current
485** database connetion. This is important in shared-cache mode. If the database
486** connection pointers get out-of-sync, it is possible for routines like
487** btreeInitPage() to reference an stale connection pointer that references a
488** a connection that has already closed. This routine is used inside assert()
489** statements only and for the purpose of double-checking that the btree code
490** does keep the database connection pointers up-to-date.
491*/
dan7a2347e2016-01-07 16:43:54 +0000492static int cursorOwnsBtShared(BtCursor *p){
493 assert( cursorHoldsMutex(p) );
494 return (p->pBtree->db==p->pBt->db);
495}
drh1fee73e2007-08-29 04:00:57 +0000496#endif
497
danielk197792d4d7a2007-05-04 12:05:56 +0000498/*
dan5a500af2014-03-11 20:33:04 +0000499** Invalidate the overflow cache of the cursor passed as the first argument.
500** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000501*/
drh036dbec2014-03-11 23:40:44 +0000502#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000503
504/*
505** Invalidate the overflow page-list cache for all cursors opened
506** on the shared btree structure pBt.
507*/
508static void invalidateAllOverflowCache(BtShared *pBt){
509 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000510 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000511 for(p=pBt->pCursor; p; p=p->pNext){
512 invalidateOverflowCache(p);
513 }
514}
danielk197796d48e92009-06-29 06:00:37 +0000515
dan5a500af2014-03-11 20:33:04 +0000516#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000517/*
518** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000519** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000520** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000521**
522** If argument isClearTable is true, then the entire contents of the
523** table is about to be deleted. In this case invalidate all incrblob
524** cursors open on any row within the table with root-page pgnoRoot.
525**
526** Otherwise, if argument isClearTable is false, then the row with
527** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000528** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000529*/
530static void invalidateIncrblobCursors(
531 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000532 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000533 i64 iRow, /* The rowid that might be changing */
534 int isClearTable /* True if all rows are being deleted */
535){
536 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000537 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000538 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000539 pBtree->hasIncrblobCur = 0;
540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541 if( (p->curFlags & BTCF_Incrblob)!=0 ){
542 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000544 p->eState = CURSOR_INVALID;
545 }
danielk197796d48e92009-06-29 06:00:37 +0000546 }
547 }
548}
549
danielk197792d4d7a2007-05-04 12:05:56 +0000550#else
dan5a500af2014-03-11 20:33:04 +0000551 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000552 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000553#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000554
drh980b1a72006-08-16 16:42:48 +0000555/*
danielk1977bea2a942009-01-20 17:06:27 +0000556** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557** when a page that previously contained data becomes a free-list leaf
558** page.
559**
560** The BtShared.pHasContent bitvec exists to work around an obscure
561** bug caused by the interaction of two useful IO optimizations surrounding
562** free-list leaf pages:
563**
564** 1) When all data is deleted from a page and the page becomes
565** a free-list leaf page, the page is not written to the database
566** (as free-list leaf pages contain no meaningful data). Sometimes
567** such a page is not even journalled (as it will not be modified,
568** why bother journalling it?).
569**
570** 2) When a free-list leaf page is reused, its content is not read
571** from the database or written to the journal file (why should it
572** be, if it is not at all meaningful?).
573**
574** By themselves, these optimizations work fine and provide a handy
575** performance boost to bulk delete or insert operations. However, if
576** a page is moved to the free-list and then reused within the same
577** transaction, a problem comes up. If the page is not journalled when
578** it is moved to the free-list and it is also not journalled when it
579** is extracted from the free-list and reused, then the original data
580** may be lost. In the event of a rollback, it may not be possible
581** to restore the database to its original configuration.
582**
583** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584** moved to become a free-list leaf page, the corresponding bit is
585** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000586** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000587** set in BtShared.pHasContent. The contents of the bitvec are cleared
588** at the end of every transaction.
589*/
590static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591 int rc = SQLITE_OK;
592 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000593 assert( pgno<=pBt->nPage );
594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000595 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000596 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000597 }
598 }
599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601 }
602 return rc;
603}
604
605/*
606** Query the BtShared.pHasContent vector.
607**
608** This function is called when a free-list leaf page is removed from the
609** free-list for reuse. It returns false if it is safe to retrieve the
610** page from the pager layer with the 'no-content' flag set. True otherwise.
611*/
612static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613 Bitvec *p = pBt->pHasContent;
614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615}
616
617/*
618** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619** invoked at the conclusion of each write-transaction.
620*/
621static void btreeClearHasContent(BtShared *pBt){
622 sqlite3BitvecDestroy(pBt->pHasContent);
623 pBt->pHasContent = 0;
624}
625
626/*
drh138eeeb2013-03-27 03:15:23 +0000627** Release all of the apPage[] pages for a cursor.
628*/
629static void btreeReleaseAllCursorPages(BtCursor *pCur){
630 int i;
drh352a35a2017-08-15 03:46:47 +0000631 if( pCur->iPage>=0 ){
632 for(i=0; i<pCur->iPage; i++){
633 releasePageNotNull(pCur->apPage[i]);
634 }
635 releasePageNotNull(pCur->pPage);
636 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000637 }
drh138eeeb2013-03-27 03:15:23 +0000638}
639
danf0ee1d32015-09-12 19:26:11 +0000640/*
641** The cursor passed as the only argument must point to a valid entry
642** when this function is called (i.e. have eState==CURSOR_VALID). This
643** function saves the current cursor key in variables pCur->nKey and
644** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645** code otherwise.
646**
647** If the cursor is open on an intkey table, then the integer key
648** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650** set to point to a malloced buffer pCur->nKey bytes in size containing
651** the key.
652*/
653static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000654 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000655 assert( CURSOR_VALID==pCur->eState );
656 assert( 0==pCur->pKey );
657 assert( cursorHoldsMutex(pCur) );
658
drha7c90c42016-06-04 20:37:10 +0000659 if( pCur->curIntKey ){
660 /* Only the rowid is required for a table btree */
661 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662 }else{
danfffaf232018-12-14 13:18:35 +0000663 /* For an index btree, save the complete key content. It is possible
664 ** that the current key is corrupt. In that case, it is possible that
665 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666 ** up to the size of 1 varint plus 1 8-byte value when the cursor
667 ** position is restored. Hence the 17 bytes of padding allocated
668 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000669 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000670 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000671 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000672 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000673 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000674 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000675 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000676 pCur->pKey = pKey;
677 }else{
678 sqlite3_free(pKey);
679 }
680 }else{
mistachkinfad30392016-02-13 23:43:46 +0000681 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000682 }
683 }
684 assert( !pCur->curIntKey || !pCur->pKey );
685 return rc;
686}
drh138eeeb2013-03-27 03:15:23 +0000687
688/*
drh980b1a72006-08-16 16:42:48 +0000689** Save the current cursor position in the variables BtCursor.nKey
690** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000691**
692** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
693** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000694*/
695static int saveCursorPosition(BtCursor *pCur){
696 int rc;
697
drhd2f83132015-03-25 17:35:01 +0000698 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000699 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000700 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000701
drh7b14b652019-12-29 22:08:20 +0000702 if( pCur->curFlags & BTCF_Pinned ){
703 return SQLITE_CONSTRAINT_PINNED;
704 }
drhd2f83132015-03-25 17:35:01 +0000705 if( pCur->eState==CURSOR_SKIPNEXT ){
706 pCur->eState = CURSOR_VALID;
707 }else{
708 pCur->skipNext = 0;
709 }
drh980b1a72006-08-16 16:42:48 +0000710
danf0ee1d32015-09-12 19:26:11 +0000711 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000712 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000713 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000714 pCur->eState = CURSOR_REQUIRESEEK;
715 }
716
dane755e102015-09-30 12:59:12 +0000717 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000718 return rc;
719}
720
drh637f3d82014-08-22 22:26:07 +0000721/* Forward reference */
722static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
723
drh980b1a72006-08-16 16:42:48 +0000724/*
drh0ee3dbe2009-10-16 15:05:18 +0000725** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000726** the table with root-page iRoot. "Saving the cursor position" means that
727** the location in the btree is remembered in such a way that it can be
728** moved back to the same spot after the btree has been modified. This
729** routine is called just before cursor pExcept is used to modify the
730** table, for example in BtreeDelete() or BtreeInsert().
731**
drh27fb7462015-06-30 02:47:36 +0000732** If there are two or more cursors on the same btree, then all such
733** cursors should have their BTCF_Multiple flag set. The btreeCursor()
734** routine enforces that rule. This routine only needs to be called in
735** the uncommon case when pExpect has the BTCF_Multiple flag set.
736**
737** If pExpect!=NULL and if no other cursors are found on the same root-page,
738** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
739** pointless call to this routine.
740**
drh637f3d82014-08-22 22:26:07 +0000741** Implementation note: This routine merely checks to see if any cursors
742** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
743** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000744*/
745static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
746 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000747 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000748 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000749 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000750 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
751 }
drh27fb7462015-06-30 02:47:36 +0000752 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
753 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
754 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000755}
756
757/* This helper routine to saveAllCursors does the actual work of saving
758** the cursors if and when a cursor is found that actually requires saving.
759** The common case is that no cursors need to be saved, so this routine is
760** broken out from its caller to avoid unnecessary stack pointer movement.
761*/
762static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000763 BtCursor *p, /* The first cursor that needs saving */
764 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
765 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000766){
767 do{
drh138eeeb2013-03-27 03:15:23 +0000768 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000769 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000770 int rc = saveCursorPosition(p);
771 if( SQLITE_OK!=rc ){
772 return rc;
773 }
774 }else{
drh85ef6302017-08-02 15:50:09 +0000775 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000776 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000777 }
778 }
drh637f3d82014-08-22 22:26:07 +0000779 p = p->pNext;
780 }while( p );
drh980b1a72006-08-16 16:42:48 +0000781 return SQLITE_OK;
782}
783
784/*
drhbf700f32007-03-31 02:36:44 +0000785** Clear the current cursor position.
786*/
danielk1977be51a652008-10-08 17:58:48 +0000787void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000788 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000789 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000790 pCur->pKey = 0;
791 pCur->eState = CURSOR_INVALID;
792}
793
794/*
danielk19773509a652009-07-06 18:56:13 +0000795** In this version of BtreeMoveto, pKey is a packed index record
796** such as is generated by the OP_MakeRecord opcode. Unpack the
797** record and then call BtreeMovetoUnpacked() to do the work.
798*/
799static int btreeMoveto(
800 BtCursor *pCur, /* Cursor open on the btree to be searched */
801 const void *pKey, /* Packed key if the btree is an index */
802 i64 nKey, /* Integer key for tables. Size of pKey for indices */
803 int bias, /* Bias search to the high end */
804 int *pRes /* Write search results here */
805){
806 int rc; /* Status code */
807 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000808
809 if( pKey ){
danb0c4c942019-01-24 15:16:17 +0000810 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +0000811 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +0000812 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000813 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +0000814 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
815 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +0000816 rc = SQLITE_CORRUPT_BKPT;
drha582b012016-12-21 19:45:54 +0000817 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000818 }
danielk19773509a652009-07-06 18:56:13 +0000819 }else{
820 pIdxKey = 0;
821 }
822 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000823moveto_done:
824 if( pIdxKey ){
825 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000826 }
827 return rc;
828}
829
830/*
drh980b1a72006-08-16 16:42:48 +0000831** Restore the cursor to the position it was in (or as close to as possible)
832** when saveCursorPosition() was called. Note that this call deletes the
833** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000834** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000835** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000836*/
danielk197730548662009-07-09 05:07:37 +0000837static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000838 int rc;
mistachkin4e2d3d42019-04-01 03:07:21 +0000839 int skipNext = 0;
dan7a2347e2016-01-07 16:43:54 +0000840 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000841 assert( pCur->eState>=CURSOR_REQUIRESEEK );
842 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000843 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000844 }
drh980b1a72006-08-16 16:42:48 +0000845 pCur->eState = CURSOR_INVALID;
drhb336d1a2019-03-30 19:17:35 +0000846 if( sqlite3FaultSim(410) ){
847 rc = SQLITE_IOERR;
848 }else{
849 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
850 }
drh980b1a72006-08-16 16:42:48 +0000851 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000852 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000853 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000854 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +0000855 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +0000856 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
857 pCur->eState = CURSOR_SKIPNEXT;
858 }
drh980b1a72006-08-16 16:42:48 +0000859 }
860 return rc;
861}
862
drha3460582008-07-11 21:02:53 +0000863#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000864 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000865 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000866 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000867
drha3460582008-07-11 21:02:53 +0000868/*
drh6848dad2014-08-22 23:33:03 +0000869** Determine whether or not a cursor has moved from the position where
870** it was last placed, or has been invalidated for any other reason.
871** Cursors can move when the row they are pointing at is deleted out
872** from under them, for example. Cursor might also move if a btree
873** is rebalanced.
drha3460582008-07-11 21:02:53 +0000874**
drh6848dad2014-08-22 23:33:03 +0000875** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000876**
drh6848dad2014-08-22 23:33:03 +0000877** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
878** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000879*/
drh6848dad2014-08-22 23:33:03 +0000880int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000881 assert( EIGHT_BYTE_ALIGNMENT(pCur)
882 || pCur==sqlite3BtreeFakeValidCursor() );
883 assert( offsetof(BtCursor, eState)==0 );
884 assert( sizeof(pCur->eState)==1 );
885 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000886}
887
888/*
drhfe0cf7a2017-08-16 19:20:20 +0000889** Return a pointer to a fake BtCursor object that will always answer
890** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
891** cursor returned must not be used with any other Btree interface.
892*/
893BtCursor *sqlite3BtreeFakeValidCursor(void){
894 static u8 fakeCursor = CURSOR_VALID;
895 assert( offsetof(BtCursor, eState)==0 );
896 return (BtCursor*)&fakeCursor;
897}
898
899/*
drh6848dad2014-08-22 23:33:03 +0000900** This routine restores a cursor back to its original position after it
901** has been moved by some outside activity (such as a btree rebalance or
902** a row having been deleted out from under the cursor).
903**
904** On success, the *pDifferentRow parameter is false if the cursor is left
905** pointing at exactly the same row. *pDifferntRow is the row the cursor
906** was pointing to has been deleted, forcing the cursor to point to some
907** nearby row.
908**
909** This routine should only be called for a cursor that just returned
910** TRUE from sqlite3BtreeCursorHasMoved().
911*/
912int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000913 int rc;
914
drh6848dad2014-08-22 23:33:03 +0000915 assert( pCur!=0 );
916 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000917 rc = restoreCursorPosition(pCur);
918 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000919 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000920 return rc;
921 }
drh606a3572015-03-25 18:29:10 +0000922 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000923 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000924 }else{
drh6848dad2014-08-22 23:33:03 +0000925 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000926 }
927 return SQLITE_OK;
928}
929
drhf7854c72015-10-27 13:24:37 +0000930#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000931/*
drh0df57012015-08-14 15:05:55 +0000932** Provide hints to the cursor. The particular hint given (and the type
933** and number of the varargs parameters) is determined by the eHintType
934** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000935*/
drh0df57012015-08-14 15:05:55 +0000936void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000937 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000938}
drhf7854c72015-10-27 13:24:37 +0000939#endif
940
941/*
942** Provide flag hints to the cursor.
943*/
944void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
945 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
946 pCur->hints = x;
947}
948
drh28935362013-12-07 20:39:19 +0000949
danielk1977599fcba2004-11-08 07:13:13 +0000950#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000951/*
drha3152892007-05-05 11:48:52 +0000952** Given a page number of a regular database page, return the page
953** number for the pointer-map page that contains the entry for the
954** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000955**
956** Return 0 (not a valid page) for pgno==1 since there is
957** no pointer map associated with page 1. The integrity_check logic
958** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000959*/
danielk1977266664d2006-02-10 08:24:21 +0000960static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000961 int nPagesPerMapPage;
962 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000963 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000964 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000965 nPagesPerMapPage = (pBt->usableSize/5)+1;
966 iPtrMap = (pgno-2)/nPagesPerMapPage;
967 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000968 if( ret==PENDING_BYTE_PAGE(pBt) ){
969 ret++;
970 }
971 return ret;
972}
danielk1977a19df672004-11-03 11:37:07 +0000973
danielk1977afcdd022004-10-31 16:25:42 +0000974/*
danielk1977afcdd022004-10-31 16:25:42 +0000975** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000976**
977** This routine updates the pointer map entry for page number 'key'
978** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000979**
980** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
981** a no-op. If an error occurs, the appropriate error code is written
982** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000983*/
drh98add2e2009-07-20 17:11:49 +0000984static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000985 DbPage *pDbPage; /* The pointer map page */
986 u8 *pPtrmap; /* The pointer map data */
987 Pgno iPtrmap; /* The pointer map page number */
988 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000989 int rc; /* Return code from subfunctions */
990
991 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000992
drh1fee73e2007-08-29 04:00:57 +0000993 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000994 /* The master-journal page number must never be used as a pointer map page */
995 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
996
danielk1977ac11ee62005-01-15 12:45:51 +0000997 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000998 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000999 *pRC = SQLITE_CORRUPT_BKPT;
1000 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +00001001 }
danielk1977266664d2006-02-10 08:24:21 +00001002 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001003 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00001004 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00001005 *pRC = rc;
1006 return;
danielk1977afcdd022004-10-31 16:25:42 +00001007 }
drh203b1ea2018-12-14 03:14:18 +00001008 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1009 /* The first byte of the extra data is the MemPage.isInit byte.
1010 ** If that byte is set, it means this page is also being used
1011 ** as a btree page. */
1012 *pRC = SQLITE_CORRUPT_BKPT;
1013 goto ptrmap_exit;
1014 }
danielk19778c666b12008-07-18 09:34:57 +00001015 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001016 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001017 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001018 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001019 }
drhfc243732011-05-17 15:21:56 +00001020 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001021 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001022
drh615ae552005-01-16 23:21:00 +00001023 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1024 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001025 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001026 if( rc==SQLITE_OK ){
1027 pPtrmap[offset] = eType;
1028 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001029 }
danielk1977afcdd022004-10-31 16:25:42 +00001030 }
1031
drh4925a552009-07-07 11:39:58 +00001032ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001033 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001034}
1035
1036/*
1037** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001038**
1039** This routine retrieves the pointer map entry for page 'key', writing
1040** the type and parent page number to *pEType and *pPgno respectively.
1041** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001042*/
danielk1977aef0bf62005-12-30 16:28:01 +00001043static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001044 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001045 int iPtrmap; /* Pointer map page index */
1046 u8 *pPtrmap; /* Pointer map page data */
1047 int offset; /* Offset of entry in pointer map */
1048 int rc;
1049
drh1fee73e2007-08-29 04:00:57 +00001050 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001051
danielk1977266664d2006-02-10 08:24:21 +00001052 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001053 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001054 if( rc!=0 ){
1055 return rc;
1056 }
danielk19773b8a05f2007-03-19 17:44:26 +00001057 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001058
danielk19778c666b12008-07-18 09:34:57 +00001059 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001060 if( offset<0 ){
1061 sqlite3PagerUnref(pDbPage);
1062 return SQLITE_CORRUPT_BKPT;
1063 }
1064 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001065 assert( pEType!=0 );
1066 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001067 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001068
danielk19773b8a05f2007-03-19 17:44:26 +00001069 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001070 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001071 return SQLITE_OK;
1072}
1073
danielk197785d90ca2008-07-19 14:25:15 +00001074#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001075 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001076 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001077 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001078#endif
danielk1977afcdd022004-10-31 16:25:42 +00001079
drh0d316a42002-08-11 20:10:47 +00001080/*
drh271efa52004-05-30 19:19:05 +00001081** Given a btree page and a cell index (0 means the first cell on
1082** the page, 1 means the second cell, and so forth) return a pointer
1083** to the cell content.
1084**
drhf44890a2015-06-27 03:58:15 +00001085** findCellPastPtr() does the same except it skips past the initial
1086** 4-byte child pointer found on interior pages, if there is one.
1087**
drh271efa52004-05-30 19:19:05 +00001088** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001089*/
drh1688c862008-07-18 02:44:17 +00001090#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001091 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001092#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001093 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001094
drh43605152004-05-29 21:46:49 +00001095
1096/*
drh5fa60512015-06-19 17:19:34 +00001097** This is common tail processing for btreeParseCellPtr() and
1098** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1099** on a single B-tree page. Make necessary adjustments to the CellInfo
1100** structure.
drh43605152004-05-29 21:46:49 +00001101*/
drh5fa60512015-06-19 17:19:34 +00001102static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1103 MemPage *pPage, /* Page containing the cell */
1104 u8 *pCell, /* Pointer to the cell text. */
1105 CellInfo *pInfo /* Fill in this structure */
1106){
1107 /* If the payload will not fit completely on the local page, we have
1108 ** to decide how much to store locally and how much to spill onto
1109 ** overflow pages. The strategy is to minimize the amount of unused
1110 ** space on overflow pages while keeping the amount of local storage
1111 ** in between minLocal and maxLocal.
1112 **
1113 ** Warning: changing the way overflow payload is distributed in any
1114 ** way will result in an incompatible file format.
1115 */
1116 int minLocal; /* Minimum amount of payload held locally */
1117 int maxLocal; /* Maximum amount of payload held locally */
1118 int surplus; /* Overflow payload available for local storage */
1119
1120 minLocal = pPage->minLocal;
1121 maxLocal = pPage->maxLocal;
1122 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1123 testcase( surplus==maxLocal );
1124 testcase( surplus==maxLocal+1 );
1125 if( surplus <= maxLocal ){
1126 pInfo->nLocal = (u16)surplus;
1127 }else{
1128 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001129 }
drh45ac1c72015-12-18 03:59:16 +00001130 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001131}
1132
1133/*
drh5fa60512015-06-19 17:19:34 +00001134** The following routines are implementations of the MemPage.xParseCell()
1135** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001136**
drh5fa60512015-06-19 17:19:34 +00001137** Parse a cell content block and fill in the CellInfo structure.
1138**
1139** btreeParseCellPtr() => table btree leaf nodes
1140** btreeParseCellNoPayload() => table btree internal nodes
1141** btreeParseCellPtrIndex() => index btree nodes
1142**
1143** There is also a wrapper function btreeParseCell() that works for
1144** all MemPage types and that references the cell by index rather than
1145** by pointer.
drh43605152004-05-29 21:46:49 +00001146*/
drh5fa60512015-06-19 17:19:34 +00001147static void btreeParseCellPtrNoPayload(
1148 MemPage *pPage, /* Page containing the cell */
1149 u8 *pCell, /* Pointer to the cell text. */
1150 CellInfo *pInfo /* Fill in this structure */
1151){
1152 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1153 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001154 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001155#ifndef SQLITE_DEBUG
1156 UNUSED_PARAMETER(pPage);
1157#endif
drh5fa60512015-06-19 17:19:34 +00001158 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1159 pInfo->nPayload = 0;
1160 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001161 pInfo->pPayload = 0;
1162 return;
1163}
danielk197730548662009-07-09 05:07:37 +00001164static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001165 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001166 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001167 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001168){
drh3e28ff52014-09-24 00:59:08 +00001169 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001170 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001171 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001172
drh1fee73e2007-08-29 04:00:57 +00001173 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001174 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001175 assert( pPage->intKeyLeaf );
1176 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001177 pIter = pCell;
1178
1179 /* The next block of code is equivalent to:
1180 **
1181 ** pIter += getVarint32(pIter, nPayload);
1182 **
1183 ** The code is inlined to avoid a function call.
1184 */
1185 nPayload = *pIter;
1186 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001187 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001188 nPayload &= 0x7f;
1189 do{
1190 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1191 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001192 }
drh56cb04e2015-06-19 18:24:37 +00001193 pIter++;
1194
1195 /* The next block of code is equivalent to:
1196 **
1197 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1198 **
1199 ** The code is inlined to avoid a function call.
1200 */
1201 iKey = *pIter;
1202 if( iKey>=0x80 ){
1203 u8 *pEnd = &pIter[7];
1204 iKey &= 0x7f;
1205 while(1){
1206 iKey = (iKey<<7) | (*++pIter & 0x7f);
1207 if( (*pIter)<0x80 ) break;
1208 if( pIter>=pEnd ){
1209 iKey = (iKey<<8) | *++pIter;
1210 break;
1211 }
1212 }
1213 }
1214 pIter++;
1215
1216 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001217 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001218 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001219 testcase( nPayload==pPage->maxLocal );
1220 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001221 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001222 /* This is the (easy) common case where the entire payload fits
1223 ** on the local page. No overflow is required.
1224 */
drhab1cc582014-09-23 21:25:19 +00001225 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1226 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001227 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001228 }else{
drh5fa60512015-06-19 17:19:34 +00001229 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001230 }
drh3aac2dd2004-04-26 14:10:20 +00001231}
drh5fa60512015-06-19 17:19:34 +00001232static void btreeParseCellPtrIndex(
1233 MemPage *pPage, /* Page containing the cell */
1234 u8 *pCell, /* Pointer to the cell text. */
1235 CellInfo *pInfo /* Fill in this structure */
1236){
1237 u8 *pIter; /* For scanning through pCell */
1238 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001239
drh5fa60512015-06-19 17:19:34 +00001240 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1241 assert( pPage->leaf==0 || pPage->leaf==1 );
1242 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001243 pIter = pCell + pPage->childPtrSize;
1244 nPayload = *pIter;
1245 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001246 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001247 nPayload &= 0x7f;
1248 do{
1249 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1250 }while( *(pIter)>=0x80 && pIter<pEnd );
1251 }
1252 pIter++;
1253 pInfo->nKey = nPayload;
1254 pInfo->nPayload = nPayload;
1255 pInfo->pPayload = pIter;
1256 testcase( nPayload==pPage->maxLocal );
1257 testcase( nPayload==pPage->maxLocal+1 );
1258 if( nPayload<=pPage->maxLocal ){
1259 /* This is the (easy) common case where the entire payload fits
1260 ** on the local page. No overflow is required.
1261 */
1262 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1263 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1264 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001265 }else{
1266 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001267 }
1268}
danielk197730548662009-07-09 05:07:37 +00001269static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001270 MemPage *pPage, /* Page containing the cell */
1271 int iCell, /* The cell index. First cell is 0 */
1272 CellInfo *pInfo /* Fill in this structure */
1273){
drh5fa60512015-06-19 17:19:34 +00001274 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001275}
drh3aac2dd2004-04-26 14:10:20 +00001276
1277/*
drh5fa60512015-06-19 17:19:34 +00001278** The following routines are implementations of the MemPage.xCellSize
1279** method.
1280**
drh43605152004-05-29 21:46:49 +00001281** Compute the total number of bytes that a Cell needs in the cell
1282** data area of the btree-page. The return number includes the cell
1283** data header and the local payload, but not any overflow page or
1284** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001285**
drh5fa60512015-06-19 17:19:34 +00001286** cellSizePtrNoPayload() => table internal nodes
1287** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001288*/
danielk1977ae5558b2009-04-29 11:31:47 +00001289static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001290 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1291 u8 *pEnd; /* End mark for a varint */
1292 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001293
1294#ifdef SQLITE_DEBUG
1295 /* The value returned by this function should always be the same as
1296 ** the (CellInfo.nSize) value found by doing a full parse of the
1297 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1298 ** this function verifies that this invariant is not violated. */
1299 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001300 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001301#endif
1302
drh3e28ff52014-09-24 00:59:08 +00001303 nSize = *pIter;
1304 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001305 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001306 nSize &= 0x7f;
1307 do{
1308 nSize = (nSize<<7) | (*++pIter & 0x7f);
1309 }while( *(pIter)>=0x80 && pIter<pEnd );
1310 }
1311 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001312 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001313 /* pIter now points at the 64-bit integer key value, a variable length
1314 ** integer. The following block moves pIter to point at the first byte
1315 ** past the end of the key value. */
1316 pEnd = &pIter[9];
1317 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001318 }
drh0a45c272009-07-08 01:49:11 +00001319 testcase( nSize==pPage->maxLocal );
1320 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001321 if( nSize<=pPage->maxLocal ){
1322 nSize += (u32)(pIter - pCell);
1323 if( nSize<4 ) nSize = 4;
1324 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001325 int minLocal = pPage->minLocal;
1326 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001327 testcase( nSize==pPage->maxLocal );
1328 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001329 if( nSize>pPage->maxLocal ){
1330 nSize = minLocal;
1331 }
drh3e28ff52014-09-24 00:59:08 +00001332 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001333 }
drhdc41d602014-09-22 19:51:35 +00001334 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001335 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001336}
drh25ada072015-06-19 15:07:14 +00001337static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1338 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1339 u8 *pEnd; /* End mark for a varint */
1340
1341#ifdef SQLITE_DEBUG
1342 /* The value returned by this function should always be the same as
1343 ** the (CellInfo.nSize) value found by doing a full parse of the
1344 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1345 ** this function verifies that this invariant is not violated. */
1346 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001347 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001348#else
1349 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001350#endif
1351
1352 assert( pPage->childPtrSize==4 );
1353 pEnd = pIter + 9;
1354 while( (*pIter++)&0x80 && pIter<pEnd );
1355 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1356 return (u16)(pIter - pCell);
1357}
1358
drh0ee3dbe2009-10-16 15:05:18 +00001359
1360#ifdef SQLITE_DEBUG
1361/* This variation on cellSizePtr() is used inside of assert() statements
1362** only. */
drha9121e42008-02-19 14:59:35 +00001363static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001364 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001365}
danielk1977bc6ada42004-06-30 08:20:16 +00001366#endif
drh3b7511c2001-05-26 13:15:44 +00001367
danielk197779a40da2005-01-16 08:00:01 +00001368#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001369/*
drh0f1bf4c2019-01-13 20:17:21 +00001370** The cell pCell is currently part of page pSrc but will ultimately be part
1371** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1372** pointer to an overflow page, insert an entry into the pointer-map for
1373** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001374*/
drh0f1bf4c2019-01-13 20:17:21 +00001375static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001376 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001377 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001378 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001379 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001380 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001381 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001382 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1383 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001384 *pRC = SQLITE_CORRUPT_BKPT;
1385 return;
1386 }
1387 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001388 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001389 }
danielk1977ac11ee62005-01-15 12:45:51 +00001390}
danielk197779a40da2005-01-16 08:00:01 +00001391#endif
1392
danielk1977ac11ee62005-01-15 12:45:51 +00001393
drhda200cc2004-05-09 11:51:38 +00001394/*
dane6d065a2017-02-24 19:58:22 +00001395** Defragment the page given. This routine reorganizes cells within the
1396** page so that there are no free-blocks on the free-block list.
1397**
1398** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1399** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001400**
1401** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1402** b-tree page so that there are no freeblocks or fragment bytes, all
1403** unused bytes are contained in the unallocated space region, and all
1404** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001405*/
dane6d065a2017-02-24 19:58:22 +00001406static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001407 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001408 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001409 int hdr; /* Offset to the page header */
1410 int size; /* Size of a cell */
1411 int usableSize; /* Number of usable bytes on a page */
1412 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001413 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001414 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001415 unsigned char *data; /* The page data */
1416 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001417 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001418 int iCellFirst; /* First allowable cell index */
1419 int iCellLast; /* Last possible cell index */
1420
danielk19773b8a05f2007-03-19 17:44:26 +00001421 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001422 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001423 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001424 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001425 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001426 temp = 0;
1427 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001428 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001429 cellOffset = pPage->cellOffset;
1430 nCell = pPage->nCell;
drh45616c72019-02-28 13:21:36 +00001431 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001432 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001433 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001434
1435 /* This block handles pages with two or fewer free blocks and nMaxFrag
1436 ** or fewer fragmented bytes. In this case it is faster to move the
1437 ** two (or one) blocks of cells using memmove() and add the required
1438 ** offsets to each pointer in the cell-pointer array than it is to
1439 ** reconstruct the entire page. */
1440 if( (int)data[hdr+7]<=nMaxFrag ){
1441 int iFree = get2byte(&data[hdr+1]);
drh119e1ff2019-03-30 18:39:13 +00001442 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001443 if( iFree ){
1444 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001445 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001446 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1447 u8 *pEnd = &data[cellOffset + nCell*2];
1448 u8 *pAddr;
1449 int sz2 = 0;
1450 int sz = get2byte(&data[iFree+2]);
1451 int top = get2byte(&data[hdr+5]);
drh4e6cec12017-09-28 13:47:35 +00001452 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001453 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001454 }
dane6d065a2017-02-24 19:58:22 +00001455 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001456 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001457 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001458 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001459 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1460 sz += sz2;
dandcc427c2019-03-21 21:18:36 +00001461 }else if( iFree+sz>usableSize ){
1462 return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001463 }
dandcc427c2019-03-21 21:18:36 +00001464
dane6d065a2017-02-24 19:58:22 +00001465 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001466 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001467 memmove(&data[cbrk], &data[top], iFree-top);
1468 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1469 pc = get2byte(pAddr);
1470 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1471 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1472 }
1473 goto defragment_out;
1474 }
1475 }
1476 }
1477
drh281b21d2008-08-22 12:57:08 +00001478 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001479 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001480 for(i=0; i<nCell; i++){
1481 u8 *pAddr; /* The i-th cell pointer */
1482 pAddr = &data[cellOffset + i*2];
1483 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001484 testcase( pc==iCellFirst );
1485 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001486 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001487 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001488 */
1489 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001490 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001491 }
drh17146622009-07-07 17:38:38 +00001492 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001493 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001494 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001495 if( cbrk<iCellFirst || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001496 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001497 }
drh7157e1d2009-07-09 13:25:32 +00001498 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001499 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001500 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001501 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001502 if( temp==0 ){
1503 int x;
1504 if( cbrk==pc ) continue;
1505 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1506 x = get2byte(&data[hdr+5]);
1507 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1508 src = temp;
1509 }
1510 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001511 }
dane6d065a2017-02-24 19:58:22 +00001512 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001513
1514 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001515 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001516 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001517 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001518 }
drh17146622009-07-07 17:38:38 +00001519 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001520 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001521 data[hdr+1] = 0;
1522 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001523 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001524 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001525 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001526}
1527
drha059ad02001-04-17 20:09:11 +00001528/*
dan8e9ba0c2014-10-14 17:27:04 +00001529** Search the free-list on page pPg for space to store a cell nByte bytes in
1530** size. If one can be found, return a pointer to the space and remove it
1531** from the free-list.
1532**
1533** If no suitable space can be found on the free-list, return NULL.
1534**
drhba0f9992014-10-30 20:48:44 +00001535** This function may detect corruption within pPg. If corruption is
1536** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001537**
drhb7580e82015-06-25 18:36:13 +00001538** Slots on the free list that are between 1 and 3 bytes larger than nByte
1539** will be ignored if adding the extra space to the fragmentation count
1540** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001541*/
drhb7580e82015-06-25 18:36:13 +00001542static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001543 const int hdr = pPg->hdrOffset; /* Offset to page header */
1544 u8 * const aData = pPg->aData; /* Page data */
1545 int iAddr = hdr + 1; /* Address of ptr to pc */
1546 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */
1547 int x; /* Excess size of the slot */
1548 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1549 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001550
drhb7580e82015-06-25 18:36:13 +00001551 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001552 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001553 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1554 ** freeblock form a big-endian integer which is the size of the freeblock
1555 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001556 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001557 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001558 testcase( x==4 );
1559 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001560 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001561 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1562 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001563 if( aData[hdr+7]>57 ) return 0;
1564
dan8e9ba0c2014-10-14 17:27:04 +00001565 /* Remove the slot from the free-list. Update the number of
1566 ** fragmented bytes within the page. */
1567 memcpy(&aData[iAddr], &aData[pc], 2);
1568 aData[hdr+7] += (u8)x;
drh298f45c2019-02-08 22:34:59 +00001569 }else if( x+pc > maxPC ){
1570 /* This slot extends off the end of the usable part of the page */
1571 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1572 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001573 }else{
1574 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001575 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001576 put2byte(&aData[pc+2], x);
1577 }
1578 return &aData[pc + x];
1579 }
drhb7580e82015-06-25 18:36:13 +00001580 iAddr = pc;
1581 pc = get2byte(&aData[pc]);
drh2a934d72019-03-13 10:29:16 +00001582 if( pc<=iAddr+size ){
drh298f45c2019-02-08 22:34:59 +00001583 if( pc ){
1584 /* The next slot in the chain is not past the end of the current slot */
1585 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1586 }
1587 return 0;
1588 }
drh87d63c92017-08-23 23:09:03 +00001589 }
drh298f45c2019-02-08 22:34:59 +00001590 if( pc>maxPC+nByte-4 ){
1591 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001592 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001593 }
dan8e9ba0c2014-10-14 17:27:04 +00001594 return 0;
1595}
1596
1597/*
danielk19776011a752009-04-01 16:25:32 +00001598** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001599** as the first argument. Write into *pIdx the index into pPage->aData[]
1600** of the first byte of allocated space. Return either SQLITE_OK or
1601** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001602**
drh0a45c272009-07-08 01:49:11 +00001603** The caller guarantees that there is sufficient space to make the
1604** allocation. This routine might need to defragment in order to bring
1605** all the space together, however. This routine will avoid using
1606** the first two bytes past the cell pointer area since presumably this
1607** allocation is being made in order to insert a new cell, so we will
1608** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001609*/
drh0a45c272009-07-08 01:49:11 +00001610static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001611 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1612 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001613 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001614 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001615 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001616
danielk19773b8a05f2007-03-19 17:44:26 +00001617 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001618 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001619 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001620 assert( nByte>=0 ); /* Minimum cell size is 4 */
1621 assert( pPage->nFree>=nByte );
1622 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001623 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001624
drh0a45c272009-07-08 01:49:11 +00001625 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1626 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001627 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001628 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1629 ** and the reserved space is zero (the usual value for reserved space)
1630 ** then the cell content offset of an empty page wants to be 65536.
1631 ** However, that integer is too large to be stored in a 2-byte unsigned
1632 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001633 top = get2byte(&data[hdr+5]);
drhdfcecdf2019-05-08 00:17:45 +00001634 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
drhded340e2015-06-25 15:04:56 +00001635 if( gap>top ){
drh291508f2019-05-08 04:33:17 +00001636 if( top==0 && pPage->pBt->usableSize==65536 ){
drhded340e2015-06-25 15:04:56 +00001637 top = 65536;
1638 }else{
daneebf2f52017-11-18 17:30:08 +00001639 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001640 }
1641 }
drh43605152004-05-29 21:46:49 +00001642
drhd4a67442019-02-11 19:27:36 +00001643 /* If there is enough space between gap and top for one more cell pointer,
1644 ** and if the freelist is not empty, then search the
1645 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001646 */
drh5e2f8b92001-05-28 00:41:15 +00001647 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001648 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001649 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001650 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001651 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001652 if( pSpace ){
drh2b96b692019-08-05 16:22:20 +00001653 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1654 if( (*pIdx = (int)(pSpace-data))<=gap ){
1655 return SQLITE_CORRUPT_PAGE(pPage);
1656 }else{
1657 return SQLITE_OK;
1658 }
drhb7580e82015-06-25 18:36:13 +00001659 }else if( rc ){
1660 return rc;
drh9e572e62004-04-23 23:43:10 +00001661 }
1662 }
drh43605152004-05-29 21:46:49 +00001663
drh4c04f3c2014-08-20 11:56:14 +00001664 /* The request could not be fulfilled using a freelist slot. Check
1665 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001666 */
1667 testcase( gap+2+nByte==top );
1668 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001669 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001670 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001671 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001672 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001673 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001674 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001675 }
1676
1677
drh43605152004-05-29 21:46:49 +00001678 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001679 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001680 ** validated the freelist. Given that the freelist is valid, there
1681 ** is no way that the allocation can extend off the end of the page.
1682 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001683 */
drh0a45c272009-07-08 01:49:11 +00001684 top -= nByte;
drh43605152004-05-29 21:46:49 +00001685 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001686 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001687 *pIdx = top;
1688 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001689}
1690
1691/*
drh9e572e62004-04-23 23:43:10 +00001692** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001693** The first byte of the new free block is pPage->aData[iStart]
1694** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001695**
drh5f5c7532014-08-20 17:56:27 +00001696** Adjacent freeblocks are coalesced.
1697**
drh5860a612019-02-12 16:58:26 +00001698** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001699** that routine will not detect overlap between cells or freeblocks. Nor
1700** does it detect cells or freeblocks that encrouch into the reserved bytes
1701** at the end of the page. So do additional corruption checks inside this
1702** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001703*/
drh5f5c7532014-08-20 17:56:27 +00001704static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001705 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001706 u16 iFreeBlk; /* Address of the next freeblock */
1707 u8 hdr; /* Page header size. 0 or 100 */
1708 u8 nFrag = 0; /* Reduction in fragmentation */
1709 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001710 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001711 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001712 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001713
drh9e572e62004-04-23 23:43:10 +00001714 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001715 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001716 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001717 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001718 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001719 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001720 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001721
drh5f5c7532014-08-20 17:56:27 +00001722 /* The list of freeblocks must be in ascending order. Find the
1723 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001724 */
drh43605152004-05-29 21:46:49 +00001725 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001726 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001727 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1728 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1729 }else{
drh85f071b2016-09-17 19:34:32 +00001730 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1731 if( iFreeBlk<iPtr+4 ){
1732 if( iFreeBlk==0 ) break;
daneebf2f52017-11-18 17:30:08 +00001733 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001734 }
drh7bc4c452014-08-20 18:43:44 +00001735 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001736 }
drh5e398e42017-08-23 20:36:06 +00001737 if( iFreeBlk>pPage->pBt->usableSize-4 ){
daneebf2f52017-11-18 17:30:08 +00001738 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001739 }
drh7bc4c452014-08-20 18:43:44 +00001740 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1741
1742 /* At this point:
1743 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001744 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001745 **
1746 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1747 */
1748 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1749 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001750 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001751 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhcc97ca42017-06-07 22:32:59 +00001752 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001753 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001754 }
drh7bc4c452014-08-20 18:43:44 +00001755 iSize = iEnd - iStart;
1756 iFreeBlk = get2byte(&data[iFreeBlk]);
1757 }
1758
drh3f387402014-09-24 01:23:00 +00001759 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1760 ** pointer in the page header) then check to see if iStart should be
1761 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001762 */
1763 if( iPtr>hdr+1 ){
1764 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1765 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001766 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001767 nFrag += iStart - iPtrEnd;
1768 iSize = iEnd - iPtr;
1769 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001770 }
drh9e572e62004-04-23 23:43:10 +00001771 }
daneebf2f52017-11-18 17:30:08 +00001772 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001773 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001774 }
drh5e398e42017-08-23 20:36:06 +00001775 x = get2byte(&data[hdr+5]);
1776 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001777 /* The new freeblock is at the beginning of the cell content area,
1778 ** so just extend the cell content area rather than create another
1779 ** freelist entry */
daneebf2f52017-11-18 17:30:08 +00001780 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001781 put2byte(&data[hdr+1], iFreeBlk);
1782 put2byte(&data[hdr+5], iEnd);
1783 }else{
1784 /* Insert the new freeblock into the freelist */
1785 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001786 }
drh5e398e42017-08-23 20:36:06 +00001787 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1788 /* Overwrite deleted information with zeros when the secure_delete
1789 ** option is enabled */
1790 memset(&data[iStart], 0, iSize);
1791 }
1792 put2byte(&data[iStart], iFreeBlk);
1793 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001794 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001795 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001796}
1797
1798/*
drh271efa52004-05-30 19:19:05 +00001799** Decode the flags byte (the first byte of the header) for a page
1800** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001801**
1802** Only the following combinations are supported. Anything different
1803** indicates a corrupt database files:
1804**
1805** PTF_ZERODATA
1806** PTF_ZERODATA | PTF_LEAF
1807** PTF_LEAFDATA | PTF_INTKEY
1808** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001809*/
drh44845222008-07-17 18:39:57 +00001810static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001811 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001812
1813 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001814 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001815 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001816 flagByte &= ~PTF_LEAF;
1817 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001818 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001819 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001820 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001821 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1822 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001823 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001824 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1825 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001826 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001827 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001828 if( pPage->leaf ){
1829 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001830 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001831 }else{
1832 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001833 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001834 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001835 }
drh271efa52004-05-30 19:19:05 +00001836 pPage->maxLocal = pBt->maxLeaf;
1837 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001838 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001839 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1840 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001841 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001842 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1843 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001844 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001845 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001846 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001847 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001848 pPage->maxLocal = pBt->maxLocal;
1849 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001850 }else{
drhfdab0262014-11-20 15:30:50 +00001851 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1852 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001853 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001854 }
drhc9166342012-01-05 23:32:06 +00001855 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001856 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001857}
1858
1859/*
drhb0ea9432019-02-09 21:06:40 +00001860** Compute the amount of freespace on the page. In other words, fill
1861** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00001862*/
drhb0ea9432019-02-09 21:06:40 +00001863static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001864 int pc; /* Address of a freeblock within pPage->aData[] */
1865 u8 hdr; /* Offset to beginning of page header */
1866 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00001867 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00001868 int nFree; /* Number of unused bytes on the page */
1869 int top; /* First byte of the cell content area */
1870 int iCellFirst; /* First allowable cell or freeblock offset */
1871 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001872
danielk197771d5d2c2008-09-29 11:49:47 +00001873 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001874 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001875 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001876 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001877 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1878 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00001879 assert( pPage->isInit==1 );
1880 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001881
drhb0ea9432019-02-09 21:06:40 +00001882 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00001883 hdr = pPage->hdrOffset;
1884 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00001885 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1886 ** the start of the cell content area. A zero value for this integer is
1887 ** interpreted as 65536. */
1888 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00001889 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00001890 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00001891
drh14e845a2017-05-25 21:35:56 +00001892 /* Compute the total free space on the page
1893 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1894 ** start of the first freeblock on the page, or is zero if there are no
1895 ** freeblocks. */
1896 pc = get2byte(&data[hdr+1]);
1897 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1898 if( pc>0 ){
1899 u32 next, size;
1900 if( pc<iCellFirst ){
1901 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1902 ** always be at least one cell before the first freeblock.
1903 */
daneebf2f52017-11-18 17:30:08 +00001904 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001905 }
drh14e845a2017-05-25 21:35:56 +00001906 while( 1 ){
1907 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001908 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001909 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001910 }
1911 next = get2byte(&data[pc]);
1912 size = get2byte(&data[pc+2]);
1913 nFree = nFree + size;
1914 if( next<=pc+size+3 ) break;
1915 pc = next;
1916 }
1917 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001918 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001919 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001920 }
1921 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001922 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001923 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001924 }
danielk197771d5d2c2008-09-29 11:49:47 +00001925 }
drh14e845a2017-05-25 21:35:56 +00001926
1927 /* At this point, nFree contains the sum of the offset to the start
1928 ** of the cell-content area plus the number of free bytes within
1929 ** the cell-content area. If this is greater than the usable-size
1930 ** of the page, then the page must be corrupted. This check also
1931 ** serves to verify that the offset to the start of the cell-content
1932 ** area, according to the page header, lies within the page.
1933 */
drhdfcecdf2019-05-08 00:17:45 +00001934 if( nFree>usableSize || nFree<iCellFirst ){
daneebf2f52017-11-18 17:30:08 +00001935 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001936 }
1937 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00001938 return SQLITE_OK;
1939}
1940
1941/*
drh5860a612019-02-12 16:58:26 +00001942** Do additional sanity check after btreeInitPage() if
1943** PRAGMA cell_size_check=ON
1944*/
1945static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1946 int iCellFirst; /* First allowable cell or freeblock offset */
1947 int iCellLast; /* Last possible cell or freeblock offset */
1948 int i; /* Index into the cell pointer array */
1949 int sz; /* Size of a cell */
1950 int pc; /* Address of a freeblock within pPage->aData[] */
1951 u8 *data; /* Equal to pPage->aData */
1952 int usableSize; /* Maximum usable space on the page */
1953 int cellOffset; /* Start of cell content area */
1954
1955 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1956 usableSize = pPage->pBt->usableSize;
1957 iCellLast = usableSize - 4;
1958 data = pPage->aData;
1959 cellOffset = pPage->cellOffset;
1960 if( !pPage->leaf ) iCellLast--;
1961 for(i=0; i<pPage->nCell; i++){
1962 pc = get2byteAligned(&data[cellOffset+i*2]);
1963 testcase( pc==iCellFirst );
1964 testcase( pc==iCellLast );
1965 if( pc<iCellFirst || pc>iCellLast ){
1966 return SQLITE_CORRUPT_PAGE(pPage);
1967 }
1968 sz = pPage->xCellSize(pPage, &data[pc]);
1969 testcase( pc+sz==usableSize );
1970 if( pc+sz>usableSize ){
1971 return SQLITE_CORRUPT_PAGE(pPage);
1972 }
1973 }
1974 return SQLITE_OK;
1975}
1976
1977/*
drhb0ea9432019-02-09 21:06:40 +00001978** Initialize the auxiliary information for a disk block.
1979**
1980** Return SQLITE_OK on success. If we see that the page does
1981** not contain a well-formed database page, then return
1982** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1983** guarantee that the page is well-formed. It only shows that
1984** we failed to detect any corruption.
1985*/
1986static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00001987 u8 *data; /* Equal to pPage->aData */
1988 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00001989
1990 assert( pPage->pBt!=0 );
1991 assert( pPage->pBt->db!=0 );
1992 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1993 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1994 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1995 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1996 assert( pPage->isInit==0 );
1997
1998 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00001999 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00002000 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2001 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00002002 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00002003 return SQLITE_CORRUPT_PAGE(pPage);
2004 }
2005 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2006 pPage->maskPage = (u16)(pBt->pageSize - 1);
2007 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00002008 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2009 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2010 pPage->aDataEnd = pPage->aData + pBt->usableSize;
2011 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002012 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2013 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002014 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002015 if( pPage->nCell>MX_CELL(pBt) ){
2016 /* To many cells for a single page. The page must be corrupt */
2017 return SQLITE_CORRUPT_PAGE(pPage);
2018 }
2019 testcase( pPage->nCell==MX_CELL(pBt) );
2020 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2021 ** possible for a root page of a table that contains no rows) then the
2022 ** offset to the cell content area will equal the page size minus the
2023 ** bytes of reserved space. */
2024 assert( pPage->nCell>0
mistachkin065f3bf2019-03-20 05:45:03 +00002025 || get2byteNotZero(&data[5])==(int)pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002026 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002027 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002028 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002029 if( pBt->db->flags & SQLITE_CellSizeCk ){
2030 return btreeCellSizeCheck(pPage);
2031 }
drh9e572e62004-04-23 23:43:10 +00002032 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002033}
2034
2035/*
drh8b2f49b2001-06-08 00:21:52 +00002036** Set up a raw page so that it looks like a database page holding
2037** no entries.
drhbd03cae2001-06-02 02:40:57 +00002038*/
drh9e572e62004-04-23 23:43:10 +00002039static void zeroPage(MemPage *pPage, int flags){
2040 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002041 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002042 u8 hdr = pPage->hdrOffset;
2043 u16 first;
drh9e572e62004-04-23 23:43:10 +00002044
danielk19773b8a05f2007-03-19 17:44:26 +00002045 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00002046 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2047 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002048 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002049 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002050 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002051 memset(&data[hdr], 0, pBt->usableSize - hdr);
2052 }
drh1bd10f82008-12-10 21:19:56 +00002053 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002054 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002055 memset(&data[hdr+1], 0, 4);
2056 data[hdr+7] = 0;
2057 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002058 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002059 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002060 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002061 pPage->aDataEnd = &data[pBt->usableSize];
2062 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002063 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002064 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002065 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2066 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002067 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002068 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002069}
2070
drh897a8202008-09-18 01:08:15 +00002071
2072/*
2073** Convert a DbPage obtained from the pager into a MemPage used by
2074** the btree layer.
2075*/
2076static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2077 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002078 if( pgno!=pPage->pgno ){
2079 pPage->aData = sqlite3PagerGetData(pDbPage);
2080 pPage->pDbPage = pDbPage;
2081 pPage->pBt = pBt;
2082 pPage->pgno = pgno;
2083 pPage->hdrOffset = pgno==1 ? 100 : 0;
2084 }
2085 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002086 return pPage;
2087}
2088
drhbd03cae2001-06-02 02:40:57 +00002089/*
drh3aac2dd2004-04-26 14:10:20 +00002090** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002091** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002092**
drh7e8c6f12015-05-28 03:28:27 +00002093** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2094** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002095** to fetch the content. Just fill in the content with zeros for now.
2096** If in the future we call sqlite3PagerWrite() on this page, that
2097** means we have started to be concerned about content and the disk
2098** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002099*/
danielk197730548662009-07-09 05:07:37 +00002100static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002101 BtShared *pBt, /* The btree */
2102 Pgno pgno, /* Number of the page to fetch */
2103 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002104 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002105){
drh3aac2dd2004-04-26 14:10:20 +00002106 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002107 DbPage *pDbPage;
2108
drhb00fc3b2013-08-21 23:42:32 +00002109 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002110 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002111 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002112 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002113 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002114 return SQLITE_OK;
2115}
2116
2117/*
danielk1977bea2a942009-01-20 17:06:27 +00002118** Retrieve a page from the pager cache. If the requested page is not
2119** already in the pager cache return NULL. Initialize the MemPage.pBt and
2120** MemPage.aData elements if needed.
2121*/
2122static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2123 DbPage *pDbPage;
2124 assert( sqlite3_mutex_held(pBt->mutex) );
2125 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2126 if( pDbPage ){
2127 return btreePageFromDbPage(pDbPage, pgno, pBt);
2128 }
2129 return 0;
2130}
2131
2132/*
danielk197789d40042008-11-17 14:20:56 +00002133** Return the size of the database file in pages. If there is any kind of
2134** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002135*/
drhb1299152010-03-30 22:58:33 +00002136static Pgno btreePagecount(BtShared *pBt){
2137 return pBt->nPage;
2138}
2139u32 sqlite3BtreeLastPage(Btree *p){
2140 assert( sqlite3BtreeHoldsMutex(p) );
drh8a181002017-10-12 01:19:06 +00002141 assert( ((p->pBt->nPage)&0x80000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002142 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002143}
2144
2145/*
drh28f58dd2015-06-27 19:45:03 +00002146** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002147**
drh15a00212015-06-27 20:55:00 +00002148** If pCur!=0 then the page is being fetched as part of a moveToChild()
2149** call. Do additional sanity checking on the page in this case.
2150** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002151**
2152** The page is fetched as read-write unless pCur is not NULL and is
2153** a read-only cursor.
2154**
2155** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002156** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002157*/
2158static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002159 BtShared *pBt, /* The database file */
2160 Pgno pgno, /* Number of the page to get */
2161 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002162 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2163 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002164){
2165 int rc;
drh28f58dd2015-06-27 19:45:03 +00002166 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002167 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002168 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002169 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002170 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002171
danba3cbf32010-06-30 04:29:03 +00002172 if( pgno>btreePagecount(pBt) ){
2173 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002174 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002175 }
drh9584f582015-11-04 20:22:37 +00002176 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002177 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002178 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002179 }
drh8dd1c252015-11-04 22:31:02 +00002180 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002181 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002182 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002183 rc = btreeInitPage(*ppPage);
2184 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002185 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002186 }
drhee696e22004-08-30 16:52:17 +00002187 }
drh8dd1c252015-11-04 22:31:02 +00002188 assert( (*ppPage)->pgno==pgno );
2189 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002190
drh15a00212015-06-27 20:55:00 +00002191 /* If obtaining a child page for a cursor, we must verify that the page is
2192 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002193 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002194 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002195 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002196 }
drh28f58dd2015-06-27 19:45:03 +00002197 return SQLITE_OK;
2198
drhb0ea9432019-02-09 21:06:40 +00002199getAndInitPage_error2:
2200 releasePage(*ppPage);
2201getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002202 if( pCur ){
2203 pCur->iPage--;
2204 pCur->pPage = pCur->apPage[pCur->iPage];
2205 }
danba3cbf32010-06-30 04:29:03 +00002206 testcase( pgno==0 );
2207 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002208 return rc;
2209}
2210
2211/*
drh3aac2dd2004-04-26 14:10:20 +00002212** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002213** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002214**
2215** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002216*/
drhbbf0f862015-06-27 14:59:26 +00002217static void releasePageNotNull(MemPage *pPage){
2218 assert( pPage->aData );
2219 assert( pPage->pBt );
2220 assert( pPage->pDbPage!=0 );
2221 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2222 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2223 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2224 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002225}
drh3aac2dd2004-04-26 14:10:20 +00002226static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002227 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002228}
drh3908fe92017-09-01 14:50:19 +00002229static void releasePageOne(MemPage *pPage){
2230 assert( pPage!=0 );
2231 assert( pPage->aData );
2232 assert( pPage->pBt );
2233 assert( pPage->pDbPage!=0 );
2234 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2235 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2236 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2237 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2238}
drh3aac2dd2004-04-26 14:10:20 +00002239
2240/*
drh7e8c6f12015-05-28 03:28:27 +00002241** Get an unused page.
2242**
2243** This works just like btreeGetPage() with the addition:
2244**
2245** * If the page is already in use for some other purpose, immediately
2246** release it and return an SQLITE_CURRUPT error.
2247** * Make sure the isInit flag is clear
2248*/
2249static int btreeGetUnusedPage(
2250 BtShared *pBt, /* The btree */
2251 Pgno pgno, /* Number of the page to fetch */
2252 MemPage **ppPage, /* Return the page in this parameter */
2253 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2254){
2255 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2256 if( rc==SQLITE_OK ){
2257 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2258 releasePage(*ppPage);
2259 *ppPage = 0;
2260 return SQLITE_CORRUPT_BKPT;
2261 }
2262 (*ppPage)->isInit = 0;
2263 }else{
2264 *ppPage = 0;
2265 }
2266 return rc;
2267}
2268
drha059ad02001-04-17 20:09:11 +00002269
2270/*
drha6abd042004-06-09 17:37:22 +00002271** During a rollback, when the pager reloads information into the cache
2272** so that the cache is restored to its original state at the start of
2273** the transaction, for each page restored this routine is called.
2274**
2275** This routine needs to reset the extra data section at the end of the
2276** page to agree with the restored data.
2277*/
danielk1977eaa06f62008-09-18 17:34:44 +00002278static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002279 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002280 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002281 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002282 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002283 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002284 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002285 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002286 /* pPage might not be a btree page; it might be an overflow page
2287 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002288 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002289 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002290 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002291 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002292 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002293 }
drha6abd042004-06-09 17:37:22 +00002294 }
2295}
2296
2297/*
drhe5fe6902007-12-07 18:55:28 +00002298** Invoke the busy handler for a btree.
2299*/
danielk19771ceedd32008-11-19 10:22:33 +00002300static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002301 BtShared *pBt = (BtShared*)pArg;
2302 assert( pBt->db );
2303 assert( sqlite3_mutex_held(pBt->db->mutex) );
drhf0119b22018-03-26 17:40:53 +00002304 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2305 sqlite3PagerFile(pBt->pPager));
drhe5fe6902007-12-07 18:55:28 +00002306}
2307
2308/*
drhad3e0102004-09-03 23:32:18 +00002309** Open a database file.
2310**
drh382c0242001-10-06 16:33:02 +00002311** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002312** then an ephemeral database is created. The ephemeral database might
2313** be exclusively in memory, or it might use a disk-based memory cache.
2314** Either way, the ephemeral database will be automatically deleted
2315** when sqlite3BtreeClose() is called.
2316**
drhe53831d2007-08-17 01:14:38 +00002317** If zFilename is ":memory:" then an in-memory database is created
2318** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002319**
drh33f111d2012-01-17 15:29:14 +00002320** The "flags" parameter is a bitmask that might contain bits like
2321** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002322**
drhc47fd8e2009-04-30 13:30:32 +00002323** If the database is already opened in the same database connection
2324** and we are in shared cache mode, then the open will fail with an
2325** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2326** objects in the same database connection since doing so will lead
2327** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002328*/
drh23e11ca2004-05-04 17:27:28 +00002329int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002330 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002331 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002332 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002333 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002334 int flags, /* Options */
2335 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002336){
drh7555d8e2009-03-20 13:15:30 +00002337 BtShared *pBt = 0; /* Shared part of btree structure */
2338 Btree *p; /* Handle to return */
2339 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2340 int rc = SQLITE_OK; /* Result code from this function */
2341 u8 nReserve; /* Byte of unused space on each page */
2342 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002343
drh75c014c2010-08-30 15:02:28 +00002344 /* True if opening an ephemeral, temporary database */
2345 const int isTempDb = zFilename==0 || zFilename[0]==0;
2346
danielk1977aef0bf62005-12-30 16:28:01 +00002347 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002348 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002349 */
drhb0a7c9c2010-12-06 21:09:59 +00002350#ifdef SQLITE_OMIT_MEMORYDB
2351 const int isMemdb = 0;
2352#else
2353 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002354 || (isTempDb && sqlite3TempInMemory(db))
2355 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002356#endif
2357
drhe5fe6902007-12-07 18:55:28 +00002358 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002359 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002360 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002361 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2362
2363 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2364 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2365
2366 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2367 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002368
drh75c014c2010-08-30 15:02:28 +00002369 if( isMemdb ){
2370 flags |= BTREE_MEMORY;
2371 }
2372 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2373 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2374 }
drh17435752007-08-16 04:30:38 +00002375 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002376 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002377 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002378 }
2379 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002380 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002381#ifndef SQLITE_OMIT_SHARED_CACHE
2382 p->lock.pBtree = p;
2383 p->lock.iTable = 1;
2384#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002385
drh198bf392006-01-06 21:52:49 +00002386#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002387 /*
2388 ** If this Btree is a candidate for shared cache, try to find an
2389 ** existing BtShared object that we can share with
2390 */
drh4ab9d252012-05-26 20:08:49 +00002391 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002392 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002393 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002394 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002395 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002396 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002397
drhff0587c2007-08-29 17:43:19 +00002398 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002399 if( !zFullPathname ){
2400 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002401 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002402 }
drhafc8b7f2012-05-26 18:06:38 +00002403 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002404 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002405 }else{
2406 rc = sqlite3OsFullPathname(pVfs, zFilename,
2407 nFullPathname, zFullPathname);
2408 if( rc ){
drhc398c652019-11-22 00:42:01 +00002409 if( rc==SQLITE_OK_SYMLINK ){
2410 rc = SQLITE_OK;
2411 }else{
2412 sqlite3_free(zFullPathname);
2413 sqlite3_free(p);
2414 return rc;
2415 }
drhafc8b7f2012-05-26 18:06:38 +00002416 }
drh070ad6b2011-11-17 11:43:19 +00002417 }
drh30ddce62011-10-15 00:16:30 +00002418#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002419 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2420 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002421 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002422 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002423#endif
drh78f82d12008-09-02 00:52:52 +00002424 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002425 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002426 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002427 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002428 int iDb;
2429 for(iDb=db->nDb-1; iDb>=0; iDb--){
2430 Btree *pExisting = db->aDb[iDb].pBt;
2431 if( pExisting && pExisting->pBt==pBt ){
2432 sqlite3_mutex_leave(mutexShared);
2433 sqlite3_mutex_leave(mutexOpen);
2434 sqlite3_free(zFullPathname);
2435 sqlite3_free(p);
2436 return SQLITE_CONSTRAINT;
2437 }
2438 }
drhff0587c2007-08-29 17:43:19 +00002439 p->pBt = pBt;
2440 pBt->nRef++;
2441 break;
2442 }
2443 }
2444 sqlite3_mutex_leave(mutexShared);
2445 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002446 }
drhff0587c2007-08-29 17:43:19 +00002447#ifdef SQLITE_DEBUG
2448 else{
2449 /* In debug mode, we mark all persistent databases as sharable
2450 ** even when they are not. This exercises the locking code and
2451 ** gives more opportunity for asserts(sqlite3_mutex_held())
2452 ** statements to find locking problems.
2453 */
2454 p->sharable = 1;
2455 }
2456#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002457 }
2458#endif
drha059ad02001-04-17 20:09:11 +00002459 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002460 /*
2461 ** The following asserts make sure that structures used by the btree are
2462 ** the right size. This is to guard against size changes that result
2463 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002464 */
drh062cf272015-03-23 19:03:51 +00002465 assert( sizeof(i64)==8 );
2466 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002467 assert( sizeof(u32)==4 );
2468 assert( sizeof(u16)==2 );
2469 assert( sizeof(Pgno)==4 );
2470
2471 pBt = sqlite3MallocZero( sizeof(*pBt) );
2472 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002473 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002474 goto btree_open_out;
2475 }
danielk197771d5d2c2008-09-29 11:49:47 +00002476 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002477 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002478 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002479 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002480 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2481 }
2482 if( rc!=SQLITE_OK ){
2483 goto btree_open_out;
2484 }
shanehbd2aaf92010-09-01 02:38:21 +00002485 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002486 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002487 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002488 p->pBt = pBt;
2489
drhe53831d2007-08-17 01:14:38 +00002490 pBt->pCursor = 0;
2491 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002492 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002493#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002494 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002495#elif defined(SQLITE_FAST_SECURE_DELETE)
2496 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002497#endif
drh113762a2014-11-19 16:36:25 +00002498 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2499 ** determined by the 2-byte integer located at an offset of 16 bytes from
2500 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002501 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002502 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2503 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002504 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002505#ifndef SQLITE_OMIT_AUTOVACUUM
2506 /* If the magic name ":memory:" will create an in-memory database, then
2507 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2508 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2509 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2510 ** regular file-name. In this case the auto-vacuum applies as per normal.
2511 */
2512 if( zFilename && !isMemdb ){
2513 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2514 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2515 }
2516#endif
2517 nReserve = 0;
2518 }else{
drh113762a2014-11-19 16:36:25 +00002519 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2520 ** determined by the one-byte unsigned integer found at an offset of 20
2521 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002522 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002523 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002524#ifndef SQLITE_OMIT_AUTOVACUUM
2525 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2526 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2527#endif
2528 }
drhfa9601a2009-06-18 17:22:39 +00002529 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002530 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002531 pBt->usableSize = pBt->pageSize - nReserve;
2532 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002533
2534#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2535 /* Add the new BtShared object to the linked list sharable BtShareds.
2536 */
dan272989b2016-07-06 10:12:02 +00002537 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002538 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002539 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002540 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002541 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002542 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002543 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002544 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002545 goto btree_open_out;
2546 }
drhff0587c2007-08-29 17:43:19 +00002547 }
drhe53831d2007-08-17 01:14:38 +00002548 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002549 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2550 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002551 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002552 }
drheee46cf2004-11-06 00:02:48 +00002553#endif
drh90f5ecb2004-07-22 01:19:35 +00002554 }
danielk1977aef0bf62005-12-30 16:28:01 +00002555
drhcfed7bc2006-03-13 14:28:05 +00002556#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002557 /* If the new Btree uses a sharable pBtShared, then link the new
2558 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002559 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002560 */
drhe53831d2007-08-17 01:14:38 +00002561 if( p->sharable ){
2562 int i;
2563 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002564 for(i=0; i<db->nDb; i++){
2565 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002566 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002567 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002568 p->pNext = pSib;
2569 p->pPrev = 0;
2570 pSib->pPrev = p;
2571 }else{
drh3bfa7e82016-03-22 14:37:59 +00002572 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002573 pSib = pSib->pNext;
2574 }
2575 p->pNext = pSib->pNext;
2576 p->pPrev = pSib;
2577 if( p->pNext ){
2578 p->pNext->pPrev = p;
2579 }
2580 pSib->pNext = p;
2581 }
2582 break;
2583 }
2584 }
danielk1977aef0bf62005-12-30 16:28:01 +00002585 }
danielk1977aef0bf62005-12-30 16:28:01 +00002586#endif
2587 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002588
2589btree_open_out:
2590 if( rc!=SQLITE_OK ){
2591 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002592 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002593 }
drh17435752007-08-16 04:30:38 +00002594 sqlite3_free(pBt);
2595 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002596 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002597 }else{
dan0f5a1862016-08-13 14:30:23 +00002598 sqlite3_file *pFile;
2599
drh75c014c2010-08-30 15:02:28 +00002600 /* If the B-Tree was successfully opened, set the pager-cache size to the
2601 ** default value. Except, when opening on an existing shared pager-cache,
2602 ** do not change the pager-cache size.
2603 */
2604 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2605 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2606 }
dan0f5a1862016-08-13 14:30:23 +00002607
2608 pFile = sqlite3PagerFile(pBt->pPager);
2609 if( pFile->pMethods ){
2610 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2611 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002612 }
drh7555d8e2009-03-20 13:15:30 +00002613 if( mutexOpen ){
2614 assert( sqlite3_mutex_held(mutexOpen) );
2615 sqlite3_mutex_leave(mutexOpen);
2616 }
dan272989b2016-07-06 10:12:02 +00002617 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002618 return rc;
drha059ad02001-04-17 20:09:11 +00002619}
2620
2621/*
drhe53831d2007-08-17 01:14:38 +00002622** Decrement the BtShared.nRef counter. When it reaches zero,
2623** remove the BtShared structure from the sharing list. Return
2624** true if the BtShared.nRef counter reaches zero and return
2625** false if it is still positive.
2626*/
2627static int removeFromSharingList(BtShared *pBt){
2628#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002629 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002630 BtShared *pList;
2631 int removed = 0;
2632
drhd677b3d2007-08-20 22:48:41 +00002633 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002634 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002635 sqlite3_mutex_enter(pMaster);
2636 pBt->nRef--;
2637 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002638 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2639 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002640 }else{
drh78f82d12008-09-02 00:52:52 +00002641 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002642 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002643 pList=pList->pNext;
2644 }
drh34004ce2008-07-11 16:15:17 +00002645 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002646 pList->pNext = pBt->pNext;
2647 }
2648 }
drh3285db22007-09-03 22:00:39 +00002649 if( SQLITE_THREADSAFE ){
2650 sqlite3_mutex_free(pBt->mutex);
2651 }
drhe53831d2007-08-17 01:14:38 +00002652 removed = 1;
2653 }
2654 sqlite3_mutex_leave(pMaster);
2655 return removed;
2656#else
2657 return 1;
2658#endif
2659}
2660
2661/*
drhf7141992008-06-19 00:16:08 +00002662** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002663** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2664** pointer.
drhf7141992008-06-19 00:16:08 +00002665*/
2666static void allocateTempSpace(BtShared *pBt){
2667 if( !pBt->pTmpSpace ){
2668 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002669
2670 /* One of the uses of pBt->pTmpSpace is to format cells before
2671 ** inserting them into a leaf page (function fillInCell()). If
2672 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2673 ** by the various routines that manipulate binary cells. Which
2674 ** can mean that fillInCell() only initializes the first 2 or 3
2675 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2676 ** it into a database page. This is not actually a problem, but it
2677 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2678 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002679 ** zero the first 4 bytes of temp space here.
2680 **
2681 ** Also: Provide four bytes of initialized space before the
2682 ** beginning of pTmpSpace as an area available to prepend the
2683 ** left-child pointer to the beginning of a cell.
2684 */
2685 if( pBt->pTmpSpace ){
2686 memset(pBt->pTmpSpace, 0, 8);
2687 pBt->pTmpSpace += 4;
2688 }
drhf7141992008-06-19 00:16:08 +00002689 }
2690}
2691
2692/*
2693** Free the pBt->pTmpSpace allocation
2694*/
2695static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002696 if( pBt->pTmpSpace ){
2697 pBt->pTmpSpace -= 4;
2698 sqlite3PageFree(pBt->pTmpSpace);
2699 pBt->pTmpSpace = 0;
2700 }
drhf7141992008-06-19 00:16:08 +00002701}
2702
2703/*
drha059ad02001-04-17 20:09:11 +00002704** Close an open database and invalidate all cursors.
2705*/
danielk1977aef0bf62005-12-30 16:28:01 +00002706int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002707 BtShared *pBt = p->pBt;
2708 BtCursor *pCur;
2709
danielk1977aef0bf62005-12-30 16:28:01 +00002710 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002711 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002712 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002713 pCur = pBt->pCursor;
2714 while( pCur ){
2715 BtCursor *pTmp = pCur;
2716 pCur = pCur->pNext;
2717 if( pTmp->pBtree==p ){
2718 sqlite3BtreeCloseCursor(pTmp);
2719 }
drha059ad02001-04-17 20:09:11 +00002720 }
danielk1977aef0bf62005-12-30 16:28:01 +00002721
danielk19778d34dfd2006-01-24 16:37:57 +00002722 /* Rollback any active transaction and free the handle structure.
2723 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2724 ** this handle.
2725 */
drh47b7fc72014-11-11 01:33:57 +00002726 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002727 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002728
danielk1977aef0bf62005-12-30 16:28:01 +00002729 /* If there are still other outstanding references to the shared-btree
2730 ** structure, return now. The remainder of this procedure cleans
2731 ** up the shared-btree.
2732 */
drhe53831d2007-08-17 01:14:38 +00002733 assert( p->wantToLock==0 && p->locked==0 );
2734 if( !p->sharable || removeFromSharingList(pBt) ){
2735 /* The pBt is no longer on the sharing list, so we can access
2736 ** it without having to hold the mutex.
2737 **
2738 ** Clean out and delete the BtShared object.
2739 */
2740 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002741 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002742 if( pBt->xFreeSchema && pBt->pSchema ){
2743 pBt->xFreeSchema(pBt->pSchema);
2744 }
drhb9755982010-07-24 16:34:37 +00002745 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002746 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002747 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002748 }
2749
drhe53831d2007-08-17 01:14:38 +00002750#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002751 assert( p->wantToLock==0 );
2752 assert( p->locked==0 );
2753 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2754 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002755#endif
2756
drhe53831d2007-08-17 01:14:38 +00002757 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002758 return SQLITE_OK;
2759}
2760
2761/*
drh9b0cf342015-11-12 14:57:19 +00002762** Change the "soft" limit on the number of pages in the cache.
2763** Unused and unmodified pages will be recycled when the number of
2764** pages in the cache exceeds this soft limit. But the size of the
2765** cache is allowed to grow larger than this limit if it contains
2766** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002767*/
danielk1977aef0bf62005-12-30 16:28:01 +00002768int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2769 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002770 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002771 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002772 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002773 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002774 return SQLITE_OK;
2775}
2776
drh9b0cf342015-11-12 14:57:19 +00002777/*
2778** Change the "spill" limit on the number of pages in the cache.
2779** If the number of pages exceeds this limit during a write transaction,
2780** the pager might attempt to "spill" pages to the journal early in
2781** order to free up memory.
2782**
2783** The value returned is the current spill size. If zero is passed
2784** as an argument, no changes are made to the spill size setting, so
2785** using mxPage of 0 is a way to query the current spill size.
2786*/
2787int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2788 BtShared *pBt = p->pBt;
2789 int res;
2790 assert( sqlite3_mutex_held(p->db->mutex) );
2791 sqlite3BtreeEnter(p);
2792 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2793 sqlite3BtreeLeave(p);
2794 return res;
2795}
2796
drh18c7e402014-03-14 11:46:10 +00002797#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002798/*
dan5d8a1372013-03-19 19:28:06 +00002799** Change the limit on the amount of the database file that may be
2800** memory mapped.
2801*/
drh9b4c59f2013-04-15 17:03:42 +00002802int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002803 BtShared *pBt = p->pBt;
2804 assert( sqlite3_mutex_held(p->db->mutex) );
2805 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002806 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002807 sqlite3BtreeLeave(p);
2808 return SQLITE_OK;
2809}
drh18c7e402014-03-14 11:46:10 +00002810#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002811
2812/*
drh973b6e32003-02-12 14:09:42 +00002813** Change the way data is synced to disk in order to increase or decrease
2814** how well the database resists damage due to OS crashes and power
2815** failures. Level 1 is the same as asynchronous (no syncs() occur and
2816** there is a high probability of damage) Level 2 is the default. There
2817** is a very low but non-zero probability of damage. Level 3 reduces the
2818** probability of damage to near zero but with a write performance reduction.
2819*/
danielk197793758c82005-01-21 08:13:14 +00002820#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002821int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002822 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002823 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002824){
danielk1977aef0bf62005-12-30 16:28:01 +00002825 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002826 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002827 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002828 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002829 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002830 return SQLITE_OK;
2831}
danielk197793758c82005-01-21 08:13:14 +00002832#endif
drh973b6e32003-02-12 14:09:42 +00002833
drh2c8997b2005-08-27 16:36:48 +00002834/*
drh90f5ecb2004-07-22 01:19:35 +00002835** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002836** Or, if the page size has already been fixed, return SQLITE_READONLY
2837** without changing anything.
drh06f50212004-11-02 14:24:33 +00002838**
2839** The page size must be a power of 2 between 512 and 65536. If the page
2840** size supplied does not meet this constraint then the page size is not
2841** changed.
2842**
2843** Page sizes are constrained to be a power of two so that the region
2844** of the database file used for locking (beginning at PENDING_BYTE,
2845** the first byte past the 1GB boundary, 0x40000000) needs to occur
2846** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002847**
2848** If parameter nReserve is less than zero, then the number of reserved
2849** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002850**
drhc9166342012-01-05 23:32:06 +00002851** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002852** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002853*/
drhce4869f2009-04-02 20:16:58 +00002854int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002855 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002856 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002857 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002858 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002859#if SQLITE_HAS_CODEC
2860 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2861#endif
drhc9166342012-01-05 23:32:06 +00002862 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002863 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002864 return SQLITE_READONLY;
2865 }
2866 if( nReserve<0 ){
2867 nReserve = pBt->pageSize - pBt->usableSize;
2868 }
drhf49661a2008-12-10 16:45:50 +00002869 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002870 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2871 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002872 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002873 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002874 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002875 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002876 }
drhfa9601a2009-06-18 17:22:39 +00002877 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002878 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002879 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002880 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002881 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002882}
2883
2884/*
2885** Return the currently defined page size
2886*/
danielk1977aef0bf62005-12-30 16:28:01 +00002887int sqlite3BtreeGetPageSize(Btree *p){
2888 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002889}
drh7f751222009-03-17 22:33:00 +00002890
dan0094f372012-09-28 20:23:42 +00002891/*
2892** This function is similar to sqlite3BtreeGetReserve(), except that it
2893** may only be called if it is guaranteed that the b-tree mutex is already
2894** held.
2895**
2896** This is useful in one special case in the backup API code where it is
2897** known that the shared b-tree mutex is held, but the mutex on the
2898** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2899** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002900** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002901*/
2902int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002903 int n;
dan0094f372012-09-28 20:23:42 +00002904 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002905 n = p->pBt->pageSize - p->pBt->usableSize;
2906 return n;
dan0094f372012-09-28 20:23:42 +00002907}
2908
drh7f751222009-03-17 22:33:00 +00002909/*
2910** Return the number of bytes of space at the end of every page that
2911** are intentually left unused. This is the "reserved" space that is
2912** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002913**
2914** If SQLITE_HAS_MUTEX is defined then the number returned is the
2915** greater of the current reserved space and the maximum requested
2916** reserve space.
drh7f751222009-03-17 22:33:00 +00002917*/
drhad0961b2015-02-21 00:19:25 +00002918int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002919 int n;
2920 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002921 n = sqlite3BtreeGetReserveNoMutex(p);
2922#ifdef SQLITE_HAS_CODEC
2923 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2924#endif
drhd677b3d2007-08-20 22:48:41 +00002925 sqlite3BtreeLeave(p);
2926 return n;
drh2011d5f2004-07-22 02:40:37 +00002927}
drhf8e632b2007-05-08 14:51:36 +00002928
drhad0961b2015-02-21 00:19:25 +00002929
drhf8e632b2007-05-08 14:51:36 +00002930/*
2931** Set the maximum page count for a database if mxPage is positive.
2932** No changes are made if mxPage is 0 or negative.
2933** Regardless of the value of mxPage, return the maximum page count.
2934*/
2935int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002936 int n;
2937 sqlite3BtreeEnter(p);
2938 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2939 sqlite3BtreeLeave(p);
2940 return n;
drhf8e632b2007-05-08 14:51:36 +00002941}
drh5b47efa2010-02-12 18:18:39 +00002942
2943/*
drha5907a82017-06-19 11:44:22 +00002944** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2945**
2946** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2947** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2948** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2949** newFlag==(-1) No changes
2950**
2951** This routine acts as a query if newFlag is less than zero
2952**
2953** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2954** freelist leaf pages are not written back to the database. Thus in-page
2955** deleted content is cleared, but freelist deleted content is not.
2956**
2957** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2958** that freelist leaf pages are written back into the database, increasing
2959** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002960*/
2961int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2962 int b;
drhaf034ed2010-02-12 19:46:26 +00002963 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002964 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002965 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2966 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002967 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002968 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2969 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2970 }
2971 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002972 sqlite3BtreeLeave(p);
2973 return b;
2974}
drh90f5ecb2004-07-22 01:19:35 +00002975
2976/*
danielk1977951af802004-11-05 15:45:09 +00002977** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2978** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2979** is disabled. The default value for the auto-vacuum property is
2980** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2981*/
danielk1977aef0bf62005-12-30 16:28:01 +00002982int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002983#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002984 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002985#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002986 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002987 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002988 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002989
2990 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002991 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002992 rc = SQLITE_READONLY;
2993 }else{
drh076d4662009-02-18 20:31:18 +00002994 pBt->autoVacuum = av ?1:0;
2995 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002996 }
drhd677b3d2007-08-20 22:48:41 +00002997 sqlite3BtreeLeave(p);
2998 return rc;
danielk1977951af802004-11-05 15:45:09 +00002999#endif
3000}
3001
3002/*
3003** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3004** enabled 1 is returned. Otherwise 0.
3005*/
danielk1977aef0bf62005-12-30 16:28:01 +00003006int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00003007#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003008 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00003009#else
drhd677b3d2007-08-20 22:48:41 +00003010 int rc;
3011 sqlite3BtreeEnter(p);
3012 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003013 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3014 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3015 BTREE_AUTOVACUUM_INCR
3016 );
drhd677b3d2007-08-20 22:48:41 +00003017 sqlite3BtreeLeave(p);
3018 return rc;
danielk1977951af802004-11-05 15:45:09 +00003019#endif
3020}
3021
danf5da7db2017-03-16 18:14:39 +00003022/*
3023** If the user has not set the safety-level for this database connection
3024** using "PRAGMA synchronous", and if the safety-level is not already
3025** set to the value passed to this function as the second parameter,
3026** set it so.
3027*/
drh2ed57372017-10-05 20:57:38 +00003028#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3029 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003030static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3031 sqlite3 *db;
3032 Db *pDb;
3033 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3034 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3035 if( pDb->bSyncSet==0
3036 && pDb->safety_level!=safety_level
3037 && pDb!=&db->aDb[1]
3038 ){
3039 pDb->safety_level = safety_level;
3040 sqlite3PagerSetFlags(pBt->pPager,
3041 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3042 }
3043 }
3044}
3045#else
danfc8f4b62017-03-16 18:54:42 +00003046# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003047#endif
danielk1977951af802004-11-05 15:45:09 +00003048
drh0314cf32018-04-28 01:27:09 +00003049/* Forward declaration */
3050static int newDatabase(BtShared*);
3051
3052
danielk1977951af802004-11-05 15:45:09 +00003053/*
drha34b6762004-05-07 13:30:42 +00003054** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003055** also acquire a readlock on that file.
3056**
3057** SQLITE_OK is returned on success. If the file is not a
3058** well-formed database file, then SQLITE_CORRUPT is returned.
3059** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003060** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003061*/
danielk1977aef0bf62005-12-30 16:28:01 +00003062static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003063 int rc; /* Result code from subfunctions */
3064 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003065 u32 nPage; /* Number of pages in the database */
3066 u32 nPageFile = 0; /* Number of pages in the database file */
3067 u32 nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00003068
drh1fee73e2007-08-29 04:00:57 +00003069 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003070 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003071 rc = sqlite3PagerSharedLock(pBt->pPager);
3072 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003073 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003074 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003075
3076 /* Do some checking to help insure the file we opened really is
3077 ** a valid database file.
3078 */
drhc2a4bab2010-04-02 12:46:45 +00003079 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003080 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003081 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003082 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003083 }
drh0314cf32018-04-28 01:27:09 +00003084 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3085 nPage = 0;
3086 }
drh97b59a52010-03-31 02:31:33 +00003087 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003088 u32 pageSize;
3089 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003090 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003091 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003092 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3093 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3094 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003095 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003096 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003097 }
dan5cf53532010-05-01 16:40:20 +00003098
3099#ifdef SQLITE_OMIT_WAL
3100 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003101 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003102 }
3103 if( page1[19]>1 ){
3104 goto page1_init_failed;
3105 }
3106#else
dane04dc882010-04-20 18:53:15 +00003107 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003108 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003109 }
dane04dc882010-04-20 18:53:15 +00003110 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003111 goto page1_init_failed;
3112 }
drhe5ae5732008-06-15 02:51:47 +00003113
dana470aeb2010-04-21 11:43:38 +00003114 /* If the write version is set to 2, this database should be accessed
3115 ** in WAL mode. If the log is not already open, open it now. Then
3116 ** return SQLITE_OK and return without populating BtShared.pPage1.
3117 ** The caller detects this and calls this function again. This is
3118 ** required as the version of page 1 currently in the page1 buffer
3119 ** may not be the latest version - there may be a newer one in the log
3120 ** file.
3121 */
drhc9166342012-01-05 23:32:06 +00003122 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003123 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003124 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003125 if( rc!=SQLITE_OK ){
3126 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003127 }else{
danf5da7db2017-03-16 18:14:39 +00003128 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003129 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003130 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003131 return SQLITE_OK;
3132 }
dane04dc882010-04-20 18:53:15 +00003133 }
dan8b5444b2010-04-27 14:37:47 +00003134 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003135 }else{
3136 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003137 }
dan5cf53532010-05-01 16:40:20 +00003138#endif
dane04dc882010-04-20 18:53:15 +00003139
drh113762a2014-11-19 16:36:25 +00003140 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3141 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3142 **
drhe5ae5732008-06-15 02:51:47 +00003143 ** The original design allowed these amounts to vary, but as of
3144 ** version 3.6.0, we require them to be fixed.
3145 */
3146 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3147 goto page1_init_failed;
3148 }
drh113762a2014-11-19 16:36:25 +00003149 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3150 ** determined by the 2-byte integer located at an offset of 16 bytes from
3151 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003152 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003153 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3154 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003155 if( ((pageSize-1)&pageSize)!=0
3156 || pageSize>SQLITE_MAX_PAGE_SIZE
3157 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003158 ){
drh07d183d2005-05-01 22:52:42 +00003159 goto page1_init_failed;
3160 }
drhdcc27002019-01-06 02:06:31 +00003161 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003162 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003163 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3164 ** integer at offset 20 is the number of bytes of space at the end of
3165 ** each page to reserve for extensions.
3166 **
3167 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3168 ** determined by the one-byte unsigned integer found at an offset of 20
3169 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003170 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003171 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003172 /* After reading the first page of the database assuming a page size
3173 ** of BtShared.pageSize, we have discovered that the page-size is
3174 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3175 ** zero and return SQLITE_OK. The caller will call this function
3176 ** again with the correct page-size.
3177 */
drh3908fe92017-09-01 14:50:19 +00003178 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003179 pBt->usableSize = usableSize;
3180 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003181 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003182 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3183 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003184 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003185 }
drh0f1c2eb2018-11-03 17:31:48 +00003186 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003187 rc = SQLITE_CORRUPT_BKPT;
3188 goto page1_init_failed;
3189 }
drh113762a2014-11-19 16:36:25 +00003190 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3191 ** be less than 480. In other words, if the page size is 512, then the
3192 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003193 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003194 goto page1_init_failed;
3195 }
drh43b18e12010-08-17 19:40:08 +00003196 pBt->pageSize = pageSize;
3197 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003198#ifndef SQLITE_OMIT_AUTOVACUUM
3199 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003200 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003201#endif
drh306dc212001-05-21 13:45:10 +00003202 }
drhb6f41482004-05-14 01:58:11 +00003203
3204 /* maxLocal is the maximum amount of payload to store locally for
3205 ** a cell. Make sure it is small enough so that at least minFanout
3206 ** cells can will fit on one page. We assume a 10-byte page header.
3207 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003208 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003209 ** 4-byte child pointer
3210 ** 9-byte nKey value
3211 ** 4-byte nData value
3212 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003213 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003214 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3215 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003216 */
shaneh1df2db72010-08-18 02:28:48 +00003217 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3218 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3219 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3220 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003221 if( pBt->maxLocal>127 ){
3222 pBt->max1bytePayload = 127;
3223 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003224 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003225 }
drh2e38c322004-09-03 18:38:44 +00003226 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003227 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003228 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003229 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003230
drh72f82862001-05-24 21:06:34 +00003231page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003232 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003233 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003234 return rc;
drh306dc212001-05-21 13:45:10 +00003235}
3236
drh85ec3b62013-05-14 23:12:06 +00003237#ifndef NDEBUG
3238/*
3239** Return the number of cursors open on pBt. This is for use
3240** in assert() expressions, so it is only compiled if NDEBUG is not
3241** defined.
3242**
3243** Only write cursors are counted if wrOnly is true. If wrOnly is
3244** false then all cursors are counted.
3245**
3246** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003247** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003248** have been tripped into the CURSOR_FAULT state are not counted.
3249*/
3250static int countValidCursors(BtShared *pBt, int wrOnly){
3251 BtCursor *pCur;
3252 int r = 0;
3253 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003254 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3255 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003256 }
3257 return r;
3258}
3259#endif
3260
drh306dc212001-05-21 13:45:10 +00003261/*
drhb8ca3072001-12-05 00:21:20 +00003262** If there are no outstanding cursors and we are not in the middle
3263** of a transaction but there is a read lock on the database, then
3264** this routine unrefs the first page of the database file which
3265** has the effect of releasing the read lock.
3266**
drhb8ca3072001-12-05 00:21:20 +00003267** If there is a transaction in progress, this routine is a no-op.
3268*/
danielk1977aef0bf62005-12-30 16:28:01 +00003269static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003270 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003271 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003272 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003273 MemPage *pPage1 = pBt->pPage1;
3274 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003275 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003276 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003277 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003278 }
3279}
3280
3281/*
drhe39f2f92009-07-23 01:43:59 +00003282** If pBt points to an empty file then convert that empty file
3283** into a new empty database by initializing the first page of
3284** the database.
drh8b2f49b2001-06-08 00:21:52 +00003285*/
danielk1977aef0bf62005-12-30 16:28:01 +00003286static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003287 MemPage *pP1;
3288 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003289 int rc;
drhd677b3d2007-08-20 22:48:41 +00003290
drh1fee73e2007-08-29 04:00:57 +00003291 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003292 if( pBt->nPage>0 ){
3293 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003294 }
drh3aac2dd2004-04-26 14:10:20 +00003295 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003296 assert( pP1!=0 );
3297 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003298 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003299 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003300 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3301 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003302 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3303 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003304 data[18] = 1;
3305 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003306 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3307 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003308 data[21] = 64;
3309 data[22] = 32;
3310 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003311 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003312 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003313 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003314#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003315 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003316 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003317 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003318 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003319#endif
drhdd3cd972010-03-27 17:12:36 +00003320 pBt->nPage = 1;
3321 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003322 return SQLITE_OK;
3323}
3324
3325/*
danb483eba2012-10-13 19:58:11 +00003326** Initialize the first page of the database file (creating a database
3327** consisting of a single page and no schema objects). Return SQLITE_OK
3328** if successful, or an SQLite error code otherwise.
3329*/
3330int sqlite3BtreeNewDb(Btree *p){
3331 int rc;
3332 sqlite3BtreeEnter(p);
3333 p->pBt->nPage = 0;
3334 rc = newDatabase(p->pBt);
3335 sqlite3BtreeLeave(p);
3336 return rc;
3337}
3338
3339/*
danielk1977ee5741e2004-05-31 10:01:34 +00003340** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003341** is started if the second argument is nonzero, otherwise a read-
3342** transaction. If the second argument is 2 or more and exclusive
3343** transaction is started, meaning that no other process is allowed
3344** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003345** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003346** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003347**
danielk1977ee5741e2004-05-31 10:01:34 +00003348** A write-transaction must be started before attempting any
3349** changes to the database. None of the following routines
3350** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003351**
drh23e11ca2004-05-04 17:27:28 +00003352** sqlite3BtreeCreateTable()
3353** sqlite3BtreeCreateIndex()
3354** sqlite3BtreeClearTable()
3355** sqlite3BtreeDropTable()
3356** sqlite3BtreeInsert()
3357** sqlite3BtreeDelete()
3358** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003359**
drhb8ef32c2005-03-14 02:01:49 +00003360** If an initial attempt to acquire the lock fails because of lock contention
3361** and the database was previously unlocked, then invoke the busy handler
3362** if there is one. But if there was previously a read-lock, do not
3363** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3364** returned when there is already a read-lock in order to avoid a deadlock.
3365**
3366** Suppose there are two processes A and B. A has a read lock and B has
3367** a reserved lock. B tries to promote to exclusive but is blocked because
3368** of A's read lock. A tries to promote to reserved but is blocked by B.
3369** One or the other of the two processes must give way or there can be
3370** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3371** when A already has a read lock, we encourage A to give up and let B
3372** proceed.
drha059ad02001-04-17 20:09:11 +00003373*/
drhbb2d9b12018-06-06 16:28:40 +00003374int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003375 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003376 int rc = SQLITE_OK;
3377
drhd677b3d2007-08-20 22:48:41 +00003378 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003379 btreeIntegrity(p);
3380
danielk1977ee5741e2004-05-31 10:01:34 +00003381 /* If the btree is already in a write-transaction, or it
3382 ** is already in a read-transaction and a read-transaction
3383 ** is requested, this is a no-op.
3384 */
danielk1977aef0bf62005-12-30 16:28:01 +00003385 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003386 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003387 }
dan56c517a2013-09-26 11:04:33 +00003388 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003389
danea933f02018-07-19 11:44:02 +00003390 if( (p->db->flags & SQLITE_ResetDatabase)
3391 && sqlite3PagerIsreadonly(pBt->pPager)==0
3392 ){
3393 pBt->btsFlags &= ~BTS_READ_ONLY;
3394 }
3395
drhb8ef32c2005-03-14 02:01:49 +00003396 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003397 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003398 rc = SQLITE_READONLY;
3399 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003400 }
3401
danielk1977404ca072009-03-16 13:19:36 +00003402#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003403 {
3404 sqlite3 *pBlock = 0;
3405 /* If another database handle has already opened a write transaction
3406 ** on this shared-btree structure and a second write transaction is
3407 ** requested, return SQLITE_LOCKED.
3408 */
3409 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3410 || (pBt->btsFlags & BTS_PENDING)!=0
3411 ){
3412 pBlock = pBt->pWriter->db;
3413 }else if( wrflag>1 ){
3414 BtLock *pIter;
3415 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3416 if( pIter->pBtree!=p ){
3417 pBlock = pIter->pBtree->db;
3418 break;
3419 }
danielk1977641b0f42007-12-21 04:47:25 +00003420 }
3421 }
drh5a1fb182016-01-08 19:34:39 +00003422 if( pBlock ){
3423 sqlite3ConnectionBlocked(p->db, pBlock);
3424 rc = SQLITE_LOCKED_SHAREDCACHE;
3425 goto trans_begun;
3426 }
danielk1977404ca072009-03-16 13:19:36 +00003427 }
danielk1977641b0f42007-12-21 04:47:25 +00003428#endif
3429
danielk1977602b4662009-07-02 07:47:33 +00003430 /* Any read-only or read-write transaction implies a read-lock on
3431 ** page 1. So if some other shared-cache client already has a write-lock
3432 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003433 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3434 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003435
drhc9166342012-01-05 23:32:06 +00003436 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3437 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003438 do {
danielk1977295dc102009-04-01 19:07:03 +00003439 /* Call lockBtree() until either pBt->pPage1 is populated or
3440 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3441 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3442 ** reading page 1 it discovers that the page-size of the database
3443 ** file is not pBt->pageSize. In this case lockBtree() will update
3444 ** pBt->pageSize to the page-size of the file on disk.
3445 */
3446 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003447
drhb8ef32c2005-03-14 02:01:49 +00003448 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003449 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003450 rc = SQLITE_READONLY;
3451 }else{
danielk1977d8293352009-04-30 09:10:37 +00003452 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003453 if( rc==SQLITE_OK ){
3454 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003455 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3456 /* if there was no transaction opened when this function was
3457 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3458 ** code to SQLITE_BUSY. */
3459 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003460 }
drhb8ef32c2005-03-14 02:01:49 +00003461 }
3462 }
3463
danielk1977bd434552009-03-18 10:33:00 +00003464 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003465 unlockBtreeIfUnused(pBt);
3466 }
danf9b76712010-06-01 14:12:45 +00003467 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003468 btreeInvokeBusyHandler(pBt) );
drhfd725632018-03-26 20:43:05 +00003469 sqlite3PagerResetLockTimeout(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00003470
3471 if( rc==SQLITE_OK ){
3472 if( p->inTrans==TRANS_NONE ){
3473 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003474#ifndef SQLITE_OMIT_SHARED_CACHE
3475 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003476 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003477 p->lock.eLock = READ_LOCK;
3478 p->lock.pNext = pBt->pLock;
3479 pBt->pLock = &p->lock;
3480 }
3481#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003482 }
3483 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3484 if( p->inTrans>pBt->inTransaction ){
3485 pBt->inTransaction = p->inTrans;
3486 }
danielk1977404ca072009-03-16 13:19:36 +00003487 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003488 MemPage *pPage1 = pBt->pPage1;
3489#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003490 assert( !pBt->pWriter );
3491 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003492 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3493 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003494#endif
dan59257dc2010-08-04 11:34:31 +00003495
3496 /* If the db-size header field is incorrect (as it may be if an old
3497 ** client has been writing the database file), update it now. Doing
3498 ** this sooner rather than later means the database size can safely
3499 ** re-read the database size from page 1 if a savepoint or transaction
3500 ** rollback occurs within the transaction.
3501 */
3502 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3503 rc = sqlite3PagerWrite(pPage1->pDbPage);
3504 if( rc==SQLITE_OK ){
3505 put4byte(&pPage1->aData[28], pBt->nPage);
3506 }
3507 }
3508 }
danielk1977aef0bf62005-12-30 16:28:01 +00003509 }
3510
drhd677b3d2007-08-20 22:48:41 +00003511trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003512 if( rc==SQLITE_OK ){
3513 if( pSchemaVersion ){
3514 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3515 }
3516 if( wrflag ){
3517 /* This call makes sure that the pager has the correct number of
3518 ** open savepoints. If the second parameter is greater than 0 and
3519 ** the sub-journal is not already open, then it will be opened here.
3520 */
3521 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3522 }
danielk1977fd7f0452008-12-17 17:30:26 +00003523 }
danielk197712dd5492008-12-18 15:45:07 +00003524
danielk1977aef0bf62005-12-30 16:28:01 +00003525 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003526 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003527 return rc;
drha059ad02001-04-17 20:09:11 +00003528}
3529
danielk1977687566d2004-11-02 12:56:41 +00003530#ifndef SQLITE_OMIT_AUTOVACUUM
3531
3532/*
3533** Set the pointer-map entries for all children of page pPage. Also, if
3534** pPage contains cells that point to overflow pages, set the pointer
3535** map entries for the overflow pages as well.
3536*/
3537static int setChildPtrmaps(MemPage *pPage){
3538 int i; /* Counter variable */
3539 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003540 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003541 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003542 Pgno pgno = pPage->pgno;
3543
drh1fee73e2007-08-29 04:00:57 +00003544 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003545 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003546 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003547 nCell = pPage->nCell;
3548
3549 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003550 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003551
drh0f1bf4c2019-01-13 20:17:21 +00003552 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003553
danielk1977687566d2004-11-02 12:56:41 +00003554 if( !pPage->leaf ){
3555 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003556 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003557 }
3558 }
3559
3560 if( !pPage->leaf ){
3561 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003562 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003563 }
3564
danielk1977687566d2004-11-02 12:56:41 +00003565 return rc;
3566}
3567
3568/*
drhf3aed592009-07-08 18:12:49 +00003569** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3570** that it points to iTo. Parameter eType describes the type of pointer to
3571** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003572**
3573** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3574** page of pPage.
3575**
3576** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3577** page pointed to by one of the cells on pPage.
3578**
3579** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3580** overflow page in the list.
3581*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003582static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003583 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003584 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003585 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003586 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003587 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003588 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003589 }
danielk1977f78fc082004-11-02 14:40:32 +00003590 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003591 }else{
danielk1977687566d2004-11-02 12:56:41 +00003592 int i;
3593 int nCell;
drha1f75d92015-05-24 10:18:12 +00003594 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003595
drh14e845a2017-05-25 21:35:56 +00003596 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003597 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003598 nCell = pPage->nCell;
3599
danielk1977687566d2004-11-02 12:56:41 +00003600 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003601 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003602 if( eType==PTRMAP_OVERFLOW1 ){
3603 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003604 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003605 if( info.nLocal<info.nPayload ){
3606 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003607 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003608 }
3609 if( iFrom==get4byte(pCell+info.nSize-4) ){
3610 put4byte(pCell+info.nSize-4, iTo);
3611 break;
3612 }
danielk1977687566d2004-11-02 12:56:41 +00003613 }
3614 }else{
3615 if( get4byte(pCell)==iFrom ){
3616 put4byte(pCell, iTo);
3617 break;
3618 }
3619 }
3620 }
3621
3622 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003623 if( eType!=PTRMAP_BTREE ||
3624 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003625 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003626 }
danielk1977687566d2004-11-02 12:56:41 +00003627 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3628 }
danielk1977687566d2004-11-02 12:56:41 +00003629 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003630 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003631}
3632
danielk1977003ba062004-11-04 02:57:33 +00003633
danielk19777701e812005-01-10 12:59:51 +00003634/*
3635** Move the open database page pDbPage to location iFreePage in the
3636** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003637**
3638** The isCommit flag indicates that there is no need to remember that
3639** the journal needs to be sync()ed before database page pDbPage->pgno
3640** can be written to. The caller has already promised not to write to that
3641** page.
danielk19777701e812005-01-10 12:59:51 +00003642*/
danielk1977003ba062004-11-04 02:57:33 +00003643static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003644 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003645 MemPage *pDbPage, /* Open page to move */
3646 u8 eType, /* Pointer map 'type' entry for pDbPage */
3647 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003648 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003649 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003650){
3651 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3652 Pgno iDbPage = pDbPage->pgno;
3653 Pager *pPager = pBt->pPager;
3654 int rc;
3655
danielk1977a0bf2652004-11-04 14:30:04 +00003656 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3657 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003658 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003659 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003660 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003661
drh85b623f2007-12-13 21:54:09 +00003662 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003663 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3664 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003665 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003666 if( rc!=SQLITE_OK ){
3667 return rc;
3668 }
3669 pDbPage->pgno = iFreePage;
3670
3671 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3672 ** that point to overflow pages. The pointer map entries for all these
3673 ** pages need to be changed.
3674 **
3675 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3676 ** pointer to a subsequent overflow page. If this is the case, then
3677 ** the pointer map needs to be updated for the subsequent overflow page.
3678 */
danielk1977a0bf2652004-11-04 14:30:04 +00003679 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003680 rc = setChildPtrmaps(pDbPage);
3681 if( rc!=SQLITE_OK ){
3682 return rc;
3683 }
3684 }else{
3685 Pgno nextOvfl = get4byte(pDbPage->aData);
3686 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003687 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003688 if( rc!=SQLITE_OK ){
3689 return rc;
3690 }
3691 }
3692 }
3693
3694 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3695 ** that it points at iFreePage. Also fix the pointer map entry for
3696 ** iPtrPage.
3697 */
danielk1977a0bf2652004-11-04 14:30:04 +00003698 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003699 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003700 if( rc!=SQLITE_OK ){
3701 return rc;
3702 }
danielk19773b8a05f2007-03-19 17:44:26 +00003703 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003704 if( rc!=SQLITE_OK ){
3705 releasePage(pPtrPage);
3706 return rc;
3707 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003708 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003709 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003710 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003711 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003712 }
danielk1977003ba062004-11-04 02:57:33 +00003713 }
danielk1977003ba062004-11-04 02:57:33 +00003714 return rc;
3715}
3716
danielk1977dddbcdc2007-04-26 14:42:34 +00003717/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003718static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003719
3720/*
dan51f0b6d2013-02-22 20:16:34 +00003721** Perform a single step of an incremental-vacuum. If successful, return
3722** SQLITE_OK. If there is no work to do (and therefore no point in
3723** calling this function again), return SQLITE_DONE. Or, if an error
3724** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003725**
peter.d.reid60ec9142014-09-06 16:39:46 +00003726** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003727** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003728**
dan51f0b6d2013-02-22 20:16:34 +00003729** Parameter nFin is the number of pages that this database would contain
3730** were this function called until it returns SQLITE_DONE.
3731**
3732** If the bCommit parameter is non-zero, this function assumes that the
3733** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003734** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003735** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003736*/
dan51f0b6d2013-02-22 20:16:34 +00003737static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003738 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003739 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003740
drh1fee73e2007-08-29 04:00:57 +00003741 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003742 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003743
3744 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003745 u8 eType;
3746 Pgno iPtrPage;
3747
3748 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003749 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003750 return SQLITE_DONE;
3751 }
3752
3753 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3754 if( rc!=SQLITE_OK ){
3755 return rc;
3756 }
3757 if( eType==PTRMAP_ROOTPAGE ){
3758 return SQLITE_CORRUPT_BKPT;
3759 }
3760
3761 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003762 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003763 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003764 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003765 ** truncated to zero after this function returns, so it doesn't
3766 ** matter if it still contains some garbage entries.
3767 */
3768 Pgno iFreePg;
3769 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003770 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003771 if( rc!=SQLITE_OK ){
3772 return rc;
3773 }
3774 assert( iFreePg==iLastPg );
3775 releasePage(pFreePg);
3776 }
3777 } else {
3778 Pgno iFreePg; /* Index of free page to move pLastPg to */
3779 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003780 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3781 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003782
drhb00fc3b2013-08-21 23:42:32 +00003783 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003784 if( rc!=SQLITE_OK ){
3785 return rc;
3786 }
3787
dan51f0b6d2013-02-22 20:16:34 +00003788 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003789 ** is swapped with the first free page pulled off the free list.
3790 **
dan51f0b6d2013-02-22 20:16:34 +00003791 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003792 ** looping until a free-page located within the first nFin pages
3793 ** of the file is found.
3794 */
dan51f0b6d2013-02-22 20:16:34 +00003795 if( bCommit==0 ){
3796 eMode = BTALLOC_LE;
3797 iNear = nFin;
3798 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003799 do {
3800 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003801 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003802 if( rc!=SQLITE_OK ){
3803 releasePage(pLastPg);
3804 return rc;
3805 }
3806 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003807 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003808 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003809
dane1df4e32013-03-05 11:27:04 +00003810 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003811 releasePage(pLastPg);
3812 if( rc!=SQLITE_OK ){
3813 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003814 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003815 }
3816 }
3817
dan51f0b6d2013-02-22 20:16:34 +00003818 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003819 do {
danielk19773460d192008-12-27 15:23:13 +00003820 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003821 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3822 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003823 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003824 }
3825 return SQLITE_OK;
3826}
3827
3828/*
dan51f0b6d2013-02-22 20:16:34 +00003829** The database opened by the first argument is an auto-vacuum database
3830** nOrig pages in size containing nFree free pages. Return the expected
3831** size of the database in pages following an auto-vacuum operation.
3832*/
3833static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3834 int nEntry; /* Number of entries on one ptrmap page */
3835 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3836 Pgno nFin; /* Return value */
3837
3838 nEntry = pBt->usableSize/5;
3839 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3840 nFin = nOrig - nFree - nPtrmap;
3841 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3842 nFin--;
3843 }
3844 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3845 nFin--;
3846 }
dan51f0b6d2013-02-22 20:16:34 +00003847
3848 return nFin;
3849}
3850
3851/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003852** A write-transaction must be opened before calling this function.
3853** It performs a single unit of work towards an incremental vacuum.
3854**
3855** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003856** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003857** SQLITE_OK is returned. Otherwise an SQLite error code.
3858*/
3859int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003860 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003861 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003862
3863 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003864 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3865 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003866 rc = SQLITE_DONE;
3867 }else{
dan51f0b6d2013-02-22 20:16:34 +00003868 Pgno nOrig = btreePagecount(pBt);
3869 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3870 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3871
dan91384712013-02-24 11:50:43 +00003872 if( nOrig<nFin ){
3873 rc = SQLITE_CORRUPT_BKPT;
3874 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003875 rc = saveAllCursors(pBt, 0, 0);
3876 if( rc==SQLITE_OK ){
3877 invalidateAllOverflowCache(pBt);
3878 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3879 }
dan51f0b6d2013-02-22 20:16:34 +00003880 if( rc==SQLITE_OK ){
3881 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3882 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3883 }
3884 }else{
3885 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003886 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003887 }
drhd677b3d2007-08-20 22:48:41 +00003888 sqlite3BtreeLeave(p);
3889 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003890}
3891
3892/*
danielk19773b8a05f2007-03-19 17:44:26 +00003893** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003894** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003895**
3896** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3897** the database file should be truncated to during the commit process.
3898** i.e. the database has been reorganized so that only the first *pnTrunc
3899** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003900*/
danielk19773460d192008-12-27 15:23:13 +00003901static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003902 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003903 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003904 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003905
drh1fee73e2007-08-29 04:00:57 +00003906 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003907 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003908 assert(pBt->autoVacuum);
3909 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003910 Pgno nFin; /* Number of pages in database after autovacuuming */
3911 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003912 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003913 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003914
drhb1299152010-03-30 22:58:33 +00003915 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003916 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3917 /* It is not possible to create a database for which the final page
3918 ** is either a pointer-map page or the pending-byte page. If one
3919 ** is encountered, this indicates corruption.
3920 */
danielk19773460d192008-12-27 15:23:13 +00003921 return SQLITE_CORRUPT_BKPT;
3922 }
danielk1977ef165ce2009-04-06 17:50:03 +00003923
danielk19773460d192008-12-27 15:23:13 +00003924 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003925 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003926 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003927 if( nFin<nOrig ){
3928 rc = saveAllCursors(pBt, 0, 0);
3929 }
danielk19773460d192008-12-27 15:23:13 +00003930 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003931 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003932 }
danielk19773460d192008-12-27 15:23:13 +00003933 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003934 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3935 put4byte(&pBt->pPage1->aData[32], 0);
3936 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003937 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003938 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003939 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003940 }
3941 if( rc!=SQLITE_OK ){
3942 sqlite3PagerRollback(pPager);
3943 }
danielk1977687566d2004-11-02 12:56:41 +00003944 }
3945
dan0aed84d2013-03-26 14:16:20 +00003946 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003947 return rc;
3948}
danielk1977dddbcdc2007-04-26 14:42:34 +00003949
danielk1977a50d9aa2009-06-08 14:49:45 +00003950#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3951# define setChildPtrmaps(x) SQLITE_OK
3952#endif
danielk1977687566d2004-11-02 12:56:41 +00003953
3954/*
drh80e35f42007-03-30 14:06:34 +00003955** This routine does the first phase of a two-phase commit. This routine
3956** causes a rollback journal to be created (if it does not already exist)
3957** and populated with enough information so that if a power loss occurs
3958** the database can be restored to its original state by playing back
3959** the journal. Then the contents of the journal are flushed out to
3960** the disk. After the journal is safely on oxide, the changes to the
3961** database are written into the database file and flushed to oxide.
3962** At the end of this call, the rollback journal still exists on the
3963** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003964** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003965** commit process.
3966**
3967** This call is a no-op if no write-transaction is currently active on pBt.
3968**
3969** Otherwise, sync the database file for the btree pBt. zMaster points to
3970** the name of a master journal file that should be written into the
3971** individual journal file, or is NULL, indicating no master journal file
3972** (single database transaction).
3973**
3974** When this is called, the master journal should already have been
3975** created, populated with this journal pointer and synced to disk.
3976**
3977** Once this is routine has returned, the only thing required to commit
3978** the write-transaction for this database file is to delete the journal.
3979*/
3980int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3981 int rc = SQLITE_OK;
3982 if( p->inTrans==TRANS_WRITE ){
3983 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003984 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003985#ifndef SQLITE_OMIT_AUTOVACUUM
3986 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003987 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003988 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003989 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003990 return rc;
3991 }
3992 }
danbc1a3c62013-02-23 16:40:46 +00003993 if( pBt->bDoTruncate ){
3994 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3995 }
drh80e35f42007-03-30 14:06:34 +00003996#endif
drh49b9d332009-01-02 18:10:42 +00003997 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003998 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003999 }
4000 return rc;
4001}
4002
4003/*
danielk197794b30732009-07-02 17:21:57 +00004004** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4005** at the conclusion of a transaction.
4006*/
4007static void btreeEndTransaction(Btree *p){
4008 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00004009 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004010 assert( sqlite3BtreeHoldsMutex(p) );
4011
danbc1a3c62013-02-23 16:40:46 +00004012#ifndef SQLITE_OMIT_AUTOVACUUM
4013 pBt->bDoTruncate = 0;
4014#endif
danc0537fe2013-06-28 19:41:43 +00004015 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004016 /* If there are other active statements that belong to this database
4017 ** handle, downgrade to a read-only transaction. The other statements
4018 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004019 downgradeAllSharedCacheTableLocks(p);
4020 p->inTrans = TRANS_READ;
4021 }else{
4022 /* If the handle had any kind of transaction open, decrement the
4023 ** transaction count of the shared btree. If the transaction count
4024 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4025 ** call below will unlock the pager. */
4026 if( p->inTrans!=TRANS_NONE ){
4027 clearAllSharedCacheTableLocks(p);
4028 pBt->nTransaction--;
4029 if( 0==pBt->nTransaction ){
4030 pBt->inTransaction = TRANS_NONE;
4031 }
4032 }
4033
4034 /* Set the current transaction state to TRANS_NONE and unlock the
4035 ** pager if this call closed the only read or write transaction. */
4036 p->inTrans = TRANS_NONE;
4037 unlockBtreeIfUnused(pBt);
4038 }
4039
4040 btreeIntegrity(p);
4041}
4042
4043/*
drh2aa679f2001-06-25 02:11:07 +00004044** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004045**
drh6e345992007-03-30 11:12:08 +00004046** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004047** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4048** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4049** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004050** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004051** routine has to do is delete or truncate or zero the header in the
4052** the rollback journal (which causes the transaction to commit) and
4053** drop locks.
drh6e345992007-03-30 11:12:08 +00004054**
dan60939d02011-03-29 15:40:55 +00004055** Normally, if an error occurs while the pager layer is attempting to
4056** finalize the underlying journal file, this function returns an error and
4057** the upper layer will attempt a rollback. However, if the second argument
4058** is non-zero then this b-tree transaction is part of a multi-file
4059** transaction. In this case, the transaction has already been committed
4060** (by deleting a master journal file) and the caller will ignore this
4061** functions return code. So, even if an error occurs in the pager layer,
4062** reset the b-tree objects internal state to indicate that the write
4063** transaction has been closed. This is quite safe, as the pager will have
4064** transitioned to the error state.
4065**
drh5e00f6c2001-09-13 13:46:56 +00004066** This will release the write lock on the database file. If there
4067** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004068*/
dan60939d02011-03-29 15:40:55 +00004069int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004070
drh075ed302010-10-14 01:17:30 +00004071 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004072 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004073 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004074
4075 /* If the handle has a write-transaction open, commit the shared-btrees
4076 ** transaction and set the shared state to TRANS_READ.
4077 */
4078 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004079 int rc;
drh075ed302010-10-14 01:17:30 +00004080 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004081 assert( pBt->inTransaction==TRANS_WRITE );
4082 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004083 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004084 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004085 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004086 return rc;
4087 }
drh3da9c042014-12-22 18:41:21 +00004088 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004089 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004090 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004091 }
danielk1977aef0bf62005-12-30 16:28:01 +00004092
danielk197794b30732009-07-02 17:21:57 +00004093 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004094 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004095 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004096}
4097
drh80e35f42007-03-30 14:06:34 +00004098/*
4099** Do both phases of a commit.
4100*/
4101int sqlite3BtreeCommit(Btree *p){
4102 int rc;
drhd677b3d2007-08-20 22:48:41 +00004103 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004104 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4105 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004106 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004107 }
drhd677b3d2007-08-20 22:48:41 +00004108 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004109 return rc;
4110}
4111
drhc39e0002004-05-07 23:50:57 +00004112/*
drhfb982642007-08-30 01:19:59 +00004113** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004114** code to errCode for every cursor on any BtShared that pBtree
4115** references. Or if the writeOnly flag is set to 1, then only
4116** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004117**
drh47b7fc72014-11-11 01:33:57 +00004118** Every cursor is a candidate to be tripped, including cursors
4119** that belong to other database connections that happen to be
4120** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004121**
dan80231042014-11-12 14:56:02 +00004122** This routine gets called when a rollback occurs. If the writeOnly
4123** flag is true, then only write-cursors need be tripped - read-only
4124** cursors save their current positions so that they may continue
4125** following the rollback. Or, if writeOnly is false, all cursors are
4126** tripped. In general, writeOnly is false if the transaction being
4127** rolled back modified the database schema. In this case b-tree root
4128** pages may be moved or deleted from the database altogether, making
4129** it unsafe for read cursors to continue.
4130**
4131** If the writeOnly flag is true and an error is encountered while
4132** saving the current position of a read-only cursor, all cursors,
4133** including all read-cursors are tripped.
4134**
4135** SQLITE_OK is returned if successful, or if an error occurs while
4136** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004137*/
dan80231042014-11-12 14:56:02 +00004138int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004139 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004140 int rc = SQLITE_OK;
4141
drh47b7fc72014-11-11 01:33:57 +00004142 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004143 if( pBtree ){
4144 sqlite3BtreeEnter(pBtree);
4145 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004146 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004147 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004148 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004149 if( rc!=SQLITE_OK ){
4150 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4151 break;
4152 }
4153 }
4154 }else{
4155 sqlite3BtreeClearCursor(p);
4156 p->eState = CURSOR_FAULT;
4157 p->skipNext = errCode;
4158 }
drh85ef6302017-08-02 15:50:09 +00004159 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004160 }
dan80231042014-11-12 14:56:02 +00004161 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004162 }
dan80231042014-11-12 14:56:02 +00004163 return rc;
drhfb982642007-08-30 01:19:59 +00004164}
4165
4166/*
drh41422652019-05-10 14:34:18 +00004167** Set the pBt->nPage field correctly, according to the current
4168** state of the database. Assume pBt->pPage1 is valid.
4169*/
4170static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4171 int nPage = get4byte(&pPage1->aData[28]);
4172 testcase( nPage==0 );
4173 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4174 testcase( pBt->nPage!=nPage );
4175 pBt->nPage = nPage;
4176}
4177
4178/*
drh47b7fc72014-11-11 01:33:57 +00004179** Rollback the transaction in progress.
4180**
4181** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4182** Only write cursors are tripped if writeOnly is true but all cursors are
4183** tripped if writeOnly is false. Any attempt to use
4184** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004185**
4186** This will release the write lock on the database file. If there
4187** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004188*/
drh47b7fc72014-11-11 01:33:57 +00004189int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004190 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004191 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004192 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004193
drh47b7fc72014-11-11 01:33:57 +00004194 assert( writeOnly==1 || writeOnly==0 );
4195 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004196 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004197 if( tripCode==SQLITE_OK ){
4198 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004199 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004200 }else{
4201 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004202 }
drh0f198a72012-02-13 16:43:16 +00004203 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004204 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4205 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4206 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004207 }
danielk1977aef0bf62005-12-30 16:28:01 +00004208 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004209
4210 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004211 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004212
danielk19778d34dfd2006-01-24 16:37:57 +00004213 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004214 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004215 if( rc2!=SQLITE_OK ){
4216 rc = rc2;
4217 }
4218
drh24cd67e2004-05-10 16:18:47 +00004219 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004220 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004221 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004222 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh41422652019-05-10 14:34:18 +00004223 btreeSetNPage(pBt, pPage1);
drh3908fe92017-09-01 14:50:19 +00004224 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004225 }
drh85ec3b62013-05-14 23:12:06 +00004226 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004227 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004228 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004229 }
danielk1977aef0bf62005-12-30 16:28:01 +00004230
danielk197794b30732009-07-02 17:21:57 +00004231 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004232 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004233 return rc;
4234}
4235
4236/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004237** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004238** back independently of the main transaction. You must start a transaction
4239** before starting a subtransaction. The subtransaction is ended automatically
4240** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004241**
4242** Statement subtransactions are used around individual SQL statements
4243** that are contained within a BEGIN...COMMIT block. If a constraint
4244** error occurs within the statement, the effect of that one statement
4245** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004246**
4247** A statement sub-transaction is implemented as an anonymous savepoint. The
4248** value passed as the second parameter is the total number of savepoints,
4249** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4250** are no active savepoints and no other statement-transactions open,
4251** iStatement is 1. This anonymous savepoint can be released or rolled back
4252** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004253*/
danielk1977bd434552009-03-18 10:33:00 +00004254int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004255 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004256 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004257 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004258 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004259 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004260 assert( iStatement>0 );
4261 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004262 assert( pBt->inTransaction==TRANS_WRITE );
4263 /* At the pager level, a statement transaction is a savepoint with
4264 ** an index greater than all savepoints created explicitly using
4265 ** SQL statements. It is illegal to open, release or rollback any
4266 ** such savepoints while the statement transaction savepoint is active.
4267 */
4268 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004269 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004270 return rc;
4271}
4272
4273/*
danielk1977fd7f0452008-12-17 17:30:26 +00004274** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4275** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004276** savepoint identified by parameter iSavepoint, depending on the value
4277** of op.
4278**
4279** Normally, iSavepoint is greater than or equal to zero. However, if op is
4280** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4281** contents of the entire transaction are rolled back. This is different
4282** from a normal transaction rollback, as no locks are released and the
4283** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004284*/
4285int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4286 int rc = SQLITE_OK;
4287 if( p && p->inTrans==TRANS_WRITE ){
4288 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004289 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4290 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4291 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004292 if( op==SAVEPOINT_ROLLBACK ){
4293 rc = saveAllCursors(pBt, 0, 0);
4294 }
4295 if( rc==SQLITE_OK ){
4296 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4297 }
drh9f0bbf92009-01-02 21:08:09 +00004298 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004299 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4300 pBt->nPage = 0;
4301 }
drh9f0bbf92009-01-02 21:08:09 +00004302 rc = newDatabase(pBt);
drh41422652019-05-10 14:34:18 +00004303 btreeSetNPage(pBt, pBt->pPage1);
drhb9b49bf2010-08-05 03:21:39 +00004304
dana9a54652019-04-22 11:47:40 +00004305 /* pBt->nPage might be zero if the database was corrupt when
4306 ** the transaction was started. Otherwise, it must be at least 1. */
4307 assert( CORRUPT_DB || pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004308 }
danielk1977fd7f0452008-12-17 17:30:26 +00004309 sqlite3BtreeLeave(p);
4310 }
4311 return rc;
4312}
4313
4314/*
drh8b2f49b2001-06-08 00:21:52 +00004315** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004316** iTable. If a read-only cursor is requested, it is assumed that
4317** the caller already has at least a read-only transaction open
4318** on the database already. If a write-cursor is requested, then
4319** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004320**
drhe807bdb2016-01-21 17:06:33 +00004321** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4322** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4323** can be used for reading or for writing if other conditions for writing
4324** are also met. These are the conditions that must be met in order
4325** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004326**
drhe807bdb2016-01-21 17:06:33 +00004327** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004328**
drhfe5d71d2007-03-19 11:54:10 +00004329** 2: Other database connections that share the same pager cache
4330** but which are not in the READ_UNCOMMITTED state may not have
4331** cursors open with wrFlag==0 on the same table. Otherwise
4332** the changes made by this write cursor would be visible to
4333** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004334**
4335** 3: The database must be writable (not on read-only media)
4336**
4337** 4: There must be an active transaction.
4338**
drhe807bdb2016-01-21 17:06:33 +00004339** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4340** is set. If FORDELETE is set, that is a hint to the implementation that
4341** this cursor will only be used to seek to and delete entries of an index
4342** as part of a larger DELETE statement. The FORDELETE hint is not used by
4343** this implementation. But in a hypothetical alternative storage engine
4344** in which index entries are automatically deleted when corresponding table
4345** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4346** operations on this cursor can be no-ops and all READ operations can
4347** return a null row (2-bytes: 0x01 0x00).
4348**
drh6446c4d2001-12-15 14:22:18 +00004349** No checking is done to make sure that page iTable really is the
4350** root page of a b-tree. If it is not, then the cursor acquired
4351** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004352**
drhf25a5072009-11-18 23:01:25 +00004353** It is assumed that the sqlite3BtreeCursorZero() has been called
4354** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004355*/
drhd677b3d2007-08-20 22:48:41 +00004356static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004357 Btree *p, /* The btree */
4358 int iTable, /* Root page of table to open */
4359 int wrFlag, /* 1 to write. 0 read-only */
4360 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4361 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004362){
danielk19773e8add92009-07-04 17:16:00 +00004363 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004364 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004365
drh1fee73e2007-08-29 04:00:57 +00004366 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004367 assert( wrFlag==0
4368 || wrFlag==BTREE_WRCSR
4369 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4370 );
danielk197796d48e92009-06-29 06:00:37 +00004371
danielk1977602b4662009-07-02 07:47:33 +00004372 /* The following assert statements verify that if this is a sharable
4373 ** b-tree database, the connection is holding the required table locks,
4374 ** and that no other connection has any open cursor that conflicts with
drhac801802019-11-17 11:47:50 +00004375 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4376 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4377 || iTable<1 );
danielk197796d48e92009-06-29 06:00:37 +00004378 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4379
danielk19773e8add92009-07-04 17:16:00 +00004380 /* Assert that the caller has opened the required transaction. */
4381 assert( p->inTrans>TRANS_NONE );
4382 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4383 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004384 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004385
drh3fbb0222014-09-24 19:47:27 +00004386 if( wrFlag ){
4387 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004388 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004389 }
drhdb561bc2019-10-25 14:46:05 +00004390 if( iTable<=1 ){
4391 if( iTable<1 ){
4392 return SQLITE_CORRUPT_BKPT;
4393 }else if( btreePagecount(pBt)==0 ){
4394 assert( wrFlag==0 );
4395 iTable = 0;
4396 }
danielk19773e8add92009-07-04 17:16:00 +00004397 }
danielk1977aef0bf62005-12-30 16:28:01 +00004398
danielk1977aef0bf62005-12-30 16:28:01 +00004399 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004400 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004401 pCur->pgnoRoot = (Pgno)iTable;
4402 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004403 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004404 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004405 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004406 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004407 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004408 /* If there are two or more cursors on the same btree, then all such
4409 ** cursors *must* have the BTCF_Multiple flag set. */
4410 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4411 if( pX->pgnoRoot==(Pgno)iTable ){
4412 pX->curFlags |= BTCF_Multiple;
4413 pCur->curFlags |= BTCF_Multiple;
4414 }
drha059ad02001-04-17 20:09:11 +00004415 }
drh27fb7462015-06-30 02:47:36 +00004416 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004417 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004418 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004419 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004420}
drhdb561bc2019-10-25 14:46:05 +00004421static int btreeCursorWithLock(
4422 Btree *p, /* The btree */
4423 int iTable, /* Root page of table to open */
4424 int wrFlag, /* 1 to write. 0 read-only */
4425 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4426 BtCursor *pCur /* Space for new cursor */
4427){
4428 int rc;
4429 sqlite3BtreeEnter(p);
4430 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4431 sqlite3BtreeLeave(p);
4432 return rc;
4433}
drhd677b3d2007-08-20 22:48:41 +00004434int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004435 Btree *p, /* The btree */
4436 int iTable, /* Root page of table to open */
4437 int wrFlag, /* 1 to write. 0 read-only */
4438 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4439 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004440){
drhdb561bc2019-10-25 14:46:05 +00004441 if( p->sharable ){
4442 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004443 }else{
drhdb561bc2019-10-25 14:46:05 +00004444 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004445 }
drhd677b3d2007-08-20 22:48:41 +00004446}
drh7f751222009-03-17 22:33:00 +00004447
4448/*
4449** Return the size of a BtCursor object in bytes.
4450**
4451** This interfaces is needed so that users of cursors can preallocate
4452** sufficient storage to hold a cursor. The BtCursor object is opaque
4453** to users so they cannot do the sizeof() themselves - they must call
4454** this routine.
4455*/
4456int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004457 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004458}
4459
drh7f751222009-03-17 22:33:00 +00004460/*
drhf25a5072009-11-18 23:01:25 +00004461** Initialize memory that will be converted into a BtCursor object.
4462**
4463** The simple approach here would be to memset() the entire object
4464** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4465** do not need to be zeroed and they are large, so we can save a lot
4466** of run-time by skipping the initialization of those elements.
4467*/
4468void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004469 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004470}
4471
4472/*
drh5e00f6c2001-09-13 13:46:56 +00004473** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004474** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004475*/
drh3aac2dd2004-04-26 14:10:20 +00004476int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004477 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004478 if( pBtree ){
4479 BtShared *pBt = pCur->pBt;
4480 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004481 assert( pBt->pCursor!=0 );
4482 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004483 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004484 }else{
4485 BtCursor *pPrev = pBt->pCursor;
4486 do{
4487 if( pPrev->pNext==pCur ){
4488 pPrev->pNext = pCur->pNext;
4489 break;
4490 }
4491 pPrev = pPrev->pNext;
4492 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004493 }
drh352a35a2017-08-15 03:46:47 +00004494 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004495 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004496 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004497 sqlite3_free(pCur->pKey);
danielk1977cd3e8f72008-03-25 09:47:35 +00004498 sqlite3BtreeLeave(pBtree);
dan97c8cb32019-01-01 18:00:17 +00004499 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004500 }
drh8c42ca92001-06-22 19:15:00 +00004501 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004502}
4503
drh5e2f8b92001-05-28 00:41:15 +00004504/*
drh86057612007-06-26 01:04:48 +00004505** Make sure the BtCursor* given in the argument has a valid
4506** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004507** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004508**
4509** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004510** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004511*/
drh9188b382004-05-14 21:12:22 +00004512#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004513 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4514 if( a->nKey!=b->nKey ) return 0;
4515 if( a->pPayload!=b->pPayload ) return 0;
4516 if( a->nPayload!=b->nPayload ) return 0;
4517 if( a->nLocal!=b->nLocal ) return 0;
4518 if( a->nSize!=b->nSize ) return 0;
4519 return 1;
4520 }
danielk19771cc5ed82007-05-16 17:28:43 +00004521 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004522 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004523 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004524 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004525 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004526 }
danielk19771cc5ed82007-05-16 17:28:43 +00004527#else
4528 #define assertCellInfo(x)
4529#endif
drhc5b41ac2015-06-17 02:11:46 +00004530static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4531 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004532 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004533 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004534 }else{
4535 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004536 }
drhc5b41ac2015-06-17 02:11:46 +00004537}
drh9188b382004-05-14 21:12:22 +00004538
drhea8ffdf2009-07-22 00:35:23 +00004539#ifndef NDEBUG /* The next routine used only within assert() statements */
4540/*
4541** Return true if the given BtCursor is valid. A valid cursor is one
4542** that is currently pointing to a row in a (non-empty) table.
4543** This is a verification routine is used only within assert() statements.
4544*/
4545int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4546 return pCur && pCur->eState==CURSOR_VALID;
4547}
4548#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004549int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4550 assert( pCur!=0 );
4551 return pCur->eState==CURSOR_VALID;
4552}
drhea8ffdf2009-07-22 00:35:23 +00004553
drh9188b382004-05-14 21:12:22 +00004554/*
drha7c90c42016-06-04 20:37:10 +00004555** Return the value of the integer key or "rowid" for a table btree.
4556** This routine is only valid for a cursor that is pointing into a
4557** ordinary table btree. If the cursor points to an index btree or
4558** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004559*/
drha7c90c42016-06-04 20:37:10 +00004560i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004561 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004562 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004563 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004564 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004565 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004566}
drh2af926b2001-05-15 00:39:25 +00004567
drh7b14b652019-12-29 22:08:20 +00004568/*
4569** Pin or unpin a cursor.
4570*/
4571void sqlite3BtreeCursorPin(BtCursor *pCur){
4572 assert( (pCur->curFlags & BTCF_Pinned)==0 );
4573 pCur->curFlags |= BTCF_Pinned;
4574}
4575void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4576 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4577 pCur->curFlags &= ~BTCF_Pinned;
4578}
4579
drh092457b2017-12-29 15:04:49 +00004580#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004581/*
drh2fc865c2017-12-16 20:20:37 +00004582** Return the offset into the database file for the start of the
4583** payload to which the cursor is pointing.
4584*/
drh092457b2017-12-29 15:04:49 +00004585i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004586 assert( cursorHoldsMutex(pCur) );
4587 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004588 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004589 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004590 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4591}
drh092457b2017-12-29 15:04:49 +00004592#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004593
4594/*
drha7c90c42016-06-04 20:37:10 +00004595** Return the number of bytes of payload for the entry that pCur is
4596** currently pointing to. For table btrees, this will be the amount
4597** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004598**
4599** The caller must guarantee that the cursor is pointing to a non-NULL
4600** valid entry. In other words, the calling procedure must guarantee
4601** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004602*/
drha7c90c42016-06-04 20:37:10 +00004603u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4604 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004605 assert( pCur->eState==CURSOR_VALID );
4606 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004607 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004608}
4609
4610/*
drh53d30dd2019-02-04 21:10:24 +00004611** Return an upper bound on the size of any record for the table
4612** that the cursor is pointing into.
4613**
4614** This is an optimization. Everything will still work if this
4615** routine always returns 2147483647 (which is the largest record
4616** that SQLite can handle) or more. But returning a smaller value might
4617** prevent large memory allocations when trying to interpret a
4618** corrupt datrabase.
4619**
4620** The current implementation merely returns the size of the underlying
4621** database file.
4622*/
4623sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4624 assert( cursorHoldsMutex(pCur) );
4625 assert( pCur->eState==CURSOR_VALID );
4626 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4627}
4628
4629/*
danielk1977d04417962007-05-02 13:16:30 +00004630** Given the page number of an overflow page in the database (parameter
4631** ovfl), this function finds the page number of the next page in the
4632** linked list of overflow pages. If possible, it uses the auto-vacuum
4633** pointer-map data instead of reading the content of page ovfl to do so.
4634**
4635** If an error occurs an SQLite error code is returned. Otherwise:
4636**
danielk1977bea2a942009-01-20 17:06:27 +00004637** The page number of the next overflow page in the linked list is
4638** written to *pPgnoNext. If page ovfl is the last page in its linked
4639** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004640**
danielk1977bea2a942009-01-20 17:06:27 +00004641** If ppPage is not NULL, and a reference to the MemPage object corresponding
4642** to page number pOvfl was obtained, then *ppPage is set to point to that
4643** reference. It is the responsibility of the caller to call releasePage()
4644** on *ppPage to free the reference. In no reference was obtained (because
4645** the pointer-map was used to obtain the value for *pPgnoNext), then
4646** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004647*/
4648static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004649 BtShared *pBt, /* The database file */
4650 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004651 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004652 Pgno *pPgnoNext /* OUT: Next overflow page number */
4653){
4654 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004655 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004656 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004657
drh1fee73e2007-08-29 04:00:57 +00004658 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004659 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004660
4661#ifndef SQLITE_OMIT_AUTOVACUUM
4662 /* Try to find the next page in the overflow list using the
4663 ** autovacuum pointer-map pages. Guess that the next page in
4664 ** the overflow list is page number (ovfl+1). If that guess turns
4665 ** out to be wrong, fall back to loading the data of page
4666 ** number ovfl to determine the next page number.
4667 */
4668 if( pBt->autoVacuum ){
4669 Pgno pgno;
4670 Pgno iGuess = ovfl+1;
4671 u8 eType;
4672
4673 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4674 iGuess++;
4675 }
4676
drhb1299152010-03-30 22:58:33 +00004677 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004678 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004679 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004680 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004681 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004682 }
4683 }
4684 }
4685#endif
4686
danielk1977d8a3f3d2009-07-11 11:45:23 +00004687 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004688 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004689 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004690 assert( rc==SQLITE_OK || pPage==0 );
4691 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004692 next = get4byte(pPage->aData);
4693 }
danielk1977443c0592009-01-16 15:21:05 +00004694 }
danielk197745d68822009-01-16 16:23:38 +00004695
danielk1977bea2a942009-01-20 17:06:27 +00004696 *pPgnoNext = next;
4697 if( ppPage ){
4698 *ppPage = pPage;
4699 }else{
4700 releasePage(pPage);
4701 }
4702 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004703}
4704
danielk1977da107192007-05-04 08:32:13 +00004705/*
4706** Copy data from a buffer to a page, or from a page to a buffer.
4707**
4708** pPayload is a pointer to data stored on database page pDbPage.
4709** If argument eOp is false, then nByte bytes of data are copied
4710** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4711** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4712** of data are copied from the buffer pBuf to pPayload.
4713**
4714** SQLITE_OK is returned on success, otherwise an error code.
4715*/
4716static int copyPayload(
4717 void *pPayload, /* Pointer to page data */
4718 void *pBuf, /* Pointer to buffer */
4719 int nByte, /* Number of bytes to copy */
4720 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4721 DbPage *pDbPage /* Page containing pPayload */
4722){
4723 if( eOp ){
4724 /* Copy data from buffer to page (a write operation) */
4725 int rc = sqlite3PagerWrite(pDbPage);
4726 if( rc!=SQLITE_OK ){
4727 return rc;
4728 }
4729 memcpy(pPayload, pBuf, nByte);
4730 }else{
4731 /* Copy data from page to buffer (a read operation) */
4732 memcpy(pBuf, pPayload, nByte);
4733 }
4734 return SQLITE_OK;
4735}
danielk1977d04417962007-05-02 13:16:30 +00004736
4737/*
danielk19779f8d6402007-05-02 17:48:45 +00004738** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004739** for the entry that the pCur cursor is pointing to. The eOp
4740** argument is interpreted as follows:
4741**
4742** 0: The operation is a read. Populate the overflow cache.
4743** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004744**
4745** A total of "amt" bytes are read or written beginning at "offset".
4746** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004747**
drh3bcdfd22009-07-12 02:32:21 +00004748** The content being read or written might appear on the main page
4749** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004750**
drh42e28f12017-01-27 00:31:59 +00004751** If the current cursor entry uses one or more overflow pages
4752** this function may allocate space for and lazily populate
4753** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004754** Subsequent calls use this cache to make seeking to the supplied offset
4755** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004756**
drh42e28f12017-01-27 00:31:59 +00004757** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004758** invalidated if some other cursor writes to the same table, or if
4759** the cursor is moved to a different row. Additionally, in auto-vacuum
4760** mode, the following events may invalidate an overflow page-list cache.
4761**
4762** * An incremental vacuum,
4763** * A commit in auto_vacuum="full" mode,
4764** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004765*/
danielk19779f8d6402007-05-02 17:48:45 +00004766static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004767 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004768 u32 offset, /* Begin reading this far into payload */
4769 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004770 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004771 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004772){
4773 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004774 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004775 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004776 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004777 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004778#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004779 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004780#endif
drh3aac2dd2004-04-26 14:10:20 +00004781
danielk1977da107192007-05-04 08:32:13 +00004782 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004783 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004784 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004785 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004786 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004787
drh86057612007-06-26 01:04:48 +00004788 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004789 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004790 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004791
drh0b982072016-03-22 14:10:45 +00004792 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004793 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004794 /* Trying to read or write past the end of the data is an error. The
4795 ** conditional above is really:
4796 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4797 ** but is recast into its current form to avoid integer overflow problems
4798 */
daneebf2f52017-11-18 17:30:08 +00004799 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004800 }
danielk1977da107192007-05-04 08:32:13 +00004801
4802 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004803 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004804 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004805 if( a+offset>pCur->info.nLocal ){
4806 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004807 }
drh42e28f12017-01-27 00:31:59 +00004808 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004809 offset = 0;
drha34b6762004-05-07 13:30:42 +00004810 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004811 amt -= a;
drhdd793422001-06-28 01:54:48 +00004812 }else{
drhfa1a98a2004-05-14 19:08:17 +00004813 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004814 }
danielk1977da107192007-05-04 08:32:13 +00004815
dan85753662014-12-11 16:38:18 +00004816
danielk1977da107192007-05-04 08:32:13 +00004817 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004818 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004819 Pgno nextPage;
4820
drhfa1a98a2004-05-14 19:08:17 +00004821 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004822
drha38c9512014-04-01 01:24:34 +00004823 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004824 **
4825 ** The aOverflow[] array is sized at one entry for each overflow page
4826 ** in the overflow chain. The page number of the first overflow page is
4827 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4828 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004829 */
drh42e28f12017-01-27 00:31:59 +00004830 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004831 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004832 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004833 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004834 ){
dan85753662014-12-11 16:38:18 +00004835 Pgno *aNew = (Pgno*)sqlite3Realloc(
4836 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004837 );
4838 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004839 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004840 }else{
dan5a500af2014-03-11 20:33:04 +00004841 pCur->aOverflow = aNew;
4842 }
4843 }
drhcd645532017-01-20 20:43:14 +00004844 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4845 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004846 }else{
4847 /* If the overflow page-list cache has been allocated and the
4848 ** entry for the first required overflow page is valid, skip
4849 ** directly to it.
4850 */
4851 if( pCur->aOverflow[offset/ovflSize] ){
4852 iIdx = (offset/ovflSize);
4853 nextPage = pCur->aOverflow[iIdx];
4854 offset = (offset%ovflSize);
4855 }
danielk19772dec9702007-05-02 16:48:37 +00004856 }
danielk1977da107192007-05-04 08:32:13 +00004857
drhcd645532017-01-20 20:43:14 +00004858 assert( rc==SQLITE_OK && amt>0 );
4859 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004860 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004861 assert( pCur->aOverflow[iIdx]==0
4862 || pCur->aOverflow[iIdx]==nextPage
4863 || CORRUPT_DB );
4864 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004865
danielk1977d04417962007-05-02 13:16:30 +00004866 if( offset>=ovflSize ){
4867 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004868 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004869 ** data is not required. So first try to lookup the overflow
4870 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004871 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004872 */
drha38c9512014-04-01 01:24:34 +00004873 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004874 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004875 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004876 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004877 }else{
danielk1977da107192007-05-04 08:32:13 +00004878 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004879 }
danielk1977da107192007-05-04 08:32:13 +00004880 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004881 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004882 /* Need to read this page properly. It contains some of the
4883 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004884 */
danielk1977cfe9a692004-06-16 12:00:29 +00004885 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004886 if( a + offset > ovflSize ){
4887 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004888 }
danf4ba1092011-10-08 14:57:07 +00004889
4890#ifdef SQLITE_DIRECT_OVERFLOW_READ
4891 /* If all the following are true:
4892 **
4893 ** 1) this is a read operation, and
4894 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00004895 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00004896 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004897 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004898 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004899 **
4900 ** then data can be read directly from the database file into the
4901 ** output buffer, bypassing the page-cache altogether. This speeds
4902 ** up loading large records that span many overflow pages.
4903 */
drh42e28f12017-01-27 00:31:59 +00004904 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004905 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00004906 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00004907 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004908 ){
dan09236752018-11-22 19:10:14 +00004909 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00004910 u8 aSave[4];
4911 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004912 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004913 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004914 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
drhb9fc4552019-08-15 00:04:44 +00004915 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
danf4ba1092011-10-08 14:57:07 +00004916 nextPage = get4byte(aWrite);
4917 memcpy(aWrite, aSave, 4);
4918 }else
4919#endif
4920
4921 {
4922 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004923 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004924 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004925 );
danf4ba1092011-10-08 14:57:07 +00004926 if( rc==SQLITE_OK ){
4927 aPayload = sqlite3PagerGetData(pDbPage);
4928 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004929 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004930 sqlite3PagerUnref(pDbPage);
4931 offset = 0;
4932 }
4933 }
4934 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004935 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004936 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004937 }
drhcd645532017-01-20 20:43:14 +00004938 if( rc ) break;
4939 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004940 }
drh2af926b2001-05-15 00:39:25 +00004941 }
danielk1977cfe9a692004-06-16 12:00:29 +00004942
danielk1977da107192007-05-04 08:32:13 +00004943 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004944 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00004945 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00004946 }
danielk1977da107192007-05-04 08:32:13 +00004947 return rc;
drh2af926b2001-05-15 00:39:25 +00004948}
4949
drh72f82862001-05-24 21:06:34 +00004950/*
drhcb3cabd2016-11-25 19:18:28 +00004951** Read part of the payload for the row at which that cursor pCur is currently
4952** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004953** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004954**
drhcb3cabd2016-11-25 19:18:28 +00004955** pCur can be pointing to either a table or an index b-tree.
4956** If pointing to a table btree, then the content section is read. If
4957** pCur is pointing to an index b-tree then the key section is read.
4958**
4959** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4960** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4961** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004962**
drh3aac2dd2004-04-26 14:10:20 +00004963** Return SQLITE_OK on success or an error code if anything goes
4964** wrong. An error is returned if "offset+amt" is larger than
4965** the available payload.
drh72f82862001-05-24 21:06:34 +00004966*/
drhcb3cabd2016-11-25 19:18:28 +00004967int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004968 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004969 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00004970 assert( pCur->iPage>=0 && pCur->pPage );
4971 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00004972 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004973}
drh83ec2762017-01-26 16:54:47 +00004974
4975/*
4976** This variant of sqlite3BtreePayload() works even if the cursor has not
4977** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4978** interface.
4979*/
danielk19773588ceb2008-06-10 17:30:26 +00004980#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004981static SQLITE_NOINLINE int accessPayloadChecked(
4982 BtCursor *pCur,
4983 u32 offset,
4984 u32 amt,
4985 void *pBuf
4986){
drhcb3cabd2016-11-25 19:18:28 +00004987 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004988 if ( pCur->eState==CURSOR_INVALID ){
4989 return SQLITE_ABORT;
4990 }
dan7a2347e2016-01-07 16:43:54 +00004991 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004992 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004993 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4994}
4995int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4996 if( pCur->eState==CURSOR_VALID ){
4997 assert( cursorOwnsBtShared(pCur) );
4998 return accessPayload(pCur, offset, amt, pBuf, 0);
4999 }else{
5000 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00005001 }
drh2af926b2001-05-15 00:39:25 +00005002}
drhcb3cabd2016-11-25 19:18:28 +00005003#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00005004
drh72f82862001-05-24 21:06:34 +00005005/*
drh0e1c19e2004-05-11 00:58:56 +00005006** Return a pointer to payload information from the entry that the
5007** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00005008** the key if index btrees (pPage->intKey==0) and is the data for
5009** table btrees (pPage->intKey==1). The number of bytes of available
5010** key/data is written into *pAmt. If *pAmt==0, then the value
5011** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00005012**
5013** This routine is an optimization. It is common for the entire key
5014** and data to fit on the local page and for there to be no overflow
5015** pages. When that is so, this routine can be used to access the
5016** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00005017** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00005018** the key/data and copy it into a preallocated buffer.
5019**
5020** The pointer returned by this routine looks directly into the cached
5021** page of the database. The data might change or move the next time
5022** any btree routine is called.
5023*/
drh2a8d2262013-12-09 20:43:22 +00005024static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00005025 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00005026 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00005027){
danf2f72a02017-10-19 15:17:38 +00005028 int amt;
drh352a35a2017-08-15 03:46:47 +00005029 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00005030 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00005031 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00005032 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00005033 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00005034 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00005035 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5036 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00005037 amt = pCur->info.nLocal;
5038 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5039 /* There is too little space on the page for the expected amount
5040 ** of local content. Database must be corrupt. */
5041 assert( CORRUPT_DB );
5042 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5043 }
5044 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00005045 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00005046}
5047
5048
5049/*
drhe51c44f2004-05-30 20:46:09 +00005050** For the entry that cursor pCur is point to, return as
5051** many bytes of the key or data as are available on the local
5052** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005053**
5054** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005055** or be destroyed on the next call to any Btree routine,
5056** including calls from other threads against the same cache.
5057** Hence, a mutex on the BtShared should be held prior to calling
5058** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005059**
5060** These routines is used to get quick access to key and data
5061** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005062*/
drha7c90c42016-06-04 20:37:10 +00005063const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005064 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005065}
5066
5067
5068/*
drh8178a752003-01-05 21:41:40 +00005069** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005070** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005071**
5072** This function returns SQLITE_CORRUPT if the page-header flags field of
5073** the new child page does not match the flags field of the parent (i.e.
5074** if an intkey page appears to be the parent of a non-intkey page, or
5075** vice-versa).
drh72f82862001-05-24 21:06:34 +00005076*/
drh3aac2dd2004-04-26 14:10:20 +00005077static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005078 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005079
dan7a2347e2016-01-07 16:43:54 +00005080 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005081 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005082 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005083 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005084 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5085 return SQLITE_CORRUPT_BKPT;
5086 }
drh271efa52004-05-30 19:19:05 +00005087 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005088 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005089 pCur->aiIdx[pCur->iPage] = pCur->ix;
5090 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005091 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005092 pCur->iPage++;
5093 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005094}
5095
drhd879e3e2017-02-13 13:35:55 +00005096#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005097/*
5098** Page pParent is an internal (non-leaf) tree page. This function
5099** asserts that page number iChild is the left-child if the iIdx'th
5100** cell in page pParent. Or, if iIdx is equal to the total number of
5101** cells in pParent, that page number iChild is the right-child of
5102** the page.
5103*/
5104static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005105 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5106 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005107 assert( iIdx<=pParent->nCell );
5108 if( iIdx==pParent->nCell ){
5109 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5110 }else{
5111 assert( get4byte(findCell(pParent, iIdx))==iChild );
5112 }
5113}
5114#else
5115# define assertParentIndex(x,y,z)
5116#endif
5117
drh72f82862001-05-24 21:06:34 +00005118/*
drh5e2f8b92001-05-28 00:41:15 +00005119** Move the cursor up to the parent page.
5120**
5121** pCur->idx is set to the cell index that contains the pointer
5122** to the page we are coming from. If we are coming from the
5123** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005124** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005125*/
danielk197730548662009-07-09 05:07:37 +00005126static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005127 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005128 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005129 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005130 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005131 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005132 assertParentIndex(
5133 pCur->apPage[pCur->iPage-1],
5134 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005135 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005136 );
dan6c2688c2012-01-12 15:05:03 +00005137 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005138 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005139 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005140 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005141 pLeaf = pCur->pPage;
5142 pCur->pPage = pCur->apPage[--pCur->iPage];
5143 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005144}
5145
5146/*
danielk19778f880a82009-07-13 09:41:45 +00005147** Move the cursor to point to the root page of its b-tree structure.
5148**
5149** If the table has a virtual root page, then the cursor is moved to point
5150** to the virtual root page instead of the actual root page. A table has a
5151** virtual root page when the actual root page contains no cells and a
5152** single child page. This can only happen with the table rooted at page 1.
5153**
5154** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005155** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5156** the cursor is set to point to the first cell located on the root
5157** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005158**
5159** If this function returns successfully, it may be assumed that the
5160** page-header flags indicate that the [virtual] root-page is the expected
5161** kind of b-tree page (i.e. if when opening the cursor the caller did not
5162** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5163** indicating a table b-tree, or if the caller did specify a KeyInfo
5164** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5165** b-tree).
drh72f82862001-05-24 21:06:34 +00005166*/
drh5e2f8b92001-05-28 00:41:15 +00005167static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005168 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005169 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005170
dan7a2347e2016-01-07 16:43:54 +00005171 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005172 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5173 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5174 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005175 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005176 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005177
5178 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005179 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005180 releasePageNotNull(pCur->pPage);
5181 while( --pCur->iPage ){
5182 releasePageNotNull(pCur->apPage[pCur->iPage]);
5183 }
5184 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005185 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005186 }
dana205a482011-08-27 18:48:57 +00005187 }else if( pCur->pgnoRoot==0 ){
5188 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005189 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005190 }else{
drh28f58dd2015-06-27 19:45:03 +00005191 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005192 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5193 if( pCur->eState==CURSOR_FAULT ){
5194 assert( pCur->skipNext!=SQLITE_OK );
5195 return pCur->skipNext;
5196 }
5197 sqlite3BtreeClearCursor(pCur);
5198 }
drh352a35a2017-08-15 03:46:47 +00005199 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005200 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005201 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005202 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005203 return rc;
drh777e4c42006-01-13 04:31:58 +00005204 }
danielk1977172114a2009-07-07 15:47:12 +00005205 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005206 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005207 }
drh352a35a2017-08-15 03:46:47 +00005208 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005209 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005210
5211 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5212 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5213 ** NULL, the caller expects a table b-tree. If this is not the case,
5214 ** return an SQLITE_CORRUPT error.
5215 **
5216 ** Earlier versions of SQLite assumed that this test could not fail
5217 ** if the root page was already loaded when this function was called (i.e.
5218 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5219 ** in such a way that page pRoot is linked into a second b-tree table
5220 ** (or the freelist). */
5221 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5222 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005223 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005224 }
danielk19778f880a82009-07-13 09:41:45 +00005225
drh7ad3eb62016-10-24 01:01:09 +00005226skip_init:
drh75e96b32017-04-01 00:20:06 +00005227 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005228 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005229 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005230
drh352a35a2017-08-15 03:46:47 +00005231 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005232 if( pRoot->nCell>0 ){
5233 pCur->eState = CURSOR_VALID;
5234 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005235 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005236 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005237 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005238 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005239 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005240 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005241 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005242 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005243 }
5244 return rc;
drh72f82862001-05-24 21:06:34 +00005245}
drh2af926b2001-05-15 00:39:25 +00005246
drh5e2f8b92001-05-28 00:41:15 +00005247/*
5248** Move the cursor down to the left-most leaf entry beneath the
5249** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005250**
5251** The left-most leaf is the one with the smallest key - the first
5252** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005253*/
5254static int moveToLeftmost(BtCursor *pCur){
5255 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005256 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005257 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005258
dan7a2347e2016-01-07 16:43:54 +00005259 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005260 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005261 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005262 assert( pCur->ix<pPage->nCell );
5263 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005264 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005265 }
drhd677b3d2007-08-20 22:48:41 +00005266 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005267}
5268
drh2dcc9aa2002-12-04 13:40:25 +00005269/*
5270** Move the cursor down to the right-most leaf entry beneath the
5271** page to which it is currently pointing. Notice the difference
5272** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5273** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5274** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005275**
5276** The right-most entry is the one with the largest key - the last
5277** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005278*/
5279static int moveToRightmost(BtCursor *pCur){
5280 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005281 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005282 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005283
dan7a2347e2016-01-07 16:43:54 +00005284 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005285 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005286 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005287 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005288 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005289 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005290 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005291 }
drh75e96b32017-04-01 00:20:06 +00005292 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005293 assert( pCur->info.nSize==0 );
5294 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5295 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005296}
5297
drh5e00f6c2001-09-13 13:46:56 +00005298/* Move the cursor to the first entry in the table. Return SQLITE_OK
5299** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005300** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005301*/
drh3aac2dd2004-04-26 14:10:20 +00005302int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005303 int rc;
drhd677b3d2007-08-20 22:48:41 +00005304
dan7a2347e2016-01-07 16:43:54 +00005305 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005306 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005307 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005308 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005309 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005310 *pRes = 0;
5311 rc = moveToLeftmost(pCur);
5312 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005313 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005314 *pRes = 1;
5315 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005316 }
drh5e00f6c2001-09-13 13:46:56 +00005317 return rc;
5318}
drh5e2f8b92001-05-28 00:41:15 +00005319
drh9562b552002-02-19 15:00:07 +00005320/* Move the cursor to the last entry in the table. Return SQLITE_OK
5321** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005322** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005323*/
drh3aac2dd2004-04-26 14:10:20 +00005324int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005325 int rc;
drhd677b3d2007-08-20 22:48:41 +00005326
dan7a2347e2016-01-07 16:43:54 +00005327 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005328 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005329
5330 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005331 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005332#ifdef SQLITE_DEBUG
5333 /* This block serves to assert() that the cursor really does point
5334 ** to the last entry in the b-tree. */
5335 int ii;
5336 for(ii=0; ii<pCur->iPage; ii++){
5337 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5338 }
drh352a35a2017-08-15 03:46:47 +00005339 assert( pCur->ix==pCur->pPage->nCell-1 );
5340 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005341#endif
drheb265342019-05-08 23:55:04 +00005342 *pRes = 0;
danielk19773f632d52009-05-02 10:03:09 +00005343 return SQLITE_OK;
5344 }
5345
drh9562b552002-02-19 15:00:07 +00005346 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005347 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005348 assert( pCur->eState==CURSOR_VALID );
5349 *pRes = 0;
5350 rc = moveToRightmost(pCur);
5351 if( rc==SQLITE_OK ){
5352 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005353 }else{
drh44548e72017-08-14 18:13:52 +00005354 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005355 }
drh44548e72017-08-14 18:13:52 +00005356 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005357 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005358 *pRes = 1;
5359 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005360 }
drh9562b552002-02-19 15:00:07 +00005361 return rc;
5362}
5363
drhe14006d2008-03-25 17:23:32 +00005364/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005365** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005366**
drhe63d9992008-08-13 19:11:48 +00005367** For INTKEY tables, the intKey parameter is used. pIdxKey
5368** must be NULL. For index tables, pIdxKey is used and intKey
5369** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005370**
drh5e2f8b92001-05-28 00:41:15 +00005371** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005372** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005373** were present. The cursor might point to an entry that comes
5374** before or after the key.
5375**
drh64022502009-01-09 14:11:04 +00005376** An integer is written into *pRes which is the result of
5377** comparing the key with the entry to which the cursor is
5378** pointing. The meaning of the integer written into
5379** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005380**
5381** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005382** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005383** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005384**
5385** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005386** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005387**
5388** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005389** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005390**
drhb1d607d2015-11-05 22:30:54 +00005391** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5392** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005393*/
drhe63d9992008-08-13 19:11:48 +00005394int sqlite3BtreeMovetoUnpacked(
5395 BtCursor *pCur, /* The cursor to be moved */
5396 UnpackedRecord *pIdxKey, /* Unpacked index key */
5397 i64 intKey, /* The table key */
5398 int biasRight, /* If true, bias the search to the high end */
5399 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005400){
drh72f82862001-05-24 21:06:34 +00005401 int rc;
dan3b9330f2014-02-27 20:44:18 +00005402 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005403
dan7a2347e2016-01-07 16:43:54 +00005404 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005405 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005406 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005407 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005408 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005409
5410 /* If the cursor is already positioned at the point we are trying
5411 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005412 if( pIdxKey==0
5413 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005414 ){
drhe63d9992008-08-13 19:11:48 +00005415 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005416 *pRes = 0;
5417 return SQLITE_OK;
5418 }
drh451e76d2017-01-21 16:54:19 +00005419 if( pCur->info.nKey<intKey ){
5420 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5421 *pRes = -1;
5422 return SQLITE_OK;
5423 }
drh7f11afa2017-01-21 21:47:54 +00005424 /* If the requested key is one more than the previous key, then
5425 ** try to get there using sqlite3BtreeNext() rather than a full
5426 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005427 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005428 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005429 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005430 rc = sqlite3BtreeNext(pCur, 0);
5431 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005432 getCellInfo(pCur);
5433 if( pCur->info.nKey==intKey ){
5434 return SQLITE_OK;
5435 }
drh2ab792e2017-05-30 18:34:07 +00005436 }else if( rc==SQLITE_DONE ){
5437 rc = SQLITE_OK;
5438 }else{
5439 return rc;
drh451e76d2017-01-21 16:54:19 +00005440 }
5441 }
drha2c20e42008-03-29 16:01:04 +00005442 }
5443 }
5444
dan1fed5da2014-02-25 21:01:25 +00005445 if( pIdxKey ){
5446 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005447 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005448 assert( pIdxKey->default_rc==1
5449 || pIdxKey->default_rc==0
5450 || pIdxKey->default_rc==-1
5451 );
drh13a747e2014-03-03 21:46:55 +00005452 }else{
drhb6e8fd12014-03-06 01:56:33 +00005453 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005454 }
5455
drh5e2f8b92001-05-28 00:41:15 +00005456 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005457 if( rc ){
drh44548e72017-08-14 18:13:52 +00005458 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005459 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005460 *pRes = -1;
5461 return SQLITE_OK;
5462 }
drhd677b3d2007-08-20 22:48:41 +00005463 return rc;
5464 }
drh352a35a2017-08-15 03:46:47 +00005465 assert( pCur->pPage );
5466 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005467 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005468 assert( pCur->pPage->nCell > 0 );
5469 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005470 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005471 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005472 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005473 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005474 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005475 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005476
5477 /* pPage->nCell must be greater than zero. If this is the root-page
5478 ** the cursor would have been INVALID above and this for(;;) loop
5479 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005480 ** would have already detected db corruption. Similarly, pPage must
5481 ** be the right kind (index or table) of b-tree page. Otherwise
5482 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005483 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005484 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005485 lwr = 0;
5486 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005487 assert( biasRight==0 || biasRight==1 );
5488 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005489 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005490 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005491 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005492 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005493 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005494 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005495 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005496 if( pCell>=pPage->aDataEnd ){
daneebf2f52017-11-18 17:30:08 +00005497 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00005498 }
drh9b2fc612013-11-25 20:14:13 +00005499 }
drhd172f862006-01-12 15:01:15 +00005500 }
drha2c20e42008-03-29 16:01:04 +00005501 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005502 if( nCellKey<intKey ){
5503 lwr = idx+1;
5504 if( lwr>upr ){ c = -1; break; }
5505 }else if( nCellKey>intKey ){
5506 upr = idx-1;
5507 if( lwr>upr ){ c = +1; break; }
5508 }else{
5509 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005510 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005511 if( !pPage->leaf ){
5512 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005513 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005514 }else{
drhd95ef5c2016-11-11 18:19:05 +00005515 pCur->curFlags |= BTCF_ValidNKey;
5516 pCur->info.nKey = nCellKey;
5517 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005518 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005519 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005520 }
drhd793f442013-11-25 14:10:15 +00005521 }
drhebf10b12013-11-25 17:38:26 +00005522 assert( lwr+upr>=0 );
5523 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005524 }
5525 }else{
5526 for(;;){
drhc6827502015-05-28 15:14:32 +00005527 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005528 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005529
drhb2eced52010-08-12 02:41:12 +00005530 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005531 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005532 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005533 ** varint. This information is used to attempt to avoid parsing
5534 ** the entire cell by checking for the cases where the record is
5535 ** stored entirely within the b-tree page by inspecting the first
5536 ** 2 bytes of the cell.
5537 */
drhec3e6b12013-11-25 02:38:55 +00005538 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005539 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005540 /* This branch runs if the record-size field of the cell is a
5541 ** single byte varint and the record fits entirely on the main
5542 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005543 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005544 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005545 }else if( !(pCell[1] & 0x80)
5546 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5547 ){
5548 /* The record-size field is a 2 byte varint and the record
5549 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005550 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005551 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005552 }else{
danielk197711c327a2009-05-04 19:01:26 +00005553 /* The record flows over onto one or more overflow pages. In
5554 ** this case the whole cell needs to be parsed, a buffer allocated
5555 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005556 ** buffer before VdbeRecordCompare() can be called.
5557 **
5558 ** If the record is corrupt, the xRecordCompare routine may read
5559 ** up to two varints past the end of the buffer. An extra 18
5560 ** bytes of padding is allocated at the end of the buffer in
5561 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005562 void *pCellKey;
5563 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5c2f2202019-05-16 20:36:07 +00005564 const int nOverrun = 18; /* Size of the overrun padding */
drh5fa60512015-06-19 17:19:34 +00005565 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005566 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005567 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5568 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5569 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5570 testcase( nCell==2 ); /* Minimum legal index key size */
drh87c3ad42019-01-21 23:18:22 +00005571 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
daneebf2f52017-11-18 17:30:08 +00005572 rc = SQLITE_CORRUPT_PAGE(pPage);
dan3548db72015-05-27 14:21:05 +00005573 goto moveto_finish;
5574 }
drh5c2f2202019-05-16 20:36:07 +00005575 pCellKey = sqlite3Malloc( nCell+nOverrun );
danielk19776507ecb2008-03-25 09:56:44 +00005576 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005577 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005578 goto moveto_finish;
5579 }
drh75e96b32017-04-01 00:20:06 +00005580 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005581 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drh5c2f2202019-05-16 20:36:07 +00005582 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
drh42e28f12017-01-27 00:31:59 +00005583 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005584 if( rc ){
5585 sqlite3_free(pCellKey);
5586 goto moveto_finish;
5587 }
drh0a31dc22019-03-05 14:39:00 +00005588 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005589 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005590 }
dan38fdead2014-04-01 10:19:02 +00005591 assert(
5592 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005593 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005594 );
drhbb933ef2013-11-25 15:01:38 +00005595 if( c<0 ){
5596 lwr = idx+1;
5597 }else if( c>0 ){
5598 upr = idx-1;
5599 }else{
5600 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005601 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005602 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005603 pCur->ix = (u16)idx;
mistachkin88a79732017-09-04 19:31:54 +00005604 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
drh1e968a02008-03-25 00:22:21 +00005605 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005606 }
drhebf10b12013-11-25 17:38:26 +00005607 if( lwr>upr ) break;
5608 assert( lwr+upr>=0 );
5609 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005610 }
drh72f82862001-05-24 21:06:34 +00005611 }
drhb07028f2011-10-14 21:49:18 +00005612 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005613 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005614 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005615 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005616 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005617 *pRes = c;
5618 rc = SQLITE_OK;
5619 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005620 }
5621moveto_next_layer:
5622 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005623 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005624 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005625 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005626 }
drh75e96b32017-04-01 00:20:06 +00005627 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005628 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005629 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005630 }
drh1e968a02008-03-25 00:22:21 +00005631moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005632 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005633 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005634 return rc;
5635}
5636
drhd677b3d2007-08-20 22:48:41 +00005637
drh72f82862001-05-24 21:06:34 +00005638/*
drhc39e0002004-05-07 23:50:57 +00005639** Return TRUE if the cursor is not pointing at an entry of the table.
5640**
5641** TRUE will be returned after a call to sqlite3BtreeNext() moves
5642** past the last entry in the table or sqlite3BtreePrev() moves past
5643** the first entry. TRUE is also returned if the table is empty.
5644*/
5645int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005646 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5647 ** have been deleted? This API will need to change to return an error code
5648 ** as well as the boolean result value.
5649 */
5650 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005651}
5652
5653/*
drh5e98e832017-02-17 19:24:06 +00005654** Return an estimate for the number of rows in the table that pCur is
5655** pointing to. Return a negative number if no estimate is currently
5656** available.
5657*/
5658i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5659 i64 n;
5660 u8 i;
5661
5662 assert( cursorOwnsBtShared(pCur) );
5663 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005664
5665 /* Currently this interface is only called by the OP_IfSmaller
5666 ** opcode, and it that case the cursor will always be valid and
5667 ** will always point to a leaf node. */
5668 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005669 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005670
drh352a35a2017-08-15 03:46:47 +00005671 n = pCur->pPage->nCell;
5672 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005673 n *= pCur->apPage[i]->nCell;
5674 }
5675 return n;
5676}
5677
5678/*
drh2ab792e2017-05-30 18:34:07 +00005679** Advance the cursor to the next entry in the database.
5680** Return value:
5681**
5682** SQLITE_OK success
5683** SQLITE_DONE cursor is already pointing at the last element
5684** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005685**
drhee6438d2014-09-01 13:29:32 +00005686** The main entry point is sqlite3BtreeNext(). That routine is optimized
5687** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5688** to the next cell on the current page. The (slower) btreeNext() helper
5689** routine is called when it is necessary to move to a different page or
5690** to restore the cursor.
5691**
drh89997982017-07-11 18:11:33 +00005692** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5693** cursor corresponds to an SQL index and this routine could have been
5694** skipped if the SQL index had been a unique index. The F argument
5695** is a hint to the implement. SQLite btree implementation does not use
5696** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005697*/
drh89997982017-07-11 18:11:33 +00005698static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005699 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005700 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005701 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005702
dan7a2347e2016-01-07 16:43:54 +00005703 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00005704 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005705 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005706 rc = restoreCursorPosition(pCur);
5707 if( rc!=SQLITE_OK ){
5708 return rc;
5709 }
5710 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005711 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005712 }
drh0c873bf2019-01-28 00:42:06 +00005713 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00005714 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005715 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005716 }
danielk1977da184232006-01-05 11:34:32 +00005717 }
danielk1977da184232006-01-05 11:34:32 +00005718
drh352a35a2017-08-15 03:46:47 +00005719 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005720 idx = ++pCur->ix;
drhf3cd0c82018-06-08 19:13:57 +00005721 if( !pPage->isInit ){
5722 /* The only known way for this to happen is for there to be a
5723 ** recursive SQL function that does a DELETE operation as part of a
5724 ** SELECT which deletes content out from under an active cursor
5725 ** in a corrupt database file where the table being DELETE-ed from
5726 ** has pages in common with the table being queried. See TH3
5727 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5728 ** example. */
5729 return SQLITE_CORRUPT_BKPT;
5730 }
danbb246c42012-01-12 14:25:55 +00005731
5732 /* If the database file is corrupt, it is possible for the value of idx
5733 ** to be invalid here. This can only occur if a second cursor modifies
5734 ** the page while cursor pCur is holding a reference to it. Which can
5735 ** only happen if the database is corrupt in such a way as to link the
drha2d50282019-12-23 18:02:15 +00005736 ** page into more than one b-tree structure.
5737 **
5738 ** Update 2019-12-23: appears to long longer be possible after the
5739 ** addition of anotherValidCursor() condition on balance_deeper(). */
5740 harmless( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005741
danielk197771d5d2c2008-09-29 11:49:47 +00005742 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005743 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005744 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005745 if( rc ) return rc;
5746 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005747 }
drh5e2f8b92001-05-28 00:41:15 +00005748 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005749 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005750 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005751 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005752 }
danielk197730548662009-07-09 05:07:37 +00005753 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005754 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005755 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005756 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005757 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005758 }else{
drhee6438d2014-09-01 13:29:32 +00005759 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005760 }
drh8178a752003-01-05 21:41:40 +00005761 }
drh3aac2dd2004-04-26 14:10:20 +00005762 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005763 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005764 }else{
5765 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005766 }
drh72f82862001-05-24 21:06:34 +00005767}
drh2ab792e2017-05-30 18:34:07 +00005768int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005769 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005770 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005771 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005772 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005773 pCur->info.nSize = 0;
5774 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005775 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005776 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005777 if( (++pCur->ix)>=pPage->nCell ){
5778 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005779 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005780 }
5781 if( pPage->leaf ){
5782 return SQLITE_OK;
5783 }else{
5784 return moveToLeftmost(pCur);
5785 }
5786}
drh72f82862001-05-24 21:06:34 +00005787
drh3b7511c2001-05-26 13:15:44 +00005788/*
drh2ab792e2017-05-30 18:34:07 +00005789** Step the cursor to the back to the previous entry in the database.
5790** Return values:
5791**
5792** SQLITE_OK success
5793** SQLITE_DONE the cursor is already on the first element of the table
5794** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005795**
drhee6438d2014-09-01 13:29:32 +00005796** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5797** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005798** to the previous cell on the current page. The (slower) btreePrevious()
5799** helper routine is called when it is necessary to move to a different page
5800** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005801**
drh89997982017-07-11 18:11:33 +00005802** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5803** the cursor corresponds to an SQL index and this routine could have been
5804** skipped if the SQL index had been a unique index. The F argument is a
5805** hint to the implement. The native SQLite btree implementation does not
5806** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005807*/
drh89997982017-07-11 18:11:33 +00005808static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005809 int rc;
drh8178a752003-01-05 21:41:40 +00005810 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005811
dan7a2347e2016-01-07 16:43:54 +00005812 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005813 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5814 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005815 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005816 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005817 if( rc!=SQLITE_OK ){
5818 return rc;
drhf66f26a2013-08-19 20:04:10 +00005819 }
5820 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005821 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005822 }
drh0c873bf2019-01-28 00:42:06 +00005823 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00005824 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005825 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005826 }
danielk1977da184232006-01-05 11:34:32 +00005827 }
danielk1977da184232006-01-05 11:34:32 +00005828
drh352a35a2017-08-15 03:46:47 +00005829 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005830 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005831 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005832 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005833 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005834 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005835 rc = moveToRightmost(pCur);
5836 }else{
drh75e96b32017-04-01 00:20:06 +00005837 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005838 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005839 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005840 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005841 }
danielk197730548662009-07-09 05:07:37 +00005842 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005843 }
drhee6438d2014-09-01 13:29:32 +00005844 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005845 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005846
drh75e96b32017-04-01 00:20:06 +00005847 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005848 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005849 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005850 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005851 }else{
5852 rc = SQLITE_OK;
5853 }
drh2dcc9aa2002-12-04 13:40:25 +00005854 }
drh2dcc9aa2002-12-04 13:40:25 +00005855 return rc;
5856}
drh2ab792e2017-05-30 18:34:07 +00005857int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005858 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005859 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00005860 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005861 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5862 pCur->info.nSize = 0;
5863 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005864 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005865 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005866 ){
drh89997982017-07-11 18:11:33 +00005867 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005868 }
drh75e96b32017-04-01 00:20:06 +00005869 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005870 return SQLITE_OK;
5871}
drh2dcc9aa2002-12-04 13:40:25 +00005872
5873/*
drh3b7511c2001-05-26 13:15:44 +00005874** Allocate a new page from the database file.
5875**
danielk19773b8a05f2007-03-19 17:44:26 +00005876** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005877** has already been called on the new page.) The new page has also
5878** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005879** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005880**
5881** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005882** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005883**
drh82e647d2013-03-02 03:25:55 +00005884** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005885** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005886** attempt to keep related pages close to each other in the database file,
5887** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005888**
drh82e647d2013-03-02 03:25:55 +00005889** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5890** anywhere on the free-list, then it is guaranteed to be returned. If
5891** eMode is BTALLOC_LT then the page returned will be less than or equal
5892** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5893** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005894*/
drh4f0c5872007-03-26 22:05:01 +00005895static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005896 BtShared *pBt, /* The btree */
5897 MemPage **ppPage, /* Store pointer to the allocated page here */
5898 Pgno *pPgno, /* Store the page number here */
5899 Pgno nearby, /* Search for a page near this one */
5900 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005901){
drh3aac2dd2004-04-26 14:10:20 +00005902 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005903 int rc;
drh35cd6432009-06-05 14:17:21 +00005904 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005905 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005906 MemPage *pTrunk = 0;
5907 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005908 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005909
drh1fee73e2007-08-29 04:00:57 +00005910 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005911 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005912 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005913 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005914 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5915 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005916 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005917 testcase( n==mxPage-1 );
5918 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005919 return SQLITE_CORRUPT_BKPT;
5920 }
drh3aac2dd2004-04-26 14:10:20 +00005921 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005922 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005923 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005924 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005925 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005926
drh82e647d2013-03-02 03:25:55 +00005927 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005928 ** shows that the page 'nearby' is somewhere on the free-list, then
5929 ** the entire-list will be searched for that page.
5930 */
5931#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005932 if( eMode==BTALLOC_EXACT ){
5933 if( nearby<=mxPage ){
5934 u8 eType;
5935 assert( nearby>0 );
5936 assert( pBt->autoVacuum );
5937 rc = ptrmapGet(pBt, nearby, &eType, 0);
5938 if( rc ) return rc;
5939 if( eType==PTRMAP_FREEPAGE ){
5940 searchList = 1;
5941 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005942 }
dan51f0b6d2013-02-22 20:16:34 +00005943 }else if( eMode==BTALLOC_LE ){
5944 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005945 }
5946#endif
5947
5948 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5949 ** first free-list trunk page. iPrevTrunk is initially 1.
5950 */
danielk19773b8a05f2007-03-19 17:44:26 +00005951 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005952 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005953 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005954
5955 /* The code within this loop is run only once if the 'searchList' variable
5956 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005957 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5958 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005959 */
5960 do {
5961 pPrevTrunk = pTrunk;
5962 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005963 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5964 ** is the page number of the next freelist trunk page in the list or
5965 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005966 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005967 }else{
drh113762a2014-11-19 16:36:25 +00005968 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5969 ** stores the page number of the first page of the freelist, or zero if
5970 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005971 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005972 }
drhdf35a082009-07-09 02:24:35 +00005973 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005974 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005975 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005976 }else{
drh7e8c6f12015-05-28 03:28:27 +00005977 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005978 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005979 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005980 pTrunk = 0;
5981 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005982 }
drhb07028f2011-10-14 21:49:18 +00005983 assert( pTrunk!=0 );
5984 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005985 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5986 ** is the number of leaf page pointers to follow. */
5987 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005988 if( k==0 && !searchList ){
5989 /* The trunk has no leaves and the list is not being searched.
5990 ** So extract the trunk page itself and use it as the newly
5991 ** allocated page */
5992 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005993 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005994 if( rc ){
5995 goto end_allocate_page;
5996 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005997 *pPgno = iTrunk;
5998 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5999 *ppPage = pTrunk;
6000 pTrunk = 0;
6001 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00006002 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006003 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00006004 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00006005 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006006#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006007 }else if( searchList
6008 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6009 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006010 /* The list is being searched and this trunk page is the page
6011 ** to allocate, regardless of whether it has leaves.
6012 */
dan51f0b6d2013-02-22 20:16:34 +00006013 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006014 *ppPage = pTrunk;
6015 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006016 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006017 if( rc ){
6018 goto end_allocate_page;
6019 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006020 if( k==0 ){
6021 if( !pPrevTrunk ){
6022 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6023 }else{
danf48c3552010-08-23 15:41:24 +00006024 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6025 if( rc!=SQLITE_OK ){
6026 goto end_allocate_page;
6027 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006028 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6029 }
6030 }else{
6031 /* The trunk page is required by the caller but it contains
6032 ** pointers to free-list leaves. The first leaf becomes a trunk
6033 ** page in this case.
6034 */
6035 MemPage *pNewTrunk;
6036 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00006037 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006038 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006039 goto end_allocate_page;
6040 }
drhdf35a082009-07-09 02:24:35 +00006041 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00006042 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006043 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00006044 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006045 }
danielk19773b8a05f2007-03-19 17:44:26 +00006046 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006047 if( rc!=SQLITE_OK ){
6048 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00006049 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006050 }
6051 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6052 put4byte(&pNewTrunk->aData[4], k-1);
6053 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006054 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006055 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006056 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006057 put4byte(&pPage1->aData[32], iNewTrunk);
6058 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006059 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006060 if( rc ){
6061 goto end_allocate_page;
6062 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006063 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6064 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006065 }
6066 pTrunk = 0;
6067 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6068#endif
danielk1977e5765212009-06-17 11:13:28 +00006069 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006070 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006071 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006072 Pgno iPage;
6073 unsigned char *aData = pTrunk->aData;
6074 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006075 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006076 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006077 if( eMode==BTALLOC_LE ){
6078 for(i=0; i<k; i++){
6079 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006080 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006081 closest = i;
6082 break;
6083 }
6084 }
6085 }else{
6086 int dist;
6087 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6088 for(i=1; i<k; i++){
6089 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6090 if( d2<dist ){
6091 closest = i;
6092 dist = d2;
6093 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006094 }
6095 }
6096 }else{
6097 closest = 0;
6098 }
6099
6100 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006101 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00006102 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006103 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006104 goto end_allocate_page;
6105 }
drhdf35a082009-07-09 02:24:35 +00006106 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006107 if( !searchList
6108 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6109 ){
danielk1977bea2a942009-01-20 17:06:27 +00006110 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006111 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006112 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6113 ": %d more free pages\n",
6114 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006115 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6116 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006117 if( closest<k-1 ){
6118 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6119 }
6120 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006121 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006122 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006123 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006124 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006125 if( rc!=SQLITE_OK ){
6126 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006127 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006128 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006129 }
6130 searchList = 0;
6131 }
drhee696e22004-08-30 16:52:17 +00006132 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006133 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006134 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006135 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006136 }else{
danbc1a3c62013-02-23 16:40:46 +00006137 /* There are no pages on the freelist, so append a new page to the
6138 ** database image.
6139 **
6140 ** Normally, new pages allocated by this block can be requested from the
6141 ** pager layer with the 'no-content' flag set. This prevents the pager
6142 ** from trying to read the pages content from disk. However, if the
6143 ** current transaction has already run one or more incremental-vacuum
6144 ** steps, then the page we are about to allocate may contain content
6145 ** that is required in the event of a rollback. In this case, do
6146 ** not set the no-content flag. This causes the pager to load and journal
6147 ** the current page content before overwriting it.
6148 **
6149 ** Note that the pager will not actually attempt to load or journal
6150 ** content for any page that really does lie past the end of the database
6151 ** file on disk. So the effects of disabling the no-content optimization
6152 ** here are confined to those pages that lie between the end of the
6153 ** database image and the end of the database file.
6154 */
drh3f387402014-09-24 01:23:00 +00006155 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006156
drhdd3cd972010-03-27 17:12:36 +00006157 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6158 if( rc ) return rc;
6159 pBt->nPage++;
6160 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006161
danielk1977afcdd022004-10-31 16:25:42 +00006162#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006163 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006164 /* If *pPgno refers to a pointer-map page, allocate two new pages
6165 ** at the end of the file instead of one. The first allocated page
6166 ** becomes a new pointer-map page, the second is used by the caller.
6167 */
danielk1977ac861692009-03-28 10:54:22 +00006168 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006169 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6170 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006171 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006172 if( rc==SQLITE_OK ){
6173 rc = sqlite3PagerWrite(pPg->pDbPage);
6174 releasePage(pPg);
6175 }
6176 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006177 pBt->nPage++;
6178 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006179 }
6180#endif
drhdd3cd972010-03-27 17:12:36 +00006181 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6182 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006183
danielk1977599fcba2004-11-08 07:13:13 +00006184 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006185 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006186 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006187 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006188 if( rc!=SQLITE_OK ){
6189 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006190 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006191 }
drh3a4c1412004-05-09 20:40:11 +00006192 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006193 }
danielk1977599fcba2004-11-08 07:13:13 +00006194
danba14c692019-01-25 13:42:12 +00006195 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006196
6197end_allocate_page:
6198 releasePage(pTrunk);
6199 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006200 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6201 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006202 return rc;
6203}
6204
6205/*
danielk1977bea2a942009-01-20 17:06:27 +00006206** This function is used to add page iPage to the database file free-list.
6207** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006208**
danielk1977bea2a942009-01-20 17:06:27 +00006209** The value passed as the second argument to this function is optional.
6210** If the caller happens to have a pointer to the MemPage object
6211** corresponding to page iPage handy, it may pass it as the second value.
6212** Otherwise, it may pass NULL.
6213**
6214** If a pointer to a MemPage object is passed as the second argument,
6215** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006216*/
danielk1977bea2a942009-01-20 17:06:27 +00006217static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6218 MemPage *pTrunk = 0; /* Free-list trunk page */
6219 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6220 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6221 MemPage *pPage; /* Page being freed. May be NULL. */
6222 int rc; /* Return Code */
drh25050f22019-04-09 01:26:31 +00006223 u32 nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006224
danielk1977bea2a942009-01-20 17:06:27 +00006225 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006226 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006227 assert( !pMemPage || pMemPage->pgno==iPage );
6228
drh58b42ad2019-03-25 19:50:19 +00006229 if( iPage<2 || iPage>pBt->nPage ){
6230 return SQLITE_CORRUPT_BKPT;
6231 }
danielk1977bea2a942009-01-20 17:06:27 +00006232 if( pMemPage ){
6233 pPage = pMemPage;
6234 sqlite3PagerRef(pPage->pDbPage);
6235 }else{
6236 pPage = btreePageLookup(pBt, iPage);
6237 }
drh3aac2dd2004-04-26 14:10:20 +00006238
drha34b6762004-05-07 13:30:42 +00006239 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006240 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006241 if( rc ) goto freepage_out;
6242 nFree = get4byte(&pPage1->aData[36]);
6243 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006244
drhc9166342012-01-05 23:32:06 +00006245 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006246 /* If the secure_delete option is enabled, then
6247 ** always fully overwrite deleted information with zeros.
6248 */
drhb00fc3b2013-08-21 23:42:32 +00006249 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006250 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006251 ){
6252 goto freepage_out;
6253 }
6254 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006255 }
drhfcce93f2006-02-22 03:08:32 +00006256
danielk1977687566d2004-11-02 12:56:41 +00006257 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006258 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006259 */
danielk197785d90ca2008-07-19 14:25:15 +00006260 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006261 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006262 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006263 }
danielk1977687566d2004-11-02 12:56:41 +00006264
danielk1977bea2a942009-01-20 17:06:27 +00006265 /* Now manipulate the actual database free-list structure. There are two
6266 ** possibilities. If the free-list is currently empty, or if the first
6267 ** trunk page in the free-list is full, then this page will become a
6268 ** new free-list trunk page. Otherwise, it will become a leaf of the
6269 ** first trunk page in the current free-list. This block tests if it
6270 ** is possible to add the page as a new free-list leaf.
6271 */
6272 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006273 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006274
6275 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006276 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006277 if( rc!=SQLITE_OK ){
6278 goto freepage_out;
6279 }
6280
6281 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006282 assert( pBt->usableSize>32 );
6283 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006284 rc = SQLITE_CORRUPT_BKPT;
6285 goto freepage_out;
6286 }
drheeb844a2009-08-08 18:01:07 +00006287 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006288 /* In this case there is room on the trunk page to insert the page
6289 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006290 **
6291 ** Note that the trunk page is not really full until it contains
6292 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6293 ** coded. But due to a coding error in versions of SQLite prior to
6294 ** 3.6.0, databases with freelist trunk pages holding more than
6295 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6296 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006297 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006298 ** for now. At some point in the future (once everyone has upgraded
6299 ** to 3.6.0 or later) we should consider fixing the conditional above
6300 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006301 **
6302 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6303 ** avoid using the last six entries in the freelist trunk page array in
6304 ** order that database files created by newer versions of SQLite can be
6305 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006306 */
danielk19773b8a05f2007-03-19 17:44:26 +00006307 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006308 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006309 put4byte(&pTrunk->aData[4], nLeaf+1);
6310 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006311 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006312 sqlite3PagerDontWrite(pPage->pDbPage);
6313 }
danielk1977bea2a942009-01-20 17:06:27 +00006314 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006315 }
drh3a4c1412004-05-09 20:40:11 +00006316 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006317 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006318 }
drh3b7511c2001-05-26 13:15:44 +00006319 }
danielk1977bea2a942009-01-20 17:06:27 +00006320
6321 /* If control flows to this point, then it was not possible to add the
6322 ** the page being freed as a leaf page of the first trunk in the free-list.
6323 ** Possibly because the free-list is empty, or possibly because the
6324 ** first trunk in the free-list is full. Either way, the page being freed
6325 ** will become the new first trunk page in the free-list.
6326 */
drhb00fc3b2013-08-21 23:42:32 +00006327 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006328 goto freepage_out;
6329 }
6330 rc = sqlite3PagerWrite(pPage->pDbPage);
6331 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006332 goto freepage_out;
6333 }
6334 put4byte(pPage->aData, iTrunk);
6335 put4byte(&pPage->aData[4], 0);
6336 put4byte(&pPage1->aData[32], iPage);
6337 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6338
6339freepage_out:
6340 if( pPage ){
6341 pPage->isInit = 0;
6342 }
6343 releasePage(pPage);
6344 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006345 return rc;
6346}
drhc314dc72009-07-21 11:52:34 +00006347static void freePage(MemPage *pPage, int *pRC){
6348 if( (*pRC)==SQLITE_OK ){
6349 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6350 }
danielk1977bea2a942009-01-20 17:06:27 +00006351}
drh3b7511c2001-05-26 13:15:44 +00006352
6353/*
drh8d7f1632018-01-23 13:30:38 +00006354** Free any overflow pages associated with the given Cell. Store
6355** size information about the cell in pInfo.
drh3b7511c2001-05-26 13:15:44 +00006356*/
drh9bfdc252014-09-24 02:05:41 +00006357static int clearCell(
6358 MemPage *pPage, /* The page that contains the Cell */
6359 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006360 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006361){
drh60172a52017-08-02 18:27:50 +00006362 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006363 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006364 int rc;
drh94440812007-03-06 11:42:19 +00006365 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006366 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006367
drh1fee73e2007-08-29 04:00:57 +00006368 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006369 pPage->xParseCell(pPage, pCell, pInfo);
6370 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006371 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006372 }
drh6fcf83a2018-05-05 01:23:28 +00006373 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6374 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6375 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006376 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006377 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006378 }
drh80159da2016-12-09 17:32:51 +00006379 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006380 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006381 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006382 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006383 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006384 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006385 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006386 );
drh72365832007-03-06 15:53:44 +00006387 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006388 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006389 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006390 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006391 /* 0 is not a legal page number and page 1 cannot be an
6392 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6393 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006394 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006395 }
danielk1977bea2a942009-01-20 17:06:27 +00006396 if( nOvfl ){
6397 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6398 if( rc ) return rc;
6399 }
dan887d4b22010-02-25 12:09:16 +00006400
shaneh1da207e2010-03-09 14:41:12 +00006401 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006402 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6403 ){
6404 /* There is no reason any cursor should have an outstanding reference
6405 ** to an overflow page belonging to a cell that is being deleted/updated.
6406 ** So if there exists more than one reference to this page, then it
6407 ** must not really be an overflow page and the database must be corrupt.
6408 ** It is helpful to detect this before calling freePage2(), as
6409 ** freePage2() may zero the page contents if secure-delete mode is
6410 ** enabled. If this 'overflow' page happens to be a page that the
6411 ** caller is iterating through or using in some other way, this
6412 ** can be problematic.
6413 */
6414 rc = SQLITE_CORRUPT_BKPT;
6415 }else{
6416 rc = freePage2(pBt, pOvfl, ovflPgno);
6417 }
6418
danielk1977bea2a942009-01-20 17:06:27 +00006419 if( pOvfl ){
6420 sqlite3PagerUnref(pOvfl->pDbPage);
6421 }
drh3b7511c2001-05-26 13:15:44 +00006422 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006423 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006424 }
drh5e2f8b92001-05-28 00:41:15 +00006425 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006426}
6427
6428/*
drh91025292004-05-03 19:49:32 +00006429** Create the byte sequence used to represent a cell on page pPage
6430** and write that byte sequence into pCell[]. Overflow pages are
6431** allocated and filled in as necessary. The calling procedure
6432** is responsible for making sure sufficient space has been allocated
6433** for pCell[].
6434**
6435** Note that pCell does not necessary need to point to the pPage->aData
6436** area. pCell might point to some temporary storage. The cell will
6437** be constructed in this temporary area then copied into pPage->aData
6438** later.
drh3b7511c2001-05-26 13:15:44 +00006439*/
6440static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006441 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006442 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006443 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006444 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006445){
drh3b7511c2001-05-26 13:15:44 +00006446 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006447 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006448 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006449 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006450 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006451 unsigned char *pPrior;
6452 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006453 BtShared *pBt;
6454 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006455 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006456
drh1fee73e2007-08-29 04:00:57 +00006457 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006458
drhc5053fb2008-11-27 02:22:10 +00006459 /* pPage is not necessarily writeable since pCell might be auxiliary
6460 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006461 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006462 || sqlite3PagerIswriteable(pPage->pDbPage) );
6463
drh91025292004-05-03 19:49:32 +00006464 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006465 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006466 if( pPage->intKey ){
6467 nPayload = pX->nData + pX->nZero;
6468 pSrc = pX->pData;
6469 nSrc = pX->nData;
6470 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006471 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006472 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006473 }else{
drh8eeb4462016-05-21 20:03:42 +00006474 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6475 nSrc = nPayload = (int)pX->nKey;
6476 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006477 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006478 }
drhdfc2daa2016-05-21 23:25:29 +00006479
6480 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006481 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006482 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006483 /* This is the common case where everything fits on the btree page
6484 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006485 n = nHeader + nPayload;
6486 testcase( n==3 );
6487 testcase( n==4 );
6488 if( n<4 ) n = 4;
6489 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006490 assert( nSrc<=nPayload );
6491 testcase( nSrc<nPayload );
6492 memcpy(pPayload, pSrc, nSrc);
6493 memset(pPayload+nSrc, 0, nPayload-nSrc);
6494 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006495 }
drh5e27e1d2017-08-23 14:45:59 +00006496
6497 /* If we reach this point, it means that some of the content will need
6498 ** to spill onto overflow pages.
6499 */
6500 mn = pPage->minLocal;
6501 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6502 testcase( n==pPage->maxLocal );
6503 testcase( n==pPage->maxLocal+1 );
6504 if( n > pPage->maxLocal ) n = mn;
6505 spaceLeft = n;
6506 *pnSize = n + nHeader + 4;
6507 pPrior = &pCell[nHeader+n];
6508 pToRelease = 0;
6509 pgnoOvfl = 0;
6510 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006511
drh6200c882014-09-23 22:36:25 +00006512 /* At this point variables should be set as follows:
6513 **
6514 ** nPayload Total payload size in bytes
6515 ** pPayload Begin writing payload here
6516 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6517 ** that means content must spill into overflow pages.
6518 ** *pnSize Size of the local cell (not counting overflow pages)
6519 ** pPrior Where to write the pgno of the first overflow page
6520 **
6521 ** Use a call to btreeParseCellPtr() to verify that the values above
6522 ** were computed correctly.
6523 */
drhd879e3e2017-02-13 13:35:55 +00006524#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006525 {
6526 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006527 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006528 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006529 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006530 assert( *pnSize == info.nSize );
6531 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006532 }
6533#endif
6534
6535 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006536 while( 1 ){
6537 n = nPayload;
6538 if( n>spaceLeft ) n = spaceLeft;
6539
6540 /* If pToRelease is not zero than pPayload points into the data area
6541 ** of pToRelease. Make sure pToRelease is still writeable. */
6542 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6543
6544 /* If pPayload is part of the data area of pPage, then make sure pPage
6545 ** is still writeable */
6546 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6547 || sqlite3PagerIswriteable(pPage->pDbPage) );
6548
6549 if( nSrc>=n ){
6550 memcpy(pPayload, pSrc, n);
6551 }else if( nSrc>0 ){
6552 n = nSrc;
6553 memcpy(pPayload, pSrc, n);
6554 }else{
6555 memset(pPayload, 0, n);
6556 }
6557 nPayload -= n;
6558 if( nPayload<=0 ) break;
6559 pPayload += n;
6560 pSrc += n;
6561 nSrc -= n;
6562 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006563 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006564 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006565#ifndef SQLITE_OMIT_AUTOVACUUM
6566 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006567 if( pBt->autoVacuum ){
6568 do{
6569 pgnoOvfl++;
6570 } while(
6571 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6572 );
danielk1977b39f70b2007-05-17 18:28:11 +00006573 }
danielk1977afcdd022004-10-31 16:25:42 +00006574#endif
drhf49661a2008-12-10 16:45:50 +00006575 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006576#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006577 /* If the database supports auto-vacuum, and the second or subsequent
6578 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006579 ** for that page now.
6580 **
6581 ** If this is the first overflow page, then write a partial entry
6582 ** to the pointer-map. If we write nothing to this pointer-map slot,
6583 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006584 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006585 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006586 */
danielk19774ef24492007-05-23 09:52:41 +00006587 if( pBt->autoVacuum && rc==SQLITE_OK ){
6588 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006589 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006590 if( rc ){
6591 releasePage(pOvfl);
6592 }
danielk1977afcdd022004-10-31 16:25:42 +00006593 }
6594#endif
drh3b7511c2001-05-26 13:15:44 +00006595 if( rc ){
drh9b171272004-05-08 02:03:22 +00006596 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006597 return rc;
6598 }
drhc5053fb2008-11-27 02:22:10 +00006599
6600 /* If pToRelease is not zero than pPrior points into the data area
6601 ** of pToRelease. Make sure pToRelease is still writeable. */
6602 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6603
6604 /* If pPrior is part of the data area of pPage, then make sure pPage
6605 ** is still writeable */
6606 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6607 || sqlite3PagerIswriteable(pPage->pDbPage) );
6608
drh3aac2dd2004-04-26 14:10:20 +00006609 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006610 releasePage(pToRelease);
6611 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006612 pPrior = pOvfl->aData;
6613 put4byte(pPrior, 0);
6614 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006615 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006616 }
drhdd793422001-06-28 01:54:48 +00006617 }
drh9b171272004-05-08 02:03:22 +00006618 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006619 return SQLITE_OK;
6620}
6621
drh14acc042001-06-10 19:56:58 +00006622/*
6623** Remove the i-th cell from pPage. This routine effects pPage only.
6624** The cell content is not freed or deallocated. It is assumed that
6625** the cell content has been copied someplace else. This routine just
6626** removes the reference to the cell from pPage.
6627**
6628** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006629*/
drh98add2e2009-07-20 17:11:49 +00006630static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006631 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006632 u8 *data; /* pPage->aData */
6633 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006634 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006635 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006636
drh98add2e2009-07-20 17:11:49 +00006637 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006638 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006639 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006640 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006641 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00006642 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00006643 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006644 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006645 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006646 hdr = pPage->hdrOffset;
6647 testcase( pc==get2byte(&data[hdr+5]) );
6648 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006649 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006650 *pRC = SQLITE_CORRUPT_BKPT;
6651 return;
shane0af3f892008-11-12 04:55:34 +00006652 }
shanedcc50b72008-11-13 18:29:50 +00006653 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006654 if( rc ){
6655 *pRC = rc;
6656 return;
shanedcc50b72008-11-13 18:29:50 +00006657 }
drh14acc042001-06-10 19:56:58 +00006658 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006659 if( pPage->nCell==0 ){
6660 memset(&data[hdr+1], 0, 4);
6661 data[hdr+7] = 0;
6662 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6663 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6664 - pPage->childPtrSize - 8;
6665 }else{
6666 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6667 put2byte(&data[hdr+3], pPage->nCell);
6668 pPage->nFree += 2;
6669 }
drh14acc042001-06-10 19:56:58 +00006670}
6671
6672/*
6673** Insert a new cell on pPage at cell index "i". pCell points to the
6674** content of the cell.
6675**
6676** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006677** will not fit, then make a copy of the cell content into pTemp if
6678** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006679** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006680** in pTemp or the original pCell) and also record its index.
6681** Allocating a new entry in pPage->aCell[] implies that
6682** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006683**
6684** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006685*/
drh98add2e2009-07-20 17:11:49 +00006686static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006687 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006688 int i, /* New cell becomes the i-th cell of the page */
6689 u8 *pCell, /* Content of the new cell */
6690 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006691 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006692 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6693 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006694){
drh383d30f2010-02-26 13:07:37 +00006695 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006696 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006697 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006698 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006699
drhcb89f4a2016-05-21 11:23:26 +00006700 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006701 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006702 assert( MX_CELL(pPage->pBt)<=10921 );
6703 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006704 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6705 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006706 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh996f5cc2019-07-17 16:18:01 +00006707 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00006708 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00006709 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006710 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006711 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006712 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006713 }
danielk19774dbaa892009-06-16 16:50:22 +00006714 if( iChild ){
6715 put4byte(pCell, iChild);
6716 }
drh43605152004-05-29 21:46:49 +00006717 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006718 /* Comparison against ArraySize-1 since we hold back one extra slot
6719 ** as a contingency. In other words, never need more than 3 overflow
6720 ** slots but 4 are allocated, just to be safe. */
6721 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006722 pPage->apOvfl[j] = pCell;
6723 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006724
6725 /* When multiple overflows occur, they are always sequential and in
6726 ** sorted order. This invariants arise because multiple overflows can
6727 ** only occur when inserting divider cells into the parent page during
6728 ** balancing, and the dividers are adjacent and sorted.
6729 */
6730 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6731 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006732 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006733 int rc = sqlite3PagerWrite(pPage->pDbPage);
6734 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006735 *pRC = rc;
6736 return;
danielk19776e465eb2007-08-21 13:11:00 +00006737 }
6738 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006739 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006740 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006741 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006742 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006743 /* The allocateSpace() routine guarantees the following properties
6744 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006745 assert( idx >= 0 );
6746 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006747 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006748 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00006749 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00006750 /* In a corrupt database where an entry in the cell index section of
6751 ** a btree page has a value of 3 or less, the pCell value might point
6752 ** as many as 4 bytes in front of the start of the aData buffer for
6753 ** the source page. Make sure this does not cause problems by not
6754 ** reading the first 4 bytes */
6755 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00006756 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00006757 }else{
6758 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006759 }
drh2c8fb922015-06-25 19:53:48 +00006760 pIns = pPage->aCellIdx + i*2;
6761 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6762 put2byte(pIns, idx);
6763 pPage->nCell++;
6764 /* increment the cell count */
6765 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00006766 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
danielk1977a19df672004-11-03 11:37:07 +00006767#ifndef SQLITE_OMIT_AUTOVACUUM
6768 if( pPage->pBt->autoVacuum ){
6769 /* The cell may contain a pointer to an overflow page. If so, write
6770 ** the entry for the overflow page into the pointer map.
6771 */
drh0f1bf4c2019-01-13 20:17:21 +00006772 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006773 }
6774#endif
drh14acc042001-06-10 19:56:58 +00006775 }
6776}
6777
6778/*
drhe3dadac2019-01-23 19:25:59 +00006779** The following parameters determine how many adjacent pages get involved
6780** in a balancing operation. NN is the number of neighbors on either side
6781** of the page that participate in the balancing operation. NB is the
6782** total number of pages that participate, including the target page and
6783** NN neighbors on either side.
6784**
6785** The minimum value of NN is 1 (of course). Increasing NN above 1
6786** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6787** in exchange for a larger degradation in INSERT and UPDATE performance.
6788** The value of NN appears to give the best results overall.
6789**
6790** (Later:) The description above makes it seem as if these values are
6791** tunable - as if you could change them and recompile and it would all work.
6792** But that is unlikely. NB has been 3 since the inception of SQLite and
6793** we have never tested any other value.
6794*/
6795#define NN 1 /* Number of neighbors on either side of pPage */
6796#define NB 3 /* (NN*2+1): Total pages involved in the balance */
6797
6798/*
drh1ffd2472015-06-23 02:37:30 +00006799** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006800** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00006801**
6802** The cells in this array are the divider cell or cells from the pParent
6803** page plus up to three child pages. There are a total of nCell cells.
6804**
6805** pRef is a pointer to one of the pages that contributes cells. This is
6806** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6807** which should be common to all pages that contribute cells to this array.
6808**
6809** apCell[] and szCell[] hold, respectively, pointers to the start of each
6810** cell and the size of each cell. Some of the apCell[] pointers might refer
6811** to overflow cells. In other words, some apCel[] pointers might not point
6812** to content area of the pages.
6813**
6814** A szCell[] of zero means the size of that cell has not yet been computed.
6815**
6816** The cells come from as many as four different pages:
6817**
6818** -----------
6819** | Parent |
6820** -----------
6821** / | \
6822** / | \
6823** --------- --------- ---------
6824** |Child-1| |Child-2| |Child-3|
6825** --------- --------- ---------
6826**
drh26b7ec82019-02-01 14:50:43 +00006827** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00006828**
6829** 1. All cells from Child-1 in order
6830** 2. The first divider cell from Parent
6831** 3. All cells from Child-2 in order
6832** 4. The second divider cell from Parent
6833** 5. All cells from Child-3 in order
6834**
drh26b7ec82019-02-01 14:50:43 +00006835** For a table-btree (with rowids) the items 2 and 4 are empty because
6836** content exists only in leaves and there are no divider cells.
6837**
6838** For an index btree, the apEnd[] array holds pointer to the end of page
6839** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6840** respectively. The ixNx[] array holds the number of cells contained in
6841** each of these 5 stages, and all stages to the left. Hence:
6842**
drhe3dadac2019-01-23 19:25:59 +00006843** ixNx[0] = Number of cells in Child-1.
6844** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6845** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6846** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6847** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00006848**
6849** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6850** are used and they point to the leaf pages only, and the ixNx value are:
6851**
6852** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00006853** ixNx[1] = Number of cells in Child-1 and Child-2.
6854** ixNx[2] = Total number of cells.
6855**
6856** Sometimes when deleting, a child page can have zero cells. In those
6857** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6858** entries, shift down. The end result is that each ixNx[] entry should
6859** be larger than the previous
drhfa1a98a2004-05-14 19:08:17 +00006860*/
drh1ffd2472015-06-23 02:37:30 +00006861typedef struct CellArray CellArray;
6862struct CellArray {
6863 int nCell; /* Number of cells in apCell[] */
6864 MemPage *pRef; /* Reference page */
6865 u8 **apCell; /* All cells begin balanced */
6866 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00006867 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
6868 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00006869};
drhfa1a98a2004-05-14 19:08:17 +00006870
drh1ffd2472015-06-23 02:37:30 +00006871/*
6872** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6873** computed.
6874*/
6875static void populateCellCache(CellArray *p, int idx, int N){
6876 assert( idx>=0 && idx+N<=p->nCell );
6877 while( N>0 ){
6878 assert( p->apCell[idx]!=0 );
6879 if( p->szCell[idx]==0 ){
6880 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6881 }else{
6882 assert( CORRUPT_DB ||
6883 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6884 }
6885 idx++;
6886 N--;
drhfa1a98a2004-05-14 19:08:17 +00006887 }
drh1ffd2472015-06-23 02:37:30 +00006888}
6889
6890/*
6891** Return the size of the Nth element of the cell array
6892*/
6893static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6894 assert( N>=0 && N<p->nCell );
6895 assert( p->szCell[N]==0 );
6896 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6897 return p->szCell[N];
6898}
6899static u16 cachedCellSize(CellArray *p, int N){
6900 assert( N>=0 && N<p->nCell );
6901 if( p->szCell[N] ) return p->szCell[N];
6902 return computeCellSize(p, N);
6903}
6904
6905/*
dan8e9ba0c2014-10-14 17:27:04 +00006906** Array apCell[] contains pointers to nCell b-tree page cells. The
6907** szCell[] array contains the size in bytes of each cell. This function
6908** replaces the current contents of page pPg with the contents of the cell
6909** array.
6910**
6911** Some of the cells in apCell[] may currently be stored in pPg. This
6912** function works around problems caused by this by making a copy of any
6913** such cells before overwriting the page data.
6914**
6915** The MemPage.nFree field is invalidated by this function. It is the
6916** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006917*/
drh658873b2015-06-22 20:02:04 +00006918static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00006919 CellArray *pCArray, /* Content to be added to page pPg */
6920 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00006921 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00006922 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00006923){
6924 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6925 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6926 const int usableSize = pPg->pBt->usableSize;
6927 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00006928 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00006929 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00006930 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00006931 u8 *pCellptr = pPg->aCellIdx;
6932 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6933 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00006934 int k; /* Current slot in pCArray->apEnd[] */
6935 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00006936
drhe3dadac2019-01-23 19:25:59 +00006937 assert( i<iEnd );
6938 j = get2byte(&aData[hdr+5]);
drh1c269a92019-08-08 01:39:07 +00006939 if( j>(u32)usableSize ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00006940 memcpy(&pTmp[j], &aData[j], usableSize - j);
6941
6942 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6943 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00006944
dan8e9ba0c2014-10-14 17:27:04 +00006945 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00006946 while( 1/*exit by break*/ ){
6947 u8 *pCell = pCArray->apCell[i];
6948 u16 sz = pCArray->szCell[i];
6949 assert( sz>0 );
drh8b0ba7b2015-12-16 13:07:35 +00006950 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
drhe3dadac2019-01-23 19:25:59 +00006951 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006952 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00006953 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
6954 && (uptr)(pCell)<(uptr)pSrcEnd
6955 ){
6956 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006957 }
drhe3dadac2019-01-23 19:25:59 +00006958
6959 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00006960 put2byte(pCellptr, (pData - aData));
6961 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006962 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drhe3dadac2019-01-23 19:25:59 +00006963 memcpy(pData, pCell, sz);
6964 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6965 testcase( sz!=pPg->xCellSize(pPg,pCell) );
6966 i++;
6967 if( i>=iEnd ) break;
6968 if( pCArray->ixNx[k]<=i ){
6969 k++;
6970 pSrcEnd = pCArray->apEnd[k];
6971 }
dan33ea4862014-10-09 19:35:37 +00006972 }
6973
dand7b545b2014-10-13 18:03:27 +00006974 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006975 pPg->nCell = nCell;
6976 pPg->nOverflow = 0;
6977
6978 put2byte(&aData[hdr+1], 0);
6979 put2byte(&aData[hdr+3], pPg->nCell);
6980 put2byte(&aData[hdr+5], pData - aData);
6981 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006982 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006983}
6984
dan8e9ba0c2014-10-14 17:27:04 +00006985/*
drhe3dadac2019-01-23 19:25:59 +00006986** The pCArray objects contains pointers to b-tree cells and the cell sizes.
6987** This function attempts to add the cells stored in the array to page pPg.
6988** If it cannot (because the page needs to be defragmented before the cells
6989** will fit), non-zero is returned. Otherwise, if the cells are added
6990** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00006991**
6992** Argument pCellptr points to the first entry in the cell-pointer array
6993** (part of page pPg) to populate. After cell apCell[0] is written to the
6994** page body, a 16-bit offset is written to pCellptr. And so on, for each
6995** cell in the array. It is the responsibility of the caller to ensure
6996** that it is safe to overwrite this part of the cell-pointer array.
6997**
6998** When this function is called, *ppData points to the start of the
6999** content area on page pPg. If the size of the content area is extended,
7000** *ppData is updated to point to the new start of the content area
7001** before returning.
7002**
7003** Finally, argument pBegin points to the byte immediately following the
7004** end of the space required by this page for the cell-pointer area (for
7005** all cells - not just those inserted by the current call). If the content
7006** area must be extended to before this point in order to accomodate all
7007** cells in apCell[], then the cells do not fit and non-zero is returned.
7008*/
dand7b545b2014-10-13 18:03:27 +00007009static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00007010 MemPage *pPg, /* Page to add cells to */
7011 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00007012 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00007013 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00007014 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00007015 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00007016 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007017){
drhe3dadac2019-01-23 19:25:59 +00007018 int i = iFirst; /* Loop counter - cell index to insert */
7019 u8 *aData = pPg->aData; /* Complete page */
7020 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7021 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7022 int k; /* Current slot in pCArray->apEnd[] */
7023 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00007024 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00007025 if( iEnd<=iFirst ) return 0;
7026 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7027 pEnd = pCArray->apEnd[k];
7028 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00007029 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00007030 u8 *pSlot;
dan666a42f2019-08-24 21:02:47 +00007031 assert( pCArray->szCell[i]!=0 );
7032 sz = pCArray->szCell[i];
drhb7580e82015-06-25 18:36:13 +00007033 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00007034 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00007035 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00007036 pSlot = pData;
7037 }
drh48310f82015-10-10 16:41:28 +00007038 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7039 ** database. But they might for a corrupt database. Hence use memmove()
7040 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7041 assert( (pSlot+sz)<=pCArray->apCell[i]
7042 || pSlot>=(pCArray->apCell[i]+sz)
7043 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007044 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7045 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7046 ){
7047 assert( CORRUPT_DB );
7048 (void)SQLITE_CORRUPT_BKPT;
7049 return 1;
7050 }
drh48310f82015-10-10 16:41:28 +00007051 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007052 put2byte(pCellptr, (pSlot - aData));
7053 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007054 i++;
7055 if( i>=iEnd ) break;
7056 if( pCArray->ixNx[k]<=i ){
7057 k++;
7058 pEnd = pCArray->apEnd[k];
7059 }
dand7b545b2014-10-13 18:03:27 +00007060 }
7061 *ppData = pData;
7062 return 0;
7063}
7064
dan8e9ba0c2014-10-14 17:27:04 +00007065/*
drhe3dadac2019-01-23 19:25:59 +00007066** The pCArray object contains pointers to b-tree cells and their sizes.
7067**
7068** This function adds the space associated with each cell in the array
7069** that is currently stored within the body of pPg to the pPg free-list.
7070** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007071**
7072** This function returns the total number of cells added to the free-list.
7073*/
dand7b545b2014-10-13 18:03:27 +00007074static int pageFreeArray(
7075 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007076 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007077 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007078 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007079){
7080 u8 * const aData = pPg->aData;
7081 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007082 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007083 int nRet = 0;
7084 int i;
drhf7838932015-06-23 15:36:34 +00007085 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007086 u8 *pFree = 0;
7087 int szFree = 0;
7088
drhf7838932015-06-23 15:36:34 +00007089 for(i=iFirst; i<iEnd; i++){
7090 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007091 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007092 int sz;
7093 /* No need to use cachedCellSize() here. The sizes of all cells that
7094 ** are to be freed have already been computing while deciding which
7095 ** cells need freeing */
7096 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007097 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007098 if( pFree ){
7099 assert( pFree>aData && (pFree - aData)<65536 );
7100 freeSpace(pPg, (u16)(pFree - aData), szFree);
7101 }
dand7b545b2014-10-13 18:03:27 +00007102 pFree = pCell;
7103 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00007104 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00007105 }else{
7106 pFree = pCell;
7107 szFree += sz;
7108 }
7109 nRet++;
7110 }
7111 }
drhfefa0942014-11-05 21:21:08 +00007112 if( pFree ){
7113 assert( pFree>aData && (pFree - aData)<65536 );
7114 freeSpace(pPg, (u16)(pFree - aData), szFree);
7115 }
dand7b545b2014-10-13 18:03:27 +00007116 return nRet;
7117}
7118
dand7b545b2014-10-13 18:03:27 +00007119/*
drha0466432019-01-29 16:41:13 +00007120** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007121** balanced. The current page, pPg, has pPg->nCell cells starting with
7122** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007123** starting at apCell[iNew].
7124**
7125** This routine makes the necessary adjustments to pPg so that it contains
7126** the correct cells after being balanced.
7127**
dand7b545b2014-10-13 18:03:27 +00007128** The pPg->nFree field is invalid when this function returns. It is the
7129** responsibility of the caller to set it correctly.
7130*/
drh658873b2015-06-22 20:02:04 +00007131static int editPage(
dan09c68402014-10-11 20:00:24 +00007132 MemPage *pPg, /* Edit this page */
7133 int iOld, /* Index of first cell currently on page */
7134 int iNew, /* Index of new first cell on page */
7135 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007136 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007137){
dand7b545b2014-10-13 18:03:27 +00007138 u8 * const aData = pPg->aData;
7139 const int hdr = pPg->hdrOffset;
7140 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7141 int nCell = pPg->nCell; /* Cells stored on pPg */
7142 u8 *pData;
7143 u8 *pCellptr;
7144 int i;
7145 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7146 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007147
7148#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007149 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7150 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007151#endif
7152
dand7b545b2014-10-13 18:03:27 +00007153 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007154 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007155 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007156 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drha0466432019-01-29 16:41:13 +00007157 if( nShift>nCell ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007158 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7159 nCell -= nShift;
7160 }
7161 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007162 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7163 assert( nCell>=nTail );
7164 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007165 }
dan09c68402014-10-11 20:00:24 +00007166
drh5ab63772014-11-27 03:46:04 +00007167 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007168 if( pData<pBegin ) goto editpage_fail;
7169
7170 /* Add cells to the start of the page */
7171 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007172 int nAdd = MIN(nNew,iOld-iNew);
7173 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007174 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007175 pCellptr = pPg->aCellIdx;
7176 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7177 if( pageInsertArray(
7178 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007179 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007180 ) ) goto editpage_fail;
7181 nCell += nAdd;
7182 }
7183
7184 /* Add any overflow cells */
7185 for(i=0; i<pPg->nOverflow; i++){
7186 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7187 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007188 pCellptr = &pPg->aCellIdx[iCell * 2];
drh4b986b22019-03-08 14:02:11 +00007189 if( nCell>iCell ){
7190 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7191 }
dand7b545b2014-10-13 18:03:27 +00007192 nCell++;
dan666a42f2019-08-24 21:02:47 +00007193 cachedCellSize(pCArray, iCell+iNew);
dand7b545b2014-10-13 18:03:27 +00007194 if( pageInsertArray(
7195 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007196 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007197 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007198 }
dand7b545b2014-10-13 18:03:27 +00007199 }
dan09c68402014-10-11 20:00:24 +00007200
dand7b545b2014-10-13 18:03:27 +00007201 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007202 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007203 pCellptr = &pPg->aCellIdx[nCell*2];
7204 if( pageInsertArray(
7205 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007206 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007207 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007208
dand7b545b2014-10-13 18:03:27 +00007209 pPg->nCell = nNew;
7210 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007211
dand7b545b2014-10-13 18:03:27 +00007212 put2byte(&aData[hdr+3], pPg->nCell);
7213 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007214
7215#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007216 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007217 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007218 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007219 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007220 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007221 }
drh1ffd2472015-06-23 02:37:30 +00007222 assert( 0==memcmp(pCell, &aData[iOff],
7223 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007224 }
dan09c68402014-10-11 20:00:24 +00007225#endif
7226
drh658873b2015-06-22 20:02:04 +00007227 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007228 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007229 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007230 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007231 return rebuildPage(pCArray, iNew, nNew, pPg);
drhfa1a98a2004-05-14 19:08:17 +00007232}
7233
danielk1977ac245ec2005-01-14 13:50:11 +00007234
drh615ae552005-01-16 23:21:00 +00007235#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007236/*
7237** This version of balance() handles the common special case where
7238** a new entry is being inserted on the extreme right-end of the
7239** tree, in other words, when the new entry will become the largest
7240** entry in the tree.
7241**
drhc314dc72009-07-21 11:52:34 +00007242** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007243** a new page to the right-hand side and put the one new entry in
7244** that page. This leaves the right side of the tree somewhat
7245** unbalanced. But odds are that we will be inserting new entries
7246** at the end soon afterwards so the nearly empty page will quickly
7247** fill up. On average.
7248**
7249** pPage is the leaf page which is the right-most page in the tree.
7250** pParent is its parent. pPage must have a single overflow entry
7251** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007252**
7253** The pSpace buffer is used to store a temporary copy of the divider
7254** cell that will be inserted into pParent. Such a cell consists of a 4
7255** byte page number followed by a variable length integer. In other
7256** words, at most 13 bytes. Hence the pSpace buffer must be at
7257** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007258*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007259static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7260 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007261 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007262 int rc; /* Return Code */
7263 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007264
drh1fee73e2007-08-29 04:00:57 +00007265 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007266 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007267 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007268
drh6301c432018-12-13 21:52:18 +00007269 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007270 assert( pPage->nFree>=0 );
7271 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007272
danielk1977a50d9aa2009-06-08 14:49:45 +00007273 /* Allocate a new page. This page will become the right-sibling of
7274 ** pPage. Make the parent page writable, so that the new divider cell
7275 ** may be inserted. If both these operations are successful, proceed.
7276 */
drh4f0c5872007-03-26 22:05:01 +00007277 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007278
danielk1977eaa06f62008-09-18 17:34:44 +00007279 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007280
7281 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007282 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007283 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007284 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007285 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007286
drhc5053fb2008-11-27 02:22:10 +00007287 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007288 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007289 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007290 b.nCell = 1;
7291 b.pRef = pPage;
7292 b.apCell = &pCell;
7293 b.szCell = &szCell;
7294 b.apEnd[0] = pPage->aDataEnd;
7295 b.ixNx[0] = 2;
7296 rc = rebuildPage(&b, 0, 1, pNew);
7297 if( NEVER(rc) ){
7298 releasePage(pNew);
7299 return rc;
7300 }
dan8e9ba0c2014-10-14 17:27:04 +00007301 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007302
7303 /* If this is an auto-vacuum database, update the pointer map
7304 ** with entries for the new page, and any pointer from the
7305 ** cell on the page to an overflow page. If either of these
7306 ** operations fails, the return code is set, but the contents
7307 ** of the parent page are still manipulated by thh code below.
7308 ** That is Ok, at this point the parent page is guaranteed to
7309 ** be marked as dirty. Returning an error code will cause a
7310 ** rollback, undoing any changes made to the parent page.
7311 */
7312 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007313 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7314 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007315 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007316 }
7317 }
danielk1977eaa06f62008-09-18 17:34:44 +00007318
danielk19776f235cc2009-06-04 14:46:08 +00007319 /* Create a divider cell to insert into pParent. The divider cell
7320 ** consists of a 4-byte page number (the page number of pPage) and
7321 ** a variable length key value (which must be the same value as the
7322 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007323 **
danielk19776f235cc2009-06-04 14:46:08 +00007324 ** To find the largest key value on pPage, first find the right-most
7325 ** cell on pPage. The first two fields of this cell are the
7326 ** record-length (a variable length integer at most 32-bits in size)
7327 ** and the key value (a variable length integer, may have any value).
7328 ** The first of the while(...) loops below skips over the record-length
7329 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007330 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007331 */
danielk1977eaa06f62008-09-18 17:34:44 +00007332 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007333 pStop = &pCell[9];
7334 while( (*(pCell++)&0x80) && pCell<pStop );
7335 pStop = &pCell[9];
7336 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7337
danielk19774dbaa892009-06-16 16:50:22 +00007338 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007339 if( rc==SQLITE_OK ){
7340 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7341 0, pPage->pgno, &rc);
7342 }
danielk19776f235cc2009-06-04 14:46:08 +00007343
7344 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007345 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7346
danielk1977e08a3c42008-09-18 18:17:03 +00007347 /* Release the reference to the new page. */
7348 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007349 }
7350
danielk1977eaa06f62008-09-18 17:34:44 +00007351 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007352}
drh615ae552005-01-16 23:21:00 +00007353#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007354
danielk19774dbaa892009-06-16 16:50:22 +00007355#if 0
drhc3b70572003-01-04 19:44:07 +00007356/*
danielk19774dbaa892009-06-16 16:50:22 +00007357** This function does not contribute anything to the operation of SQLite.
7358** it is sometimes activated temporarily while debugging code responsible
7359** for setting pointer-map entries.
7360*/
7361static int ptrmapCheckPages(MemPage **apPage, int nPage){
7362 int i, j;
7363 for(i=0; i<nPage; i++){
7364 Pgno n;
7365 u8 e;
7366 MemPage *pPage = apPage[i];
7367 BtShared *pBt = pPage->pBt;
7368 assert( pPage->isInit );
7369
7370 for(j=0; j<pPage->nCell; j++){
7371 CellInfo info;
7372 u8 *z;
7373
7374 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007375 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007376 if( info.nLocal<info.nPayload ){
7377 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007378 ptrmapGet(pBt, ovfl, &e, &n);
7379 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7380 }
7381 if( !pPage->leaf ){
7382 Pgno child = get4byte(z);
7383 ptrmapGet(pBt, child, &e, &n);
7384 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7385 }
7386 }
7387 if( !pPage->leaf ){
7388 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7389 ptrmapGet(pBt, child, &e, &n);
7390 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7391 }
7392 }
7393 return 1;
7394}
7395#endif
7396
danielk1977cd581a72009-06-23 15:43:39 +00007397/*
7398** This function is used to copy the contents of the b-tree node stored
7399** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7400** the pointer-map entries for each child page are updated so that the
7401** parent page stored in the pointer map is page pTo. If pFrom contained
7402** any cells with overflow page pointers, then the corresponding pointer
7403** map entries are also updated so that the parent page is page pTo.
7404**
7405** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007406** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007407**
danielk197730548662009-07-09 05:07:37 +00007408** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007409**
7410** The performance of this function is not critical. It is only used by
7411** the balance_shallower() and balance_deeper() procedures, neither of
7412** which are called often under normal circumstances.
7413*/
drhc314dc72009-07-21 11:52:34 +00007414static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7415 if( (*pRC)==SQLITE_OK ){
7416 BtShared * const pBt = pFrom->pBt;
7417 u8 * const aFrom = pFrom->aData;
7418 u8 * const aTo = pTo->aData;
7419 int const iFromHdr = pFrom->hdrOffset;
7420 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007421 int rc;
drhc314dc72009-07-21 11:52:34 +00007422 int iData;
7423
7424
7425 assert( pFrom->isInit );
7426 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007427 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007428
7429 /* Copy the b-tree node content from page pFrom to page pTo. */
7430 iData = get2byte(&aFrom[iFromHdr+5]);
7431 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7432 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7433
7434 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007435 ** match the new data. The initialization of pTo can actually fail under
7436 ** fairly obscure circumstances, even though it is a copy of initialized
7437 ** page pFrom.
7438 */
drhc314dc72009-07-21 11:52:34 +00007439 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007440 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00007441 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00007442 if( rc!=SQLITE_OK ){
7443 *pRC = rc;
7444 return;
7445 }
drhc314dc72009-07-21 11:52:34 +00007446
7447 /* If this is an auto-vacuum database, update the pointer-map entries
7448 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7449 */
7450 if( ISAUTOVACUUM ){
7451 *pRC = setChildPtrmaps(pTo);
7452 }
danielk1977cd581a72009-06-23 15:43:39 +00007453 }
danielk1977cd581a72009-06-23 15:43:39 +00007454}
7455
7456/*
danielk19774dbaa892009-06-16 16:50:22 +00007457** This routine redistributes cells on the iParentIdx'th child of pParent
7458** (hereafter "the page") and up to 2 siblings so that all pages have about the
7459** same amount of free space. Usually a single sibling on either side of the
7460** page are used in the balancing, though both siblings might come from one
7461** side if the page is the first or last child of its parent. If the page
7462** has fewer than 2 siblings (something which can only happen if the page
7463** is a root page or a child of a root page) then all available siblings
7464** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007465**
danielk19774dbaa892009-06-16 16:50:22 +00007466** The number of siblings of the page might be increased or decreased by
7467** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007468**
danielk19774dbaa892009-06-16 16:50:22 +00007469** Note that when this routine is called, some of the cells on the page
7470** might not actually be stored in MemPage.aData[]. This can happen
7471** if the page is overfull. This routine ensures that all cells allocated
7472** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007473**
danielk19774dbaa892009-06-16 16:50:22 +00007474** In the course of balancing the page and its siblings, cells may be
7475** inserted into or removed from the parent page (pParent). Doing so
7476** may cause the parent page to become overfull or underfull. If this
7477** happens, it is the responsibility of the caller to invoke the correct
7478** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007479**
drh5e00f6c2001-09-13 13:46:56 +00007480** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007481** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007482** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007483**
7484** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007485** buffer big enough to hold one page. If while inserting cells into the parent
7486** page (pParent) the parent page becomes overfull, this buffer is
7487** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007488** a maximum of four divider cells into the parent page, and the maximum
7489** size of a cell stored within an internal node is always less than 1/4
7490** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7491** enough for all overflow cells.
7492**
7493** If aOvflSpace is set to a null pointer, this function returns
7494** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007495*/
danielk19774dbaa892009-06-16 16:50:22 +00007496static int balance_nonroot(
7497 MemPage *pParent, /* Parent page of siblings being balanced */
7498 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007499 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007500 int isRoot, /* True if pParent is a root-page */
7501 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007502){
drh16a9b832007-05-05 18:39:25 +00007503 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007504 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007505 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007506 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007507 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007508 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007509 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007510 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007511 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007512 int usableSpace; /* Bytes in pPage beyond the header */
7513 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007514 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007515 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007516 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007517 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007518 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007519 u8 *pRight; /* Location in parent of right-sibling pointer */
7520 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007521 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7522 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007523 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007524 u8 *aSpace1; /* Space for copies of dividers cells */
7525 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007526 u8 abDone[NB+2]; /* True after i'th new page is populated */
7527 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007528 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007529 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007530 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007531
dan33ea4862014-10-09 19:35:37 +00007532 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007533 b.nCell = 0;
7534 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007535 pBt = pParent->pBt;
7536 assert( sqlite3_mutex_held(pBt->mutex) );
7537 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007538
danielk19774dbaa892009-06-16 16:50:22 +00007539 /* At this point pParent may have at most one overflow cell. And if
7540 ** this overflow cell is present, it must be the cell with
7541 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007542 ** is called (indirectly) from sqlite3BtreeDelete().
7543 */
danielk19774dbaa892009-06-16 16:50:22 +00007544 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007545 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007546
danielk197711a8a862009-06-17 11:49:52 +00007547 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007548 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007549 }
drh68133502019-02-11 17:22:30 +00007550 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00007551
danielk1977a50d9aa2009-06-08 14:49:45 +00007552 /* Find the sibling pages to balance. Also locate the cells in pParent
7553 ** that divide the siblings. An attempt is made to find NN siblings on
7554 ** either side of pPage. More siblings are taken from one side, however,
7555 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007556 ** has NB or fewer children then all children of pParent are taken.
7557 **
7558 ** This loop also drops the divider cells from the parent page. This
7559 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007560 ** overflow cells in the parent page, since if any existed they will
7561 ** have already been removed.
7562 */
danielk19774dbaa892009-06-16 16:50:22 +00007563 i = pParent->nOverflow + pParent->nCell;
7564 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007565 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007566 }else{
dan7d6885a2012-08-08 14:04:56 +00007567 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007568 if( iParentIdx==0 ){
7569 nxDiv = 0;
7570 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007571 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007572 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007573 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007574 }
dan7d6885a2012-08-08 14:04:56 +00007575 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007576 }
dan7d6885a2012-08-08 14:04:56 +00007577 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007578 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7579 pRight = &pParent->aData[pParent->hdrOffset+8];
7580 }else{
7581 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7582 }
7583 pgno = get4byte(pRight);
7584 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007585 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007586 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007587 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007588 goto balance_cleanup;
7589 }
drh85a379b2019-02-09 22:33:44 +00007590 if( apOld[i]->nFree<0 ){
7591 rc = btreeComputeFreeSpace(apOld[i]);
7592 if( rc ){
7593 memset(apOld, 0, (i)*sizeof(MemPage*));
7594 goto balance_cleanup;
7595 }
7596 }
danielk19774dbaa892009-06-16 16:50:22 +00007597 if( (i--)==0 ) break;
7598
drh9cc5b4e2016-12-26 01:41:33 +00007599 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007600 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007601 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007602 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007603 pParent->nOverflow = 0;
7604 }else{
7605 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7606 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007607 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007608
7609 /* Drop the cell from the parent page. apDiv[i] still points to
7610 ** the cell within the parent, even though it has been dropped.
7611 ** This is safe because dropping a cell only overwrites the first
7612 ** four bytes of it, and this function does not need the first
7613 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007614 ** later on.
7615 **
drh8a575d92011-10-12 17:00:28 +00007616 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007617 ** the dropCell() routine will overwrite the entire cell with zeroes.
7618 ** In this case, temporarily copy the cell into the aOvflSpace[]
7619 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7620 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007621 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007622 int iOff;
7623
7624 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007625 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007626 rc = SQLITE_CORRUPT_BKPT;
7627 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7628 goto balance_cleanup;
7629 }else{
7630 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7631 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7632 }
drh5b47efa2010-02-12 18:18:39 +00007633 }
drh98add2e2009-07-20 17:11:49 +00007634 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007635 }
drh8b2f49b2001-06-08 00:21:52 +00007636 }
7637
drha9121e42008-02-19 14:59:35 +00007638 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007639 ** alignment */
drhf012dc42019-03-19 15:36:46 +00007640 nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl));
drha9121e42008-02-19 14:59:35 +00007641 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007642
drh8b2f49b2001-06-08 00:21:52 +00007643 /*
danielk1977634f2982005-03-28 08:44:07 +00007644 ** Allocate space for memory structures
7645 */
drhfacf0302008-06-17 15:12:00 +00007646 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007647 nMaxCells*sizeof(u8*) /* b.apCell */
7648 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007649 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007650
drhf012dc42019-03-19 15:36:46 +00007651 assert( szScratch<=7*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007652 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007653 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007654 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007655 goto balance_cleanup;
7656 }
drh1ffd2472015-06-23 02:37:30 +00007657 b.szCell = (u16*)&b.apCell[nMaxCells];
7658 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007659 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007660
7661 /*
7662 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007663 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007664 ** into space obtained from aSpace1[]. The divider cells have already
7665 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007666 **
7667 ** If the siblings are on leaf pages, then the child pointers of the
7668 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007669 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007670 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007671 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007672 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007673 **
7674 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7675 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007676 */
drh1ffd2472015-06-23 02:37:30 +00007677 b.pRef = apOld[0];
7678 leafCorrection = b.pRef->leaf*4;
7679 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007680 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007681 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007682 int limit = pOld->nCell;
7683 u8 *aData = pOld->aData;
7684 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007685 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007686 u8 *piEnd;
drhe12ca5a2019-05-02 15:56:39 +00007687 VVA_ONLY( int nCellAtStart = b.nCell; )
danielk19774dbaa892009-06-16 16:50:22 +00007688
drh73d340a2015-05-28 11:23:11 +00007689 /* Verify that all sibling pages are of the same "type" (table-leaf,
7690 ** table-interior, index-leaf, or index-interior).
7691 */
7692 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7693 rc = SQLITE_CORRUPT_BKPT;
7694 goto balance_cleanup;
7695 }
7696
drhfe647dc2015-06-23 18:24:25 +00007697 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007698 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007699 ** in the correct spot.
7700 **
7701 ** Note that when there are multiple overflow cells, it is always the
7702 ** case that they are sequential and adjacent. This invariant arises
7703 ** because multiple overflows can only occurs when inserting divider
7704 ** cells into a parent on a prior balance, and divider cells are always
7705 ** adjacent and are inserted in order. There is an assert() tagged
7706 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7707 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007708 **
7709 ** This must be done in advance. Once the balance starts, the cell
7710 ** offset section of the btree page will be overwritten and we will no
7711 ** long be able to find the cells if a pointer to each cell is not saved
7712 ** first.
7713 */
drh36b78ee2016-01-20 01:32:00 +00007714 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007715 if( pOld->nOverflow>0 ){
drh27e80a32019-08-15 13:17:49 +00007716 if( NEVER(limit<pOld->aiOvfl[0]) ){
drhe12ca5a2019-05-02 15:56:39 +00007717 rc = SQLITE_CORRUPT_BKPT;
7718 goto balance_cleanup;
7719 }
drhfe647dc2015-06-23 18:24:25 +00007720 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007721 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007722 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007723 piCell += 2;
7724 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007725 }
drhfe647dc2015-06-23 18:24:25 +00007726 for(k=0; k<pOld->nOverflow; k++){
7727 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007728 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007729 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007730 }
drh1ffd2472015-06-23 02:37:30 +00007731 }
drhfe647dc2015-06-23 18:24:25 +00007732 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7733 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007734 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007735 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007736 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007737 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007738 }
drhe12ca5a2019-05-02 15:56:39 +00007739 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
drh4edfdd32015-06-23 14:49:42 +00007740
drh1ffd2472015-06-23 02:37:30 +00007741 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007742 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007743 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007744 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007745 assert( b.nCell<nMaxCells );
7746 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007747 pTemp = &aSpace1[iSpace1];
7748 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007749 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007750 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007751 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007752 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007753 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007754 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007755 if( !pOld->leaf ){
7756 assert( leafCorrection==0 );
7757 assert( pOld->hdrOffset==0 );
7758 /* The right pointer of the child page pOld becomes the left
7759 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007760 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007761 }else{
7762 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007763 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007764 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7765 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007766 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7767 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007768 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007769 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007770 }
7771 }
drh1ffd2472015-06-23 02:37:30 +00007772 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007773 }
drh8b2f49b2001-06-08 00:21:52 +00007774 }
7775
7776 /*
drh1ffd2472015-06-23 02:37:30 +00007777 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007778 ** Store this number in "k". Also compute szNew[] which is the total
7779 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007780 ** in b.apCell[] of the cell that divides page i from page i+1.
7781 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007782 **
drh96f5b762004-05-16 16:24:36 +00007783 ** Values computed by this block:
7784 **
7785 ** k: The total number of sibling pages
7786 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007787 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007788 ** the right of the i-th sibling page.
7789 ** usableSpace: Number of bytes of space available on each sibling.
7790 **
drh8b2f49b2001-06-08 00:21:52 +00007791 */
drh43605152004-05-29 21:46:49 +00007792 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00007793 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00007794 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00007795 b.apEnd[k] = p->aDataEnd;
7796 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00007797 if( k && b.ixNx[k]==b.ixNx[k-1] ){
7798 k--; /* Omit b.ixNx[] entry for child pages with no cells */
7799 }
drh26b7ec82019-02-01 14:50:43 +00007800 if( !leafData ){
7801 k++;
7802 b.apEnd[k] = pParent->aDataEnd;
7803 b.ixNx[k] = cntOld[i]+1;
7804 }
drhb0ea9432019-02-09 21:06:40 +00007805 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00007806 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007807 for(j=0; j<p->nOverflow; j++){
7808 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7809 }
7810 cntNew[i] = cntOld[i];
7811 }
7812 k = nOld;
7813 for(i=0; i<k; i++){
7814 int sz;
7815 while( szNew[i]>usableSpace ){
7816 if( i+1>=k ){
7817 k = i+2;
7818 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7819 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007820 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007821 }
drh1ffd2472015-06-23 02:37:30 +00007822 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007823 szNew[i] -= sz;
7824 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007825 if( cntNew[i]<b.nCell ){
7826 sz = 2 + cachedCellSize(&b, cntNew[i]);
7827 }else{
7828 sz = 0;
7829 }
drh658873b2015-06-22 20:02:04 +00007830 }
7831 szNew[i+1] += sz;
7832 cntNew[i]--;
7833 }
drh1ffd2472015-06-23 02:37:30 +00007834 while( cntNew[i]<b.nCell ){
7835 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007836 if( szNew[i]+sz>usableSpace ) break;
7837 szNew[i] += sz;
7838 cntNew[i]++;
7839 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007840 if( cntNew[i]<b.nCell ){
7841 sz = 2 + cachedCellSize(&b, cntNew[i]);
7842 }else{
7843 sz = 0;
7844 }
drh658873b2015-06-22 20:02:04 +00007845 }
7846 szNew[i+1] -= sz;
7847 }
drh1ffd2472015-06-23 02:37:30 +00007848 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007849 k = i+1;
drh672073a2015-06-24 12:07:40 +00007850 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007851 rc = SQLITE_CORRUPT_BKPT;
7852 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007853 }
7854 }
drh96f5b762004-05-16 16:24:36 +00007855
7856 /*
7857 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007858 ** on the left side (siblings with smaller keys). The left siblings are
7859 ** always nearly full, while the right-most sibling might be nearly empty.
7860 ** The next block of code attempts to adjust the packing of siblings to
7861 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007862 **
7863 ** This adjustment is more than an optimization. The packing above might
7864 ** be so out of balance as to be illegal. For example, the right-most
7865 ** sibling might be completely empty. This adjustment is not optional.
7866 */
drh6019e162001-07-02 17:51:45 +00007867 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007868 int szRight = szNew[i]; /* Size of sibling on the right */
7869 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7870 int r; /* Index of right-most cell in left sibling */
7871 int d; /* Index of first cell to the left of right sibling */
7872
7873 r = cntNew[i-1] - 1;
7874 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007875 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007876 do{
drh1ffd2472015-06-23 02:37:30 +00007877 assert( d<nMaxCells );
7878 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007879 (void)cachedCellSize(&b, r);
7880 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007881 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007882 break;
7883 }
7884 szRight += b.szCell[d] + 2;
7885 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007886 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007887 r--;
7888 d--;
drh672073a2015-06-24 12:07:40 +00007889 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007890 szNew[i] = szRight;
7891 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007892 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7893 rc = SQLITE_CORRUPT_BKPT;
7894 goto balance_cleanup;
7895 }
drh6019e162001-07-02 17:51:45 +00007896 }
drh09d0deb2005-08-02 17:13:09 +00007897
drh2a0df922014-10-30 23:14:56 +00007898 /* Sanity check: For a non-corrupt database file one of the follwing
7899 ** must be true:
7900 ** (1) We found one or more cells (cntNew[0])>0), or
7901 ** (2) pPage is a virtual root page. A virtual root page is when
7902 ** the real root page is page 1 and we are the only child of
7903 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007904 */
drh2a0df922014-10-30 23:14:56 +00007905 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007906 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7907 apOld[0]->pgno, apOld[0]->nCell,
7908 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7909 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007910 ));
7911
drh8b2f49b2001-06-08 00:21:52 +00007912 /*
drh6b308672002-07-08 02:16:37 +00007913 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007914 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007915 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007916 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007917 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007918 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007919 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007920 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007921 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007922 nNew++;
danielk197728129562005-01-11 10:25:06 +00007923 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007924 }else{
drh7aa8f852006-03-28 00:24:44 +00007925 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007926 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007927 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007928 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007929 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007930 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007931 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007932
7933 /* Set the pointer-map entry for the new sibling page. */
7934 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007935 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007936 if( rc!=SQLITE_OK ){
7937 goto balance_cleanup;
7938 }
7939 }
drh6b308672002-07-08 02:16:37 +00007940 }
drh8b2f49b2001-06-08 00:21:52 +00007941 }
7942
7943 /*
dan33ea4862014-10-09 19:35:37 +00007944 ** Reassign page numbers so that the new pages are in ascending order.
7945 ** This helps to keep entries in the disk file in order so that a scan
7946 ** of the table is closer to a linear scan through the file. That in turn
7947 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007948 **
dan33ea4862014-10-09 19:35:37 +00007949 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7950 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007951 **
dan33ea4862014-10-09 19:35:37 +00007952 ** When NB==3, this one optimization makes the database about 25% faster
7953 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007954 */
dan33ea4862014-10-09 19:35:37 +00007955 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007956 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007957 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007958 for(j=0; j<i; j++){
7959 if( aPgno[j]==aPgno[i] ){
7960 /* This branch is taken if the set of sibling pages somehow contains
7961 ** duplicate entries. This can happen if the database is corrupt.
7962 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007963 ** we do the detection here in order to avoid populating the pager
7964 ** cache with two separate objects associated with the same
7965 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007966 assert( CORRUPT_DB );
7967 rc = SQLITE_CORRUPT_BKPT;
7968 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007969 }
7970 }
dan33ea4862014-10-09 19:35:37 +00007971 }
7972 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007973 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007974 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007975 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007976 }
drh00fe08a2014-10-31 00:05:23 +00007977 pgno = aPgOrder[iBest];
7978 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007979 if( iBest!=i ){
7980 if( iBest>i ){
7981 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7982 }
7983 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7984 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007985 }
7986 }
dan33ea4862014-10-09 19:35:37 +00007987
7988 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7989 "%d(%d nc=%d) %d(%d nc=%d)\n",
7990 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007991 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007992 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007993 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007994 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007995 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007996 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7997 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7998 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7999 ));
danielk19774dbaa892009-06-16 16:50:22 +00008000
8001 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh55f66b32019-07-16 19:44:32 +00008002 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8003 assert( apNew[nNew-1]!=0 );
danielk19774dbaa892009-06-16 16:50:22 +00008004 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00008005
dan33ea4862014-10-09 19:35:37 +00008006 /* If the sibling pages are not leaves, ensure that the right-child pointer
8007 ** of the right-most new sibling page is set to the value that was
8008 ** originally in the same field of the right-most old sibling page. */
8009 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8010 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8011 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8012 }
danielk1977ac11ee62005-01-15 12:45:51 +00008013
dan33ea4862014-10-09 19:35:37 +00008014 /* Make any required updates to pointer map entries associated with
8015 ** cells stored on sibling pages following the balance operation. Pointer
8016 ** map entries associated with divider cells are set by the insertCell()
8017 ** routine. The associated pointer map entries are:
8018 **
8019 ** a) if the cell contains a reference to an overflow chain, the
8020 ** entry associated with the first page in the overflow chain, and
8021 **
8022 ** b) if the sibling pages are not leaves, the child page associated
8023 ** with the cell.
8024 **
8025 ** If the sibling pages are not leaves, then the pointer map entry
8026 ** associated with the right-child of each sibling may also need to be
8027 ** updated. This happens below, after the sibling pages have been
8028 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00008029 */
dan33ea4862014-10-09 19:35:37 +00008030 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00008031 MemPage *pOld;
8032 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00008033 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00008034 int iNew = 0;
8035 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00008036
drh1ffd2472015-06-23 02:37:30 +00008037 for(i=0; i<b.nCell; i++){
8038 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00008039 while( i==cntOldNext ){
8040 iOld++;
8041 assert( iOld<nNew || iOld<nOld );
drhdd2d9a32019-05-07 17:47:43 +00008042 assert( iOld>=0 && iOld<NB );
drh9c7e44c2019-02-14 15:27:12 +00008043 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00008044 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
drh4b70f112004-05-02 21:12:19 +00008045 }
dan33ea4862014-10-09 19:35:37 +00008046 if( i==cntNew[iNew] ){
8047 pNew = apNew[++iNew];
8048 if( !leafData ) continue;
8049 }
danielk197785d90ca2008-07-19 14:25:15 +00008050
dan33ea4862014-10-09 19:35:37 +00008051 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00008052 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00008053 ** or else the divider cell to the left of sibling page iOld. So,
8054 ** if sibling page iOld had the same page number as pNew, and if
8055 ** pCell really was a part of sibling page iOld (not a divider or
8056 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008057 if( iOld>=nNew
8058 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008059 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008060 ){
dan33ea4862014-10-09 19:35:37 +00008061 if( !leafCorrection ){
8062 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8063 }
drh1ffd2472015-06-23 02:37:30 +00008064 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008065 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00008066 }
drhea82b372015-06-23 21:35:28 +00008067 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00008068 }
drh14acc042001-06-10 19:56:58 +00008069 }
8070 }
dan33ea4862014-10-09 19:35:37 +00008071
8072 /* Insert new divider cells into pParent. */
8073 for(i=0; i<nNew-1; i++){
8074 u8 *pCell;
8075 u8 *pTemp;
8076 int sz;
8077 MemPage *pNew = apNew[i];
8078 j = cntNew[i];
8079
8080 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008081 assert( b.apCell[j]!=0 );
8082 pCell = b.apCell[j];
8083 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008084 pTemp = &aOvflSpace[iOvflSpace];
8085 if( !pNew->leaf ){
8086 memcpy(&pNew->aData[8], pCell, 4);
8087 }else if( leafData ){
8088 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008089 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008090 ** cell consists of the integer key for the right-most cell of
8091 ** the sibling-page assembled above only.
8092 */
8093 CellInfo info;
8094 j--;
drh1ffd2472015-06-23 02:37:30 +00008095 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008096 pCell = pTemp;
8097 sz = 4 + putVarint(&pCell[4], info.nKey);
8098 pTemp = 0;
8099 }else{
8100 pCell -= 4;
8101 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8102 ** previously stored on a leaf node, and its reported size was 4
8103 ** bytes, then it may actually be smaller than this
8104 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8105 ** any cell). But it is important to pass the correct size to
8106 ** insertCell(), so reparse the cell now.
8107 **
drhc1fb2b82016-03-09 03:29:27 +00008108 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8109 ** and WITHOUT ROWID tables with exactly one column which is the
8110 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008111 */
drh1ffd2472015-06-23 02:37:30 +00008112 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008113 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008114 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008115 }
8116 }
8117 iOvflSpace += sz;
8118 assert( sz<=pBt->maxLocal+23 );
8119 assert( iOvflSpace <= (int)pBt->pageSize );
8120 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
drhd2cfbea2019-05-08 03:34:53 +00008121 if( rc!=SQLITE_OK ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008122 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8123 }
8124
8125 /* Now update the actual sibling pages. The order in which they are updated
8126 ** is important, as this code needs to avoid disrupting any page from which
8127 ** cells may still to be read. In practice, this means:
8128 **
drhd836d422014-10-31 14:26:36 +00008129 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8130 ** then it is not safe to update page apNew[iPg] until after
8131 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008132 **
drhd836d422014-10-31 14:26:36 +00008133 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8134 ** then it is not safe to update page apNew[iPg] until after
8135 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008136 **
8137 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008138 **
8139 ** The iPg value in the following loop starts at nNew-1 goes down
8140 ** to 0, then back up to nNew-1 again, thus making two passes over
8141 ** the pages. On the initial downward pass, only condition (1) above
8142 ** needs to be tested because (2) will always be true from the previous
8143 ** step. On the upward pass, both conditions are always true, so the
8144 ** upwards pass simply processes pages that were missed on the downward
8145 ** pass.
dan33ea4862014-10-09 19:35:37 +00008146 */
drhbec021b2014-10-31 12:22:00 +00008147 for(i=1-nNew; i<nNew; i++){
8148 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008149 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008150 if( abDone[iPg] ) continue; /* Skip pages already processed */
8151 if( i>=0 /* On the upwards pass, or... */
8152 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008153 ){
dan09c68402014-10-11 20:00:24 +00008154 int iNew;
8155 int iOld;
8156 int nNewCell;
8157
drhd836d422014-10-31 14:26:36 +00008158 /* Verify condition (1): If cells are moving left, update iPg
8159 ** only after iPg-1 has already been updated. */
8160 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8161
8162 /* Verify condition (2): If cells are moving right, update iPg
8163 ** only after iPg+1 has already been updated. */
8164 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8165
dan09c68402014-10-11 20:00:24 +00008166 if( iPg==0 ){
8167 iNew = iOld = 0;
8168 nNewCell = cntNew[0];
8169 }else{
drh1ffd2472015-06-23 02:37:30 +00008170 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008171 iNew = cntNew[iPg-1] + !leafData;
8172 nNewCell = cntNew[iPg] - iNew;
8173 }
8174
drh1ffd2472015-06-23 02:37:30 +00008175 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008176 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008177 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008178 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008179 assert( apNew[iPg]->nOverflow==0 );
8180 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008181 }
8182 }
drhd836d422014-10-31 14:26:36 +00008183
8184 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008185 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8186
drh7aa8f852006-03-28 00:24:44 +00008187 assert( nOld>0 );
8188 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008189
danielk197713bd99f2009-06-24 05:40:34 +00008190 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8191 /* The root page of the b-tree now contains no cells. The only sibling
8192 ** page is the right-child of the parent. Copy the contents of the
8193 ** child page into the parent, decreasing the overall height of the
8194 ** b-tree structure by one. This is described as the "balance-shallower"
8195 ** sub-algorithm in some documentation.
8196 **
8197 ** If this is an auto-vacuum database, the call to copyNodeContent()
8198 ** sets all pointer-map entries corresponding to database image pages
8199 ** for which the pointer is stored within the content being copied.
8200 **
drh768f2902014-10-31 02:51:41 +00008201 ** It is critical that the child page be defragmented before being
8202 ** copied into the parent, because if the parent is page 1 then it will
8203 ** by smaller than the child due to the database header, and so all the
8204 ** free space needs to be up front.
8205 */
drh9b5351d2015-09-30 14:19:08 +00008206 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008207 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008208 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00008209 assert( apNew[0]->nFree ==
drh1c960262019-03-25 18:44:08 +00008210 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8211 - apNew[0]->nCell*2)
drh768f2902014-10-31 02:51:41 +00008212 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00008213 );
drhc314dc72009-07-21 11:52:34 +00008214 copyNodeContent(apNew[0], pParent, &rc);
8215 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00008216 }else if( ISAUTOVACUUM && !leafCorrection ){
8217 /* Fix the pointer map entries associated with the right-child of each
8218 ** sibling page. All other pointer map entries have already been taken
8219 ** care of. */
8220 for(i=0; i<nNew; i++){
8221 u32 key = get4byte(&apNew[i]->aData[8]);
8222 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008223 }
dan33ea4862014-10-09 19:35:37 +00008224 }
danielk19774dbaa892009-06-16 16:50:22 +00008225
dan33ea4862014-10-09 19:35:37 +00008226 assert( pParent->isInit );
8227 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008228 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008229
dan33ea4862014-10-09 19:35:37 +00008230 /* Free any old pages that were not reused as new pages.
8231 */
8232 for(i=nNew; i<nOld; i++){
8233 freePage(apOld[i], &rc);
8234 }
danielk19774dbaa892009-06-16 16:50:22 +00008235
8236#if 0
dan33ea4862014-10-09 19:35:37 +00008237 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008238 /* The ptrmapCheckPages() contains assert() statements that verify that
8239 ** all pointer map pages are set correctly. This is helpful while
8240 ** debugging. This is usually disabled because a corrupt database may
8241 ** cause an assert() statement to fail. */
8242 ptrmapCheckPages(apNew, nNew);
8243 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008244 }
dan33ea4862014-10-09 19:35:37 +00008245#endif
danielk1977cd581a72009-06-23 15:43:39 +00008246
drh8b2f49b2001-06-08 00:21:52 +00008247 /*
drh14acc042001-06-10 19:56:58 +00008248 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008249 */
drh14acc042001-06-10 19:56:58 +00008250balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008251 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008252 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008253 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008254 }
drh14acc042001-06-10 19:56:58 +00008255 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008256 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008257 }
danielk1977eaa06f62008-09-18 17:34:44 +00008258
drh8b2f49b2001-06-08 00:21:52 +00008259 return rc;
8260}
8261
drh43605152004-05-29 21:46:49 +00008262
8263/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008264** This function is called when the root page of a b-tree structure is
8265** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008266**
danielk1977a50d9aa2009-06-08 14:49:45 +00008267** A new child page is allocated and the contents of the current root
8268** page, including overflow cells, are copied into the child. The root
8269** page is then overwritten to make it an empty page with the right-child
8270** pointer pointing to the new page.
8271**
8272** Before returning, all pointer-map entries corresponding to pages
8273** that the new child-page now contains pointers to are updated. The
8274** entry corresponding to the new right-child pointer of the root
8275** page is also updated.
8276**
8277** If successful, *ppChild is set to contain a reference to the child
8278** page and SQLITE_OK is returned. In this case the caller is required
8279** to call releasePage() on *ppChild exactly once. If an error occurs,
8280** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008281*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008282static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8283 int rc; /* Return value from subprocedures */
8284 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008285 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008286 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008287
danielk1977a50d9aa2009-06-08 14:49:45 +00008288 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008289 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008290
danielk1977a50d9aa2009-06-08 14:49:45 +00008291 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8292 ** page that will become the new right-child of pPage. Copy the contents
8293 ** of the node stored on pRoot into the new child page.
8294 */
drh98add2e2009-07-20 17:11:49 +00008295 rc = sqlite3PagerWrite(pRoot->pDbPage);
8296 if( rc==SQLITE_OK ){
8297 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008298 copyNodeContent(pRoot, pChild, &rc);
8299 if( ISAUTOVACUUM ){
8300 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008301 }
8302 }
8303 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008304 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008305 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008306 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008307 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008308 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8309 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drh12fe9a02019-02-19 16:42:54 +00008310 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00008311
danielk1977a50d9aa2009-06-08 14:49:45 +00008312 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8313
8314 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008315 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8316 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8317 memcpy(pChild->apOvfl, pRoot->apOvfl,
8318 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008319 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008320
8321 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8322 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8323 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8324
8325 *ppChild = pChild;
8326 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008327}
8328
8329/*
drha2d50282019-12-23 18:02:15 +00008330** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8331** on the same B-tree as pCur.
8332**
8333** This can if a database is corrupt with two or more SQL tables
8334** pointing to the same b-tree. If an insert occurs on one SQL table
8335** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8336** table linked to the same b-tree. If the secondary insert causes a
8337** rebalance, that can change content out from under the cursor on the
8338** first SQL table, violating invariants on the first insert.
8339*/
8340static int anotherValidCursor(BtCursor *pCur){
8341 BtCursor *pOther;
8342 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8343 if( pOther!=pCur
8344 && pOther->eState==CURSOR_VALID
8345 && pOther->pPage==pCur->pPage
8346 ){
8347 return SQLITE_CORRUPT_BKPT;
8348 }
8349 }
8350 return SQLITE_OK;
8351}
8352
8353/*
danielk197771d5d2c2008-09-29 11:49:47 +00008354** The page that pCur currently points to has just been modified in
8355** some way. This function figures out if this modification means the
8356** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008357** routine. Balancing routines are:
8358**
8359** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008360** balance_deeper()
8361** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008362*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008363static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008364 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008365 const int nMin = pCur->pBt->usableSize * 2 / 3;
8366 u8 aBalanceQuickSpace[13];
8367 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008368
drhcc5f8a42016-02-06 22:32:06 +00008369 VVA_ONLY( int balance_quick_called = 0 );
8370 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008371
8372 do {
dan01fd42b2019-07-13 09:55:33 +00008373 int iPage;
drh352a35a2017-08-15 03:46:47 +00008374 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008375
drha941ff72019-02-12 00:58:10 +00008376 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
dan01fd42b2019-07-13 09:55:33 +00008377 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8378 break;
8379 }else if( (iPage = pCur->iPage)==0 ){
drha2d50282019-12-23 18:02:15 +00008380 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008381 /* The root page of the b-tree is overfull. In this case call the
8382 ** balance_deeper() function to create a new child for the root-page
8383 ** and copy the current contents of the root-page to it. The
8384 ** next iteration of the do-loop will balance the child page.
8385 */
drhcc5f8a42016-02-06 22:32:06 +00008386 assert( balance_deeper_called==0 );
8387 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008388 rc = balance_deeper(pPage, &pCur->apPage[1]);
8389 if( rc==SQLITE_OK ){
8390 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008391 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008392 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008393 pCur->apPage[0] = pPage;
8394 pCur->pPage = pCur->apPage[1];
8395 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008396 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008397 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008398 break;
8399 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008400 }else{
8401 MemPage * const pParent = pCur->apPage[iPage-1];
8402 int const iIdx = pCur->aiIdx[iPage-1];
8403
8404 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00008405 if( rc==SQLITE_OK && pParent->nFree<0 ){
8406 rc = btreeComputeFreeSpace(pParent);
8407 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008408 if( rc==SQLITE_OK ){
8409#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008410 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008411 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008412 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008413 && pParent->pgno!=1
8414 && pParent->nCell==iIdx
8415 ){
8416 /* Call balance_quick() to create a new sibling of pPage on which
8417 ** to store the overflow cell. balance_quick() inserts a new cell
8418 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008419 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008420 ** use either balance_nonroot() or balance_deeper(). Until this
8421 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8422 ** buffer.
8423 **
8424 ** The purpose of the following assert() is to check that only a
8425 ** single call to balance_quick() is made for each call to this
8426 ** function. If this were not verified, a subtle bug involving reuse
8427 ** of the aBalanceQuickSpace[] might sneak in.
8428 */
drhcc5f8a42016-02-06 22:32:06 +00008429 assert( balance_quick_called==0 );
8430 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008431 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8432 }else
8433#endif
8434 {
8435 /* In this case, call balance_nonroot() to redistribute cells
8436 ** between pPage and up to 2 of its sibling pages. This involves
8437 ** modifying the contents of pParent, which may cause pParent to
8438 ** become overfull or underfull. The next iteration of the do-loop
8439 ** will balance the parent page to correct this.
8440 **
8441 ** If the parent page becomes overfull, the overflow cell or cells
8442 ** are stored in the pSpace buffer allocated immediately below.
8443 ** A subsequent iteration of the do-loop will deal with this by
8444 ** calling balance_nonroot() (balance_deeper() may be called first,
8445 ** but it doesn't deal with overflow cells - just moves them to a
8446 ** different page). Once this subsequent call to balance_nonroot()
8447 ** has completed, it is safe to release the pSpace buffer used by
8448 ** the previous call, as the overflow cell data will have been
8449 ** copied either into the body of a database page or into the new
8450 ** pSpace buffer passed to the latter call to balance_nonroot().
8451 */
8452 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008453 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8454 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008455 if( pFree ){
8456 /* If pFree is not NULL, it points to the pSpace buffer used
8457 ** by a previous call to balance_nonroot(). Its contents are
8458 ** now stored either on real database pages or within the
8459 ** new pSpace buffer, so it may be safely freed here. */
8460 sqlite3PageFree(pFree);
8461 }
8462
danielk19774dbaa892009-06-16 16:50:22 +00008463 /* The pSpace buffer will be freed after the next call to
8464 ** balance_nonroot(), or just before this function returns, whichever
8465 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008466 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008467 }
8468 }
8469
8470 pPage->nOverflow = 0;
8471
8472 /* The next iteration of the do-loop balances the parent page. */
8473 releasePage(pPage);
8474 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008475 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008476 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008477 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008478 }while( rc==SQLITE_OK );
8479
8480 if( pFree ){
8481 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008482 }
8483 return rc;
8484}
8485
drh3de5d162018-05-03 03:59:02 +00008486/* Overwrite content from pX into pDest. Only do the write if the
8487** content is different from what is already there.
8488*/
8489static int btreeOverwriteContent(
8490 MemPage *pPage, /* MemPage on which writing will occur */
8491 u8 *pDest, /* Pointer to the place to start writing */
8492 const BtreePayload *pX, /* Source of data to write */
8493 int iOffset, /* Offset of first byte to write */
8494 int iAmt /* Number of bytes to be written */
8495){
8496 int nData = pX->nData - iOffset;
8497 if( nData<=0 ){
8498 /* Overwritting with zeros */
8499 int i;
8500 for(i=0; i<iAmt && pDest[i]==0; i++){}
8501 if( i<iAmt ){
8502 int rc = sqlite3PagerWrite(pPage->pDbPage);
8503 if( rc ) return rc;
8504 memset(pDest + i, 0, iAmt - i);
8505 }
8506 }else{
8507 if( nData<iAmt ){
8508 /* Mixed read data and zeros at the end. Make a recursive call
8509 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008510 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8511 iAmt-nData);
8512 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008513 iAmt = nData;
8514 }
8515 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8516 int rc = sqlite3PagerWrite(pPage->pDbPage);
8517 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00008518 /* In a corrupt database, it is possible for the source and destination
8519 ** buffers to overlap. This is harmless since the database is already
8520 ** corrupt but it does cause valgrind and ASAN warnings. So use
8521 ** memmove(). */
8522 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00008523 }
8524 }
8525 return SQLITE_OK;
8526}
8527
8528/*
8529** Overwrite the cell that cursor pCur is pointing to with fresh content
8530** contained in pX.
8531*/
8532static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8533 int iOffset; /* Next byte of pX->pData to write */
8534 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8535 int rc; /* Return code */
8536 MemPage *pPage = pCur->pPage; /* Page being written */
8537 BtShared *pBt; /* Btree */
8538 Pgno ovflPgno; /* Next overflow page to write */
8539 u32 ovflPageSize; /* Size to write on overflow page */
8540
drh27e80a32019-08-15 13:17:49 +00008541 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8542 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8543 ){
drh4f84e9c2018-05-03 13:56:23 +00008544 return SQLITE_CORRUPT_BKPT;
8545 }
drh3de5d162018-05-03 03:59:02 +00008546 /* Overwrite the local portion first */
8547 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8548 0, pCur->info.nLocal);
8549 if( rc ) return rc;
8550 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8551
8552 /* Now overwrite the overflow pages */
8553 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008554 assert( nTotal>=0 );
8555 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008556 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8557 pBt = pPage->pBt;
8558 ovflPageSize = pBt->usableSize - 4;
8559 do{
8560 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8561 if( rc ) return rc;
drh4f84e9c2018-05-03 13:56:23 +00008562 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
drhd5aa9262018-05-03 16:56:06 +00008563 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008564 }else{
drh30f7a252018-05-07 11:29:59 +00008565 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008566 ovflPgno = get4byte(pPage->aData);
8567 }else{
8568 ovflPageSize = nTotal - iOffset;
8569 }
8570 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8571 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008572 }
drhd5aa9262018-05-03 16:56:06 +00008573 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008574 if( rc ) return rc;
8575 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008576 }while( iOffset<nTotal );
8577 return SQLITE_OK;
8578}
8579
drhf74b8d92002-09-01 23:20:45 +00008580
8581/*
drh8eeb4462016-05-21 20:03:42 +00008582** Insert a new record into the BTree. The content of the new record
8583** is described by the pX object. The pCur cursor is used only to
8584** define what table the record should be inserted into, and is left
8585** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008586**
drh8eeb4462016-05-21 20:03:42 +00008587** For a table btree (used for rowid tables), only the pX.nKey value of
8588** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8589** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8590** hold the content of the row.
8591**
8592** For an index btree (used for indexes and WITHOUT ROWID tables), the
8593** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8594** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008595**
8596** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008597** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8598** been performed. In other words, if seekResult!=0 then the cursor
8599** is currently pointing to a cell that will be adjacent to the cell
8600** to be inserted. If seekResult<0 then pCur points to a cell that is
8601** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8602** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008603**
drheaf6ae22016-11-09 20:14:34 +00008604** If seekResult==0, that means pCur is pointing at some unknown location.
8605** In that case, this routine must seek the cursor to the correct insertion
8606** point for (pKey,nKey) before doing the insertion. For index btrees,
8607** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8608** key values and pX->aMem can be used instead of pX->pKey to avoid having
8609** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008610*/
drh3aac2dd2004-04-26 14:10:20 +00008611int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008612 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008613 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008614 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008615 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008616){
drh3b7511c2001-05-26 13:15:44 +00008617 int rc;
drh3e9ca092009-09-08 01:14:48 +00008618 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008619 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008620 int idx;
drh3b7511c2001-05-26 13:15:44 +00008621 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008622 Btree *p = pCur->pBtree;
8623 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008624 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008625 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008626
danf91c1312017-01-10 20:04:38 +00008627 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8628
drh98add2e2009-07-20 17:11:49 +00008629 if( pCur->eState==CURSOR_FAULT ){
8630 assert( pCur->skipNext!=SQLITE_OK );
8631 return pCur->skipNext;
8632 }
8633
dan7a2347e2016-01-07 16:43:54 +00008634 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008635 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8636 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008637 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008638 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8639
danielk197731d31b82009-07-13 13:18:07 +00008640 /* Assert that the caller has been consistent. If this cursor was opened
8641 ** expecting an index b-tree, then the caller should be inserting blob
8642 ** keys with no associated data. If the cursor was opened expecting an
8643 ** intkey table, the caller should be inserting integer keys with a
8644 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008645 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008646
danielk19779c3acf32009-05-02 07:36:49 +00008647 /* Save the positions of any other cursors open on this table.
8648 **
danielk19773509a652009-07-06 18:56:13 +00008649 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008650 ** example, when inserting data into a table with auto-generated integer
8651 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8652 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008653 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008654 ** that the cursor is already where it needs to be and returns without
8655 ** doing any work. To avoid thwarting these optimizations, it is important
8656 ** not to clear the cursor here.
8657 */
drh27fb7462015-06-30 02:47:36 +00008658 if( pCur->curFlags & BTCF_Multiple ){
8659 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8660 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008661 }
8662
danielk197771d5d2c2008-09-29 11:49:47 +00008663 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008664 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008665 /* If this is an insert into a table b-tree, invalidate any incrblob
8666 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008667 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008668
danf91c1312017-01-10 20:04:38 +00008669 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008670 ** to a row with the same key as the new entry being inserted.
8671 */
8672#ifdef SQLITE_DEBUG
8673 if( flags & BTREE_SAVEPOSITION ){
8674 assert( pCur->curFlags & BTCF_ValidNKey );
8675 assert( pX->nKey==pCur->info.nKey );
drhd720d392018-05-07 17:27:04 +00008676 assert( loc==0 );
8677 }
8678#endif
danf91c1312017-01-10 20:04:38 +00008679
drhd720d392018-05-07 17:27:04 +00008680 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8681 ** that the cursor is not pointing to a row to be overwritten.
8682 ** So do a complete check.
8683 */
drh7a1c28d2016-11-10 20:42:08 +00008684 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008685 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008686 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008687 assert( pX->nData>=0 && pX->nZero>=0 );
8688 if( pCur->info.nSize!=0
8689 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8690 ){
drhd720d392018-05-07 17:27:04 +00008691 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008692 return btreeOverwriteCell(pCur, pX);
8693 }
drhd720d392018-05-07 17:27:04 +00008694 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008695 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008696 /* The cursor is *not* pointing to the cell to be overwritten, nor
8697 ** to an adjacent cell. Move the cursor so that it is pointing either
8698 ** to the cell to be overwritten or an adjacent cell.
8699 */
danf91c1312017-01-10 20:04:38 +00008700 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008701 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008702 }
drhd720d392018-05-07 17:27:04 +00008703 }else{
8704 /* This is an index or a WITHOUT ROWID table */
8705
8706 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8707 ** to a row with the same key as the new entry being inserted.
8708 */
8709 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8710
8711 /* If the cursor is not already pointing either to the cell to be
8712 ** overwritten, or if a new cell is being inserted, if the cursor is
8713 ** not pointing to an immediately adjacent cell, then move the cursor
8714 ** so that it does.
8715 */
8716 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8717 if( pX->nMem ){
8718 UnpackedRecord r;
8719 r.pKeyInfo = pCur->pKeyInfo;
8720 r.aMem = pX->aMem;
8721 r.nField = pX->nMem;
8722 r.default_rc = 0;
8723 r.errCode = 0;
8724 r.r1 = 0;
8725 r.r2 = 0;
8726 r.eqSeen = 0;
8727 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8728 }else{
8729 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8730 }
8731 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00008732 }
drh89ee2292018-05-07 18:41:19 +00008733
8734 /* If the cursor is currently pointing to an entry to be overwritten
8735 ** and the new content is the same as as the old, then use the
8736 ** overwrite optimization.
8737 */
8738 if( loc==0 ){
8739 getCellInfo(pCur);
8740 if( pCur->info.nKey==pX->nKey ){
8741 BtreePayload x2;
8742 x2.pData = pX->pKey;
8743 x2.nData = pX->nKey;
8744 x2.nZero = 0;
8745 return btreeOverwriteCell(pCur, &x2);
8746 }
8747 }
8748
danielk1977da184232006-01-05 11:34:32 +00008749 }
drh0e5ce802019-12-20 12:33:17 +00008750 assert( pCur->eState==CURSOR_VALID
8751 || (pCur->eState==CURSOR_INVALID && loc)
8752 || CORRUPT_DB );
danielk1977da184232006-01-05 11:34:32 +00008753
drh352a35a2017-08-15 03:46:47 +00008754 pPage = pCur->pPage;
drh8eeb4462016-05-21 20:03:42 +00008755 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008756 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00008757 if( pPage->nFree<0 ){
8758 rc = btreeComputeFreeSpace(pPage);
8759 if( rc ) return rc;
8760 }
danielk19778f880a82009-07-13 09:41:45 +00008761
drh3a4c1412004-05-09 20:40:11 +00008762 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008763 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008764 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008765 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008766 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008767 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008768 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008769 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008770 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008771 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008772 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008773 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008774 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008775 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008776 rc = sqlite3PagerWrite(pPage->pDbPage);
8777 if( rc ){
8778 goto end_insert;
8779 }
danielk197771d5d2c2008-09-29 11:49:47 +00008780 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008781 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008782 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008783 }
drh80159da2016-12-09 17:32:51 +00008784 rc = clearCell(pPage, oldCell, &info);
drh554a19d2019-08-12 18:26:46 +00008785 testcase( pCur->curFlags & BTCF_ValidOvfl );
8786 invalidateOverflowCache(pCur);
danca66f6c2017-06-08 11:14:08 +00008787 if( info.nSize==szNew && info.nLocal==info.nPayload
8788 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8789 ){
drhf9238252016-12-09 18:09:42 +00008790 /* Overwrite the old cell with the new if they are the same size.
8791 ** We could also try to do this if the old cell is smaller, then add
8792 ** the leftover space to the free list. But experiments show that
8793 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008794 ** calling dropCell() and insertCell().
8795 **
8796 ** This optimization cannot be used on an autovacuum database if the
8797 ** new entry uses overflow pages, as the insertCell() call below is
8798 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008799 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh93788182019-07-22 23:24:01 +00008800 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
8801 return SQLITE_CORRUPT_BKPT;
8802 }
8803 if( oldCell+szNew > pPage->aDataEnd ){
8804 return SQLITE_CORRUPT_BKPT;
8805 }
drh80159da2016-12-09 17:32:51 +00008806 memcpy(oldCell, newCell, szNew);
8807 return SQLITE_OK;
8808 }
8809 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008810 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008811 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008812 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008813 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008814 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008815 }else{
drh4b70f112004-05-02 21:12:19 +00008816 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008817 }
drh98add2e2009-07-20 17:11:49 +00008818 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008819 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008820 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008821
mistachkin48864df2013-03-21 21:20:32 +00008822 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008823 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008824 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008825 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008826 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008827 ** Previous versions of SQLite called moveToRoot() to move the cursor
8828 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008829 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8830 ** set the cursor state to "invalid". This makes common insert operations
8831 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008832 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008833 ** There is a subtle but important optimization here too. When inserting
8834 ** multiple records into an intkey b-tree using a single cursor (as can
8835 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8836 ** is advantageous to leave the cursor pointing to the last entry in
8837 ** the b-tree if possible. If the cursor is left pointing to the last
8838 ** entry in the table, and the next row inserted has an integer key
8839 ** larger than the largest existing key, it is possible to insert the
8840 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008841 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008842 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008843 if( pPage->nOverflow ){
8844 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008845 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008846 rc = balance(pCur);
8847
8848 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008849 ** fails. Internal data structure corruption will result otherwise.
8850 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8851 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00008852 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008853 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008854 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00008855 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00008856 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008857 assert( pCur->pKey==0 );
8858 pCur->pKey = sqlite3Malloc( pX->nKey );
8859 if( pCur->pKey==0 ){
8860 rc = SQLITE_NOMEM;
8861 }else{
8862 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8863 }
8864 }
8865 pCur->eState = CURSOR_REQUIRESEEK;
8866 pCur->nKey = pX->nKey;
8867 }
danielk19773f632d52009-05-02 10:03:09 +00008868 }
drh352a35a2017-08-15 03:46:47 +00008869 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008870
drh2e38c322004-09-03 18:38:44 +00008871end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008872 return rc;
8873}
8874
8875/*
danf0ee1d32015-09-12 19:26:11 +00008876** Delete the entry that the cursor is pointing to.
8877**
drhe807bdb2016-01-21 17:06:33 +00008878** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8879** the cursor is left pointing at an arbitrary location after the delete.
8880** But if that bit is set, then the cursor is left in a state such that
8881** the next call to BtreeNext() or BtreePrev() moves it to the same row
8882** as it would have been on if the call to BtreeDelete() had been omitted.
8883**
drhdef19e32016-01-27 16:26:25 +00008884** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8885** associated with a single table entry and its indexes. Only one of those
8886** deletes is considered the "primary" delete. The primary delete occurs
8887** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8888** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8889** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008890** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008891*/
drhe807bdb2016-01-21 17:06:33 +00008892int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008893 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008894 BtShared *pBt = p->pBt;
8895 int rc; /* Return code */
8896 MemPage *pPage; /* Page to delete cell from */
8897 unsigned char *pCell; /* Pointer to cell to delete */
8898 int iCellIdx; /* Index of cell to delete */
8899 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008900 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008901 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008902 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008903
dan7a2347e2016-01-07 16:43:54 +00008904 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008905 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008906 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008907 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008908 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8909 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drhdef19e32016-01-27 16:26:25 +00008910 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danb560a712019-03-13 15:29:14 +00008911 if( pCur->eState==CURSOR_REQUIRESEEK ){
8912 rc = btreeRestoreCursorPosition(pCur);
8913 if( rc ) return rc;
8914 }
8915 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00008916
danielk19774dbaa892009-06-16 16:50:22 +00008917 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008918 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00008919 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008920 pCell = findCell(pPage, iCellIdx);
drhb0ea9432019-02-09 21:06:40 +00008921 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
danielk19774dbaa892009-06-16 16:50:22 +00008922
drhbfc7a8b2016-04-09 17:04:05 +00008923 /* If the bPreserve flag is set to true, then the cursor position must
8924 ** be preserved following this delete operation. If the current delete
8925 ** will cause a b-tree rebalance, then this is done by saving the cursor
8926 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8927 ** returning.
8928 **
8929 ** Or, if the current delete will not cause a rebalance, then the cursor
8930 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8931 ** before or after the deleted entry. In this case set bSkipnext to true. */
8932 if( bPreserve ){
8933 if( !pPage->leaf
8934 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00008935 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00008936 ){
8937 /* A b-tree rebalance will be required after deleting this entry.
8938 ** Save the cursor key. */
8939 rc = saveCursorKey(pCur);
8940 if( rc ) return rc;
8941 }else{
8942 bSkipnext = 1;
8943 }
8944 }
8945
danielk19774dbaa892009-06-16 16:50:22 +00008946 /* If the page containing the entry to delete is not a leaf page, move
8947 ** the cursor to the largest entry in the tree that is smaller than
8948 ** the entry being deleted. This cell will replace the cell being deleted
8949 ** from the internal node. The 'previous' entry is used for this instead
8950 ** of the 'next' entry, as the previous entry is always a part of the
8951 ** sub-tree headed by the child page of the cell being deleted. This makes
8952 ** balancing the tree following the delete operation easier. */
8953 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008954 rc = sqlite3BtreePrevious(pCur, 0);
8955 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008956 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008957 }
8958
8959 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008960 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008961 if( pCur->curFlags & BTCF_Multiple ){
8962 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8963 if( rc ) return rc;
8964 }
drhd60f4f42012-03-23 14:23:52 +00008965
8966 /* If this is a delete operation to remove a row from a table b-tree,
8967 ** invalidate any incrblob cursors open on the row being deleted. */
8968 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008969 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008970 }
8971
danf0ee1d32015-09-12 19:26:11 +00008972 /* Make the page containing the entry to be deleted writable. Then free any
8973 ** overflow pages associated with the entry and finally remove the cell
8974 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008975 rc = sqlite3PagerWrite(pPage->pDbPage);
8976 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008977 rc = clearCell(pPage, pCell, &info);
8978 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008979 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008980
danielk19774dbaa892009-06-16 16:50:22 +00008981 /* If the cell deleted was not located on a leaf page, then the cursor
8982 ** is currently pointing to the largest entry in the sub-tree headed
8983 ** by the child-page of the cell that was just deleted from an internal
8984 ** node. The cell from the leaf node needs to be moved to the internal
8985 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008986 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00008987 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008988 int nCell;
drh352a35a2017-08-15 03:46:47 +00008989 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00008990 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008991
drhb0ea9432019-02-09 21:06:40 +00008992 if( pLeaf->nFree<0 ){
8993 rc = btreeComputeFreeSpace(pLeaf);
8994 if( rc ) return rc;
8995 }
drh352a35a2017-08-15 03:46:47 +00008996 if( iCellDepth<pCur->iPage-1 ){
8997 n = pCur->apPage[iCellDepth+1]->pgno;
8998 }else{
8999 n = pCur->pPage->pgno;
9000 }
danielk19774dbaa892009-06-16 16:50:22 +00009001 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00009002 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00009003 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00009004 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00009005 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009006 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00009007 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00009008 if( rc==SQLITE_OK ){
9009 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9010 }
drh98add2e2009-07-20 17:11:49 +00009011 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00009012 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00009013 }
danielk19774dbaa892009-06-16 16:50:22 +00009014
9015 /* Balance the tree. If the entry deleted was located on a leaf page,
9016 ** then the cursor still points to that page. In this case the first
9017 ** call to balance() repairs the tree, and the if(...) condition is
9018 ** never true.
9019 **
9020 ** Otherwise, if the entry deleted was on an internal node page, then
9021 ** pCur is pointing to the leaf page from which a cell was removed to
9022 ** replace the cell deleted from the internal node. This is slightly
9023 ** tricky as the leaf node may be underfull, and the internal node may
9024 ** be either under or overfull. In this case run the balancing algorithm
9025 ** on the leaf node first. If the balance proceeds far enough up the
9026 ** tree that we can be sure that any problem in the internal node has
9027 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9028 ** walk the cursor up the tree to the internal node and balance it as
9029 ** well. */
9030 rc = balance(pCur);
9031 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00009032 releasePageNotNull(pCur->pPage);
9033 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00009034 while( pCur->iPage>iCellDepth ){
9035 releasePage(pCur->apPage[pCur->iPage--]);
9036 }
drh352a35a2017-08-15 03:46:47 +00009037 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00009038 rc = balance(pCur);
9039 }
9040
danielk19776b456a22005-03-21 04:04:02 +00009041 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00009042 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00009043 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00009044 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00009045 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00009046 pCur->eState = CURSOR_SKIPNEXT;
9047 if( iCellIdx>=pPage->nCell ){
9048 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00009049 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00009050 }else{
9051 pCur->skipNext = 1;
9052 }
9053 }else{
9054 rc = moveToRoot(pCur);
9055 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00009056 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00009057 pCur->eState = CURSOR_REQUIRESEEK;
9058 }
drh44548e72017-08-14 18:13:52 +00009059 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00009060 }
danielk19776b456a22005-03-21 04:04:02 +00009061 }
drh5e2f8b92001-05-28 00:41:15 +00009062 return rc;
drh3b7511c2001-05-26 13:15:44 +00009063}
drh8b2f49b2001-06-08 00:21:52 +00009064
9065/*
drhc6b52df2002-01-04 03:09:29 +00009066** Create a new BTree table. Write into *piTable the page
9067** number for the root page of the new table.
9068**
drhab01f612004-05-22 02:55:23 +00009069** The type of type is determined by the flags parameter. Only the
9070** following values of flags are currently in use. Other values for
9071** flags might not work:
9072**
9073** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9074** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00009075*/
drhd4187c72010-08-30 22:15:45 +00009076static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00009077 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009078 MemPage *pRoot;
9079 Pgno pgnoRoot;
9080 int rc;
drhd4187c72010-08-30 22:15:45 +00009081 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00009082
drh1fee73e2007-08-29 04:00:57 +00009083 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009084 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009085 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00009086
danielk1977003ba062004-11-04 02:57:33 +00009087#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00009088 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00009089 if( rc ){
9090 return rc;
9091 }
danielk1977003ba062004-11-04 02:57:33 +00009092#else
danielk1977687566d2004-11-02 12:56:41 +00009093 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009094 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9095 MemPage *pPageMove; /* The page to move to. */
9096
danielk197720713f32007-05-03 11:43:33 +00009097 /* Creating a new table may probably require moving an existing database
9098 ** to make room for the new tables root page. In case this page turns
9099 ** out to be an overflow page, delete all overflow page-map caches
9100 ** held by open cursors.
9101 */
danielk197792d4d7a2007-05-04 12:05:56 +00009102 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009103
danielk1977003ba062004-11-04 02:57:33 +00009104 /* Read the value of meta[3] from the database to determine where the
9105 ** root page of the new table should go. meta[3] is the largest root-page
9106 ** created so far, so the new root-page is (meta[3]+1).
9107 */
danielk1977602b4662009-07-02 07:47:33 +00009108 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00009109 pgnoRoot++;
9110
danielk1977599fcba2004-11-08 07:13:13 +00009111 /* The new root-page may not be allocated on a pointer-map page, or the
9112 ** PENDING_BYTE page.
9113 */
drh72190432008-01-31 14:54:43 +00009114 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009115 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009116 pgnoRoot++;
9117 }
drh499e15b2015-05-22 12:37:37 +00009118 assert( pgnoRoot>=3 || CORRUPT_DB );
9119 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00009120
9121 /* Allocate a page. The page that currently resides at pgnoRoot will
9122 ** be moved to the allocated page (unless the allocated page happens
9123 ** to reside at pgnoRoot).
9124 */
dan51f0b6d2013-02-22 20:16:34 +00009125 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009126 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009127 return rc;
9128 }
danielk1977003ba062004-11-04 02:57:33 +00009129
9130 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009131 /* pgnoRoot is the page that will be used for the root-page of
9132 ** the new table (assuming an error did not occur). But we were
9133 ** allocated pgnoMove. If required (i.e. if it was not allocated
9134 ** by extending the file), the current page at position pgnoMove
9135 ** is already journaled.
9136 */
drheeb844a2009-08-08 18:01:07 +00009137 u8 eType = 0;
9138 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009139
danf7679ad2013-04-03 11:38:36 +00009140 /* Save the positions of any open cursors. This is required in
9141 ** case they are holding a reference to an xFetch reference
9142 ** corresponding to page pgnoRoot. */
9143 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009144 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009145 if( rc!=SQLITE_OK ){
9146 return rc;
9147 }
danielk1977f35843b2007-04-07 15:03:17 +00009148
9149 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009150 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009151 if( rc!=SQLITE_OK ){
9152 return rc;
9153 }
9154 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009155 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9156 rc = SQLITE_CORRUPT_BKPT;
9157 }
9158 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009159 releasePage(pRoot);
9160 return rc;
9161 }
drhccae6022005-02-26 17:31:26 +00009162 assert( eType!=PTRMAP_ROOTPAGE );
9163 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009164 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009165 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009166
9167 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009168 if( rc!=SQLITE_OK ){
9169 return rc;
9170 }
drhb00fc3b2013-08-21 23:42:32 +00009171 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009172 if( rc!=SQLITE_OK ){
9173 return rc;
9174 }
danielk19773b8a05f2007-03-19 17:44:26 +00009175 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009176 if( rc!=SQLITE_OK ){
9177 releasePage(pRoot);
9178 return rc;
9179 }
9180 }else{
9181 pRoot = pPageMove;
9182 }
9183
danielk197742741be2005-01-08 12:42:39 +00009184 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009185 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009186 if( rc ){
9187 releasePage(pRoot);
9188 return rc;
9189 }
drhbf592832010-03-30 15:51:12 +00009190
9191 /* When the new root page was allocated, page 1 was made writable in
9192 ** order either to increase the database filesize, or to decrement the
9193 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9194 */
9195 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009196 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009197 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009198 releasePage(pRoot);
9199 return rc;
9200 }
danielk197742741be2005-01-08 12:42:39 +00009201
danielk1977003ba062004-11-04 02:57:33 +00009202 }else{
drh4f0c5872007-03-26 22:05:01 +00009203 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009204 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009205 }
9206#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009207 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009208 if( createTabFlags & BTREE_INTKEY ){
9209 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9210 }else{
9211 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9212 }
9213 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009214 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009215 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00009216 *piTable = (int)pgnoRoot;
9217 return SQLITE_OK;
9218}
drhd677b3d2007-08-20 22:48:41 +00009219int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
9220 int rc;
9221 sqlite3BtreeEnter(p);
9222 rc = btreeCreateTable(p, piTable, flags);
9223 sqlite3BtreeLeave(p);
9224 return rc;
9225}
drh8b2f49b2001-06-08 00:21:52 +00009226
9227/*
9228** Erase the given database page and all its children. Return
9229** the page to the freelist.
9230*/
drh4b70f112004-05-02 21:12:19 +00009231static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00009232 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00009233 Pgno pgno, /* Page number to clear */
9234 int freePageFlag, /* Deallocate page if true */
9235 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00009236){
danielk1977146ba992009-07-22 14:08:13 +00009237 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00009238 int rc;
drh4b70f112004-05-02 21:12:19 +00009239 unsigned char *pCell;
9240 int i;
dan8ce71842014-01-14 20:14:09 +00009241 int hdr;
drh80159da2016-12-09 17:32:51 +00009242 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00009243
drh1fee73e2007-08-29 04:00:57 +00009244 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00009245 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00009246 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00009247 }
drh28f58dd2015-06-27 19:45:03 +00009248 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00009249 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00009250 if( pPage->bBusy ){
9251 rc = SQLITE_CORRUPT_BKPT;
9252 goto cleardatabasepage_out;
9253 }
9254 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00009255 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00009256 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00009257 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00009258 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00009259 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009260 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009261 }
drh80159da2016-12-09 17:32:51 +00009262 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00009263 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009264 }
drha34b6762004-05-07 13:30:42 +00009265 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00009266 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009267 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00009268 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00009269 assert( pPage->intKey || CORRUPT_DB );
9270 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00009271 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00009272 }
9273 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00009274 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00009275 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00009276 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00009277 }
danielk19776b456a22005-03-21 04:04:02 +00009278
9279cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00009280 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00009281 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00009282 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009283}
9284
9285/*
drhab01f612004-05-22 02:55:23 +00009286** Delete all information from a single table in the database. iTable is
9287** the page number of the root of the table. After this routine returns,
9288** the root page is empty, but still exists.
9289**
9290** This routine will fail with SQLITE_LOCKED if there are any open
9291** read cursors on the table. Open write cursors are moved to the
9292** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00009293**
9294** If pnChange is not NULL, then table iTable must be an intkey table. The
9295** integer value pointed to by pnChange is incremented by the number of
9296** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00009297*/
danielk1977c7af4842008-10-27 13:59:33 +00009298int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00009299 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009300 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009301 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009302 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009303
drhc046e3e2009-07-15 11:26:44 +00009304 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009305
drhc046e3e2009-07-15 11:26:44 +00009306 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009307 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9308 ** is the root of a table b-tree - if it is not, the following call is
9309 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00009310 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00009311 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009312 }
drhd677b3d2007-08-20 22:48:41 +00009313 sqlite3BtreeLeave(p);
9314 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009315}
9316
9317/*
drh079a3072014-03-19 14:10:55 +00009318** Delete all information from the single table that pCur is open on.
9319**
9320** This routine only work for pCur on an ephemeral table.
9321*/
9322int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9323 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9324}
9325
9326/*
drh8b2f49b2001-06-08 00:21:52 +00009327** Erase all information in a table and add the root of the table to
9328** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009329** page 1) is never added to the freelist.
9330**
9331** This routine will fail with SQLITE_LOCKED if there are any open
9332** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009333**
9334** If AUTOVACUUM is enabled and the page at iTable is not the last
9335** root page in the database file, then the last root page
9336** in the database file is moved into the slot formerly occupied by
9337** iTable and that last slot formerly occupied by the last root page
9338** is added to the freelist instead of iTable. In this say, all
9339** root pages are kept at the beginning of the database file, which
9340** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9341** page number that used to be the last root page in the file before
9342** the move. If no page gets moved, *piMoved is set to 0.
9343** The last root page is recorded in meta[3] and the value of
9344** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009345*/
danielk197789d40042008-11-17 14:20:56 +00009346static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009347 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009348 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009349 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009350
drh1fee73e2007-08-29 04:00:57 +00009351 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009352 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009353 assert( iTable>=2 );
drh9a518842019-03-08 01:52:30 +00009354 if( iTable>btreePagecount(pBt) ){
9355 return SQLITE_CORRUPT_BKPT;
9356 }
drh055f2982016-01-15 15:06:41 +00009357
drhb00fc3b2013-08-21 23:42:32 +00009358 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00009359 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00009360 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00009361 if( rc ){
9362 releasePage(pPage);
9363 return rc;
9364 }
danielk1977a0bf2652004-11-04 14:30:04 +00009365
drh205f48e2004-11-05 00:43:11 +00009366 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009367
danielk1977a0bf2652004-11-04 14:30:04 +00009368#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009369 freePage(pPage, &rc);
9370 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009371#else
drh055f2982016-01-15 15:06:41 +00009372 if( pBt->autoVacuum ){
9373 Pgno maxRootPgno;
9374 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009375
drh055f2982016-01-15 15:06:41 +00009376 if( iTable==maxRootPgno ){
9377 /* If the table being dropped is the table with the largest root-page
9378 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009379 */
drhc314dc72009-07-21 11:52:34 +00009380 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009381 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009382 if( rc!=SQLITE_OK ){
9383 return rc;
9384 }
9385 }else{
9386 /* The table being dropped does not have the largest root-page
9387 ** number in the database. So move the page that does into the
9388 ** gap left by the deleted root-page.
9389 */
9390 MemPage *pMove;
9391 releasePage(pPage);
9392 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9393 if( rc!=SQLITE_OK ){
9394 return rc;
9395 }
9396 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9397 releasePage(pMove);
9398 if( rc!=SQLITE_OK ){
9399 return rc;
9400 }
9401 pMove = 0;
9402 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9403 freePage(pMove, &rc);
9404 releasePage(pMove);
9405 if( rc!=SQLITE_OK ){
9406 return rc;
9407 }
9408 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009409 }
drh055f2982016-01-15 15:06:41 +00009410
9411 /* Set the new 'max-root-page' value in the database header. This
9412 ** is the old value less one, less one more if that happens to
9413 ** be a root-page number, less one again if that is the
9414 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009415 */
drh055f2982016-01-15 15:06:41 +00009416 maxRootPgno--;
9417 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9418 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9419 maxRootPgno--;
9420 }
9421 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9422
9423 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9424 }else{
9425 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009426 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009427 }
drh055f2982016-01-15 15:06:41 +00009428#endif
drh8b2f49b2001-06-08 00:21:52 +00009429 return rc;
9430}
drhd677b3d2007-08-20 22:48:41 +00009431int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9432 int rc;
9433 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009434 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009435 sqlite3BtreeLeave(p);
9436 return rc;
9437}
drh8b2f49b2001-06-08 00:21:52 +00009438
drh001bbcb2003-03-19 03:14:00 +00009439
drh8b2f49b2001-06-08 00:21:52 +00009440/*
danielk1977602b4662009-07-02 07:47:33 +00009441** This function may only be called if the b-tree connection already
9442** has a read or write transaction open on the database.
9443**
drh23e11ca2004-05-04 17:27:28 +00009444** Read the meta-information out of a database file. Meta[0]
9445** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009446** through meta[15] are available for use by higher layers. Meta[0]
9447** is read-only, the others are read/write.
9448**
9449** The schema layer numbers meta values differently. At the schema
9450** layer (and the SetCookie and ReadCookie opcodes) the number of
9451** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009452**
9453** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9454** of reading the value out of the header, it instead loads the "DataVersion"
9455** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9456** database file. It is a number computed by the pager. But its access
9457** pattern is the same as header meta values, and so it is convenient to
9458** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009459*/
danielk1977602b4662009-07-02 07:47:33 +00009460void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009461 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009462
drhd677b3d2007-08-20 22:48:41 +00009463 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009464 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00009465 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009466 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009467 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009468
drh91618562014-12-19 19:28:02 +00009469 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00009470 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00009471 }else{
9472 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9473 }
drhae157872004-08-14 19:20:09 +00009474
danielk1977602b4662009-07-02 07:47:33 +00009475 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9476 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009477#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009478 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9479 pBt->btsFlags |= BTS_READ_ONLY;
9480 }
danielk1977003ba062004-11-04 02:57:33 +00009481#endif
drhae157872004-08-14 19:20:09 +00009482
drhd677b3d2007-08-20 22:48:41 +00009483 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009484}
9485
9486/*
drh23e11ca2004-05-04 17:27:28 +00009487** Write meta-information back into the database. Meta[0] is
9488** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009489*/
danielk1977aef0bf62005-12-30 16:28:01 +00009490int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9491 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009492 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009493 int rc;
drh23e11ca2004-05-04 17:27:28 +00009494 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009495 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009496 assert( p->inTrans==TRANS_WRITE );
9497 assert( pBt->pPage1!=0 );
9498 pP1 = pBt->pPage1->aData;
9499 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9500 if( rc==SQLITE_OK ){
9501 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009502#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009503 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009504 assert( pBt->autoVacuum || iMeta==0 );
9505 assert( iMeta==0 || iMeta==1 );
9506 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009507 }
drh64022502009-01-09 14:11:04 +00009508#endif
drh5df72a52002-06-06 23:16:05 +00009509 }
drhd677b3d2007-08-20 22:48:41 +00009510 sqlite3BtreeLeave(p);
9511 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009512}
drh8c42ca92001-06-22 19:15:00 +00009513
danielk1977a5533162009-02-24 10:01:51 +00009514#ifndef SQLITE_OMIT_BTREECOUNT
9515/*
9516** The first argument, pCur, is a cursor opened on some b-tree. Count the
9517** number of entries in the b-tree and write the result to *pnEntry.
9518**
9519** SQLITE_OK is returned if the operation is successfully executed.
9520** Otherwise, if an error is encountered (i.e. an IO error or database
9521** corruption) an SQLite error code is returned.
9522*/
drh21f6daa2019-10-11 14:21:48 +00009523int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
danielk1977a5533162009-02-24 10:01:51 +00009524 i64 nEntry = 0; /* Value to return in *pnEntry */
9525 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009526
drh44548e72017-08-14 18:13:52 +00009527 rc = moveToRoot(pCur);
9528 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009529 *pnEntry = 0;
9530 return SQLITE_OK;
9531 }
danielk1977a5533162009-02-24 10:01:51 +00009532
9533 /* Unless an error occurs, the following loop runs one iteration for each
9534 ** page in the B-Tree structure (not including overflow pages).
9535 */
drh21f6daa2019-10-11 14:21:48 +00009536 while( rc==SQLITE_OK && !db->u1.isInterrupted ){
danielk1977a5533162009-02-24 10:01:51 +00009537 int iIdx; /* Index of child node in parent */
9538 MemPage *pPage; /* Current page of the b-tree */
9539
9540 /* If this is a leaf page or the tree is not an int-key tree, then
9541 ** this page contains countable entries. Increment the entry counter
9542 ** accordingly.
9543 */
drh352a35a2017-08-15 03:46:47 +00009544 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009545 if( pPage->leaf || !pPage->intKey ){
9546 nEntry += pPage->nCell;
9547 }
9548
9549 /* pPage is a leaf node. This loop navigates the cursor so that it
9550 ** points to the first interior cell that it points to the parent of
9551 ** the next page in the tree that has not yet been visited. The
9552 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9553 ** of the page, or to the number of cells in the page if the next page
9554 ** to visit is the right-child of its parent.
9555 **
9556 ** If all pages in the tree have been visited, return SQLITE_OK to the
9557 ** caller.
9558 */
9559 if( pPage->leaf ){
9560 do {
9561 if( pCur->iPage==0 ){
9562 /* All pages of the b-tree have been visited. Return successfully. */
9563 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009564 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009565 }
danielk197730548662009-07-09 05:07:37 +00009566 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009567 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009568
drh75e96b32017-04-01 00:20:06 +00009569 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009570 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009571 }
9572
9573 /* Descend to the child node of the cell that the cursor currently
9574 ** points at. This is the right-child if (iIdx==pPage->nCell).
9575 */
drh75e96b32017-04-01 00:20:06 +00009576 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009577 if( iIdx==pPage->nCell ){
9578 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9579 }else{
9580 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9581 }
9582 }
9583
shanebe217792009-03-05 04:20:31 +00009584 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009585 return rc;
9586}
9587#endif
drhdd793422001-06-28 01:54:48 +00009588
drhdd793422001-06-28 01:54:48 +00009589/*
drh5eddca62001-06-30 21:53:53 +00009590** Return the pager associated with a BTree. This routine is used for
9591** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009592*/
danielk1977aef0bf62005-12-30 16:28:01 +00009593Pager *sqlite3BtreePager(Btree *p){
9594 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009595}
drh5eddca62001-06-30 21:53:53 +00009596
drhb7f91642004-10-31 02:22:47 +00009597#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009598/*
9599** Append a message to the error message string.
9600*/
drh2e38c322004-09-03 18:38:44 +00009601static void checkAppendMsg(
9602 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009603 const char *zFormat,
9604 ...
9605){
9606 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009607 if( !pCheck->mxErr ) return;
9608 pCheck->mxErr--;
9609 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009610 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009611 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +00009612 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009613 }
drh867db832014-09-26 02:41:05 +00009614 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +00009615 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009616 }
drh0cdbe1a2018-05-09 13:46:26 +00009617 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009618 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +00009619 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009620 pCheck->mallocFailed = 1;
9621 }
drh5eddca62001-06-30 21:53:53 +00009622}
drhb7f91642004-10-31 02:22:47 +00009623#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009624
drhb7f91642004-10-31 02:22:47 +00009625#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009626
9627/*
9628** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9629** corresponds to page iPg is already set.
9630*/
9631static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9632 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9633 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9634}
9635
9636/*
9637** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9638*/
9639static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9640 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9641 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9642}
9643
9644
drh5eddca62001-06-30 21:53:53 +00009645/*
9646** Add 1 to the reference count for page iPage. If this is the second
9647** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009648** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009649** if this is the first reference to the page.
9650**
9651** Also check that the page number is in bounds.
9652*/
drh867db832014-09-26 02:41:05 +00009653static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +00009654 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +00009655 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009656 return 1;
9657 }
dan1235bb12012-04-03 17:43:28 +00009658 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009659 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009660 return 1;
9661 }
drh21f6daa2019-10-11 14:21:48 +00009662 if( pCheck->db->u1.isInterrupted ) return 1;
dan1235bb12012-04-03 17:43:28 +00009663 setPageReferenced(pCheck, iPage);
9664 return 0;
drh5eddca62001-06-30 21:53:53 +00009665}
9666
danielk1977afcdd022004-10-31 16:25:42 +00009667#ifndef SQLITE_OMIT_AUTOVACUUM
9668/*
9669** Check that the entry in the pointer-map for page iChild maps to
9670** page iParent, pointer type ptrType. If not, append an error message
9671** to pCheck.
9672*/
9673static void checkPtrmap(
9674 IntegrityCk *pCheck, /* Integrity check context */
9675 Pgno iChild, /* Child page number */
9676 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009677 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009678){
9679 int rc;
9680 u8 ePtrmapType;
9681 Pgno iPtrmapParent;
9682
9683 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9684 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009685 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009686 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009687 return;
9688 }
9689
9690 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009691 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009692 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9693 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9694 }
9695}
9696#endif
9697
drh5eddca62001-06-30 21:53:53 +00009698/*
9699** Check the integrity of the freelist or of an overflow page list.
9700** Verify that the number of pages on the list is N.
9701*/
drh30e58752002-03-02 20:41:57 +00009702static void checkList(
9703 IntegrityCk *pCheck, /* Integrity checking context */
9704 int isFreeList, /* True for a freelist. False for overflow page list */
9705 int iPage, /* Page number for first page in the list */
drheaac9992019-02-26 16:17:06 +00009706 u32 N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009707){
9708 int i;
drheaac9992019-02-26 16:17:06 +00009709 u32 expected = N;
drh91d58662018-07-20 13:39:28 +00009710 int nErrAtStart = pCheck->nErr;
9711 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009712 DbPage *pOvflPage;
9713 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +00009714 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +00009715 N--;
drh9584f582015-11-04 20:22:37 +00009716 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009717 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009718 break;
9719 }
danielk19773b8a05f2007-03-19 17:44:26 +00009720 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009721 if( isFreeList ){
drhae104742018-12-14 17:57:01 +00009722 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009723#ifndef SQLITE_OMIT_AUTOVACUUM
9724 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009725 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009726 }
9727#endif
drhae104742018-12-14 17:57:01 +00009728 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009729 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009730 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009731 N--;
9732 }else{
drhae104742018-12-14 17:57:01 +00009733 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009734 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009735#ifndef SQLITE_OMIT_AUTOVACUUM
9736 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009737 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009738 }
9739#endif
drh867db832014-09-26 02:41:05 +00009740 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009741 }
9742 N -= n;
drh30e58752002-03-02 20:41:57 +00009743 }
drh30e58752002-03-02 20:41:57 +00009744 }
danielk1977afcdd022004-10-31 16:25:42 +00009745#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009746 else{
9747 /* If this database supports auto-vacuum and iPage is not the last
9748 ** page in this overflow list, check that the pointer-map entry for
9749 ** the following page matches iPage.
9750 */
9751 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009752 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009753 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009754 }
danielk1977afcdd022004-10-31 16:25:42 +00009755 }
9756#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009757 iPage = get4byte(pOvflData);
9758 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +00009759 }
9760 if( N && nErrAtStart==pCheck->nErr ){
9761 checkAppendMsg(pCheck,
9762 "%s is %d but should be %d",
9763 isFreeList ? "size" : "overflow list length",
9764 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +00009765 }
9766}
drhb7f91642004-10-31 02:22:47 +00009767#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009768
drh67731a92015-04-16 11:56:03 +00009769/*
9770** An implementation of a min-heap.
9771**
9772** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009773** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009774** and aHeap[N*2+1].
9775**
9776** The heap property is this: Every node is less than or equal to both
9777** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009778** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009779**
9780** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9781** the heap, preserving the heap property. The btreeHeapPull() routine
9782** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009783** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009784** property.
9785**
9786** This heap is used for cell overlap and coverage testing. Each u32
9787** entry represents the span of a cell or freeblock on a btree page.
9788** The upper 16 bits are the index of the first byte of a range and the
9789** lower 16 bits are the index of the last byte of that range.
9790*/
9791static void btreeHeapInsert(u32 *aHeap, u32 x){
9792 u32 j, i = ++aHeap[0];
9793 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009794 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009795 x = aHeap[j];
9796 aHeap[j] = aHeap[i];
9797 aHeap[i] = x;
9798 i = j;
9799 }
9800}
9801static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9802 u32 j, i, x;
9803 if( (x = aHeap[0])==0 ) return 0;
9804 *pOut = aHeap[1];
9805 aHeap[1] = aHeap[x];
9806 aHeap[x] = 0xffffffff;
9807 aHeap[0]--;
9808 i = 1;
9809 while( (j = i*2)<=aHeap[0] ){
9810 if( aHeap[j]>aHeap[j+1] ) j++;
9811 if( aHeap[i]<aHeap[j] ) break;
9812 x = aHeap[i];
9813 aHeap[i] = aHeap[j];
9814 aHeap[j] = x;
9815 i = j;
9816 }
9817 return 1;
9818}
9819
drhb7f91642004-10-31 02:22:47 +00009820#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009821/*
9822** Do various sanity checks on a single page of a tree. Return
9823** the tree depth. Root pages return 0. Parents of root pages
9824** return 1, and so forth.
9825**
9826** These checks are done:
9827**
9828** 1. Make sure that cells and freeblocks do not overlap
9829** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009830** 2. Make sure integer cell keys are in order.
9831** 3. Check the integrity of overflow pages.
9832** 4. Recursively call checkTreePage on all children.
9833** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009834*/
9835static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009836 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009837 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009838 i64 *piMinKey, /* Write minimum integer primary key here */
9839 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009840){
drhcbc6b712015-07-02 16:17:30 +00009841 MemPage *pPage = 0; /* The page being analyzed */
9842 int i; /* Loop counter */
9843 int rc; /* Result code from subroutine call */
9844 int depth = -1, d2; /* Depth of a subtree */
9845 int pgno; /* Page number */
9846 int nFrag; /* Number of fragmented bytes on the page */
9847 int hdr; /* Offset to the page header */
9848 int cellStart; /* Offset to the start of the cell pointer array */
9849 int nCell; /* Number of cells */
9850 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9851 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9852 ** False if IPK must be strictly less than maxKey */
9853 u8 *data; /* Page content */
9854 u8 *pCell; /* Cell content */
9855 u8 *pCellIdx; /* Next element of the cell pointer array */
9856 BtShared *pBt; /* The BtShared object that owns pPage */
9857 u32 pc; /* Address of a cell */
9858 u32 usableSize; /* Usable size of the page */
9859 u32 contentOffset; /* Offset to the start of the cell content area */
9860 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009861 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009862 const char *saved_zPfx = pCheck->zPfx;
9863 int saved_v1 = pCheck->v1;
9864 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009865 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009866
drh5eddca62001-06-30 21:53:53 +00009867 /* Check that the page exists
9868 */
drhd9cb6ac2005-10-20 07:28:17 +00009869 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009870 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009871 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009872 if( checkRef(pCheck, iPage) ) return 0;
9873 pCheck->zPfx = "Page %d: ";
9874 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009875 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009876 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009877 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009878 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009879 }
danielk197793caf5a2009-07-11 06:55:33 +00009880
9881 /* Clear MemPage.isInit to make sure the corruption detection code in
9882 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009883 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009884 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009885 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009886 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009887 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009888 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009889 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009890 }
drhb0ea9432019-02-09 21:06:40 +00009891 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
9892 assert( rc==SQLITE_CORRUPT );
9893 checkAppendMsg(pCheck, "free space corruption", rc);
9894 goto end_of_check;
9895 }
drhcbc6b712015-07-02 16:17:30 +00009896 data = pPage->aData;
9897 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009898
drhcbc6b712015-07-02 16:17:30 +00009899 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009900 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009901 contentOffset = get2byteNotZero(&data[hdr+5]);
9902 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9903
9904 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9905 ** number of cells on the page. */
9906 nCell = get2byte(&data[hdr+3]);
9907 assert( pPage->nCell==nCell );
9908
9909 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9910 ** immediately follows the b-tree page header. */
9911 cellStart = hdr + 12 - 4*pPage->leaf;
9912 assert( pPage->aCellIdx==&data[cellStart] );
9913 pCellIdx = &data[cellStart + 2*(nCell-1)];
9914
9915 if( !pPage->leaf ){
9916 /* Analyze the right-child page of internal pages */
9917 pgno = get4byte(&data[hdr+8]);
9918#ifndef SQLITE_OMIT_AUTOVACUUM
9919 if( pBt->autoVacuum ){
9920 pCheck->zPfx = "On page %d at right child: ";
9921 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9922 }
9923#endif
9924 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9925 keyCanBeEqual = 0;
9926 }else{
9927 /* For leaf pages, the coverage check will occur in the same loop
9928 ** as the other cell checks, so initialize the heap. */
9929 heap = pCheck->heap;
9930 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009931 }
9932
drhcbc6b712015-07-02 16:17:30 +00009933 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9934 ** integer offsets to the cell contents. */
9935 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009936 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009937
drhcbc6b712015-07-02 16:17:30 +00009938 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009939 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009940 assert( pCellIdx==&data[cellStart + i*2] );
9941 pc = get2byteAligned(pCellIdx);
9942 pCellIdx -= 2;
9943 if( pc<contentOffset || pc>usableSize-4 ){
9944 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9945 pc, contentOffset, usableSize-4);
9946 doCoverageCheck = 0;
9947 continue;
shaneh195475d2010-02-19 04:28:08 +00009948 }
drhcbc6b712015-07-02 16:17:30 +00009949 pCell = &data[pc];
9950 pPage->xParseCell(pPage, pCell, &info);
9951 if( pc+info.nSize>usableSize ){
9952 checkAppendMsg(pCheck, "Extends off end of page");
9953 doCoverageCheck = 0;
9954 continue;
drh5eddca62001-06-30 21:53:53 +00009955 }
9956
drhcbc6b712015-07-02 16:17:30 +00009957 /* Check for integer primary key out of range */
9958 if( pPage->intKey ){
9959 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9960 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9961 }
9962 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009963 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009964 }
9965
9966 /* Check the content overflow list */
9967 if( info.nPayload>info.nLocal ){
drheaac9992019-02-26 16:17:06 +00009968 u32 nPage; /* Number of pages on the overflow chain */
drhcbc6b712015-07-02 16:17:30 +00009969 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009970 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009971 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009972 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009973#ifndef SQLITE_OMIT_AUTOVACUUM
9974 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009975 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009976 }
9977#endif
drh867db832014-09-26 02:41:05 +00009978 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009979 }
9980
drh5eddca62001-06-30 21:53:53 +00009981 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009982 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009983 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009984#ifndef SQLITE_OMIT_AUTOVACUUM
9985 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009986 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009987 }
9988#endif
drhcbc6b712015-07-02 16:17:30 +00009989 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9990 keyCanBeEqual = 0;
9991 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009992 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009993 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009994 }
drhcbc6b712015-07-02 16:17:30 +00009995 }else{
9996 /* Populate the coverage-checking heap for leaf pages */
9997 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009998 }
9999 }
drhcbc6b712015-07-02 16:17:30 +000010000 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +000010001
drh5eddca62001-06-30 21:53:53 +000010002 /* Check for complete coverage of the page
10003 */
drh867db832014-09-26 02:41:05 +000010004 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +000010005 if( doCoverageCheck && pCheck->mxErr>0 ){
10006 /* For leaf pages, the min-heap has already been initialized and the
10007 ** cells have already been inserted. But for internal pages, that has
10008 ** not yet been done, so do it now */
10009 if( !pPage->leaf ){
10010 heap = pCheck->heap;
10011 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +000010012 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +000010013 u32 size;
10014 pc = get2byteAligned(&data[cellStart+i*2]);
10015 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +000010016 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +000010017 }
drh2e38c322004-09-03 18:38:44 +000010018 }
drhcbc6b712015-07-02 16:17:30 +000010019 /* Add the freeblocks to the min-heap
10020 **
10021 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +000010022 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +000010023 ** freeblocks on the page.
10024 */
drh8c2bbb62009-07-10 02:52:20 +000010025 i = get2byte(&data[hdr+1]);
10026 while( i>0 ){
10027 int size, j;
drh5860a612019-02-12 16:58:26 +000010028 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010029 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +000010030 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +000010031 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +000010032 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10033 ** big-endian integer which is the offset in the b-tree page of the next
10034 ** freeblock in the chain, or zero if the freeblock is the last on the
10035 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +000010036 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +000010037 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10038 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +000010039 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10040 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010041 i = j;
drh2e38c322004-09-03 18:38:44 +000010042 }
drhcbc6b712015-07-02 16:17:30 +000010043 /* Analyze the min-heap looking for overlap between cells and/or
10044 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +000010045 **
10046 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10047 ** There is an implied first entry the covers the page header, the cell
10048 ** pointer index, and the gap between the cell pointer index and the start
10049 ** of cell content.
10050 **
10051 ** The loop below pulls entries from the min-heap in order and compares
10052 ** the start_address against the previous end_address. If there is an
10053 ** overlap, that means bytes are used multiple times. If there is a gap,
10054 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +000010055 */
10056 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +000010057 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +000010058 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +000010059 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +000010060 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +000010061 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +000010062 break;
drh67731a92015-04-16 11:56:03 +000010063 }else{
drhcbc6b712015-07-02 16:17:30 +000010064 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +000010065 prev = x;
drh2e38c322004-09-03 18:38:44 +000010066 }
10067 }
drhcbc6b712015-07-02 16:17:30 +000010068 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +000010069 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10070 ** is stored in the fifth field of the b-tree page header.
10071 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10072 ** number of fragmented free bytes within the cell content area.
10073 */
drhcbc6b712015-07-02 16:17:30 +000010074 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +000010075 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +000010076 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +000010077 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +000010078 }
10079 }
drh867db832014-09-26 02:41:05 +000010080
10081end_of_check:
drh72e191e2015-07-04 11:14:20 +000010082 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +000010083 releasePage(pPage);
drh867db832014-09-26 02:41:05 +000010084 pCheck->zPfx = saved_zPfx;
10085 pCheck->v1 = saved_v1;
10086 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +000010087 return depth+1;
drh5eddca62001-06-30 21:53:53 +000010088}
drhb7f91642004-10-31 02:22:47 +000010089#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010090
drhb7f91642004-10-31 02:22:47 +000010091#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010092/*
10093** This routine does a complete check of the given BTree file. aRoot[] is
10094** an array of pages numbers were each page number is the root page of
10095** a table. nRoot is the number of entries in aRoot.
10096**
danielk19773509a652009-07-06 18:56:13 +000010097** A read-only or read-write transaction must be opened before calling
10098** this function.
10099**
drhc890fec2008-08-01 20:10:08 +000010100** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010101** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010102** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010103** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +000010104*/
drh1dcdbc02007-01-27 02:24:54 +000010105char *sqlite3BtreeIntegrityCheck(
drh21f6daa2019-10-11 14:21:48 +000010106 sqlite3 *db, /* Database connection that is running the check */
drh1dcdbc02007-01-27 02:24:54 +000010107 Btree *p, /* The btree to be checked */
10108 int *aRoot, /* An array of root pages numbers for individual trees */
10109 int nRoot, /* Number of entries in aRoot[] */
10110 int mxErr, /* Stop reporting errors after this many */
10111 int *pnErr /* Write number of errors seen to this variable */
10112){
danielk197789d40042008-11-17 14:20:56 +000010113 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010114 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010115 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010116 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010117 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +000010118 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +000010119
drhd677b3d2007-08-20 22:48:41 +000010120 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010121 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010122 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10123 assert( nRef>=0 );
drh21f6daa2019-10-11 14:21:48 +000010124 sCheck.db = db;
drh5eddca62001-06-30 21:53:53 +000010125 sCheck.pBt = pBt;
10126 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010127 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010128 sCheck.mxErr = mxErr;
10129 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +000010130 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +000010131 sCheck.zPfx = 0;
10132 sCheck.v1 = 0;
10133 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010134 sCheck.aPgRef = 0;
10135 sCheck.heap = 0;
10136 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010137 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010138 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010139 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010140 }
dan1235bb12012-04-03 17:43:28 +000010141
10142 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10143 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +000010144 sCheck.mallocFailed = 1;
10145 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010146 }
drhe05b3f82015-07-01 17:53:49 +000010147 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10148 if( sCheck.heap==0 ){
10149 sCheck.mallocFailed = 1;
10150 goto integrity_ck_cleanup;
10151 }
10152
drh42cac6d2004-11-20 20:31:11 +000010153 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010154 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010155
10156 /* Check the integrity of the freelist
10157 */
drh867db832014-09-26 02:41:05 +000010158 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +000010159 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +000010160 get4byte(&pBt->pPage1->aData[36]));
10161 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +000010162
10163 /* Check all the tables.
10164 */
drh040d77a2018-07-20 15:44:09 +000010165#ifndef SQLITE_OMIT_AUTOVACUUM
10166 if( pBt->autoVacuum ){
10167 int mx = 0;
10168 int mxInHdr;
10169 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10170 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10171 if( mx!=mxInHdr ){
10172 checkAppendMsg(&sCheck,
10173 "max rootpage (%d) disagrees with header (%d)",
10174 mx, mxInHdr
10175 );
10176 }
10177 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10178 checkAppendMsg(&sCheck,
10179 "incremental_vacuum enabled with a max rootpage of zero"
10180 );
10181 }
10182#endif
drhcbc6b712015-07-02 16:17:30 +000010183 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010184 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010185 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010186 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010187 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010188#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010189 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +000010190 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010191 }
10192#endif
drhcbc6b712015-07-02 16:17:30 +000010193 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000010194 }
drhcbc6b712015-07-02 16:17:30 +000010195 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000010196
10197 /* Make sure every page in the file is referenced
10198 */
drh1dcdbc02007-01-27 02:24:54 +000010199 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000010200#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +000010201 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +000010202 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +000010203 }
danielk1977afcdd022004-10-31 16:25:42 +000010204#else
10205 /* If the database supports auto-vacuum, make sure no tables contain
10206 ** references to pointer-map pages.
10207 */
dan1235bb12012-04-03 17:43:28 +000010208 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +000010209 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010210 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +000010211 }
dan1235bb12012-04-03 17:43:28 +000010212 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +000010213 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010214 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +000010215 }
10216#endif
drh5eddca62001-06-30 21:53:53 +000010217 }
10218
drh5eddca62001-06-30 21:53:53 +000010219 /* Clean up and report errors.
10220 */
drhe05b3f82015-07-01 17:53:49 +000010221integrity_ck_cleanup:
10222 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000010223 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +000010224 if( sCheck.mallocFailed ){
drh0cdbe1a2018-05-09 13:46:26 +000010225 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010226 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000010227 }
drh1dcdbc02007-01-27 02:24:54 +000010228 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000010229 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010230 /* Make sure this analysis did not leave any unref() pages. */
10231 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10232 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000010233 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000010234}
drhb7f91642004-10-31 02:22:47 +000010235#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000010236
drh73509ee2003-04-06 20:44:45 +000010237/*
drhd4e0bb02012-05-27 01:19:04 +000010238** Return the full pathname of the underlying database file. Return
10239** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000010240**
10241** The pager filename is invariant as long as the pager is
10242** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000010243*/
danielk1977aef0bf62005-12-30 16:28:01 +000010244const char *sqlite3BtreeGetFilename(Btree *p){
10245 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000010246 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000010247}
10248
10249/*
danielk19775865e3d2004-06-14 06:03:57 +000010250** Return the pathname of the journal file for this database. The return
10251** value of this routine is the same regardless of whether the journal file
10252** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000010253**
10254** The pager journal filename is invariant as long as the pager is
10255** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000010256*/
danielk1977aef0bf62005-12-30 16:28:01 +000010257const char *sqlite3BtreeGetJournalname(Btree *p){
10258 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000010259 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000010260}
10261
danielk19771d850a72004-05-31 08:26:49 +000010262/*
10263** Return non-zero if a transaction is active.
10264*/
danielk1977aef0bf62005-12-30 16:28:01 +000010265int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000010266 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +000010267 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +000010268}
10269
dana550f2d2010-08-02 10:47:05 +000010270#ifndef SQLITE_OMIT_WAL
10271/*
10272** Run a checkpoint on the Btree passed as the first argument.
10273**
10274** Return SQLITE_LOCKED if this or any other connection has an open
10275** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000010276**
dancdc1f042010-11-18 12:11:05 +000010277** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000010278*/
dancdc1f042010-11-18 12:11:05 +000010279int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000010280 int rc = SQLITE_OK;
10281 if( p ){
10282 BtShared *pBt = p->pBt;
10283 sqlite3BtreeEnter(p);
10284 if( pBt->inTransaction!=TRANS_NONE ){
10285 rc = SQLITE_LOCKED;
10286 }else{
dan7fb89902016-08-12 16:21:15 +000010287 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000010288 }
10289 sqlite3BtreeLeave(p);
10290 }
10291 return rc;
10292}
10293#endif
10294
danielk19771d850a72004-05-31 08:26:49 +000010295/*
danielk19772372c2b2006-06-27 16:34:56 +000010296** Return non-zero if a read (or write) transaction is active.
10297*/
10298int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +000010299 assert( p );
drhe5fe6902007-12-07 18:55:28 +000010300 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +000010301 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +000010302}
10303
danielk197704103022009-02-03 16:51:24 +000010304int sqlite3BtreeIsInBackup(Btree *p){
10305 assert( p );
10306 assert( sqlite3_mutex_held(p->db->mutex) );
10307 return p->nBackup!=0;
10308}
10309
danielk19772372c2b2006-06-27 16:34:56 +000010310/*
danielk1977da184232006-01-05 11:34:32 +000010311** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010312** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010313** purposes (for example, to store a high-level schema associated with
10314** the shared-btree). The btree layer manages reference counting issues.
10315**
10316** The first time this is called on a shared-btree, nBytes bytes of memory
10317** are allocated, zeroed, and returned to the caller. For each subsequent
10318** call the nBytes parameter is ignored and a pointer to the same blob
10319** of memory returned.
10320**
danielk1977171bfed2008-06-23 09:50:50 +000010321** If the nBytes parameter is 0 and the blob of memory has not yet been
10322** allocated, a null pointer is returned. If the blob has already been
10323** allocated, it is returned as normal.
10324**
danielk1977da184232006-01-05 11:34:32 +000010325** Just before the shared-btree is closed, the function passed as the
10326** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010327** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010328** on the memory, the btree layer does that.
10329*/
10330void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10331 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010332 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010333 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010334 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010335 pBt->xFreeSchema = xFree;
10336 }
drh27641702007-08-22 02:56:42 +000010337 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010338 return pBt->pSchema;
10339}
10340
danielk1977c87d34d2006-01-06 13:00:28 +000010341/*
danielk1977404ca072009-03-16 13:19:36 +000010342** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10343** btree as the argument handle holds an exclusive lock on the
10344** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010345*/
10346int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010347 int rc;
drhe5fe6902007-12-07 18:55:28 +000010348 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010349 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +000010350 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10351 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010352 sqlite3BtreeLeave(p);
10353 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010354}
10355
drha154dcd2006-03-22 22:10:07 +000010356
10357#ifndef SQLITE_OMIT_SHARED_CACHE
10358/*
10359** Obtain a lock on the table whose root page is iTab. The
10360** lock is a write lock if isWritelock is true or a read lock
10361** if it is false.
10362*/
danielk1977c00da102006-01-07 13:21:04 +000010363int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010364 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010365 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010366 if( p->sharable ){
10367 u8 lockType = READ_LOCK + isWriteLock;
10368 assert( READ_LOCK+1==WRITE_LOCK );
10369 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010370
drh6a9ad3d2008-04-02 16:29:30 +000010371 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010372 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010373 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010374 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010375 }
10376 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010377 }
10378 return rc;
10379}
drha154dcd2006-03-22 22:10:07 +000010380#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010381
danielk1977b4e9af92007-05-01 17:49:49 +000010382#ifndef SQLITE_OMIT_INCRBLOB
10383/*
10384** Argument pCsr must be a cursor opened for writing on an
10385** INTKEY table currently pointing at a valid table entry.
10386** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010387**
10388** Only the data content may only be modified, it is not possible to
10389** change the length of the data stored. If this function is called with
10390** parameters that attempt to write past the end of the existing data,
10391** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010392*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010393int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010394 int rc;
dan7a2347e2016-01-07 16:43:54 +000010395 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010396 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010397 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010398
danielk1977c9000e62009-07-08 13:55:28 +000010399 rc = restoreCursorPosition(pCsr);
10400 if( rc!=SQLITE_OK ){
10401 return rc;
10402 }
danielk19773588ceb2008-06-10 17:30:26 +000010403 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10404 if( pCsr->eState!=CURSOR_VALID ){
10405 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010406 }
10407
dan227a1c42013-04-03 11:17:39 +000010408 /* Save the positions of all other cursors open on this table. This is
10409 ** required in case any of them are holding references to an xFetch
10410 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010411 **
drh3f387402014-09-24 01:23:00 +000010412 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010413 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10414 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010415 */
drh370c9f42013-04-03 20:04:04 +000010416 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10417 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010418
danielk1977c9000e62009-07-08 13:55:28 +000010419 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010420 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010421 ** (b) there is a read/write transaction open,
10422 ** (c) the connection holds a write-lock on the table (if required),
10423 ** (d) there are no conflicting read-locks, and
10424 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010425 */
drh036dbec2014-03-11 23:40:44 +000010426 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010427 return SQLITE_READONLY;
10428 }
drhc9166342012-01-05 23:32:06 +000010429 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10430 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010431 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10432 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010433 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010434
drhfb192682009-07-11 18:26:28 +000010435 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010436}
danielk19772dec9702007-05-02 16:48:37 +000010437
10438/*
dan5a500af2014-03-11 20:33:04 +000010439** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010440*/
dan5a500af2014-03-11 20:33:04 +000010441void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010442 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010443 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010444}
danielk1977b4e9af92007-05-01 17:49:49 +000010445#endif
dane04dc882010-04-20 18:53:15 +000010446
10447/*
10448** Set both the "read version" (single byte at byte offset 18) and
10449** "write version" (single byte at byte offset 19) fields in the database
10450** header to iVersion.
10451*/
10452int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10453 BtShared *pBt = pBtree->pBt;
10454 int rc; /* Return code */
10455
dane04dc882010-04-20 18:53:15 +000010456 assert( iVersion==1 || iVersion==2 );
10457
danb9780022010-04-21 18:37:57 +000010458 /* If setting the version fields to 1, do not automatically open the
10459 ** WAL connection, even if the version fields are currently set to 2.
10460 */
drhc9166342012-01-05 23:32:06 +000010461 pBt->btsFlags &= ~BTS_NO_WAL;
10462 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010463
drhbb2d9b12018-06-06 16:28:40 +000010464 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000010465 if( rc==SQLITE_OK ){
10466 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010467 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000010468 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000010469 if( rc==SQLITE_OK ){
10470 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10471 if( rc==SQLITE_OK ){
10472 aData[18] = (u8)iVersion;
10473 aData[19] = (u8)iVersion;
10474 }
10475 }
10476 }
dane04dc882010-04-20 18:53:15 +000010477 }
10478
drhc9166342012-01-05 23:32:06 +000010479 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010480 return rc;
10481}
dan428c2182012-08-06 18:50:11 +000010482
drhe0997b32015-03-20 14:57:50 +000010483/*
10484** Return true if the cursor has a hint specified. This routine is
10485** only used from within assert() statements
10486*/
10487int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10488 return (pCsr->hints & mask)!=0;
10489}
drhe0997b32015-03-20 14:57:50 +000010490
drh781597f2014-05-21 08:21:07 +000010491/*
10492** Return true if the given Btree is read-only.
10493*/
10494int sqlite3BtreeIsReadonly(Btree *p){
10495 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10496}
drhdef68892014-11-04 12:11:23 +000010497
10498/*
10499** Return the size of the header added to each page by this module.
10500*/
drh37c057b2014-12-30 00:57:29 +000010501int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010502
drh5a1fb182016-01-08 19:34:39 +000010503#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010504/*
10505** Return true if the Btree passed as the only argument is sharable.
10506*/
10507int sqlite3BtreeSharable(Btree *p){
10508 return p->sharable;
10509}
dan272989b2016-07-06 10:12:02 +000010510
10511/*
10512** Return the number of connections to the BtShared object accessed by
10513** the Btree handle passed as the only argument. For private caches
10514** this is always 1. For shared caches it may be 1 or greater.
10515*/
10516int sqlite3BtreeConnectionCount(Btree *p){
10517 testcase( p->sharable );
10518 return p->pBt->nRef;
10519}
drh5a1fb182016-01-08 19:34:39 +000010520#endif