blob: eb3dbb0a3c385f3e9ca8072de4001c52bf9cbabc [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
drhccb21132020-06-19 11:34:57 +000072** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drh37ccfcf2020-08-31 18:49:04 +0000115#ifdef SQLITE_DEBUG
116/*
drha7fc1682020-11-24 19:55:49 +0000117** Return and reset the seek counter for a Btree object.
drh37ccfcf2020-08-31 18:49:04 +0000118*/
119sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120 u64 n = pBt->nSeek;
121 pBt->nSeek = 0;
122 return n;
123}
124#endif
125
daneebf2f52017-11-18 17:30:08 +0000126/*
127** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128** (MemPage*) as an argument. The (MemPage*) must not be NULL.
129**
130** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133** with the page number and filename associated with the (MemPage*).
134*/
135#ifdef SQLITE_DEBUG
136int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000137 char *zMsg;
138 sqlite3BeginBenignMalloc();
139 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
141 );
drh8bfe66a2018-01-22 15:45:12 +0000142 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000143 if( zMsg ){
144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
145 }
146 sqlite3_free(zMsg);
147 return SQLITE_CORRUPT_BKPT;
148}
149# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150#else
151# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152#endif
153
drhe53831d2007-08-17 01:14:38 +0000154#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000155
156#ifdef SQLITE_DEBUG
157/*
drh0ee3dbe2009-10-16 15:05:18 +0000158**** This function is only used as part of an assert() statement. ***
159**
160** Check to see if pBtree holds the required locks to read or write to the
161** table with root page iRoot. Return 1 if it does and 0 if not.
162**
163** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000164** Btree connection pBtree:
165**
166** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
167**
drh0ee3dbe2009-10-16 15:05:18 +0000168** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000169** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000170** the corresponding table. This makes things a bit more complicated,
171** as this module treats each table as a separate structure. To determine
172** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000173** function has to search through the database schema.
174**
drh0ee3dbe2009-10-16 15:05:18 +0000175** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000176** hold a write-lock on the schema table (root page 1). This is also
177** acceptable.
178*/
179static int hasSharedCacheTableLock(
180 Btree *pBtree, /* Handle that must hold lock */
181 Pgno iRoot, /* Root page of b-tree */
182 int isIndex, /* True if iRoot is the root of an index b-tree */
183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
184){
185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186 Pgno iTab = 0;
187 BtLock *pLock;
188
drh0ee3dbe2009-10-16 15:05:18 +0000189 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000190 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000191 ** Return true immediately.
192 */
danielk197796d48e92009-06-29 06:00:37 +0000193 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000195 ){
196 return 1;
197 }
198
drh0ee3dbe2009-10-16 15:05:18 +0000199 /* If the client is reading or writing an index and the schema is
200 ** not loaded, then it is too difficult to actually check to see if
201 ** the correct locks are held. So do not bother - just return true.
202 ** This case does not come up very often anyhow.
203 */
drh2c5e35f2014-08-05 11:04:21 +0000204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000205 return 1;
206 }
207
danielk197796d48e92009-06-29 06:00:37 +0000208 /* Figure out the root-page that the lock should be held on. For table
209 ** b-trees, this is just the root page of the b-tree being read or
210 ** written. For index b-trees, it is the root page of the associated
211 ** table. */
212 if( isIndex ){
213 HashElem *p;
dan877859f2020-06-17 20:29:56 +0000214 int bSeen = 0;
danielk197796d48e92009-06-29 06:00:37 +0000215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216 Index *pIdx = (Index *)sqliteHashData(p);
drhe684ac62022-03-08 13:59:46 +0000217 if( pIdx->tnum==iRoot ){
dan877859f2020-06-17 20:29:56 +0000218 if( bSeen ){
drh1ffede82015-01-30 20:59:27 +0000219 /* Two or more indexes share the same root page. There must
220 ** be imposter tables. So just return true. The assert is not
221 ** useful in that case. */
222 return 1;
223 }
shane5eff7cf2009-08-10 03:57:58 +0000224 iTab = pIdx->pTable->tnum;
dan877859f2020-06-17 20:29:56 +0000225 bSeen = 1;
danielk197796d48e92009-06-29 06:00:37 +0000226 }
227 }
228 }else{
229 iTab = iRoot;
230 }
231
232 /* Search for the required lock. Either a write-lock on root-page iTab, a
233 ** write-lock on the schema table, or (if the client is reading) a
234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236 if( pLock->pBtree==pBtree
237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238 && pLock->eLock>=eLockType
239 ){
240 return 1;
241 }
242 }
243
244 /* Failed to find the required lock. */
245 return 0;
246}
drh0ee3dbe2009-10-16 15:05:18 +0000247#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000248
drh0ee3dbe2009-10-16 15:05:18 +0000249#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000250/*
drh0ee3dbe2009-10-16 15:05:18 +0000251**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000252**
drh0ee3dbe2009-10-16 15:05:18 +0000253** Return true if it would be illegal for pBtree to write into the
254** table or index rooted at iRoot because other shared connections are
255** simultaneously reading that same table or index.
256**
257** It is illegal for pBtree to write if some other Btree object that
258** shares the same BtShared object is currently reading or writing
259** the iRoot table. Except, if the other Btree object has the
260** read-uncommitted flag set, then it is OK for the other object to
261** have a read cursor.
262**
263** For example, before writing to any part of the table or index
264** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000265**
266** assert( !hasReadConflicts(pBtree, iRoot) );
267*/
268static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269 BtCursor *p;
270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271 if( p->pgnoRoot==iRoot
272 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000274 ){
275 return 1;
276 }
277 }
278 return 0;
279}
280#endif /* #ifdef SQLITE_DEBUG */
281
danielk1977da184232006-01-05 11:34:32 +0000282/*
drh0ee3dbe2009-10-16 15:05:18 +0000283** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000284** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000285** SQLITE_OK if the lock may be obtained (by calling
286** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000287*/
drhc25eabe2009-02-24 18:57:31 +0000288static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000289 BtShared *pBt = p->pBt;
290 BtLock *pIter;
291
drh1fee73e2007-08-29 04:00:57 +0000292 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000296
danielk19775b413d72009-04-01 09:41:54 +0000297 /* If requesting a write-lock, then the Btree must have an open write
298 ** transaction on this file. And, obviously, for this to be so there
299 ** must be an open write transaction on the file itself.
300 */
301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
303
drh0ee3dbe2009-10-16 15:05:18 +0000304 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000305 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000306 return SQLITE_OK;
307 }
308
danielk1977641b0f42007-12-21 04:47:25 +0000309 /* If some other connection is holding an exclusive lock, the
310 ** requested lock may not be obtained.
311 */
drhc9166342012-01-05 23:32:06 +0000312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000315 }
316
danielk1977e0d9e6f2009-07-03 16:25:06 +0000317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318 /* The condition (pIter->eLock!=eLock) in the following if(...)
319 ** statement is a simplification of:
320 **
321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
322 **
323 ** since we know that if eLock==WRITE_LOCK, then no other connection
324 ** may hold a WRITE_LOCK on any table in this file (since there can
325 ** only be a single writer).
326 */
327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331 if( eLock==WRITE_LOCK ){
332 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000333 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000334 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000335 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000336 }
337 }
338 return SQLITE_OK;
339}
drhe53831d2007-08-17 01:14:38 +0000340#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000341
drhe53831d2007-08-17 01:14:38 +0000342#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000343/*
344** Add a lock on the table with root-page iTable to the shared-btree used
345** by Btree handle p. Parameter eLock must be either READ_LOCK or
346** WRITE_LOCK.
347**
danielk19779d104862009-07-09 08:27:14 +0000348** This function assumes the following:
349**
drh0ee3dbe2009-10-16 15:05:18 +0000350** (a) The specified Btree object p is connected to a sharable
351** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000352**
drh0ee3dbe2009-10-16 15:05:18 +0000353** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000354** with the requested lock (i.e. querySharedCacheTableLock() has
355** already been called and returned SQLITE_OK).
356**
357** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000359*/
drhc25eabe2009-02-24 18:57:31 +0000360static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000361 BtShared *pBt = p->pBt;
362 BtLock *pLock = 0;
363 BtLock *pIter;
364
drh1fee73e2007-08-29 04:00:57 +0000365 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000368
danielk1977e0d9e6f2009-07-03 16:25:06 +0000369 /* A connection with the read-uncommitted flag set will never try to
370 ** obtain a read-lock using this function. The only read-lock obtained
drh1e32bed2020-06-19 13:33:53 +0000371 ** by a connection in read-uncommitted mode is on the sqlite_schema
danielk1977e0d9e6f2009-07-03 16:25:06 +0000372 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000374
danielk19779d104862009-07-09 08:27:14 +0000375 /* This function should only be called on a sharable b-tree after it
376 ** has been determined that no other b-tree holds a conflicting lock. */
377 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000379
380 /* First search the list for an existing lock on this table. */
381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382 if( pIter->iTable==iTable && pIter->pBtree==p ){
383 pLock = pIter;
384 break;
385 }
386 }
387
388 /* If the above search did not find a BtLock struct associating Btree p
389 ** with table iTable, allocate one and link it into the list.
390 */
391 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000393 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000394 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }
396 pLock->iTable = iTable;
397 pLock->pBtree = p;
398 pLock->pNext = pBt->pLock;
399 pBt->pLock = pLock;
400 }
401
402 /* Set the BtLock.eLock variable to the maximum of the current lock
403 ** and the requested lock. This means if a write-lock was already held
404 ** and a read-lock requested, we don't incorrectly downgrade the lock.
405 */
406 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000407 if( eLock>pLock->eLock ){
408 pLock->eLock = eLock;
409 }
danielk1977aef0bf62005-12-30 16:28:01 +0000410
411 return SQLITE_OK;
412}
drhe53831d2007-08-17 01:14:38 +0000413#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000414
drhe53831d2007-08-17 01:14:38 +0000415#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000416/*
drhc25eabe2009-02-24 18:57:31 +0000417** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000418** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000419**
drh0ee3dbe2009-10-16 15:05:18 +0000420** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000421** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000422** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000423*/
drhc25eabe2009-02-24 18:57:31 +0000424static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000425 BtShared *pBt = p->pBt;
426 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000427
drh1fee73e2007-08-29 04:00:57 +0000428 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000429 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000430 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000431
danielk1977aef0bf62005-12-30 16:28:01 +0000432 while( *ppIter ){
433 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000435 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000436 if( pLock->pBtree==p ){
437 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000438 assert( pLock->iTable!=1 || pLock==&p->lock );
439 if( pLock->iTable!=1 ){
440 sqlite3_free(pLock);
441 }
danielk1977aef0bf62005-12-30 16:28:01 +0000442 }else{
443 ppIter = &pLock->pNext;
444 }
445 }
danielk1977641b0f42007-12-21 04:47:25 +0000446
drhc9166342012-01-05 23:32:06 +0000447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000448 if( pBt->pWriter==p ){
449 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000451 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000452 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000453 ** transaction. If there currently exists a writer, and p is not
454 ** that writer, then the number of locks held by connections other
455 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000456 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000457 **
drhc9166342012-01-05 23:32:06 +0000458 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000459 ** be zero already. So this next line is harmless in that case.
460 */
drhc9166342012-01-05 23:32:06 +0000461 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000462 }
danielk1977aef0bf62005-12-30 16:28:01 +0000463}
danielk197794b30732009-07-02 17:21:57 +0000464
danielk1977e0d9e6f2009-07-03 16:25:06 +0000465/*
drh0ee3dbe2009-10-16 15:05:18 +0000466** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000467*/
danielk197794b30732009-07-02 17:21:57 +0000468static void downgradeAllSharedCacheTableLocks(Btree *p){
469 BtShared *pBt = p->pBt;
470 if( pBt->pWriter==p ){
471 BtLock *pLock;
472 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476 pLock->eLock = READ_LOCK;
477 }
478 }
479}
480
danielk1977aef0bf62005-12-30 16:28:01 +0000481#endif /* SQLITE_OMIT_SHARED_CACHE */
482
drh3908fe92017-09-01 14:50:19 +0000483static void releasePage(MemPage *pPage); /* Forward reference */
484static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000485static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000486
drh1fee73e2007-08-29 04:00:57 +0000487/*
drh0ee3dbe2009-10-16 15:05:18 +0000488***** This routine is used inside of assert() only ****
489**
490** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000491*/
drh0ee3dbe2009-10-16 15:05:18 +0000492#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000493static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000494 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000495}
drh5e08d0f2016-06-04 21:05:54 +0000496
497/* Verify that the cursor and the BtShared agree about what is the current
498** database connetion. This is important in shared-cache mode. If the database
499** connection pointers get out-of-sync, it is possible for routines like
500** btreeInitPage() to reference an stale connection pointer that references a
501** a connection that has already closed. This routine is used inside assert()
502** statements only and for the purpose of double-checking that the btree code
503** does keep the database connection pointers up-to-date.
504*/
dan7a2347e2016-01-07 16:43:54 +0000505static int cursorOwnsBtShared(BtCursor *p){
506 assert( cursorHoldsMutex(p) );
507 return (p->pBtree->db==p->pBt->db);
508}
drh1fee73e2007-08-29 04:00:57 +0000509#endif
510
danielk197792d4d7a2007-05-04 12:05:56 +0000511/*
dan5a500af2014-03-11 20:33:04 +0000512** Invalidate the overflow cache of the cursor passed as the first argument.
513** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000514*/
drh036dbec2014-03-11 23:40:44 +0000515#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000516
517/*
518** Invalidate the overflow page-list cache for all cursors opened
519** on the shared btree structure pBt.
520*/
521static void invalidateAllOverflowCache(BtShared *pBt){
522 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000523 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000524 for(p=pBt->pCursor; p; p=p->pNext){
525 invalidateOverflowCache(p);
526 }
527}
danielk197796d48e92009-06-29 06:00:37 +0000528
dan5a500af2014-03-11 20:33:04 +0000529#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000530/*
531** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000532** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000533** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000534**
535** If argument isClearTable is true, then the entire contents of the
536** table is about to be deleted. In this case invalidate all incrblob
537** cursors open on any row within the table with root-page pgnoRoot.
538**
539** Otherwise, if argument isClearTable is false, then the row with
540** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000541** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000542*/
543static void invalidateIncrblobCursors(
544 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000545 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000546 i64 iRow, /* The rowid that might be changing */
547 int isClearTable /* True if all rows are being deleted */
548){
549 BtCursor *p;
drh49bb56e2021-05-14 20:01:36 +0000550 assert( pBtree->hasIncrblobCur );
danielk197796d48e92009-06-29 06:00:37 +0000551 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000552 pBtree->hasIncrblobCur = 0;
553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554 if( (p->curFlags & BTCF_Incrblob)!=0 ){
555 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000557 p->eState = CURSOR_INVALID;
558 }
danielk197796d48e92009-06-29 06:00:37 +0000559 }
560 }
561}
562
danielk197792d4d7a2007-05-04 12:05:56 +0000563#else
dan5a500af2014-03-11 20:33:04 +0000564 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000565 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000566#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000567
drh980b1a72006-08-16 16:42:48 +0000568/*
danielk1977bea2a942009-01-20 17:06:27 +0000569** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570** when a page that previously contained data becomes a free-list leaf
571** page.
572**
573** The BtShared.pHasContent bitvec exists to work around an obscure
574** bug caused by the interaction of two useful IO optimizations surrounding
575** free-list leaf pages:
576**
577** 1) When all data is deleted from a page and the page becomes
578** a free-list leaf page, the page is not written to the database
579** (as free-list leaf pages contain no meaningful data). Sometimes
580** such a page is not even journalled (as it will not be modified,
581** why bother journalling it?).
582**
583** 2) When a free-list leaf page is reused, its content is not read
584** from the database or written to the journal file (why should it
585** be, if it is not at all meaningful?).
586**
587** By themselves, these optimizations work fine and provide a handy
588** performance boost to bulk delete or insert operations. However, if
589** a page is moved to the free-list and then reused within the same
590** transaction, a problem comes up. If the page is not journalled when
591** it is moved to the free-list and it is also not journalled when it
592** is extracted from the free-list and reused, then the original data
593** may be lost. In the event of a rollback, it may not be possible
594** to restore the database to its original configuration.
595**
596** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597** moved to become a free-list leaf page, the corresponding bit is
598** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000599** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000600** set in BtShared.pHasContent. The contents of the bitvec are cleared
601** at the end of every transaction.
602*/
603static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604 int rc = SQLITE_OK;
605 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000606 assert( pgno<=pBt->nPage );
607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000608 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000609 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000610 }
611 }
612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
614 }
615 return rc;
616}
617
618/*
619** Query the BtShared.pHasContent vector.
620**
621** This function is called when a free-list leaf page is removed from the
622** free-list for reuse. It returns false if it is safe to retrieve the
623** page from the pager layer with the 'no-content' flag set. True otherwise.
624*/
625static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626 Bitvec *p = pBt->pHasContent;
pdrdb9cb172020-03-08 13:33:58 +0000627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
danielk1977bea2a942009-01-20 17:06:27 +0000628}
629
630/*
631** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632** invoked at the conclusion of each write-transaction.
633*/
634static void btreeClearHasContent(BtShared *pBt){
635 sqlite3BitvecDestroy(pBt->pHasContent);
636 pBt->pHasContent = 0;
637}
638
639/*
drh138eeeb2013-03-27 03:15:23 +0000640** Release all of the apPage[] pages for a cursor.
641*/
642static void btreeReleaseAllCursorPages(BtCursor *pCur){
643 int i;
drh352a35a2017-08-15 03:46:47 +0000644 if( pCur->iPage>=0 ){
645 for(i=0; i<pCur->iPage; i++){
646 releasePageNotNull(pCur->apPage[i]);
647 }
648 releasePageNotNull(pCur->pPage);
649 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000650 }
drh138eeeb2013-03-27 03:15:23 +0000651}
652
danf0ee1d32015-09-12 19:26:11 +0000653/*
654** The cursor passed as the only argument must point to a valid entry
655** when this function is called (i.e. have eState==CURSOR_VALID). This
656** function saves the current cursor key in variables pCur->nKey and
657** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658** code otherwise.
659**
660** If the cursor is open on an intkey table, then the integer key
661** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663** set to point to a malloced buffer pCur->nKey bytes in size containing
664** the key.
665*/
666static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000667 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000668 assert( CURSOR_VALID==pCur->eState );
669 assert( 0==pCur->pKey );
670 assert( cursorHoldsMutex(pCur) );
671
drha7c90c42016-06-04 20:37:10 +0000672 if( pCur->curIntKey ){
673 /* Only the rowid is required for a table btree */
674 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675 }else{
danfffaf232018-12-14 13:18:35 +0000676 /* For an index btree, save the complete key content. It is possible
677 ** that the current key is corrupt. In that case, it is possible that
678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679 ** up to the size of 1 varint plus 1 8-byte value when the cursor
680 ** position is restored. Hence the 17 bytes of padding allocated
681 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000682 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000683 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000685 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000687 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000689 pCur->pKey = pKey;
690 }else{
691 sqlite3_free(pKey);
692 }
693 }else{
mistachkinfad30392016-02-13 23:43:46 +0000694 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000695 }
696 }
697 assert( !pCur->curIntKey || !pCur->pKey );
698 return rc;
699}
drh138eeeb2013-03-27 03:15:23 +0000700
701/*
drh980b1a72006-08-16 16:42:48 +0000702** Save the current cursor position in the variables BtCursor.nKey
703** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000704**
705** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000707*/
708static int saveCursorPosition(BtCursor *pCur){
709 int rc;
710
drhd2f83132015-03-25 17:35:01 +0000711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000712 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000713 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000714
drh7b14b652019-12-29 22:08:20 +0000715 if( pCur->curFlags & BTCF_Pinned ){
716 return SQLITE_CONSTRAINT_PINNED;
717 }
drhd2f83132015-03-25 17:35:01 +0000718 if( pCur->eState==CURSOR_SKIPNEXT ){
719 pCur->eState = CURSOR_VALID;
720 }else{
721 pCur->skipNext = 0;
722 }
drh980b1a72006-08-16 16:42:48 +0000723
danf0ee1d32015-09-12 19:26:11 +0000724 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000725 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000726 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000727 pCur->eState = CURSOR_REQUIRESEEK;
728 }
729
dane755e102015-09-30 12:59:12 +0000730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000731 return rc;
732}
733
drh637f3d82014-08-22 22:26:07 +0000734/* Forward reference */
735static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
736
drh980b1a72006-08-16 16:42:48 +0000737/*
drh0ee3dbe2009-10-16 15:05:18 +0000738** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000739** the table with root-page iRoot. "Saving the cursor position" means that
740** the location in the btree is remembered in such a way that it can be
741** moved back to the same spot after the btree has been modified. This
742** routine is called just before cursor pExcept is used to modify the
743** table, for example in BtreeDelete() or BtreeInsert().
744**
drh27fb7462015-06-30 02:47:36 +0000745** If there are two or more cursors on the same btree, then all such
746** cursors should have their BTCF_Multiple flag set. The btreeCursor()
747** routine enforces that rule. This routine only needs to be called in
748** the uncommon case when pExpect has the BTCF_Multiple flag set.
749**
750** If pExpect!=NULL and if no other cursors are found on the same root-page,
751** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752** pointless call to this routine.
753**
drh637f3d82014-08-22 22:26:07 +0000754** Implementation note: This routine merely checks to see if any cursors
755** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
756** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000757*/
758static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000760 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000761 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000762 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
764 }
drh27fb7462015-06-30 02:47:36 +0000765 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000768}
769
770/* This helper routine to saveAllCursors does the actual work of saving
771** the cursors if and when a cursor is found that actually requires saving.
772** The common case is that no cursors need to be saved, so this routine is
773** broken out from its caller to avoid unnecessary stack pointer movement.
774*/
775static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000776 BtCursor *p, /* The first cursor that needs saving */
777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
778 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000779){
780 do{
drh138eeeb2013-03-27 03:15:23 +0000781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000783 int rc = saveCursorPosition(p);
784 if( SQLITE_OK!=rc ){
785 return rc;
786 }
787 }else{
drh85ef6302017-08-02 15:50:09 +0000788 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000789 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000790 }
791 }
drh637f3d82014-08-22 22:26:07 +0000792 p = p->pNext;
793 }while( p );
drh980b1a72006-08-16 16:42:48 +0000794 return SQLITE_OK;
795}
796
797/*
drhbf700f32007-03-31 02:36:44 +0000798** Clear the current cursor position.
799*/
danielk1977be51a652008-10-08 17:58:48 +0000800void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000801 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000802 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000803 pCur->pKey = 0;
804 pCur->eState = CURSOR_INVALID;
805}
806
807/*
danielk19773509a652009-07-06 18:56:13 +0000808** In this version of BtreeMoveto, pKey is a packed index record
809** such as is generated by the OP_MakeRecord opcode. Unpack the
drheab10642022-03-06 20:22:24 +0000810** record and then call sqlite3BtreeIndexMoveto() to do the work.
danielk19773509a652009-07-06 18:56:13 +0000811*/
812static int btreeMoveto(
813 BtCursor *pCur, /* Cursor open on the btree to be searched */
814 const void *pKey, /* Packed key if the btree is an index */
815 i64 nKey, /* Integer key for tables. Size of pKey for indices */
816 int bias, /* Bias search to the high end */
817 int *pRes /* Write search results here */
818){
819 int rc; /* Status code */
820 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000821
822 if( pKey ){
danb0c4c942019-01-24 15:16:17 +0000823 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +0000824 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +0000825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +0000827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +0000829 rc = SQLITE_CORRUPT_BKPT;
drh42a410d2021-06-19 18:32:20 +0000830 }else{
831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
drh094b7582013-11-30 12:49:28 +0000832 }
drh42a410d2021-06-19 18:32:20 +0000833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000834 }else{
835 pIdxKey = 0;
drh42a410d2021-06-19 18:32:20 +0000836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
danielk19773509a652009-07-06 18:56:13 +0000837 }
838 return rc;
839}
840
841/*
drh980b1a72006-08-16 16:42:48 +0000842** Restore the cursor to the position it was in (or as close to as possible)
843** when saveCursorPosition() was called. Note that this call deletes the
844** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000845** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000846** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000847*/
danielk197730548662009-07-09 05:07:37 +0000848static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000849 int rc;
mistachkin4e2d3d42019-04-01 03:07:21 +0000850 int skipNext = 0;
dan7a2347e2016-01-07 16:43:54 +0000851 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000852 assert( pCur->eState>=CURSOR_REQUIRESEEK );
853 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000854 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000855 }
drh980b1a72006-08-16 16:42:48 +0000856 pCur->eState = CURSOR_INVALID;
drhb336d1a2019-03-30 19:17:35 +0000857 if( sqlite3FaultSim(410) ){
858 rc = SQLITE_IOERR;
859 }else{
860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
861 }
drh980b1a72006-08-16 16:42:48 +0000862 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000863 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000864 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +0000866 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +0000867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
868 pCur->eState = CURSOR_SKIPNEXT;
869 }
drh980b1a72006-08-16 16:42:48 +0000870 }
871 return rc;
872}
873
drha3460582008-07-11 21:02:53 +0000874#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000875 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000876 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000877 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000878
drha3460582008-07-11 21:02:53 +0000879/*
drh6848dad2014-08-22 23:33:03 +0000880** Determine whether or not a cursor has moved from the position where
881** it was last placed, or has been invalidated for any other reason.
882** Cursors can move when the row they are pointing at is deleted out
883** from under them, for example. Cursor might also move if a btree
884** is rebalanced.
drha3460582008-07-11 21:02:53 +0000885**
drh6848dad2014-08-22 23:33:03 +0000886** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000887**
drh6848dad2014-08-22 23:33:03 +0000888** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000890*/
drh6848dad2014-08-22 23:33:03 +0000891int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000892 assert( EIGHT_BYTE_ALIGNMENT(pCur)
893 || pCur==sqlite3BtreeFakeValidCursor() );
894 assert( offsetof(BtCursor, eState)==0 );
895 assert( sizeof(pCur->eState)==1 );
896 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000897}
898
899/*
drhfe0cf7a2017-08-16 19:20:20 +0000900** Return a pointer to a fake BtCursor object that will always answer
901** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
902** cursor returned must not be used with any other Btree interface.
903*/
904BtCursor *sqlite3BtreeFakeValidCursor(void){
905 static u8 fakeCursor = CURSOR_VALID;
906 assert( offsetof(BtCursor, eState)==0 );
907 return (BtCursor*)&fakeCursor;
908}
909
910/*
drh6848dad2014-08-22 23:33:03 +0000911** This routine restores a cursor back to its original position after it
912** has been moved by some outside activity (such as a btree rebalance or
913** a row having been deleted out from under the cursor).
914**
915** On success, the *pDifferentRow parameter is false if the cursor is left
916** pointing at exactly the same row. *pDifferntRow is the row the cursor
917** was pointing to has been deleted, forcing the cursor to point to some
918** nearby row.
919**
920** This routine should only be called for a cursor that just returned
921** TRUE from sqlite3BtreeCursorHasMoved().
922*/
923int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000924 int rc;
925
drh6848dad2014-08-22 23:33:03 +0000926 assert( pCur!=0 );
927 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000928 rc = restoreCursorPosition(pCur);
929 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000930 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000931 return rc;
932 }
drh606a3572015-03-25 18:29:10 +0000933 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000934 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000935 }else{
drh6848dad2014-08-22 23:33:03 +0000936 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000937 }
938 return SQLITE_OK;
939}
940
drhf7854c72015-10-27 13:24:37 +0000941#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000942/*
drh0df57012015-08-14 15:05:55 +0000943** Provide hints to the cursor. The particular hint given (and the type
944** and number of the varargs parameters) is determined by the eHintType
945** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000946*/
drh0df57012015-08-14 15:05:55 +0000947void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000948 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000949}
drhf7854c72015-10-27 13:24:37 +0000950#endif
951
952/*
953** Provide flag hints to the cursor.
954*/
955void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
957 pCur->hints = x;
958}
959
drh28935362013-12-07 20:39:19 +0000960
danielk1977599fcba2004-11-08 07:13:13 +0000961#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000962/*
drha3152892007-05-05 11:48:52 +0000963** Given a page number of a regular database page, return the page
964** number for the pointer-map page that contains the entry for the
965** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000966**
967** Return 0 (not a valid page) for pgno==1 since there is
968** no pointer map associated with page 1. The integrity_check logic
969** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000970*/
danielk1977266664d2006-02-10 08:24:21 +0000971static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000972 int nPagesPerMapPage;
973 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000974 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000975 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000976 nPagesPerMapPage = (pBt->usableSize/5)+1;
977 iPtrMap = (pgno-2)/nPagesPerMapPage;
978 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000979 if( ret==PENDING_BYTE_PAGE(pBt) ){
980 ret++;
981 }
982 return ret;
983}
danielk1977a19df672004-11-03 11:37:07 +0000984
danielk1977afcdd022004-10-31 16:25:42 +0000985/*
danielk1977afcdd022004-10-31 16:25:42 +0000986** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000987**
988** This routine updates the pointer map entry for page number 'key'
989** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000990**
991** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992** a no-op. If an error occurs, the appropriate error code is written
993** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000994*/
drh98add2e2009-07-20 17:11:49 +0000995static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000996 DbPage *pDbPage; /* The pointer map page */
997 u8 *pPtrmap; /* The pointer map data */
998 Pgno iPtrmap; /* The pointer map page number */
999 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +00001000 int rc; /* Return code from subfunctions */
1001
1002 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +00001003
drh1fee73e2007-08-29 04:00:57 +00001004 assert( sqlite3_mutex_held(pBt->mutex) );
drh067b92b2020-06-19 15:24:12 +00001005 /* The super-journal page number must never be used as a pointer map page */
danielk1977266664d2006-02-10 08:24:21 +00001006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1007
danielk1977ac11ee62005-01-15 12:45:51 +00001008 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +00001009 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +00001010 *pRC = SQLITE_CORRUPT_BKPT;
1011 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +00001012 }
danielk1977266664d2006-02-10 08:24:21 +00001013 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00001015 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00001016 *pRC = rc;
1017 return;
danielk1977afcdd022004-10-31 16:25:42 +00001018 }
drh203b1ea2018-12-14 03:14:18 +00001019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1020 /* The first byte of the extra data is the MemPage.isInit byte.
1021 ** If that byte is set, it means this page is also being used
1022 ** as a btree page. */
1023 *pRC = SQLITE_CORRUPT_BKPT;
1024 goto ptrmap_exit;
1025 }
danielk19778c666b12008-07-18 09:34:57 +00001026 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001027 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001028 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001029 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001030 }
drhfc243732011-05-17 15:21:56 +00001031 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001033
drh615ae552005-01-16 23:21:00 +00001034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001036 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001037 if( rc==SQLITE_OK ){
1038 pPtrmap[offset] = eType;
1039 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001040 }
danielk1977afcdd022004-10-31 16:25:42 +00001041 }
1042
drh4925a552009-07-07 11:39:58 +00001043ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001044 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001045}
1046
1047/*
1048** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001049**
1050** This routine retrieves the pointer map entry for page 'key', writing
1051** the type and parent page number to *pEType and *pPgno respectively.
1052** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001053*/
danielk1977aef0bf62005-12-30 16:28:01 +00001054static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001055 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001056 int iPtrmap; /* Pointer map page index */
1057 u8 *pPtrmap; /* Pointer map page data */
1058 int offset; /* Offset of entry in pointer map */
1059 int rc;
1060
drh1fee73e2007-08-29 04:00:57 +00001061 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001062
danielk1977266664d2006-02-10 08:24:21 +00001063 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001065 if( rc!=0 ){
1066 return rc;
1067 }
danielk19773b8a05f2007-03-19 17:44:26 +00001068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001069
danielk19778c666b12008-07-18 09:34:57 +00001070 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001071 if( offset<0 ){
1072 sqlite3PagerUnref(pDbPage);
1073 return SQLITE_CORRUPT_BKPT;
1074 }
1075 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001076 assert( pEType!=0 );
1077 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001079
danielk19773b8a05f2007-03-19 17:44:26 +00001080 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001082 return SQLITE_OK;
1083}
1084
danielk197785d90ca2008-07-19 14:25:15 +00001085#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001086 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001087 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001088 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001089#endif
danielk1977afcdd022004-10-31 16:25:42 +00001090
drh0d316a42002-08-11 20:10:47 +00001091/*
drh271efa52004-05-30 19:19:05 +00001092** Given a btree page and a cell index (0 means the first cell on
1093** the page, 1 means the second cell, and so forth) return a pointer
1094** to the cell content.
1095**
drhf44890a2015-06-27 03:58:15 +00001096** findCellPastPtr() does the same except it skips past the initial
1097** 4-byte child pointer found on interior pages, if there is one.
1098**
drh271efa52004-05-30 19:19:05 +00001099** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001100*/
drh1688c862008-07-18 02:44:17 +00001101#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001103#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001105
drh43605152004-05-29 21:46:49 +00001106
1107/*
drh5fa60512015-06-19 17:19:34 +00001108** This is common tail processing for btreeParseCellPtr() and
1109** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110** on a single B-tree page. Make necessary adjustments to the CellInfo
1111** structure.
drh43605152004-05-29 21:46:49 +00001112*/
drh5fa60512015-06-19 17:19:34 +00001113static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1114 MemPage *pPage, /* Page containing the cell */
1115 u8 *pCell, /* Pointer to the cell text. */
1116 CellInfo *pInfo /* Fill in this structure */
1117){
1118 /* If the payload will not fit completely on the local page, we have
1119 ** to decide how much to store locally and how much to spill onto
1120 ** overflow pages. The strategy is to minimize the amount of unused
1121 ** space on overflow pages while keeping the amount of local storage
1122 ** in between minLocal and maxLocal.
1123 **
1124 ** Warning: changing the way overflow payload is distributed in any
1125 ** way will result in an incompatible file format.
1126 */
1127 int minLocal; /* Minimum amount of payload held locally */
1128 int maxLocal; /* Maximum amount of payload held locally */
1129 int surplus; /* Overflow payload available for local storage */
1130
1131 minLocal = pPage->minLocal;
1132 maxLocal = pPage->maxLocal;
1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1134 testcase( surplus==maxLocal );
1135 testcase( surplus==maxLocal+1 );
1136 if( surplus <= maxLocal ){
1137 pInfo->nLocal = (u16)surplus;
1138 }else{
1139 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001140 }
drh45ac1c72015-12-18 03:59:16 +00001141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001142}
1143
1144/*
danebbf3682020-12-09 16:32:11 +00001145** Given a record with nPayload bytes of payload stored within btree
1146** page pPage, return the number of bytes of payload stored locally.
1147*/
dan59964b42020-12-14 15:25:14 +00001148static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
danebbf3682020-12-09 16:32:11 +00001149 int maxLocal; /* Maximum amount of payload held locally */
1150 maxLocal = pPage->maxLocal;
1151 if( nPayload<=maxLocal ){
1152 return nPayload;
1153 }else{
1154 int minLocal; /* Minimum amount of payload held locally */
1155 int surplus; /* Overflow payload available for local storage */
1156 minLocal = pPage->minLocal;
1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1158 return ( surplus <= maxLocal ) ? surplus : minLocal;
1159 }
1160}
1161
1162/*
drh5fa60512015-06-19 17:19:34 +00001163** The following routines are implementations of the MemPage.xParseCell()
1164** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001165**
drh5fa60512015-06-19 17:19:34 +00001166** Parse a cell content block and fill in the CellInfo structure.
1167**
1168** btreeParseCellPtr() => table btree leaf nodes
1169** btreeParseCellNoPayload() => table btree internal nodes
1170** btreeParseCellPtrIndex() => index btree nodes
1171**
1172** There is also a wrapper function btreeParseCell() that works for
1173** all MemPage types and that references the cell by index rather than
1174** by pointer.
drh43605152004-05-29 21:46:49 +00001175*/
drh5fa60512015-06-19 17:19:34 +00001176static void btreeParseCellPtrNoPayload(
1177 MemPage *pPage, /* Page containing the cell */
1178 u8 *pCell, /* Pointer to the cell text. */
1179 CellInfo *pInfo /* Fill in this structure */
1180){
1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001183 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001184#ifndef SQLITE_DEBUG
1185 UNUSED_PARAMETER(pPage);
1186#endif
drh5fa60512015-06-19 17:19:34 +00001187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1188 pInfo->nPayload = 0;
1189 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001190 pInfo->pPayload = 0;
1191 return;
1192}
danielk197730548662009-07-09 05:07:37 +00001193static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001194 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001195 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001196 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001197){
drh3e28ff52014-09-24 00:59:08 +00001198 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001199 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001200 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001201
drh1fee73e2007-08-29 04:00:57 +00001202 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001203 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001204 assert( pPage->intKeyLeaf );
1205 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001206 pIter = pCell;
1207
1208 /* The next block of code is equivalent to:
1209 **
1210 ** pIter += getVarint32(pIter, nPayload);
1211 **
1212 ** The code is inlined to avoid a function call.
1213 */
1214 nPayload = *pIter;
1215 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001216 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001217 nPayload &= 0x7f;
1218 do{
1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1220 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001221 }
drh56cb04e2015-06-19 18:24:37 +00001222 pIter++;
1223
1224 /* The next block of code is equivalent to:
1225 **
1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1227 **
drh29bbc2b2022-01-02 16:48:00 +00001228 ** The code is inlined and the loop is unrolled for performance.
1229 ** This routine is a high-runner.
drh56cb04e2015-06-19 18:24:37 +00001230 */
1231 iKey = *pIter;
1232 if( iKey>=0x80 ){
drh29bbc2b2022-01-02 16:48:00 +00001233 u8 x;
1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f);
1235 if( x>=0x80 ){
1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f);
1237 if( x>=0x80 ){
1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1239 if( x>=0x80 ){
1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1241 if( x>=0x80 ){
1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1243 if( x>=0x80 ){
1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1245 if( x>=0x80 ){
1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1247 if( x>=0x80 ){
1248 iKey = (iKey<<8) | (*++pIter);
1249 }
1250 }
1251 }
1252 }
1253 }
drh56cb04e2015-06-19 18:24:37 +00001254 }
1255 }
1256 }
1257 pIter++;
1258
1259 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001260 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001261 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001262 testcase( nPayload==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001263 testcase( nPayload==(u32)pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001264 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001265 /* This is the (easy) common case where the entire payload fits
1266 ** on the local page. No overflow is required.
1267 */
drhab1cc582014-09-23 21:25:19 +00001268 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1269 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001270 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001271 }else{
drh5fa60512015-06-19 17:19:34 +00001272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001273 }
drh3aac2dd2004-04-26 14:10:20 +00001274}
drh5fa60512015-06-19 17:19:34 +00001275static void btreeParseCellPtrIndex(
1276 MemPage *pPage, /* Page containing the cell */
1277 u8 *pCell, /* Pointer to the cell text. */
1278 CellInfo *pInfo /* Fill in this structure */
1279){
1280 u8 *pIter; /* For scanning through pCell */
1281 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001282
drh5fa60512015-06-19 17:19:34 +00001283 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1284 assert( pPage->leaf==0 || pPage->leaf==1 );
1285 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001286 pIter = pCell + pPage->childPtrSize;
1287 nPayload = *pIter;
1288 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001289 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001290 nPayload &= 0x7f;
1291 do{
1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1293 }while( *(pIter)>=0x80 && pIter<pEnd );
1294 }
1295 pIter++;
1296 pInfo->nKey = nPayload;
1297 pInfo->nPayload = nPayload;
1298 pInfo->pPayload = pIter;
1299 testcase( nPayload==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001300 testcase( nPayload==(u32)pPage->maxLocal+1 );
drh5fa60512015-06-19 17:19:34 +00001301 if( nPayload<=pPage->maxLocal ){
1302 /* This is the (easy) common case where the entire payload fits
1303 ** on the local page. No overflow is required.
1304 */
1305 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1306 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1307 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001308 }else{
1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001310 }
1311}
danielk197730548662009-07-09 05:07:37 +00001312static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001313 MemPage *pPage, /* Page containing the cell */
1314 int iCell, /* The cell index. First cell is 0 */
1315 CellInfo *pInfo /* Fill in this structure */
1316){
drh5fa60512015-06-19 17:19:34 +00001317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001318}
drh3aac2dd2004-04-26 14:10:20 +00001319
1320/*
drh5fa60512015-06-19 17:19:34 +00001321** The following routines are implementations of the MemPage.xCellSize
1322** method.
1323**
drh43605152004-05-29 21:46:49 +00001324** Compute the total number of bytes that a Cell needs in the cell
1325** data area of the btree-page. The return number includes the cell
1326** data header and the local payload, but not any overflow page or
1327** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001328**
drh5fa60512015-06-19 17:19:34 +00001329** cellSizePtrNoPayload() => table internal nodes
drh19ae01b2022-02-23 22:56:10 +00001330** cellSizePtrTableLeaf() => table leaf nodes
drh5fa60512015-06-19 17:19:34 +00001331** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001332*/
danielk1977ae5558b2009-04-29 11:31:47 +00001333static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001334 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1335 u8 *pEnd; /* End mark for a varint */
1336 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001337
1338#ifdef SQLITE_DEBUG
1339 /* The value returned by this function should always be the same as
1340 ** the (CellInfo.nSize) value found by doing a full parse of the
1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1342 ** this function verifies that this invariant is not violated. */
1343 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001344 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001345#endif
1346
drh3e28ff52014-09-24 00:59:08 +00001347 nSize = *pIter;
1348 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001349 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001350 nSize &= 0x7f;
1351 do{
1352 nSize = (nSize<<7) | (*++pIter & 0x7f);
1353 }while( *(pIter)>=0x80 && pIter<pEnd );
1354 }
1355 pIter++;
drh0a45c272009-07-08 01:49:11 +00001356 testcase( nSize==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001357 testcase( nSize==(u32)pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001358 if( nSize<=pPage->maxLocal ){
1359 nSize += (u32)(pIter - pCell);
1360 if( nSize<4 ) nSize = 4;
1361 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001362 int minLocal = pPage->minLocal;
1363 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001364 testcase( nSize==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001365 testcase( nSize==(u32)pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001366 if( nSize>pPage->maxLocal ){
1367 nSize = minLocal;
1368 }
drh3e28ff52014-09-24 00:59:08 +00001369 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001370 }
drhdc41d602014-09-22 19:51:35 +00001371 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001372 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001373}
drh25ada072015-06-19 15:07:14 +00001374static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1375 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1376 u8 *pEnd; /* End mark for a varint */
1377
1378#ifdef SQLITE_DEBUG
1379 /* The value returned by this function should always be the same as
1380 ** the (CellInfo.nSize) value found by doing a full parse of the
1381 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1382 ** this function verifies that this invariant is not violated. */
1383 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001384 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001385#else
1386 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001387#endif
1388
1389 assert( pPage->childPtrSize==4 );
1390 pEnd = pIter + 9;
1391 while( (*pIter++)&0x80 && pIter<pEnd );
1392 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1393 return (u16)(pIter - pCell);
1394}
drh19ae01b2022-02-23 22:56:10 +00001395static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){
1396 u8 *pIter = pCell; /* For looping over bytes of pCell */
1397 u8 *pEnd; /* End mark for a varint */
1398 u32 nSize; /* Size value to return */
1399
1400#ifdef SQLITE_DEBUG
1401 /* The value returned by this function should always be the same as
1402 ** the (CellInfo.nSize) value found by doing a full parse of the
1403 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1404 ** this function verifies that this invariant is not violated. */
1405 CellInfo debuginfo;
1406 pPage->xParseCell(pPage, pCell, &debuginfo);
1407#endif
1408
1409 nSize = *pIter;
1410 if( nSize>=0x80 ){
1411 pEnd = &pIter[8];
1412 nSize &= 0x7f;
1413 do{
1414 nSize = (nSize<<7) | (*++pIter & 0x7f);
1415 }while( *(pIter)>=0x80 && pIter<pEnd );
1416 }
1417 pIter++;
1418 /* pIter now points at the 64-bit integer key value, a variable length
1419 ** integer. The following block moves pIter to point at the first byte
1420 ** past the end of the key value. */
1421 if( (*pIter++)&0x80
1422 && (*pIter++)&0x80
1423 && (*pIter++)&0x80
1424 && (*pIter++)&0x80
1425 && (*pIter++)&0x80
1426 && (*pIter++)&0x80
1427 && (*pIter++)&0x80
1428 && (*pIter++)&0x80 ){ pIter++; }
1429 testcase( nSize==pPage->maxLocal );
1430 testcase( nSize==(u32)pPage->maxLocal+1 );
1431 if( nSize<=pPage->maxLocal ){
1432 nSize += (u32)(pIter - pCell);
1433 if( nSize<4 ) nSize = 4;
1434 }else{
1435 int minLocal = pPage->minLocal;
1436 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1437 testcase( nSize==pPage->maxLocal );
1438 testcase( nSize==(u32)pPage->maxLocal+1 );
1439 if( nSize>pPage->maxLocal ){
1440 nSize = minLocal;
1441 }
1442 nSize += 4 + (u16)(pIter - pCell);
1443 }
1444 assert( nSize==debuginfo.nSize || CORRUPT_DB );
1445 return (u16)nSize;
1446}
drh25ada072015-06-19 15:07:14 +00001447
drh0ee3dbe2009-10-16 15:05:18 +00001448
1449#ifdef SQLITE_DEBUG
1450/* This variation on cellSizePtr() is used inside of assert() statements
1451** only. */
drha9121e42008-02-19 14:59:35 +00001452static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001453 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001454}
danielk1977bc6ada42004-06-30 08:20:16 +00001455#endif
drh3b7511c2001-05-26 13:15:44 +00001456
danielk197779a40da2005-01-16 08:00:01 +00001457#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001458/*
drh0f1bf4c2019-01-13 20:17:21 +00001459** The cell pCell is currently part of page pSrc but will ultimately be part
drh3b4cb712022-03-01 19:19:20 +00001460** of pPage. (pSrc and pPage are often the same.) If pCell contains a
drh0f1bf4c2019-01-13 20:17:21 +00001461** pointer to an overflow page, insert an entry into the pointer-map for
1462** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001463*/
drh0f1bf4c2019-01-13 20:17:21 +00001464static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001465 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001466 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001467 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001468 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001469 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001470 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001471 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1472 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001473 *pRC = SQLITE_CORRUPT_BKPT;
1474 return;
1475 }
1476 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001477 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001478 }
danielk1977ac11ee62005-01-15 12:45:51 +00001479}
danielk197779a40da2005-01-16 08:00:01 +00001480#endif
1481
danielk1977ac11ee62005-01-15 12:45:51 +00001482
drhda200cc2004-05-09 11:51:38 +00001483/*
dane6d065a2017-02-24 19:58:22 +00001484** Defragment the page given. This routine reorganizes cells within the
1485** page so that there are no free-blocks on the free-block list.
1486**
1487** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1488** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001489**
1490** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1491** b-tree page so that there are no freeblocks or fragment bytes, all
1492** unused bytes are contained in the unallocated space region, and all
1493** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001494*/
dane6d065a2017-02-24 19:58:22 +00001495static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001496 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001497 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001498 int hdr; /* Offset to the page header */
1499 int size; /* Size of a cell */
1500 int usableSize; /* Number of usable bytes on a page */
1501 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001502 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001503 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001504 unsigned char *data; /* The page data */
1505 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001506 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001507 int iCellFirst; /* First allowable cell index */
1508 int iCellLast; /* Last possible cell index */
dan7f65b7a2021-04-10 20:27:06 +00001509 int iCellStart; /* First cell offset in input */
drh17146622009-07-07 17:38:38 +00001510
danielk19773b8a05f2007-03-19 17:44:26 +00001511 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001512 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001513 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001514 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001515 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001516 temp = 0;
1517 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001518 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001519 cellOffset = pPage->cellOffset;
1520 nCell = pPage->nCell;
drh45616c72019-02-28 13:21:36 +00001521 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001522 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001523 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001524
1525 /* This block handles pages with two or fewer free blocks and nMaxFrag
1526 ** or fewer fragmented bytes. In this case it is faster to move the
1527 ** two (or one) blocks of cells using memmove() and add the required
1528 ** offsets to each pointer in the cell-pointer array than it is to
1529 ** reconstruct the entire page. */
1530 if( (int)data[hdr+7]<=nMaxFrag ){
1531 int iFree = get2byte(&data[hdr+1]);
drh119e1ff2019-03-30 18:39:13 +00001532 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001533 if( iFree ){
1534 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001535 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001536 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1537 u8 *pEnd = &data[cellOffset + nCell*2];
1538 u8 *pAddr;
1539 int sz2 = 0;
1540 int sz = get2byte(&data[iFree+2]);
1541 int top = get2byte(&data[hdr+5]);
drh4b9e7362020-02-18 23:58:58 +00001542 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001543 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001544 }
dane6d065a2017-02-24 19:58:22 +00001545 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001546 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001547 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001548 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001549 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1550 sz += sz2;
drh46c425b2021-11-10 10:59:10 +00001551 }else if( NEVER(iFree+sz>usableSize) ){
dandcc427c2019-03-21 21:18:36 +00001552 return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001553 }
dandcc427c2019-03-21 21:18:36 +00001554
dane6d065a2017-02-24 19:58:22 +00001555 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001556 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001557 memmove(&data[cbrk], &data[top], iFree-top);
1558 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1559 pc = get2byte(pAddr);
1560 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1561 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1562 }
1563 goto defragment_out;
1564 }
1565 }
1566 }
1567
drh281b21d2008-08-22 12:57:08 +00001568 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001569 iCellLast = usableSize - 4;
dan7f65b7a2021-04-10 20:27:06 +00001570 iCellStart = get2byte(&data[hdr+5]);
drh43605152004-05-29 21:46:49 +00001571 for(i=0; i<nCell; i++){
1572 u8 *pAddr; /* The i-th cell pointer */
1573 pAddr = &data[cellOffset + i*2];
1574 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001575 testcase( pc==iCellFirst );
1576 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001577 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001578 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001579 */
dan7f65b7a2021-04-10 20:27:06 +00001580 if( pc<iCellStart || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001581 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001582 }
dan7f65b7a2021-04-10 20:27:06 +00001583 assert( pc>=iCellStart && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001584 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001585 cbrk -= size;
dan7f65b7a2021-04-10 20:27:06 +00001586 if( cbrk<iCellStart || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001587 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001588 }
dan7f65b7a2021-04-10 20:27:06 +00001589 assert( cbrk+size<=usableSize && cbrk>=iCellStart );
drh0a45c272009-07-08 01:49:11 +00001590 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001591 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001592 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001593 if( temp==0 ){
drh588400b2014-09-27 05:00:25 +00001594 if( cbrk==pc ) continue;
1595 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drhccf0bb42021-06-07 13:50:36 +00001596 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
drh588400b2014-09-27 05:00:25 +00001597 src = temp;
1598 }
1599 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001600 }
dane6d065a2017-02-24 19:58:22 +00001601 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001602
1603 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001604 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001605 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001606 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001607 }
drh17146622009-07-07 17:38:38 +00001608 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001609 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001610 data[hdr+1] = 0;
1611 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001612 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001613 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001614 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001615}
1616
drha059ad02001-04-17 20:09:11 +00001617/*
dan8e9ba0c2014-10-14 17:27:04 +00001618** Search the free-list on page pPg for space to store a cell nByte bytes in
1619** size. If one can be found, return a pointer to the space and remove it
1620** from the free-list.
1621**
1622** If no suitable space can be found on the free-list, return NULL.
1623**
drhba0f9992014-10-30 20:48:44 +00001624** This function may detect corruption within pPg. If corruption is
1625** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001626**
drhb7580e82015-06-25 18:36:13 +00001627** Slots on the free list that are between 1 and 3 bytes larger than nByte
1628** will be ignored if adding the extra space to the fragmentation count
1629** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001630*/
drhb7580e82015-06-25 18:36:13 +00001631static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001632 const int hdr = pPg->hdrOffset; /* Offset to page header */
1633 u8 * const aData = pPg->aData; /* Page data */
1634 int iAddr = hdr + 1; /* Address of ptr to pc */
drh009a48e2022-02-23 18:23:15 +00001635 u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */
1636 int pc = get2byte(pTmp); /* Address of a free slot */
drh298f45c2019-02-08 22:34:59 +00001637 int x; /* Excess size of the slot */
1638 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1639 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001640
drhb7580e82015-06-25 18:36:13 +00001641 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001642 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001643 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1644 ** freeblock form a big-endian integer which is the size of the freeblock
1645 ** in bytes, including the 4-byte header. */
drh009a48e2022-02-23 18:23:15 +00001646 pTmp = &aData[pc+2];
1647 size = get2byte(pTmp);
drhb7580e82015-06-25 18:36:13 +00001648 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001649 testcase( x==4 );
1650 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001651 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001652 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1653 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001654 if( aData[hdr+7]>57 ) return 0;
1655
dan8e9ba0c2014-10-14 17:27:04 +00001656 /* Remove the slot from the free-list. Update the number of
1657 ** fragmented bytes within the page. */
1658 memcpy(&aData[iAddr], &aData[pc], 2);
1659 aData[hdr+7] += (u8)x;
drh298f45c2019-02-08 22:34:59 +00001660 }else if( x+pc > maxPC ){
1661 /* This slot extends off the end of the usable part of the page */
1662 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1663 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001664 }else{
1665 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001666 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001667 put2byte(&aData[pc+2], x);
1668 }
1669 return &aData[pc + x];
1670 }
drhb7580e82015-06-25 18:36:13 +00001671 iAddr = pc;
drh009a48e2022-02-23 18:23:15 +00001672 pTmp = &aData[pc];
1673 pc = get2byte(pTmp);
drh2a934d72019-03-13 10:29:16 +00001674 if( pc<=iAddr+size ){
drh298f45c2019-02-08 22:34:59 +00001675 if( pc ){
1676 /* The next slot in the chain is not past the end of the current slot */
1677 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1678 }
1679 return 0;
1680 }
drh87d63c92017-08-23 23:09:03 +00001681 }
drh298f45c2019-02-08 22:34:59 +00001682 if( pc>maxPC+nByte-4 ){
1683 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001684 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001685 }
dan8e9ba0c2014-10-14 17:27:04 +00001686 return 0;
1687}
1688
1689/*
danielk19776011a752009-04-01 16:25:32 +00001690** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001691** as the first argument. Write into *pIdx the index into pPage->aData[]
1692** of the first byte of allocated space. Return either SQLITE_OK or
1693** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001694**
drh0a45c272009-07-08 01:49:11 +00001695** The caller guarantees that there is sufficient space to make the
1696** allocation. This routine might need to defragment in order to bring
1697** all the space together, however. This routine will avoid using
1698** the first two bytes past the cell pointer area since presumably this
1699** allocation is being made in order to insert a new cell, so we will
1700** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001701*/
drh0a45c272009-07-08 01:49:11 +00001702static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001703 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1704 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001705 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001706 int rc = SQLITE_OK; /* Integer return code */
drh009a48e2022-02-23 18:23:15 +00001707 u8 *pTmp; /* Temp ptr into data[] */
drh0a45c272009-07-08 01:49:11 +00001708 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001709
danielk19773b8a05f2007-03-19 17:44:26 +00001710 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001711 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001712 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001713 assert( nByte>=0 ); /* Minimum cell size is 4 */
1714 assert( pPage->nFree>=nByte );
1715 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001716 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001717
drh0a45c272009-07-08 01:49:11 +00001718 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1719 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001720 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001721 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1722 ** and the reserved space is zero (the usual value for reserved space)
1723 ** then the cell content offset of an empty page wants to be 65536.
1724 ** However, that integer is too large to be stored in a 2-byte unsigned
1725 ** integer, so a value of 0 is used in its place. */
drh009a48e2022-02-23 18:23:15 +00001726 pTmp = &data[hdr+5];
1727 top = get2byte(pTmp);
drhdfcecdf2019-05-08 00:17:45 +00001728 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
drhded340e2015-06-25 15:04:56 +00001729 if( gap>top ){
drh291508f2019-05-08 04:33:17 +00001730 if( top==0 && pPage->pBt->usableSize==65536 ){
drhded340e2015-06-25 15:04:56 +00001731 top = 65536;
1732 }else{
daneebf2f52017-11-18 17:30:08 +00001733 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001734 }
1735 }
drh43605152004-05-29 21:46:49 +00001736
drhd4a67442019-02-11 19:27:36 +00001737 /* If there is enough space between gap and top for one more cell pointer,
1738 ** and if the freelist is not empty, then search the
1739 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001740 */
drh5e2f8b92001-05-28 00:41:15 +00001741 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001742 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001743 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001744 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001745 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001746 if( pSpace ){
drh3b76c452020-01-03 17:40:30 +00001747 int g2;
drh2b96b692019-08-05 16:22:20 +00001748 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
drh3b76c452020-01-03 17:40:30 +00001749 *pIdx = g2 = (int)(pSpace-data);
drhb9154182021-06-20 22:49:26 +00001750 if( g2<=gap ){
drh2b96b692019-08-05 16:22:20 +00001751 return SQLITE_CORRUPT_PAGE(pPage);
1752 }else{
1753 return SQLITE_OK;
1754 }
drhb7580e82015-06-25 18:36:13 +00001755 }else if( rc ){
1756 return rc;
drh9e572e62004-04-23 23:43:10 +00001757 }
1758 }
drh43605152004-05-29 21:46:49 +00001759
drh4c04f3c2014-08-20 11:56:14 +00001760 /* The request could not be fulfilled using a freelist slot. Check
1761 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001762 */
1763 testcase( gap+2+nByte==top );
1764 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001765 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001766 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001767 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001768 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001769 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001770 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001771 }
1772
1773
drh43605152004-05-29 21:46:49 +00001774 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001775 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001776 ** validated the freelist. Given that the freelist is valid, there
1777 ** is no way that the allocation can extend off the end of the page.
1778 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001779 */
drh0a45c272009-07-08 01:49:11 +00001780 top -= nByte;
drh43605152004-05-29 21:46:49 +00001781 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001782 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001783 *pIdx = top;
1784 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001785}
1786
1787/*
drh9e572e62004-04-23 23:43:10 +00001788** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001789** The first byte of the new free block is pPage->aData[iStart]
1790** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001791**
drh5f5c7532014-08-20 17:56:27 +00001792** Adjacent freeblocks are coalesced.
1793**
drh5860a612019-02-12 16:58:26 +00001794** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001795** that routine will not detect overlap between cells or freeblocks. Nor
1796** does it detect cells or freeblocks that encrouch into the reserved bytes
1797** at the end of the page. So do additional corruption checks inside this
1798** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001799*/
drh5f5c7532014-08-20 17:56:27 +00001800static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001801 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001802 u16 iFreeBlk; /* Address of the next freeblock */
1803 u8 hdr; /* Page header size. 0 or 100 */
1804 u8 nFrag = 0; /* Reduction in fragmentation */
1805 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001806 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001807 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001808 unsigned char *data = pPage->aData; /* Page content */
drh009a48e2022-02-23 18:23:15 +00001809 u8 *pTmp; /* Temporary ptr into data[] */
drh2af926b2001-05-15 00:39:25 +00001810
drh9e572e62004-04-23 23:43:10 +00001811 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001812 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001813 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001814 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001815 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001816 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001817 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001818
drh5f5c7532014-08-20 17:56:27 +00001819 /* The list of freeblocks must be in ascending order. Find the
1820 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001821 */
drh43605152004-05-29 21:46:49 +00001822 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001823 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001824 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1825 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1826 }else{
drh85f071b2016-09-17 19:34:32 +00001827 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1828 if( iFreeBlk<iPtr+4 ){
drh05e8c542020-01-14 16:39:54 +00001829 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
daneebf2f52017-11-18 17:30:08 +00001830 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001831 }
drh7bc4c452014-08-20 18:43:44 +00001832 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001833 }
drh628b1a32020-01-05 21:53:15 +00001834 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
daneebf2f52017-11-18 17:30:08 +00001835 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001836 }
drh0aa09452022-02-14 13:53:49 +00001837 assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB );
drh7bc4c452014-08-20 18:43:44 +00001838
1839 /* At this point:
1840 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001841 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001842 **
1843 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1844 */
1845 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1846 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001847 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001848 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drh6aa75152020-06-12 00:31:52 +00001849 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001850 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001851 }
drh7bc4c452014-08-20 18:43:44 +00001852 iSize = iEnd - iStart;
1853 iFreeBlk = get2byte(&data[iFreeBlk]);
1854 }
1855
drh3f387402014-09-24 01:23:00 +00001856 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1857 ** pointer in the page header) then check to see if iStart should be
1858 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001859 */
1860 if( iPtr>hdr+1 ){
1861 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1862 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001863 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001864 nFrag += iStart - iPtrEnd;
1865 iSize = iEnd - iPtr;
1866 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001867 }
drh9e572e62004-04-23 23:43:10 +00001868 }
daneebf2f52017-11-18 17:30:08 +00001869 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001870 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001871 }
drh009a48e2022-02-23 18:23:15 +00001872 pTmp = &data[hdr+5];
1873 x = get2byte(pTmp);
drh5e398e42017-08-23 20:36:06 +00001874 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001875 /* The new freeblock is at the beginning of the cell content area,
1876 ** so just extend the cell content area rather than create another
1877 ** freelist entry */
drh3b76c452020-01-03 17:40:30 +00001878 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
drh48118e42020-01-29 13:50:11 +00001879 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001880 put2byte(&data[hdr+1], iFreeBlk);
1881 put2byte(&data[hdr+5], iEnd);
1882 }else{
1883 /* Insert the new freeblock into the freelist */
1884 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001885 }
drh5e398e42017-08-23 20:36:06 +00001886 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1887 /* Overwrite deleted information with zeros when the secure_delete
1888 ** option is enabled */
1889 memset(&data[iStart], 0, iSize);
1890 }
1891 put2byte(&data[iStart], iFreeBlk);
1892 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001893 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001894 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001895}
1896
1897/*
drh271efa52004-05-30 19:19:05 +00001898** Decode the flags byte (the first byte of the header) for a page
1899** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001900**
1901** Only the following combinations are supported. Anything different
1902** indicates a corrupt database files:
1903**
1904** PTF_ZERODATA
1905** PTF_ZERODATA | PTF_LEAF
1906** PTF_LEAFDATA | PTF_INTKEY
1907** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001908*/
drh44845222008-07-17 18:39:57 +00001909static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001910 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001911
1912 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001913 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001914 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001915 flagByte &= ~PTF_LEAF;
1916 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001917 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001918 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001919 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1920 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001921 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001922 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1923 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001924 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001925 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001926 if( pPage->leaf ){
1927 pPage->intKeyLeaf = 1;
drh19ae01b2022-02-23 22:56:10 +00001928 pPage->xCellSize = cellSizePtrTableLeaf;
drh5fa60512015-06-19 17:19:34 +00001929 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001930 }else{
1931 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001932 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001933 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001934 }
drh271efa52004-05-30 19:19:05 +00001935 pPage->maxLocal = pBt->maxLeaf;
1936 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001937 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001938 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1939 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001940 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001941 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1942 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001943 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001944 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001945 pPage->intKeyLeaf = 0;
drh4f122712022-03-03 16:48:35 +00001946 pPage->xCellSize = cellSizePtr;
drh5fa60512015-06-19 17:19:34 +00001947 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001948 pPage->maxLocal = pBt->maxLocal;
1949 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001950 }else{
drhfdab0262014-11-20 15:30:50 +00001951 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1952 ** an error. */
drh4f122712022-03-03 16:48:35 +00001953 pPage->intKey = 0;
1954 pPage->intKeyLeaf = 0;
1955 pPage->xCellSize = cellSizePtr;
1956 pPage->xParseCell = btreeParseCellPtrIndex;
daneebf2f52017-11-18 17:30:08 +00001957 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001958 }
drhc9166342012-01-05 23:32:06 +00001959 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001960 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001961}
1962
1963/*
drhb0ea9432019-02-09 21:06:40 +00001964** Compute the amount of freespace on the page. In other words, fill
1965** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00001966*/
drhb0ea9432019-02-09 21:06:40 +00001967static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001968 int pc; /* Address of a freeblock within pPage->aData[] */
1969 u8 hdr; /* Offset to beginning of page header */
1970 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00001971 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00001972 int nFree; /* Number of unused bytes on the page */
1973 int top; /* First byte of the cell content area */
1974 int iCellFirst; /* First allowable cell or freeblock offset */
1975 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001976
danielk197771d5d2c2008-09-29 11:49:47 +00001977 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001978 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001979 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001980 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001981 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1982 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00001983 assert( pPage->isInit==1 );
1984 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001985
drhb0ea9432019-02-09 21:06:40 +00001986 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00001987 hdr = pPage->hdrOffset;
1988 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00001989 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1990 ** the start of the cell content area. A zero value for this integer is
1991 ** interpreted as 65536. */
1992 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00001993 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00001994 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00001995
drh14e845a2017-05-25 21:35:56 +00001996 /* Compute the total free space on the page
1997 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1998 ** start of the first freeblock on the page, or is zero if there are no
1999 ** freeblocks. */
2000 pc = get2byte(&data[hdr+1]);
2001 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
2002 if( pc>0 ){
2003 u32 next, size;
dan9a20ea92020-01-03 15:51:23 +00002004 if( pc<top ){
drh14e845a2017-05-25 21:35:56 +00002005 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
2006 ** always be at least one cell before the first freeblock.
2007 */
daneebf2f52017-11-18 17:30:08 +00002008 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00002009 }
drh14e845a2017-05-25 21:35:56 +00002010 while( 1 ){
2011 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00002012 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00002013 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002014 }
2015 next = get2byte(&data[pc]);
2016 size = get2byte(&data[pc+2]);
2017 nFree = nFree + size;
2018 if( next<=pc+size+3 ) break;
2019 pc = next;
2020 }
2021 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00002022 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00002023 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002024 }
2025 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00002026 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00002027 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002028 }
danielk197771d5d2c2008-09-29 11:49:47 +00002029 }
drh14e845a2017-05-25 21:35:56 +00002030
2031 /* At this point, nFree contains the sum of the offset to the start
2032 ** of the cell-content area plus the number of free bytes within
2033 ** the cell-content area. If this is greater than the usable-size
2034 ** of the page, then the page must be corrupted. This check also
2035 ** serves to verify that the offset to the start of the cell-content
2036 ** area, according to the page header, lies within the page.
2037 */
drhdfcecdf2019-05-08 00:17:45 +00002038 if( nFree>usableSize || nFree<iCellFirst ){
daneebf2f52017-11-18 17:30:08 +00002039 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002040 }
2041 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00002042 return SQLITE_OK;
2043}
2044
2045/*
drh5860a612019-02-12 16:58:26 +00002046** Do additional sanity check after btreeInitPage() if
2047** PRAGMA cell_size_check=ON
2048*/
2049static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
2050 int iCellFirst; /* First allowable cell or freeblock offset */
2051 int iCellLast; /* Last possible cell or freeblock offset */
2052 int i; /* Index into the cell pointer array */
2053 int sz; /* Size of a cell */
2054 int pc; /* Address of a freeblock within pPage->aData[] */
2055 u8 *data; /* Equal to pPage->aData */
2056 int usableSize; /* Maximum usable space on the page */
2057 int cellOffset; /* Start of cell content area */
2058
2059 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
2060 usableSize = pPage->pBt->usableSize;
2061 iCellLast = usableSize - 4;
2062 data = pPage->aData;
2063 cellOffset = pPage->cellOffset;
2064 if( !pPage->leaf ) iCellLast--;
2065 for(i=0; i<pPage->nCell; i++){
2066 pc = get2byteAligned(&data[cellOffset+i*2]);
2067 testcase( pc==iCellFirst );
2068 testcase( pc==iCellLast );
2069 if( pc<iCellFirst || pc>iCellLast ){
2070 return SQLITE_CORRUPT_PAGE(pPage);
2071 }
2072 sz = pPage->xCellSize(pPage, &data[pc]);
2073 testcase( pc+sz==usableSize );
2074 if( pc+sz>usableSize ){
2075 return SQLITE_CORRUPT_PAGE(pPage);
2076 }
2077 }
2078 return SQLITE_OK;
2079}
2080
2081/*
drhb0ea9432019-02-09 21:06:40 +00002082** Initialize the auxiliary information for a disk block.
2083**
2084** Return SQLITE_OK on success. If we see that the page does
2085** not contain a well-formed database page, then return
2086** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2087** guarantee that the page is well-formed. It only shows that
2088** we failed to detect any corruption.
2089*/
2090static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00002091 u8 *data; /* Equal to pPage->aData */
2092 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00002093
2094 assert( pPage->pBt!=0 );
2095 assert( pPage->pBt->db!=0 );
2096 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2097 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2098 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2099 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2100 assert( pPage->isInit==0 );
2101
2102 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00002103 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00002104 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2105 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00002106 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00002107 return SQLITE_CORRUPT_PAGE(pPage);
2108 }
2109 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2110 pPage->maskPage = (u16)(pBt->pageSize - 1);
2111 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00002112 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2113 pPage->aCellIdx = data + pPage->childPtrSize + 8;
drha055abb2022-03-01 20:15:04 +00002114 pPage->aDataEnd = pPage->aData + pBt->pageSize;
drh5860a612019-02-12 16:58:26 +00002115 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002116 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2117 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002118 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002119 if( pPage->nCell>MX_CELL(pBt) ){
2120 /* To many cells for a single page. The page must be corrupt */
2121 return SQLITE_CORRUPT_PAGE(pPage);
2122 }
2123 testcase( pPage->nCell==MX_CELL(pBt) );
2124 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2125 ** possible for a root page of a table that contains no rows) then the
2126 ** offset to the cell content area will equal the page size minus the
2127 ** bytes of reserved space. */
2128 assert( pPage->nCell>0
mistachkin065f3bf2019-03-20 05:45:03 +00002129 || get2byteNotZero(&data[5])==(int)pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002130 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002131 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002132 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002133 if( pBt->db->flags & SQLITE_CellSizeCk ){
2134 return btreeCellSizeCheck(pPage);
2135 }
drh9e572e62004-04-23 23:43:10 +00002136 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002137}
2138
2139/*
drh8b2f49b2001-06-08 00:21:52 +00002140** Set up a raw page so that it looks like a database page holding
2141** no entries.
drhbd03cae2001-06-02 02:40:57 +00002142*/
drh9e572e62004-04-23 23:43:10 +00002143static void zeroPage(MemPage *pPage, int flags){
2144 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002145 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002146 u8 hdr = pPage->hdrOffset;
2147 u16 first;
drh9e572e62004-04-23 23:43:10 +00002148
drh37034292022-03-01 16:22:54 +00002149 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB );
drhbf4bca52007-09-06 22:19:14 +00002150 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2151 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002152 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002153 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002154 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002155 memset(&data[hdr], 0, pBt->usableSize - hdr);
2156 }
drh1bd10f82008-12-10 21:19:56 +00002157 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002158 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002159 memset(&data[hdr+1], 0, 4);
2160 data[hdr+7] = 0;
2161 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002162 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002163 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002164 pPage->cellOffset = first;
drha055abb2022-03-01 20:15:04 +00002165 pPage->aDataEnd = &data[pBt->pageSize];
drh3def2352011-11-11 00:27:15 +00002166 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002167 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002168 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002169 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2170 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002171 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002172 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002173}
2174
drh897a8202008-09-18 01:08:15 +00002175
2176/*
2177** Convert a DbPage obtained from the pager into a MemPage used by
2178** the btree layer.
2179*/
2180static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2181 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002182 if( pgno!=pPage->pgno ){
2183 pPage->aData = sqlite3PagerGetData(pDbPage);
2184 pPage->pDbPage = pDbPage;
2185 pPage->pBt = pBt;
2186 pPage->pgno = pgno;
2187 pPage->hdrOffset = pgno==1 ? 100 : 0;
2188 }
2189 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002190 return pPage;
2191}
2192
drhbd03cae2001-06-02 02:40:57 +00002193/*
drh3aac2dd2004-04-26 14:10:20 +00002194** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002195** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002196**
drh7e8c6f12015-05-28 03:28:27 +00002197** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2198** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002199** to fetch the content. Just fill in the content with zeros for now.
2200** If in the future we call sqlite3PagerWrite() on this page, that
2201** means we have started to be concerned about content and the disk
2202** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002203*/
danielk197730548662009-07-09 05:07:37 +00002204static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002205 BtShared *pBt, /* The btree */
2206 Pgno pgno, /* Number of the page to fetch */
2207 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002208 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002209){
drh3aac2dd2004-04-26 14:10:20 +00002210 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002211 DbPage *pDbPage;
2212
drhb00fc3b2013-08-21 23:42:32 +00002213 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002214 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002215 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002216 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002217 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002218 return SQLITE_OK;
2219}
2220
2221/*
danielk1977bea2a942009-01-20 17:06:27 +00002222** Retrieve a page from the pager cache. If the requested page is not
2223** already in the pager cache return NULL. Initialize the MemPage.pBt and
2224** MemPage.aData elements if needed.
2225*/
2226static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2227 DbPage *pDbPage;
2228 assert( sqlite3_mutex_held(pBt->mutex) );
2229 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2230 if( pDbPage ){
2231 return btreePageFromDbPage(pDbPage, pgno, pBt);
2232 }
2233 return 0;
2234}
2235
2236/*
danielk197789d40042008-11-17 14:20:56 +00002237** Return the size of the database file in pages. If there is any kind of
2238** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002239*/
drhb1299152010-03-30 22:58:33 +00002240static Pgno btreePagecount(BtShared *pBt){
drh406dfcb2020-01-07 18:10:01 +00002241 return pBt->nPage;
drhb1299152010-03-30 22:58:33 +00002242}
drh584e8b72020-07-22 17:12:59 +00002243Pgno sqlite3BtreeLastPage(Btree *p){
drhb1299152010-03-30 22:58:33 +00002244 assert( sqlite3BtreeHoldsMutex(p) );
drh584e8b72020-07-22 17:12:59 +00002245 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002246}
2247
2248/*
drh28f58dd2015-06-27 19:45:03 +00002249** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002250**
drh15a00212015-06-27 20:55:00 +00002251** If pCur!=0 then the page is being fetched as part of a moveToChild()
2252** call. Do additional sanity checking on the page in this case.
2253** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002254**
2255** The page is fetched as read-write unless pCur is not NULL and is
2256** a read-only cursor.
2257**
2258** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002259** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002260*/
2261static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002262 BtShared *pBt, /* The database file */
2263 Pgno pgno, /* Number of the page to get */
2264 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002265 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2266 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002267){
2268 int rc;
drh28f58dd2015-06-27 19:45:03 +00002269 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002270 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002271 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002272 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002273 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002274
danba3cbf32010-06-30 04:29:03 +00002275 if( pgno>btreePagecount(pBt) ){
2276 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002277 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002278 }
drh9584f582015-11-04 20:22:37 +00002279 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002280 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002281 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002282 }
drh8dd1c252015-11-04 22:31:02 +00002283 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002284 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002285 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002286 rc = btreeInitPage(*ppPage);
2287 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002288 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002289 }
drhee696e22004-08-30 16:52:17 +00002290 }
drh37034292022-03-01 16:22:54 +00002291 assert( (*ppPage)->pgno==pgno || CORRUPT_DB );
drh8dd1c252015-11-04 22:31:02 +00002292 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002293
drh15a00212015-06-27 20:55:00 +00002294 /* If obtaining a child page for a cursor, we must verify that the page is
2295 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002296 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002297 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002298 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002299 }
drh28f58dd2015-06-27 19:45:03 +00002300 return SQLITE_OK;
2301
drhb0ea9432019-02-09 21:06:40 +00002302getAndInitPage_error2:
2303 releasePage(*ppPage);
2304getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002305 if( pCur ){
2306 pCur->iPage--;
2307 pCur->pPage = pCur->apPage[pCur->iPage];
2308 }
danba3cbf32010-06-30 04:29:03 +00002309 testcase( pgno==0 );
drhcdc59c82022-02-24 01:41:14 +00002310 assert( pgno!=0 || rc==SQLITE_CORRUPT
2311 || rc==SQLITE_IOERR_NOMEM
2312 || rc==SQLITE_NOMEM );
drhde647132004-05-07 17:57:49 +00002313 return rc;
2314}
2315
2316/*
drh3aac2dd2004-04-26 14:10:20 +00002317** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002318** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002319**
2320** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002321*/
drhbbf0f862015-06-27 14:59:26 +00002322static void releasePageNotNull(MemPage *pPage){
2323 assert( pPage->aData );
2324 assert( pPage->pBt );
2325 assert( pPage->pDbPage!=0 );
2326 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2327 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2328 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2329 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002330}
drh3aac2dd2004-04-26 14:10:20 +00002331static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002332 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002333}
drh3908fe92017-09-01 14:50:19 +00002334static void releasePageOne(MemPage *pPage){
2335 assert( pPage!=0 );
2336 assert( pPage->aData );
2337 assert( pPage->pBt );
2338 assert( pPage->pDbPage!=0 );
2339 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2340 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2341 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2342 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2343}
drh3aac2dd2004-04-26 14:10:20 +00002344
2345/*
drh7e8c6f12015-05-28 03:28:27 +00002346** Get an unused page.
2347**
2348** This works just like btreeGetPage() with the addition:
2349**
2350** * If the page is already in use for some other purpose, immediately
2351** release it and return an SQLITE_CURRUPT error.
2352** * Make sure the isInit flag is clear
2353*/
2354static int btreeGetUnusedPage(
2355 BtShared *pBt, /* The btree */
2356 Pgno pgno, /* Number of the page to fetch */
2357 MemPage **ppPage, /* Return the page in this parameter */
2358 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2359){
2360 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2361 if( rc==SQLITE_OK ){
2362 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2363 releasePage(*ppPage);
2364 *ppPage = 0;
2365 return SQLITE_CORRUPT_BKPT;
2366 }
2367 (*ppPage)->isInit = 0;
2368 }else{
2369 *ppPage = 0;
2370 }
2371 return rc;
2372}
2373
drha059ad02001-04-17 20:09:11 +00002374
2375/*
drha6abd042004-06-09 17:37:22 +00002376** During a rollback, when the pager reloads information into the cache
2377** so that the cache is restored to its original state at the start of
2378** the transaction, for each page restored this routine is called.
2379**
2380** This routine needs to reset the extra data section at the end of the
2381** page to agree with the restored data.
2382*/
danielk1977eaa06f62008-09-18 17:34:44 +00002383static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002384 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002385 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002386 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002387 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002388 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002389 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002390 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002391 /* pPage might not be a btree page; it might be an overflow page
2392 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002393 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002394 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002395 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002396 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002397 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002398 }
drha6abd042004-06-09 17:37:22 +00002399 }
2400}
2401
2402/*
drhe5fe6902007-12-07 18:55:28 +00002403** Invoke the busy handler for a btree.
2404*/
danielk19771ceedd32008-11-19 10:22:33 +00002405static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002406 BtShared *pBt = (BtShared*)pArg;
2407 assert( pBt->db );
2408 assert( sqlite3_mutex_held(pBt->db->mutex) );
drh783e1592020-05-06 20:55:38 +00002409 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
drhe5fe6902007-12-07 18:55:28 +00002410}
2411
2412/*
drhad3e0102004-09-03 23:32:18 +00002413** Open a database file.
2414**
drh382c0242001-10-06 16:33:02 +00002415** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002416** then an ephemeral database is created. The ephemeral database might
2417** be exclusively in memory, or it might use a disk-based memory cache.
2418** Either way, the ephemeral database will be automatically deleted
2419** when sqlite3BtreeClose() is called.
2420**
drhe53831d2007-08-17 01:14:38 +00002421** If zFilename is ":memory:" then an in-memory database is created
2422** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002423**
drh33f111d2012-01-17 15:29:14 +00002424** The "flags" parameter is a bitmask that might contain bits like
2425** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002426**
drhc47fd8e2009-04-30 13:30:32 +00002427** If the database is already opened in the same database connection
2428** and we are in shared cache mode, then the open will fail with an
2429** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2430** objects in the same database connection since doing so will lead
2431** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002432*/
drh23e11ca2004-05-04 17:27:28 +00002433int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002434 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002435 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002436 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002437 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002438 int flags, /* Options */
2439 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002440){
drh7555d8e2009-03-20 13:15:30 +00002441 BtShared *pBt = 0; /* Shared part of btree structure */
2442 Btree *p; /* Handle to return */
2443 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2444 int rc = SQLITE_OK; /* Result code from this function */
2445 u8 nReserve; /* Byte of unused space on each page */
2446 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002447
drh75c014c2010-08-30 15:02:28 +00002448 /* True if opening an ephemeral, temporary database */
2449 const int isTempDb = zFilename==0 || zFilename[0]==0;
2450
danielk1977aef0bf62005-12-30 16:28:01 +00002451 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002452 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002453 */
drhb0a7c9c2010-12-06 21:09:59 +00002454#ifdef SQLITE_OMIT_MEMORYDB
2455 const int isMemdb = 0;
2456#else
2457 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002458 || (isTempDb && sqlite3TempInMemory(db))
2459 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002460#endif
2461
drhe5fe6902007-12-07 18:55:28 +00002462 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002463 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002464 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002465 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2466
2467 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2468 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2469
2470 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2471 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002472
drh75c014c2010-08-30 15:02:28 +00002473 if( isMemdb ){
2474 flags |= BTREE_MEMORY;
2475 }
2476 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2477 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2478 }
drh17435752007-08-16 04:30:38 +00002479 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002480 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002481 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002482 }
2483 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002484 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002485#ifndef SQLITE_OMIT_SHARED_CACHE
2486 p->lock.pBtree = p;
2487 p->lock.iTable = 1;
2488#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002489
drh198bf392006-01-06 21:52:49 +00002490#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002491 /*
2492 ** If this Btree is a candidate for shared cache, try to find an
2493 ** existing BtShared object that we can share with
2494 */
drh4ab9d252012-05-26 20:08:49 +00002495 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002496 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002497 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002498 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002499 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002500 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002501
drhff0587c2007-08-29 17:43:19 +00002502 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002503 if( !zFullPathname ){
2504 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002505 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002506 }
drhafc8b7f2012-05-26 18:06:38 +00002507 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002508 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002509 }else{
2510 rc = sqlite3OsFullPathname(pVfs, zFilename,
2511 nFullPathname, zFullPathname);
2512 if( rc ){
drhc398c652019-11-22 00:42:01 +00002513 if( rc==SQLITE_OK_SYMLINK ){
2514 rc = SQLITE_OK;
2515 }else{
2516 sqlite3_free(zFullPathname);
2517 sqlite3_free(p);
2518 return rc;
2519 }
drhafc8b7f2012-05-26 18:06:38 +00002520 }
drh070ad6b2011-11-17 11:43:19 +00002521 }
drh30ddce62011-10-15 00:16:30 +00002522#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002523 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2524 sqlite3_mutex_enter(mutexOpen);
drhccb21132020-06-19 11:34:57 +00002525 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
drhff0587c2007-08-29 17:43:19 +00002526 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002527#endif
drh78f82d12008-09-02 00:52:52 +00002528 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002529 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002530 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002531 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002532 int iDb;
2533 for(iDb=db->nDb-1; iDb>=0; iDb--){
2534 Btree *pExisting = db->aDb[iDb].pBt;
2535 if( pExisting && pExisting->pBt==pBt ){
2536 sqlite3_mutex_leave(mutexShared);
2537 sqlite3_mutex_leave(mutexOpen);
2538 sqlite3_free(zFullPathname);
2539 sqlite3_free(p);
2540 return SQLITE_CONSTRAINT;
2541 }
2542 }
drhff0587c2007-08-29 17:43:19 +00002543 p->pBt = pBt;
2544 pBt->nRef++;
2545 break;
2546 }
2547 }
2548 sqlite3_mutex_leave(mutexShared);
2549 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002550 }
drhff0587c2007-08-29 17:43:19 +00002551#ifdef SQLITE_DEBUG
2552 else{
2553 /* In debug mode, we mark all persistent databases as sharable
2554 ** even when they are not. This exercises the locking code and
2555 ** gives more opportunity for asserts(sqlite3_mutex_held())
2556 ** statements to find locking problems.
2557 */
2558 p->sharable = 1;
2559 }
2560#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002561 }
2562#endif
drha059ad02001-04-17 20:09:11 +00002563 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002564 /*
2565 ** The following asserts make sure that structures used by the btree are
2566 ** the right size. This is to guard against size changes that result
2567 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002568 */
drh062cf272015-03-23 19:03:51 +00002569 assert( sizeof(i64)==8 );
2570 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002571 assert( sizeof(u32)==4 );
2572 assert( sizeof(u16)==2 );
2573 assert( sizeof(Pgno)==4 );
2574
2575 pBt = sqlite3MallocZero( sizeof(*pBt) );
2576 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002577 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002578 goto btree_open_out;
2579 }
danielk197771d5d2c2008-09-29 11:49:47 +00002580 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002581 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002582 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002583 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002584 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2585 }
2586 if( rc!=SQLITE_OK ){
2587 goto btree_open_out;
2588 }
shanehbd2aaf92010-09-01 02:38:21 +00002589 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002590 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002591 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002592 p->pBt = pBt;
2593
drhe53831d2007-08-17 01:14:38 +00002594 pBt->pCursor = 0;
2595 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002596 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002597#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002598 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002599#elif defined(SQLITE_FAST_SECURE_DELETE)
2600 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002601#endif
drh113762a2014-11-19 16:36:25 +00002602 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2603 ** determined by the 2-byte integer located at an offset of 16 bytes from
2604 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002605 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002606 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2607 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002608 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002609#ifndef SQLITE_OMIT_AUTOVACUUM
2610 /* If the magic name ":memory:" will create an in-memory database, then
2611 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2612 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2613 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2614 ** regular file-name. In this case the auto-vacuum applies as per normal.
2615 */
2616 if( zFilename && !isMemdb ){
2617 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2618 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2619 }
2620#endif
2621 nReserve = 0;
2622 }else{
drh113762a2014-11-19 16:36:25 +00002623 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2624 ** determined by the one-byte unsigned integer found at an offset of 20
2625 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002626 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002627 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002628#ifndef SQLITE_OMIT_AUTOVACUUM
2629 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2630 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2631#endif
2632 }
drhfa9601a2009-06-18 17:22:39 +00002633 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002634 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002635 pBt->usableSize = pBt->pageSize - nReserve;
2636 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002637
2638#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2639 /* Add the new BtShared object to the linked list sharable BtShareds.
2640 */
dan272989b2016-07-06 10:12:02 +00002641 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002642 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002643 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhccb21132020-06-19 11:34:57 +00002644 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
danielk1977075c23a2008-09-01 18:34:20 +00002645 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002646 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002647 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002648 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002649 goto btree_open_out;
2650 }
drhff0587c2007-08-29 17:43:19 +00002651 }
drhe53831d2007-08-17 01:14:38 +00002652 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002653 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2654 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002655 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002656 }
drheee46cf2004-11-06 00:02:48 +00002657#endif
drh90f5ecb2004-07-22 01:19:35 +00002658 }
danielk1977aef0bf62005-12-30 16:28:01 +00002659
drhcfed7bc2006-03-13 14:28:05 +00002660#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002661 /* If the new Btree uses a sharable pBtShared, then link the new
2662 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002663 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002664 */
drhe53831d2007-08-17 01:14:38 +00002665 if( p->sharable ){
2666 int i;
2667 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002668 for(i=0; i<db->nDb; i++){
2669 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002670 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002671 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002672 p->pNext = pSib;
2673 p->pPrev = 0;
2674 pSib->pPrev = p;
2675 }else{
drh3bfa7e82016-03-22 14:37:59 +00002676 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002677 pSib = pSib->pNext;
2678 }
2679 p->pNext = pSib->pNext;
2680 p->pPrev = pSib;
2681 if( p->pNext ){
2682 p->pNext->pPrev = p;
2683 }
2684 pSib->pNext = p;
2685 }
2686 break;
2687 }
2688 }
danielk1977aef0bf62005-12-30 16:28:01 +00002689 }
danielk1977aef0bf62005-12-30 16:28:01 +00002690#endif
2691 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002692
2693btree_open_out:
2694 if( rc!=SQLITE_OK ){
2695 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002696 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002697 }
drh17435752007-08-16 04:30:38 +00002698 sqlite3_free(pBt);
2699 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002700 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002701 }else{
dan0f5a1862016-08-13 14:30:23 +00002702 sqlite3_file *pFile;
2703
drh75c014c2010-08-30 15:02:28 +00002704 /* If the B-Tree was successfully opened, set the pager-cache size to the
2705 ** default value. Except, when opening on an existing shared pager-cache,
2706 ** do not change the pager-cache size.
2707 */
2708 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
dan78f04752020-09-04 19:10:43 +00002709 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
drh75c014c2010-08-30 15:02:28 +00002710 }
dan0f5a1862016-08-13 14:30:23 +00002711
2712 pFile = sqlite3PagerFile(pBt->pPager);
2713 if( pFile->pMethods ){
2714 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2715 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002716 }
drh7555d8e2009-03-20 13:15:30 +00002717 if( mutexOpen ){
2718 assert( sqlite3_mutex_held(mutexOpen) );
2719 sqlite3_mutex_leave(mutexOpen);
2720 }
dan272989b2016-07-06 10:12:02 +00002721 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002722 return rc;
drha059ad02001-04-17 20:09:11 +00002723}
2724
2725/*
drhe53831d2007-08-17 01:14:38 +00002726** Decrement the BtShared.nRef counter. When it reaches zero,
2727** remove the BtShared structure from the sharing list. Return
2728** true if the BtShared.nRef counter reaches zero and return
2729** false if it is still positive.
2730*/
2731static int removeFromSharingList(BtShared *pBt){
2732#ifndef SQLITE_OMIT_SHARED_CACHE
drh067b92b2020-06-19 15:24:12 +00002733 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
drhe53831d2007-08-17 01:14:38 +00002734 BtShared *pList;
2735 int removed = 0;
2736
drhd677b3d2007-08-20 22:48:41 +00002737 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh067b92b2020-06-19 15:24:12 +00002738 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2739 sqlite3_mutex_enter(pMainMtx);
drhe53831d2007-08-17 01:14:38 +00002740 pBt->nRef--;
2741 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002742 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2743 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002744 }else{
drh78f82d12008-09-02 00:52:52 +00002745 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002746 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002747 pList=pList->pNext;
2748 }
drh34004ce2008-07-11 16:15:17 +00002749 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002750 pList->pNext = pBt->pNext;
2751 }
2752 }
drh3285db22007-09-03 22:00:39 +00002753 if( SQLITE_THREADSAFE ){
2754 sqlite3_mutex_free(pBt->mutex);
2755 }
drhe53831d2007-08-17 01:14:38 +00002756 removed = 1;
2757 }
drh067b92b2020-06-19 15:24:12 +00002758 sqlite3_mutex_leave(pMainMtx);
drhe53831d2007-08-17 01:14:38 +00002759 return removed;
2760#else
2761 return 1;
2762#endif
2763}
2764
2765/*
drhf7141992008-06-19 00:16:08 +00002766** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002767** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2768** pointer.
drhf7141992008-06-19 00:16:08 +00002769*/
drh2f0bc1d2021-12-03 13:42:41 +00002770static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
2771 assert( pBt!=0 );
2772 assert( pBt->pTmpSpace==0 );
2773 /* This routine is called only by btreeCursor() when allocating the
2774 ** first write cursor for the BtShared object */
2775 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
2776 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2777 if( pBt->pTmpSpace==0 ){
2778 BtCursor *pCur = pBt->pCursor;
2779 pBt->pCursor = pCur->pNext; /* Unlink the cursor */
2780 memset(pCur, 0, sizeof(*pCur));
2781 return SQLITE_NOMEM_BKPT;
drhf7141992008-06-19 00:16:08 +00002782 }
drh2f0bc1d2021-12-03 13:42:41 +00002783
2784 /* One of the uses of pBt->pTmpSpace is to format cells before
2785 ** inserting them into a leaf page (function fillInCell()). If
2786 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2787 ** by the various routines that manipulate binary cells. Which
2788 ** can mean that fillInCell() only initializes the first 2 or 3
2789 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2790 ** it into a database page. This is not actually a problem, but it
2791 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2792 ** data is passed to system call write(). So to avoid this error,
2793 ** zero the first 4 bytes of temp space here.
2794 **
2795 ** Also: Provide four bytes of initialized space before the
2796 ** beginning of pTmpSpace as an area available to prepend the
2797 ** left-child pointer to the beginning of a cell.
2798 */
drh11e4fdb2021-12-03 14:57:05 +00002799 memset(pBt->pTmpSpace, 0, 8);
2800 pBt->pTmpSpace += 4;
drh2f0bc1d2021-12-03 13:42:41 +00002801 return SQLITE_OK;
drhf7141992008-06-19 00:16:08 +00002802}
2803
2804/*
2805** Free the pBt->pTmpSpace allocation
2806*/
2807static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002808 if( pBt->pTmpSpace ){
2809 pBt->pTmpSpace -= 4;
2810 sqlite3PageFree(pBt->pTmpSpace);
2811 pBt->pTmpSpace = 0;
2812 }
drhf7141992008-06-19 00:16:08 +00002813}
2814
2815/*
drha059ad02001-04-17 20:09:11 +00002816** Close an open database and invalidate all cursors.
2817*/
danielk1977aef0bf62005-12-30 16:28:01 +00002818int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002819 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00002820
danielk1977aef0bf62005-12-30 16:28:01 +00002821 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002822 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002823 sqlite3BtreeEnter(p);
drh5a4a15f2021-03-18 15:42:59 +00002824
2825 /* Verify that no other cursors have this Btree open */
2826#ifdef SQLITE_DEBUG
2827 {
2828 BtCursor *pCur = pBt->pCursor;
2829 while( pCur ){
2830 BtCursor *pTmp = pCur;
2831 pCur = pCur->pNext;
2832 assert( pTmp->pBtree!=p );
2833
danielk1977aef0bf62005-12-30 16:28:01 +00002834 }
drha059ad02001-04-17 20:09:11 +00002835 }
drh5a4a15f2021-03-18 15:42:59 +00002836#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002837
danielk19778d34dfd2006-01-24 16:37:57 +00002838 /* Rollback any active transaction and free the handle structure.
2839 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2840 ** this handle.
2841 */
drh47b7fc72014-11-11 01:33:57 +00002842 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002843 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002844
danielk1977aef0bf62005-12-30 16:28:01 +00002845 /* If there are still other outstanding references to the shared-btree
2846 ** structure, return now. The remainder of this procedure cleans
2847 ** up the shared-btree.
2848 */
drhe53831d2007-08-17 01:14:38 +00002849 assert( p->wantToLock==0 && p->locked==0 );
2850 if( !p->sharable || removeFromSharingList(pBt) ){
2851 /* The pBt is no longer on the sharing list, so we can access
2852 ** it without having to hold the mutex.
2853 **
2854 ** Clean out and delete the BtShared object.
2855 */
2856 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002857 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002858 if( pBt->xFreeSchema && pBt->pSchema ){
2859 pBt->xFreeSchema(pBt->pSchema);
2860 }
drhb9755982010-07-24 16:34:37 +00002861 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002862 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002863 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002864 }
2865
drhe53831d2007-08-17 01:14:38 +00002866#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002867 assert( p->wantToLock==0 );
2868 assert( p->locked==0 );
2869 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2870 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002871#endif
2872
drhe53831d2007-08-17 01:14:38 +00002873 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002874 return SQLITE_OK;
2875}
2876
2877/*
drh9b0cf342015-11-12 14:57:19 +00002878** Change the "soft" limit on the number of pages in the cache.
2879** Unused and unmodified pages will be recycled when the number of
2880** pages in the cache exceeds this soft limit. But the size of the
2881** cache is allowed to grow larger than this limit if it contains
2882** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002883*/
danielk1977aef0bf62005-12-30 16:28:01 +00002884int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2885 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002886 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002887 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002888 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002889 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002890 return SQLITE_OK;
2891}
2892
drh9b0cf342015-11-12 14:57:19 +00002893/*
2894** Change the "spill" limit on the number of pages in the cache.
2895** If the number of pages exceeds this limit during a write transaction,
2896** the pager might attempt to "spill" pages to the journal early in
2897** order to free up memory.
2898**
2899** The value returned is the current spill size. If zero is passed
2900** as an argument, no changes are made to the spill size setting, so
2901** using mxPage of 0 is a way to query the current spill size.
2902*/
2903int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2904 BtShared *pBt = p->pBt;
2905 int res;
2906 assert( sqlite3_mutex_held(p->db->mutex) );
2907 sqlite3BtreeEnter(p);
2908 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2909 sqlite3BtreeLeave(p);
2910 return res;
2911}
2912
drh18c7e402014-03-14 11:46:10 +00002913#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002914/*
dan5d8a1372013-03-19 19:28:06 +00002915** Change the limit on the amount of the database file that may be
2916** memory mapped.
2917*/
drh9b4c59f2013-04-15 17:03:42 +00002918int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002919 BtShared *pBt = p->pBt;
2920 assert( sqlite3_mutex_held(p->db->mutex) );
2921 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002922 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002923 sqlite3BtreeLeave(p);
2924 return SQLITE_OK;
2925}
drh18c7e402014-03-14 11:46:10 +00002926#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002927
2928/*
drh973b6e32003-02-12 14:09:42 +00002929** Change the way data is synced to disk in order to increase or decrease
2930** how well the database resists damage due to OS crashes and power
2931** failures. Level 1 is the same as asynchronous (no syncs() occur and
2932** there is a high probability of damage) Level 2 is the default. There
2933** is a very low but non-zero probability of damage. Level 3 reduces the
2934** probability of damage to near zero but with a write performance reduction.
2935*/
danielk197793758c82005-01-21 08:13:14 +00002936#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002937int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002938 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002939 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002940){
danielk1977aef0bf62005-12-30 16:28:01 +00002941 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002942 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002943 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002944 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002945 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002946 return SQLITE_OK;
2947}
danielk197793758c82005-01-21 08:13:14 +00002948#endif
drh973b6e32003-02-12 14:09:42 +00002949
drh2c8997b2005-08-27 16:36:48 +00002950/*
drh90f5ecb2004-07-22 01:19:35 +00002951** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002952** Or, if the page size has already been fixed, return SQLITE_READONLY
2953** without changing anything.
drh06f50212004-11-02 14:24:33 +00002954**
2955** The page size must be a power of 2 between 512 and 65536. If the page
2956** size supplied does not meet this constraint then the page size is not
2957** changed.
2958**
2959** Page sizes are constrained to be a power of two so that the region
2960** of the database file used for locking (beginning at PENDING_BYTE,
2961** the first byte past the 1GB boundary, 0x40000000) needs to occur
2962** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002963**
2964** If parameter nReserve is less than zero, then the number of reserved
2965** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002966**
drhc9166342012-01-05 23:32:06 +00002967** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002968** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002969*/
drhce4869f2009-04-02 20:16:58 +00002970int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002971 int rc = SQLITE_OK;
drhe937df82020-05-07 01:56:57 +00002972 int x;
danielk1977aef0bf62005-12-30 16:28:01 +00002973 BtShared *pBt = p->pBt;
drhe937df82020-05-07 01:56:57 +00002974 assert( nReserve>=0 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002975 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00002976 pBt->nReserveWanted = nReserve;
2977 x = pBt->pageSize - pBt->usableSize;
2978 if( nReserve<x ) nReserve = x;
drhc9166342012-01-05 23:32:06 +00002979 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002980 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002981 return SQLITE_READONLY;
2982 }
drhf49661a2008-12-10 16:45:50 +00002983 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002984 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2985 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002986 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002987 assert( !pBt->pCursor );
drh906602a2021-01-21 21:36:25 +00002988 if( nReserve>32 && pageSize==512 ) pageSize = 1024;
drhb2eced52010-08-12 02:41:12 +00002989 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002990 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002991 }
drhfa9601a2009-06-18 17:22:39 +00002992 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002993 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002994 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002995 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002996 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002997}
2998
2999/*
3000** Return the currently defined page size
3001*/
danielk1977aef0bf62005-12-30 16:28:01 +00003002int sqlite3BtreeGetPageSize(Btree *p){
3003 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00003004}
drh7f751222009-03-17 22:33:00 +00003005
dan0094f372012-09-28 20:23:42 +00003006/*
3007** This function is similar to sqlite3BtreeGetReserve(), except that it
3008** may only be called if it is guaranteed that the b-tree mutex is already
3009** held.
3010**
3011** This is useful in one special case in the backup API code where it is
3012** known that the shared b-tree mutex is held, but the mutex on the
3013** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
3014** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00003015** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00003016*/
3017int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00003018 int n;
dan0094f372012-09-28 20:23:42 +00003019 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00003020 n = p->pBt->pageSize - p->pBt->usableSize;
3021 return n;
dan0094f372012-09-28 20:23:42 +00003022}
3023
drh7f751222009-03-17 22:33:00 +00003024/*
3025** Return the number of bytes of space at the end of every page that
3026** are intentually left unused. This is the "reserved" space that is
3027** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00003028**
drh4d347662020-04-22 00:50:21 +00003029** The value returned is the larger of the current reserve size and
3030** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
3031** The amount of reserve can only grow - never shrink.
drh7f751222009-03-17 22:33:00 +00003032*/
drh45248de2020-04-20 15:18:43 +00003033int sqlite3BtreeGetRequestedReserve(Btree *p){
drhe937df82020-05-07 01:56:57 +00003034 int n1, n2;
drhd677b3d2007-08-20 22:48:41 +00003035 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00003036 n1 = (int)p->pBt->nReserveWanted;
3037 n2 = sqlite3BtreeGetReserveNoMutex(p);
drhd677b3d2007-08-20 22:48:41 +00003038 sqlite3BtreeLeave(p);
drhe937df82020-05-07 01:56:57 +00003039 return n1>n2 ? n1 : n2;
drh2011d5f2004-07-22 02:40:37 +00003040}
drhf8e632b2007-05-08 14:51:36 +00003041
drhad0961b2015-02-21 00:19:25 +00003042
drhf8e632b2007-05-08 14:51:36 +00003043/*
3044** Set the maximum page count for a database if mxPage is positive.
3045** No changes are made if mxPage is 0 or negative.
3046** Regardless of the value of mxPage, return the maximum page count.
3047*/
drhe9261db2020-07-20 12:47:32 +00003048Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
3049 Pgno n;
drhd677b3d2007-08-20 22:48:41 +00003050 sqlite3BtreeEnter(p);
3051 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
3052 sqlite3BtreeLeave(p);
3053 return n;
drhf8e632b2007-05-08 14:51:36 +00003054}
drh5b47efa2010-02-12 18:18:39 +00003055
3056/*
drha5907a82017-06-19 11:44:22 +00003057** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
3058**
3059** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3060** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3061** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3062** newFlag==(-1) No changes
3063**
3064** This routine acts as a query if newFlag is less than zero
3065**
3066** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3067** freelist leaf pages are not written back to the database. Thus in-page
3068** deleted content is cleared, but freelist deleted content is not.
3069**
3070** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3071** that freelist leaf pages are written back into the database, increasing
3072** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00003073*/
3074int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
3075 int b;
drhaf034ed2010-02-12 19:46:26 +00003076 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00003077 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00003078 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
3079 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00003080 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00003081 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3082 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3083 }
3084 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00003085 sqlite3BtreeLeave(p);
3086 return b;
3087}
drh90f5ecb2004-07-22 01:19:35 +00003088
3089/*
danielk1977951af802004-11-05 15:45:09 +00003090** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3091** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3092** is disabled. The default value for the auto-vacuum property is
3093** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3094*/
danielk1977aef0bf62005-12-30 16:28:01 +00003095int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00003096#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00003097 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00003098#else
danielk1977dddbcdc2007-04-26 14:42:34 +00003099 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003100 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00003101 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00003102
3103 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00003104 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003105 rc = SQLITE_READONLY;
3106 }else{
drh076d4662009-02-18 20:31:18 +00003107 pBt->autoVacuum = av ?1:0;
3108 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00003109 }
drhd677b3d2007-08-20 22:48:41 +00003110 sqlite3BtreeLeave(p);
3111 return rc;
danielk1977951af802004-11-05 15:45:09 +00003112#endif
3113}
3114
3115/*
3116** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3117** enabled 1 is returned. Otherwise 0.
3118*/
danielk1977aef0bf62005-12-30 16:28:01 +00003119int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00003120#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003121 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00003122#else
drhd677b3d2007-08-20 22:48:41 +00003123 int rc;
3124 sqlite3BtreeEnter(p);
3125 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003126 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3127 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3128 BTREE_AUTOVACUUM_INCR
3129 );
drhd677b3d2007-08-20 22:48:41 +00003130 sqlite3BtreeLeave(p);
3131 return rc;
danielk1977951af802004-11-05 15:45:09 +00003132#endif
3133}
3134
danf5da7db2017-03-16 18:14:39 +00003135/*
3136** If the user has not set the safety-level for this database connection
3137** using "PRAGMA synchronous", and if the safety-level is not already
3138** set to the value passed to this function as the second parameter,
3139** set it so.
3140*/
drh2ed57372017-10-05 20:57:38 +00003141#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3142 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003143static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3144 sqlite3 *db;
3145 Db *pDb;
3146 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3147 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3148 if( pDb->bSyncSet==0
3149 && pDb->safety_level!=safety_level
3150 && pDb!=&db->aDb[1]
3151 ){
3152 pDb->safety_level = safety_level;
3153 sqlite3PagerSetFlags(pBt->pPager,
3154 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3155 }
3156 }
3157}
3158#else
danfc8f4b62017-03-16 18:54:42 +00003159# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003160#endif
danielk1977951af802004-11-05 15:45:09 +00003161
drh0314cf32018-04-28 01:27:09 +00003162/* Forward declaration */
3163static int newDatabase(BtShared*);
3164
3165
danielk1977951af802004-11-05 15:45:09 +00003166/*
drha34b6762004-05-07 13:30:42 +00003167** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003168** also acquire a readlock on that file.
3169**
3170** SQLITE_OK is returned on success. If the file is not a
3171** well-formed database file, then SQLITE_CORRUPT is returned.
3172** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003173** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003174*/
danielk1977aef0bf62005-12-30 16:28:01 +00003175static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003176 int rc; /* Result code from subfunctions */
3177 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003178 u32 nPage; /* Number of pages in the database */
3179 u32 nPageFile = 0; /* Number of pages in the database file */
drhd677b3d2007-08-20 22:48:41 +00003180
drh1fee73e2007-08-29 04:00:57 +00003181 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003182 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003183 rc = sqlite3PagerSharedLock(pBt->pPager);
3184 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003185 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003186 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003187
3188 /* Do some checking to help insure the file we opened really is
3189 ** a valid database file.
3190 */
drh7d4c94b2021-10-04 22:34:38 +00003191 nPage = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003192 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003193 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003194 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003195 }
drh0314cf32018-04-28 01:27:09 +00003196 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3197 nPage = 0;
3198 }
drh97b59a52010-03-31 02:31:33 +00003199 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003200 u32 pageSize;
3201 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003202 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003203 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003204 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3205 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3206 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003207 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003208 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003209 }
dan5cf53532010-05-01 16:40:20 +00003210
3211#ifdef SQLITE_OMIT_WAL
3212 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003213 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003214 }
3215 if( page1[19]>1 ){
3216 goto page1_init_failed;
3217 }
3218#else
dane04dc882010-04-20 18:53:15 +00003219 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003220 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003221 }
dane04dc882010-04-20 18:53:15 +00003222 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003223 goto page1_init_failed;
3224 }
drhe5ae5732008-06-15 02:51:47 +00003225
drh0ccda522021-08-23 15:56:01 +00003226 /* If the read version is set to 2, this database should be accessed
dana470aeb2010-04-21 11:43:38 +00003227 ** in WAL mode. If the log is not already open, open it now. Then
3228 ** return SQLITE_OK and return without populating BtShared.pPage1.
3229 ** The caller detects this and calls this function again. This is
3230 ** required as the version of page 1 currently in the page1 buffer
3231 ** may not be the latest version - there may be a newer one in the log
3232 ** file.
3233 */
drhc9166342012-01-05 23:32:06 +00003234 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003235 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003236 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003237 if( rc!=SQLITE_OK ){
3238 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003239 }else{
danf5da7db2017-03-16 18:14:39 +00003240 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003241 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003242 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003243 return SQLITE_OK;
3244 }
dane04dc882010-04-20 18:53:15 +00003245 }
dan8b5444b2010-04-27 14:37:47 +00003246 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003247 }else{
3248 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003249 }
dan5cf53532010-05-01 16:40:20 +00003250#endif
dane04dc882010-04-20 18:53:15 +00003251
drh113762a2014-11-19 16:36:25 +00003252 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3253 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3254 **
drhe5ae5732008-06-15 02:51:47 +00003255 ** The original design allowed these amounts to vary, but as of
3256 ** version 3.6.0, we require them to be fixed.
3257 */
3258 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3259 goto page1_init_failed;
3260 }
drh113762a2014-11-19 16:36:25 +00003261 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3262 ** determined by the 2-byte integer located at an offset of 16 bytes from
3263 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003264 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003265 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3266 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003267 if( ((pageSize-1)&pageSize)!=0
3268 || pageSize>SQLITE_MAX_PAGE_SIZE
3269 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003270 ){
drh07d183d2005-05-01 22:52:42 +00003271 goto page1_init_failed;
3272 }
drhdcc27002019-01-06 02:06:31 +00003273 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003274 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003275 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3276 ** integer at offset 20 is the number of bytes of space at the end of
3277 ** each page to reserve for extensions.
3278 **
3279 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3280 ** determined by the one-byte unsigned integer found at an offset of 20
3281 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003282 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003283 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003284 /* After reading the first page of the database assuming a page size
3285 ** of BtShared.pageSize, we have discovered that the page-size is
3286 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3287 ** zero and return SQLITE_OK. The caller will call this function
3288 ** again with the correct page-size.
3289 */
drh3908fe92017-09-01 14:50:19 +00003290 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003291 pBt->usableSize = usableSize;
3292 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003293 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003294 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3295 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003296 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003297 }
drh5a6f8182022-01-17 14:42:38 +00003298 if( nPage>nPageFile ){
3299 if( sqlite3WritableSchema(pBt->db)==0 ){
3300 rc = SQLITE_CORRUPT_BKPT;
3301 goto page1_init_failed;
3302 }else{
3303 nPage = nPageFile;
3304 }
drhc2a4bab2010-04-02 12:46:45 +00003305 }
drh113762a2014-11-19 16:36:25 +00003306 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3307 ** be less than 480. In other words, if the page size is 512, then the
3308 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003309 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003310 goto page1_init_failed;
3311 }
drh43b18e12010-08-17 19:40:08 +00003312 pBt->pageSize = pageSize;
3313 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003314#ifndef SQLITE_OMIT_AUTOVACUUM
3315 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003316 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003317#endif
drh306dc212001-05-21 13:45:10 +00003318 }
drhb6f41482004-05-14 01:58:11 +00003319
3320 /* maxLocal is the maximum amount of payload to store locally for
3321 ** a cell. Make sure it is small enough so that at least minFanout
3322 ** cells can will fit on one page. We assume a 10-byte page header.
3323 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003324 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003325 ** 4-byte child pointer
3326 ** 9-byte nKey value
3327 ** 4-byte nData value
3328 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003329 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003330 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3331 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003332 */
shaneh1df2db72010-08-18 02:28:48 +00003333 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3334 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3335 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3336 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003337 if( pBt->maxLocal>127 ){
3338 pBt->max1bytePayload = 127;
3339 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003340 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003341 }
drh2e38c322004-09-03 18:38:44 +00003342 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003343 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003344 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003345 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003346
drh72f82862001-05-24 21:06:34 +00003347page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003348 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003349 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003350 return rc;
drh306dc212001-05-21 13:45:10 +00003351}
3352
drh85ec3b62013-05-14 23:12:06 +00003353#ifndef NDEBUG
3354/*
3355** Return the number of cursors open on pBt. This is for use
3356** in assert() expressions, so it is only compiled if NDEBUG is not
3357** defined.
3358**
3359** Only write cursors are counted if wrOnly is true. If wrOnly is
3360** false then all cursors are counted.
3361**
3362** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003363** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003364** have been tripped into the CURSOR_FAULT state are not counted.
3365*/
3366static int countValidCursors(BtShared *pBt, int wrOnly){
3367 BtCursor *pCur;
3368 int r = 0;
3369 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003370 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3371 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003372 }
3373 return r;
3374}
3375#endif
3376
drh306dc212001-05-21 13:45:10 +00003377/*
drhb8ca3072001-12-05 00:21:20 +00003378** If there are no outstanding cursors and we are not in the middle
3379** of a transaction but there is a read lock on the database, then
3380** this routine unrefs the first page of the database file which
3381** has the effect of releasing the read lock.
3382**
drhb8ca3072001-12-05 00:21:20 +00003383** If there is a transaction in progress, this routine is a no-op.
3384*/
danielk1977aef0bf62005-12-30 16:28:01 +00003385static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003386 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003387 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003388 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003389 MemPage *pPage1 = pBt->pPage1;
3390 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003391 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003392 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003393 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003394 }
3395}
3396
3397/*
drhe39f2f92009-07-23 01:43:59 +00003398** If pBt points to an empty file then convert that empty file
3399** into a new empty database by initializing the first page of
3400** the database.
drh8b2f49b2001-06-08 00:21:52 +00003401*/
danielk1977aef0bf62005-12-30 16:28:01 +00003402static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003403 MemPage *pP1;
3404 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003405 int rc;
drhd677b3d2007-08-20 22:48:41 +00003406
drh1fee73e2007-08-29 04:00:57 +00003407 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003408 if( pBt->nPage>0 ){
3409 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003410 }
drh3aac2dd2004-04-26 14:10:20 +00003411 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003412 assert( pP1!=0 );
3413 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003414 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003415 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003416 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3417 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003418 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3419 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003420 data[18] = 1;
3421 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003422 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3423 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003424 data[21] = 64;
3425 data[22] = 32;
3426 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003427 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003428 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003429 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003430#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003431 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003432 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003433 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003434 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003435#endif
drhdd3cd972010-03-27 17:12:36 +00003436 pBt->nPage = 1;
3437 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003438 return SQLITE_OK;
3439}
3440
3441/*
danb483eba2012-10-13 19:58:11 +00003442** Initialize the first page of the database file (creating a database
3443** consisting of a single page and no schema objects). Return SQLITE_OK
3444** if successful, or an SQLite error code otherwise.
3445*/
3446int sqlite3BtreeNewDb(Btree *p){
3447 int rc;
3448 sqlite3BtreeEnter(p);
3449 p->pBt->nPage = 0;
3450 rc = newDatabase(p->pBt);
3451 sqlite3BtreeLeave(p);
3452 return rc;
3453}
3454
3455/*
danielk1977ee5741e2004-05-31 10:01:34 +00003456** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003457** is started if the second argument is nonzero, otherwise a read-
3458** transaction. If the second argument is 2 or more and exclusive
3459** transaction is started, meaning that no other process is allowed
3460** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003461** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003462** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003463**
danielk1977ee5741e2004-05-31 10:01:34 +00003464** A write-transaction must be started before attempting any
3465** changes to the database. None of the following routines
3466** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003467**
drh23e11ca2004-05-04 17:27:28 +00003468** sqlite3BtreeCreateTable()
3469** sqlite3BtreeCreateIndex()
3470** sqlite3BtreeClearTable()
3471** sqlite3BtreeDropTable()
3472** sqlite3BtreeInsert()
3473** sqlite3BtreeDelete()
3474** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003475**
drhb8ef32c2005-03-14 02:01:49 +00003476** If an initial attempt to acquire the lock fails because of lock contention
3477** and the database was previously unlocked, then invoke the busy handler
3478** if there is one. But if there was previously a read-lock, do not
3479** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3480** returned when there is already a read-lock in order to avoid a deadlock.
3481**
3482** Suppose there are two processes A and B. A has a read lock and B has
3483** a reserved lock. B tries to promote to exclusive but is blocked because
3484** of A's read lock. A tries to promote to reserved but is blocked by B.
3485** One or the other of the two processes must give way or there can be
3486** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3487** when A already has a read lock, we encourage A to give up and let B
3488** proceed.
drha059ad02001-04-17 20:09:11 +00003489*/
drhbb2d9b12018-06-06 16:28:40 +00003490int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003491 BtShared *pBt = p->pBt;
dan7bb8b8a2020-05-06 20:27:18 +00003492 Pager *pPager = pBt->pPager;
danielk1977ee5741e2004-05-31 10:01:34 +00003493 int rc = SQLITE_OK;
3494
drhd677b3d2007-08-20 22:48:41 +00003495 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003496 btreeIntegrity(p);
3497
danielk1977ee5741e2004-05-31 10:01:34 +00003498 /* If the btree is already in a write-transaction, or it
3499 ** is already in a read-transaction and a read-transaction
3500 ** is requested, this is a no-op.
3501 */
danielk1977aef0bf62005-12-30 16:28:01 +00003502 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003503 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003504 }
dan56c517a2013-09-26 11:04:33 +00003505 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003506
danea933f02018-07-19 11:44:02 +00003507 if( (p->db->flags & SQLITE_ResetDatabase)
dan7bb8b8a2020-05-06 20:27:18 +00003508 && sqlite3PagerIsreadonly(pPager)==0
danea933f02018-07-19 11:44:02 +00003509 ){
3510 pBt->btsFlags &= ~BTS_READ_ONLY;
3511 }
3512
drhb8ef32c2005-03-14 02:01:49 +00003513 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003514 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003515 rc = SQLITE_READONLY;
3516 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003517 }
3518
danielk1977404ca072009-03-16 13:19:36 +00003519#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003520 {
3521 sqlite3 *pBlock = 0;
3522 /* If another database handle has already opened a write transaction
3523 ** on this shared-btree structure and a second write transaction is
3524 ** requested, return SQLITE_LOCKED.
3525 */
3526 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3527 || (pBt->btsFlags & BTS_PENDING)!=0
3528 ){
3529 pBlock = pBt->pWriter->db;
3530 }else if( wrflag>1 ){
3531 BtLock *pIter;
3532 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3533 if( pIter->pBtree!=p ){
3534 pBlock = pIter->pBtree->db;
3535 break;
3536 }
danielk1977641b0f42007-12-21 04:47:25 +00003537 }
3538 }
drh5a1fb182016-01-08 19:34:39 +00003539 if( pBlock ){
3540 sqlite3ConnectionBlocked(p->db, pBlock);
3541 rc = SQLITE_LOCKED_SHAREDCACHE;
3542 goto trans_begun;
3543 }
danielk1977404ca072009-03-16 13:19:36 +00003544 }
danielk1977641b0f42007-12-21 04:47:25 +00003545#endif
3546
danielk1977602b4662009-07-02 07:47:33 +00003547 /* Any read-only or read-write transaction implies a read-lock on
3548 ** page 1. So if some other shared-cache client already has a write-lock
3549 ** on page 1, the transaction cannot be opened. */
drh346a70c2020-06-15 20:27:35 +00003550 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
drh4c301aa2009-07-15 17:25:45 +00003551 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003552
drhc9166342012-01-05 23:32:06 +00003553 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3554 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003555 do {
dan11a81822020-05-07 14:26:40 +00003556 sqlite3PagerWalDb(pPager, p->db);
dan58021b22020-05-05 20:30:07 +00003557
3558#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3559 /* If transitioning from no transaction directly to a write transaction,
3560 ** block for the WRITER lock first if possible. */
3561 if( pBt->pPage1==0 && wrflag ){
3562 assert( pBt->inTransaction==TRANS_NONE );
dan861fb1e2020-05-06 19:14:41 +00003563 rc = sqlite3PagerWalWriteLock(pPager, 1);
dan7bb8b8a2020-05-06 20:27:18 +00003564 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
dan58021b22020-05-05 20:30:07 +00003565 }
3566#endif
3567
danielk1977295dc102009-04-01 19:07:03 +00003568 /* Call lockBtree() until either pBt->pPage1 is populated or
3569 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3570 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3571 ** reading page 1 it discovers that the page-size of the database
3572 ** file is not pBt->pageSize. In this case lockBtree() will update
3573 ** pBt->pageSize to the page-size of the file on disk.
3574 */
3575 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003576
drhb8ef32c2005-03-14 02:01:49 +00003577 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003578 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003579 rc = SQLITE_READONLY;
3580 }else{
dan58021b22020-05-05 20:30:07 +00003581 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003582 if( rc==SQLITE_OK ){
3583 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003584 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3585 /* if there was no transaction opened when this function was
3586 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3587 ** code to SQLITE_BUSY. */
3588 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003589 }
drhb8ef32c2005-03-14 02:01:49 +00003590 }
3591 }
3592
danielk1977bd434552009-03-18 10:33:00 +00003593 if( rc!=SQLITE_OK ){
danfc87ab82020-05-06 19:22:59 +00003594 (void)sqlite3PagerWalWriteLock(pPager, 0);
drhb8ef32c2005-03-14 02:01:49 +00003595 unlockBtreeIfUnused(pBt);
3596 }
danf9b76712010-06-01 14:12:45 +00003597 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003598 btreeInvokeBusyHandler(pBt) );
dan7bb8b8a2020-05-06 20:27:18 +00003599 sqlite3PagerWalDb(pPager, 0);
3600#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3601 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3602#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003603
3604 if( rc==SQLITE_OK ){
3605 if( p->inTrans==TRANS_NONE ){
3606 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003607#ifndef SQLITE_OMIT_SHARED_CACHE
3608 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003609 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003610 p->lock.eLock = READ_LOCK;
3611 p->lock.pNext = pBt->pLock;
3612 pBt->pLock = &p->lock;
3613 }
3614#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003615 }
3616 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3617 if( p->inTrans>pBt->inTransaction ){
3618 pBt->inTransaction = p->inTrans;
3619 }
danielk1977404ca072009-03-16 13:19:36 +00003620 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003621 MemPage *pPage1 = pBt->pPage1;
3622#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003623 assert( !pBt->pWriter );
3624 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003625 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3626 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003627#endif
dan59257dc2010-08-04 11:34:31 +00003628
3629 /* If the db-size header field is incorrect (as it may be if an old
3630 ** client has been writing the database file), update it now. Doing
3631 ** this sooner rather than later means the database size can safely
3632 ** re-read the database size from page 1 if a savepoint or transaction
3633 ** rollback occurs within the transaction.
3634 */
3635 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3636 rc = sqlite3PagerWrite(pPage1->pDbPage);
3637 if( rc==SQLITE_OK ){
3638 put4byte(&pPage1->aData[28], pBt->nPage);
3639 }
3640 }
3641 }
danielk1977aef0bf62005-12-30 16:28:01 +00003642 }
3643
drhd677b3d2007-08-20 22:48:41 +00003644trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003645 if( rc==SQLITE_OK ){
3646 if( pSchemaVersion ){
3647 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3648 }
3649 if( wrflag ){
3650 /* This call makes sure that the pager has the correct number of
3651 ** open savepoints. If the second parameter is greater than 0 and
3652 ** the sub-journal is not already open, then it will be opened here.
3653 */
dan7bb8b8a2020-05-06 20:27:18 +00003654 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
drhbb2d9b12018-06-06 16:28:40 +00003655 }
danielk1977fd7f0452008-12-17 17:30:26 +00003656 }
danielk197712dd5492008-12-18 15:45:07 +00003657
danielk1977aef0bf62005-12-30 16:28:01 +00003658 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003659 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003660 return rc;
drha059ad02001-04-17 20:09:11 +00003661}
3662
danielk1977687566d2004-11-02 12:56:41 +00003663#ifndef SQLITE_OMIT_AUTOVACUUM
3664
3665/*
3666** Set the pointer-map entries for all children of page pPage. Also, if
3667** pPage contains cells that point to overflow pages, set the pointer
3668** map entries for the overflow pages as well.
3669*/
3670static int setChildPtrmaps(MemPage *pPage){
3671 int i; /* Counter variable */
3672 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003673 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003674 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003675 Pgno pgno = pPage->pgno;
3676
drh1fee73e2007-08-29 04:00:57 +00003677 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003678 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003679 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003680 nCell = pPage->nCell;
3681
3682 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003683 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003684
drh0f1bf4c2019-01-13 20:17:21 +00003685 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003686
danielk1977687566d2004-11-02 12:56:41 +00003687 if( !pPage->leaf ){
3688 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003689 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003690 }
3691 }
3692
3693 if( !pPage->leaf ){
3694 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003695 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003696 }
3697
danielk1977687566d2004-11-02 12:56:41 +00003698 return rc;
3699}
3700
3701/*
drhf3aed592009-07-08 18:12:49 +00003702** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3703** that it points to iTo. Parameter eType describes the type of pointer to
3704** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003705**
3706** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3707** page of pPage.
3708**
3709** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3710** page pointed to by one of the cells on pPage.
3711**
3712** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3713** overflow page in the list.
3714*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003715static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003716 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003717 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003718 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003719 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003720 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003721 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003722 }
danielk1977f78fc082004-11-02 14:40:32 +00003723 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003724 }else{
danielk1977687566d2004-11-02 12:56:41 +00003725 int i;
3726 int nCell;
drha1f75d92015-05-24 10:18:12 +00003727 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003728
drh14e845a2017-05-25 21:35:56 +00003729 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003730 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003731 nCell = pPage->nCell;
3732
danielk1977687566d2004-11-02 12:56:41 +00003733 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003734 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003735 if( eType==PTRMAP_OVERFLOW1 ){
3736 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003737 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003738 if( info.nLocal<info.nPayload ){
3739 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003740 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003741 }
3742 if( iFrom==get4byte(pCell+info.nSize-4) ){
3743 put4byte(pCell+info.nSize-4, iTo);
3744 break;
3745 }
danielk1977687566d2004-11-02 12:56:41 +00003746 }
3747 }else{
3748 if( get4byte(pCell)==iFrom ){
3749 put4byte(pCell, iTo);
3750 break;
3751 }
3752 }
3753 }
3754
3755 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003756 if( eType!=PTRMAP_BTREE ||
3757 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003758 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003759 }
danielk1977687566d2004-11-02 12:56:41 +00003760 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3761 }
danielk1977687566d2004-11-02 12:56:41 +00003762 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003763 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003764}
3765
danielk1977003ba062004-11-04 02:57:33 +00003766
danielk19777701e812005-01-10 12:59:51 +00003767/*
3768** Move the open database page pDbPage to location iFreePage in the
3769** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003770**
3771** The isCommit flag indicates that there is no need to remember that
3772** the journal needs to be sync()ed before database page pDbPage->pgno
3773** can be written to. The caller has already promised not to write to that
3774** page.
danielk19777701e812005-01-10 12:59:51 +00003775*/
danielk1977003ba062004-11-04 02:57:33 +00003776static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003777 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003778 MemPage *pDbPage, /* Open page to move */
3779 u8 eType, /* Pointer map 'type' entry for pDbPage */
3780 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003781 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003782 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003783){
3784 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3785 Pgno iDbPage = pDbPage->pgno;
3786 Pager *pPager = pBt->pPager;
3787 int rc;
3788
danielk1977a0bf2652004-11-04 14:30:04 +00003789 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3790 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003791 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003792 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003793 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003794
drh85b623f2007-12-13 21:54:09 +00003795 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003796 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3797 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003798 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003799 if( rc!=SQLITE_OK ){
3800 return rc;
3801 }
3802 pDbPage->pgno = iFreePage;
3803
3804 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3805 ** that point to overflow pages. The pointer map entries for all these
3806 ** pages need to be changed.
3807 **
3808 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3809 ** pointer to a subsequent overflow page. If this is the case, then
3810 ** the pointer map needs to be updated for the subsequent overflow page.
3811 */
danielk1977a0bf2652004-11-04 14:30:04 +00003812 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003813 rc = setChildPtrmaps(pDbPage);
3814 if( rc!=SQLITE_OK ){
3815 return rc;
3816 }
3817 }else{
3818 Pgno nextOvfl = get4byte(pDbPage->aData);
3819 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003820 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003821 if( rc!=SQLITE_OK ){
3822 return rc;
3823 }
3824 }
3825 }
3826
3827 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3828 ** that it points at iFreePage. Also fix the pointer map entry for
3829 ** iPtrPage.
3830 */
danielk1977a0bf2652004-11-04 14:30:04 +00003831 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003832 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003833 if( rc!=SQLITE_OK ){
3834 return rc;
3835 }
danielk19773b8a05f2007-03-19 17:44:26 +00003836 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003837 if( rc!=SQLITE_OK ){
3838 releasePage(pPtrPage);
3839 return rc;
3840 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003841 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003842 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003843 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003844 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003845 }
danielk1977003ba062004-11-04 02:57:33 +00003846 }
danielk1977003ba062004-11-04 02:57:33 +00003847 return rc;
3848}
3849
danielk1977dddbcdc2007-04-26 14:42:34 +00003850/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003851static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003852
3853/*
dan51f0b6d2013-02-22 20:16:34 +00003854** Perform a single step of an incremental-vacuum. If successful, return
3855** SQLITE_OK. If there is no work to do (and therefore no point in
3856** calling this function again), return SQLITE_DONE. Or, if an error
3857** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003858**
peter.d.reid60ec9142014-09-06 16:39:46 +00003859** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003860** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003861**
dan51f0b6d2013-02-22 20:16:34 +00003862** Parameter nFin is the number of pages that this database would contain
3863** were this function called until it returns SQLITE_DONE.
3864**
3865** If the bCommit parameter is non-zero, this function assumes that the
3866** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003867** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003868** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003869*/
dan51f0b6d2013-02-22 20:16:34 +00003870static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003871 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003872 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003873
drh1fee73e2007-08-29 04:00:57 +00003874 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003875 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003876
3877 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003878 u8 eType;
3879 Pgno iPtrPage;
3880
3881 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003882 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003883 return SQLITE_DONE;
3884 }
3885
3886 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3887 if( rc!=SQLITE_OK ){
3888 return rc;
3889 }
3890 if( eType==PTRMAP_ROOTPAGE ){
3891 return SQLITE_CORRUPT_BKPT;
3892 }
3893
3894 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003895 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003896 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003897 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003898 ** truncated to zero after this function returns, so it doesn't
3899 ** matter if it still contains some garbage entries.
3900 */
3901 Pgno iFreePg;
3902 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003903 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003904 if( rc!=SQLITE_OK ){
3905 return rc;
3906 }
3907 assert( iFreePg==iLastPg );
3908 releasePage(pFreePg);
3909 }
3910 } else {
3911 Pgno iFreePg; /* Index of free page to move pLastPg to */
3912 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003913 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3914 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003915
drhb00fc3b2013-08-21 23:42:32 +00003916 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003917 if( rc!=SQLITE_OK ){
3918 return rc;
3919 }
3920
dan51f0b6d2013-02-22 20:16:34 +00003921 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003922 ** is swapped with the first free page pulled off the free list.
3923 **
dan51f0b6d2013-02-22 20:16:34 +00003924 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003925 ** looping until a free-page located within the first nFin pages
3926 ** of the file is found.
3927 */
dan51f0b6d2013-02-22 20:16:34 +00003928 if( bCommit==0 ){
3929 eMode = BTALLOC_LE;
3930 iNear = nFin;
3931 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003932 do {
3933 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003934 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003935 if( rc!=SQLITE_OK ){
3936 releasePage(pLastPg);
3937 return rc;
3938 }
3939 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003940 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003941 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003942
dane1df4e32013-03-05 11:27:04 +00003943 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003944 releasePage(pLastPg);
3945 if( rc!=SQLITE_OK ){
3946 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003947 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003948 }
3949 }
3950
dan51f0b6d2013-02-22 20:16:34 +00003951 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003952 do {
danielk19773460d192008-12-27 15:23:13 +00003953 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003954 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3955 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003956 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003957 }
3958 return SQLITE_OK;
3959}
3960
3961/*
dan51f0b6d2013-02-22 20:16:34 +00003962** The database opened by the first argument is an auto-vacuum database
3963** nOrig pages in size containing nFree free pages. Return the expected
3964** size of the database in pages following an auto-vacuum operation.
3965*/
3966static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3967 int nEntry; /* Number of entries on one ptrmap page */
3968 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3969 Pgno nFin; /* Return value */
3970
3971 nEntry = pBt->usableSize/5;
3972 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3973 nFin = nOrig - nFree - nPtrmap;
3974 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3975 nFin--;
3976 }
3977 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3978 nFin--;
3979 }
dan51f0b6d2013-02-22 20:16:34 +00003980
3981 return nFin;
3982}
3983
3984/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003985** A write-transaction must be opened before calling this function.
3986** It performs a single unit of work towards an incremental vacuum.
3987**
3988** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003989** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003990** SQLITE_OK is returned. Otherwise an SQLite error code.
3991*/
3992int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003993 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003994 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003995
3996 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003997 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3998 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003999 rc = SQLITE_DONE;
4000 }else{
dan51f0b6d2013-02-22 20:16:34 +00004001 Pgno nOrig = btreePagecount(pBt);
4002 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
4003 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
4004
drhbc2cf3b2020-07-14 12:40:53 +00004005 if( nOrig<nFin || nFree>=nOrig ){
dan91384712013-02-24 11:50:43 +00004006 rc = SQLITE_CORRUPT_BKPT;
4007 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00004008 rc = saveAllCursors(pBt, 0, 0);
4009 if( rc==SQLITE_OK ){
4010 invalidateAllOverflowCache(pBt);
4011 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
4012 }
dan51f0b6d2013-02-22 20:16:34 +00004013 if( rc==SQLITE_OK ){
4014 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4015 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
4016 }
4017 }else{
4018 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00004019 }
danielk1977dddbcdc2007-04-26 14:42:34 +00004020 }
drhd677b3d2007-08-20 22:48:41 +00004021 sqlite3BtreeLeave(p);
4022 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00004023}
4024
4025/*
danielk19773b8a05f2007-03-19 17:44:26 +00004026** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00004027** is committed for an auto-vacuum database.
danielk1977687566d2004-11-02 12:56:41 +00004028*/
drh1bbfc672021-10-15 23:02:27 +00004029static int autoVacuumCommit(Btree *p){
danielk1977dddbcdc2007-04-26 14:42:34 +00004030 int rc = SQLITE_OK;
drh1bbfc672021-10-15 23:02:27 +00004031 Pager *pPager;
4032 BtShared *pBt;
4033 sqlite3 *db;
4034 VVA_ONLY( int nRef );
4035
4036 assert( p!=0 );
4037 pBt = p->pBt;
4038 pPager = pBt->pPager;
4039 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00004040
drh1fee73e2007-08-29 04:00:57 +00004041 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00004042 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00004043 assert(pBt->autoVacuum);
4044 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00004045 Pgno nFin; /* Number of pages in database after autovacuuming */
4046 Pgno nFree; /* Number of pages on the freelist initially */
drh1bbfc672021-10-15 23:02:27 +00004047 Pgno nVac; /* Number of pages to vacuum */
drh41d628c2009-07-11 17:04:08 +00004048 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00004049 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00004050
drhb1299152010-03-30 22:58:33 +00004051 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00004052 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
4053 /* It is not possible to create a database for which the final page
4054 ** is either a pointer-map page or the pending-byte page. If one
4055 ** is encountered, this indicates corruption.
4056 */
danielk19773460d192008-12-27 15:23:13 +00004057 return SQLITE_CORRUPT_BKPT;
4058 }
danielk1977ef165ce2009-04-06 17:50:03 +00004059
danielk19773460d192008-12-27 15:23:13 +00004060 nFree = get4byte(&pBt->pPage1->aData[36]);
drh1bbfc672021-10-15 23:02:27 +00004061 db = p->db;
4062 if( db->xAutovacPages ){
4063 int iDb;
4064 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
4065 if( db->aDb[iDb].pBt==p ) break;
4066 }
4067 nVac = db->xAutovacPages(
4068 db->pAutovacPagesArg,
4069 db->aDb[iDb].zDbSName,
4070 nOrig,
4071 nFree,
4072 pBt->pageSize
4073 );
4074 if( nVac>nFree ){
4075 nVac = nFree;
4076 }
4077 if( nVac==0 ){
4078 return SQLITE_OK;
4079 }
4080 }else{
4081 nVac = nFree;
4082 }
4083 nFin = finalDbSize(pBt, nOrig, nVac);
drhc5e47ac2009-06-04 00:11:56 +00004084 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00004085 if( nFin<nOrig ){
4086 rc = saveAllCursors(pBt, 0, 0);
4087 }
danielk19773460d192008-12-27 15:23:13 +00004088 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
drh1bbfc672021-10-15 23:02:27 +00004089 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00004090 }
danielk19773460d192008-12-27 15:23:13 +00004091 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00004092 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
drh1bbfc672021-10-15 23:02:27 +00004093 if( nVac==nFree ){
4094 put4byte(&pBt->pPage1->aData[32], 0);
4095 put4byte(&pBt->pPage1->aData[36], 0);
4096 }
drhdd3cd972010-03-27 17:12:36 +00004097 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00004098 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00004099 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00004100 }
4101 if( rc!=SQLITE_OK ){
4102 sqlite3PagerRollback(pPager);
4103 }
danielk1977687566d2004-11-02 12:56:41 +00004104 }
4105
dan0aed84d2013-03-26 14:16:20 +00004106 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00004107 return rc;
4108}
danielk1977dddbcdc2007-04-26 14:42:34 +00004109
danielk1977a50d9aa2009-06-08 14:49:45 +00004110#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4111# define setChildPtrmaps(x) SQLITE_OK
4112#endif
danielk1977687566d2004-11-02 12:56:41 +00004113
4114/*
drh80e35f42007-03-30 14:06:34 +00004115** This routine does the first phase of a two-phase commit. This routine
4116** causes a rollback journal to be created (if it does not already exist)
4117** and populated with enough information so that if a power loss occurs
4118** the database can be restored to its original state by playing back
4119** the journal. Then the contents of the journal are flushed out to
4120** the disk. After the journal is safely on oxide, the changes to the
4121** database are written into the database file and flushed to oxide.
4122** At the end of this call, the rollback journal still exists on the
4123** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00004124** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00004125** commit process.
4126**
4127** This call is a no-op if no write-transaction is currently active on pBt.
4128**
drh067b92b2020-06-19 15:24:12 +00004129** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4130** the name of a super-journal file that should be written into the
4131** individual journal file, or is NULL, indicating no super-journal file
drh80e35f42007-03-30 14:06:34 +00004132** (single database transaction).
4133**
drh067b92b2020-06-19 15:24:12 +00004134** When this is called, the super-journal should already have been
drh80e35f42007-03-30 14:06:34 +00004135** created, populated with this journal pointer and synced to disk.
4136**
4137** Once this is routine has returned, the only thing required to commit
4138** the write-transaction for this database file is to delete the journal.
4139*/
drh067b92b2020-06-19 15:24:12 +00004140int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
drh80e35f42007-03-30 14:06:34 +00004141 int rc = SQLITE_OK;
4142 if( p->inTrans==TRANS_WRITE ){
4143 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004144 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004145#ifndef SQLITE_OMIT_AUTOVACUUM
4146 if( pBt->autoVacuum ){
drh1bbfc672021-10-15 23:02:27 +00004147 rc = autoVacuumCommit(p);
drh80e35f42007-03-30 14:06:34 +00004148 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00004149 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004150 return rc;
4151 }
4152 }
danbc1a3c62013-02-23 16:40:46 +00004153 if( pBt->bDoTruncate ){
4154 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4155 }
drh80e35f42007-03-30 14:06:34 +00004156#endif
drh067b92b2020-06-19 15:24:12 +00004157 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
drhd677b3d2007-08-20 22:48:41 +00004158 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004159 }
4160 return rc;
4161}
4162
4163/*
danielk197794b30732009-07-02 17:21:57 +00004164** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4165** at the conclusion of a transaction.
4166*/
4167static void btreeEndTransaction(Btree *p){
4168 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00004169 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004170 assert( sqlite3BtreeHoldsMutex(p) );
4171
danbc1a3c62013-02-23 16:40:46 +00004172#ifndef SQLITE_OMIT_AUTOVACUUM
4173 pBt->bDoTruncate = 0;
4174#endif
danc0537fe2013-06-28 19:41:43 +00004175 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004176 /* If there are other active statements that belong to this database
4177 ** handle, downgrade to a read-only transaction. The other statements
4178 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004179 downgradeAllSharedCacheTableLocks(p);
4180 p->inTrans = TRANS_READ;
4181 }else{
4182 /* If the handle had any kind of transaction open, decrement the
4183 ** transaction count of the shared btree. If the transaction count
4184 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4185 ** call below will unlock the pager. */
4186 if( p->inTrans!=TRANS_NONE ){
4187 clearAllSharedCacheTableLocks(p);
4188 pBt->nTransaction--;
4189 if( 0==pBt->nTransaction ){
4190 pBt->inTransaction = TRANS_NONE;
4191 }
4192 }
4193
4194 /* Set the current transaction state to TRANS_NONE and unlock the
4195 ** pager if this call closed the only read or write transaction. */
4196 p->inTrans = TRANS_NONE;
4197 unlockBtreeIfUnused(pBt);
4198 }
4199
4200 btreeIntegrity(p);
4201}
4202
4203/*
drh2aa679f2001-06-25 02:11:07 +00004204** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004205**
drh6e345992007-03-30 11:12:08 +00004206** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004207** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4208** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4209** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004210** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004211** routine has to do is delete or truncate or zero the header in the
4212** the rollback journal (which causes the transaction to commit) and
4213** drop locks.
drh6e345992007-03-30 11:12:08 +00004214**
dan60939d02011-03-29 15:40:55 +00004215** Normally, if an error occurs while the pager layer is attempting to
4216** finalize the underlying journal file, this function returns an error and
4217** the upper layer will attempt a rollback. However, if the second argument
4218** is non-zero then this b-tree transaction is part of a multi-file
4219** transaction. In this case, the transaction has already been committed
drh067b92b2020-06-19 15:24:12 +00004220** (by deleting a super-journal file) and the caller will ignore this
dan60939d02011-03-29 15:40:55 +00004221** functions return code. So, even if an error occurs in the pager layer,
4222** reset the b-tree objects internal state to indicate that the write
4223** transaction has been closed. This is quite safe, as the pager will have
4224** transitioned to the error state.
4225**
drh5e00f6c2001-09-13 13:46:56 +00004226** This will release the write lock on the database file. If there
4227** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004228*/
dan60939d02011-03-29 15:40:55 +00004229int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004230
drh075ed302010-10-14 01:17:30 +00004231 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004232 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004233 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004234
4235 /* If the handle has a write-transaction open, commit the shared-btrees
4236 ** transaction and set the shared state to TRANS_READ.
4237 */
4238 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004239 int rc;
drh075ed302010-10-14 01:17:30 +00004240 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004241 assert( pBt->inTransaction==TRANS_WRITE );
4242 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004243 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004244 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004245 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004246 return rc;
4247 }
drh2b994ce2021-03-18 12:36:09 +00004248 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004249 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004250 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004251 }
danielk1977aef0bf62005-12-30 16:28:01 +00004252
danielk197794b30732009-07-02 17:21:57 +00004253 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004254 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004255 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004256}
4257
drh80e35f42007-03-30 14:06:34 +00004258/*
4259** Do both phases of a commit.
4260*/
4261int sqlite3BtreeCommit(Btree *p){
4262 int rc;
drhd677b3d2007-08-20 22:48:41 +00004263 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004264 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4265 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004266 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004267 }
drhd677b3d2007-08-20 22:48:41 +00004268 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004269 return rc;
4270}
4271
drhc39e0002004-05-07 23:50:57 +00004272/*
drhfb982642007-08-30 01:19:59 +00004273** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004274** code to errCode for every cursor on any BtShared that pBtree
4275** references. Or if the writeOnly flag is set to 1, then only
4276** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004277**
drh47b7fc72014-11-11 01:33:57 +00004278** Every cursor is a candidate to be tripped, including cursors
4279** that belong to other database connections that happen to be
4280** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004281**
dan80231042014-11-12 14:56:02 +00004282** This routine gets called when a rollback occurs. If the writeOnly
4283** flag is true, then only write-cursors need be tripped - read-only
4284** cursors save their current positions so that they may continue
4285** following the rollback. Or, if writeOnly is false, all cursors are
4286** tripped. In general, writeOnly is false if the transaction being
4287** rolled back modified the database schema. In this case b-tree root
4288** pages may be moved or deleted from the database altogether, making
4289** it unsafe for read cursors to continue.
4290**
4291** If the writeOnly flag is true and an error is encountered while
4292** saving the current position of a read-only cursor, all cursors,
4293** including all read-cursors are tripped.
4294**
4295** SQLITE_OK is returned if successful, or if an error occurs while
4296** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004297*/
dan80231042014-11-12 14:56:02 +00004298int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004299 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004300 int rc = SQLITE_OK;
4301
drh47b7fc72014-11-11 01:33:57 +00004302 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004303 if( pBtree ){
4304 sqlite3BtreeEnter(pBtree);
4305 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004306 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004307 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004308 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004309 if( rc!=SQLITE_OK ){
4310 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4311 break;
4312 }
4313 }
4314 }else{
4315 sqlite3BtreeClearCursor(p);
4316 p->eState = CURSOR_FAULT;
4317 p->skipNext = errCode;
4318 }
drh85ef6302017-08-02 15:50:09 +00004319 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004320 }
dan80231042014-11-12 14:56:02 +00004321 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004322 }
dan80231042014-11-12 14:56:02 +00004323 return rc;
drhfb982642007-08-30 01:19:59 +00004324}
4325
4326/*
drh41422652019-05-10 14:34:18 +00004327** Set the pBt->nPage field correctly, according to the current
4328** state of the database. Assume pBt->pPage1 is valid.
4329*/
4330static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4331 int nPage = get4byte(&pPage1->aData[28]);
4332 testcase( nPage==0 );
4333 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
mistachkin2b5fbb22021-12-31 18:26:50 +00004334 testcase( pBt->nPage!=(u32)nPage );
drh41422652019-05-10 14:34:18 +00004335 pBt->nPage = nPage;
4336}
4337
4338/*
drh47b7fc72014-11-11 01:33:57 +00004339** Rollback the transaction in progress.
4340**
4341** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4342** Only write cursors are tripped if writeOnly is true but all cursors are
4343** tripped if writeOnly is false. Any attempt to use
4344** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004345**
4346** This will release the write lock on the database file. If there
4347** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004348*/
drh47b7fc72014-11-11 01:33:57 +00004349int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004350 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004351 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004352 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004353
drh47b7fc72014-11-11 01:33:57 +00004354 assert( writeOnly==1 || writeOnly==0 );
4355 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004356 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004357 if( tripCode==SQLITE_OK ){
4358 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004359 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004360 }else{
4361 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004362 }
drh0f198a72012-02-13 16:43:16 +00004363 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004364 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4365 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4366 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004367 }
danielk1977aef0bf62005-12-30 16:28:01 +00004368 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004369
4370 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004371 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004372
danielk19778d34dfd2006-01-24 16:37:57 +00004373 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004374 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004375 if( rc2!=SQLITE_OK ){
4376 rc = rc2;
4377 }
4378
drh24cd67e2004-05-10 16:18:47 +00004379 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004380 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004381 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004382 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh41422652019-05-10 14:34:18 +00004383 btreeSetNPage(pBt, pPage1);
drh3908fe92017-09-01 14:50:19 +00004384 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004385 }
drh85ec3b62013-05-14 23:12:06 +00004386 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004387 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004388 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004389 }
danielk1977aef0bf62005-12-30 16:28:01 +00004390
danielk197794b30732009-07-02 17:21:57 +00004391 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004392 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004393 return rc;
4394}
4395
4396/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004397** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004398** back independently of the main transaction. You must start a transaction
4399** before starting a subtransaction. The subtransaction is ended automatically
4400** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004401**
4402** Statement subtransactions are used around individual SQL statements
4403** that are contained within a BEGIN...COMMIT block. If a constraint
4404** error occurs within the statement, the effect of that one statement
4405** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004406**
4407** A statement sub-transaction is implemented as an anonymous savepoint. The
4408** value passed as the second parameter is the total number of savepoints,
4409** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4410** are no active savepoints and no other statement-transactions open,
4411** iStatement is 1. This anonymous savepoint can be released or rolled back
4412** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004413*/
danielk1977bd434552009-03-18 10:33:00 +00004414int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004415 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004416 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004417 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004418 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004419 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004420 assert( iStatement>0 );
4421 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004422 assert( pBt->inTransaction==TRANS_WRITE );
4423 /* At the pager level, a statement transaction is a savepoint with
4424 ** an index greater than all savepoints created explicitly using
4425 ** SQL statements. It is illegal to open, release or rollback any
4426 ** such savepoints while the statement transaction savepoint is active.
4427 */
4428 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004429 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004430 return rc;
4431}
4432
4433/*
danielk1977fd7f0452008-12-17 17:30:26 +00004434** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4435** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004436** savepoint identified by parameter iSavepoint, depending on the value
4437** of op.
4438**
4439** Normally, iSavepoint is greater than or equal to zero. However, if op is
4440** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4441** contents of the entire transaction are rolled back. This is different
4442** from a normal transaction rollback, as no locks are released and the
4443** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004444*/
4445int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4446 int rc = SQLITE_OK;
4447 if( p && p->inTrans==TRANS_WRITE ){
4448 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004449 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4450 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4451 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004452 if( op==SAVEPOINT_ROLLBACK ){
4453 rc = saveAllCursors(pBt, 0, 0);
4454 }
4455 if( rc==SQLITE_OK ){
4456 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4457 }
drh9f0bbf92009-01-02 21:08:09 +00004458 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004459 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4460 pBt->nPage = 0;
4461 }
drh9f0bbf92009-01-02 21:08:09 +00004462 rc = newDatabase(pBt);
drh41422652019-05-10 14:34:18 +00004463 btreeSetNPage(pBt, pBt->pPage1);
drhb9b49bf2010-08-05 03:21:39 +00004464
dana9a54652019-04-22 11:47:40 +00004465 /* pBt->nPage might be zero if the database was corrupt when
4466 ** the transaction was started. Otherwise, it must be at least 1. */
4467 assert( CORRUPT_DB || pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004468 }
danielk1977fd7f0452008-12-17 17:30:26 +00004469 sqlite3BtreeLeave(p);
4470 }
4471 return rc;
4472}
4473
4474/*
drh8b2f49b2001-06-08 00:21:52 +00004475** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004476** iTable. If a read-only cursor is requested, it is assumed that
4477** the caller already has at least a read-only transaction open
4478** on the database already. If a write-cursor is requested, then
4479** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004480**
drhe807bdb2016-01-21 17:06:33 +00004481** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4482** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4483** can be used for reading or for writing if other conditions for writing
4484** are also met. These are the conditions that must be met in order
4485** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004486**
drhe807bdb2016-01-21 17:06:33 +00004487** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004488**
drhfe5d71d2007-03-19 11:54:10 +00004489** 2: Other database connections that share the same pager cache
4490** but which are not in the READ_UNCOMMITTED state may not have
4491** cursors open with wrFlag==0 on the same table. Otherwise
4492** the changes made by this write cursor would be visible to
4493** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004494**
4495** 3: The database must be writable (not on read-only media)
4496**
4497** 4: There must be an active transaction.
4498**
drhe807bdb2016-01-21 17:06:33 +00004499** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4500** is set. If FORDELETE is set, that is a hint to the implementation that
4501** this cursor will only be used to seek to and delete entries of an index
4502** as part of a larger DELETE statement. The FORDELETE hint is not used by
4503** this implementation. But in a hypothetical alternative storage engine
4504** in which index entries are automatically deleted when corresponding table
4505** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4506** operations on this cursor can be no-ops and all READ operations can
4507** return a null row (2-bytes: 0x01 0x00).
4508**
drh6446c4d2001-12-15 14:22:18 +00004509** No checking is done to make sure that page iTable really is the
4510** root page of a b-tree. If it is not, then the cursor acquired
4511** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004512**
drhf25a5072009-11-18 23:01:25 +00004513** It is assumed that the sqlite3BtreeCursorZero() has been called
4514** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004515*/
drhd677b3d2007-08-20 22:48:41 +00004516static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004517 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004518 Pgno iTable, /* Root page of table to open */
danielk1977cd3e8f72008-03-25 09:47:35 +00004519 int wrFlag, /* 1 to write. 0 read-only */
4520 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4521 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004522){
danielk19773e8add92009-07-04 17:16:00 +00004523 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004524 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004525
drh1fee73e2007-08-29 04:00:57 +00004526 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004527 assert( wrFlag==0
4528 || wrFlag==BTREE_WRCSR
4529 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4530 );
danielk197796d48e92009-06-29 06:00:37 +00004531
danielk1977602b4662009-07-02 07:47:33 +00004532 /* The following assert statements verify that if this is a sharable
4533 ** b-tree database, the connection is holding the required table locks,
4534 ** and that no other connection has any open cursor that conflicts with
drhac801802019-11-17 11:47:50 +00004535 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4536 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4537 || iTable<1 );
danielk197796d48e92009-06-29 06:00:37 +00004538 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4539
danielk19773e8add92009-07-04 17:16:00 +00004540 /* Assert that the caller has opened the required transaction. */
4541 assert( p->inTrans>TRANS_NONE );
4542 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4543 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004544 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004545
drhdb561bc2019-10-25 14:46:05 +00004546 if( iTable<=1 ){
4547 if( iTable<1 ){
4548 return SQLITE_CORRUPT_BKPT;
4549 }else if( btreePagecount(pBt)==0 ){
4550 assert( wrFlag==0 );
4551 iTable = 0;
4552 }
danielk19773e8add92009-07-04 17:16:00 +00004553 }
danielk1977aef0bf62005-12-30 16:28:01 +00004554
danielk1977aef0bf62005-12-30 16:28:01 +00004555 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004556 ** variables and link the cursor into the BtShared list. */
drhabc38152020-07-22 13:38:04 +00004557 pCur->pgnoRoot = iTable;
danielk1977172114a2009-07-07 15:47:12 +00004558 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004559 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004560 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004561 pCur->pBt = pBt;
drh2f0bc1d2021-12-03 13:42:41 +00004562 pCur->curFlags = 0;
drh27fb7462015-06-30 02:47:36 +00004563 /* If there are two or more cursors on the same btree, then all such
4564 ** cursors *must* have the BTCF_Multiple flag set. */
4565 for(pX=pBt->pCursor; pX; pX=pX->pNext){
drhabc38152020-07-22 13:38:04 +00004566 if( pX->pgnoRoot==iTable ){
drh27fb7462015-06-30 02:47:36 +00004567 pX->curFlags |= BTCF_Multiple;
drh2f0bc1d2021-12-03 13:42:41 +00004568 pCur->curFlags = BTCF_Multiple;
drh27fb7462015-06-30 02:47:36 +00004569 }
drha059ad02001-04-17 20:09:11 +00004570 }
drh2f0bc1d2021-12-03 13:42:41 +00004571 pCur->eState = CURSOR_INVALID;
drh27fb7462015-06-30 02:47:36 +00004572 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004573 pBt->pCursor = pCur;
drh2f0bc1d2021-12-03 13:42:41 +00004574 if( wrFlag ){
4575 pCur->curFlags |= BTCF_WriteFlag;
4576 pCur->curPagerFlags = 0;
4577 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
4578 }else{
4579 pCur->curPagerFlags = PAGER_GET_READONLY;
4580 }
danielk1977aef0bf62005-12-30 16:28:01 +00004581 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004582}
drhdb561bc2019-10-25 14:46:05 +00004583static int btreeCursorWithLock(
4584 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004585 Pgno iTable, /* Root page of table to open */
drhdb561bc2019-10-25 14:46:05 +00004586 int wrFlag, /* 1 to write. 0 read-only */
4587 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4588 BtCursor *pCur /* Space for new cursor */
4589){
4590 int rc;
4591 sqlite3BtreeEnter(p);
4592 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4593 sqlite3BtreeLeave(p);
4594 return rc;
4595}
drhd677b3d2007-08-20 22:48:41 +00004596int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004597 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004598 Pgno iTable, /* Root page of table to open */
danielk1977cd3e8f72008-03-25 09:47:35 +00004599 int wrFlag, /* 1 to write. 0 read-only */
4600 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4601 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004602){
drhdb561bc2019-10-25 14:46:05 +00004603 if( p->sharable ){
4604 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004605 }else{
drhdb561bc2019-10-25 14:46:05 +00004606 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004607 }
drhd677b3d2007-08-20 22:48:41 +00004608}
drh7f751222009-03-17 22:33:00 +00004609
4610/*
4611** Return the size of a BtCursor object in bytes.
4612**
4613** This interfaces is needed so that users of cursors can preallocate
4614** sufficient storage to hold a cursor. The BtCursor object is opaque
4615** to users so they cannot do the sizeof() themselves - they must call
4616** this routine.
4617*/
4618int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004619 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004620}
4621
drh7f751222009-03-17 22:33:00 +00004622/*
drhf25a5072009-11-18 23:01:25 +00004623** Initialize memory that will be converted into a BtCursor object.
4624**
4625** The simple approach here would be to memset() the entire object
4626** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4627** do not need to be zeroed and they are large, so we can save a lot
4628** of run-time by skipping the initialization of those elements.
4629*/
4630void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004631 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004632}
4633
4634/*
drh5e00f6c2001-09-13 13:46:56 +00004635** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004636** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004637*/
drh3aac2dd2004-04-26 14:10:20 +00004638int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004639 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004640 if( pBtree ){
4641 BtShared *pBt = pCur->pBt;
4642 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004643 assert( pBt->pCursor!=0 );
4644 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004645 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004646 }else{
4647 BtCursor *pPrev = pBt->pCursor;
4648 do{
4649 if( pPrev->pNext==pCur ){
4650 pPrev->pNext = pCur->pNext;
4651 break;
4652 }
4653 pPrev = pPrev->pNext;
4654 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004655 }
drh352a35a2017-08-15 03:46:47 +00004656 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004657 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004658 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004659 sqlite3_free(pCur->pKey);
daneeee8a52021-03-18 14:31:37 +00004660 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4661 /* Since the BtShared is not sharable, there is no need to
4662 ** worry about the missing sqlite3BtreeLeave() call here. */
4663 assert( pBtree->sharable==0 );
4664 sqlite3BtreeClose(pBtree);
4665 }else{
4666 sqlite3BtreeLeave(pBtree);
4667 }
dan97c8cb32019-01-01 18:00:17 +00004668 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004669 }
drh8c42ca92001-06-22 19:15:00 +00004670 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004671}
4672
drh5e2f8b92001-05-28 00:41:15 +00004673/*
drh86057612007-06-26 01:04:48 +00004674** Make sure the BtCursor* given in the argument has a valid
4675** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004676** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004677**
4678** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004679** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004680*/
drh9188b382004-05-14 21:12:22 +00004681#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004682 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4683 if( a->nKey!=b->nKey ) return 0;
4684 if( a->pPayload!=b->pPayload ) return 0;
4685 if( a->nPayload!=b->nPayload ) return 0;
4686 if( a->nLocal!=b->nLocal ) return 0;
4687 if( a->nSize!=b->nSize ) return 0;
4688 return 1;
4689 }
danielk19771cc5ed82007-05-16 17:28:43 +00004690 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004691 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004692 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004693 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004694 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004695 }
danielk19771cc5ed82007-05-16 17:28:43 +00004696#else
4697 #define assertCellInfo(x)
4698#endif
drhc5b41ac2015-06-17 02:11:46 +00004699static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4700 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004701 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004702 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004703 }else{
4704 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004705 }
drhc5b41ac2015-06-17 02:11:46 +00004706}
drh9188b382004-05-14 21:12:22 +00004707
drhea8ffdf2009-07-22 00:35:23 +00004708#ifndef NDEBUG /* The next routine used only within assert() statements */
4709/*
4710** Return true if the given BtCursor is valid. A valid cursor is one
4711** that is currently pointing to a row in a (non-empty) table.
4712** This is a verification routine is used only within assert() statements.
4713*/
4714int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4715 return pCur && pCur->eState==CURSOR_VALID;
4716}
4717#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004718int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4719 assert( pCur!=0 );
4720 return pCur->eState==CURSOR_VALID;
4721}
drhea8ffdf2009-07-22 00:35:23 +00004722
drh9188b382004-05-14 21:12:22 +00004723/*
drha7c90c42016-06-04 20:37:10 +00004724** Return the value of the integer key or "rowid" for a table btree.
4725** This routine is only valid for a cursor that is pointing into a
4726** ordinary table btree. If the cursor points to an index btree or
4727** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004728*/
drha7c90c42016-06-04 20:37:10 +00004729i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004730 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004731 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004732 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004733 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004734 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004735}
drh2af926b2001-05-15 00:39:25 +00004736
drh7b14b652019-12-29 22:08:20 +00004737/*
4738** Pin or unpin a cursor.
4739*/
4740void sqlite3BtreeCursorPin(BtCursor *pCur){
4741 assert( (pCur->curFlags & BTCF_Pinned)==0 );
4742 pCur->curFlags |= BTCF_Pinned;
4743}
4744void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4745 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4746 pCur->curFlags &= ~BTCF_Pinned;
4747}
4748
drh092457b2017-12-29 15:04:49 +00004749#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004750/*
drh2fc865c2017-12-16 20:20:37 +00004751** Return the offset into the database file for the start of the
4752** payload to which the cursor is pointing.
4753*/
drh092457b2017-12-29 15:04:49 +00004754i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004755 assert( cursorHoldsMutex(pCur) );
4756 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004757 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004758 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004759 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4760}
drh092457b2017-12-29 15:04:49 +00004761#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004762
4763/*
drha7c90c42016-06-04 20:37:10 +00004764** Return the number of bytes of payload for the entry that pCur is
4765** currently pointing to. For table btrees, this will be the amount
4766** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004767**
4768** The caller must guarantee that the cursor is pointing to a non-NULL
4769** valid entry. In other words, the calling procedure must guarantee
4770** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004771*/
drha7c90c42016-06-04 20:37:10 +00004772u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4773 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004774 assert( pCur->eState==CURSOR_VALID );
4775 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004776 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004777}
4778
4779/*
drh53d30dd2019-02-04 21:10:24 +00004780** Return an upper bound on the size of any record for the table
4781** that the cursor is pointing into.
4782**
4783** This is an optimization. Everything will still work if this
4784** routine always returns 2147483647 (which is the largest record
4785** that SQLite can handle) or more. But returning a smaller value might
4786** prevent large memory allocations when trying to interpret a
4787** corrupt datrabase.
4788**
4789** The current implementation merely returns the size of the underlying
4790** database file.
4791*/
4792sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4793 assert( cursorHoldsMutex(pCur) );
4794 assert( pCur->eState==CURSOR_VALID );
4795 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4796}
4797
4798/*
danielk1977d04417962007-05-02 13:16:30 +00004799** Given the page number of an overflow page in the database (parameter
4800** ovfl), this function finds the page number of the next page in the
4801** linked list of overflow pages. If possible, it uses the auto-vacuum
4802** pointer-map data instead of reading the content of page ovfl to do so.
4803**
4804** If an error occurs an SQLite error code is returned. Otherwise:
4805**
danielk1977bea2a942009-01-20 17:06:27 +00004806** The page number of the next overflow page in the linked list is
4807** written to *pPgnoNext. If page ovfl is the last page in its linked
4808** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004809**
danielk1977bea2a942009-01-20 17:06:27 +00004810** If ppPage is not NULL, and a reference to the MemPage object corresponding
4811** to page number pOvfl was obtained, then *ppPage is set to point to that
4812** reference. It is the responsibility of the caller to call releasePage()
4813** on *ppPage to free the reference. In no reference was obtained (because
4814** the pointer-map was used to obtain the value for *pPgnoNext), then
4815** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004816*/
4817static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004818 BtShared *pBt, /* The database file */
4819 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004820 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004821 Pgno *pPgnoNext /* OUT: Next overflow page number */
4822){
4823 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004824 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004825 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004826
drh1fee73e2007-08-29 04:00:57 +00004827 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004828 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004829
4830#ifndef SQLITE_OMIT_AUTOVACUUM
4831 /* Try to find the next page in the overflow list using the
4832 ** autovacuum pointer-map pages. Guess that the next page in
4833 ** the overflow list is page number (ovfl+1). If that guess turns
4834 ** out to be wrong, fall back to loading the data of page
4835 ** number ovfl to determine the next page number.
4836 */
4837 if( pBt->autoVacuum ){
4838 Pgno pgno;
4839 Pgno iGuess = ovfl+1;
4840 u8 eType;
4841
4842 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4843 iGuess++;
4844 }
4845
drhb1299152010-03-30 22:58:33 +00004846 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004847 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004848 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004849 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004850 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004851 }
4852 }
4853 }
4854#endif
4855
danielk1977d8a3f3d2009-07-11 11:45:23 +00004856 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004857 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004858 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004859 assert( rc==SQLITE_OK || pPage==0 );
4860 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004861 next = get4byte(pPage->aData);
4862 }
danielk1977443c0592009-01-16 15:21:05 +00004863 }
danielk197745d68822009-01-16 16:23:38 +00004864
danielk1977bea2a942009-01-20 17:06:27 +00004865 *pPgnoNext = next;
4866 if( ppPage ){
4867 *ppPage = pPage;
4868 }else{
4869 releasePage(pPage);
4870 }
4871 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004872}
4873
danielk1977da107192007-05-04 08:32:13 +00004874/*
4875** Copy data from a buffer to a page, or from a page to a buffer.
4876**
4877** pPayload is a pointer to data stored on database page pDbPage.
4878** If argument eOp is false, then nByte bytes of data are copied
4879** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4880** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4881** of data are copied from the buffer pBuf to pPayload.
4882**
4883** SQLITE_OK is returned on success, otherwise an error code.
4884*/
4885static int copyPayload(
4886 void *pPayload, /* Pointer to page data */
4887 void *pBuf, /* Pointer to buffer */
4888 int nByte, /* Number of bytes to copy */
4889 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4890 DbPage *pDbPage /* Page containing pPayload */
4891){
4892 if( eOp ){
4893 /* Copy data from buffer to page (a write operation) */
4894 int rc = sqlite3PagerWrite(pDbPage);
4895 if( rc!=SQLITE_OK ){
4896 return rc;
4897 }
4898 memcpy(pPayload, pBuf, nByte);
4899 }else{
4900 /* Copy data from page to buffer (a read operation) */
4901 memcpy(pBuf, pPayload, nByte);
4902 }
4903 return SQLITE_OK;
4904}
danielk1977d04417962007-05-02 13:16:30 +00004905
4906/*
danielk19779f8d6402007-05-02 17:48:45 +00004907** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004908** for the entry that the pCur cursor is pointing to. The eOp
4909** argument is interpreted as follows:
4910**
4911** 0: The operation is a read. Populate the overflow cache.
4912** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004913**
4914** A total of "amt" bytes are read or written beginning at "offset".
4915** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004916**
drh3bcdfd22009-07-12 02:32:21 +00004917** The content being read or written might appear on the main page
4918** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004919**
drh42e28f12017-01-27 00:31:59 +00004920** If the current cursor entry uses one or more overflow pages
4921** this function may allocate space for and lazily populate
4922** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004923** Subsequent calls use this cache to make seeking to the supplied offset
4924** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004925**
drh42e28f12017-01-27 00:31:59 +00004926** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004927** invalidated if some other cursor writes to the same table, or if
4928** the cursor is moved to a different row. Additionally, in auto-vacuum
4929** mode, the following events may invalidate an overflow page-list cache.
4930**
4931** * An incremental vacuum,
4932** * A commit in auto_vacuum="full" mode,
4933** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004934*/
danielk19779f8d6402007-05-02 17:48:45 +00004935static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004936 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004937 u32 offset, /* Begin reading this far into payload */
4938 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004939 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004940 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004941){
4942 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004943 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004944 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004945 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004946 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004947#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004948 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004949#endif
drh3aac2dd2004-04-26 14:10:20 +00004950
danielk1977da107192007-05-04 08:32:13 +00004951 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004952 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004953 assert( pCur->eState==CURSOR_VALID );
drha7149082021-10-13 20:11:30 +00004954 if( pCur->ix>=pPage->nCell ){
4955 return SQLITE_CORRUPT_PAGE(pPage);
4956 }
drh1fee73e2007-08-29 04:00:57 +00004957 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004958
drh86057612007-06-26 01:04:48 +00004959 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004960 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004961 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004962
drh0b982072016-03-22 14:10:45 +00004963 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004964 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004965 /* Trying to read or write past the end of the data is an error. The
4966 ** conditional above is really:
4967 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4968 ** but is recast into its current form to avoid integer overflow problems
4969 */
daneebf2f52017-11-18 17:30:08 +00004970 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004971 }
danielk1977da107192007-05-04 08:32:13 +00004972
4973 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004974 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004975 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004976 if( a+offset>pCur->info.nLocal ){
4977 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004978 }
drh42e28f12017-01-27 00:31:59 +00004979 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004980 offset = 0;
drha34b6762004-05-07 13:30:42 +00004981 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004982 amt -= a;
drhdd793422001-06-28 01:54:48 +00004983 }else{
drhfa1a98a2004-05-14 19:08:17 +00004984 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004985 }
danielk1977da107192007-05-04 08:32:13 +00004986
dan85753662014-12-11 16:38:18 +00004987
danielk1977da107192007-05-04 08:32:13 +00004988 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004989 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004990 Pgno nextPage;
4991
drhfa1a98a2004-05-14 19:08:17 +00004992 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
drh584e8b72020-07-22 17:12:59 +00004993
drha38c9512014-04-01 01:24:34 +00004994 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004995 **
4996 ** The aOverflow[] array is sized at one entry for each overflow page
4997 ** in the overflow chain. The page number of the first overflow page is
4998 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4999 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00005000 */
drh42e28f12017-01-27 00:31:59 +00005001 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00005002 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00005003 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00005004 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00005005 ){
dan85753662014-12-11 16:38:18 +00005006 Pgno *aNew = (Pgno*)sqlite3Realloc(
5007 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00005008 );
5009 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00005010 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00005011 }else{
dan5a500af2014-03-11 20:33:04 +00005012 pCur->aOverflow = aNew;
5013 }
5014 }
drhcd645532017-01-20 20:43:14 +00005015 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
5016 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00005017 }else{
5018 /* If the overflow page-list cache has been allocated and the
5019 ** entry for the first required overflow page is valid, skip
5020 ** directly to it.
5021 */
5022 if( pCur->aOverflow[offset/ovflSize] ){
5023 iIdx = (offset/ovflSize);
5024 nextPage = pCur->aOverflow[iIdx];
5025 offset = (offset%ovflSize);
5026 }
danielk19772dec9702007-05-02 16:48:37 +00005027 }
danielk1977da107192007-05-04 08:32:13 +00005028
drhcd645532017-01-20 20:43:14 +00005029 assert( rc==SQLITE_OK && amt>0 );
5030 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00005031 /* If required, populate the overflow page-list cache. */
drh584e8b72020-07-22 17:12:59 +00005032 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
drh42e28f12017-01-27 00:31:59 +00005033 assert( pCur->aOverflow[iIdx]==0
5034 || pCur->aOverflow[iIdx]==nextPage
5035 || CORRUPT_DB );
5036 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00005037
danielk1977d04417962007-05-02 13:16:30 +00005038 if( offset>=ovflSize ){
5039 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00005040 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00005041 ** data is not required. So first try to lookup the overflow
5042 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00005043 ** function.
danielk1977d04417962007-05-02 13:16:30 +00005044 */
drha38c9512014-04-01 01:24:34 +00005045 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00005046 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00005047 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00005048 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00005049 }else{
danielk1977da107192007-05-04 08:32:13 +00005050 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00005051 }
danielk1977da107192007-05-04 08:32:13 +00005052 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00005053 }else{
danielk19779f8d6402007-05-02 17:48:45 +00005054 /* Need to read this page properly. It contains some of the
5055 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00005056 */
danielk1977cfe9a692004-06-16 12:00:29 +00005057 int a = amt;
danf4ba1092011-10-08 14:57:07 +00005058 if( a + offset > ovflSize ){
5059 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00005060 }
danf4ba1092011-10-08 14:57:07 +00005061
5062#ifdef SQLITE_DIRECT_OVERFLOW_READ
5063 /* If all the following are true:
5064 **
5065 ** 1) this is a read operation, and
5066 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00005067 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00005068 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00005069 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00005070 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00005071 **
5072 ** then data can be read directly from the database file into the
5073 ** output buffer, bypassing the page-cache altogether. This speeds
5074 ** up loading large records that span many overflow pages.
5075 */
drh42e28f12017-01-27 00:31:59 +00005076 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00005077 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00005078 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00005079 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00005080 ){
dan09236752018-11-22 19:10:14 +00005081 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00005082 u8 aSave[4];
5083 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00005084 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00005085 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00005086 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
drhb9fc4552019-08-15 00:04:44 +00005087 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
danf4ba1092011-10-08 14:57:07 +00005088 nextPage = get4byte(aWrite);
5089 memcpy(aWrite, aSave, 4);
5090 }else
5091#endif
5092
5093 {
5094 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00005095 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00005096 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00005097 );
danf4ba1092011-10-08 14:57:07 +00005098 if( rc==SQLITE_OK ){
5099 aPayload = sqlite3PagerGetData(pDbPage);
5100 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00005101 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00005102 sqlite3PagerUnref(pDbPage);
5103 offset = 0;
5104 }
5105 }
5106 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00005107 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00005108 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00005109 }
drhcd645532017-01-20 20:43:14 +00005110 if( rc ) break;
5111 iIdx++;
drh2af926b2001-05-15 00:39:25 +00005112 }
drh2af926b2001-05-15 00:39:25 +00005113 }
danielk1977cfe9a692004-06-16 12:00:29 +00005114
danielk1977da107192007-05-04 08:32:13 +00005115 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00005116 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00005117 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00005118 }
danielk1977da107192007-05-04 08:32:13 +00005119 return rc;
drh2af926b2001-05-15 00:39:25 +00005120}
5121
drh72f82862001-05-24 21:06:34 +00005122/*
drhcb3cabd2016-11-25 19:18:28 +00005123** Read part of the payload for the row at which that cursor pCur is currently
5124** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00005125** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00005126**
drhcb3cabd2016-11-25 19:18:28 +00005127** pCur can be pointing to either a table or an index b-tree.
5128** If pointing to a table btree, then the content section is read. If
5129** pCur is pointing to an index b-tree then the key section is read.
5130**
5131** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5132** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5133** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00005134**
drh3aac2dd2004-04-26 14:10:20 +00005135** Return SQLITE_OK on success or an error code if anything goes
5136** wrong. An error is returned if "offset+amt" is larger than
5137** the available payload.
drh72f82862001-05-24 21:06:34 +00005138*/
drhcb3cabd2016-11-25 19:18:28 +00005139int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00005140 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00005141 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005142 assert( pCur->iPage>=0 && pCur->pPage );
drh5d1a8722009-07-22 18:07:40 +00005143 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00005144}
drh83ec2762017-01-26 16:54:47 +00005145
5146/*
5147** This variant of sqlite3BtreePayload() works even if the cursor has not
5148** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5149** interface.
5150*/
danielk19773588ceb2008-06-10 17:30:26 +00005151#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00005152static SQLITE_NOINLINE int accessPayloadChecked(
5153 BtCursor *pCur,
5154 u32 offset,
5155 u32 amt,
5156 void *pBuf
5157){
drhcb3cabd2016-11-25 19:18:28 +00005158 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00005159 if ( pCur->eState==CURSOR_INVALID ){
5160 return SQLITE_ABORT;
5161 }
dan7a2347e2016-01-07 16:43:54 +00005162 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00005163 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00005164 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5165}
5166int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5167 if( pCur->eState==CURSOR_VALID ){
5168 assert( cursorOwnsBtShared(pCur) );
5169 return accessPayload(pCur, offset, amt, pBuf, 0);
5170 }else{
5171 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00005172 }
drh2af926b2001-05-15 00:39:25 +00005173}
drhcb3cabd2016-11-25 19:18:28 +00005174#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00005175
drh72f82862001-05-24 21:06:34 +00005176/*
drh0e1c19e2004-05-11 00:58:56 +00005177** Return a pointer to payload information from the entry that the
5178** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00005179** the key if index btrees (pPage->intKey==0) and is the data for
5180** table btrees (pPage->intKey==1). The number of bytes of available
5181** key/data is written into *pAmt. If *pAmt==0, then the value
5182** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00005183**
5184** This routine is an optimization. It is common for the entire key
5185** and data to fit on the local page and for there to be no overflow
5186** pages. When that is so, this routine can be used to access the
5187** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00005188** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00005189** the key/data and copy it into a preallocated buffer.
5190**
5191** The pointer returned by this routine looks directly into the cached
5192** page of the database. The data might change or move the next time
5193** any btree routine is called.
5194*/
drh2a8d2262013-12-09 20:43:22 +00005195static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00005196 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00005197 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00005198){
danf2f72a02017-10-19 15:17:38 +00005199 int amt;
drh352a35a2017-08-15 03:46:47 +00005200 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00005201 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00005202 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00005203 assert( cursorOwnsBtShared(pCur) );
drhcd789f92021-10-11 09:39:42 +00005204 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
drh86dd3712014-03-25 11:00:21 +00005205 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00005206 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5207 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00005208 amt = pCur->info.nLocal;
5209 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5210 /* There is too little space on the page for the expected amount
5211 ** of local content. Database must be corrupt. */
5212 assert( CORRUPT_DB );
5213 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5214 }
5215 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00005216 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00005217}
5218
5219
5220/*
drhe51c44f2004-05-30 20:46:09 +00005221** For the entry that cursor pCur is point to, return as
5222** many bytes of the key or data as are available on the local
5223** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005224**
5225** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005226** or be destroyed on the next call to any Btree routine,
5227** including calls from other threads against the same cache.
5228** Hence, a mutex on the BtShared should be held prior to calling
5229** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005230**
5231** These routines is used to get quick access to key and data
5232** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005233*/
drha7c90c42016-06-04 20:37:10 +00005234const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005235 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005236}
5237
5238
5239/*
drh8178a752003-01-05 21:41:40 +00005240** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005241** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005242**
5243** This function returns SQLITE_CORRUPT if the page-header flags field of
5244** the new child page does not match the flags field of the parent (i.e.
5245** if an intkey page appears to be the parent of a non-intkey page, or
5246** vice-versa).
drh72f82862001-05-24 21:06:34 +00005247*/
drh3aac2dd2004-04-26 14:10:20 +00005248static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005249 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005250
dan7a2347e2016-01-07 16:43:54 +00005251 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005252 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005253 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005254 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005255 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5256 return SQLITE_CORRUPT_BKPT;
5257 }
drh271efa52004-05-30 19:19:05 +00005258 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005259 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005260 pCur->aiIdx[pCur->iPage] = pCur->ix;
5261 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005262 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005263 pCur->iPage++;
5264 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005265}
5266
drhd879e3e2017-02-13 13:35:55 +00005267#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005268/*
5269** Page pParent is an internal (non-leaf) tree page. This function
5270** asserts that page number iChild is the left-child if the iIdx'th
5271** cell in page pParent. Or, if iIdx is equal to the total number of
5272** cells in pParent, that page number iChild is the right-child of
5273** the page.
5274*/
5275static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005276 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5277 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005278 assert( iIdx<=pParent->nCell );
5279 if( iIdx==pParent->nCell ){
5280 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5281 }else{
5282 assert( get4byte(findCell(pParent, iIdx))==iChild );
5283 }
5284}
5285#else
5286# define assertParentIndex(x,y,z)
5287#endif
5288
drh72f82862001-05-24 21:06:34 +00005289/*
drh5e2f8b92001-05-28 00:41:15 +00005290** Move the cursor up to the parent page.
5291**
5292** pCur->idx is set to the cell index that contains the pointer
5293** to the page we are coming from. If we are coming from the
5294** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005295** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005296*/
danielk197730548662009-07-09 05:07:37 +00005297static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005298 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005299 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005300 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005301 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005302 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005303 assertParentIndex(
5304 pCur->apPage[pCur->iPage-1],
5305 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005306 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005307 );
dan6c2688c2012-01-12 15:05:03 +00005308 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005309 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005310 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005311 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005312 pLeaf = pCur->pPage;
5313 pCur->pPage = pCur->apPage[--pCur->iPage];
5314 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005315}
5316
5317/*
danielk19778f880a82009-07-13 09:41:45 +00005318** Move the cursor to point to the root page of its b-tree structure.
5319**
5320** If the table has a virtual root page, then the cursor is moved to point
5321** to the virtual root page instead of the actual root page. A table has a
5322** virtual root page when the actual root page contains no cells and a
5323** single child page. This can only happen with the table rooted at page 1.
5324**
5325** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005326** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5327** the cursor is set to point to the first cell located on the root
5328** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005329**
5330** If this function returns successfully, it may be assumed that the
5331** page-header flags indicate that the [virtual] root-page is the expected
5332** kind of b-tree page (i.e. if when opening the cursor the caller did not
5333** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5334** indicating a table b-tree, or if the caller did specify a KeyInfo
5335** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5336** b-tree).
drh72f82862001-05-24 21:06:34 +00005337*/
drh5e2f8b92001-05-28 00:41:15 +00005338static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005339 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005340 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005341
dan7a2347e2016-01-07 16:43:54 +00005342 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005343 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5344 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5345 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005346 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005347 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005348
5349 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005350 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005351 releasePageNotNull(pCur->pPage);
5352 while( --pCur->iPage ){
5353 releasePageNotNull(pCur->apPage[pCur->iPage]);
5354 }
drh7f8f6592021-12-13 19:59:55 +00005355 pRoot = pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005356 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005357 }
dana205a482011-08-27 18:48:57 +00005358 }else if( pCur->pgnoRoot==0 ){
5359 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005360 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005361 }else{
drh28f58dd2015-06-27 19:45:03 +00005362 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005363 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5364 if( pCur->eState==CURSOR_FAULT ){
5365 assert( pCur->skipNext!=SQLITE_OK );
5366 return pCur->skipNext;
5367 }
5368 sqlite3BtreeClearCursor(pCur);
5369 }
drh352a35a2017-08-15 03:46:47 +00005370 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005371 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005372 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005373 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005374 return rc;
drh777e4c42006-01-13 04:31:58 +00005375 }
danielk1977172114a2009-07-07 15:47:12 +00005376 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005377 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005378 }
drh352a35a2017-08-15 03:46:47 +00005379 pRoot = pCur->pPage;
drhec9b6222022-03-07 18:32:08 +00005380 assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB );
dan7df42ab2014-01-20 18:25:44 +00005381
5382 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5383 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5384 ** NULL, the caller expects a table b-tree. If this is not the case,
5385 ** return an SQLITE_CORRUPT error.
5386 **
5387 ** Earlier versions of SQLite assumed that this test could not fail
5388 ** if the root page was already loaded when this function was called (i.e.
5389 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5390 ** in such a way that page pRoot is linked into a second b-tree table
5391 ** (or the freelist). */
5392 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5393 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005394 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005395 }
danielk19778f880a82009-07-13 09:41:45 +00005396
drh7ad3eb62016-10-24 01:01:09 +00005397skip_init:
drh75e96b32017-04-01 00:20:06 +00005398 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005399 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005400 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005401
drh4e8fe3f2013-12-06 23:25:27 +00005402 if( pRoot->nCell>0 ){
5403 pCur->eState = CURSOR_VALID;
5404 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005405 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005406 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005407 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005408 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005409 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005410 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005411 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005412 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005413 }
5414 return rc;
drh72f82862001-05-24 21:06:34 +00005415}
drh2af926b2001-05-15 00:39:25 +00005416
drh5e2f8b92001-05-28 00:41:15 +00005417/*
5418** Move the cursor down to the left-most leaf entry beneath the
5419** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005420**
5421** The left-most leaf is the one with the smallest key - the first
5422** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005423*/
5424static int moveToLeftmost(BtCursor *pCur){
5425 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005426 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005427 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005428
dan7a2347e2016-01-07 16:43:54 +00005429 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005430 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005431 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005432 assert( pCur->ix<pPage->nCell );
5433 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005434 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005435 }
drhd677b3d2007-08-20 22:48:41 +00005436 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005437}
5438
drh2dcc9aa2002-12-04 13:40:25 +00005439/*
5440** Move the cursor down to the right-most leaf entry beneath the
5441** page to which it is currently pointing. Notice the difference
5442** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5443** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5444** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005445**
5446** The right-most entry is the one with the largest key - the last
5447** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005448*/
5449static int moveToRightmost(BtCursor *pCur){
5450 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005451 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005452 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005453
dan7a2347e2016-01-07 16:43:54 +00005454 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005455 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005456 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005457 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005458 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005459 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005460 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005461 }
drh75e96b32017-04-01 00:20:06 +00005462 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005463 assert( pCur->info.nSize==0 );
5464 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5465 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005466}
5467
drh5e00f6c2001-09-13 13:46:56 +00005468/* Move the cursor to the first entry in the table. Return SQLITE_OK
5469** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005470** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005471*/
drh3aac2dd2004-04-26 14:10:20 +00005472int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005473 int rc;
drhd677b3d2007-08-20 22:48:41 +00005474
dan7a2347e2016-01-07 16:43:54 +00005475 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005476 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005477 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005478 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005479 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005480 *pRes = 0;
5481 rc = moveToLeftmost(pCur);
5482 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005483 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005484 *pRes = 1;
5485 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005486 }
drh5e00f6c2001-09-13 13:46:56 +00005487 return rc;
5488}
drh5e2f8b92001-05-28 00:41:15 +00005489
drh9562b552002-02-19 15:00:07 +00005490/* Move the cursor to the last entry in the table. Return SQLITE_OK
5491** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005492** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005493*/
drh3aac2dd2004-04-26 14:10:20 +00005494int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005495 int rc;
drhd677b3d2007-08-20 22:48:41 +00005496
dan7a2347e2016-01-07 16:43:54 +00005497 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005498 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005499
5500 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005501 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005502#ifdef SQLITE_DEBUG
5503 /* This block serves to assert() that the cursor really does point
5504 ** to the last entry in the b-tree. */
5505 int ii;
5506 for(ii=0; ii<pCur->iPage; ii++){
5507 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5508 }
drh319deef2021-04-04 23:56:15 +00005509 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5510 testcase( pCur->ix!=pCur->pPage->nCell-1 );
5511 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
drh352a35a2017-08-15 03:46:47 +00005512 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005513#endif
drheb265342019-05-08 23:55:04 +00005514 *pRes = 0;
danielk19773f632d52009-05-02 10:03:09 +00005515 return SQLITE_OK;
5516 }
5517
drh9562b552002-02-19 15:00:07 +00005518 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005519 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005520 assert( pCur->eState==CURSOR_VALID );
5521 *pRes = 0;
5522 rc = moveToRightmost(pCur);
5523 if( rc==SQLITE_OK ){
5524 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005525 }else{
drh44548e72017-08-14 18:13:52 +00005526 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005527 }
drh44548e72017-08-14 18:13:52 +00005528 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005529 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005530 *pRes = 1;
5531 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005532 }
drh9562b552002-02-19 15:00:07 +00005533 return rc;
5534}
5535
drh42a410d2021-06-19 18:32:20 +00005536/* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5537** table near the key intKey. Return a success code.
drh3aac2dd2004-04-26 14:10:20 +00005538**
drh5e2f8b92001-05-28 00:41:15 +00005539** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005540** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005541** were present. The cursor might point to an entry that comes
5542** before or after the key.
5543**
drh64022502009-01-09 14:11:04 +00005544** An integer is written into *pRes which is the result of
5545** comparing the key with the entry to which the cursor is
5546** pointing. The meaning of the integer written into
5547** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005548**
5549** *pRes<0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005550** is smaller than intKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005551** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005552**
5553** *pRes==0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005554** exactly matches intKey.
drhbd03cae2001-06-02 02:40:57 +00005555**
5556** *pRes>0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005557** is larger than intKey.
drha059ad02001-04-17 20:09:11 +00005558*/
drh42a410d2021-06-19 18:32:20 +00005559int sqlite3BtreeTableMoveto(
drhe63d9992008-08-13 19:11:48 +00005560 BtCursor *pCur, /* The cursor to be moved */
drhe63d9992008-08-13 19:11:48 +00005561 i64 intKey, /* The table key */
5562 int biasRight, /* If true, bias the search to the high end */
5563 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005564){
drh72f82862001-05-24 21:06:34 +00005565 int rc;
drhd677b3d2007-08-20 22:48:41 +00005566
dan7a2347e2016-01-07 16:43:54 +00005567 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005568 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005569 assert( pRes );
drh42a410d2021-06-19 18:32:20 +00005570 assert( pCur->pKeyInfo==0 );
5571 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
drha2c20e42008-03-29 16:01:04 +00005572
5573 /* If the cursor is already positioned at the point we are trying
5574 ** to move to, then just return without doing any work */
drh42a410d2021-06-19 18:32:20 +00005575 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
drhe63d9992008-08-13 19:11:48 +00005576 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005577 *pRes = 0;
5578 return SQLITE_OK;
5579 }
drh451e76d2017-01-21 16:54:19 +00005580 if( pCur->info.nKey<intKey ){
5581 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5582 *pRes = -1;
5583 return SQLITE_OK;
5584 }
drh7f11afa2017-01-21 21:47:54 +00005585 /* If the requested key is one more than the previous key, then
5586 ** try to get there using sqlite3BtreeNext() rather than a full
5587 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005588 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005589 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005590 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005591 rc = sqlite3BtreeNext(pCur, 0);
5592 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005593 getCellInfo(pCur);
5594 if( pCur->info.nKey==intKey ){
5595 return SQLITE_OK;
5596 }
drhe85e1da2021-10-01 21:01:07 +00005597 }else if( rc!=SQLITE_DONE ){
drh2ab792e2017-05-30 18:34:07 +00005598 return rc;
drh451e76d2017-01-21 16:54:19 +00005599 }
5600 }
drha2c20e42008-03-29 16:01:04 +00005601 }
5602 }
5603
drh37ccfcf2020-08-31 18:49:04 +00005604#ifdef SQLITE_DEBUG
5605 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5606#endif
5607
drh42a410d2021-06-19 18:32:20 +00005608 rc = moveToRoot(pCur);
5609 if( rc ){
5610 if( rc==SQLITE_EMPTY ){
5611 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5612 *pRes = -1;
5613 return SQLITE_OK;
5614 }
5615 return rc;
dan1fed5da2014-02-25 21:01:25 +00005616 }
drh42a410d2021-06-19 18:32:20 +00005617 assert( pCur->pPage );
5618 assert( pCur->pPage->isInit );
5619 assert( pCur->eState==CURSOR_VALID );
5620 assert( pCur->pPage->nCell > 0 );
5621 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5622 assert( pCur->curIntKey );
5623
5624 for(;;){
5625 int lwr, upr, idx, c;
5626 Pgno chldPg;
5627 MemPage *pPage = pCur->pPage;
5628 u8 *pCell; /* Pointer to current cell in pPage */
5629
5630 /* pPage->nCell must be greater than zero. If this is the root-page
5631 ** the cursor would have been INVALID above and this for(;;) loop
5632 ** not run. If this is not the root-page, then the moveToChild() routine
5633 ** would have already detected db corruption. Similarly, pPage must
5634 ** be the right kind (index or table) of b-tree page. Otherwise
5635 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5636 assert( pPage->nCell>0 );
5637 assert( pPage->intKey );
5638 lwr = 0;
5639 upr = pPage->nCell-1;
5640 assert( biasRight==0 || biasRight==1 );
5641 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh42a410d2021-06-19 18:32:20 +00005642 for(;;){
5643 i64 nCellKey;
5644 pCell = findCellPastPtr(pPage, idx);
5645 if( pPage->intKeyLeaf ){
5646 while( 0x80 <= *(pCell++) ){
5647 if( pCell>=pPage->aDataEnd ){
5648 return SQLITE_CORRUPT_PAGE(pPage);
5649 }
5650 }
5651 }
5652 getVarint(pCell, (u64*)&nCellKey);
5653 if( nCellKey<intKey ){
5654 lwr = idx+1;
5655 if( lwr>upr ){ c = -1; break; }
5656 }else if( nCellKey>intKey ){
5657 upr = idx-1;
5658 if( lwr>upr ){ c = +1; break; }
5659 }else{
5660 assert( nCellKey==intKey );
5661 pCur->ix = (u16)idx;
5662 if( !pPage->leaf ){
5663 lwr = idx;
5664 goto moveto_table_next_layer;
5665 }else{
5666 pCur->curFlags |= BTCF_ValidNKey;
5667 pCur->info.nKey = nCellKey;
5668 pCur->info.nSize = 0;
5669 *pRes = 0;
5670 return SQLITE_OK;
5671 }
5672 }
5673 assert( lwr+upr>=0 );
5674 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
5675 }
5676 assert( lwr==upr+1 || !pPage->leaf );
5677 assert( pPage->isInit );
5678 if( pPage->leaf ){
5679 assert( pCur->ix<pCur->pPage->nCell );
5680 pCur->ix = (u16)idx;
5681 *pRes = c;
5682 rc = SQLITE_OK;
5683 goto moveto_table_finish;
5684 }
5685moveto_table_next_layer:
5686 if( lwr>=pPage->nCell ){
5687 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5688 }else{
5689 chldPg = get4byte(findCell(pPage, lwr));
5690 }
5691 pCur->ix = (u16)lwr;
5692 rc = moveToChild(pCur, chldPg);
5693 if( rc ) break;
5694 }
5695moveto_table_finish:
5696 pCur->info.nSize = 0;
5697 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5698 return rc;
5699}
5700
drhc5a55db2022-03-07 01:29:36 +00005701/*
5702** Compare the "idx"-th cell on the page the cursor pCur is currently
5703** pointing to to pIdxKey using xRecordCompare. Return negative or
5704** zero if the cell is less than or equal pIdxKey. Return positive
5705** if unknown.
5706**
5707** Return value negative: Cell at pCur[idx] less than pIdxKey
5708**
5709** Return value is zero: Cell at pCur[idx] equals pIdxKey
5710**
5711** Return value positive: Nothing is known about the relationship
5712** of the cell at pCur[idx] and pIdxKey.
5713**
5714** This routine is part of an optimization. It is always safe to return
5715** a positive value as that will cause the optimization to be skipped.
5716*/
5717static int indexCellCompare(
5718 BtCursor *pCur,
5719 int idx,
5720 UnpackedRecord *pIdxKey,
5721 RecordCompare xRecordCompare
5722){
5723 MemPage *pPage = pCur->pPage;
5724 int c;
5725 int nCell; /* Size of the pCell cell in bytes */
5726 u8 *pCell = findCellPastPtr(pPage, idx);
5727
5728 nCell = pCell[0];
5729 if( nCell<=pPage->max1bytePayload ){
5730 /* This branch runs if the record-size field of the cell is a
5731 ** single byte varint and the record fits entirely on the main
5732 ** b-tree page. */
5733 testcase( pCell+nCell+1==pPage->aDataEnd );
5734 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5735 }else if( !(pCell[1] & 0x80)
5736 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5737 ){
5738 /* The record-size field is a 2 byte varint and the record
5739 ** fits entirely on the main b-tree page. */
5740 testcase( pCell+nCell+2==pPage->aDataEnd );
5741 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5742 }else{
5743 /* If the record extends into overflow pages, do not attempt
5744 ** the optimization. */
5745 c = 99;
5746 }
5747 return c;
5748}
5749
5750/*
5751** Return true (non-zero) if pCur is current pointing to the last
5752** page of a table.
5753*/
5754static int cursorOnLastPage(BtCursor *pCur){
5755 int i;
5756 assert( pCur->eState==CURSOR_VALID );
5757 for(i=0; i<pCur->iPage; i++){
5758 MemPage *pPage = pCur->apPage[i];
5759 if( pCur->aiIdx[i]<pPage->nCell ) return 0;
5760 }
5761 return 1;
5762}
5763
drh42a410d2021-06-19 18:32:20 +00005764/* Move the cursor so that it points to an entry in an index table
5765** near the key pIdxKey. Return a success code.
5766**
5767** If an exact match is not found, then the cursor is always
5768** left pointing at a leaf page which would hold the entry if it
5769** were present. The cursor might point to an entry that comes
5770** before or after the key.
5771**
5772** An integer is written into *pRes which is the result of
5773** comparing the key with the entry to which the cursor is
5774** pointing. The meaning of the integer written into
5775** *pRes is as follows:
5776**
5777** *pRes<0 The cursor is left pointing at an entry that
5778** is smaller than pIdxKey or if the table is empty
5779** and the cursor is therefore left point to nothing.
5780**
5781** *pRes==0 The cursor is left pointing at an entry that
5782** exactly matches pIdxKey.
5783**
5784** *pRes>0 The cursor is left pointing at an entry that
5785** is larger than pIdxKey.
5786**
5787** The pIdxKey->eqSeen field is set to 1 if there
5788** exists an entry in the table that exactly matches pIdxKey.
5789*/
5790int sqlite3BtreeIndexMoveto(
5791 BtCursor *pCur, /* The cursor to be moved */
5792 UnpackedRecord *pIdxKey, /* Unpacked index key */
5793 int *pRes /* Write search results here */
5794){
5795 int rc;
5796 RecordCompare xRecordCompare;
5797
5798 assert( cursorOwnsBtShared(pCur) );
5799 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5800 assert( pRes );
5801 assert( pCur->pKeyInfo!=0 );
5802
5803#ifdef SQLITE_DEBUG
5804 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5805#endif
5806
5807 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5808 pIdxKey->errCode = 0;
5809 assert( pIdxKey->default_rc==1
5810 || pIdxKey->default_rc==0
5811 || pIdxKey->default_rc==-1
5812 );
dan1fed5da2014-02-25 21:01:25 +00005813
drhc5a55db2022-03-07 01:29:36 +00005814
5815 /* Check to see if we can skip a lot of work. Two cases:
5816 **
5817 ** (1) If the cursor is already pointing to the very last cell
5818 ** in the table and the pIdxKey search key is greater than or
5819 ** equal to that last cell, then no movement is required.
5820 **
5821 ** (2) If the cursor is on the last page of the table and the first
5822 ** cell on that last page is less than or equal to the pIdxKey
5823 ** search key, then we can start the search on the current page
5824 ** without needing to go back to root.
5825 */
5826 if( pCur->eState==CURSOR_VALID
5827 && pCur->pPage->leaf
5828 && cursorOnLastPage(pCur)
5829 ){
5830 int c;
5831 if( pCur->ix==pCur->pPage->nCell-1
5832 && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0
drh605137a2022-03-11 14:20:06 +00005833 && pIdxKey->errCode==SQLITE_OK
drhc5a55db2022-03-07 01:29:36 +00005834 ){
5835 *pRes = c;
5836 return SQLITE_OK; /* Cursor already pointing at the correct spot */
5837 }
5838 if( pCur->iPage>0
drh605137a2022-03-11 14:20:06 +00005839 && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0
5840 && pIdxKey->errCode==SQLITE_OK
drhc5a55db2022-03-07 01:29:36 +00005841 ){
drh42bb09c2022-03-07 17:19:40 +00005842 pCur->curFlags &= ~BTCF_ValidOvfl;
drhc5a55db2022-03-07 01:29:36 +00005843 goto bypass_moveto_root; /* Start search on the current page */
5844 }
drh605137a2022-03-11 14:20:06 +00005845 pIdxKey->errCode = SQLITE_OK;
drhc5a55db2022-03-07 01:29:36 +00005846 }
5847
drh5e2f8b92001-05-28 00:41:15 +00005848 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005849 if( rc ){
drh44548e72017-08-14 18:13:52 +00005850 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005851 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005852 *pRes = -1;
5853 return SQLITE_OK;
5854 }
drhd677b3d2007-08-20 22:48:41 +00005855 return rc;
5856 }
drhc5a55db2022-03-07 01:29:36 +00005857
5858bypass_moveto_root:
drh352a35a2017-08-15 03:46:47 +00005859 assert( pCur->pPage );
5860 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005861 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005862 assert( pCur->pPage->nCell > 0 );
drhc5a55db2022-03-07 01:29:36 +00005863 assert( pCur->curIntKey==0 );
5864 assert( pIdxKey!=0 );
drh14684382006-11-30 13:05:29 +00005865 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005866 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005867 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005868 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005869 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005870
5871 /* pPage->nCell must be greater than zero. If this is the root-page
5872 ** the cursor would have been INVALID above and this for(;;) loop
5873 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005874 ** would have already detected db corruption. Similarly, pPage must
5875 ** be the right kind (index or table) of b-tree page. Otherwise
5876 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005877 assert( pPage->nCell>0 );
drhc5a55db2022-03-07 01:29:36 +00005878 assert( pPage->intKey==0 );
drh72f82862001-05-24 21:06:34 +00005879 lwr = 0;
5880 upr = pPage->nCell-1;
drh42a410d2021-06-19 18:32:20 +00005881 idx = upr>>1; /* idx = (lwr+upr)/2; */
drh42a410d2021-06-19 18:32:20 +00005882 for(;;){
5883 int nCell; /* Size of the pCell cell in bytes */
5884 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005885
drh42a410d2021-06-19 18:32:20 +00005886 /* The maximum supported page-size is 65536 bytes. This means that
5887 ** the maximum number of record bytes stored on an index B-Tree
5888 ** page is less than 16384 bytes and may be stored as a 2-byte
5889 ** varint. This information is used to attempt to avoid parsing
5890 ** the entire cell by checking for the cases where the record is
5891 ** stored entirely within the b-tree page by inspecting the first
5892 ** 2 bytes of the cell.
5893 */
5894 nCell = pCell[0];
5895 if( nCell<=pPage->max1bytePayload ){
5896 /* This branch runs if the record-size field of the cell is a
5897 ** single byte varint and the record fits entirely on the main
5898 ** b-tree page. */
5899 testcase( pCell+nCell+1==pPage->aDataEnd );
5900 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5901 }else if( !(pCell[1] & 0x80)
5902 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5903 ){
5904 /* The record-size field is a 2 byte varint and the record
5905 ** fits entirely on the main b-tree page. */
5906 testcase( pCell+nCell+2==pPage->aDataEnd );
5907 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5908 }else{
5909 /* The record flows over onto one or more overflow pages. In
5910 ** this case the whole cell needs to be parsed, a buffer allocated
5911 ** and accessPayload() used to retrieve the record into the
5912 ** buffer before VdbeRecordCompare() can be called.
5913 **
5914 ** If the record is corrupt, the xRecordCompare routine may read
5915 ** up to two varints past the end of the buffer. An extra 18
5916 ** bytes of padding is allocated at the end of the buffer in
5917 ** case this happens. */
5918 void *pCellKey;
5919 u8 * const pCellBody = pCell - pPage->childPtrSize;
5920 const int nOverrun = 18; /* Size of the overrun padding */
5921 pPage->xParseCell(pPage, pCellBody, &pCur->info);
5922 nCell = (int)pCur->info.nKey;
5923 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5924 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5925 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5926 testcase( nCell==2 ); /* Minimum legal index key size */
5927 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5928 rc = SQLITE_CORRUPT_PAGE(pPage);
5929 goto moveto_index_finish;
5930 }
5931 pCellKey = sqlite3Malloc( nCell+nOverrun );
5932 if( pCellKey==0 ){
5933 rc = SQLITE_NOMEM_BKPT;
5934 goto moveto_index_finish;
5935 }
5936 pCur->ix = (u16)idx;
5937 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5938 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5939 pCur->curFlags &= ~BTCF_ValidOvfl;
5940 if( rc ){
drhfacf0302008-06-17 15:12:00 +00005941 sqlite3_free(pCellKey);
drh42a410d2021-06-19 18:32:20 +00005942 goto moveto_index_finish;
drhe51c44f2004-05-30 20:46:09 +00005943 }
drh42a410d2021-06-19 18:32:20 +00005944 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5945 sqlite3_free(pCellKey);
drh72f82862001-05-24 21:06:34 +00005946 }
drh42a410d2021-06-19 18:32:20 +00005947 assert(
5948 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5949 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5950 );
5951 if( c<0 ){
5952 lwr = idx+1;
5953 }else if( c>0 ){
5954 upr = idx-1;
5955 }else{
5956 assert( c==0 );
5957 *pRes = 0;
5958 rc = SQLITE_OK;
5959 pCur->ix = (u16)idx;
5960 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5961 goto moveto_index_finish;
5962 }
5963 if( lwr>upr ) break;
5964 assert( lwr+upr>=0 );
5965 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005966 }
drhb07028f2011-10-14 21:49:18 +00005967 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005968 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005969 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005970 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005971 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005972 *pRes = c;
5973 rc = SQLITE_OK;
drh42a410d2021-06-19 18:32:20 +00005974 goto moveto_index_finish;
drhebf10b12013-11-25 17:38:26 +00005975 }
drhebf10b12013-11-25 17:38:26 +00005976 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005977 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005978 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005979 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005980 }
drh75e96b32017-04-01 00:20:06 +00005981 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005982 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005983 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005984 }
drh42a410d2021-06-19 18:32:20 +00005985moveto_index_finish:
drhd2022b02013-11-25 16:23:52 +00005986 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005987 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005988 return rc;
5989}
5990
drhd677b3d2007-08-20 22:48:41 +00005991
drh72f82862001-05-24 21:06:34 +00005992/*
drhc39e0002004-05-07 23:50:57 +00005993** Return TRUE if the cursor is not pointing at an entry of the table.
5994**
5995** TRUE will be returned after a call to sqlite3BtreeNext() moves
5996** past the last entry in the table or sqlite3BtreePrev() moves past
5997** the first entry. TRUE is also returned if the table is empty.
5998*/
5999int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00006000 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
6001 ** have been deleted? This API will need to change to return an error code
6002 ** as well as the boolean result value.
6003 */
6004 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00006005}
6006
6007/*
drh5e98e832017-02-17 19:24:06 +00006008** Return an estimate for the number of rows in the table that pCur is
6009** pointing to. Return a negative number if no estimate is currently
6010** available.
6011*/
6012i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
6013 i64 n;
6014 u8 i;
6015
6016 assert( cursorOwnsBtShared(pCur) );
6017 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00006018
6019 /* Currently this interface is only called by the OP_IfSmaller
6020 ** opcode, and it that case the cursor will always be valid and
6021 ** will always point to a leaf node. */
6022 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00006023 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00006024
drh352a35a2017-08-15 03:46:47 +00006025 n = pCur->pPage->nCell;
6026 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00006027 n *= pCur->apPage[i]->nCell;
6028 }
6029 return n;
6030}
6031
6032/*
drh2ab792e2017-05-30 18:34:07 +00006033** Advance the cursor to the next entry in the database.
6034** Return value:
6035**
6036** SQLITE_OK success
6037** SQLITE_DONE cursor is already pointing at the last element
6038** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00006039**
drhee6438d2014-09-01 13:29:32 +00006040** The main entry point is sqlite3BtreeNext(). That routine is optimized
6041** for the common case of merely incrementing the cell counter BtCursor.aiIdx
6042** to the next cell on the current page. The (slower) btreeNext() helper
6043** routine is called when it is necessary to move to a different page or
6044** to restore the cursor.
6045**
drh89997982017-07-11 18:11:33 +00006046** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
6047** cursor corresponds to an SQL index and this routine could have been
6048** skipped if the SQL index had been a unique index. The F argument
6049** is a hint to the implement. SQLite btree implementation does not use
6050** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00006051*/
drh89997982017-07-11 18:11:33 +00006052static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00006053 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006054 int idx;
danielk197797a227c2006-01-20 16:32:04 +00006055 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00006056
dan7a2347e2016-01-07 16:43:54 +00006057 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00006058 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00006059 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00006060 rc = restoreCursorPosition(pCur);
6061 if( rc!=SQLITE_OK ){
6062 return rc;
6063 }
6064 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00006065 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00006066 }
drh0c873bf2019-01-28 00:42:06 +00006067 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00006068 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00006069 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00006070 }
danielk1977da184232006-01-05 11:34:32 +00006071 }
danielk1977da184232006-01-05 11:34:32 +00006072
drh352a35a2017-08-15 03:46:47 +00006073 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00006074 idx = ++pCur->ix;
drha957e222020-09-30 00:48:45 +00006075 if( !pPage->isInit || sqlite3FaultSim(412) ){
drhf3cd0c82018-06-08 19:13:57 +00006076 /* The only known way for this to happen is for there to be a
6077 ** recursive SQL function that does a DELETE operation as part of a
6078 ** SELECT which deletes content out from under an active cursor
6079 ** in a corrupt database file where the table being DELETE-ed from
6080 ** has pages in common with the table being queried. See TH3
6081 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
6082 ** example. */
6083 return SQLITE_CORRUPT_BKPT;
6084 }
danbb246c42012-01-12 14:25:55 +00006085
danielk197771d5d2c2008-09-29 11:49:47 +00006086 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00006087 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006088 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00006089 if( rc ) return rc;
6090 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00006091 }
drh5e2f8b92001-05-28 00:41:15 +00006092 do{
danielk197771d5d2c2008-09-29 11:49:47 +00006093 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00006094 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00006095 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00006096 }
danielk197730548662009-07-09 05:07:37 +00006097 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00006098 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00006099 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00006100 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00006101 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00006102 }else{
drhee6438d2014-09-01 13:29:32 +00006103 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00006104 }
drh8178a752003-01-05 21:41:40 +00006105 }
drh3aac2dd2004-04-26 14:10:20 +00006106 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00006107 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00006108 }else{
6109 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00006110 }
drh72f82862001-05-24 21:06:34 +00006111}
drh2ab792e2017-05-30 18:34:07 +00006112int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00006113 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00006114 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00006115 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00006116 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00006117 pCur->info.nSize = 0;
6118 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00006119 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00006120 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00006121 if( (++pCur->ix)>=pPage->nCell ){
6122 pCur->ix--;
drh89997982017-07-11 18:11:33 +00006123 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00006124 }
6125 if( pPage->leaf ){
6126 return SQLITE_OK;
6127 }else{
6128 return moveToLeftmost(pCur);
6129 }
6130}
drh72f82862001-05-24 21:06:34 +00006131
drh3b7511c2001-05-26 13:15:44 +00006132/*
drh2ab792e2017-05-30 18:34:07 +00006133** Step the cursor to the back to the previous entry in the database.
6134** Return values:
6135**
6136** SQLITE_OK success
6137** SQLITE_DONE the cursor is already on the first element of the table
6138** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00006139**
drhee6438d2014-09-01 13:29:32 +00006140** The main entry point is sqlite3BtreePrevious(). That routine is optimized
6141** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00006142** to the previous cell on the current page. The (slower) btreePrevious()
6143** helper routine is called when it is necessary to move to a different page
6144** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00006145**
drh89997982017-07-11 18:11:33 +00006146** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
6147** the cursor corresponds to an SQL index and this routine could have been
6148** skipped if the SQL index had been a unique index. The F argument is a
6149** hint to the implement. The native SQLite btree implementation does not
6150** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00006151*/
drh89997982017-07-11 18:11:33 +00006152static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00006153 int rc;
drh8178a752003-01-05 21:41:40 +00006154 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00006155
dan7a2347e2016-01-07 16:43:54 +00006156 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00006157 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
6158 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00006159 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00006160 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00006161 if( rc!=SQLITE_OK ){
6162 return rc;
drhf66f26a2013-08-19 20:04:10 +00006163 }
6164 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00006165 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00006166 }
drh0c873bf2019-01-28 00:42:06 +00006167 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00006168 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00006169 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00006170 }
danielk1977da184232006-01-05 11:34:32 +00006171 }
danielk1977da184232006-01-05 11:34:32 +00006172
drh352a35a2017-08-15 03:46:47 +00006173 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00006174 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00006175 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00006176 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00006177 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00006178 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00006179 rc = moveToRightmost(pCur);
6180 }else{
drh75e96b32017-04-01 00:20:06 +00006181 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00006182 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00006183 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00006184 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00006185 }
danielk197730548662009-07-09 05:07:37 +00006186 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00006187 }
drhee6438d2014-09-01 13:29:32 +00006188 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00006189 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006190
drh75e96b32017-04-01 00:20:06 +00006191 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00006192 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00006193 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00006194 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00006195 }else{
6196 rc = SQLITE_OK;
6197 }
drh2dcc9aa2002-12-04 13:40:25 +00006198 }
drh2dcc9aa2002-12-04 13:40:25 +00006199 return rc;
6200}
drh2ab792e2017-05-30 18:34:07 +00006201int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00006202 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00006203 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00006204 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00006205 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
6206 pCur->info.nSize = 0;
6207 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00006208 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00006209 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00006210 ){
drh89997982017-07-11 18:11:33 +00006211 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00006212 }
drh75e96b32017-04-01 00:20:06 +00006213 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00006214 return SQLITE_OK;
6215}
drh2dcc9aa2002-12-04 13:40:25 +00006216
6217/*
drh3b7511c2001-05-26 13:15:44 +00006218** Allocate a new page from the database file.
6219**
danielk19773b8a05f2007-03-19 17:44:26 +00006220** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00006221** has already been called on the new page.) The new page has also
6222** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00006223** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00006224**
6225** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00006226** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00006227**
drh82e647d2013-03-02 03:25:55 +00006228** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00006229** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00006230** attempt to keep related pages close to each other in the database file,
6231** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00006232**
drh82e647d2013-03-02 03:25:55 +00006233** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6234** anywhere on the free-list, then it is guaranteed to be returned. If
6235** eMode is BTALLOC_LT then the page returned will be less than or equal
6236** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
6237** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00006238*/
drh4f0c5872007-03-26 22:05:01 +00006239static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00006240 BtShared *pBt, /* The btree */
6241 MemPage **ppPage, /* Store pointer to the allocated page here */
6242 Pgno *pPgno, /* Store the page number here */
6243 Pgno nearby, /* Search for a page near this one */
6244 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006245){
drh3aac2dd2004-04-26 14:10:20 +00006246 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00006247 int rc;
drh35cd6432009-06-05 14:17:21 +00006248 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00006249 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00006250 MemPage *pTrunk = 0;
6251 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00006252 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00006253
drh1fee73e2007-08-29 04:00:57 +00006254 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00006255 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00006256 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00006257 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00006258 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
6259 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00006260 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00006261 testcase( n==mxPage-1 );
6262 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00006263 return SQLITE_CORRUPT_BKPT;
6264 }
drh3aac2dd2004-04-26 14:10:20 +00006265 if( n>0 ){
drh91025292004-05-03 19:49:32 +00006266 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006267 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006268 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00006269 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006270
drh82e647d2013-03-02 03:25:55 +00006271 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006272 ** shows that the page 'nearby' is somewhere on the free-list, then
6273 ** the entire-list will be searched for that page.
6274 */
6275#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006276 if( eMode==BTALLOC_EXACT ){
drh41af5b32020-07-31 02:07:16 +00006277 if( nearby<=mxPage ){
dan51f0b6d2013-02-22 20:16:34 +00006278 u8 eType;
6279 assert( nearby>0 );
6280 assert( pBt->autoVacuum );
6281 rc = ptrmapGet(pBt, nearby, &eType, 0);
6282 if( rc ) return rc;
6283 if( eType==PTRMAP_FREEPAGE ){
6284 searchList = 1;
6285 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006286 }
dan51f0b6d2013-02-22 20:16:34 +00006287 }else if( eMode==BTALLOC_LE ){
6288 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006289 }
6290#endif
6291
6292 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6293 ** first free-list trunk page. iPrevTrunk is initially 1.
6294 */
danielk19773b8a05f2007-03-19 17:44:26 +00006295 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00006296 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00006297 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006298
6299 /* The code within this loop is run only once if the 'searchList' variable
6300 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00006301 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6302 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00006303 */
6304 do {
6305 pPrevTrunk = pTrunk;
6306 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00006307 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6308 ** is the page number of the next freelist trunk page in the list or
6309 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006310 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00006311 }else{
drh113762a2014-11-19 16:36:25 +00006312 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6313 ** stores the page number of the first page of the freelist, or zero if
6314 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006315 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00006316 }
drhdf35a082009-07-09 02:24:35 +00006317 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00006318 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00006319 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00006320 }else{
drh7e8c6f12015-05-28 03:28:27 +00006321 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00006322 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006323 if( rc ){
drhd3627af2006-12-18 18:34:51 +00006324 pTrunk = 0;
6325 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006326 }
drhb07028f2011-10-14 21:49:18 +00006327 assert( pTrunk!=0 );
6328 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00006329 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6330 ** is the number of leaf page pointers to follow. */
6331 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006332 if( k==0 && !searchList ){
6333 /* The trunk has no leaves and the list is not being searched.
6334 ** So extract the trunk page itself and use it as the newly
6335 ** allocated page */
6336 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006337 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006338 if( rc ){
6339 goto end_allocate_page;
6340 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006341 *pPgno = iTrunk;
6342 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6343 *ppPage = pTrunk;
6344 pTrunk = 0;
6345 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00006346 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006347 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00006348 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00006349 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006350#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006351 }else if( searchList
6352 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6353 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006354 /* The list is being searched and this trunk page is the page
6355 ** to allocate, regardless of whether it has leaves.
6356 */
dan51f0b6d2013-02-22 20:16:34 +00006357 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006358 *ppPage = pTrunk;
6359 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006360 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006361 if( rc ){
6362 goto end_allocate_page;
6363 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006364 if( k==0 ){
6365 if( !pPrevTrunk ){
6366 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6367 }else{
danf48c3552010-08-23 15:41:24 +00006368 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6369 if( rc!=SQLITE_OK ){
6370 goto end_allocate_page;
6371 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006372 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6373 }
6374 }else{
6375 /* The trunk page is required by the caller but it contains
6376 ** pointers to free-list leaves. The first leaf becomes a trunk
6377 ** page in this case.
6378 */
6379 MemPage *pNewTrunk;
6380 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00006381 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006382 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006383 goto end_allocate_page;
6384 }
drhdf35a082009-07-09 02:24:35 +00006385 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00006386 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006387 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00006388 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006389 }
danielk19773b8a05f2007-03-19 17:44:26 +00006390 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006391 if( rc!=SQLITE_OK ){
6392 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00006393 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006394 }
6395 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6396 put4byte(&pNewTrunk->aData[4], k-1);
6397 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006398 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006399 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006400 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006401 put4byte(&pPage1->aData[32], iNewTrunk);
6402 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006403 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006404 if( rc ){
6405 goto end_allocate_page;
6406 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006407 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6408 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006409 }
6410 pTrunk = 0;
6411 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6412#endif
danielk1977e5765212009-06-17 11:13:28 +00006413 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006414 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006415 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006416 Pgno iPage;
6417 unsigned char *aData = pTrunk->aData;
6418 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006419 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006420 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006421 if( eMode==BTALLOC_LE ){
6422 for(i=0; i<k; i++){
6423 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006424 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006425 closest = i;
6426 break;
6427 }
6428 }
6429 }else{
6430 int dist;
6431 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6432 for(i=1; i<k; i++){
6433 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6434 if( d2<dist ){
6435 closest = i;
6436 dist = d2;
6437 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006438 }
6439 }
6440 }else{
6441 closest = 0;
6442 }
6443
6444 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006445 testcase( iPage==mxPage );
drh07812192021-04-07 12:21:35 +00006446 if( iPage>mxPage || iPage<2 ){
drhcc97ca42017-06-07 22:32:59 +00006447 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006448 goto end_allocate_page;
6449 }
drhdf35a082009-07-09 02:24:35 +00006450 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006451 if( !searchList
6452 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6453 ){
danielk1977bea2a942009-01-20 17:06:27 +00006454 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006455 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006456 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6457 ": %d more free pages\n",
6458 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006459 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6460 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006461 if( closest<k-1 ){
6462 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6463 }
6464 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006465 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006466 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006467 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006468 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006469 if( rc!=SQLITE_OK ){
6470 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006471 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006472 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006473 }
6474 searchList = 0;
6475 }
drhee696e22004-08-30 16:52:17 +00006476 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006477 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006478 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006479 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006480 }else{
danbc1a3c62013-02-23 16:40:46 +00006481 /* There are no pages on the freelist, so append a new page to the
6482 ** database image.
6483 **
6484 ** Normally, new pages allocated by this block can be requested from the
6485 ** pager layer with the 'no-content' flag set. This prevents the pager
6486 ** from trying to read the pages content from disk. However, if the
6487 ** current transaction has already run one or more incremental-vacuum
6488 ** steps, then the page we are about to allocate may contain content
6489 ** that is required in the event of a rollback. In this case, do
6490 ** not set the no-content flag. This causes the pager to load and journal
6491 ** the current page content before overwriting it.
6492 **
6493 ** Note that the pager will not actually attempt to load or journal
6494 ** content for any page that really does lie past the end of the database
6495 ** file on disk. So the effects of disabling the no-content optimization
6496 ** here are confined to those pages that lie between the end of the
6497 ** database image and the end of the database file.
6498 */
drh3f387402014-09-24 01:23:00 +00006499 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006500
drhdd3cd972010-03-27 17:12:36 +00006501 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6502 if( rc ) return rc;
6503 pBt->nPage++;
6504 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006505
danielk1977afcdd022004-10-31 16:25:42 +00006506#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006507 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006508 /* If *pPgno refers to a pointer-map page, allocate two new pages
6509 ** at the end of the file instead of one. The first allocated page
6510 ** becomes a new pointer-map page, the second is used by the caller.
6511 */
danielk1977ac861692009-03-28 10:54:22 +00006512 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006513 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6514 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006515 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006516 if( rc==SQLITE_OK ){
6517 rc = sqlite3PagerWrite(pPg->pDbPage);
6518 releasePage(pPg);
6519 }
6520 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006521 pBt->nPage++;
6522 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006523 }
6524#endif
drhdd3cd972010-03-27 17:12:36 +00006525 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6526 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006527
danielk1977599fcba2004-11-08 07:13:13 +00006528 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006529 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006530 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006531 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006532 if( rc!=SQLITE_OK ){
6533 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006534 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006535 }
drh3a4c1412004-05-09 20:40:11 +00006536 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006537 }
danielk1977599fcba2004-11-08 07:13:13 +00006538
danba14c692019-01-25 13:42:12 +00006539 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006540
6541end_allocate_page:
6542 releasePage(pTrunk);
6543 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006544 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6545 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006546 return rc;
6547}
6548
6549/*
danielk1977bea2a942009-01-20 17:06:27 +00006550** This function is used to add page iPage to the database file free-list.
6551** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006552**
danielk1977bea2a942009-01-20 17:06:27 +00006553** The value passed as the second argument to this function is optional.
6554** If the caller happens to have a pointer to the MemPage object
6555** corresponding to page iPage handy, it may pass it as the second value.
6556** Otherwise, it may pass NULL.
6557**
6558** If a pointer to a MemPage object is passed as the second argument,
6559** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006560*/
danielk1977bea2a942009-01-20 17:06:27 +00006561static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6562 MemPage *pTrunk = 0; /* Free-list trunk page */
6563 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6564 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6565 MemPage *pPage; /* Page being freed. May be NULL. */
6566 int rc; /* Return Code */
drh25050f22019-04-09 01:26:31 +00006567 u32 nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006568
danielk1977bea2a942009-01-20 17:06:27 +00006569 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006570 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006571 assert( !pMemPage || pMemPage->pgno==iPage );
6572
drh9a4e8862022-02-14 18:18:56 +00006573 if( iPage<2 || iPage>pBt->nPage ){
drh58b42ad2019-03-25 19:50:19 +00006574 return SQLITE_CORRUPT_BKPT;
6575 }
danielk1977bea2a942009-01-20 17:06:27 +00006576 if( pMemPage ){
6577 pPage = pMemPage;
6578 sqlite3PagerRef(pPage->pDbPage);
6579 }else{
6580 pPage = btreePageLookup(pBt, iPage);
6581 }
drh3aac2dd2004-04-26 14:10:20 +00006582
drha34b6762004-05-07 13:30:42 +00006583 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006584 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006585 if( rc ) goto freepage_out;
6586 nFree = get4byte(&pPage1->aData[36]);
6587 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006588
drhc9166342012-01-05 23:32:06 +00006589 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006590 /* If the secure_delete option is enabled, then
6591 ** always fully overwrite deleted information with zeros.
6592 */
drhb00fc3b2013-08-21 23:42:32 +00006593 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006594 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006595 ){
6596 goto freepage_out;
6597 }
6598 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006599 }
drhfcce93f2006-02-22 03:08:32 +00006600
danielk1977687566d2004-11-02 12:56:41 +00006601 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006602 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006603 */
danielk197785d90ca2008-07-19 14:25:15 +00006604 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006605 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006606 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006607 }
danielk1977687566d2004-11-02 12:56:41 +00006608
danielk1977bea2a942009-01-20 17:06:27 +00006609 /* Now manipulate the actual database free-list structure. There are two
6610 ** possibilities. If the free-list is currently empty, or if the first
6611 ** trunk page in the free-list is full, then this page will become a
6612 ** new free-list trunk page. Otherwise, it will become a leaf of the
6613 ** first trunk page in the current free-list. This block tests if it
6614 ** is possible to add the page as a new free-list leaf.
6615 */
6616 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006617 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006618
6619 iTrunk = get4byte(&pPage1->aData[32]);
drh10248222020-07-28 20:32:12 +00006620 if( iTrunk>btreePagecount(pBt) ){
6621 rc = SQLITE_CORRUPT_BKPT;
6622 goto freepage_out;
6623 }
drhb00fc3b2013-08-21 23:42:32 +00006624 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006625 if( rc!=SQLITE_OK ){
6626 goto freepage_out;
6627 }
6628
6629 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006630 assert( pBt->usableSize>32 );
6631 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006632 rc = SQLITE_CORRUPT_BKPT;
6633 goto freepage_out;
6634 }
drheeb844a2009-08-08 18:01:07 +00006635 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006636 /* In this case there is room on the trunk page to insert the page
6637 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006638 **
6639 ** Note that the trunk page is not really full until it contains
6640 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6641 ** coded. But due to a coding error in versions of SQLite prior to
6642 ** 3.6.0, databases with freelist trunk pages holding more than
6643 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6644 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006645 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006646 ** for now. At some point in the future (once everyone has upgraded
6647 ** to 3.6.0 or later) we should consider fixing the conditional above
6648 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006649 **
6650 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6651 ** avoid using the last six entries in the freelist trunk page array in
6652 ** order that database files created by newer versions of SQLite can be
6653 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006654 */
danielk19773b8a05f2007-03-19 17:44:26 +00006655 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006656 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006657 put4byte(&pTrunk->aData[4], nLeaf+1);
6658 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006659 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006660 sqlite3PagerDontWrite(pPage->pDbPage);
6661 }
danielk1977bea2a942009-01-20 17:06:27 +00006662 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006663 }
drh3a4c1412004-05-09 20:40:11 +00006664 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006665 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006666 }
drh3b7511c2001-05-26 13:15:44 +00006667 }
danielk1977bea2a942009-01-20 17:06:27 +00006668
6669 /* If control flows to this point, then it was not possible to add the
6670 ** the page being freed as a leaf page of the first trunk in the free-list.
6671 ** Possibly because the free-list is empty, or possibly because the
6672 ** first trunk in the free-list is full. Either way, the page being freed
6673 ** will become the new first trunk page in the free-list.
6674 */
drhb00fc3b2013-08-21 23:42:32 +00006675 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006676 goto freepage_out;
6677 }
6678 rc = sqlite3PagerWrite(pPage->pDbPage);
6679 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006680 goto freepage_out;
6681 }
6682 put4byte(pPage->aData, iTrunk);
6683 put4byte(&pPage->aData[4], 0);
6684 put4byte(&pPage1->aData[32], iPage);
6685 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6686
6687freepage_out:
6688 if( pPage ){
6689 pPage->isInit = 0;
6690 }
6691 releasePage(pPage);
6692 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006693 return rc;
6694}
drhc314dc72009-07-21 11:52:34 +00006695static void freePage(MemPage *pPage, int *pRC){
6696 if( (*pRC)==SQLITE_OK ){
6697 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6698 }
danielk1977bea2a942009-01-20 17:06:27 +00006699}
drh3b7511c2001-05-26 13:15:44 +00006700
6701/*
drh86c779f2021-05-15 13:08:44 +00006702** Free the overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00006703*/
drh86c779f2021-05-15 13:08:44 +00006704static SQLITE_NOINLINE int clearCellOverflow(
drh9bfdc252014-09-24 02:05:41 +00006705 MemPage *pPage, /* The page that contains the Cell */
6706 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006707 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006708){
drh60172a52017-08-02 18:27:50 +00006709 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006710 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006711 int rc;
drh94440812007-03-06 11:42:19 +00006712 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006713 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006714
drh1fee73e2007-08-29 04:00:57 +00006715 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh86c779f2021-05-15 13:08:44 +00006716 assert( pInfo->nLocal!=pInfo->nPayload );
drh6fcf83a2018-05-05 01:23:28 +00006717 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6718 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6719 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006720 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006721 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006722 }
drh80159da2016-12-09 17:32:51 +00006723 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006724 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006725 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006726 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006727 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006728 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006729 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006730 );
drh72365832007-03-06 15:53:44 +00006731 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006732 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006733 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006734 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006735 /* 0 is not a legal page number and page 1 cannot be an
6736 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6737 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006738 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006739 }
danielk1977bea2a942009-01-20 17:06:27 +00006740 if( nOvfl ){
6741 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6742 if( rc ) return rc;
6743 }
dan887d4b22010-02-25 12:09:16 +00006744
shaneh1da207e2010-03-09 14:41:12 +00006745 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006746 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6747 ){
6748 /* There is no reason any cursor should have an outstanding reference
6749 ** to an overflow page belonging to a cell that is being deleted/updated.
6750 ** So if there exists more than one reference to this page, then it
6751 ** must not really be an overflow page and the database must be corrupt.
6752 ** It is helpful to detect this before calling freePage2(), as
6753 ** freePage2() may zero the page contents if secure-delete mode is
6754 ** enabled. If this 'overflow' page happens to be a page that the
6755 ** caller is iterating through or using in some other way, this
6756 ** can be problematic.
6757 */
6758 rc = SQLITE_CORRUPT_BKPT;
6759 }else{
6760 rc = freePage2(pBt, pOvfl, ovflPgno);
6761 }
6762
danielk1977bea2a942009-01-20 17:06:27 +00006763 if( pOvfl ){
6764 sqlite3PagerUnref(pOvfl->pDbPage);
6765 }
drh3b7511c2001-05-26 13:15:44 +00006766 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006767 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006768 }
drh5e2f8b92001-05-28 00:41:15 +00006769 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006770}
6771
drh86c779f2021-05-15 13:08:44 +00006772/* Call xParseCell to compute the size of a cell. If the cell contains
6773** overflow, then invoke cellClearOverflow to clear out that overflow.
6774** STore the result code (SQLITE_OK or some error code) in rc.
6775**
6776** Implemented as macro to force inlining for performance.
6777*/
6778#define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
6779 pPage->xParseCell(pPage, pCell, &sInfo); \
6780 if( sInfo.nLocal!=sInfo.nPayload ){ \
6781 rc = clearCellOverflow(pPage, pCell, &sInfo); \
6782 }else{ \
6783 rc = SQLITE_OK; \
6784 }
6785
6786
drh3b7511c2001-05-26 13:15:44 +00006787/*
drh91025292004-05-03 19:49:32 +00006788** Create the byte sequence used to represent a cell on page pPage
6789** and write that byte sequence into pCell[]. Overflow pages are
6790** allocated and filled in as necessary. The calling procedure
6791** is responsible for making sure sufficient space has been allocated
6792** for pCell[].
6793**
6794** Note that pCell does not necessary need to point to the pPage->aData
6795** area. pCell might point to some temporary storage. The cell will
6796** be constructed in this temporary area then copied into pPage->aData
6797** later.
drh3b7511c2001-05-26 13:15:44 +00006798*/
6799static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006800 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006801 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006802 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006803 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006804){
drh3b7511c2001-05-26 13:15:44 +00006805 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006806 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006807 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006808 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006809 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006810 unsigned char *pPrior;
6811 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006812 BtShared *pBt;
6813 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006814 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006815
drh1fee73e2007-08-29 04:00:57 +00006816 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006817
drhc5053fb2008-11-27 02:22:10 +00006818 /* pPage is not necessarily writeable since pCell might be auxiliary
6819 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006820 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006821 || sqlite3PagerIswriteable(pPage->pDbPage) );
6822
drh91025292004-05-03 19:49:32 +00006823 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006824 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006825 if( pPage->intKey ){
6826 nPayload = pX->nData + pX->nZero;
6827 pSrc = pX->pData;
6828 nSrc = pX->nData;
6829 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006830 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006831 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006832 }else{
drh8eeb4462016-05-21 20:03:42 +00006833 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6834 nSrc = nPayload = (int)pX->nKey;
6835 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006836 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006837 }
drhdfc2daa2016-05-21 23:25:29 +00006838
6839 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006840 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006841 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006842 /* This is the common case where everything fits on the btree page
6843 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006844 n = nHeader + nPayload;
6845 testcase( n==3 );
6846 testcase( n==4 );
6847 if( n<4 ) n = 4;
6848 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006849 assert( nSrc<=nPayload );
6850 testcase( nSrc<nPayload );
6851 memcpy(pPayload, pSrc, nSrc);
6852 memset(pPayload+nSrc, 0, nPayload-nSrc);
6853 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006854 }
drh5e27e1d2017-08-23 14:45:59 +00006855
6856 /* If we reach this point, it means that some of the content will need
6857 ** to spill onto overflow pages.
6858 */
6859 mn = pPage->minLocal;
6860 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6861 testcase( n==pPage->maxLocal );
6862 testcase( n==pPage->maxLocal+1 );
6863 if( n > pPage->maxLocal ) n = mn;
6864 spaceLeft = n;
6865 *pnSize = n + nHeader + 4;
6866 pPrior = &pCell[nHeader+n];
6867 pToRelease = 0;
6868 pgnoOvfl = 0;
6869 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006870
drh6200c882014-09-23 22:36:25 +00006871 /* At this point variables should be set as follows:
6872 **
6873 ** nPayload Total payload size in bytes
6874 ** pPayload Begin writing payload here
6875 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6876 ** that means content must spill into overflow pages.
6877 ** *pnSize Size of the local cell (not counting overflow pages)
6878 ** pPrior Where to write the pgno of the first overflow page
6879 **
6880 ** Use a call to btreeParseCellPtr() to verify that the values above
6881 ** were computed correctly.
6882 */
drhd879e3e2017-02-13 13:35:55 +00006883#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006884 {
6885 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006886 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006887 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006888 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006889 assert( *pnSize == info.nSize );
6890 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006891 }
6892#endif
6893
6894 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006895 while( 1 ){
6896 n = nPayload;
6897 if( n>spaceLeft ) n = spaceLeft;
6898
6899 /* If pToRelease is not zero than pPayload points into the data area
6900 ** of pToRelease. Make sure pToRelease is still writeable. */
6901 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6902
6903 /* If pPayload is part of the data area of pPage, then make sure pPage
6904 ** is still writeable */
6905 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6906 || sqlite3PagerIswriteable(pPage->pDbPage) );
6907
6908 if( nSrc>=n ){
6909 memcpy(pPayload, pSrc, n);
6910 }else if( nSrc>0 ){
6911 n = nSrc;
6912 memcpy(pPayload, pSrc, n);
6913 }else{
6914 memset(pPayload, 0, n);
6915 }
6916 nPayload -= n;
6917 if( nPayload<=0 ) break;
6918 pPayload += n;
6919 pSrc += n;
6920 nSrc -= n;
6921 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006922 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006923 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006924#ifndef SQLITE_OMIT_AUTOVACUUM
6925 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006926 if( pBt->autoVacuum ){
6927 do{
6928 pgnoOvfl++;
6929 } while(
6930 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6931 );
danielk1977b39f70b2007-05-17 18:28:11 +00006932 }
danielk1977afcdd022004-10-31 16:25:42 +00006933#endif
drhf49661a2008-12-10 16:45:50 +00006934 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006935#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006936 /* If the database supports auto-vacuum, and the second or subsequent
6937 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006938 ** for that page now.
6939 **
6940 ** If this is the first overflow page, then write a partial entry
6941 ** to the pointer-map. If we write nothing to this pointer-map slot,
6942 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006943 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006944 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006945 */
danielk19774ef24492007-05-23 09:52:41 +00006946 if( pBt->autoVacuum && rc==SQLITE_OK ){
6947 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006948 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006949 if( rc ){
6950 releasePage(pOvfl);
6951 }
danielk1977afcdd022004-10-31 16:25:42 +00006952 }
6953#endif
drh3b7511c2001-05-26 13:15:44 +00006954 if( rc ){
drh9b171272004-05-08 02:03:22 +00006955 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006956 return rc;
6957 }
drhc5053fb2008-11-27 02:22:10 +00006958
6959 /* If pToRelease is not zero than pPrior points into the data area
6960 ** of pToRelease. Make sure pToRelease is still writeable. */
6961 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6962
6963 /* If pPrior is part of the data area of pPage, then make sure pPage
6964 ** is still writeable */
6965 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6966 || sqlite3PagerIswriteable(pPage->pDbPage) );
6967
drh3aac2dd2004-04-26 14:10:20 +00006968 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006969 releasePage(pToRelease);
6970 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006971 pPrior = pOvfl->aData;
6972 put4byte(pPrior, 0);
6973 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006974 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006975 }
drhdd793422001-06-28 01:54:48 +00006976 }
drh9b171272004-05-08 02:03:22 +00006977 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006978 return SQLITE_OK;
6979}
6980
drh14acc042001-06-10 19:56:58 +00006981/*
6982** Remove the i-th cell from pPage. This routine effects pPage only.
6983** The cell content is not freed or deallocated. It is assumed that
6984** the cell content has been copied someplace else. This routine just
6985** removes the reference to the cell from pPage.
6986**
6987** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006988*/
drh98add2e2009-07-20 17:11:49 +00006989static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006990 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006991 u8 *data; /* pPage->aData */
6992 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006993 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006994 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006995
drh98add2e2009-07-20 17:11:49 +00006996 if( *pRC ) return;
drh2dfe9662022-01-02 11:25:51 +00006997 assert( idx>=0 );
6998 assert( idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006999 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00007000 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00007001 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00007002 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00007003 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00007004 ptr = &pPage->aCellIdx[2*idx];
mistachkinbeacaac2022-01-12 00:28:12 +00007005 assert( pPage->pBt->usableSize > (u32)(ptr-data) );
shane0af3f892008-11-12 04:55:34 +00007006 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00007007 hdr = pPage->hdrOffset;
drh0aa09452022-02-14 13:53:49 +00007008#if 0 /* Not required. Omit for efficiency */
7009 if( pc<hdr+pPage->nCell*2 ){
7010 *pRC = SQLITE_CORRUPT_BKPT;
7011 return;
7012 }
7013#endif
mistachkin2b5fbb22021-12-31 18:26:50 +00007014 testcase( pc==(u32)get2byte(&data[hdr+5]) );
drhc314dc72009-07-21 11:52:34 +00007015 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00007016 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00007017 *pRC = SQLITE_CORRUPT_BKPT;
7018 return;
shane0af3f892008-11-12 04:55:34 +00007019 }
shanedcc50b72008-11-13 18:29:50 +00007020 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00007021 if( rc ){
7022 *pRC = rc;
7023 return;
shanedcc50b72008-11-13 18:29:50 +00007024 }
drh14acc042001-06-10 19:56:58 +00007025 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00007026 if( pPage->nCell==0 ){
7027 memset(&data[hdr+1], 0, 4);
7028 data[hdr+7] = 0;
7029 put2byte(&data[hdr+5], pPage->pBt->usableSize);
7030 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
7031 - pPage->childPtrSize - 8;
7032 }else{
7033 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
7034 put2byte(&data[hdr+3], pPage->nCell);
7035 pPage->nFree += 2;
7036 }
drh14acc042001-06-10 19:56:58 +00007037}
7038
7039/*
7040** Insert a new cell on pPage at cell index "i". pCell points to the
7041** content of the cell.
7042**
7043** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00007044** will not fit, then make a copy of the cell content into pTemp if
7045** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00007046** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00007047** in pTemp or the original pCell) and also record its index.
7048** Allocating a new entry in pPage->aCell[] implies that
7049** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00007050**
7051** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00007052*/
drh98add2e2009-07-20 17:11:49 +00007053static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00007054 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00007055 int i, /* New cell becomes the i-th cell of the page */
7056 u8 *pCell, /* Content of the new cell */
7057 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00007058 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00007059 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
7060 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00007061){
drh383d30f2010-02-26 13:07:37 +00007062 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00007063 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00007064 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00007065 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00007066
drhcb89f4a2016-05-21 11:23:26 +00007067 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00007068 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00007069 assert( MX_CELL(pPage->pBt)<=10921 );
7070 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00007071 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
7072 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00007073 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh996f5cc2019-07-17 16:18:01 +00007074 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00007075 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00007076 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00007077 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00007078 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00007079 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00007080 }
danielk19774dbaa892009-06-16 16:50:22 +00007081 if( iChild ){
7082 put4byte(pCell, iChild);
7083 }
drh43605152004-05-29 21:46:49 +00007084 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00007085 /* Comparison against ArraySize-1 since we hold back one extra slot
7086 ** as a contingency. In other words, never need more than 3 overflow
7087 ** slots but 4 are allocated, just to be safe. */
7088 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00007089 pPage->apOvfl[j] = pCell;
7090 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00007091
7092 /* When multiple overflows occur, they are always sequential and in
7093 ** sorted order. This invariants arise because multiple overflows can
7094 ** only occur when inserting divider cells into the parent page during
7095 ** balancing, and the dividers are adjacent and sorted.
7096 */
7097 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
7098 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00007099 }else{
danielk19776e465eb2007-08-21 13:11:00 +00007100 int rc = sqlite3PagerWrite(pPage->pDbPage);
7101 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00007102 *pRC = rc;
7103 return;
danielk19776e465eb2007-08-21 13:11:00 +00007104 }
7105 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00007106 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00007107 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00007108 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00007109 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00007110 /* The allocateSpace() routine guarantees the following properties
7111 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00007112 assert( idx >= 0 );
7113 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00007114 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00007115 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00007116 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00007117 /* In a corrupt database where an entry in the cell index section of
7118 ** a btree page has a value of 3 or less, the pCell value might point
7119 ** as many as 4 bytes in front of the start of the aData buffer for
7120 ** the source page. Make sure this does not cause problems by not
7121 ** reading the first 4 bytes */
7122 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00007123 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00007124 }else{
7125 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00007126 }
drh2c8fb922015-06-25 19:53:48 +00007127 pIns = pPage->aCellIdx + i*2;
7128 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
7129 put2byte(pIns, idx);
7130 pPage->nCell++;
7131 /* increment the cell count */
7132 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00007133 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
danielk1977a19df672004-11-03 11:37:07 +00007134#ifndef SQLITE_OMIT_AUTOVACUUM
7135 if( pPage->pBt->autoVacuum ){
7136 /* The cell may contain a pointer to an overflow page. If so, write
7137 ** the entry for the overflow page into the pointer map.
7138 */
drh0f1bf4c2019-01-13 20:17:21 +00007139 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00007140 }
7141#endif
drh14acc042001-06-10 19:56:58 +00007142 }
7143}
7144
7145/*
drhe3dadac2019-01-23 19:25:59 +00007146** The following parameters determine how many adjacent pages get involved
7147** in a balancing operation. NN is the number of neighbors on either side
7148** of the page that participate in the balancing operation. NB is the
7149** total number of pages that participate, including the target page and
7150** NN neighbors on either side.
7151**
7152** The minimum value of NN is 1 (of course). Increasing NN above 1
7153** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7154** in exchange for a larger degradation in INSERT and UPDATE performance.
7155** The value of NN appears to give the best results overall.
7156**
7157** (Later:) The description above makes it seem as if these values are
7158** tunable - as if you could change them and recompile and it would all work.
7159** But that is unlikely. NB has been 3 since the inception of SQLite and
7160** we have never tested any other value.
7161*/
7162#define NN 1 /* Number of neighbors on either side of pPage */
7163#define NB 3 /* (NN*2+1): Total pages involved in the balance */
7164
7165/*
drh1ffd2472015-06-23 02:37:30 +00007166** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00007167** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00007168**
7169** The cells in this array are the divider cell or cells from the pParent
7170** page plus up to three child pages. There are a total of nCell cells.
7171**
7172** pRef is a pointer to one of the pages that contributes cells. This is
7173** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7174** which should be common to all pages that contribute cells to this array.
7175**
7176** apCell[] and szCell[] hold, respectively, pointers to the start of each
7177** cell and the size of each cell. Some of the apCell[] pointers might refer
7178** to overflow cells. In other words, some apCel[] pointers might not point
7179** to content area of the pages.
7180**
7181** A szCell[] of zero means the size of that cell has not yet been computed.
7182**
7183** The cells come from as many as four different pages:
7184**
7185** -----------
7186** | Parent |
7187** -----------
7188** / | \
7189** / | \
7190** --------- --------- ---------
7191** |Child-1| |Child-2| |Child-3|
7192** --------- --------- ---------
7193**
drh26b7ec82019-02-01 14:50:43 +00007194** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00007195**
7196** 1. All cells from Child-1 in order
7197** 2. The first divider cell from Parent
7198** 3. All cells from Child-2 in order
7199** 4. The second divider cell from Parent
7200** 5. All cells from Child-3 in order
7201**
drh26b7ec82019-02-01 14:50:43 +00007202** For a table-btree (with rowids) the items 2 and 4 are empty because
7203** content exists only in leaves and there are no divider cells.
7204**
7205** For an index btree, the apEnd[] array holds pointer to the end of page
7206** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7207** respectively. The ixNx[] array holds the number of cells contained in
7208** each of these 5 stages, and all stages to the left. Hence:
7209**
drhe3dadac2019-01-23 19:25:59 +00007210** ixNx[0] = Number of cells in Child-1.
7211** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7212** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7213** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7214** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00007215**
7216** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7217** are used and they point to the leaf pages only, and the ixNx value are:
7218**
7219** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00007220** ixNx[1] = Number of cells in Child-1 and Child-2.
7221** ixNx[2] = Total number of cells.
7222**
7223** Sometimes when deleting, a child page can have zero cells. In those
7224** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7225** entries, shift down. The end result is that each ixNx[] entry should
7226** be larger than the previous
drhfa1a98a2004-05-14 19:08:17 +00007227*/
drh1ffd2472015-06-23 02:37:30 +00007228typedef struct CellArray CellArray;
7229struct CellArray {
7230 int nCell; /* Number of cells in apCell[] */
7231 MemPage *pRef; /* Reference page */
7232 u8 **apCell; /* All cells begin balanced */
7233 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00007234 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
7235 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00007236};
drhfa1a98a2004-05-14 19:08:17 +00007237
drh1ffd2472015-06-23 02:37:30 +00007238/*
7239** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7240** computed.
7241*/
7242static void populateCellCache(CellArray *p, int idx, int N){
7243 assert( idx>=0 && idx+N<=p->nCell );
7244 while( N>0 ){
7245 assert( p->apCell[idx]!=0 );
7246 if( p->szCell[idx]==0 ){
7247 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
7248 }else{
7249 assert( CORRUPT_DB ||
7250 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
7251 }
7252 idx++;
7253 N--;
drhfa1a98a2004-05-14 19:08:17 +00007254 }
drh1ffd2472015-06-23 02:37:30 +00007255}
7256
7257/*
7258** Return the size of the Nth element of the cell array
7259*/
7260static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7261 assert( N>=0 && N<p->nCell );
7262 assert( p->szCell[N]==0 );
7263 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7264 return p->szCell[N];
7265}
7266static u16 cachedCellSize(CellArray *p, int N){
7267 assert( N>=0 && N<p->nCell );
7268 if( p->szCell[N] ) return p->szCell[N];
7269 return computeCellSize(p, N);
7270}
7271
7272/*
dan8e9ba0c2014-10-14 17:27:04 +00007273** Array apCell[] contains pointers to nCell b-tree page cells. The
7274** szCell[] array contains the size in bytes of each cell. This function
7275** replaces the current contents of page pPg with the contents of the cell
7276** array.
7277**
7278** Some of the cells in apCell[] may currently be stored in pPg. This
7279** function works around problems caused by this by making a copy of any
7280** such cells before overwriting the page data.
7281**
7282** The MemPage.nFree field is invalidated by this function. It is the
7283** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00007284*/
drh658873b2015-06-22 20:02:04 +00007285static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00007286 CellArray *pCArray, /* Content to be added to page pPg */
7287 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00007288 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00007289 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00007290){
7291 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
7292 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
7293 const int usableSize = pPg->pBt->usableSize;
7294 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00007295 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00007296 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00007297 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00007298 u8 *pCellptr = pPg->aCellIdx;
7299 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7300 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00007301 int k; /* Current slot in pCArray->apEnd[] */
7302 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00007303
drhe3dadac2019-01-23 19:25:59 +00007304 assert( i<iEnd );
7305 j = get2byte(&aData[hdr+5]);
drh10f73652022-01-05 21:01:26 +00007306 if( j>(u32)usableSize ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00007307 memcpy(&pTmp[j], &aData[j], usableSize - j);
7308
7309 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7310 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00007311
dan8e9ba0c2014-10-14 17:27:04 +00007312 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00007313 while( 1/*exit by break*/ ){
7314 u8 *pCell = pCArray->apCell[i];
7315 u16 sz = pCArray->szCell[i];
7316 assert( sz>0 );
drh8cae5a42021-04-20 20:48:15 +00007317 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
drhb2b61bb2020-01-04 14:50:06 +00007318 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00007319 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00007320 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7321 && (uptr)(pCell)<(uptr)pSrcEnd
7322 ){
7323 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00007324 }
drhe3dadac2019-01-23 19:25:59 +00007325
7326 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00007327 put2byte(pCellptr, (pData - aData));
7328 pCellptr += 2;
drhe5cf3e92020-01-04 12:34:44 +00007329 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drheca3c672021-04-22 20:01:02 +00007330 memmove(pData, pCell, sz);
drhe5cf3e92020-01-04 12:34:44 +00007331 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007332 i++;
7333 if( i>=iEnd ) break;
7334 if( pCArray->ixNx[k]<=i ){
7335 k++;
7336 pSrcEnd = pCArray->apEnd[k];
7337 }
dan33ea4862014-10-09 19:35:37 +00007338 }
7339
dand7b545b2014-10-13 18:03:27 +00007340 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00007341 pPg->nCell = nCell;
7342 pPg->nOverflow = 0;
7343
7344 put2byte(&aData[hdr+1], 0);
7345 put2byte(&aData[hdr+3], pPg->nCell);
7346 put2byte(&aData[hdr+5], pData - aData);
7347 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00007348 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00007349}
7350
dan8e9ba0c2014-10-14 17:27:04 +00007351/*
drhe3dadac2019-01-23 19:25:59 +00007352** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7353** This function attempts to add the cells stored in the array to page pPg.
7354** If it cannot (because the page needs to be defragmented before the cells
7355** will fit), non-zero is returned. Otherwise, if the cells are added
7356** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00007357**
7358** Argument pCellptr points to the first entry in the cell-pointer array
7359** (part of page pPg) to populate. After cell apCell[0] is written to the
7360** page body, a 16-bit offset is written to pCellptr. And so on, for each
7361** cell in the array. It is the responsibility of the caller to ensure
7362** that it is safe to overwrite this part of the cell-pointer array.
7363**
7364** When this function is called, *ppData points to the start of the
7365** content area on page pPg. If the size of the content area is extended,
7366** *ppData is updated to point to the new start of the content area
7367** before returning.
7368**
7369** Finally, argument pBegin points to the byte immediately following the
7370** end of the space required by this page for the cell-pointer area (for
7371** all cells - not just those inserted by the current call). If the content
7372** area must be extended to before this point in order to accomodate all
7373** cells in apCell[], then the cells do not fit and non-zero is returned.
7374*/
dand7b545b2014-10-13 18:03:27 +00007375static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00007376 MemPage *pPg, /* Page to add cells to */
7377 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00007378 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00007379 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00007380 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00007381 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00007382 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007383){
drhe3dadac2019-01-23 19:25:59 +00007384 int i = iFirst; /* Loop counter - cell index to insert */
7385 u8 *aData = pPg->aData; /* Complete page */
7386 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7387 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7388 int k; /* Current slot in pCArray->apEnd[] */
7389 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00007390 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00007391 if( iEnd<=iFirst ) return 0;
7392 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7393 pEnd = pCArray->apEnd[k];
7394 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00007395 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00007396 u8 *pSlot;
dan666a42f2019-08-24 21:02:47 +00007397 assert( pCArray->szCell[i]!=0 );
7398 sz = pCArray->szCell[i];
drhb7580e82015-06-25 18:36:13 +00007399 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00007400 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00007401 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00007402 pSlot = pData;
7403 }
drh48310f82015-10-10 16:41:28 +00007404 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7405 ** database. But they might for a corrupt database. Hence use memmove()
7406 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7407 assert( (pSlot+sz)<=pCArray->apCell[i]
7408 || pSlot>=(pCArray->apCell[i]+sz)
7409 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007410 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7411 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7412 ){
7413 assert( CORRUPT_DB );
7414 (void)SQLITE_CORRUPT_BKPT;
7415 return 1;
7416 }
drh48310f82015-10-10 16:41:28 +00007417 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007418 put2byte(pCellptr, (pSlot - aData));
7419 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007420 i++;
7421 if( i>=iEnd ) break;
7422 if( pCArray->ixNx[k]<=i ){
7423 k++;
7424 pEnd = pCArray->apEnd[k];
7425 }
dand7b545b2014-10-13 18:03:27 +00007426 }
7427 *ppData = pData;
7428 return 0;
7429}
7430
dan8e9ba0c2014-10-14 17:27:04 +00007431/*
drhe3dadac2019-01-23 19:25:59 +00007432** The pCArray object contains pointers to b-tree cells and their sizes.
7433**
7434** This function adds the space associated with each cell in the array
7435** that is currently stored within the body of pPg to the pPg free-list.
7436** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007437**
7438** This function returns the total number of cells added to the free-list.
7439*/
dand7b545b2014-10-13 18:03:27 +00007440static int pageFreeArray(
7441 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007442 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007443 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007444 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007445){
7446 u8 * const aData = pPg->aData;
7447 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007448 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007449 int nRet = 0;
7450 int i;
drhf7838932015-06-23 15:36:34 +00007451 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007452 u8 *pFree = 0;
7453 int szFree = 0;
7454
drhf7838932015-06-23 15:36:34 +00007455 for(i=iFirst; i<iEnd; i++){
7456 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007457 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007458 int sz;
7459 /* No need to use cachedCellSize() here. The sizes of all cells that
7460 ** are to be freed have already been computing while deciding which
7461 ** cells need freeing */
7462 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007463 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007464 if( pFree ){
7465 assert( pFree>aData && (pFree - aData)<65536 );
7466 freeSpace(pPg, (u16)(pFree - aData), szFree);
7467 }
dand7b545b2014-10-13 18:03:27 +00007468 pFree = pCell;
7469 szFree = sz;
drhccb897c2021-05-11 10:47:41 +00007470 if( pFree+sz>pEnd ){
7471 return 0;
drhc3c23f32021-05-06 11:02:55 +00007472 }
dand7b545b2014-10-13 18:03:27 +00007473 }else{
7474 pFree = pCell;
7475 szFree += sz;
7476 }
7477 nRet++;
7478 }
7479 }
drhfefa0942014-11-05 21:21:08 +00007480 if( pFree ){
7481 assert( pFree>aData && (pFree - aData)<65536 );
7482 freeSpace(pPg, (u16)(pFree - aData), szFree);
7483 }
dand7b545b2014-10-13 18:03:27 +00007484 return nRet;
7485}
7486
dand7b545b2014-10-13 18:03:27 +00007487/*
drha0466432019-01-29 16:41:13 +00007488** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007489** balanced. The current page, pPg, has pPg->nCell cells starting with
7490** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007491** starting at apCell[iNew].
7492**
7493** This routine makes the necessary adjustments to pPg so that it contains
7494** the correct cells after being balanced.
7495**
dand7b545b2014-10-13 18:03:27 +00007496** The pPg->nFree field is invalid when this function returns. It is the
7497** responsibility of the caller to set it correctly.
7498*/
drh658873b2015-06-22 20:02:04 +00007499static int editPage(
dan09c68402014-10-11 20:00:24 +00007500 MemPage *pPg, /* Edit this page */
7501 int iOld, /* Index of first cell currently on page */
7502 int iNew, /* Index of new first cell on page */
7503 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007504 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007505){
dand7b545b2014-10-13 18:03:27 +00007506 u8 * const aData = pPg->aData;
7507 const int hdr = pPg->hdrOffset;
7508 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7509 int nCell = pPg->nCell; /* Cells stored on pPg */
7510 u8 *pData;
7511 u8 *pCellptr;
7512 int i;
7513 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7514 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007515
7516#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007517 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7518 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007519#endif
7520
dand7b545b2014-10-13 18:03:27 +00007521 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007522 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007523 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007524 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drhfde25922020-05-05 19:54:02 +00007525 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007526 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7527 nCell -= nShift;
7528 }
7529 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007530 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7531 assert( nCell>=nTail );
7532 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007533 }
dan09c68402014-10-11 20:00:24 +00007534
drh5ab63772014-11-27 03:46:04 +00007535 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007536 if( pData<pBegin ) goto editpage_fail;
drh10f73652022-01-05 21:01:26 +00007537 if( pData>pPg->aDataEnd ) goto editpage_fail;
dand7b545b2014-10-13 18:03:27 +00007538
7539 /* Add cells to the start of the page */
7540 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007541 int nAdd = MIN(nNew,iOld-iNew);
7542 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007543 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007544 pCellptr = pPg->aCellIdx;
7545 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7546 if( pageInsertArray(
7547 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007548 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007549 ) ) goto editpage_fail;
7550 nCell += nAdd;
7551 }
7552
7553 /* Add any overflow cells */
7554 for(i=0; i<pPg->nOverflow; i++){
7555 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7556 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007557 pCellptr = &pPg->aCellIdx[iCell * 2];
drh4b986b22019-03-08 14:02:11 +00007558 if( nCell>iCell ){
7559 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7560 }
dand7b545b2014-10-13 18:03:27 +00007561 nCell++;
dan666a42f2019-08-24 21:02:47 +00007562 cachedCellSize(pCArray, iCell+iNew);
dand7b545b2014-10-13 18:03:27 +00007563 if( pageInsertArray(
7564 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007565 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007566 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007567 }
dand7b545b2014-10-13 18:03:27 +00007568 }
dan09c68402014-10-11 20:00:24 +00007569
dand7b545b2014-10-13 18:03:27 +00007570 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007571 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007572 pCellptr = &pPg->aCellIdx[nCell*2];
7573 if( pageInsertArray(
7574 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007575 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007576 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007577
dand7b545b2014-10-13 18:03:27 +00007578 pPg->nCell = nNew;
7579 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007580
dand7b545b2014-10-13 18:03:27 +00007581 put2byte(&aData[hdr+3], pPg->nCell);
7582 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007583
7584#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007585 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007586 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007587 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007588 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007589 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007590 }
drh1ffd2472015-06-23 02:37:30 +00007591 assert( 0==memcmp(pCell, &aData[iOff],
7592 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007593 }
dan09c68402014-10-11 20:00:24 +00007594#endif
7595
drh658873b2015-06-22 20:02:04 +00007596 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007597 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007598 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007599 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007600 return rebuildPage(pCArray, iNew, nNew, pPg);
drhfa1a98a2004-05-14 19:08:17 +00007601}
7602
danielk1977ac245ec2005-01-14 13:50:11 +00007603
drh615ae552005-01-16 23:21:00 +00007604#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007605/*
7606** This version of balance() handles the common special case where
7607** a new entry is being inserted on the extreme right-end of the
7608** tree, in other words, when the new entry will become the largest
7609** entry in the tree.
7610**
drhc314dc72009-07-21 11:52:34 +00007611** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007612** a new page to the right-hand side and put the one new entry in
7613** that page. This leaves the right side of the tree somewhat
7614** unbalanced. But odds are that we will be inserting new entries
7615** at the end soon afterwards so the nearly empty page will quickly
7616** fill up. On average.
7617**
7618** pPage is the leaf page which is the right-most page in the tree.
7619** pParent is its parent. pPage must have a single overflow entry
7620** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007621**
7622** The pSpace buffer is used to store a temporary copy of the divider
7623** cell that will be inserted into pParent. Such a cell consists of a 4
7624** byte page number followed by a variable length integer. In other
7625** words, at most 13 bytes. Hence the pSpace buffer must be at
7626** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007627*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007628static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7629 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007630 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007631 int rc; /* Return Code */
7632 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007633
drh1fee73e2007-08-29 04:00:57 +00007634 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007635 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007636 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007637
drh6301c432018-12-13 21:52:18 +00007638 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007639 assert( pPage->nFree>=0 );
7640 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007641
danielk1977a50d9aa2009-06-08 14:49:45 +00007642 /* Allocate a new page. This page will become the right-sibling of
7643 ** pPage. Make the parent page writable, so that the new divider cell
7644 ** may be inserted. If both these operations are successful, proceed.
7645 */
drh4f0c5872007-03-26 22:05:01 +00007646 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007647
danielk1977eaa06f62008-09-18 17:34:44 +00007648 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007649
7650 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007651 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007652 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007653 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007654 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007655
drhc5053fb2008-11-27 02:22:10 +00007656 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007657 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007658 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007659 b.nCell = 1;
7660 b.pRef = pPage;
7661 b.apCell = &pCell;
7662 b.szCell = &szCell;
7663 b.apEnd[0] = pPage->aDataEnd;
7664 b.ixNx[0] = 2;
7665 rc = rebuildPage(&b, 0, 1, pNew);
7666 if( NEVER(rc) ){
7667 releasePage(pNew);
7668 return rc;
7669 }
dan8e9ba0c2014-10-14 17:27:04 +00007670 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007671
7672 /* If this is an auto-vacuum database, update the pointer map
7673 ** with entries for the new page, and any pointer from the
7674 ** cell on the page to an overflow page. If either of these
7675 ** operations fails, the return code is set, but the contents
7676 ** of the parent page are still manipulated by thh code below.
7677 ** That is Ok, at this point the parent page is guaranteed to
7678 ** be marked as dirty. Returning an error code will cause a
7679 ** rollback, undoing any changes made to the parent page.
7680 */
7681 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007682 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7683 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007684 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007685 }
7686 }
danielk1977eaa06f62008-09-18 17:34:44 +00007687
danielk19776f235cc2009-06-04 14:46:08 +00007688 /* Create a divider cell to insert into pParent. The divider cell
7689 ** consists of a 4-byte page number (the page number of pPage) and
7690 ** a variable length key value (which must be the same value as the
7691 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007692 **
danielk19776f235cc2009-06-04 14:46:08 +00007693 ** To find the largest key value on pPage, first find the right-most
7694 ** cell on pPage. The first two fields of this cell are the
7695 ** record-length (a variable length integer at most 32-bits in size)
7696 ** and the key value (a variable length integer, may have any value).
7697 ** The first of the while(...) loops below skips over the record-length
7698 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007699 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007700 */
danielk1977eaa06f62008-09-18 17:34:44 +00007701 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007702 pStop = &pCell[9];
7703 while( (*(pCell++)&0x80) && pCell<pStop );
7704 pStop = &pCell[9];
7705 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7706
danielk19774dbaa892009-06-16 16:50:22 +00007707 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007708 if( rc==SQLITE_OK ){
7709 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7710 0, pPage->pgno, &rc);
7711 }
danielk19776f235cc2009-06-04 14:46:08 +00007712
7713 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007714 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7715
danielk1977e08a3c42008-09-18 18:17:03 +00007716 /* Release the reference to the new page. */
7717 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007718 }
7719
danielk1977eaa06f62008-09-18 17:34:44 +00007720 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007721}
drh615ae552005-01-16 23:21:00 +00007722#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007723
danielk19774dbaa892009-06-16 16:50:22 +00007724#if 0
drhc3b70572003-01-04 19:44:07 +00007725/*
danielk19774dbaa892009-06-16 16:50:22 +00007726** This function does not contribute anything to the operation of SQLite.
7727** it is sometimes activated temporarily while debugging code responsible
7728** for setting pointer-map entries.
7729*/
7730static int ptrmapCheckPages(MemPage **apPage, int nPage){
7731 int i, j;
7732 for(i=0; i<nPage; i++){
7733 Pgno n;
7734 u8 e;
7735 MemPage *pPage = apPage[i];
7736 BtShared *pBt = pPage->pBt;
7737 assert( pPage->isInit );
7738
7739 for(j=0; j<pPage->nCell; j++){
7740 CellInfo info;
7741 u8 *z;
7742
7743 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007744 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007745 if( info.nLocal<info.nPayload ){
7746 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007747 ptrmapGet(pBt, ovfl, &e, &n);
7748 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7749 }
7750 if( !pPage->leaf ){
7751 Pgno child = get4byte(z);
7752 ptrmapGet(pBt, child, &e, &n);
7753 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7754 }
7755 }
7756 if( !pPage->leaf ){
7757 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7758 ptrmapGet(pBt, child, &e, &n);
7759 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7760 }
7761 }
7762 return 1;
7763}
7764#endif
7765
danielk1977cd581a72009-06-23 15:43:39 +00007766/*
7767** This function is used to copy the contents of the b-tree node stored
7768** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7769** the pointer-map entries for each child page are updated so that the
7770** parent page stored in the pointer map is page pTo. If pFrom contained
7771** any cells with overflow page pointers, then the corresponding pointer
7772** map entries are also updated so that the parent page is page pTo.
7773**
7774** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007775** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007776**
danielk197730548662009-07-09 05:07:37 +00007777** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007778**
7779** The performance of this function is not critical. It is only used by
7780** the balance_shallower() and balance_deeper() procedures, neither of
7781** which are called often under normal circumstances.
7782*/
drhc314dc72009-07-21 11:52:34 +00007783static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7784 if( (*pRC)==SQLITE_OK ){
7785 BtShared * const pBt = pFrom->pBt;
7786 u8 * const aFrom = pFrom->aData;
7787 u8 * const aTo = pTo->aData;
7788 int const iFromHdr = pFrom->hdrOffset;
7789 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007790 int rc;
drhc314dc72009-07-21 11:52:34 +00007791 int iData;
7792
7793
7794 assert( pFrom->isInit );
7795 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007796 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007797
7798 /* Copy the b-tree node content from page pFrom to page pTo. */
7799 iData = get2byte(&aFrom[iFromHdr+5]);
7800 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7801 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7802
7803 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007804 ** match the new data. The initialization of pTo can actually fail under
7805 ** fairly obscure circumstances, even though it is a copy of initialized
7806 ** page pFrom.
7807 */
drhc314dc72009-07-21 11:52:34 +00007808 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007809 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00007810 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00007811 if( rc!=SQLITE_OK ){
7812 *pRC = rc;
7813 return;
7814 }
drhc314dc72009-07-21 11:52:34 +00007815
7816 /* If this is an auto-vacuum database, update the pointer-map entries
7817 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7818 */
7819 if( ISAUTOVACUUM ){
7820 *pRC = setChildPtrmaps(pTo);
7821 }
danielk1977cd581a72009-06-23 15:43:39 +00007822 }
danielk1977cd581a72009-06-23 15:43:39 +00007823}
7824
7825/*
danielk19774dbaa892009-06-16 16:50:22 +00007826** This routine redistributes cells on the iParentIdx'th child of pParent
7827** (hereafter "the page") and up to 2 siblings so that all pages have about the
7828** same amount of free space. Usually a single sibling on either side of the
7829** page are used in the balancing, though both siblings might come from one
7830** side if the page is the first or last child of its parent. If the page
7831** has fewer than 2 siblings (something which can only happen if the page
7832** is a root page or a child of a root page) then all available siblings
7833** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007834**
danielk19774dbaa892009-06-16 16:50:22 +00007835** The number of siblings of the page might be increased or decreased by
7836** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007837**
danielk19774dbaa892009-06-16 16:50:22 +00007838** Note that when this routine is called, some of the cells on the page
7839** might not actually be stored in MemPage.aData[]. This can happen
7840** if the page is overfull. This routine ensures that all cells allocated
7841** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007842**
danielk19774dbaa892009-06-16 16:50:22 +00007843** In the course of balancing the page and its siblings, cells may be
7844** inserted into or removed from the parent page (pParent). Doing so
7845** may cause the parent page to become overfull or underfull. If this
7846** happens, it is the responsibility of the caller to invoke the correct
7847** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007848**
drh5e00f6c2001-09-13 13:46:56 +00007849** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007850** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007851** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007852**
7853** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007854** buffer big enough to hold one page. If while inserting cells into the parent
7855** page (pParent) the parent page becomes overfull, this buffer is
7856** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007857** a maximum of four divider cells into the parent page, and the maximum
7858** size of a cell stored within an internal node is always less than 1/4
7859** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7860** enough for all overflow cells.
7861**
7862** If aOvflSpace is set to a null pointer, this function returns
7863** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007864*/
danielk19774dbaa892009-06-16 16:50:22 +00007865static int balance_nonroot(
7866 MemPage *pParent, /* Parent page of siblings being balanced */
7867 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007868 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007869 int isRoot, /* True if pParent is a root-page */
7870 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007871){
drh16a9b832007-05-05 18:39:25 +00007872 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007873 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007874 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007875 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007876 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007877 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007878 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007879 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007880 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007881 int usableSpace; /* Bytes in pPage beyond the header */
7882 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007883 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007884 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007885 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007886 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007887 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007888 u8 *pRight; /* Location in parent of right-sibling pointer */
7889 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007890 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7891 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007892 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007893 u8 *aSpace1; /* Space for copies of dividers cells */
7894 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007895 u8 abDone[NB+2]; /* True after i'th new page is populated */
7896 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007897 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007898 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh7d4c94b2021-10-04 22:34:38 +00007899 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007900
dan33ea4862014-10-09 19:35:37 +00007901 memset(abDone, 0, sizeof(abDone));
drh7d4c94b2021-10-04 22:34:38 +00007902 memset(&b, 0, sizeof(b));
danielk1977a50d9aa2009-06-08 14:49:45 +00007903 pBt = pParent->pBt;
7904 assert( sqlite3_mutex_held(pBt->mutex) );
7905 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007906
danielk19774dbaa892009-06-16 16:50:22 +00007907 /* At this point pParent may have at most one overflow cell. And if
7908 ** this overflow cell is present, it must be the cell with
7909 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007910 ** is called (indirectly) from sqlite3BtreeDelete().
7911 */
danielk19774dbaa892009-06-16 16:50:22 +00007912 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007913 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007914
danielk197711a8a862009-06-17 11:49:52 +00007915 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007916 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007917 }
drh68133502019-02-11 17:22:30 +00007918 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00007919
danielk1977a50d9aa2009-06-08 14:49:45 +00007920 /* Find the sibling pages to balance. Also locate the cells in pParent
7921 ** that divide the siblings. An attempt is made to find NN siblings on
7922 ** either side of pPage. More siblings are taken from one side, however,
7923 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007924 ** has NB or fewer children then all children of pParent are taken.
7925 **
7926 ** This loop also drops the divider cells from the parent page. This
7927 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007928 ** overflow cells in the parent page, since if any existed they will
7929 ** have already been removed.
7930 */
danielk19774dbaa892009-06-16 16:50:22 +00007931 i = pParent->nOverflow + pParent->nCell;
7932 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007933 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007934 }else{
dan7d6885a2012-08-08 14:04:56 +00007935 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007936 if( iParentIdx==0 ){
7937 nxDiv = 0;
7938 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007939 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007940 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007941 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007942 }
dan7d6885a2012-08-08 14:04:56 +00007943 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007944 }
dan7d6885a2012-08-08 14:04:56 +00007945 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007946 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7947 pRight = &pParent->aData[pParent->hdrOffset+8];
7948 }else{
7949 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7950 }
7951 pgno = get4byte(pRight);
7952 while( 1 ){
dan1f9f5762021-03-01 16:15:41 +00007953 if( rc==SQLITE_OK ){
7954 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7955 }
danielk19774dbaa892009-06-16 16:50:22 +00007956 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007957 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007958 goto balance_cleanup;
7959 }
drh85a379b2019-02-09 22:33:44 +00007960 if( apOld[i]->nFree<0 ){
7961 rc = btreeComputeFreeSpace(apOld[i]);
7962 if( rc ){
7963 memset(apOld, 0, (i)*sizeof(MemPage*));
7964 goto balance_cleanup;
7965 }
7966 }
danb9f8a182021-06-22 14:59:34 +00007967 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
danielk19774dbaa892009-06-16 16:50:22 +00007968 if( (i--)==0 ) break;
7969
drh9cc5b4e2016-12-26 01:41:33 +00007970 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007971 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007972 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007973 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007974 pParent->nOverflow = 0;
7975 }else{
7976 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7977 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007978 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007979
7980 /* Drop the cell from the parent page. apDiv[i] still points to
7981 ** the cell within the parent, even though it has been dropped.
7982 ** This is safe because dropping a cell only overwrites the first
7983 ** four bytes of it, and this function does not need the first
7984 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007985 ** later on.
7986 **
drh8a575d92011-10-12 17:00:28 +00007987 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007988 ** the dropCell() routine will overwrite the entire cell with zeroes.
7989 ** In this case, temporarily copy the cell into the aOvflSpace[]
7990 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7991 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007992 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007993 int iOff;
7994
dan1f9f5762021-03-01 16:15:41 +00007995 /* If the following if() condition is not true, the db is corrupted.
7996 ** The call to dropCell() below will detect this. */
drh8a575d92011-10-12 17:00:28 +00007997 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
dan1f9f5762021-03-01 16:15:41 +00007998 if( (iOff+szNew[i])<=(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007999 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
8000 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
8001 }
drh5b47efa2010-02-12 18:18:39 +00008002 }
drh98add2e2009-07-20 17:11:49 +00008003 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008004 }
drh8b2f49b2001-06-08 00:21:52 +00008005 }
8006
drha9121e42008-02-19 14:59:35 +00008007 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00008008 ** alignment */
drha9121e42008-02-19 14:59:35 +00008009 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00008010
drh8b2f49b2001-06-08 00:21:52 +00008011 /*
danielk1977634f2982005-03-28 08:44:07 +00008012 ** Allocate space for memory structures
8013 */
drhfacf0302008-06-17 15:12:00 +00008014 szScratch =
drh1ffd2472015-06-23 02:37:30 +00008015 nMaxCells*sizeof(u8*) /* b.apCell */
8016 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00008017 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00008018
drhf012dc42019-03-19 15:36:46 +00008019 assert( szScratch<=7*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00008020 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00008021 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00008022 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00008023 goto balance_cleanup;
8024 }
drh1ffd2472015-06-23 02:37:30 +00008025 b.szCell = (u16*)&b.apCell[nMaxCells];
8026 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00008027 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00008028
8029 /*
8030 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00008031 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00008032 ** into space obtained from aSpace1[]. The divider cells have already
8033 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00008034 **
8035 ** If the siblings are on leaf pages, then the child pointers of the
8036 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00008037 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00008038 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00008039 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00008040 ** are alike.
drh96f5b762004-05-16 16:24:36 +00008041 **
8042 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
8043 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00008044 */
drh1ffd2472015-06-23 02:37:30 +00008045 b.pRef = apOld[0];
8046 leafCorrection = b.pRef->leaf*4;
8047 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00008048 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00008049 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00008050 int limit = pOld->nCell;
8051 u8 *aData = pOld->aData;
8052 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00008053 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00008054 u8 *piEnd;
drhe12ca5a2019-05-02 15:56:39 +00008055 VVA_ONLY( int nCellAtStart = b.nCell; )
danielk19774dbaa892009-06-16 16:50:22 +00008056
drh73d340a2015-05-28 11:23:11 +00008057 /* Verify that all sibling pages are of the same "type" (table-leaf,
8058 ** table-interior, index-leaf, or index-interior).
8059 */
8060 if( pOld->aData[0]!=apOld[0]->aData[0] ){
8061 rc = SQLITE_CORRUPT_BKPT;
8062 goto balance_cleanup;
8063 }
8064
drhfe647dc2015-06-23 18:24:25 +00008065 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00008066 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00008067 ** in the correct spot.
8068 **
8069 ** Note that when there are multiple overflow cells, it is always the
8070 ** case that they are sequential and adjacent. This invariant arises
8071 ** because multiple overflows can only occurs when inserting divider
8072 ** cells into a parent on a prior balance, and divider cells are always
8073 ** adjacent and are inserted in order. There is an assert() tagged
8074 ** with "NOTE 1" in the overflow cell insertion loop to prove this
8075 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00008076 **
8077 ** This must be done in advance. Once the balance starts, the cell
8078 ** offset section of the btree page will be overwritten and we will no
8079 ** long be able to find the cells if a pointer to each cell is not saved
8080 ** first.
8081 */
drh36b78ee2016-01-20 01:32:00 +00008082 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00008083 if( pOld->nOverflow>0 ){
drh27e80a32019-08-15 13:17:49 +00008084 if( NEVER(limit<pOld->aiOvfl[0]) ){
drhe12ca5a2019-05-02 15:56:39 +00008085 rc = SQLITE_CORRUPT_BKPT;
8086 goto balance_cleanup;
8087 }
drhfe647dc2015-06-23 18:24:25 +00008088 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00008089 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00008090 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00008091 piCell += 2;
8092 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00008093 }
drhfe647dc2015-06-23 18:24:25 +00008094 for(k=0; k<pOld->nOverflow; k++){
8095 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00008096 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00008097 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00008098 }
drh1ffd2472015-06-23 02:37:30 +00008099 }
drhfe647dc2015-06-23 18:24:25 +00008100 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
8101 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00008102 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00008103 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00008104 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00008105 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00008106 }
drhe12ca5a2019-05-02 15:56:39 +00008107 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
drh4edfdd32015-06-23 14:49:42 +00008108
drh1ffd2472015-06-23 02:37:30 +00008109 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00008110 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00008111 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00008112 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00008113 assert( b.nCell<nMaxCells );
8114 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00008115 pTemp = &aSpace1[iSpace1];
8116 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00008117 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00008118 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00008119 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00008120 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00008121 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00008122 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00008123 if( !pOld->leaf ){
8124 assert( leafCorrection==0 );
dan5b482a92021-04-20 13:31:51 +00008125 assert( pOld->hdrOffset==0 || CORRUPT_DB );
danielk19774dbaa892009-06-16 16:50:22 +00008126 /* The right pointer of the child page pOld becomes the left
8127 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00008128 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00008129 }else{
8130 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00008131 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00008132 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
8133 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00008134 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
8135 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00008136 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00008137 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00008138 }
8139 }
drh1ffd2472015-06-23 02:37:30 +00008140 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00008141 }
drh8b2f49b2001-06-08 00:21:52 +00008142 }
8143
8144 /*
drh1ffd2472015-06-23 02:37:30 +00008145 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00008146 ** Store this number in "k". Also compute szNew[] which is the total
8147 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00008148 ** in b.apCell[] of the cell that divides page i from page i+1.
8149 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00008150 **
drh96f5b762004-05-16 16:24:36 +00008151 ** Values computed by this block:
8152 **
8153 ** k: The total number of sibling pages
8154 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00008155 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00008156 ** the right of the i-th sibling page.
8157 ** usableSpace: Number of bytes of space available on each sibling.
8158 **
drh8b2f49b2001-06-08 00:21:52 +00008159 */
drh43605152004-05-29 21:46:49 +00008160 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00008161 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00008162 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00008163 b.apEnd[k] = p->aDataEnd;
8164 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00008165 if( k && b.ixNx[k]==b.ixNx[k-1] ){
8166 k--; /* Omit b.ixNx[] entry for child pages with no cells */
8167 }
drh26b7ec82019-02-01 14:50:43 +00008168 if( !leafData ){
8169 k++;
8170 b.apEnd[k] = pParent->aDataEnd;
8171 b.ixNx[k] = cntOld[i]+1;
8172 }
drhb0ea9432019-02-09 21:06:40 +00008173 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00008174 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00008175 for(j=0; j<p->nOverflow; j++){
8176 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
8177 }
8178 cntNew[i] = cntOld[i];
8179 }
8180 k = nOld;
8181 for(i=0; i<k; i++){
8182 int sz;
8183 while( szNew[i]>usableSpace ){
8184 if( i+1>=k ){
8185 k = i+2;
8186 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
8187 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00008188 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00008189 }
drh1ffd2472015-06-23 02:37:30 +00008190 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00008191 szNew[i] -= sz;
8192 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00008193 if( cntNew[i]<b.nCell ){
8194 sz = 2 + cachedCellSize(&b, cntNew[i]);
8195 }else{
8196 sz = 0;
8197 }
drh658873b2015-06-22 20:02:04 +00008198 }
8199 szNew[i+1] += sz;
8200 cntNew[i]--;
8201 }
drh1ffd2472015-06-23 02:37:30 +00008202 while( cntNew[i]<b.nCell ){
8203 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00008204 if( szNew[i]+sz>usableSpace ) break;
8205 szNew[i] += sz;
8206 cntNew[i]++;
8207 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00008208 if( cntNew[i]<b.nCell ){
8209 sz = 2 + cachedCellSize(&b, cntNew[i]);
8210 }else{
8211 sz = 0;
8212 }
drh658873b2015-06-22 20:02:04 +00008213 }
8214 szNew[i+1] -= sz;
8215 }
drh1ffd2472015-06-23 02:37:30 +00008216 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00008217 k = i+1;
drh672073a2015-06-24 12:07:40 +00008218 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00008219 rc = SQLITE_CORRUPT_BKPT;
8220 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00008221 }
8222 }
drh96f5b762004-05-16 16:24:36 +00008223
8224 /*
8225 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00008226 ** on the left side (siblings with smaller keys). The left siblings are
8227 ** always nearly full, while the right-most sibling might be nearly empty.
8228 ** The next block of code attempts to adjust the packing of siblings to
8229 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00008230 **
8231 ** This adjustment is more than an optimization. The packing above might
8232 ** be so out of balance as to be illegal. For example, the right-most
8233 ** sibling might be completely empty. This adjustment is not optional.
8234 */
drh6019e162001-07-02 17:51:45 +00008235 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00008236 int szRight = szNew[i]; /* Size of sibling on the right */
8237 int szLeft = szNew[i-1]; /* Size of sibling on the left */
8238 int r; /* Index of right-most cell in left sibling */
8239 int d; /* Index of first cell to the left of right sibling */
8240
8241 r = cntNew[i-1] - 1;
8242 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00008243 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00008244 do{
drh1ffd2472015-06-23 02:37:30 +00008245 assert( d<nMaxCells );
8246 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008247 (void)cachedCellSize(&b, r);
8248 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00008249 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00008250 break;
8251 }
8252 szRight += b.szCell[d] + 2;
8253 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00008254 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00008255 r--;
8256 d--;
drh672073a2015-06-24 12:07:40 +00008257 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00008258 szNew[i] = szRight;
8259 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00008260 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8261 rc = SQLITE_CORRUPT_BKPT;
8262 goto balance_cleanup;
8263 }
drh6019e162001-07-02 17:51:45 +00008264 }
drh09d0deb2005-08-02 17:13:09 +00008265
drh2a0df922014-10-30 23:14:56 +00008266 /* Sanity check: For a non-corrupt database file one of the follwing
8267 ** must be true:
8268 ** (1) We found one or more cells (cntNew[0])>0), or
8269 ** (2) pPage is a virtual root page. A virtual root page is when
8270 ** the real root page is page 1 and we are the only child of
8271 ** that page.
drh09d0deb2005-08-02 17:13:09 +00008272 */
drh2a0df922014-10-30 23:14:56 +00008273 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00008274 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8275 apOld[0]->pgno, apOld[0]->nCell,
8276 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8277 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00008278 ));
8279
drh8b2f49b2001-06-08 00:21:52 +00008280 /*
drh6b308672002-07-08 02:16:37 +00008281 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00008282 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008283 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00008284 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00008285 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00008286 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00008287 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00008288 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00008289 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00008290 nNew++;
drh41d26392021-06-20 22:17:49 +00008291 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8292 && rc==SQLITE_OK
8293 ){
drh9e673ac2021-02-01 12:39:50 +00008294 rc = SQLITE_CORRUPT_BKPT;
8295 }
danielk197728129562005-01-11 10:25:06 +00008296 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00008297 }else{
drh7aa8f852006-03-28 00:24:44 +00008298 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00008299 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00008300 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008301 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00008302 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00008303 nNew++;
drh1ffd2472015-06-23 02:37:30 +00008304 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00008305
8306 /* Set the pointer-map entry for the new sibling page. */
8307 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00008308 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008309 if( rc!=SQLITE_OK ){
8310 goto balance_cleanup;
8311 }
8312 }
drh6b308672002-07-08 02:16:37 +00008313 }
drh8b2f49b2001-06-08 00:21:52 +00008314 }
8315
8316 /*
dan33ea4862014-10-09 19:35:37 +00008317 ** Reassign page numbers so that the new pages are in ascending order.
8318 ** This helps to keep entries in the disk file in order so that a scan
8319 ** of the table is closer to a linear scan through the file. That in turn
8320 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00008321 **
dan33ea4862014-10-09 19:35:37 +00008322 ** An O(n^2) insertion sort algorithm is used, but since n is never more
8323 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00008324 **
dan33ea4862014-10-09 19:35:37 +00008325 ** When NB==3, this one optimization makes the database about 25% faster
8326 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00008327 */
dan33ea4862014-10-09 19:35:37 +00008328 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00008329 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00008330 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00008331 for(j=0; j<i; j++){
drh8ab79d62021-02-04 13:52:34 +00008332 if( NEVER(aPgno[j]==aPgno[i]) ){
dan89ca0b32014-10-25 20:36:28 +00008333 /* This branch is taken if the set of sibling pages somehow contains
8334 ** duplicate entries. This can happen if the database is corrupt.
8335 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00008336 ** we do the detection here in order to avoid populating the pager
8337 ** cache with two separate objects associated with the same
8338 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00008339 assert( CORRUPT_DB );
8340 rc = SQLITE_CORRUPT_BKPT;
8341 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00008342 }
8343 }
dan33ea4862014-10-09 19:35:37 +00008344 }
8345 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00008346 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00008347 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00008348 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00008349 }
drh00fe08a2014-10-31 00:05:23 +00008350 pgno = aPgOrder[iBest];
8351 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00008352 if( iBest!=i ){
8353 if( iBest>i ){
8354 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
8355 }
8356 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8357 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00008358 }
8359 }
dan33ea4862014-10-09 19:35:37 +00008360
8361 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8362 "%d(%d nc=%d) %d(%d nc=%d)\n",
8363 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00008364 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00008365 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008366 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00008367 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008368 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00008369 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8370 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8371 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8372 ));
danielk19774dbaa892009-06-16 16:50:22 +00008373
8374 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh55f66b32019-07-16 19:44:32 +00008375 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8376 assert( apNew[nNew-1]!=0 );
danielk19774dbaa892009-06-16 16:50:22 +00008377 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00008378
dan33ea4862014-10-09 19:35:37 +00008379 /* If the sibling pages are not leaves, ensure that the right-child pointer
8380 ** of the right-most new sibling page is set to the value that was
8381 ** originally in the same field of the right-most old sibling page. */
8382 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8383 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8384 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8385 }
danielk1977ac11ee62005-01-15 12:45:51 +00008386
dan33ea4862014-10-09 19:35:37 +00008387 /* Make any required updates to pointer map entries associated with
8388 ** cells stored on sibling pages following the balance operation. Pointer
8389 ** map entries associated with divider cells are set by the insertCell()
8390 ** routine. The associated pointer map entries are:
8391 **
8392 ** a) if the cell contains a reference to an overflow chain, the
8393 ** entry associated with the first page in the overflow chain, and
8394 **
8395 ** b) if the sibling pages are not leaves, the child page associated
8396 ** with the cell.
8397 **
8398 ** If the sibling pages are not leaves, then the pointer map entry
8399 ** associated with the right-child of each sibling may also need to be
8400 ** updated. This happens below, after the sibling pages have been
8401 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00008402 */
dan33ea4862014-10-09 19:35:37 +00008403 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00008404 MemPage *pOld;
8405 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00008406 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00008407 int iNew = 0;
8408 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00008409
drh1ffd2472015-06-23 02:37:30 +00008410 for(i=0; i<b.nCell; i++){
8411 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00008412 while( i==cntOldNext ){
8413 iOld++;
8414 assert( iOld<nNew || iOld<nOld );
drhdd2d9a32019-05-07 17:47:43 +00008415 assert( iOld>=0 && iOld<NB );
drh9c7e44c2019-02-14 15:27:12 +00008416 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00008417 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
drh4b70f112004-05-02 21:12:19 +00008418 }
dan33ea4862014-10-09 19:35:37 +00008419 if( i==cntNew[iNew] ){
8420 pNew = apNew[++iNew];
8421 if( !leafData ) continue;
8422 }
danielk197785d90ca2008-07-19 14:25:15 +00008423
dan33ea4862014-10-09 19:35:37 +00008424 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00008425 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00008426 ** or else the divider cell to the left of sibling page iOld. So,
8427 ** if sibling page iOld had the same page number as pNew, and if
8428 ** pCell really was a part of sibling page iOld (not a divider or
8429 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008430 if( iOld>=nNew
8431 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008432 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008433 ){
dan33ea4862014-10-09 19:35:37 +00008434 if( !leafCorrection ){
8435 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8436 }
drh1ffd2472015-06-23 02:37:30 +00008437 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008438 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00008439 }
drhea82b372015-06-23 21:35:28 +00008440 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00008441 }
drh14acc042001-06-10 19:56:58 +00008442 }
8443 }
dan33ea4862014-10-09 19:35:37 +00008444
8445 /* Insert new divider cells into pParent. */
8446 for(i=0; i<nNew-1; i++){
8447 u8 *pCell;
8448 u8 *pTemp;
8449 int sz;
drhc3c23f32021-05-06 11:02:55 +00008450 u8 *pSrcEnd;
dan33ea4862014-10-09 19:35:37 +00008451 MemPage *pNew = apNew[i];
8452 j = cntNew[i];
8453
8454 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008455 assert( b.apCell[j]!=0 );
8456 pCell = b.apCell[j];
8457 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008458 pTemp = &aOvflSpace[iOvflSpace];
8459 if( !pNew->leaf ){
8460 memcpy(&pNew->aData[8], pCell, 4);
8461 }else if( leafData ){
8462 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008463 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008464 ** cell consists of the integer key for the right-most cell of
8465 ** the sibling-page assembled above only.
8466 */
8467 CellInfo info;
8468 j--;
drh1ffd2472015-06-23 02:37:30 +00008469 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008470 pCell = pTemp;
8471 sz = 4 + putVarint(&pCell[4], info.nKey);
8472 pTemp = 0;
8473 }else{
8474 pCell -= 4;
8475 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8476 ** previously stored on a leaf node, and its reported size was 4
8477 ** bytes, then it may actually be smaller than this
8478 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8479 ** any cell). But it is important to pass the correct size to
8480 ** insertCell(), so reparse the cell now.
8481 **
drhc1fb2b82016-03-09 03:29:27 +00008482 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8483 ** and WITHOUT ROWID tables with exactly one column which is the
8484 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008485 */
drh1ffd2472015-06-23 02:37:30 +00008486 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008487 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008488 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008489 }
8490 }
8491 iOvflSpace += sz;
8492 assert( sz<=pBt->maxLocal+23 );
8493 assert( iOvflSpace <= (int)pBt->pageSize );
drhc3c23f32021-05-06 11:02:55 +00008494 for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
8495 pSrcEnd = b.apEnd[k];
8496 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8497 rc = SQLITE_CORRUPT_BKPT;
8498 goto balance_cleanup;
8499 }
dan33ea4862014-10-09 19:35:37 +00008500 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
drhd2cfbea2019-05-08 03:34:53 +00008501 if( rc!=SQLITE_OK ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008502 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8503 }
8504
8505 /* Now update the actual sibling pages. The order in which they are updated
8506 ** is important, as this code needs to avoid disrupting any page from which
8507 ** cells may still to be read. In practice, this means:
8508 **
drhd836d422014-10-31 14:26:36 +00008509 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8510 ** then it is not safe to update page apNew[iPg] until after
8511 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008512 **
drhd836d422014-10-31 14:26:36 +00008513 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8514 ** then it is not safe to update page apNew[iPg] until after
8515 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008516 **
8517 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008518 **
8519 ** The iPg value in the following loop starts at nNew-1 goes down
8520 ** to 0, then back up to nNew-1 again, thus making two passes over
8521 ** the pages. On the initial downward pass, only condition (1) above
8522 ** needs to be tested because (2) will always be true from the previous
8523 ** step. On the upward pass, both conditions are always true, so the
8524 ** upwards pass simply processes pages that were missed on the downward
8525 ** pass.
dan33ea4862014-10-09 19:35:37 +00008526 */
drhbec021b2014-10-31 12:22:00 +00008527 for(i=1-nNew; i<nNew; i++){
8528 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008529 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008530 if( abDone[iPg] ) continue; /* Skip pages already processed */
8531 if( i>=0 /* On the upwards pass, or... */
8532 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008533 ){
dan09c68402014-10-11 20:00:24 +00008534 int iNew;
8535 int iOld;
8536 int nNewCell;
8537
drhd836d422014-10-31 14:26:36 +00008538 /* Verify condition (1): If cells are moving left, update iPg
8539 ** only after iPg-1 has already been updated. */
8540 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8541
8542 /* Verify condition (2): If cells are moving right, update iPg
8543 ** only after iPg+1 has already been updated. */
8544 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8545
dan09c68402014-10-11 20:00:24 +00008546 if( iPg==0 ){
8547 iNew = iOld = 0;
8548 nNewCell = cntNew[0];
8549 }else{
drh1ffd2472015-06-23 02:37:30 +00008550 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008551 iNew = cntNew[iPg-1] + !leafData;
8552 nNewCell = cntNew[iPg] - iNew;
8553 }
8554
drh1ffd2472015-06-23 02:37:30 +00008555 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008556 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008557 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008558 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008559 assert( apNew[iPg]->nOverflow==0 );
8560 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008561 }
8562 }
drhd836d422014-10-31 14:26:36 +00008563
8564 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008565 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8566
drh7aa8f852006-03-28 00:24:44 +00008567 assert( nOld>0 );
8568 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008569
danielk197713bd99f2009-06-24 05:40:34 +00008570 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8571 /* The root page of the b-tree now contains no cells. The only sibling
8572 ** page is the right-child of the parent. Copy the contents of the
8573 ** child page into the parent, decreasing the overall height of the
8574 ** b-tree structure by one. This is described as the "balance-shallower"
8575 ** sub-algorithm in some documentation.
8576 **
8577 ** If this is an auto-vacuum database, the call to copyNodeContent()
8578 ** sets all pointer-map entries corresponding to database image pages
8579 ** for which the pointer is stored within the content being copied.
8580 **
drh768f2902014-10-31 02:51:41 +00008581 ** It is critical that the child page be defragmented before being
8582 ** copied into the parent, because if the parent is page 1 then it will
8583 ** by smaller than the child due to the database header, and so all the
8584 ** free space needs to be up front.
8585 */
drh9b5351d2015-09-30 14:19:08 +00008586 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008587 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008588 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00008589 assert( apNew[0]->nFree ==
drh1c960262019-03-25 18:44:08 +00008590 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8591 - apNew[0]->nCell*2)
drh768f2902014-10-31 02:51:41 +00008592 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00008593 );
drhc314dc72009-07-21 11:52:34 +00008594 copyNodeContent(apNew[0], pParent, &rc);
8595 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00008596 }else if( ISAUTOVACUUM && !leafCorrection ){
8597 /* Fix the pointer map entries associated with the right-child of each
8598 ** sibling page. All other pointer map entries have already been taken
8599 ** care of. */
8600 for(i=0; i<nNew; i++){
8601 u32 key = get4byte(&apNew[i]->aData[8]);
8602 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008603 }
dan33ea4862014-10-09 19:35:37 +00008604 }
danielk19774dbaa892009-06-16 16:50:22 +00008605
dan33ea4862014-10-09 19:35:37 +00008606 assert( pParent->isInit );
8607 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008608 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008609
dan33ea4862014-10-09 19:35:37 +00008610 /* Free any old pages that were not reused as new pages.
8611 */
8612 for(i=nNew; i<nOld; i++){
8613 freePage(apOld[i], &rc);
8614 }
danielk19774dbaa892009-06-16 16:50:22 +00008615
8616#if 0
dan33ea4862014-10-09 19:35:37 +00008617 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008618 /* The ptrmapCheckPages() contains assert() statements that verify that
8619 ** all pointer map pages are set correctly. This is helpful while
8620 ** debugging. This is usually disabled because a corrupt database may
8621 ** cause an assert() statement to fail. */
8622 ptrmapCheckPages(apNew, nNew);
8623 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008624 }
dan33ea4862014-10-09 19:35:37 +00008625#endif
danielk1977cd581a72009-06-23 15:43:39 +00008626
drh8b2f49b2001-06-08 00:21:52 +00008627 /*
drh14acc042001-06-10 19:56:58 +00008628 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008629 */
drh14acc042001-06-10 19:56:58 +00008630balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008631 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008632 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008633 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008634 }
drh14acc042001-06-10 19:56:58 +00008635 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008636 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008637 }
danielk1977eaa06f62008-09-18 17:34:44 +00008638
drh8b2f49b2001-06-08 00:21:52 +00008639 return rc;
8640}
8641
drh43605152004-05-29 21:46:49 +00008642
8643/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008644** This function is called when the root page of a b-tree structure is
8645** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008646**
danielk1977a50d9aa2009-06-08 14:49:45 +00008647** A new child page is allocated and the contents of the current root
8648** page, including overflow cells, are copied into the child. The root
8649** page is then overwritten to make it an empty page with the right-child
8650** pointer pointing to the new page.
8651**
8652** Before returning, all pointer-map entries corresponding to pages
8653** that the new child-page now contains pointers to are updated. The
8654** entry corresponding to the new right-child pointer of the root
8655** page is also updated.
8656**
8657** If successful, *ppChild is set to contain a reference to the child
8658** page and SQLITE_OK is returned. In this case the caller is required
8659** to call releasePage() on *ppChild exactly once. If an error occurs,
8660** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008661*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008662static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8663 int rc; /* Return value from subprocedures */
8664 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008665 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008666 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008667
danielk1977a50d9aa2009-06-08 14:49:45 +00008668 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008669 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008670
danielk1977a50d9aa2009-06-08 14:49:45 +00008671 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8672 ** page that will become the new right-child of pPage. Copy the contents
8673 ** of the node stored on pRoot into the new child page.
8674 */
drh98add2e2009-07-20 17:11:49 +00008675 rc = sqlite3PagerWrite(pRoot->pDbPage);
8676 if( rc==SQLITE_OK ){
8677 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008678 copyNodeContent(pRoot, pChild, &rc);
8679 if( ISAUTOVACUUM ){
8680 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008681 }
8682 }
8683 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008684 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008685 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008686 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008687 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008688 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8689 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drh12fe9a02019-02-19 16:42:54 +00008690 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00008691
danielk1977a50d9aa2009-06-08 14:49:45 +00008692 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8693
8694 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008695 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8696 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8697 memcpy(pChild->apOvfl, pRoot->apOvfl,
8698 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008699 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008700
8701 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8702 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8703 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8704
8705 *ppChild = pChild;
8706 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008707}
8708
8709/*
drha2d50282019-12-23 18:02:15 +00008710** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8711** on the same B-tree as pCur.
8712**
drh87463962021-10-05 22:51:26 +00008713** This can occur if a database is corrupt with two or more SQL tables
drha2d50282019-12-23 18:02:15 +00008714** pointing to the same b-tree. If an insert occurs on one SQL table
8715** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8716** table linked to the same b-tree. If the secondary insert causes a
8717** rebalance, that can change content out from under the cursor on the
8718** first SQL table, violating invariants on the first insert.
8719*/
8720static int anotherValidCursor(BtCursor *pCur){
8721 BtCursor *pOther;
8722 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8723 if( pOther!=pCur
8724 && pOther->eState==CURSOR_VALID
8725 && pOther->pPage==pCur->pPage
8726 ){
8727 return SQLITE_CORRUPT_BKPT;
8728 }
8729 }
8730 return SQLITE_OK;
8731}
8732
8733/*
danielk197771d5d2c2008-09-29 11:49:47 +00008734** The page that pCur currently points to has just been modified in
8735** some way. This function figures out if this modification means the
8736** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008737** routine. Balancing routines are:
8738**
8739** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008740** balance_deeper()
8741** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008742*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008743static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008744 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008745 u8 aBalanceQuickSpace[13];
8746 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008747
drhcc5f8a42016-02-06 22:32:06 +00008748 VVA_ONLY( int balance_quick_called = 0 );
8749 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008750
8751 do {
dan01fd42b2019-07-13 09:55:33 +00008752 int iPage;
drh352a35a2017-08-15 03:46:47 +00008753 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008754
drha941ff72019-02-12 00:58:10 +00008755 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
drhc4c0ff82022-03-31 16:09:13 +00008756 if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
drhde948482022-03-29 13:16:32 +00008757 /* No rebalance required as long as:
8758 ** (1) There are no overflow cells
8759 ** (2) The amount of free space on the page is less than 2/3rds of
8760 ** the total usable space on the page. */
dan01fd42b2019-07-13 09:55:33 +00008761 break;
8762 }else if( (iPage = pCur->iPage)==0 ){
drha2d50282019-12-23 18:02:15 +00008763 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008764 /* The root page of the b-tree is overfull. In this case call the
8765 ** balance_deeper() function to create a new child for the root-page
8766 ** and copy the current contents of the root-page to it. The
8767 ** next iteration of the do-loop will balance the child page.
8768 */
drhcc5f8a42016-02-06 22:32:06 +00008769 assert( balance_deeper_called==0 );
8770 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008771 rc = balance_deeper(pPage, &pCur->apPage[1]);
8772 if( rc==SQLITE_OK ){
8773 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008774 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008775 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008776 pCur->apPage[0] = pPage;
8777 pCur->pPage = pCur->apPage[1];
8778 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008779 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008780 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008781 break;
8782 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008783 }else{
8784 MemPage * const pParent = pCur->apPage[iPage-1];
8785 int const iIdx = pCur->aiIdx[iPage-1];
8786
8787 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00008788 if( rc==SQLITE_OK && pParent->nFree<0 ){
8789 rc = btreeComputeFreeSpace(pParent);
8790 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008791 if( rc==SQLITE_OK ){
8792#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008793 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008794 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008795 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008796 && pParent->pgno!=1
8797 && pParent->nCell==iIdx
8798 ){
8799 /* Call balance_quick() to create a new sibling of pPage on which
8800 ** to store the overflow cell. balance_quick() inserts a new cell
8801 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008802 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008803 ** use either balance_nonroot() or balance_deeper(). Until this
8804 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8805 ** buffer.
8806 **
8807 ** The purpose of the following assert() is to check that only a
8808 ** single call to balance_quick() is made for each call to this
8809 ** function. If this were not verified, a subtle bug involving reuse
8810 ** of the aBalanceQuickSpace[] might sneak in.
8811 */
drhcc5f8a42016-02-06 22:32:06 +00008812 assert( balance_quick_called==0 );
8813 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008814 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8815 }else
8816#endif
8817 {
8818 /* In this case, call balance_nonroot() to redistribute cells
8819 ** between pPage and up to 2 of its sibling pages. This involves
8820 ** modifying the contents of pParent, which may cause pParent to
8821 ** become overfull or underfull. The next iteration of the do-loop
8822 ** will balance the parent page to correct this.
8823 **
8824 ** If the parent page becomes overfull, the overflow cell or cells
8825 ** are stored in the pSpace buffer allocated immediately below.
8826 ** A subsequent iteration of the do-loop will deal with this by
8827 ** calling balance_nonroot() (balance_deeper() may be called first,
8828 ** but it doesn't deal with overflow cells - just moves them to a
8829 ** different page). Once this subsequent call to balance_nonroot()
8830 ** has completed, it is safe to release the pSpace buffer used by
8831 ** the previous call, as the overflow cell data will have been
8832 ** copied either into the body of a database page or into the new
8833 ** pSpace buffer passed to the latter call to balance_nonroot().
8834 */
8835 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008836 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8837 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008838 if( pFree ){
8839 /* If pFree is not NULL, it points to the pSpace buffer used
8840 ** by a previous call to balance_nonroot(). Its contents are
8841 ** now stored either on real database pages or within the
8842 ** new pSpace buffer, so it may be safely freed here. */
8843 sqlite3PageFree(pFree);
8844 }
8845
danielk19774dbaa892009-06-16 16:50:22 +00008846 /* The pSpace buffer will be freed after the next call to
8847 ** balance_nonroot(), or just before this function returns, whichever
8848 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008849 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008850 }
8851 }
8852
8853 pPage->nOverflow = 0;
8854
8855 /* The next iteration of the do-loop balances the parent page. */
8856 releasePage(pPage);
8857 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008858 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008859 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008860 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008861 }while( rc==SQLITE_OK );
8862
8863 if( pFree ){
8864 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008865 }
8866 return rc;
8867}
8868
drh3de5d162018-05-03 03:59:02 +00008869/* Overwrite content from pX into pDest. Only do the write if the
8870** content is different from what is already there.
8871*/
8872static int btreeOverwriteContent(
8873 MemPage *pPage, /* MemPage on which writing will occur */
8874 u8 *pDest, /* Pointer to the place to start writing */
8875 const BtreePayload *pX, /* Source of data to write */
8876 int iOffset, /* Offset of first byte to write */
8877 int iAmt /* Number of bytes to be written */
8878){
8879 int nData = pX->nData - iOffset;
8880 if( nData<=0 ){
8881 /* Overwritting with zeros */
8882 int i;
8883 for(i=0; i<iAmt && pDest[i]==0; i++){}
8884 if( i<iAmt ){
8885 int rc = sqlite3PagerWrite(pPage->pDbPage);
8886 if( rc ) return rc;
8887 memset(pDest + i, 0, iAmt - i);
8888 }
8889 }else{
8890 if( nData<iAmt ){
8891 /* Mixed read data and zeros at the end. Make a recursive call
8892 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008893 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8894 iAmt-nData);
8895 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008896 iAmt = nData;
8897 }
8898 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8899 int rc = sqlite3PagerWrite(pPage->pDbPage);
8900 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00008901 /* In a corrupt database, it is possible for the source and destination
8902 ** buffers to overlap. This is harmless since the database is already
8903 ** corrupt but it does cause valgrind and ASAN warnings. So use
8904 ** memmove(). */
8905 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00008906 }
8907 }
8908 return SQLITE_OK;
8909}
8910
8911/*
8912** Overwrite the cell that cursor pCur is pointing to with fresh content
8913** contained in pX.
8914*/
8915static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8916 int iOffset; /* Next byte of pX->pData to write */
8917 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8918 int rc; /* Return code */
8919 MemPage *pPage = pCur->pPage; /* Page being written */
8920 BtShared *pBt; /* Btree */
8921 Pgno ovflPgno; /* Next overflow page to write */
8922 u32 ovflPageSize; /* Size to write on overflow page */
8923
drh27e80a32019-08-15 13:17:49 +00008924 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8925 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8926 ){
drh4f84e9c2018-05-03 13:56:23 +00008927 return SQLITE_CORRUPT_BKPT;
8928 }
drh3de5d162018-05-03 03:59:02 +00008929 /* Overwrite the local portion first */
8930 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8931 0, pCur->info.nLocal);
8932 if( rc ) return rc;
8933 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8934
8935 /* Now overwrite the overflow pages */
8936 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008937 assert( nTotal>=0 );
8938 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008939 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8940 pBt = pPage->pBt;
8941 ovflPageSize = pBt->usableSize - 4;
8942 do{
8943 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8944 if( rc ) return rc;
drhf9241a52021-11-11 16:26:46 +00008945 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
drhd5aa9262018-05-03 16:56:06 +00008946 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008947 }else{
drh30f7a252018-05-07 11:29:59 +00008948 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008949 ovflPgno = get4byte(pPage->aData);
8950 }else{
8951 ovflPageSize = nTotal - iOffset;
8952 }
8953 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8954 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008955 }
drhd5aa9262018-05-03 16:56:06 +00008956 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008957 if( rc ) return rc;
8958 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008959 }while( iOffset<nTotal );
8960 return SQLITE_OK;
8961}
8962
drhf74b8d92002-09-01 23:20:45 +00008963
8964/*
drh8eeb4462016-05-21 20:03:42 +00008965** Insert a new record into the BTree. The content of the new record
8966** is described by the pX object. The pCur cursor is used only to
8967** define what table the record should be inserted into, and is left
8968** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008969**
drh8eeb4462016-05-21 20:03:42 +00008970** For a table btree (used for rowid tables), only the pX.nKey value of
8971** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8972** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8973** hold the content of the row.
8974**
8975** For an index btree (used for indexes and WITHOUT ROWID tables), the
8976** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8977** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008978**
8979** If the seekResult parameter is non-zero, then a successful call to
drheab10642022-03-06 20:22:24 +00008980** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already
drheaf6ae22016-11-09 20:14:34 +00008981** been performed. In other words, if seekResult!=0 then the cursor
8982** is currently pointing to a cell that will be adjacent to the cell
8983** to be inserted. If seekResult<0 then pCur points to a cell that is
8984** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8985** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008986**
drheaf6ae22016-11-09 20:14:34 +00008987** If seekResult==0, that means pCur is pointing at some unknown location.
8988** In that case, this routine must seek the cursor to the correct insertion
8989** point for (pKey,nKey) before doing the insertion. For index btrees,
8990** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8991** key values and pX->aMem can be used instead of pX->pKey to avoid having
8992** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008993*/
drh3aac2dd2004-04-26 14:10:20 +00008994int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008995 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008996 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008997 int flags, /* True if this is likely an append */
drheab10642022-03-06 20:22:24 +00008998 int seekResult /* Result of prior IndexMoveto() call */
drh3b7511c2001-05-26 13:15:44 +00008999){
drh3b7511c2001-05-26 13:15:44 +00009000 int rc;
drh3e9ca092009-09-08 01:14:48 +00009001 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00009002 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00009003 int idx;
drh3b7511c2001-05-26 13:15:44 +00009004 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00009005 Btree *p = pCur->pBtree;
9006 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00009007 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00009008 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00009009
dancd1b2d02020-12-09 20:33:51 +00009010 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
dan7aae7352020-12-10 18:06:24 +00009011 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
danf91c1312017-01-10 20:04:38 +00009012
danielk19779c3acf32009-05-02 07:36:49 +00009013 /* Save the positions of any other cursors open on this table.
9014 **
danielk19773509a652009-07-06 18:56:13 +00009015 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00009016 ** example, when inserting data into a table with auto-generated integer
9017 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
9018 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00009019 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00009020 ** that the cursor is already where it needs to be and returns without
9021 ** doing any work. To avoid thwarting these optimizations, it is important
9022 ** not to clear the cursor here.
9023 */
drh27fb7462015-06-30 02:47:36 +00009024 if( pCur->curFlags & BTCF_Multiple ){
9025 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9026 if( rc ) return rc;
danf5ea93b2021-04-08 19:39:00 +00009027 if( loc && pCur->iPage<0 ){
9028 /* This can only happen if the schema is corrupt such that there is more
9029 ** than one table or index with the same root page as used by the cursor.
9030 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
9031 ** the schema was loaded. This cannot be asserted though, as a user might
9032 ** set the flag, load the schema, and then unset the flag. */
9033 return SQLITE_CORRUPT_BKPT;
9034 }
drhd60f4f42012-03-23 14:23:52 +00009035 }
9036
drhc63e4092022-03-21 18:48:31 +00009037 /* Ensure that the cursor is not in the CURSOR_FAULT state and that it
9038 ** points to a valid cell.
9039 */
drhbd5fb3a2022-03-21 18:17:09 +00009040 if( pCur->eState>=CURSOR_REQUIRESEEK ){
drhc63e4092022-03-21 18:48:31 +00009041 testcase( pCur->eState==CURSOR_REQUIRESEEK );
9042 testcase( pCur->eState==CURSOR_FAULT );
drhbd5fb3a2022-03-21 18:17:09 +00009043 rc = moveToRoot(pCur);
9044 if( rc && rc!=SQLITE_EMPTY ) return rc;
9045 }
9046
9047 assert( cursorOwnsBtShared(pCur) );
9048 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
9049 && pBt->inTransaction==TRANS_WRITE
9050 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
9051 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9052
9053 /* Assert that the caller has been consistent. If this cursor was opened
9054 ** expecting an index b-tree, then the caller should be inserting blob
9055 ** keys with no associated data. If the cursor was opened expecting an
9056 ** intkey table, the caller should be inserting integer keys with a
9057 ** blob of associated data. */
9058 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
9059
danielk197771d5d2c2008-09-29 11:49:47 +00009060 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00009061 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00009062 /* If this is an insert into a table b-tree, invalidate any incrblob
9063 ** cursors open on the row being replaced */
drh49bb56e2021-05-14 20:01:36 +00009064 if( p->hasIncrblobCur ){
9065 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
9066 }
drhe0670b62014-02-12 21:31:12 +00009067
danf91c1312017-01-10 20:04:38 +00009068 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00009069 ** to a row with the same key as the new entry being inserted.
9070 */
9071#ifdef SQLITE_DEBUG
9072 if( flags & BTREE_SAVEPOSITION ){
9073 assert( pCur->curFlags & BTCF_ValidNKey );
9074 assert( pX->nKey==pCur->info.nKey );
drhd720d392018-05-07 17:27:04 +00009075 assert( loc==0 );
9076 }
9077#endif
danf91c1312017-01-10 20:04:38 +00009078
drhd720d392018-05-07 17:27:04 +00009079 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
9080 ** that the cursor is not pointing to a row to be overwritten.
9081 ** So do a complete check.
9082 */
drh7a1c28d2016-11-10 20:42:08 +00009083 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00009084 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00009085 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00009086 assert( pX->nData>=0 && pX->nZero>=0 );
9087 if( pCur->info.nSize!=0
9088 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
9089 ){
drhd720d392018-05-07 17:27:04 +00009090 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00009091 return btreeOverwriteCell(pCur, pX);
9092 }
drhd720d392018-05-07 17:27:04 +00009093 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00009094 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00009095 /* The cursor is *not* pointing to the cell to be overwritten, nor
9096 ** to an adjacent cell. Move the cursor so that it is pointing either
9097 ** to the cell to be overwritten or an adjacent cell.
9098 */
drh42a410d2021-06-19 18:32:20 +00009099 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
9100 (flags & BTREE_APPEND)!=0, &loc);
drh207c8172015-06-29 23:01:32 +00009101 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00009102 }
drhd720d392018-05-07 17:27:04 +00009103 }else{
9104 /* This is an index or a WITHOUT ROWID table */
9105
9106 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9107 ** to a row with the same key as the new entry being inserted.
9108 */
9109 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
9110
9111 /* If the cursor is not already pointing either to the cell to be
9112 ** overwritten, or if a new cell is being inserted, if the cursor is
9113 ** not pointing to an immediately adjacent cell, then move the cursor
9114 ** so that it does.
9115 */
9116 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
9117 if( pX->nMem ){
9118 UnpackedRecord r;
9119 r.pKeyInfo = pCur->pKeyInfo;
9120 r.aMem = pX->aMem;
9121 r.nField = pX->nMem;
9122 r.default_rc = 0;
drhd720d392018-05-07 17:27:04 +00009123 r.eqSeen = 0;
drh42a410d2021-06-19 18:32:20 +00009124 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
drhd720d392018-05-07 17:27:04 +00009125 }else{
drh42a410d2021-06-19 18:32:20 +00009126 rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
9127 (flags & BTREE_APPEND)!=0, &loc);
drhd720d392018-05-07 17:27:04 +00009128 }
9129 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00009130 }
drh89ee2292018-05-07 18:41:19 +00009131
9132 /* If the cursor is currently pointing to an entry to be overwritten
9133 ** and the new content is the same as as the old, then use the
9134 ** overwrite optimization.
9135 */
9136 if( loc==0 ){
9137 getCellInfo(pCur);
9138 if( pCur->info.nKey==pX->nKey ){
9139 BtreePayload x2;
9140 x2.pData = pX->pKey;
9141 x2.nData = pX->nKey;
9142 x2.nZero = 0;
9143 return btreeOverwriteCell(pCur, &x2);
9144 }
9145 }
danielk1977da184232006-01-05 11:34:32 +00009146 }
drh0e5ce802019-12-20 12:33:17 +00009147 assert( pCur->eState==CURSOR_VALID
drhbd5fb3a2022-03-21 18:17:09 +00009148 || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00009149
drh352a35a2017-08-15 03:46:47 +00009150 pPage = pCur->pPage;
dancd1b2d02020-12-09 20:33:51 +00009151 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
drh44845222008-07-17 18:39:57 +00009152 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00009153 if( pPage->nFree<0 ){
drhc63e4092022-03-21 18:48:31 +00009154 if( NEVER(pCur->eState>CURSOR_INVALID) ){
9155 /* ^^^^^--- due to the moveToRoot() call above */
drha1085f02020-07-11 16:42:28 +00009156 rc = SQLITE_CORRUPT_BKPT;
9157 }else{
9158 rc = btreeComputeFreeSpace(pPage);
9159 }
drhb0ea9432019-02-09 21:06:40 +00009160 if( rc ) return rc;
9161 }
danielk19778f880a82009-07-13 09:41:45 +00009162
drh3a4c1412004-05-09 20:40:11 +00009163 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00009164 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00009165 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00009166 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00009167 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009168 assert( newCell!=0 );
dancd1b2d02020-12-09 20:33:51 +00009169 if( flags & BTREE_PREFORMAT ){
dancd1b2d02020-12-09 20:33:51 +00009170 rc = SQLITE_OK;
dan7aae7352020-12-10 18:06:24 +00009171 szNew = pBt->nPreformatSize;
9172 if( szNew<4 ) szNew = 4;
9173 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
9174 CellInfo info;
9175 pPage->xParseCell(pPage, newCell, &info);
dan9257ddb2020-12-10 19:54:13 +00009176 if( info.nPayload!=info.nLocal ){
dan7aae7352020-12-10 18:06:24 +00009177 Pgno ovfl = get4byte(&newCell[szNew-4]);
9178 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
9179 }
9180 }
dancd1b2d02020-12-09 20:33:51 +00009181 }else{
9182 rc = fillInCell(pPage, newCell, pX, &szNew);
dancd1b2d02020-12-09 20:33:51 +00009183 }
dan7aae7352020-12-10 18:06:24 +00009184 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00009185 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00009186 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00009187 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00009188 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00009189 CellInfo info;
drh635480e2021-10-08 16:15:17 +00009190 assert( idx>=0 );
9191 if( idx>=pPage->nCell ){
9192 return SQLITE_CORRUPT_BKPT;
9193 }
danielk19776e465eb2007-08-21 13:11:00 +00009194 rc = sqlite3PagerWrite(pPage->pDbPage);
9195 if( rc ){
9196 goto end_insert;
9197 }
danielk197771d5d2c2008-09-29 11:49:47 +00009198 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00009199 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00009200 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00009201 }
drh86c779f2021-05-15 13:08:44 +00009202 BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
drh554a19d2019-08-12 18:26:46 +00009203 testcase( pCur->curFlags & BTCF_ValidOvfl );
9204 invalidateOverflowCache(pCur);
danca66f6c2017-06-08 11:14:08 +00009205 if( info.nSize==szNew && info.nLocal==info.nPayload
9206 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
9207 ){
drhf9238252016-12-09 18:09:42 +00009208 /* Overwrite the old cell with the new if they are the same size.
9209 ** We could also try to do this if the old cell is smaller, then add
9210 ** the leftover space to the free list. But experiments show that
9211 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00009212 ** calling dropCell() and insertCell().
9213 **
9214 ** This optimization cannot be used on an autovacuum database if the
9215 ** new entry uses overflow pages, as the insertCell() call below is
9216 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00009217 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh93788182019-07-22 23:24:01 +00009218 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
9219 return SQLITE_CORRUPT_BKPT;
9220 }
9221 if( oldCell+szNew > pPage->aDataEnd ){
9222 return SQLITE_CORRUPT_BKPT;
9223 }
drh80159da2016-12-09 17:32:51 +00009224 memcpy(oldCell, newCell, szNew);
9225 return SQLITE_OK;
9226 }
9227 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00009228 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00009229 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00009230 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00009231 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00009232 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00009233 }else{
drh4b70f112004-05-02 21:12:19 +00009234 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00009235 }
drh98add2e2009-07-20 17:11:49 +00009236 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00009237 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00009238 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00009239
mistachkin48864df2013-03-21 21:20:32 +00009240 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00009241 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00009242 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00009243 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00009244 **
danielk1977a50d9aa2009-06-08 14:49:45 +00009245 ** Previous versions of SQLite called moveToRoot() to move the cursor
9246 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00009247 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9248 ** set the cursor state to "invalid". This makes common insert operations
9249 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00009250 **
danielk1977a50d9aa2009-06-08 14:49:45 +00009251 ** There is a subtle but important optimization here too. When inserting
9252 ** multiple records into an intkey b-tree using a single cursor (as can
9253 ** happen while processing an "INSERT INTO ... SELECT" statement), it
9254 ** is advantageous to leave the cursor pointing to the last entry in
9255 ** the b-tree if possible. If the cursor is left pointing to the last
9256 ** entry in the table, and the next row inserted has an integer key
9257 ** larger than the largest existing key, it is possible to insert the
9258 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00009259 */
danielk1977a50d9aa2009-06-08 14:49:45 +00009260 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00009261 if( pPage->nOverflow ){
9262 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00009263 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00009264 rc = balance(pCur);
9265
9266 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00009267 ** fails. Internal data structure corruption will result otherwise.
9268 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9269 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00009270 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00009271 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00009272 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00009273 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00009274 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00009275 assert( pCur->pKey==0 );
9276 pCur->pKey = sqlite3Malloc( pX->nKey );
9277 if( pCur->pKey==0 ){
9278 rc = SQLITE_NOMEM;
9279 }else{
9280 memcpy(pCur->pKey, pX->pKey, pX->nKey);
9281 }
9282 }
9283 pCur->eState = CURSOR_REQUIRESEEK;
9284 pCur->nKey = pX->nKey;
9285 }
danielk19773f632d52009-05-02 10:03:09 +00009286 }
drh352a35a2017-08-15 03:46:47 +00009287 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00009288
drh2e38c322004-09-03 18:38:44 +00009289end_insert:
drh5e2f8b92001-05-28 00:41:15 +00009290 return rc;
9291}
9292
dand2ffc972020-12-10 19:20:15 +00009293/*
9294** This function is used as part of copying the current row from cursor
9295** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9296** parameter iKey is used as the rowid value when the record is copied
9297** into pDest. Otherwise, the record is copied verbatim.
9298**
9299** This function does not actually write the new value to cursor pDest.
9300** Instead, it creates and populates any required overflow pages and
9301** writes the data for the new cell into the BtShared.pTmpSpace buffer
9302** for the destination database. The size of the cell, in bytes, is left
9303** in BtShared.nPreformatSize. The caller completes the insertion by
9304** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9305**
9306** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9307*/
dan7aae7352020-12-10 18:06:24 +00009308int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
dan036e0672020-12-08 20:19:07 +00009309 int rc = SQLITE_OK;
dan7aae7352020-12-10 18:06:24 +00009310 BtShared *pBt = pDest->pBt;
9311 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */
danebbf3682020-12-09 16:32:11 +00009312 const u8 *aIn; /* Pointer to next input buffer */
drhe5baf5c2020-12-16 14:20:45 +00009313 u32 nIn; /* Size of input buffer aIn[] */
dan7f607062020-12-15 19:27:20 +00009314 u32 nRem; /* Bytes of data still to copy */
dan036e0672020-12-08 20:19:07 +00009315
dan036e0672020-12-08 20:19:07 +00009316 getCellInfo(pSrc);
dan7aae7352020-12-10 18:06:24 +00009317 aOut += putVarint32(aOut, pSrc->info.nPayload);
9318 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
danebbf3682020-12-09 16:32:11 +00009319 nIn = pSrc->info.nLocal;
9320 aIn = pSrc->info.pPayload;
drh0a8b6a92020-12-16 21:09:45 +00009321 if( aIn+nIn>pSrc->pPage->aDataEnd ){
9322 return SQLITE_CORRUPT_BKPT;
9323 }
danebbf3682020-12-09 16:32:11 +00009324 nRem = pSrc->info.nPayload;
dan7aae7352020-12-10 18:06:24 +00009325 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9326 memcpy(aOut, aIn, nIn);
9327 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9328 }else{
9329 Pager *pSrcPager = pSrc->pBt->pPager;
9330 u8 *pPgnoOut = 0;
9331 Pgno ovflIn = 0;
9332 DbPage *pPageIn = 0;
9333 MemPage *pPageOut = 0;
drhe5baf5c2020-12-16 14:20:45 +00009334 u32 nOut; /* Size of output buffer aOut[] */
danebbf3682020-12-09 16:32:11 +00009335
dan7aae7352020-12-10 18:06:24 +00009336 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9337 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9338 if( nOut<pSrc->info.nPayload ){
9339 pPgnoOut = &aOut[nOut];
9340 pBt->nPreformatSize += 4;
9341 }
9342
9343 if( nRem>nIn ){
drh0a8b6a92020-12-16 21:09:45 +00009344 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9345 return SQLITE_CORRUPT_BKPT;
9346 }
dan7aae7352020-12-10 18:06:24 +00009347 ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9348 }
9349
9350 do {
9351 nRem -= nOut;
9352 do{
9353 assert( nOut>0 );
9354 if( nIn>0 ){
9355 int nCopy = MIN(nOut, nIn);
9356 memcpy(aOut, aIn, nCopy);
9357 nOut -= nCopy;
9358 nIn -= nCopy;
9359 aOut += nCopy;
9360 aIn += nCopy;
9361 }
9362 if( nOut>0 ){
9363 sqlite3PagerUnref(pPageIn);
9364 pPageIn = 0;
9365 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9366 if( rc==SQLITE_OK ){
9367 aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9368 ovflIn = get4byte(aIn);
9369 aIn += 4;
9370 nIn = pSrc->pBt->usableSize - 4;
9371 }
9372 }
9373 }while( rc==SQLITE_OK && nOut>0 );
9374
drhad1188b2021-10-02 18:22:24 +00009375 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
dan7aae7352020-12-10 18:06:24 +00009376 Pgno pgnoNew;
9377 MemPage *pNew = 0;
9378 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9379 put4byte(pPgnoOut, pgnoNew);
9380 if( ISAUTOVACUUM && pPageOut ){
9381 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9382 }
9383 releasePage(pPageOut);
9384 pPageOut = pNew;
9385 if( pPageOut ){
9386 pPgnoOut = pPageOut->aData;
9387 put4byte(pPgnoOut, 0);
9388 aOut = &pPgnoOut[4];
9389 nOut = MIN(pBt->usableSize - 4, nRem);
danebbf3682020-12-09 16:32:11 +00009390 }
9391 }
dan7aae7352020-12-10 18:06:24 +00009392 }while( nRem>0 && rc==SQLITE_OK );
9393
9394 releasePage(pPageOut);
9395 sqlite3PagerUnref(pPageIn);
dan036e0672020-12-08 20:19:07 +00009396 }
9397
9398 return rc;
9399}
9400
drh5e2f8b92001-05-28 00:41:15 +00009401/*
danf0ee1d32015-09-12 19:26:11 +00009402** Delete the entry that the cursor is pointing to.
9403**
drhe807bdb2016-01-21 17:06:33 +00009404** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9405** the cursor is left pointing at an arbitrary location after the delete.
9406** But if that bit is set, then the cursor is left in a state such that
9407** the next call to BtreeNext() or BtreePrev() moves it to the same row
9408** as it would have been on if the call to BtreeDelete() had been omitted.
9409**
drhdef19e32016-01-27 16:26:25 +00009410** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9411** associated with a single table entry and its indexes. Only one of those
9412** deletes is considered the "primary" delete. The primary delete occurs
9413** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9414** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9415** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00009416** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00009417*/
drhe807bdb2016-01-21 17:06:33 +00009418int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00009419 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00009420 BtShared *pBt = p->pBt;
drh7e17a3a2022-01-02 14:55:43 +00009421 int rc; /* Return code */
9422 MemPage *pPage; /* Page to delete cell from */
9423 unsigned char *pCell; /* Pointer to cell to delete */
9424 int iCellIdx; /* Index of cell to delete */
9425 int iCellDepth; /* Depth of node containing pCell */
9426 CellInfo info; /* Size of the cell being deleted */
9427 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
drh8b2f49b2001-06-08 00:21:52 +00009428
dan7a2347e2016-01-07 16:43:54 +00009429 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00009430 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009431 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00009432 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00009433 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9434 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drhdef19e32016-01-27 16:26:25 +00009435 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
drh500d7e52022-03-22 23:33:20 +00009436 if( pCur->eState!=CURSOR_VALID ){
9437 if( pCur->eState>=CURSOR_REQUIRESEEK ){
9438 rc = btreeRestoreCursorPosition(pCur);
9439 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9440 if( rc || pCur->eState!=CURSOR_VALID ) return rc;
9441 }else{
9442 return SQLITE_CORRUPT_BKPT;
9443 }
danb560a712019-03-13 15:29:14 +00009444 }
drh500d7e52022-03-22 23:33:20 +00009445 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00009446
danielk19774dbaa892009-06-16 16:50:22 +00009447 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00009448 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00009449 pPage = pCur->pPage;
drh7e17a3a2022-01-02 14:55:43 +00009450 if( pPage->nCell<=iCellIdx ){
9451 return SQLITE_CORRUPT_BKPT;
9452 }
danielk19774dbaa892009-06-16 16:50:22 +00009453 pCell = findCell(pPage, iCellIdx);
drh2dfe9662022-01-02 11:25:51 +00009454 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
9455 return SQLITE_CORRUPT_BKPT;
9456 }
danielk19774dbaa892009-06-16 16:50:22 +00009457
drh7e17a3a2022-01-02 14:55:43 +00009458 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
drhbfc7a8b2016-04-09 17:04:05 +00009459 ** be preserved following this delete operation. If the current delete
9460 ** will cause a b-tree rebalance, then this is done by saving the cursor
9461 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9462 ** returning.
9463 **
drh7e17a3a2022-01-02 14:55:43 +00009464 ** If the current delete will not cause a rebalance, then the cursor
drhbfc7a8b2016-04-09 17:04:05 +00009465 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
drh7e17a3a2022-01-02 14:55:43 +00009466 ** before or after the deleted entry.
9467 **
9468 ** The bPreserve value records which path is required:
9469 **
9470 ** bPreserve==0 Not necessary to save the cursor position
9471 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
9472 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
9473 */
9474 bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
drhbfc7a8b2016-04-09 17:04:05 +00009475 if( bPreserve ){
9476 if( !pPage->leaf
drh500d7e52022-03-22 23:33:20 +00009477 || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) >
9478 (int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00009479 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00009480 ){
9481 /* A b-tree rebalance will be required after deleting this entry.
9482 ** Save the cursor key. */
9483 rc = saveCursorKey(pCur);
9484 if( rc ) return rc;
9485 }else{
drh7e17a3a2022-01-02 14:55:43 +00009486 bPreserve = 2;
drhbfc7a8b2016-04-09 17:04:05 +00009487 }
9488 }
9489
danielk19774dbaa892009-06-16 16:50:22 +00009490 /* If the page containing the entry to delete is not a leaf page, move
9491 ** the cursor to the largest entry in the tree that is smaller than
9492 ** the entry being deleted. This cell will replace the cell being deleted
9493 ** from the internal node. The 'previous' entry is used for this instead
9494 ** of the 'next' entry, as the previous entry is always a part of the
9495 ** sub-tree headed by the child page of the cell being deleted. This makes
9496 ** balancing the tree following the delete operation easier. */
9497 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00009498 rc = sqlite3BtreePrevious(pCur, 0);
9499 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00009500 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00009501 }
9502
9503 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00009504 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00009505 if( pCur->curFlags & BTCF_Multiple ){
9506 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9507 if( rc ) return rc;
9508 }
drhd60f4f42012-03-23 14:23:52 +00009509
9510 /* If this is a delete operation to remove a row from a table b-tree,
9511 ** invalidate any incrblob cursors open on the row being deleted. */
drh49bb56e2021-05-14 20:01:36 +00009512 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
drh9ca431a2017-03-29 18:03:50 +00009513 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00009514 }
9515
danf0ee1d32015-09-12 19:26:11 +00009516 /* Make the page containing the entry to be deleted writable. Then free any
9517 ** overflow pages associated with the entry and finally remove the cell
9518 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00009519 rc = sqlite3PagerWrite(pPage->pDbPage);
9520 if( rc ) return rc;
drh86c779f2021-05-15 13:08:44 +00009521 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
drh80159da2016-12-09 17:32:51 +00009522 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00009523 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00009524
danielk19774dbaa892009-06-16 16:50:22 +00009525 /* If the cell deleted was not located on a leaf page, then the cursor
9526 ** is currently pointing to the largest entry in the sub-tree headed
9527 ** by the child-page of the cell that was just deleted from an internal
9528 ** node. The cell from the leaf node needs to be moved to the internal
9529 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00009530 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00009531 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00009532 int nCell;
drh352a35a2017-08-15 03:46:47 +00009533 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00009534 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00009535
drhb0ea9432019-02-09 21:06:40 +00009536 if( pLeaf->nFree<0 ){
9537 rc = btreeComputeFreeSpace(pLeaf);
9538 if( rc ) return rc;
9539 }
drh352a35a2017-08-15 03:46:47 +00009540 if( iCellDepth<pCur->iPage-1 ){
9541 n = pCur->apPage[iCellDepth+1]->pgno;
9542 }else{
9543 n = pCur->pPage->pgno;
9544 }
danielk19774dbaa892009-06-16 16:50:22 +00009545 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00009546 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00009547 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00009548 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00009549 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009550 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00009551 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00009552 if( rc==SQLITE_OK ){
9553 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9554 }
drh98add2e2009-07-20 17:11:49 +00009555 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00009556 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00009557 }
danielk19774dbaa892009-06-16 16:50:22 +00009558
9559 /* Balance the tree. If the entry deleted was located on a leaf page,
9560 ** then the cursor still points to that page. In this case the first
9561 ** call to balance() repairs the tree, and the if(...) condition is
9562 ** never true.
9563 **
9564 ** Otherwise, if the entry deleted was on an internal node page, then
9565 ** pCur is pointing to the leaf page from which a cell was removed to
9566 ** replace the cell deleted from the internal node. This is slightly
9567 ** tricky as the leaf node may be underfull, and the internal node may
9568 ** be either under or overfull. In this case run the balancing algorithm
9569 ** on the leaf node first. If the balance proceeds far enough up the
9570 ** tree that we can be sure that any problem in the internal node has
9571 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9572 ** walk the cursor up the tree to the internal node and balance it as
9573 ** well. */
drhde948482022-03-29 13:16:32 +00009574 assert( pCur->pPage->nOverflow==0 );
9575 assert( pCur->pPage->nFree>=0 );
drhc4c0ff82022-03-31 16:09:13 +00009576 if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
drhde948482022-03-29 13:16:32 +00009577 /* Optimization: If the free space is less than 2/3rds of the page,
9578 ** then balance() will always be a no-op. No need to invoke it. */
9579 rc = SQLITE_OK;
9580 }else{
9581 rc = balance(pCur);
9582 }
danielk19774dbaa892009-06-16 16:50:22 +00009583 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00009584 releasePageNotNull(pCur->pPage);
9585 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00009586 while( pCur->iPage>iCellDepth ){
9587 releasePage(pCur->apPage[pCur->iPage--]);
9588 }
drh352a35a2017-08-15 03:46:47 +00009589 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00009590 rc = balance(pCur);
9591 }
9592
danielk19776b456a22005-03-21 04:04:02 +00009593 if( rc==SQLITE_OK ){
drh7e17a3a2022-01-02 14:55:43 +00009594 if( bPreserve>1 ){
9595 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00009596 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00009597 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00009598 pCur->eState = CURSOR_SKIPNEXT;
9599 if( iCellIdx>=pPage->nCell ){
9600 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00009601 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00009602 }else{
9603 pCur->skipNext = 1;
9604 }
9605 }else{
9606 rc = moveToRoot(pCur);
9607 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00009608 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00009609 pCur->eState = CURSOR_REQUIRESEEK;
9610 }
drh44548e72017-08-14 18:13:52 +00009611 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00009612 }
danielk19776b456a22005-03-21 04:04:02 +00009613 }
drh5e2f8b92001-05-28 00:41:15 +00009614 return rc;
drh3b7511c2001-05-26 13:15:44 +00009615}
drh8b2f49b2001-06-08 00:21:52 +00009616
9617/*
drhc6b52df2002-01-04 03:09:29 +00009618** Create a new BTree table. Write into *piTable the page
9619** number for the root page of the new table.
9620**
drhab01f612004-05-22 02:55:23 +00009621** The type of type is determined by the flags parameter. Only the
9622** following values of flags are currently in use. Other values for
9623** flags might not work:
9624**
9625** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9626** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00009627*/
drhabc38152020-07-22 13:38:04 +00009628static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00009629 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009630 MemPage *pRoot;
9631 Pgno pgnoRoot;
9632 int rc;
drhd4187c72010-08-30 22:15:45 +00009633 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00009634
drh1fee73e2007-08-29 04:00:57 +00009635 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009636 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009637 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00009638
danielk1977003ba062004-11-04 02:57:33 +00009639#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00009640 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00009641 if( rc ){
9642 return rc;
9643 }
danielk1977003ba062004-11-04 02:57:33 +00009644#else
danielk1977687566d2004-11-02 12:56:41 +00009645 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009646 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9647 MemPage *pPageMove; /* The page to move to. */
9648
danielk197720713f32007-05-03 11:43:33 +00009649 /* Creating a new table may probably require moving an existing database
9650 ** to make room for the new tables root page. In case this page turns
9651 ** out to be an overflow page, delete all overflow page-map caches
9652 ** held by open cursors.
9653 */
danielk197792d4d7a2007-05-04 12:05:56 +00009654 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009655
danielk1977003ba062004-11-04 02:57:33 +00009656 /* Read the value of meta[3] from the database to determine where the
9657 ** root page of the new table should go. meta[3] is the largest root-page
9658 ** created so far, so the new root-page is (meta[3]+1).
9659 */
danielk1977602b4662009-07-02 07:47:33 +00009660 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
drh10248222020-07-28 20:32:12 +00009661 if( pgnoRoot>btreePagecount(pBt) ){
9662 return SQLITE_CORRUPT_BKPT;
9663 }
danielk1977003ba062004-11-04 02:57:33 +00009664 pgnoRoot++;
9665
danielk1977599fcba2004-11-08 07:13:13 +00009666 /* The new root-page may not be allocated on a pointer-map page, or the
9667 ** PENDING_BYTE page.
9668 */
drh72190432008-01-31 14:54:43 +00009669 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009670 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009671 pgnoRoot++;
9672 }
drh48bf2d72020-07-30 17:14:55 +00009673 assert( pgnoRoot>=3 );
danielk1977003ba062004-11-04 02:57:33 +00009674
9675 /* Allocate a page. The page that currently resides at pgnoRoot will
9676 ** be moved to the allocated page (unless the allocated page happens
9677 ** to reside at pgnoRoot).
9678 */
dan51f0b6d2013-02-22 20:16:34 +00009679 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009680 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009681 return rc;
9682 }
danielk1977003ba062004-11-04 02:57:33 +00009683
9684 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009685 /* pgnoRoot is the page that will be used for the root-page of
9686 ** the new table (assuming an error did not occur). But we were
9687 ** allocated pgnoMove. If required (i.e. if it was not allocated
9688 ** by extending the file), the current page at position pgnoMove
9689 ** is already journaled.
9690 */
drheeb844a2009-08-08 18:01:07 +00009691 u8 eType = 0;
9692 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009693
danf7679ad2013-04-03 11:38:36 +00009694 /* Save the positions of any open cursors. This is required in
9695 ** case they are holding a reference to an xFetch reference
9696 ** corresponding to page pgnoRoot. */
9697 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009698 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009699 if( rc!=SQLITE_OK ){
9700 return rc;
9701 }
danielk1977f35843b2007-04-07 15:03:17 +00009702
9703 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009704 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009705 if( rc!=SQLITE_OK ){
9706 return rc;
9707 }
9708 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009709 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9710 rc = SQLITE_CORRUPT_BKPT;
9711 }
9712 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009713 releasePage(pRoot);
9714 return rc;
9715 }
drhccae6022005-02-26 17:31:26 +00009716 assert( eType!=PTRMAP_ROOTPAGE );
9717 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009718 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009719 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009720
9721 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009722 if( rc!=SQLITE_OK ){
9723 return rc;
9724 }
drhb00fc3b2013-08-21 23:42:32 +00009725 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009726 if( rc!=SQLITE_OK ){
9727 return rc;
9728 }
danielk19773b8a05f2007-03-19 17:44:26 +00009729 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009730 if( rc!=SQLITE_OK ){
9731 releasePage(pRoot);
9732 return rc;
9733 }
9734 }else{
9735 pRoot = pPageMove;
9736 }
9737
danielk197742741be2005-01-08 12:42:39 +00009738 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009739 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009740 if( rc ){
9741 releasePage(pRoot);
9742 return rc;
9743 }
drhbf592832010-03-30 15:51:12 +00009744
9745 /* When the new root page was allocated, page 1 was made writable in
9746 ** order either to increase the database filesize, or to decrement the
9747 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9748 */
9749 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009750 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009751 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009752 releasePage(pRoot);
9753 return rc;
9754 }
danielk197742741be2005-01-08 12:42:39 +00009755
danielk1977003ba062004-11-04 02:57:33 +00009756 }else{
drh4f0c5872007-03-26 22:05:01 +00009757 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009758 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009759 }
9760#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009761 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009762 if( createTabFlags & BTREE_INTKEY ){
9763 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9764 }else{
9765 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9766 }
9767 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009768 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009769 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drhabc38152020-07-22 13:38:04 +00009770 *piTable = pgnoRoot;
drh8b2f49b2001-06-08 00:21:52 +00009771 return SQLITE_OK;
9772}
drhabc38152020-07-22 13:38:04 +00009773int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
drhd677b3d2007-08-20 22:48:41 +00009774 int rc;
9775 sqlite3BtreeEnter(p);
9776 rc = btreeCreateTable(p, piTable, flags);
9777 sqlite3BtreeLeave(p);
9778 return rc;
9779}
drh8b2f49b2001-06-08 00:21:52 +00009780
9781/*
9782** Erase the given database page and all its children. Return
9783** the page to the freelist.
9784*/
drh4b70f112004-05-02 21:12:19 +00009785static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00009786 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00009787 Pgno pgno, /* Page number to clear */
9788 int freePageFlag, /* Deallocate page if true */
dan2c718872021-06-22 18:32:05 +00009789 i64 *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00009790){
danielk1977146ba992009-07-22 14:08:13 +00009791 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00009792 int rc;
drh4b70f112004-05-02 21:12:19 +00009793 unsigned char *pCell;
9794 int i;
dan8ce71842014-01-14 20:14:09 +00009795 int hdr;
drh80159da2016-12-09 17:32:51 +00009796 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00009797
drh1fee73e2007-08-29 04:00:57 +00009798 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00009799 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00009800 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00009801 }
drh28f58dd2015-06-27 19:45:03 +00009802 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00009803 if( rc ) return rc;
dan1273d692021-10-16 17:09:36 +00009804 if( (pBt->openFlags & BTREE_SINGLE)==0
drh9a4e8862022-02-14 18:18:56 +00009805 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
dan1273d692021-10-16 17:09:36 +00009806 ){
drhccf46d02015-04-01 13:21:33 +00009807 rc = SQLITE_CORRUPT_BKPT;
9808 goto cleardatabasepage_out;
9809 }
dan8ce71842014-01-14 20:14:09 +00009810 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00009811 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00009812 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00009813 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00009814 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009815 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009816 }
drh86c779f2021-05-15 13:08:44 +00009817 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
danielk19776b456a22005-03-21 04:04:02 +00009818 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009819 }
drha34b6762004-05-07 13:30:42 +00009820 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00009821 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009822 if( rc ) goto cleardatabasepage_out;
dan020c4f32021-06-22 18:06:23 +00009823 if( pPage->intKey ) pnChange = 0;
drha6df0e62021-06-03 18:51:51 +00009824 }
9825 if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00009826 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00009827 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00009828 }
9829 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00009830 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00009831 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00009832 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00009833 }
danielk19776b456a22005-03-21 04:04:02 +00009834
9835cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00009836 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00009837 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009838}
9839
9840/*
drhab01f612004-05-22 02:55:23 +00009841** Delete all information from a single table in the database. iTable is
9842** the page number of the root of the table. After this routine returns,
9843** the root page is empty, but still exists.
9844**
9845** This routine will fail with SQLITE_LOCKED if there are any open
9846** read cursors on the table. Open write cursors are moved to the
9847** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00009848**
drha6df0e62021-06-03 18:51:51 +00009849** If pnChange is not NULL, then the integer value pointed to by pnChange
9850** is incremented by the number of entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00009851*/
dan2c718872021-06-22 18:32:05 +00009852int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00009853 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009854 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009855 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009856 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009857
drhc046e3e2009-07-15 11:26:44 +00009858 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009859
drhc046e3e2009-07-15 11:26:44 +00009860 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009861 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9862 ** is the root of a table b-tree - if it is not, the following call is
9863 ** a no-op). */
drh49bb56e2021-05-14 20:01:36 +00009864 if( p->hasIncrblobCur ){
9865 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9866 }
danielk197762c14b32008-11-19 09:05:26 +00009867 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009868 }
drhd677b3d2007-08-20 22:48:41 +00009869 sqlite3BtreeLeave(p);
9870 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009871}
9872
9873/*
drh079a3072014-03-19 14:10:55 +00009874** Delete all information from the single table that pCur is open on.
9875**
9876** This routine only work for pCur on an ephemeral table.
9877*/
9878int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9879 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9880}
9881
9882/*
drh8b2f49b2001-06-08 00:21:52 +00009883** Erase all information in a table and add the root of the table to
9884** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009885** page 1) is never added to the freelist.
9886**
9887** This routine will fail with SQLITE_LOCKED if there are any open
9888** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009889**
9890** If AUTOVACUUM is enabled and the page at iTable is not the last
9891** root page in the database file, then the last root page
9892** in the database file is moved into the slot formerly occupied by
9893** iTable and that last slot formerly occupied by the last root page
9894** is added to the freelist instead of iTable. In this say, all
9895** root pages are kept at the beginning of the database file, which
9896** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9897** page number that used to be the last root page in the file before
9898** the move. If no page gets moved, *piMoved is set to 0.
9899** The last root page is recorded in meta[3] and the value of
9900** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009901*/
danielk197789d40042008-11-17 14:20:56 +00009902static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009903 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009904 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009905 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009906
drh1fee73e2007-08-29 04:00:57 +00009907 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009908 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009909 assert( iTable>=2 );
drh9a518842019-03-08 01:52:30 +00009910 if( iTable>btreePagecount(pBt) ){
9911 return SQLITE_CORRUPT_BKPT;
9912 }
drh055f2982016-01-15 15:06:41 +00009913
danielk1977c7af4842008-10-27 13:59:33 +00009914 rc = sqlite3BtreeClearTable(p, iTable, 0);
dan1273d692021-10-16 17:09:36 +00009915 if( rc ) return rc;
9916 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drhda125362021-10-16 18:53:36 +00009917 if( NEVER(rc) ){
danielk19776b456a22005-03-21 04:04:02 +00009918 releasePage(pPage);
9919 return rc;
9920 }
danielk1977a0bf2652004-11-04 14:30:04 +00009921
drh205f48e2004-11-05 00:43:11 +00009922 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009923
danielk1977a0bf2652004-11-04 14:30:04 +00009924#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009925 freePage(pPage, &rc);
9926 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009927#else
drh055f2982016-01-15 15:06:41 +00009928 if( pBt->autoVacuum ){
9929 Pgno maxRootPgno;
9930 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009931
drh055f2982016-01-15 15:06:41 +00009932 if( iTable==maxRootPgno ){
9933 /* If the table being dropped is the table with the largest root-page
9934 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009935 */
drhc314dc72009-07-21 11:52:34 +00009936 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009937 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009938 if( rc!=SQLITE_OK ){
9939 return rc;
9940 }
9941 }else{
9942 /* The table being dropped does not have the largest root-page
9943 ** number in the database. So move the page that does into the
9944 ** gap left by the deleted root-page.
9945 */
9946 MemPage *pMove;
9947 releasePage(pPage);
9948 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9949 if( rc!=SQLITE_OK ){
9950 return rc;
9951 }
9952 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9953 releasePage(pMove);
9954 if( rc!=SQLITE_OK ){
9955 return rc;
9956 }
9957 pMove = 0;
9958 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9959 freePage(pMove, &rc);
9960 releasePage(pMove);
9961 if( rc!=SQLITE_OK ){
9962 return rc;
9963 }
9964 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009965 }
drh055f2982016-01-15 15:06:41 +00009966
9967 /* Set the new 'max-root-page' value in the database header. This
9968 ** is the old value less one, less one more if that happens to
9969 ** be a root-page number, less one again if that is the
9970 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009971 */
drh055f2982016-01-15 15:06:41 +00009972 maxRootPgno--;
9973 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9974 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9975 maxRootPgno--;
9976 }
9977 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9978
9979 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9980 }else{
9981 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009982 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009983 }
drh055f2982016-01-15 15:06:41 +00009984#endif
drh8b2f49b2001-06-08 00:21:52 +00009985 return rc;
9986}
drhd677b3d2007-08-20 22:48:41 +00009987int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9988 int rc;
9989 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009990 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009991 sqlite3BtreeLeave(p);
9992 return rc;
9993}
drh8b2f49b2001-06-08 00:21:52 +00009994
drh001bbcb2003-03-19 03:14:00 +00009995
drh8b2f49b2001-06-08 00:21:52 +00009996/*
danielk1977602b4662009-07-02 07:47:33 +00009997** This function may only be called if the b-tree connection already
9998** has a read or write transaction open on the database.
9999**
drh23e11ca2004-05-04 17:27:28 +000010000** Read the meta-information out of a database file. Meta[0]
10001** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +000010002** through meta[15] are available for use by higher layers. Meta[0]
10003** is read-only, the others are read/write.
10004**
10005** The schema layer numbers meta values differently. At the schema
10006** layer (and the SetCookie and ReadCookie opcodes) the number of
10007** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +000010008**
10009** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
10010** of reading the value out of the header, it instead loads the "DataVersion"
10011** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
10012** database file. It is a number computed by the pager. But its access
10013** pattern is the same as header meta values, and so it is convenient to
10014** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +000010015*/
danielk1977602b4662009-07-02 07:47:33 +000010016void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +000010017 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +000010018
drhd677b3d2007-08-20 22:48:41 +000010019 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +000010020 assert( p->inTrans>TRANS_NONE );
drh346a70c2020-06-15 20:27:35 +000010021 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +000010022 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +000010023 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +000010024
drh91618562014-12-19 19:28:02 +000010025 if( idx==BTREE_DATA_VERSION ){
drh2b994ce2021-03-18 12:36:09 +000010026 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
drh91618562014-12-19 19:28:02 +000010027 }else{
10028 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
10029 }
drhae157872004-08-14 19:20:09 +000010030
danielk1977602b4662009-07-02 07:47:33 +000010031 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
10032 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +000010033#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +000010034 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
10035 pBt->btsFlags |= BTS_READ_ONLY;
10036 }
danielk1977003ba062004-11-04 02:57:33 +000010037#endif
drhae157872004-08-14 19:20:09 +000010038
drhd677b3d2007-08-20 22:48:41 +000010039 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +000010040}
10041
10042/*
drh23e11ca2004-05-04 17:27:28 +000010043** Write meta-information back into the database. Meta[0] is
10044** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +000010045*/
danielk1977aef0bf62005-12-30 16:28:01 +000010046int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
10047 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +000010048 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +000010049 int rc;
drh23e11ca2004-05-04 17:27:28 +000010050 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +000010051 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +000010052 assert( p->inTrans==TRANS_WRITE );
10053 assert( pBt->pPage1!=0 );
10054 pP1 = pBt->pPage1->aData;
10055 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10056 if( rc==SQLITE_OK ){
10057 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +000010058#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +000010059 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +000010060 assert( pBt->autoVacuum || iMeta==0 );
10061 assert( iMeta==0 || iMeta==1 );
10062 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +000010063 }
drh64022502009-01-09 14:11:04 +000010064#endif
drh5df72a52002-06-06 23:16:05 +000010065 }
drhd677b3d2007-08-20 22:48:41 +000010066 sqlite3BtreeLeave(p);
10067 return rc;
drh8b2f49b2001-06-08 00:21:52 +000010068}
drh8c42ca92001-06-22 19:15:00 +000010069
danielk1977a5533162009-02-24 10:01:51 +000010070/*
10071** The first argument, pCur, is a cursor opened on some b-tree. Count the
10072** number of entries in the b-tree and write the result to *pnEntry.
10073**
10074** SQLITE_OK is returned if the operation is successfully executed.
10075** Otherwise, if an error is encountered (i.e. an IO error or database
10076** corruption) an SQLite error code is returned.
10077*/
drh21f6daa2019-10-11 14:21:48 +000010078int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
danielk1977a5533162009-02-24 10:01:51 +000010079 i64 nEntry = 0; /* Value to return in *pnEntry */
10080 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +000010081
drh44548e72017-08-14 18:13:52 +000010082 rc = moveToRoot(pCur);
10083 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +000010084 *pnEntry = 0;
10085 return SQLITE_OK;
10086 }
danielk1977a5533162009-02-24 10:01:51 +000010087
10088 /* Unless an error occurs, the following loop runs one iteration for each
10089 ** page in the B-Tree structure (not including overflow pages).
10090 */
dan892edb62020-03-30 13:35:05 +000010091 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
danielk1977a5533162009-02-24 10:01:51 +000010092 int iIdx; /* Index of child node in parent */
10093 MemPage *pPage; /* Current page of the b-tree */
10094
10095 /* If this is a leaf page or the tree is not an int-key tree, then
10096 ** this page contains countable entries. Increment the entry counter
10097 ** accordingly.
10098 */
drh352a35a2017-08-15 03:46:47 +000010099 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +000010100 if( pPage->leaf || !pPage->intKey ){
10101 nEntry += pPage->nCell;
10102 }
10103
10104 /* pPage is a leaf node. This loop navigates the cursor so that it
10105 ** points to the first interior cell that it points to the parent of
10106 ** the next page in the tree that has not yet been visited. The
10107 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
10108 ** of the page, or to the number of cells in the page if the next page
10109 ** to visit is the right-child of its parent.
10110 **
10111 ** If all pages in the tree have been visited, return SQLITE_OK to the
10112 ** caller.
10113 */
10114 if( pPage->leaf ){
10115 do {
10116 if( pCur->iPage==0 ){
10117 /* All pages of the b-tree have been visited. Return successfully. */
10118 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +000010119 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +000010120 }
danielk197730548662009-07-09 05:07:37 +000010121 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +000010122 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +000010123
drh75e96b32017-04-01 00:20:06 +000010124 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +000010125 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +000010126 }
10127
10128 /* Descend to the child node of the cell that the cursor currently
10129 ** points at. This is the right-child if (iIdx==pPage->nCell).
10130 */
drh75e96b32017-04-01 00:20:06 +000010131 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +000010132 if( iIdx==pPage->nCell ){
10133 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
10134 }else{
10135 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
10136 }
10137 }
10138
shanebe217792009-03-05 04:20:31 +000010139 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +000010140 return rc;
10141}
drhdd793422001-06-28 01:54:48 +000010142
drhdd793422001-06-28 01:54:48 +000010143/*
drh5eddca62001-06-30 21:53:53 +000010144** Return the pager associated with a BTree. This routine is used for
10145** testing and debugging only.
drhdd793422001-06-28 01:54:48 +000010146*/
danielk1977aef0bf62005-12-30 16:28:01 +000010147Pager *sqlite3BtreePager(Btree *p){
10148 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +000010149}
drh5eddca62001-06-30 21:53:53 +000010150
drhb7f91642004-10-31 02:22:47 +000010151#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010152/*
10153** Append a message to the error message string.
10154*/
drh2e38c322004-09-03 18:38:44 +000010155static void checkAppendMsg(
10156 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +000010157 const char *zFormat,
10158 ...
10159){
10160 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +000010161 if( !pCheck->mxErr ) return;
10162 pCheck->mxErr--;
10163 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +000010164 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +000010165 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +000010166 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +000010167 }
drh867db832014-09-26 02:41:05 +000010168 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +000010169 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +000010170 }
drh0cdbe1a2018-05-09 13:46:26 +000010171 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +000010172 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +000010173 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drh8ddf6352020-06-29 18:30:49 +000010174 pCheck->bOomFault = 1;
drhc890fec2008-08-01 20:10:08 +000010175 }
drh5eddca62001-06-30 21:53:53 +000010176}
drhb7f91642004-10-31 02:22:47 +000010177#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010178
drhb7f91642004-10-31 02:22:47 +000010179#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +000010180
10181/*
10182** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
10183** corresponds to page iPg is already set.
10184*/
10185static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10186 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10187 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
10188}
10189
10190/*
10191** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10192*/
10193static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10194 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10195 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
10196}
10197
10198
drh5eddca62001-06-30 21:53:53 +000010199/*
10200** Add 1 to the reference count for page iPage. If this is the second
10201** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +000010202** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +000010203** if this is the first reference to the page.
10204**
10205** Also check that the page number is in bounds.
10206*/
drh867db832014-09-26 02:41:05 +000010207static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +000010208 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +000010209 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010210 return 1;
10211 }
dan1235bb12012-04-03 17:43:28 +000010212 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +000010213 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010214 return 1;
10215 }
dan892edb62020-03-30 13:35:05 +000010216 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
dan1235bb12012-04-03 17:43:28 +000010217 setPageReferenced(pCheck, iPage);
10218 return 0;
drh5eddca62001-06-30 21:53:53 +000010219}
10220
danielk1977afcdd022004-10-31 16:25:42 +000010221#ifndef SQLITE_OMIT_AUTOVACUUM
10222/*
10223** Check that the entry in the pointer-map for page iChild maps to
10224** page iParent, pointer type ptrType. If not, append an error message
10225** to pCheck.
10226*/
10227static void checkPtrmap(
10228 IntegrityCk *pCheck, /* Integrity check context */
10229 Pgno iChild, /* Child page number */
10230 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +000010231 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +000010232){
10233 int rc;
10234 u8 ePtrmapType;
10235 Pgno iPtrmapParent;
10236
10237 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
10238 if( rc!=SQLITE_OK ){
drh8ddf6352020-06-29 18:30:49 +000010239 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
drh867db832014-09-26 02:41:05 +000010240 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +000010241 return;
10242 }
10243
10244 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +000010245 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +000010246 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10247 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
10248 }
10249}
10250#endif
10251
drh5eddca62001-06-30 21:53:53 +000010252/*
10253** Check the integrity of the freelist or of an overflow page list.
10254** Verify that the number of pages on the list is N.
10255*/
drh30e58752002-03-02 20:41:57 +000010256static void checkList(
10257 IntegrityCk *pCheck, /* Integrity checking context */
10258 int isFreeList, /* True for a freelist. False for overflow page list */
drhabc38152020-07-22 13:38:04 +000010259 Pgno iPage, /* Page number for first page in the list */
drheaac9992019-02-26 16:17:06 +000010260 u32 N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +000010261){
10262 int i;
drheaac9992019-02-26 16:17:06 +000010263 u32 expected = N;
drh91d58662018-07-20 13:39:28 +000010264 int nErrAtStart = pCheck->nErr;
10265 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +000010266 DbPage *pOvflPage;
10267 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +000010268 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +000010269 N--;
drh9584f582015-11-04 20:22:37 +000010270 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +000010271 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010272 break;
10273 }
danielk19773b8a05f2007-03-19 17:44:26 +000010274 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +000010275 if( isFreeList ){
drhae104742018-12-14 17:57:01 +000010276 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +000010277#ifndef SQLITE_OMIT_AUTOVACUUM
10278 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010279 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010280 }
10281#endif
drhae104742018-12-14 17:57:01 +000010282 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +000010283 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +000010284 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +000010285 N--;
10286 }else{
drhae104742018-12-14 17:57:01 +000010287 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +000010288 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +000010289#ifndef SQLITE_OMIT_AUTOVACUUM
10290 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010291 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010292 }
10293#endif
drh867db832014-09-26 02:41:05 +000010294 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +000010295 }
10296 N -= n;
drh30e58752002-03-02 20:41:57 +000010297 }
drh30e58752002-03-02 20:41:57 +000010298 }
danielk1977afcdd022004-10-31 16:25:42 +000010299#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010300 else{
10301 /* If this database supports auto-vacuum and iPage is not the last
10302 ** page in this overflow list, check that the pointer-map entry for
10303 ** the following page matches iPage.
10304 */
10305 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +000010306 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +000010307 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +000010308 }
danielk1977afcdd022004-10-31 16:25:42 +000010309 }
10310#endif
danielk19773b8a05f2007-03-19 17:44:26 +000010311 iPage = get4byte(pOvflData);
10312 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +000010313 }
10314 if( N && nErrAtStart==pCheck->nErr ){
10315 checkAppendMsg(pCheck,
10316 "%s is %d but should be %d",
10317 isFreeList ? "size" : "overflow list length",
10318 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +000010319 }
10320}
drhb7f91642004-10-31 02:22:47 +000010321#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010322
drh67731a92015-04-16 11:56:03 +000010323/*
10324** An implementation of a min-heap.
10325**
10326** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +000010327** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +000010328** and aHeap[N*2+1].
10329**
10330** The heap property is this: Every node is less than or equal to both
10331** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +000010332** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +000010333**
10334** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10335** the heap, preserving the heap property. The btreeHeapPull() routine
10336** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +000010337** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +000010338** property.
10339**
10340** This heap is used for cell overlap and coverage testing. Each u32
10341** entry represents the span of a cell or freeblock on a btree page.
10342** The upper 16 bits are the index of the first byte of a range and the
10343** lower 16 bits are the index of the last byte of that range.
10344*/
10345static void btreeHeapInsert(u32 *aHeap, u32 x){
10346 u32 j, i = ++aHeap[0];
10347 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +000010348 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +000010349 x = aHeap[j];
10350 aHeap[j] = aHeap[i];
10351 aHeap[i] = x;
10352 i = j;
10353 }
10354}
10355static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10356 u32 j, i, x;
10357 if( (x = aHeap[0])==0 ) return 0;
10358 *pOut = aHeap[1];
10359 aHeap[1] = aHeap[x];
10360 aHeap[x] = 0xffffffff;
10361 aHeap[0]--;
10362 i = 1;
10363 while( (j = i*2)<=aHeap[0] ){
10364 if( aHeap[j]>aHeap[j+1] ) j++;
10365 if( aHeap[i]<aHeap[j] ) break;
10366 x = aHeap[i];
10367 aHeap[i] = aHeap[j];
10368 aHeap[j] = x;
10369 i = j;
10370 }
10371 return 1;
10372}
10373
drhb7f91642004-10-31 02:22:47 +000010374#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010375/*
10376** Do various sanity checks on a single page of a tree. Return
10377** the tree depth. Root pages return 0. Parents of root pages
10378** return 1, and so forth.
10379**
10380** These checks are done:
10381**
10382** 1. Make sure that cells and freeblocks do not overlap
10383** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +000010384** 2. Make sure integer cell keys are in order.
10385** 3. Check the integrity of overflow pages.
10386** 4. Recursively call checkTreePage on all children.
10387** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +000010388*/
10389static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +000010390 IntegrityCk *pCheck, /* Context for the sanity check */
drhabc38152020-07-22 13:38:04 +000010391 Pgno iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +000010392 i64 *piMinKey, /* Write minimum integer primary key here */
10393 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +000010394){
drhcbc6b712015-07-02 16:17:30 +000010395 MemPage *pPage = 0; /* The page being analyzed */
10396 int i; /* Loop counter */
10397 int rc; /* Result code from subroutine call */
10398 int depth = -1, d2; /* Depth of a subtree */
10399 int pgno; /* Page number */
10400 int nFrag; /* Number of fragmented bytes on the page */
10401 int hdr; /* Offset to the page header */
10402 int cellStart; /* Offset to the start of the cell pointer array */
10403 int nCell; /* Number of cells */
10404 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10405 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
10406 ** False if IPK must be strictly less than maxKey */
10407 u8 *data; /* Page content */
10408 u8 *pCell; /* Cell content */
10409 u8 *pCellIdx; /* Next element of the cell pointer array */
10410 BtShared *pBt; /* The BtShared object that owns pPage */
10411 u32 pc; /* Address of a cell */
10412 u32 usableSize; /* Usable size of the page */
10413 u32 contentOffset; /* Offset to the start of the cell content area */
10414 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +000010415 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +000010416 const char *saved_zPfx = pCheck->zPfx;
10417 int saved_v1 = pCheck->v1;
10418 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +000010419 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +000010420
drh5eddca62001-06-30 21:53:53 +000010421 /* Check that the page exists
10422 */
drhd9cb6ac2005-10-20 07:28:17 +000010423 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +000010424 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +000010425 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +000010426 if( checkRef(pCheck, iPage) ) return 0;
drhabc38152020-07-22 13:38:04 +000010427 pCheck->zPfx = "Page %u: ";
drh867db832014-09-26 02:41:05 +000010428 pCheck->v1 = iPage;
drhabc38152020-07-22 13:38:04 +000010429 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +000010430 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +000010431 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +000010432 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +000010433 }
danielk197793caf5a2009-07-11 06:55:33 +000010434
10435 /* Clear MemPage.isInit to make sure the corruption detection code in
10436 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +000010437 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +000010438 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +000010439 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +000010440 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +000010441 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +000010442 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +000010443 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +000010444 }
drhb0ea9432019-02-09 21:06:40 +000010445 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10446 assert( rc==SQLITE_CORRUPT );
10447 checkAppendMsg(pCheck, "free space corruption", rc);
10448 goto end_of_check;
10449 }
drhcbc6b712015-07-02 16:17:30 +000010450 data = pPage->aData;
10451 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +000010452
drhcbc6b712015-07-02 16:17:30 +000010453 /* Set up for cell analysis */
drhabc38152020-07-22 13:38:04 +000010454 pCheck->zPfx = "On tree page %u cell %d: ";
drhcbc6b712015-07-02 16:17:30 +000010455 contentOffset = get2byteNotZero(&data[hdr+5]);
10456 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
10457
10458 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10459 ** number of cells on the page. */
10460 nCell = get2byte(&data[hdr+3]);
10461 assert( pPage->nCell==nCell );
10462
10463 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10464 ** immediately follows the b-tree page header. */
10465 cellStart = hdr + 12 - 4*pPage->leaf;
10466 assert( pPage->aCellIdx==&data[cellStart] );
10467 pCellIdx = &data[cellStart + 2*(nCell-1)];
10468
10469 if( !pPage->leaf ){
10470 /* Analyze the right-child page of internal pages */
10471 pgno = get4byte(&data[hdr+8]);
10472#ifndef SQLITE_OMIT_AUTOVACUUM
10473 if( pBt->autoVacuum ){
drhabc38152020-07-22 13:38:04 +000010474 pCheck->zPfx = "On page %u at right child: ";
drhcbc6b712015-07-02 16:17:30 +000010475 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10476 }
10477#endif
10478 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10479 keyCanBeEqual = 0;
10480 }else{
10481 /* For leaf pages, the coverage check will occur in the same loop
10482 ** as the other cell checks, so initialize the heap. */
10483 heap = pCheck->heap;
10484 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +000010485 }
10486
drhcbc6b712015-07-02 16:17:30 +000010487 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10488 ** integer offsets to the cell contents. */
10489 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +000010490 CellInfo info;
drh5eddca62001-06-30 21:53:53 +000010491
drhcbc6b712015-07-02 16:17:30 +000010492 /* Check cell size */
drh867db832014-09-26 02:41:05 +000010493 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +000010494 assert( pCellIdx==&data[cellStart + i*2] );
10495 pc = get2byteAligned(pCellIdx);
10496 pCellIdx -= 2;
10497 if( pc<contentOffset || pc>usableSize-4 ){
10498 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10499 pc, contentOffset, usableSize-4);
10500 doCoverageCheck = 0;
10501 continue;
shaneh195475d2010-02-19 04:28:08 +000010502 }
drhcbc6b712015-07-02 16:17:30 +000010503 pCell = &data[pc];
10504 pPage->xParseCell(pPage, pCell, &info);
10505 if( pc+info.nSize>usableSize ){
10506 checkAppendMsg(pCheck, "Extends off end of page");
10507 doCoverageCheck = 0;
10508 continue;
drh5eddca62001-06-30 21:53:53 +000010509 }
10510
drhcbc6b712015-07-02 16:17:30 +000010511 /* Check for integer primary key out of range */
10512 if( pPage->intKey ){
10513 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10514 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10515 }
10516 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +000010517 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +000010518 }
10519
10520 /* Check the content overflow list */
10521 if( info.nPayload>info.nLocal ){
drheaac9992019-02-26 16:17:06 +000010522 u32 nPage; /* Number of pages on the overflow chain */
drhcbc6b712015-07-02 16:17:30 +000010523 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +000010524 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +000010525 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +000010526 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +000010527#ifndef SQLITE_OMIT_AUTOVACUUM
10528 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010529 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +000010530 }
10531#endif
drh867db832014-09-26 02:41:05 +000010532 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +000010533 }
10534
drh5eddca62001-06-30 21:53:53 +000010535 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +000010536 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +000010537 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +000010538#ifndef SQLITE_OMIT_AUTOVACUUM
10539 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010540 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +000010541 }
10542#endif
drhcbc6b712015-07-02 16:17:30 +000010543 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10544 keyCanBeEqual = 0;
10545 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +000010546 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +000010547 depth = d2;
drh5eddca62001-06-30 21:53:53 +000010548 }
drhcbc6b712015-07-02 16:17:30 +000010549 }else{
10550 /* Populate the coverage-checking heap for leaf pages */
10551 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +000010552 }
10553 }
drhcbc6b712015-07-02 16:17:30 +000010554 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +000010555
drh5eddca62001-06-30 21:53:53 +000010556 /* Check for complete coverage of the page
10557 */
drh867db832014-09-26 02:41:05 +000010558 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +000010559 if( doCoverageCheck && pCheck->mxErr>0 ){
10560 /* For leaf pages, the min-heap has already been initialized and the
10561 ** cells have already been inserted. But for internal pages, that has
10562 ** not yet been done, so do it now */
10563 if( !pPage->leaf ){
10564 heap = pCheck->heap;
10565 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +000010566 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +000010567 u32 size;
10568 pc = get2byteAligned(&data[cellStart+i*2]);
10569 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +000010570 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +000010571 }
drh2e38c322004-09-03 18:38:44 +000010572 }
drhcbc6b712015-07-02 16:17:30 +000010573 /* Add the freeblocks to the min-heap
10574 **
10575 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +000010576 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +000010577 ** freeblocks on the page.
10578 */
drh8c2bbb62009-07-10 02:52:20 +000010579 i = get2byte(&data[hdr+1]);
10580 while( i>0 ){
10581 int size, j;
drh5860a612019-02-12 16:58:26 +000010582 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010583 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +000010584 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +000010585 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +000010586 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10587 ** big-endian integer which is the offset in the b-tree page of the next
10588 ** freeblock in the chain, or zero if the freeblock is the last on the
10589 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +000010590 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +000010591 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10592 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +000010593 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10594 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010595 i = j;
drh2e38c322004-09-03 18:38:44 +000010596 }
drhcbc6b712015-07-02 16:17:30 +000010597 /* Analyze the min-heap looking for overlap between cells and/or
10598 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +000010599 **
10600 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10601 ** There is an implied first entry the covers the page header, the cell
10602 ** pointer index, and the gap between the cell pointer index and the start
10603 ** of cell content.
10604 **
10605 ** The loop below pulls entries from the min-heap in order and compares
10606 ** the start_address against the previous end_address. If there is an
10607 ** overlap, that means bytes are used multiple times. If there is a gap,
10608 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +000010609 */
10610 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +000010611 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +000010612 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +000010613 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +000010614 checkAppendMsg(pCheck,
drhabc38152020-07-22 13:38:04 +000010615 "Multiple uses for byte %u of page %u", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +000010616 break;
drh67731a92015-04-16 11:56:03 +000010617 }else{
drhcbc6b712015-07-02 16:17:30 +000010618 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +000010619 prev = x;
drh2e38c322004-09-03 18:38:44 +000010620 }
10621 }
drhcbc6b712015-07-02 16:17:30 +000010622 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +000010623 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10624 ** is stored in the fifth field of the b-tree page header.
10625 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10626 ** number of fragmented free bytes within the cell content area.
10627 */
drhcbc6b712015-07-02 16:17:30 +000010628 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +000010629 checkAppendMsg(pCheck,
drhabc38152020-07-22 13:38:04 +000010630 "Fragmentation of %d bytes reported as %d on page %u",
drhcbc6b712015-07-02 16:17:30 +000010631 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +000010632 }
10633 }
drh867db832014-09-26 02:41:05 +000010634
10635end_of_check:
drh72e191e2015-07-04 11:14:20 +000010636 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +000010637 releasePage(pPage);
drh867db832014-09-26 02:41:05 +000010638 pCheck->zPfx = saved_zPfx;
10639 pCheck->v1 = saved_v1;
10640 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +000010641 return depth+1;
drh5eddca62001-06-30 21:53:53 +000010642}
drhb7f91642004-10-31 02:22:47 +000010643#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010644
drhb7f91642004-10-31 02:22:47 +000010645#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010646/*
10647** This routine does a complete check of the given BTree file. aRoot[] is
10648** an array of pages numbers were each page number is the root page of
10649** a table. nRoot is the number of entries in aRoot.
10650**
danielk19773509a652009-07-06 18:56:13 +000010651** A read-only or read-write transaction must be opened before calling
10652** this function.
10653**
drhc890fec2008-08-01 20:10:08 +000010654** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010655** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010656** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010657** returned. If a memory allocation error occurs, NULL is returned.
drh17d2d592020-07-23 00:45:06 +000010658**
10659** If the first entry in aRoot[] is 0, that indicates that the list of
10660** root pages is incomplete. This is a "partial integrity-check". This
10661** happens when performing an integrity check on a single table. The
10662** zero is skipped, of course. But in addition, the freelist checks
10663** and the checks to make sure every page is referenced are also skipped,
10664** since obviously it is not possible to know which pages are covered by
10665** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10666** checks are still performed.
drh5eddca62001-06-30 21:53:53 +000010667*/
drh1dcdbc02007-01-27 02:24:54 +000010668char *sqlite3BtreeIntegrityCheck(
drh21f6daa2019-10-11 14:21:48 +000010669 sqlite3 *db, /* Database connection that is running the check */
drh1dcdbc02007-01-27 02:24:54 +000010670 Btree *p, /* The btree to be checked */
drhabc38152020-07-22 13:38:04 +000010671 Pgno *aRoot, /* An array of root pages numbers for individual trees */
drh1dcdbc02007-01-27 02:24:54 +000010672 int nRoot, /* Number of entries in aRoot[] */
10673 int mxErr, /* Stop reporting errors after this many */
10674 int *pnErr /* Write number of errors seen to this variable */
10675){
danielk197789d40042008-11-17 14:20:56 +000010676 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010677 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010678 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010679 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010680 char zErr[100];
drh17d2d592020-07-23 00:45:06 +000010681 int bPartial = 0; /* True if not checking all btrees */
10682 int bCkFreelist = 1; /* True to scan the freelist */
drh8deae5a2020-07-29 12:23:20 +000010683 VVA_ONLY( int nRef );
drh17d2d592020-07-23 00:45:06 +000010684 assert( nRoot>0 );
10685
10686 /* aRoot[0]==0 means this is a partial check */
10687 if( aRoot[0]==0 ){
10688 assert( nRoot>1 );
10689 bPartial = 1;
10690 if( aRoot[1]!=1 ) bCkFreelist = 0;
10691 }
drh5eddca62001-06-30 21:53:53 +000010692
drhd677b3d2007-08-20 22:48:41 +000010693 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010694 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010695 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10696 assert( nRef>=0 );
drh21f6daa2019-10-11 14:21:48 +000010697 sCheck.db = db;
drh5eddca62001-06-30 21:53:53 +000010698 sCheck.pBt = pBt;
10699 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010700 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010701 sCheck.mxErr = mxErr;
10702 sCheck.nErr = 0;
drh8ddf6352020-06-29 18:30:49 +000010703 sCheck.bOomFault = 0;
drh867db832014-09-26 02:41:05 +000010704 sCheck.zPfx = 0;
10705 sCheck.v1 = 0;
10706 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010707 sCheck.aPgRef = 0;
10708 sCheck.heap = 0;
10709 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010710 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010711 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010712 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010713 }
dan1235bb12012-04-03 17:43:28 +000010714
10715 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10716 if( !sCheck.aPgRef ){
drh8ddf6352020-06-29 18:30:49 +000010717 sCheck.bOomFault = 1;
drhe05b3f82015-07-01 17:53:49 +000010718 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010719 }
drhe05b3f82015-07-01 17:53:49 +000010720 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10721 if( sCheck.heap==0 ){
drh8ddf6352020-06-29 18:30:49 +000010722 sCheck.bOomFault = 1;
drhe05b3f82015-07-01 17:53:49 +000010723 goto integrity_ck_cleanup;
10724 }
10725
drh42cac6d2004-11-20 20:31:11 +000010726 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010727 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010728
10729 /* Check the integrity of the freelist
10730 */
drh17d2d592020-07-23 00:45:06 +000010731 if( bCkFreelist ){
10732 sCheck.zPfx = "Main freelist: ";
10733 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10734 get4byte(&pBt->pPage1->aData[36]));
10735 sCheck.zPfx = 0;
10736 }
drh5eddca62001-06-30 21:53:53 +000010737
10738 /* Check all the tables.
10739 */
drh040d77a2018-07-20 15:44:09 +000010740#ifndef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010741 if( !bPartial ){
10742 if( pBt->autoVacuum ){
drhed109c02020-07-23 09:14:25 +000010743 Pgno mx = 0;
10744 Pgno mxInHdr;
drh17d2d592020-07-23 00:45:06 +000010745 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10746 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10747 if( mx!=mxInHdr ){
10748 checkAppendMsg(&sCheck,
10749 "max rootpage (%d) disagrees with header (%d)",
10750 mx, mxInHdr
10751 );
10752 }
10753 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
drh040d77a2018-07-20 15:44:09 +000010754 checkAppendMsg(&sCheck,
drh17d2d592020-07-23 00:45:06 +000010755 "incremental_vacuum enabled with a max rootpage of zero"
drh040d77a2018-07-20 15:44:09 +000010756 );
10757 }
drh040d77a2018-07-20 15:44:09 +000010758 }
10759#endif
drhcbc6b712015-07-02 16:17:30 +000010760 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010761 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010762 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010763 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010764 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010765#ifndef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010766 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
drh867db832014-09-26 02:41:05 +000010767 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010768 }
10769#endif
drhcbc6b712015-07-02 16:17:30 +000010770 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000010771 }
drhcbc6b712015-07-02 16:17:30 +000010772 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000010773
10774 /* Make sure every page in the file is referenced
10775 */
drh17d2d592020-07-23 00:45:06 +000010776 if( !bPartial ){
10777 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000010778#ifdef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010779 if( getPageReferenced(&sCheck, i)==0 ){
10780 checkAppendMsg(&sCheck, "Page %d is never used", i);
10781 }
danielk1977afcdd022004-10-31 16:25:42 +000010782#else
drh17d2d592020-07-23 00:45:06 +000010783 /* If the database supports auto-vacuum, make sure no tables contain
10784 ** references to pointer-map pages.
10785 */
10786 if( getPageReferenced(&sCheck, i)==0 &&
10787 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10788 checkAppendMsg(&sCheck, "Page %d is never used", i);
10789 }
10790 if( getPageReferenced(&sCheck, i)!=0 &&
10791 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10792 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10793 }
danielk1977afcdd022004-10-31 16:25:42 +000010794#endif
drh47eb5612020-08-10 21:01:32 +000010795 }
drh5eddca62001-06-30 21:53:53 +000010796 }
10797
drh5eddca62001-06-30 21:53:53 +000010798 /* Clean up and report errors.
10799 */
drhe05b3f82015-07-01 17:53:49 +000010800integrity_ck_cleanup:
10801 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000010802 sqlite3_free(sCheck.aPgRef);
drh8ddf6352020-06-29 18:30:49 +000010803 if( sCheck.bOomFault ){
drh0cdbe1a2018-05-09 13:46:26 +000010804 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010805 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000010806 }
drh1dcdbc02007-01-27 02:24:54 +000010807 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000010808 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010809 /* Make sure this analysis did not leave any unref() pages. */
10810 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10811 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000010812 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000010813}
drhb7f91642004-10-31 02:22:47 +000010814#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000010815
drh73509ee2003-04-06 20:44:45 +000010816/*
drhd4e0bb02012-05-27 01:19:04 +000010817** Return the full pathname of the underlying database file. Return
10818** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000010819**
10820** The pager filename is invariant as long as the pager is
10821** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000010822*/
danielk1977aef0bf62005-12-30 16:28:01 +000010823const char *sqlite3BtreeGetFilename(Btree *p){
10824 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000010825 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000010826}
10827
10828/*
danielk19775865e3d2004-06-14 06:03:57 +000010829** Return the pathname of the journal file for this database. The return
10830** value of this routine is the same regardless of whether the journal file
10831** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000010832**
10833** The pager journal filename is invariant as long as the pager is
10834** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000010835*/
danielk1977aef0bf62005-12-30 16:28:01 +000010836const char *sqlite3BtreeGetJournalname(Btree *p){
10837 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000010838 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000010839}
10840
danielk19771d850a72004-05-31 08:26:49 +000010841/*
drh99744fa2020-08-25 19:09:07 +000010842** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10843** to describe the current transaction state of Btree p.
danielk19771d850a72004-05-31 08:26:49 +000010844*/
drh99744fa2020-08-25 19:09:07 +000010845int sqlite3BtreeTxnState(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000010846 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
drh99744fa2020-08-25 19:09:07 +000010847 return p ? p->inTrans : 0;
danielk19771d850a72004-05-31 08:26:49 +000010848}
10849
dana550f2d2010-08-02 10:47:05 +000010850#ifndef SQLITE_OMIT_WAL
10851/*
10852** Run a checkpoint on the Btree passed as the first argument.
10853**
10854** Return SQLITE_LOCKED if this or any other connection has an open
10855** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000010856**
dancdc1f042010-11-18 12:11:05 +000010857** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000010858*/
dancdc1f042010-11-18 12:11:05 +000010859int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000010860 int rc = SQLITE_OK;
10861 if( p ){
10862 BtShared *pBt = p->pBt;
10863 sqlite3BtreeEnter(p);
10864 if( pBt->inTransaction!=TRANS_NONE ){
10865 rc = SQLITE_LOCKED;
10866 }else{
dan7fb89902016-08-12 16:21:15 +000010867 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000010868 }
10869 sqlite3BtreeLeave(p);
10870 }
10871 return rc;
10872}
10873#endif
10874
danielk19771d850a72004-05-31 08:26:49 +000010875/*
drh99744fa2020-08-25 19:09:07 +000010876** Return true if there is currently a backup running on Btree p.
danielk19772372c2b2006-06-27 16:34:56 +000010877*/
danielk197704103022009-02-03 16:51:24 +000010878int sqlite3BtreeIsInBackup(Btree *p){
10879 assert( p );
10880 assert( sqlite3_mutex_held(p->db->mutex) );
10881 return p->nBackup!=0;
10882}
10883
danielk19772372c2b2006-06-27 16:34:56 +000010884/*
danielk1977da184232006-01-05 11:34:32 +000010885** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010886** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010887** purposes (for example, to store a high-level schema associated with
10888** the shared-btree). The btree layer manages reference counting issues.
10889**
10890** The first time this is called on a shared-btree, nBytes bytes of memory
10891** are allocated, zeroed, and returned to the caller. For each subsequent
10892** call the nBytes parameter is ignored and a pointer to the same blob
10893** of memory returned.
10894**
danielk1977171bfed2008-06-23 09:50:50 +000010895** If the nBytes parameter is 0 and the blob of memory has not yet been
10896** allocated, a null pointer is returned. If the blob has already been
10897** allocated, it is returned as normal.
10898**
danielk1977da184232006-01-05 11:34:32 +000010899** Just before the shared-btree is closed, the function passed as the
10900** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010901** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010902** on the memory, the btree layer does that.
10903*/
10904void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10905 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010906 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010907 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010908 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010909 pBt->xFreeSchema = xFree;
10910 }
drh27641702007-08-22 02:56:42 +000010911 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010912 return pBt->pSchema;
10913}
10914
danielk1977c87d34d2006-01-06 13:00:28 +000010915/*
danielk1977404ca072009-03-16 13:19:36 +000010916** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10917** btree as the argument handle holds an exclusive lock on the
drh1e32bed2020-06-19 13:33:53 +000010918** sqlite_schema table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010919*/
10920int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010921 int rc;
drhe5fe6902007-12-07 18:55:28 +000010922 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010923 sqlite3BtreeEnter(p);
drh346a70c2020-06-15 20:27:35 +000010924 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
danielk1977404ca072009-03-16 13:19:36 +000010925 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010926 sqlite3BtreeLeave(p);
10927 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010928}
10929
drha154dcd2006-03-22 22:10:07 +000010930
10931#ifndef SQLITE_OMIT_SHARED_CACHE
10932/*
10933** Obtain a lock on the table whose root page is iTab. The
10934** lock is a write lock if isWritelock is true or a read lock
10935** if it is false.
10936*/
danielk1977c00da102006-01-07 13:21:04 +000010937int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010938 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010939 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010940 if( p->sharable ){
10941 u8 lockType = READ_LOCK + isWriteLock;
10942 assert( READ_LOCK+1==WRITE_LOCK );
10943 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010944
drh6a9ad3d2008-04-02 16:29:30 +000010945 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010946 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010947 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010948 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010949 }
10950 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010951 }
10952 return rc;
10953}
drha154dcd2006-03-22 22:10:07 +000010954#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010955
danielk1977b4e9af92007-05-01 17:49:49 +000010956#ifndef SQLITE_OMIT_INCRBLOB
10957/*
10958** Argument pCsr must be a cursor opened for writing on an
10959** INTKEY table currently pointing at a valid table entry.
10960** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010961**
10962** Only the data content may only be modified, it is not possible to
10963** change the length of the data stored. If this function is called with
10964** parameters that attempt to write past the end of the existing data,
10965** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010966*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010967int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010968 int rc;
dan7a2347e2016-01-07 16:43:54 +000010969 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010970 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010971 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010972
danielk1977c9000e62009-07-08 13:55:28 +000010973 rc = restoreCursorPosition(pCsr);
10974 if( rc!=SQLITE_OK ){
10975 return rc;
10976 }
danielk19773588ceb2008-06-10 17:30:26 +000010977 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10978 if( pCsr->eState!=CURSOR_VALID ){
10979 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010980 }
10981
dan227a1c42013-04-03 11:17:39 +000010982 /* Save the positions of all other cursors open on this table. This is
10983 ** required in case any of them are holding references to an xFetch
10984 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010985 **
drh3f387402014-09-24 01:23:00 +000010986 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010987 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10988 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010989 */
drh370c9f42013-04-03 20:04:04 +000010990 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10991 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010992
danielk1977c9000e62009-07-08 13:55:28 +000010993 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010994 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010995 ** (b) there is a read/write transaction open,
10996 ** (c) the connection holds a write-lock on the table (if required),
10997 ** (d) there are no conflicting read-locks, and
10998 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010999 */
drh036dbec2014-03-11 23:40:44 +000011000 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000011001 return SQLITE_READONLY;
11002 }
drhc9166342012-01-05 23:32:06 +000011003 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
11004 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000011005 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
11006 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000011007 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000011008
drhfb192682009-07-11 18:26:28 +000011009 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000011010}
danielk19772dec9702007-05-02 16:48:37 +000011011
11012/*
dan5a500af2014-03-11 20:33:04 +000011013** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000011014*/
dan5a500af2014-03-11 20:33:04 +000011015void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000011016 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000011017 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000011018}
danielk1977b4e9af92007-05-01 17:49:49 +000011019#endif
dane04dc882010-04-20 18:53:15 +000011020
11021/*
11022** Set both the "read version" (single byte at byte offset 18) and
11023** "write version" (single byte at byte offset 19) fields in the database
11024** header to iVersion.
11025*/
11026int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
11027 BtShared *pBt = pBtree->pBt;
11028 int rc; /* Return code */
11029
dane04dc882010-04-20 18:53:15 +000011030 assert( iVersion==1 || iVersion==2 );
11031
danb9780022010-04-21 18:37:57 +000011032 /* If setting the version fields to 1, do not automatically open the
11033 ** WAL connection, even if the version fields are currently set to 2.
11034 */
drhc9166342012-01-05 23:32:06 +000011035 pBt->btsFlags &= ~BTS_NO_WAL;
11036 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000011037
drhbb2d9b12018-06-06 16:28:40 +000011038 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000011039 if( rc==SQLITE_OK ){
11040 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000011041 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000011042 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000011043 if( rc==SQLITE_OK ){
11044 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
11045 if( rc==SQLITE_OK ){
11046 aData[18] = (u8)iVersion;
11047 aData[19] = (u8)iVersion;
11048 }
11049 }
11050 }
dane04dc882010-04-20 18:53:15 +000011051 }
11052
drhc9166342012-01-05 23:32:06 +000011053 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000011054 return rc;
11055}
dan428c2182012-08-06 18:50:11 +000011056
drhe0997b32015-03-20 14:57:50 +000011057/*
11058** Return true if the cursor has a hint specified. This routine is
11059** only used from within assert() statements
11060*/
11061int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
11062 return (pCsr->hints & mask)!=0;
11063}
drhe0997b32015-03-20 14:57:50 +000011064
drh781597f2014-05-21 08:21:07 +000011065/*
11066** Return true if the given Btree is read-only.
11067*/
11068int sqlite3BtreeIsReadonly(Btree *p){
11069 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
11070}
drhdef68892014-11-04 12:11:23 +000011071
11072/*
11073** Return the size of the header added to each page by this module.
11074*/
drh37c057b2014-12-30 00:57:29 +000011075int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000011076
drh5a1fb182016-01-08 19:34:39 +000011077#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000011078/*
11079** Return true if the Btree passed as the only argument is sharable.
11080*/
11081int sqlite3BtreeSharable(Btree *p){
11082 return p->sharable;
11083}
dan272989b2016-07-06 10:12:02 +000011084
11085/*
11086** Return the number of connections to the BtShared object accessed by
11087** the Btree handle passed as the only argument. For private caches
11088** this is always 1. For shared caches it may be 1 or greater.
11089*/
11090int sqlite3BtreeConnectionCount(Btree *p){
11091 testcase( p->sharable );
11092 return p->pBt->nRef;
11093}
drh5a1fb182016-01-08 19:34:39 +000011094#endif