blob: c5adb26d62651cebe20073b35b1dc7857b562ca1 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
danielk19773b8a05f2007-03-19 17:44:26 +000012** $Id: btree.c,v 1.341 2007/03/19 17:44:27 danielk1977 Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
15** For a detailed discussion of BTrees, refer to
16**
17** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
18** "Sorting And Searching", pages 473-480. Addison-Wesley
19** Publishing Company, Reading, Massachusetts.
20**
21** The basic idea is that each page of the file contains N database
22** entries and N+1 pointers to subpages.
23**
24** ----------------------------------------------------------------
25** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
26** ----------------------------------------------------------------
27**
28** All of the keys on the page that Ptr(0) points to have values less
29** than Key(0). All of the keys on page Ptr(1) and its subpages have
30** values greater than Key(0) and less than Key(1). All of the keys
31** on Ptr(N+1) and its subpages have values greater than Key(N). And
32** so forth.
33**
drh5e00f6c2001-09-13 13:46:56 +000034** Finding a particular key requires reading O(log(M)) pages from the
35** disk where M is the number of entries in the tree.
drh8b2f49b2001-06-08 00:21:52 +000036**
37** In this implementation, a single file can hold one or more separate
38** BTrees. Each BTree is identified by the index of its root page. The
drh9e572e62004-04-23 23:43:10 +000039** key and data for any entry are combined to form the "payload". A
40** fixed amount of payload can be carried directly on the database
41** page. If the payload is larger than the preset amount then surplus
42** bytes are stored on overflow pages. The payload for an entry
43** and the preceding pointer are combined to form a "Cell". Each
44** page has a small header which contains the Ptr(N+1) pointer and other
45** information such as the size of key and data.
drh8b2f49b2001-06-08 00:21:52 +000046**
drh9e572e62004-04-23 23:43:10 +000047** FORMAT DETAILS
48**
49** The file is divided into pages. The first page is called page 1,
50** the second is page 2, and so forth. A page number of zero indicates
51** "no such page". The page size can be anything between 512 and 65536.
52** Each page can be either a btree page, a freelist page or an overflow
53** page.
54**
55** The first page is always a btree page. The first 100 bytes of the first
drh271efa52004-05-30 19:19:05 +000056** page contain a special header (the "file header") that describes the file.
57** The format of the file header is as follows:
drh9e572e62004-04-23 23:43:10 +000058**
59** OFFSET SIZE DESCRIPTION
drhde647132004-05-07 17:57:49 +000060** 0 16 Header string: "SQLite format 3\000"
drh9e572e62004-04-23 23:43:10 +000061** 16 2 Page size in bytes.
62** 18 1 File format write version
63** 19 1 File format read version
drh6f11bef2004-05-13 01:12:56 +000064** 20 1 Bytes of unused space at the end of each page
65** 21 1 Max embedded payload fraction
66** 22 1 Min embedded payload fraction
67** 23 1 Min leaf payload fraction
68** 24 4 File change counter
69** 28 4 Reserved for future use
drh9e572e62004-04-23 23:43:10 +000070** 32 4 First freelist page
71** 36 4 Number of freelist pages in the file
72** 40 60 15 4-byte meta values passed to higher layers
73**
74** All of the integer values are big-endian (most significant byte first).
drh6f11bef2004-05-13 01:12:56 +000075**
drhab01f612004-05-22 02:55:23 +000076** The file change counter is incremented when the database is changed more
drh6f11bef2004-05-13 01:12:56 +000077** than once within the same second. This counter, together with the
78** modification time of the file, allows other processes to know
79** when the file has changed and thus when they need to flush their
80** cache.
81**
82** The max embedded payload fraction is the amount of the total usable
83** space in a page that can be consumed by a single cell for standard
84** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
85** is to limit the maximum cell size so that at least 4 cells will fit
drhab01f612004-05-22 02:55:23 +000086** on one page. Thus the default max embedded payload fraction is 64.
drh6f11bef2004-05-13 01:12:56 +000087**
88** If the payload for a cell is larger than the max payload, then extra
89** payload is spilled to overflow pages. Once an overflow page is allocated,
90** as many bytes as possible are moved into the overflow pages without letting
91** the cell size drop below the min embedded payload fraction.
92**
93** The min leaf payload fraction is like the min embedded payload fraction
94** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
95** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
96** not specified in the header.
drh9e572e62004-04-23 23:43:10 +000097**
drh43605152004-05-29 21:46:49 +000098** Each btree pages is divided into three sections: The header, the
99** cell pointer array, and the cell area area. Page 1 also has a 100-byte
drh271efa52004-05-30 19:19:05 +0000100** file header that occurs before the page header.
101**
102** |----------------|
103** | file header | 100 bytes. Page 1 only.
104** |----------------|
105** | page header | 8 bytes for leaves. 12 bytes for interior nodes
106** |----------------|
107** | cell pointer | | 2 bytes per cell. Sorted order.
108** | array | | Grows downward
109** | | v
110** |----------------|
111** | unallocated |
112** | space |
113** |----------------| ^ Grows upwards
114** | cell content | | Arbitrary order interspersed with freeblocks.
115** | area | | and free space fragments.
116** |----------------|
drh43605152004-05-29 21:46:49 +0000117**
118** The page headers looks like this:
drh9e572e62004-04-23 23:43:10 +0000119**
120** OFFSET SIZE DESCRIPTION
drh6f11bef2004-05-13 01:12:56 +0000121** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
drh9e572e62004-04-23 23:43:10 +0000122** 1 2 byte offset to the first freeblock
drh43605152004-05-29 21:46:49 +0000123** 3 2 number of cells on this page
drh271efa52004-05-30 19:19:05 +0000124** 5 2 first byte of the cell content area
drh43605152004-05-29 21:46:49 +0000125** 7 1 number of fragmented free bytes
drh271efa52004-05-30 19:19:05 +0000126** 8 4 Right child (the Ptr(N+1) value). Omitted on leaves.
drh9e572e62004-04-23 23:43:10 +0000127**
128** The flags define the format of this btree page. The leaf flag means that
129** this page has no children. The zerodata flag means that this page carries
drh44f87bd2004-09-27 13:19:51 +0000130** only keys and no data. The intkey flag means that the key is a integer
131** which is stored in the key size entry of the cell header rather than in
132** the payload area.
drh9e572e62004-04-23 23:43:10 +0000133**
drh43605152004-05-29 21:46:49 +0000134** The cell pointer array begins on the first byte after the page header.
135** The cell pointer array contains zero or more 2-byte numbers which are
136** offsets from the beginning of the page to the cell content in the cell
137** content area. The cell pointers occur in sorted order. The system strives
138** to keep free space after the last cell pointer so that new cells can
drh44f87bd2004-09-27 13:19:51 +0000139** be easily added without having to defragment the page.
drh43605152004-05-29 21:46:49 +0000140**
141** Cell content is stored at the very end of the page and grows toward the
142** beginning of the page.
143**
144** Unused space within the cell content area is collected into a linked list of
145** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
146** to the first freeblock is given in the header. Freeblocks occur in
147** increasing order. Because a freeblock must be at least 4 bytes in size,
148** any group of 3 or fewer unused bytes in the cell content area cannot
149** exist on the freeblock chain. A group of 3 or fewer free bytes is called
150** a fragment. The total number of bytes in all fragments is recorded.
151** in the page header at offset 7.
152**
153** SIZE DESCRIPTION
154** 2 Byte offset of the next freeblock
155** 2 Bytes in this freeblock
156**
157** Cells are of variable length. Cells are stored in the cell content area at
158** the end of the page. Pointers to the cells are in the cell pointer array
159** that immediately follows the page header. Cells is not necessarily
160** contiguous or in order, but cell pointers are contiguous and in order.
161**
162** Cell content makes use of variable length integers. A variable
163** length integer is 1 to 9 bytes where the lower 7 bits of each
drh9e572e62004-04-23 23:43:10 +0000164** byte are used. The integer consists of all bytes that have bit 8 set and
drh6f11bef2004-05-13 01:12:56 +0000165** the first byte with bit 8 clear. The most significant byte of the integer
drhab01f612004-05-22 02:55:23 +0000166** appears first. A variable-length integer may not be more than 9 bytes long.
167** As a special case, all 8 bytes of the 9th byte are used as data. This
168** allows a 64-bit integer to be encoded in 9 bytes.
drh9e572e62004-04-23 23:43:10 +0000169**
170** 0x00 becomes 0x00000000
drh6f11bef2004-05-13 01:12:56 +0000171** 0x7f becomes 0x0000007f
172** 0x81 0x00 becomes 0x00000080
173** 0x82 0x00 becomes 0x00000100
174** 0x80 0x7f becomes 0x0000007f
175** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
drh9e572e62004-04-23 23:43:10 +0000176** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
177**
178** Variable length integers are used for rowids and to hold the number of
179** bytes of key and data in a btree cell.
180**
drh43605152004-05-29 21:46:49 +0000181** The content of a cell looks like this:
drh9e572e62004-04-23 23:43:10 +0000182**
183** SIZE DESCRIPTION
drh3aac2dd2004-04-26 14:10:20 +0000184** 4 Page number of the left child. Omitted if leaf flag is set.
185** var Number of bytes of data. Omitted if the zerodata flag is set.
186** var Number of bytes of key. Or the key itself if intkey flag is set.
drh9e572e62004-04-23 23:43:10 +0000187** * Payload
188** 4 First page of the overflow chain. Omitted if no overflow
189**
190** Overflow pages form a linked list. Each page except the last is completely
191** filled with data (pagesize - 4 bytes). The last page can have as little
192** as 1 byte of data.
193**
194** SIZE DESCRIPTION
195** 4 Page number of next overflow page
196** * Data
197**
198** Freelist pages come in two subtypes: trunk pages and leaf pages. The
199** file header points to first in a linked list of trunk page. Each trunk
200** page points to multiple leaf pages. The content of a leaf page is
201** unspecified. A trunk page looks like this:
202**
203** SIZE DESCRIPTION
204** 4 Page number of next trunk page
205** 4 Number of leaf pointers on this page
206** * zero or more pages numbers of leaves
drha059ad02001-04-17 20:09:11 +0000207*/
208#include "sqliteInt.h"
209#include "pager.h"
210#include "btree.h"
drh1f595712004-06-15 01:40:29 +0000211#include "os.h"
drha059ad02001-04-17 20:09:11 +0000212#include <assert.h>
213
drhc96d8532005-05-03 12:30:33 +0000214/* Round up a number to the next larger multiple of 8. This is used
215** to force 8-byte alignment on 64-bit architectures.
216*/
217#define ROUND8(x) ((x+7)&~7)
218
219
drh4b70f112004-05-02 21:12:19 +0000220/* The following value is the maximum cell size assuming a maximum page
221** size give above.
222*/
drh2e38c322004-09-03 18:38:44 +0000223#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
drh4b70f112004-05-02 21:12:19 +0000224
225/* The maximum number of cells on a single page of the database. This
226** assumes a minimum cell size of 3 bytes. Such small cells will be
227** exceedingly rare, but they are possible.
228*/
drh2e38c322004-09-03 18:38:44 +0000229#define MX_CELL(pBt) ((pBt->pageSize-8)/3)
drh4b70f112004-05-02 21:12:19 +0000230
paulb95a8862003-04-01 21:16:41 +0000231/* Forward declarations */
drh3aac2dd2004-04-26 14:10:20 +0000232typedef struct MemPage MemPage;
danielk1977aef0bf62005-12-30 16:28:01 +0000233typedef struct BtLock BtLock;
paulb95a8862003-04-01 21:16:41 +0000234
drh8c42ca92001-06-22 19:15:00 +0000235/*
drhbd03cae2001-06-02 02:40:57 +0000236** This is a magic string that appears at the beginning of every
drh8c42ca92001-06-22 19:15:00 +0000237** SQLite database in order to identify the file as a real database.
drh556b2a22005-06-14 16:04:05 +0000238**
239** You can change this value at compile-time by specifying a
240** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
241** header must be exactly 16 bytes including the zero-terminator so
242** the string itself should be 15 characters long. If you change
243** the header, then your custom library will not be able to read
244** databases generated by the standard tools and the standard tools
245** will not be able to read databases created by your custom library.
246*/
247#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
248# define SQLITE_FILE_HEADER "SQLite format 3"
249#endif
250static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +0000251
252/*
drh4b70f112004-05-02 21:12:19 +0000253** Page type flags. An ORed combination of these flags appear as the
254** first byte of every BTree page.
drh8c42ca92001-06-22 19:15:00 +0000255*/
drhde647132004-05-07 17:57:49 +0000256#define PTF_INTKEY 0x01
drh9e572e62004-04-23 23:43:10 +0000257#define PTF_ZERODATA 0x02
drh8b18dd42004-05-12 19:18:15 +0000258#define PTF_LEAFDATA 0x04
259#define PTF_LEAF 0x08
drh8c42ca92001-06-22 19:15:00 +0000260
261/*
drh9e572e62004-04-23 23:43:10 +0000262** As each page of the file is loaded into memory, an instance of the following
263** structure is appended and initialized to zero. This structure stores
264** information about the page that is decoded from the raw file page.
drh14acc042001-06-10 19:56:58 +0000265**
drh72f82862001-05-24 21:06:34 +0000266** The pParent field points back to the parent page. This allows us to
267** walk up the BTree from any leaf to the root. Care must be taken to
268** unref() the parent page pointer when this page is no longer referenced.
drhbd03cae2001-06-02 02:40:57 +0000269** The pageDestructor() routine handles that chore.
drh7e3b0a02001-04-28 16:52:40 +0000270*/
271struct MemPage {
drha6abd042004-06-09 17:37:22 +0000272 u8 isInit; /* True if previously initialized. MUST BE FIRST! */
drh43605152004-05-29 21:46:49 +0000273 u8 idxShift; /* True if Cell indices have changed */
274 u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
275 u8 intKey; /* True if intkey flag is set */
276 u8 leaf; /* True if leaf flag is set */
277 u8 zeroData; /* True if table stores keys only */
278 u8 leafData; /* True if tables stores data on leaves only */
279 u8 hasData; /* True if this page stores data */
280 u8 hdrOffset; /* 100 for page 1. 0 otherwise */
drh271efa52004-05-30 19:19:05 +0000281 u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
drha2fce642004-06-05 00:01:44 +0000282 u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */
283 u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */
drh43605152004-05-29 21:46:49 +0000284 u16 cellOffset; /* Index in aData of first cell pointer */
285 u16 idxParent; /* Index in parent of this node */
286 u16 nFree; /* Number of free bytes on the page */
287 u16 nCell; /* Number of cells on this page, local and ovfl */
288 struct _OvflCell { /* Cells that will not fit on aData[] */
danielk1977aef0bf62005-12-30 16:28:01 +0000289 u8 *pCell; /* Pointers to the body of the overflow cell */
290 u16 idx; /* Insert this cell before idx-th non-overflow cell */
drha2fce642004-06-05 00:01:44 +0000291 } aOvfl[5];
drh47ded162006-01-06 01:42:58 +0000292 BtShared *pBt; /* Pointer back to BTree structure */
293 u8 *aData; /* Pointer back to the start of the page */
danielk19773b8a05f2007-03-19 17:44:26 +0000294 DbPage *pDbPage; /* Pager page handle */
drh47ded162006-01-06 01:42:58 +0000295 Pgno pgno; /* Page number for this page */
296 MemPage *pParent; /* The parent of this page. NULL for root */
drh8c42ca92001-06-22 19:15:00 +0000297};
drh7e3b0a02001-04-28 16:52:40 +0000298
299/*
drh3b7511c2001-05-26 13:15:44 +0000300** The in-memory image of a disk page has the auxiliary information appended
301** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
302** that extra information.
303*/
drh3aac2dd2004-04-26 14:10:20 +0000304#define EXTRA_SIZE sizeof(MemPage)
drh3b7511c2001-05-26 13:15:44 +0000305
danielk1977aef0bf62005-12-30 16:28:01 +0000306/* Btree handle */
307struct Btree {
308 sqlite3 *pSqlite;
309 BtShared *pBt;
310 u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
311};
312
313/*
314** Btree.inTrans may take one of the following values.
315**
316** If the shared-data extension is enabled, there may be multiple users
317** of the Btree structure. At most one of these may open a write transaction,
318** but any number may have active read transactions. Variable Btree.pDb
319** points to the handle that owns any current write-transaction.
320*/
321#define TRANS_NONE 0
322#define TRANS_READ 1
323#define TRANS_WRITE 2
324
drh3b7511c2001-05-26 13:15:44 +0000325/*
drha059ad02001-04-17 20:09:11 +0000326** Everything we need to know about an open database
327*/
danielk1977aef0bf62005-12-30 16:28:01 +0000328struct BtShared {
drha059ad02001-04-17 20:09:11 +0000329 Pager *pPager; /* The page cache */
drh306dc212001-05-21 13:45:10 +0000330 BtCursor *pCursor; /* A list of all open cursors */
drh3aac2dd2004-04-26 14:10:20 +0000331 MemPage *pPage1; /* First page of the database */
drhab01f612004-05-22 02:55:23 +0000332 u8 inStmt; /* True if we are in a statement subtransaction */
drh5df72a52002-06-06 23:16:05 +0000333 u8 readOnly; /* True if the underlying file is readonly */
drhab01f612004-05-22 02:55:23 +0000334 u8 maxEmbedFrac; /* Maximum payload as % of total page size */
335 u8 minEmbedFrac; /* Minimum payload as % of total page size */
336 u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
drh90f5ecb2004-07-22 01:19:35 +0000337 u8 pageSizeFixed; /* True if the page size can no longer be changed */
drh057cd3a2005-02-15 16:23:02 +0000338#ifndef SQLITE_OMIT_AUTOVACUUM
339 u8 autoVacuum; /* True if database supports auto-vacuum */
340#endif
drha2fce642004-06-05 00:01:44 +0000341 u16 pageSize; /* Total number of bytes on a page */
342 u16 usableSize; /* Number of usable bytes on each page */
drh6f11bef2004-05-13 01:12:56 +0000343 int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
344 int minLocal; /* Minimum local payload in non-LEAFDATA tables */
345 int maxLeaf; /* Maximum local payload in a LEAFDATA table */
346 int minLeaf; /* Minimum local payload in a LEAFDATA table */
drhb8ef32c2005-03-14 02:01:49 +0000347 BusyHandler *pBusyHandler; /* Callback for when there is lock contention */
danielk1977aef0bf62005-12-30 16:28:01 +0000348 u8 inTransaction; /* Transaction state */
danielk1977aef0bf62005-12-30 16:28:01 +0000349 int nRef; /* Number of references to this structure */
350 int nTransaction; /* Number of open transactions (read + write) */
danielk19772e94d4d2006-01-09 05:36:27 +0000351 void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
352 void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
353#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000354 BtLock *pLock; /* List of locks held on this shared-btree struct */
danielk1977e501b892006-01-09 06:29:47 +0000355 BtShared *pNext; /* Next in ThreadData.pBtree linked list */
danielk19772e94d4d2006-01-09 05:36:27 +0000356#endif
drha059ad02001-04-17 20:09:11 +0000357};
danielk1977ee5741e2004-05-31 10:01:34 +0000358
359/*
drhfa1a98a2004-05-14 19:08:17 +0000360** An instance of the following structure is used to hold information
drh271efa52004-05-30 19:19:05 +0000361** about a cell. The parseCellPtr() function fills in this structure
drhab01f612004-05-22 02:55:23 +0000362** based on information extract from the raw disk page.
drhfa1a98a2004-05-14 19:08:17 +0000363*/
364typedef struct CellInfo CellInfo;
365struct CellInfo {
drh43605152004-05-29 21:46:49 +0000366 u8 *pCell; /* Pointer to the start of cell content */
drhfa1a98a2004-05-14 19:08:17 +0000367 i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
368 u32 nData; /* Number of bytes of data */
drh72365832007-03-06 15:53:44 +0000369 u32 nPayload; /* Total amount of payload */
drh271efa52004-05-30 19:19:05 +0000370 u16 nHeader; /* Size of the cell content header in bytes */
drhfa1a98a2004-05-14 19:08:17 +0000371 u16 nLocal; /* Amount of payload held locally */
drhab01f612004-05-22 02:55:23 +0000372 u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
drh271efa52004-05-30 19:19:05 +0000373 u16 nSize; /* Size of the cell content on the main b-tree page */
drhfa1a98a2004-05-14 19:08:17 +0000374};
375
376/*
drh365d68f2001-05-11 11:02:46 +0000377** A cursor is a pointer to a particular entry in the BTree.
378** The entry is identified by its MemPage and the index in
drha34b6762004-05-07 13:30:42 +0000379** MemPage.aCell[] of the entry.
drh365d68f2001-05-11 11:02:46 +0000380*/
drh72f82862001-05-24 21:06:34 +0000381struct BtCursor {
danielk1977aef0bf62005-12-30 16:28:01 +0000382 Btree *pBtree; /* The Btree to which this cursor belongs */
drh14acc042001-06-10 19:56:58 +0000383 BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
drh3aac2dd2004-04-26 14:10:20 +0000384 int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
385 void *pArg; /* First arg to xCompare() */
drh8b2f49b2001-06-08 00:21:52 +0000386 Pgno pgnoRoot; /* The root page of this tree */
drh5e2f8b92001-05-28 00:41:15 +0000387 MemPage *pPage; /* Page that contains the entry */
drh3aac2dd2004-04-26 14:10:20 +0000388 int idx; /* Index of the entry in pPage->aCell[] */
drhfa1a98a2004-05-14 19:08:17 +0000389 CellInfo info; /* A parse of the cell we are pointing at */
drhecdc7532001-09-23 02:35:53 +0000390 u8 wrFlag; /* True if writable */
danielk1977da184232006-01-05 11:34:32 +0000391 u8 eState; /* One of the CURSOR_XXX constants (see below) */
drh4eeb1ff2006-03-23 14:03:00 +0000392 void *pKey; /* Saved key that was cursor's last known position */
393 i64 nKey; /* Size of pKey, or last integer key */
danielk1977da184232006-01-05 11:34:32 +0000394 int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
drh365d68f2001-05-11 11:02:46 +0000395};
drh7e3b0a02001-04-28 16:52:40 +0000396
drha059ad02001-04-17 20:09:11 +0000397/*
drh980b1a72006-08-16 16:42:48 +0000398** Potential values for BtCursor.eState.
danielk1977da184232006-01-05 11:34:32 +0000399**
400** CURSOR_VALID:
401** Cursor points to a valid entry. getPayload() etc. may be called.
402**
403** CURSOR_INVALID:
404** Cursor does not point to a valid entry. This can happen (for example)
405** because the table is empty or because BtreeCursorFirst() has not been
406** called.
407**
408** CURSOR_REQUIRESEEK:
409** The table that this cursor was opened on still exists, but has been
410** modified since the cursor was last used. The cursor position is saved
411** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
danielk1977955de522006-02-10 02:27:42 +0000412** this state, restoreOrClearCursorPosition() can be called to attempt to
413** seek the cursor to the saved position.
danielk1977da184232006-01-05 11:34:32 +0000414*/
415#define CURSOR_INVALID 0
416#define CURSOR_VALID 1
417#define CURSOR_REQUIRESEEK 2
418
419/*
drh615ae552005-01-16 23:21:00 +0000420** The TRACE macro will print high-level status information about the
421** btree operation when the global variable sqlite3_btree_trace is
422** enabled.
423*/
424#if SQLITE_TEST
425# define TRACE(X) if( sqlite3_btree_trace )\
drhd3627af2006-12-18 18:34:51 +0000426/* { sqlite3DebugPrintf X; fflush(stdout); } */ \
427{ printf X; fflush(stdout); }
drh0f7eb612006-08-08 13:51:43 +0000428int sqlite3_btree_trace=0; /* True to enable tracing */
drh615ae552005-01-16 23:21:00 +0000429#else
430# define TRACE(X)
431#endif
drh615ae552005-01-16 23:21:00 +0000432
433/*
drh66cbd152004-09-01 16:12:25 +0000434** Forward declaration
435*/
drh980b1a72006-08-16 16:42:48 +0000436static int checkReadLocks(Btree*,Pgno,BtCursor*);
drh66cbd152004-09-01 16:12:25 +0000437
drh66cbd152004-09-01 16:12:25 +0000438/*
drhab01f612004-05-22 02:55:23 +0000439** Read or write a two- and four-byte big-endian integer values.
drh0d316a42002-08-11 20:10:47 +0000440*/
drh9e572e62004-04-23 23:43:10 +0000441static u32 get2byte(unsigned char *p){
442 return (p[0]<<8) | p[1];
drh0d316a42002-08-11 20:10:47 +0000443}
drh9e572e62004-04-23 23:43:10 +0000444static u32 get4byte(unsigned char *p){
445 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
446}
drh9e572e62004-04-23 23:43:10 +0000447static void put2byte(unsigned char *p, u32 v){
448 p[0] = v>>8;
449 p[1] = v;
450}
451static void put4byte(unsigned char *p, u32 v){
452 p[0] = v>>24;
453 p[1] = v>>16;
454 p[2] = v>>8;
455 p[3] = v;
456}
drh6f11bef2004-05-13 01:12:56 +0000457
drh9e572e62004-04-23 23:43:10 +0000458/*
drhab01f612004-05-22 02:55:23 +0000459** Routines to read and write variable-length integers. These used to
460** be defined locally, but now we use the varint routines in the util.c
461** file.
drh9e572e62004-04-23 23:43:10 +0000462*/
drh6d2fb152004-05-14 16:50:06 +0000463#define getVarint sqlite3GetVarint
drh504b6982006-01-22 21:52:56 +0000464/* #define getVarint32 sqlite3GetVarint32 */
465#define getVarint32(A,B) ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B))
drh6d2fb152004-05-14 16:50:06 +0000466#define putVarint sqlite3PutVarint
drh0d316a42002-08-11 20:10:47 +0000467
danielk1977599fcba2004-11-08 07:13:13 +0000468/* The database page the PENDING_BYTE occupies. This page is never used.
469** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
470** should possibly be consolidated (presumably in pager.h).
drhfe9a9142006-03-14 12:59:10 +0000471**
472** If disk I/O is omitted (meaning that the database is stored purely
473** in memory) then there is no pending byte.
danielk1977599fcba2004-11-08 07:13:13 +0000474*/
drhfe9a9142006-03-14 12:59:10 +0000475#ifdef SQLITE_OMIT_DISKIO
476# define PENDING_BYTE_PAGE(pBt) 0x7fffffff
477#else
478# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
479#endif
danielk1977afcdd022004-10-31 16:25:42 +0000480
danielk1977aef0bf62005-12-30 16:28:01 +0000481/*
482** A linked list of the following structures is stored at BtShared.pLock.
483** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
484** is opened on the table with root page BtShared.iTable. Locks are removed
485** from this list when a transaction is committed or rolled back, or when
486** a btree handle is closed.
487*/
488struct BtLock {
489 Btree *pBtree; /* Btree handle holding this lock */
490 Pgno iTable; /* Root page of table */
491 u8 eLock; /* READ_LOCK or WRITE_LOCK */
492 BtLock *pNext; /* Next in BtShared.pLock list */
493};
494
495/* Candidate values for BtLock.eLock */
496#define READ_LOCK 1
497#define WRITE_LOCK 2
498
499#ifdef SQLITE_OMIT_SHARED_CACHE
500 /*
501 ** The functions queryTableLock(), lockTable() and unlockAllTables()
502 ** manipulate entries in the BtShared.pLock linked list used to store
503 ** shared-cache table level locks. If the library is compiled with the
504 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000505 ** of each BtShared structure and so this locking is not necessary.
506 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000507 */
508 #define queryTableLock(a,b,c) SQLITE_OK
509 #define lockTable(a,b,c) SQLITE_OK
danielk1977da184232006-01-05 11:34:32 +0000510 #define unlockAllTables(a)
danielk1977aef0bf62005-12-30 16:28:01 +0000511#else
512
danielk1977e7259292006-01-13 06:33:23 +0000513
danielk1977da184232006-01-05 11:34:32 +0000514/*
danielk1977aef0bf62005-12-30 16:28:01 +0000515** Query to see if btree handle p may obtain a lock of type eLock
516** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
517** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
danielk1977c87d34d2006-01-06 13:00:28 +0000518** SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000519*/
520static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
521 BtShared *pBt = p->pBt;
522 BtLock *pIter;
523
danielk1977da184232006-01-05 11:34:32 +0000524 /* This is a no-op if the shared-cache is not enabled */
drh6f7adc82006-01-11 21:41:20 +0000525 if( 0==sqlite3ThreadDataReadOnly()->useSharedData ){
danielk1977da184232006-01-05 11:34:32 +0000526 return SQLITE_OK;
527 }
528
529 /* This (along with lockTable()) is where the ReadUncommitted flag is
530 ** dealt with. If the caller is querying for a read-lock and the flag is
531 ** set, it is unconditionally granted - even if there are write-locks
532 ** on the table. If a write-lock is requested, the ReadUncommitted flag
533 ** is not considered.
534 **
535 ** In function lockTable(), if a read-lock is demanded and the
536 ** ReadUncommitted flag is set, no entry is added to the locks list
537 ** (BtShared.pLock).
538 **
539 ** To summarize: If the ReadUncommitted flag is set, then read cursors do
540 ** not create or respect table locks. The locking procedure for a
541 ** write-cursor does not change.
542 */
543 if(
544 !p->pSqlite ||
545 0==(p->pSqlite->flags&SQLITE_ReadUncommitted) ||
546 eLock==WRITE_LOCK ||
drh47ded162006-01-06 01:42:58 +0000547 iTab==MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000548 ){
549 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
550 if( pIter->pBtree!=p && pIter->iTable==iTab &&
551 (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
danielk1977c87d34d2006-01-06 13:00:28 +0000552 return SQLITE_LOCKED;
danielk1977da184232006-01-05 11:34:32 +0000553 }
danielk1977aef0bf62005-12-30 16:28:01 +0000554 }
555 }
556 return SQLITE_OK;
557}
558
559/*
560** Add a lock on the table with root-page iTable to the shared-btree used
561** by Btree handle p. Parameter eLock must be either READ_LOCK or
562** WRITE_LOCK.
563**
564** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
565** SQLITE_NOMEM may also be returned.
566*/
567static int lockTable(Btree *p, Pgno iTable, u8 eLock){
568 BtShared *pBt = p->pBt;
569 BtLock *pLock = 0;
570 BtLock *pIter;
571
danielk1977da184232006-01-05 11:34:32 +0000572 /* This is a no-op if the shared-cache is not enabled */
drh6f7adc82006-01-11 21:41:20 +0000573 if( 0==sqlite3ThreadDataReadOnly()->useSharedData ){
danielk1977da184232006-01-05 11:34:32 +0000574 return SQLITE_OK;
575 }
576
danielk1977aef0bf62005-12-30 16:28:01 +0000577 assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
578
danielk1977da184232006-01-05 11:34:32 +0000579 /* If the read-uncommitted flag is set and a read-lock is requested,
580 ** return early without adding an entry to the BtShared.pLock list. See
581 ** comment in function queryTableLock() for more info on handling
582 ** the ReadUncommitted flag.
583 */
584 if(
585 (p->pSqlite) &&
586 (p->pSqlite->flags&SQLITE_ReadUncommitted) &&
587 (eLock==READ_LOCK) &&
drh47ded162006-01-06 01:42:58 +0000588 iTable!=MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000589 ){
590 return SQLITE_OK;
591 }
592
danielk1977aef0bf62005-12-30 16:28:01 +0000593 /* First search the list for an existing lock on this table. */
594 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
595 if( pIter->iTable==iTable && pIter->pBtree==p ){
596 pLock = pIter;
597 break;
598 }
599 }
600
601 /* If the above search did not find a BtLock struct associating Btree p
602 ** with table iTable, allocate one and link it into the list.
603 */
604 if( !pLock ){
605 pLock = (BtLock *)sqliteMalloc(sizeof(BtLock));
606 if( !pLock ){
607 return SQLITE_NOMEM;
608 }
609 pLock->iTable = iTable;
610 pLock->pBtree = p;
611 pLock->pNext = pBt->pLock;
612 pBt->pLock = pLock;
613 }
614
615 /* Set the BtLock.eLock variable to the maximum of the current lock
616 ** and the requested lock. This means if a write-lock was already held
617 ** and a read-lock requested, we don't incorrectly downgrade the lock.
618 */
619 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000620 if( eLock>pLock->eLock ){
621 pLock->eLock = eLock;
622 }
danielk1977aef0bf62005-12-30 16:28:01 +0000623
624 return SQLITE_OK;
625}
626
627/*
628** Release all the table locks (locks obtained via calls to the lockTable()
629** procedure) held by Btree handle p.
630*/
631static void unlockAllTables(Btree *p){
632 BtLock **ppIter = &p->pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000633
634 /* If the shared-cache extension is not enabled, there should be no
635 ** locks in the BtShared.pLock list, making this procedure a no-op. Assert
636 ** that this is the case.
637 */
drh6f7adc82006-01-11 21:41:20 +0000638 assert( sqlite3ThreadDataReadOnly()->useSharedData || 0==*ppIter );
danielk1977da184232006-01-05 11:34:32 +0000639
danielk1977aef0bf62005-12-30 16:28:01 +0000640 while( *ppIter ){
641 BtLock *pLock = *ppIter;
642 if( pLock->pBtree==p ){
643 *ppIter = pLock->pNext;
644 sqliteFree(pLock);
645 }else{
646 ppIter = &pLock->pNext;
647 }
648 }
649}
650#endif /* SQLITE_OMIT_SHARED_CACHE */
651
drh980b1a72006-08-16 16:42:48 +0000652static void releasePage(MemPage *pPage); /* Forward reference */
653
654/*
655** Save the current cursor position in the variables BtCursor.nKey
656** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
657*/
658static int saveCursorPosition(BtCursor *pCur){
659 int rc;
660
661 assert( CURSOR_VALID==pCur->eState );
662 assert( 0==pCur->pKey );
663
664 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
665
666 /* If this is an intKey table, then the above call to BtreeKeySize()
667 ** stores the integer key in pCur->nKey. In this case this value is
668 ** all that is required. Otherwise, if pCur is not open on an intKey
669 ** table, then malloc space for and store the pCur->nKey bytes of key
670 ** data.
671 */
672 if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
673 void *pKey = sqliteMalloc(pCur->nKey);
674 if( pKey ){
675 rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
676 if( rc==SQLITE_OK ){
677 pCur->pKey = pKey;
678 }else{
679 sqliteFree(pKey);
680 }
681 }else{
682 rc = SQLITE_NOMEM;
683 }
684 }
685 assert( !pCur->pPage->intKey || !pCur->pKey );
686
687 if( rc==SQLITE_OK ){
688 releasePage(pCur->pPage);
689 pCur->pPage = 0;
690 pCur->eState = CURSOR_REQUIRESEEK;
691 }
692
693 return rc;
694}
695
696/*
697** Save the positions of all cursors except pExcept open on the table
698** with root-page iRoot. Usually, this is called just before cursor
699** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
700*/
701static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
702 BtCursor *p;
703 for(p=pBt->pCursor; p; p=p->pNext){
704 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
705 p->eState==CURSOR_VALID ){
706 int rc = saveCursorPosition(p);
707 if( SQLITE_OK!=rc ){
708 return rc;
709 }
710 }
711 }
712 return SQLITE_OK;
713}
714
715/*
716** Restore the cursor to the position it was in (or as close to as possible)
717** when saveCursorPosition() was called. Note that this call deletes the
718** saved position info stored by saveCursorPosition(), so there can be
719** at most one effective restoreOrClearCursorPosition() call after each
720** saveCursorPosition().
721**
722** If the second argument argument - doSeek - is false, then instead of
723** returning the cursor to it's saved position, any saved position is deleted
724** and the cursor state set to CURSOR_INVALID.
725*/
726static int restoreOrClearCursorPositionX(BtCursor *pCur, int doSeek){
727 int rc = SQLITE_OK;
728 assert( pCur->eState==CURSOR_REQUIRESEEK );
729 pCur->eState = CURSOR_INVALID;
730 if( doSeek ){
731 rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, &pCur->skip);
732 }
733 if( rc==SQLITE_OK ){
734 sqliteFree(pCur->pKey);
735 pCur->pKey = 0;
736 assert( CURSOR_VALID==pCur->eState || CURSOR_INVALID==pCur->eState );
737 }
738 return rc;
739}
740
741#define restoreOrClearCursorPosition(p,x) \
742 (p->eState==CURSOR_REQUIRESEEK?restoreOrClearCursorPositionX(p,x):SQLITE_OK)
743
danielk1977599fcba2004-11-08 07:13:13 +0000744#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000745/*
drh42cac6d2004-11-20 20:31:11 +0000746** These macros define the location of the pointer-map entry for a
747** database page. The first argument to each is the number of usable
748** bytes on each page of the database (often 1024). The second is the
749** page number to look up in the pointer map.
danielk1977afcdd022004-10-31 16:25:42 +0000750**
751** PTRMAP_PAGENO returns the database page number of the pointer-map
752** page that stores the required pointer. PTRMAP_PTROFFSET returns
753** the offset of the requested map entry.
754**
755** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
756** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
danielk1977599fcba2004-11-08 07:13:13 +0000757** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
758** this test.
danielk1977afcdd022004-10-31 16:25:42 +0000759*/
danielk1977266664d2006-02-10 08:24:21 +0000760#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
761#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
762#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
763
764static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
765 int nPagesPerMapPage = (pBt->usableSize/5)+1;
766 int iPtrMap = (pgno-2)/nPagesPerMapPage;
767 int ret = (iPtrMap*nPagesPerMapPage) + 2;
768 if( ret==PENDING_BYTE_PAGE(pBt) ){
769 ret++;
770 }
771 return ret;
772}
danielk1977a19df672004-11-03 11:37:07 +0000773
danielk1977afcdd022004-10-31 16:25:42 +0000774/*
drh615ae552005-01-16 23:21:00 +0000775** The pointer map is a lookup table that identifies the parent page for
776** each child page in the database file. The parent page is the page that
777** contains a pointer to the child. Every page in the database contains
778** 0 or 1 parent pages. (In this context 'database page' refers
779** to any page that is not part of the pointer map itself.) Each pointer map
780** entry consists of a single byte 'type' and a 4 byte parent page number.
781** The PTRMAP_XXX identifiers below are the valid types.
782**
783** The purpose of the pointer map is to facility moving pages from one
784** position in the file to another as part of autovacuum. When a page
785** is moved, the pointer in its parent must be updated to point to the
786** new location. The pointer map is used to locate the parent page quickly.
danielk1977afcdd022004-10-31 16:25:42 +0000787**
danielk1977687566d2004-11-02 12:56:41 +0000788** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
789** used in this case.
danielk1977afcdd022004-10-31 16:25:42 +0000790**
danielk1977687566d2004-11-02 12:56:41 +0000791** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
792** is not used in this case.
793**
794** PTRMAP_OVERFLOW1: The database page is the first page in a list of
795** overflow pages. The page number identifies the page that
796** contains the cell with a pointer to this overflow page.
797**
798** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
799** overflow pages. The page-number identifies the previous
800** page in the overflow page list.
801**
802** PTRMAP_BTREE: The database page is a non-root btree page. The page number
803** identifies the parent page in the btree.
danielk1977afcdd022004-10-31 16:25:42 +0000804*/
danielk1977687566d2004-11-02 12:56:41 +0000805#define PTRMAP_ROOTPAGE 1
806#define PTRMAP_FREEPAGE 2
807#define PTRMAP_OVERFLOW1 3
808#define PTRMAP_OVERFLOW2 4
809#define PTRMAP_BTREE 5
danielk1977afcdd022004-10-31 16:25:42 +0000810
811/*
812** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000813**
814** This routine updates the pointer map entry for page number 'key'
815** so that it maps to type 'eType' and parent page number 'pgno'.
816** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000817*/
danielk1977aef0bf62005-12-30 16:28:01 +0000818static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000819 DbPage *pDbPage; /* The pointer map page */
820 u8 *pPtrmap; /* The pointer map data */
821 Pgno iPtrmap; /* The pointer map page number */
822 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000823 int rc;
824
danielk1977266664d2006-02-10 08:24:21 +0000825 /* The master-journal page number must never be used as a pointer map page */
826 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
827
danielk1977ac11ee62005-01-15 12:45:51 +0000828 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000829 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000830 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000831 }
danielk1977266664d2006-02-10 08:24:21 +0000832 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000833 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000834 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000835 return rc;
836 }
danielk1977266664d2006-02-10 08:24:21 +0000837 offset = PTRMAP_PTROFFSET(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000838 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000839
drh615ae552005-01-16 23:21:00 +0000840 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
841 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000842 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000843 if( rc==SQLITE_OK ){
844 pPtrmap[offset] = eType;
845 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000846 }
danielk1977afcdd022004-10-31 16:25:42 +0000847 }
848
danielk19773b8a05f2007-03-19 17:44:26 +0000849 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000850 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000851}
852
853/*
854** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000855**
856** This routine retrieves the pointer map entry for page 'key', writing
857** the type and parent page number to *pEType and *pPgno respectively.
858** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000859*/
danielk1977aef0bf62005-12-30 16:28:01 +0000860static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000861 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000862 int iPtrmap; /* Pointer map page index */
863 u8 *pPtrmap; /* Pointer map page data */
864 int offset; /* Offset of entry in pointer map */
865 int rc;
866
danielk1977266664d2006-02-10 08:24:21 +0000867 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000868 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000869 if( rc!=0 ){
870 return rc;
871 }
danielk19773b8a05f2007-03-19 17:44:26 +0000872 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000873
danielk1977266664d2006-02-10 08:24:21 +0000874 offset = PTRMAP_PTROFFSET(pBt, key);
drh43617e92006-03-06 20:55:46 +0000875 assert( pEType!=0 );
876 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000877 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000878
danielk19773b8a05f2007-03-19 17:44:26 +0000879 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000880 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000881 return SQLITE_OK;
882}
883
884#endif /* SQLITE_OMIT_AUTOVACUUM */
885
drh0d316a42002-08-11 20:10:47 +0000886/*
drh271efa52004-05-30 19:19:05 +0000887** Given a btree page and a cell index (0 means the first cell on
888** the page, 1 means the second cell, and so forth) return a pointer
889** to the cell content.
890**
891** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000892*/
drh43605152004-05-29 21:46:49 +0000893static u8 *findCell(MemPage *pPage, int iCell){
894 u8 *data = pPage->aData;
895 assert( iCell>=0 );
896 assert( iCell<get2byte(&data[pPage->hdrOffset+3]) );
897 return data + get2byte(&data[pPage->cellOffset+2*iCell]);
898}
899
900/*
901** This a more complex version of findCell() that works for
902** pages that do contain overflow cells. See insert
903*/
904static u8 *findOverflowCell(MemPage *pPage, int iCell){
905 int i;
906 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000907 int k;
908 struct _OvflCell *pOvfl;
909 pOvfl = &pPage->aOvfl[i];
910 k = pOvfl->idx;
911 if( k<=iCell ){
912 if( k==iCell ){
913 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000914 }
915 iCell--;
916 }
917 }
918 return findCell(pPage, iCell);
919}
920
921/*
922** Parse a cell content block and fill in the CellInfo structure. There
923** are two versions of this function. parseCell() takes a cell index
924** as the second argument and parseCellPtr() takes a pointer to the
925** body of the cell as its second argument.
926*/
927static void parseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000928 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000929 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000930 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000931){
drh271efa52004-05-30 19:19:05 +0000932 int n; /* Number bytes in cell content header */
933 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000934
935 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000936 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000937 n = pPage->childPtrSize;
938 assert( n==4-4*pPage->leaf );
drh8b18dd42004-05-12 19:18:15 +0000939 if( pPage->hasData ){
drh271efa52004-05-30 19:19:05 +0000940 n += getVarint32(&pCell[n], &nPayload);
drh8b18dd42004-05-12 19:18:15 +0000941 }else{
drh271efa52004-05-30 19:19:05 +0000942 nPayload = 0;
drh3aac2dd2004-04-26 14:10:20 +0000943 }
drh271efa52004-05-30 19:19:05 +0000944 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000945 if( pPage->intKey ){
946 n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
947 }else{
948 u32 x;
949 n += getVarint32(&pCell[n], &x);
950 pInfo->nKey = x;
951 nPayload += x;
drh6f11bef2004-05-13 01:12:56 +0000952 }
drh72365832007-03-06 15:53:44 +0000953 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000954 pInfo->nHeader = n;
drh271efa52004-05-30 19:19:05 +0000955 if( nPayload<=pPage->maxLocal ){
956 /* This is the (easy) common case where the entire payload fits
957 ** on the local page. No overflow is required.
958 */
959 int nSize; /* Total size of cell content in bytes */
drh6f11bef2004-05-13 01:12:56 +0000960 pInfo->nLocal = nPayload;
961 pInfo->iOverflow = 0;
drh271efa52004-05-30 19:19:05 +0000962 nSize = nPayload + n;
963 if( nSize<4 ){
964 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000965 }
drh271efa52004-05-30 19:19:05 +0000966 pInfo->nSize = nSize;
drh6f11bef2004-05-13 01:12:56 +0000967 }else{
drh271efa52004-05-30 19:19:05 +0000968 /* If the payload will not fit completely on the local page, we have
969 ** to decide how much to store locally and how much to spill onto
970 ** overflow pages. The strategy is to minimize the amount of unused
971 ** space on overflow pages while keeping the amount of local storage
972 ** in between minLocal and maxLocal.
973 **
974 ** Warning: changing the way overflow payload is distributed in any
975 ** way will result in an incompatible file format.
976 */
977 int minLocal; /* Minimum amount of payload held locally */
978 int maxLocal; /* Maximum amount of payload held locally */
979 int surplus; /* Overflow payload available for local storage */
980
981 minLocal = pPage->minLocal;
982 maxLocal = pPage->maxLocal;
983 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000984 if( surplus <= maxLocal ){
985 pInfo->nLocal = surplus;
986 }else{
987 pInfo->nLocal = minLocal;
988 }
989 pInfo->iOverflow = pInfo->nLocal + n;
990 pInfo->nSize = pInfo->iOverflow + 4;
991 }
drh3aac2dd2004-04-26 14:10:20 +0000992}
drh43605152004-05-29 21:46:49 +0000993static void parseCell(
994 MemPage *pPage, /* Page containing the cell */
995 int iCell, /* The cell index. First cell is 0 */
996 CellInfo *pInfo /* Fill in this structure */
997){
998 parseCellPtr(pPage, findCell(pPage, iCell), pInfo);
999}
drh3aac2dd2004-04-26 14:10:20 +00001000
1001/*
drh43605152004-05-29 21:46:49 +00001002** Compute the total number of bytes that a Cell needs in the cell
1003** data area of the btree-page. The return number includes the cell
1004** data header and the local payload, but not any overflow page or
1005** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001006*/
danielk1977bc6ada42004-06-30 08:20:16 +00001007#ifndef NDEBUG
drh43605152004-05-29 21:46:49 +00001008static int cellSize(MemPage *pPage, int iCell){
drh6f11bef2004-05-13 01:12:56 +00001009 CellInfo info;
drh43605152004-05-29 21:46:49 +00001010 parseCell(pPage, iCell, &info);
1011 return info.nSize;
1012}
danielk1977bc6ada42004-06-30 08:20:16 +00001013#endif
drh43605152004-05-29 21:46:49 +00001014static int cellSizePtr(MemPage *pPage, u8 *pCell){
1015 CellInfo info;
1016 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00001017 return info.nSize;
drh3b7511c2001-05-26 13:15:44 +00001018}
1019
danielk197779a40da2005-01-16 08:00:01 +00001020#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001021/*
danielk197726836652005-01-17 01:33:13 +00001022** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001023** to an overflow page, insert an entry into the pointer-map
1024** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001025*/
danielk197726836652005-01-17 01:33:13 +00001026static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
danielk197779a40da2005-01-16 08:00:01 +00001027 if( pCell ){
1028 CellInfo info;
1029 parseCellPtr(pPage, pCell, &info);
drh72365832007-03-06 15:53:44 +00001030 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk197779a40da2005-01-16 08:00:01 +00001031 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
1032 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
1033 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
1034 }
danielk1977ac11ee62005-01-15 12:45:51 +00001035 }
danielk197779a40da2005-01-16 08:00:01 +00001036 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +00001037}
danielk197726836652005-01-17 01:33:13 +00001038/*
1039** If the cell with index iCell on page pPage contains a pointer
1040** to an overflow page, insert an entry into the pointer-map
1041** for the overflow page.
1042*/
1043static int ptrmapPutOvfl(MemPage *pPage, int iCell){
1044 u8 *pCell;
1045 pCell = findOverflowCell(pPage, iCell);
1046 return ptrmapPutOvflPtr(pPage, pCell);
1047}
danielk197779a40da2005-01-16 08:00:01 +00001048#endif
1049
danielk1977ac11ee62005-01-15 12:45:51 +00001050
danielk1977aef0bf62005-12-30 16:28:01 +00001051/* A bunch of assert() statements to check the transaction state variables
1052** of handle p (type Btree*) are internally consistent.
1053*/
1054#define btreeIntegrity(p) \
1055 assert( p->inTrans!=TRANS_NONE || p->pBt->nTransaction<p->pBt->nRef ); \
1056 assert( p->pBt->nTransaction<=p->pBt->nRef ); \
1057 assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
1058 assert( p->pBt->inTransaction>=p->inTrans );
1059
drhda200cc2004-05-09 11:51:38 +00001060/*
drh72f82862001-05-24 21:06:34 +00001061** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001062** end of the page and all free space is collected into one
1063** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001064** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001065*/
drh2e38c322004-09-03 18:38:44 +00001066static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001067 int i; /* Loop counter */
1068 int pc; /* Address of a i-th cell */
1069 int addr; /* Offset of first byte after cell pointer array */
1070 int hdr; /* Offset to the page header */
1071 int size; /* Size of a cell */
1072 int usableSize; /* Number of usable bytes on a page */
1073 int cellOffset; /* Offset to the cell pointer array */
1074 int brk; /* Offset to the cell content area */
1075 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001076 unsigned char *data; /* The page data */
1077 unsigned char *temp; /* Temp area for cell content */
drh2af926b2001-05-15 00:39:25 +00001078
danielk19773b8a05f2007-03-19 17:44:26 +00001079 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001080 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001081 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001082 assert( pPage->nOverflow==0 );
drh2e38c322004-09-03 18:38:44 +00001083 temp = sqliteMalloc( pPage->pBt->pageSize );
1084 if( temp==0 ) return SQLITE_NOMEM;
drh43605152004-05-29 21:46:49 +00001085 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001086 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001087 cellOffset = pPage->cellOffset;
1088 nCell = pPage->nCell;
1089 assert( nCell==get2byte(&data[hdr+3]) );
1090 usableSize = pPage->pBt->usableSize;
1091 brk = get2byte(&data[hdr+5]);
1092 memcpy(&temp[brk], &data[brk], usableSize - brk);
1093 brk = usableSize;
1094 for(i=0; i<nCell; i++){
1095 u8 *pAddr; /* The i-th cell pointer */
1096 pAddr = &data[cellOffset + i*2];
1097 pc = get2byte(pAddr);
1098 assert( pc<pPage->pBt->usableSize );
1099 size = cellSizePtr(pPage, &temp[pc]);
1100 brk -= size;
1101 memcpy(&data[brk], &temp[pc], size);
1102 put2byte(pAddr, brk);
drh2af926b2001-05-15 00:39:25 +00001103 }
drh43605152004-05-29 21:46:49 +00001104 assert( brk>=cellOffset+2*nCell );
1105 put2byte(&data[hdr+5], brk);
1106 data[hdr+1] = 0;
1107 data[hdr+2] = 0;
1108 data[hdr+7] = 0;
1109 addr = cellOffset+2*nCell;
1110 memset(&data[addr], 0, brk-addr);
drh2e38c322004-09-03 18:38:44 +00001111 sqliteFree(temp);
1112 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001113}
1114
drha059ad02001-04-17 20:09:11 +00001115/*
drh43605152004-05-29 21:46:49 +00001116** Allocate nByte bytes of space on a page.
drhbd03cae2001-06-02 02:40:57 +00001117**
drh9e572e62004-04-23 23:43:10 +00001118** Return the index into pPage->aData[] of the first byte of
drhbd03cae2001-06-02 02:40:57 +00001119** the new allocation. Or return 0 if there is not enough free
1120** space on the page to satisfy the allocation request.
drh2af926b2001-05-15 00:39:25 +00001121**
drh72f82862001-05-24 21:06:34 +00001122** If the page contains nBytes of free space but does not contain
drh8b2f49b2001-06-08 00:21:52 +00001123** nBytes of contiguous free space, then this routine automatically
1124** calls defragementPage() to consolidate all free space before
1125** allocating the new chunk.
drh7e3b0a02001-04-28 16:52:40 +00001126*/
drh9e572e62004-04-23 23:43:10 +00001127static int allocateSpace(MemPage *pPage, int nByte){
drh3aac2dd2004-04-26 14:10:20 +00001128 int addr, pc, hdr;
drh9e572e62004-04-23 23:43:10 +00001129 int size;
drh24cd67e2004-05-10 16:18:47 +00001130 int nFrag;
drh43605152004-05-29 21:46:49 +00001131 int top;
1132 int nCell;
1133 int cellOffset;
drh9e572e62004-04-23 23:43:10 +00001134 unsigned char *data;
drh43605152004-05-29 21:46:49 +00001135
drh9e572e62004-04-23 23:43:10 +00001136 data = pPage->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00001137 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001138 assert( pPage->pBt );
1139 if( nByte<4 ) nByte = 4;
drh43605152004-05-29 21:46:49 +00001140 if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
1141 pPage->nFree -= nByte;
drh9e572e62004-04-23 23:43:10 +00001142 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001143
1144 nFrag = data[hdr+7];
1145 if( nFrag<60 ){
1146 /* Search the freelist looking for a slot big enough to satisfy the
1147 ** space request. */
1148 addr = hdr+1;
1149 while( (pc = get2byte(&data[addr]))>0 ){
1150 size = get2byte(&data[pc+2]);
1151 if( size>=nByte ){
1152 if( size<nByte+4 ){
1153 memcpy(&data[addr], &data[pc], 2);
1154 data[hdr+7] = nFrag + size - nByte;
1155 return pc;
1156 }else{
1157 put2byte(&data[pc+2], size-nByte);
1158 return pc + size - nByte;
1159 }
1160 }
1161 addr = pc;
drh9e572e62004-04-23 23:43:10 +00001162 }
1163 }
drh43605152004-05-29 21:46:49 +00001164
1165 /* Allocate memory from the gap in between the cell pointer array
1166 ** and the cell content area.
1167 */
1168 top = get2byte(&data[hdr+5]);
1169 nCell = get2byte(&data[hdr+3]);
1170 cellOffset = pPage->cellOffset;
1171 if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
drh2e38c322004-09-03 18:38:44 +00001172 if( defragmentPage(pPage) ) return 0;
drh43605152004-05-29 21:46:49 +00001173 top = get2byte(&data[hdr+5]);
drh2af926b2001-05-15 00:39:25 +00001174 }
drh43605152004-05-29 21:46:49 +00001175 top -= nByte;
1176 assert( cellOffset + 2*nCell <= top );
1177 put2byte(&data[hdr+5], top);
1178 return top;
drh7e3b0a02001-04-28 16:52:40 +00001179}
1180
1181/*
drh9e572e62004-04-23 23:43:10 +00001182** Return a section of the pPage->aData to the freelist.
1183** The first byte of the new free block is pPage->aDisk[start]
1184** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001185**
1186** Most of the effort here is involved in coalesing adjacent
1187** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001188*/
drh9e572e62004-04-23 23:43:10 +00001189static void freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001190 int addr, pbegin, hdr;
drh9e572e62004-04-23 23:43:10 +00001191 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001192
drh9e572e62004-04-23 23:43:10 +00001193 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001194 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001195 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +00001196 assert( (start + size)<=pPage->pBt->usableSize );
drh9e572e62004-04-23 23:43:10 +00001197 if( size<4 ) size = 4;
1198
drhfcce93f2006-02-22 03:08:32 +00001199#ifdef SQLITE_SECURE_DELETE
1200 /* Overwrite deleted information with zeros when the SECURE_DELETE
1201 ** option is enabled at compile-time */
1202 memset(&data[start], 0, size);
1203#endif
1204
drh9e572e62004-04-23 23:43:10 +00001205 /* Add the space back into the linked list of freeblocks */
drh43605152004-05-29 21:46:49 +00001206 hdr = pPage->hdrOffset;
1207 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001208 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +00001209 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +00001210 assert( pbegin>addr );
1211 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001212 }
drhb6f41482004-05-14 01:58:11 +00001213 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +00001214 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001215 put2byte(&data[addr], start);
1216 put2byte(&data[start], pbegin);
1217 put2byte(&data[start+2], size);
drh2af926b2001-05-15 00:39:25 +00001218 pPage->nFree += size;
drh9e572e62004-04-23 23:43:10 +00001219
1220 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +00001221 addr = pPage->hdrOffset + 1;
1222 while( (pbegin = get2byte(&data[addr]))>0 ){
drh9e572e62004-04-23 23:43:10 +00001223 int pnext, psize;
drh3aac2dd2004-04-26 14:10:20 +00001224 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001225 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001226 pnext = get2byte(&data[pbegin]);
1227 psize = get2byte(&data[pbegin+2]);
1228 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1229 int frag = pnext - (pbegin+psize);
drh43605152004-05-29 21:46:49 +00001230 assert( frag<=data[pPage->hdrOffset+7] );
1231 data[pPage->hdrOffset+7] -= frag;
drh9e572e62004-04-23 23:43:10 +00001232 put2byte(&data[pbegin], get2byte(&data[pnext]));
1233 put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
1234 }else{
drh3aac2dd2004-04-26 14:10:20 +00001235 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001236 }
1237 }
drh7e3b0a02001-04-28 16:52:40 +00001238
drh43605152004-05-29 21:46:49 +00001239 /* If the cell content area begins with a freeblock, remove it. */
1240 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1241 int top;
1242 pbegin = get2byte(&data[hdr+1]);
1243 memcpy(&data[hdr+1], &data[pbegin], 2);
1244 top = get2byte(&data[hdr+5]);
1245 put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
drh4b70f112004-05-02 21:12:19 +00001246 }
drh4b70f112004-05-02 21:12:19 +00001247}
1248
1249/*
drh271efa52004-05-30 19:19:05 +00001250** Decode the flags byte (the first byte of the header) for a page
1251** and initialize fields of the MemPage structure accordingly.
1252*/
1253static void decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001254 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001255
1256 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1257 pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
1258 pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
1259 pPage->leaf = (flagByte & PTF_LEAF)!=0;
1260 pPage->childPtrSize = 4*(pPage->leaf==0);
1261 pBt = pPage->pBt;
1262 if( flagByte & PTF_LEAFDATA ){
1263 pPage->leafData = 1;
1264 pPage->maxLocal = pBt->maxLeaf;
1265 pPage->minLocal = pBt->minLeaf;
1266 }else{
1267 pPage->leafData = 0;
1268 pPage->maxLocal = pBt->maxLocal;
1269 pPage->minLocal = pBt->minLocal;
1270 }
1271 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
1272}
1273
1274/*
drh7e3b0a02001-04-28 16:52:40 +00001275** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001276**
drhbd03cae2001-06-02 02:40:57 +00001277** The pParent parameter must be a pointer to the MemPage which
drh9e572e62004-04-23 23:43:10 +00001278** is the parent of the page being initialized. The root of a
1279** BTree has no parent and so for that page, pParent==NULL.
drh5e2f8b92001-05-28 00:41:15 +00001280**
drh72f82862001-05-24 21:06:34 +00001281** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001282** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001283** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1284** guarantee that the page is well-formed. It only shows that
1285** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001286*/
drh9e572e62004-04-23 23:43:10 +00001287static int initPage(
drh3aac2dd2004-04-26 14:10:20 +00001288 MemPage *pPage, /* The page to be initialized */
drh9e572e62004-04-23 23:43:10 +00001289 MemPage *pParent /* The parent. Might be NULL */
1290){
drh271efa52004-05-30 19:19:05 +00001291 int pc; /* Address of a freeblock within pPage->aData[] */
drh271efa52004-05-30 19:19:05 +00001292 int hdr; /* Offset to beginning of page header */
1293 u8 *data; /* Equal to pPage->aData */
danielk1977aef0bf62005-12-30 16:28:01 +00001294 BtShared *pBt; /* The main btree structure */
drh271efa52004-05-30 19:19:05 +00001295 int usableSize; /* Amount of usable space on each page */
1296 int cellOffset; /* Offset from start of page to first cell pointer */
1297 int nFree; /* Number of unused bytes on the page */
1298 int top; /* First byte of the cell content area */
drh2af926b2001-05-15 00:39:25 +00001299
drh2e38c322004-09-03 18:38:44 +00001300 pBt = pPage->pBt;
1301 assert( pBt!=0 );
1302 assert( pParent==0 || pParent->pBt==pBt );
danielk19773b8a05f2007-03-19 17:44:26 +00001303 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drh07d183d2005-05-01 22:52:42 +00001304 assert( pPage->aData == &((unsigned char*)pPage)[-pBt->pageSize] );
drhee696e22004-08-30 16:52:17 +00001305 if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
1306 /* The parent page should never change unless the file is corrupt */
drh49285702005-09-17 15:20:26 +00001307 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001308 }
drh10617cd2004-05-14 15:27:27 +00001309 if( pPage->isInit ) return SQLITE_OK;
drhda200cc2004-05-09 11:51:38 +00001310 if( pPage->pParent==0 && pParent!=0 ){
1311 pPage->pParent = pParent;
danielk19773b8a05f2007-03-19 17:44:26 +00001312 sqlite3PagerRef(pParent->pDbPage);
drh5e2f8b92001-05-28 00:41:15 +00001313 }
drhde647132004-05-07 17:57:49 +00001314 hdr = pPage->hdrOffset;
drha34b6762004-05-07 13:30:42 +00001315 data = pPage->aData;
drh271efa52004-05-30 19:19:05 +00001316 decodeFlags(pPage, data[hdr]);
drh43605152004-05-29 21:46:49 +00001317 pPage->nOverflow = 0;
drhc8629a12004-05-08 20:07:40 +00001318 pPage->idxShift = 0;
drh2e38c322004-09-03 18:38:44 +00001319 usableSize = pBt->usableSize;
drh43605152004-05-29 21:46:49 +00001320 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1321 top = get2byte(&data[hdr+5]);
1322 pPage->nCell = get2byte(&data[hdr+3]);
drh2e38c322004-09-03 18:38:44 +00001323 if( pPage->nCell>MX_CELL(pBt) ){
drhee696e22004-08-30 16:52:17 +00001324 /* To many cells for a single page. The page must be corrupt */
drh49285702005-09-17 15:20:26 +00001325 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001326 }
1327 if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
1328 /* All pages must have at least one cell, except for root pages */
drh49285702005-09-17 15:20:26 +00001329 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001330 }
drh9e572e62004-04-23 23:43:10 +00001331
1332 /* Compute the total free space on the page */
drh9e572e62004-04-23 23:43:10 +00001333 pc = get2byte(&data[hdr+1]);
drh43605152004-05-29 21:46:49 +00001334 nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
drh9e572e62004-04-23 23:43:10 +00001335 while( pc>0 ){
1336 int next, size;
drhee696e22004-08-30 16:52:17 +00001337 if( pc>usableSize-4 ){
1338 /* Free block is off the page */
drh49285702005-09-17 15:20:26 +00001339 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001340 }
drh9e572e62004-04-23 23:43:10 +00001341 next = get2byte(&data[pc]);
1342 size = get2byte(&data[pc+2]);
drhee696e22004-08-30 16:52:17 +00001343 if( next>0 && next<=pc+size+3 ){
1344 /* Free blocks must be in accending order */
drh49285702005-09-17 15:20:26 +00001345 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001346 }
drh3add3672004-05-15 00:29:24 +00001347 nFree += size;
drh9e572e62004-04-23 23:43:10 +00001348 pc = next;
1349 }
drh3add3672004-05-15 00:29:24 +00001350 pPage->nFree = nFree;
drhee696e22004-08-30 16:52:17 +00001351 if( nFree>=usableSize ){
1352 /* Free space cannot exceed total page size */
drh49285702005-09-17 15:20:26 +00001353 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001354 }
drh9e572e62004-04-23 23:43:10 +00001355
drhde647132004-05-07 17:57:49 +00001356 pPage->isInit = 1;
drh9e572e62004-04-23 23:43:10 +00001357 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001358}
1359
1360/*
drh8b2f49b2001-06-08 00:21:52 +00001361** Set up a raw page so that it looks like a database page holding
1362** no entries.
drhbd03cae2001-06-02 02:40:57 +00001363*/
drh9e572e62004-04-23 23:43:10 +00001364static void zeroPage(MemPage *pPage, int flags){
1365 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001366 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00001367 int hdr = pPage->hdrOffset;
drh9e572e62004-04-23 23:43:10 +00001368 int first;
1369
danielk19773b8a05f2007-03-19 17:44:26 +00001370 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drh07d183d2005-05-01 22:52:42 +00001371 assert( &data[pBt->pageSize] == (unsigned char*)pPage );
danielk19773b8a05f2007-03-19 17:44:26 +00001372 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhb6f41482004-05-14 01:58:11 +00001373 memset(&data[hdr], 0, pBt->usableSize - hdr);
drh9e572e62004-04-23 23:43:10 +00001374 data[hdr] = flags;
drh43605152004-05-29 21:46:49 +00001375 first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
1376 memset(&data[hdr+1], 0, 4);
1377 data[hdr+7] = 0;
1378 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001379 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001380 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001381 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001382 pPage->cellOffset = first;
1383 pPage->nOverflow = 0;
drhda200cc2004-05-09 11:51:38 +00001384 pPage->idxShift = 0;
drh43605152004-05-29 21:46:49 +00001385 pPage->nCell = 0;
drhda200cc2004-05-09 11:51:38 +00001386 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001387}
1388
1389/*
drh3aac2dd2004-04-26 14:10:20 +00001390** Get a page from the pager. Initialize the MemPage.pBt and
1391** MemPage.aData elements if needed.
1392*/
drh0787db62007-03-04 13:15:27 +00001393static int getPage(BtShared *pBt, Pgno pgno, MemPage **ppPage, int clrFlag){
drh3aac2dd2004-04-26 14:10:20 +00001394 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001395 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001396 DbPage *pDbPage;
1397
1398 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, clrFlag);
drh3aac2dd2004-04-26 14:10:20 +00001399 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001400 pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
1401 pPage->aData = sqlite3PagerGetData(pDbPage);
1402 pPage->pDbPage = pDbPage;
drh3aac2dd2004-04-26 14:10:20 +00001403 pPage->pBt = pBt;
1404 pPage->pgno = pgno;
drhde647132004-05-07 17:57:49 +00001405 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
drh3aac2dd2004-04-26 14:10:20 +00001406 *ppPage = pPage;
drh94440812007-03-06 11:42:19 +00001407 if( clrFlag ){
danielk19773b8a05f2007-03-19 17:44:26 +00001408 sqlite3PagerDontRollback(pPage->pDbPage);
drh94440812007-03-06 11:42:19 +00001409 }
drh3aac2dd2004-04-26 14:10:20 +00001410 return SQLITE_OK;
1411}
1412
1413/*
drhde647132004-05-07 17:57:49 +00001414** Get a page from the pager and initialize it. This routine
1415** is just a convenience wrapper around separate calls to
1416** getPage() and initPage().
1417*/
1418static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001419 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001420 Pgno pgno, /* Number of the page to get */
1421 MemPage **ppPage, /* Write the page pointer here */
1422 MemPage *pParent /* Parent of the page */
1423){
1424 int rc;
drhee696e22004-08-30 16:52:17 +00001425 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001426 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001427 }
drh0787db62007-03-04 13:15:27 +00001428 rc = getPage(pBt, pgno, ppPage, 0);
drh10617cd2004-05-14 15:27:27 +00001429 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
drhde647132004-05-07 17:57:49 +00001430 rc = initPage(*ppPage, pParent);
1431 }
1432 return rc;
1433}
1434
1435/*
drh3aac2dd2004-04-26 14:10:20 +00001436** Release a MemPage. This should be called once for each prior
1437** call to getPage.
1438*/
drh4b70f112004-05-02 21:12:19 +00001439static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001440 if( pPage ){
1441 assert( pPage->aData );
1442 assert( pPage->pBt );
drh07d183d2005-05-01 22:52:42 +00001443 assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage );
danielk19773b8a05f2007-03-19 17:44:26 +00001444 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001445 }
1446}
1447
1448/*
drh72f82862001-05-24 21:06:34 +00001449** This routine is called when the reference count for a page
1450** reaches zero. We need to unref the pParent pointer when that
1451** happens.
1452*/
danielk19773b8a05f2007-03-19 17:44:26 +00001453static void pageDestructor(DbPage *pData, int pageSize){
drh07d183d2005-05-01 22:52:42 +00001454 MemPage *pPage;
1455 assert( (pageSize & 7)==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001456 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
drh72f82862001-05-24 21:06:34 +00001457 if( pPage->pParent ){
1458 MemPage *pParent = pPage->pParent;
1459 pPage->pParent = 0;
drha34b6762004-05-07 13:30:42 +00001460 releasePage(pParent);
drh72f82862001-05-24 21:06:34 +00001461 }
drh3aac2dd2004-04-26 14:10:20 +00001462 pPage->isInit = 0;
drh72f82862001-05-24 21:06:34 +00001463}
1464
1465/*
drha6abd042004-06-09 17:37:22 +00001466** During a rollback, when the pager reloads information into the cache
1467** so that the cache is restored to its original state at the start of
1468** the transaction, for each page restored this routine is called.
1469**
1470** This routine needs to reset the extra data section at the end of the
1471** page to agree with the restored data.
1472*/
danielk19773b8a05f2007-03-19 17:44:26 +00001473static void pageReinit(DbPage *pData, int pageSize){
drh07d183d2005-05-01 22:52:42 +00001474 MemPage *pPage;
1475 assert( (pageSize & 7)==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001476 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
drha6abd042004-06-09 17:37:22 +00001477 if( pPage->isInit ){
1478 pPage->isInit = 0;
1479 initPage(pPage, pPage->pParent);
1480 }
1481}
1482
1483/*
drhad3e0102004-09-03 23:32:18 +00001484** Open a database file.
1485**
drh382c0242001-10-06 16:33:02 +00001486** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001487** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001488** database file will be deleted when sqlite3BtreeClose() is called.
drha059ad02001-04-17 20:09:11 +00001489*/
drh23e11ca2004-05-04 17:27:28 +00001490int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001491 const char *zFilename, /* Name of the file containing the BTree database */
danielk1977aef0bf62005-12-30 16:28:01 +00001492 sqlite3 *pSqlite, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001493 Btree **ppBtree, /* Pointer to new Btree object written here */
drh90f5ecb2004-07-22 01:19:35 +00001494 int flags /* Options */
drh6019e162001-07-02 17:51:45 +00001495){
danielk1977aef0bf62005-12-30 16:28:01 +00001496 BtShared *pBt; /* Shared part of btree structure */
1497 Btree *p; /* Handle to return */
drha34b6762004-05-07 13:30:42 +00001498 int rc;
drh90f5ecb2004-07-22 01:19:35 +00001499 int nReserve;
1500 unsigned char zDbHeader[100];
drh6f7adc82006-01-11 21:41:20 +00001501#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1502 const ThreadData *pTsdro;
danielk1977da184232006-01-05 11:34:32 +00001503#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001504
1505 /* Set the variable isMemdb to true for an in-memory database, or
1506 ** false for a file-based database. This symbol is only required if
1507 ** either of the shared-data or autovacuum features are compiled
1508 ** into the library.
1509 */
1510#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1511 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001512 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001513 #else
drh980b1a72006-08-16 16:42:48 +00001514 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001515 #endif
1516#endif
1517
1518 p = sqliteMalloc(sizeof(Btree));
1519 if( !p ){
1520 return SQLITE_NOMEM;
1521 }
1522 p->inTrans = TRANS_NONE;
1523 p->pSqlite = pSqlite;
1524
1525 /* Try to find an existing Btree structure opened on zFilename. */
drh198bf392006-01-06 21:52:49 +00001526#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drh6f7adc82006-01-11 21:41:20 +00001527 pTsdro = sqlite3ThreadDataReadOnly();
1528 if( pTsdro->useSharedData && zFilename && !isMemdb ){
drh66560ad2006-01-06 14:32:19 +00001529 char *zFullPathname = sqlite3OsFullPathname(zFilename);
danielk1977aef0bf62005-12-30 16:28:01 +00001530 if( !zFullPathname ){
1531 sqliteFree(p);
1532 return SQLITE_NOMEM;
1533 }
drh6f7adc82006-01-11 21:41:20 +00001534 for(pBt=pTsdro->pBtree; pBt; pBt=pBt->pNext){
danielk1977b82e7ed2006-01-11 14:09:31 +00001535 assert( pBt->nRef>0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001536 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager)) ){
danielk1977aef0bf62005-12-30 16:28:01 +00001537 p->pBt = pBt;
1538 *ppBtree = p;
1539 pBt->nRef++;
1540 sqliteFree(zFullPathname);
1541 return SQLITE_OK;
1542 }
1543 }
1544 sqliteFree(zFullPathname);
1545 }
1546#endif
drha059ad02001-04-17 20:09:11 +00001547
drhd62d3d02003-01-24 12:14:20 +00001548 /*
1549 ** The following asserts make sure that structures used by the btree are
1550 ** the right size. This is to guard against size changes that result
1551 ** when compiling on a different architecture.
1552 */
drh9b8f4472006-04-04 01:54:55 +00001553 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1554 assert( sizeof(u64)==8 || sizeof(u64)==4 );
drhd62d3d02003-01-24 12:14:20 +00001555 assert( sizeof(u32)==4 );
1556 assert( sizeof(u16)==2 );
1557 assert( sizeof(Pgno)==4 );
drhd62d3d02003-01-24 12:14:20 +00001558
drha059ad02001-04-17 20:09:11 +00001559 pBt = sqliteMalloc( sizeof(*pBt) );
1560 if( pBt==0 ){
drh8c42ca92001-06-22 19:15:00 +00001561 *ppBtree = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001562 sqliteFree(p);
drha059ad02001-04-17 20:09:11 +00001563 return SQLITE_NOMEM;
1564 }
danielk19773b8a05f2007-03-19 17:44:26 +00001565 rc = sqlite3PagerOpen(&pBt->pPager, zFilename, EXTRA_SIZE, flags);
drh551b7732006-11-06 21:20:25 +00001566 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00001567 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
drh551b7732006-11-06 21:20:25 +00001568 }
drha059ad02001-04-17 20:09:11 +00001569 if( rc!=SQLITE_OK ){
drh551b7732006-11-06 21:20:25 +00001570 if( pBt->pPager ){
danielk19773b8a05f2007-03-19 17:44:26 +00001571 sqlite3PagerClose(pBt->pPager);
drh551b7732006-11-06 21:20:25 +00001572 }
drha059ad02001-04-17 20:09:11 +00001573 sqliteFree(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001574 sqliteFree(p);
drha059ad02001-04-17 20:09:11 +00001575 *ppBtree = 0;
1576 return rc;
1577 }
danielk1977aef0bf62005-12-30 16:28:01 +00001578 p->pBt = pBt;
1579
danielk19773b8a05f2007-03-19 17:44:26 +00001580 sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
1581 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
drha059ad02001-04-17 20:09:11 +00001582 pBt->pCursor = 0;
drha34b6762004-05-07 13:30:42 +00001583 pBt->pPage1 = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00001584 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
drh90f5ecb2004-07-22 01:19:35 +00001585 pBt->pageSize = get2byte(&zDbHeader[16]);
drh07d183d2005-05-01 22:52:42 +00001586 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1587 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
drh90f5ecb2004-07-22 01:19:35 +00001588 pBt->pageSize = SQLITE_DEFAULT_PAGE_SIZE;
1589 pBt->maxEmbedFrac = 64; /* 25% */
1590 pBt->minEmbedFrac = 32; /* 12.5% */
1591 pBt->minLeafFrac = 32; /* 12.5% */
drheee46cf2004-11-06 00:02:48 +00001592#ifndef SQLITE_OMIT_AUTOVACUUM
danielk197703aded42004-11-22 05:26:27 +00001593 /* If the magic name ":memory:" will create an in-memory database, then
1594 ** do not set the auto-vacuum flag, even if SQLITE_DEFAULT_AUTOVACUUM
1595 ** is true. On the other hand, if SQLITE_OMIT_MEMORYDB has been defined,
1596 ** then ":memory:" is just a regular file-name. Respect the auto-vacuum
1597 ** default in this case.
1598 */
danielk1977aef0bf62005-12-30 16:28:01 +00001599 if( zFilename && !isMemdb ){
danielk1977951af802004-11-05 15:45:09 +00001600 pBt->autoVacuum = SQLITE_DEFAULT_AUTOVACUUM;
1601 }
drheee46cf2004-11-06 00:02:48 +00001602#endif
drh90f5ecb2004-07-22 01:19:35 +00001603 nReserve = 0;
1604 }else{
1605 nReserve = zDbHeader[20];
1606 pBt->maxEmbedFrac = zDbHeader[21];
1607 pBt->minEmbedFrac = zDbHeader[22];
1608 pBt->minLeafFrac = zDbHeader[23];
1609 pBt->pageSizeFixed = 1;
danielk1977951af802004-11-05 15:45:09 +00001610#ifndef SQLITE_OMIT_AUTOVACUUM
1611 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1612#endif
drh90f5ecb2004-07-22 01:19:35 +00001613 }
1614 pBt->usableSize = pBt->pageSize - nReserve;
drh07d183d2005-05-01 22:52:42 +00001615 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
danielk19773b8a05f2007-03-19 17:44:26 +00001616 sqlite3PagerSetPagesize(pBt->pPager, pBt->pageSize);
danielk1977aef0bf62005-12-30 16:28:01 +00001617
drhcfed7bc2006-03-13 14:28:05 +00001618#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
danielk197754f01982006-01-18 15:25:17 +00001619 /* Add the new btree to the linked list starting at ThreadData.pBtree.
1620 ** There is no chance that a malloc() may fail inside of the
1621 ** sqlite3ThreadData() call, as the ThreadData structure must have already
1622 ** been allocated for pTsdro->useSharedData to be non-zero.
1623 */
drh6f7adc82006-01-11 21:41:20 +00001624 if( pTsdro->useSharedData && zFilename && !isMemdb ){
1625 pBt->pNext = pTsdro->pBtree;
1626 sqlite3ThreadData()->pBtree = pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00001627 }
danielk1977aef0bf62005-12-30 16:28:01 +00001628#endif
danielk1977da184232006-01-05 11:34:32 +00001629 pBt->nRef = 1;
danielk1977aef0bf62005-12-30 16:28:01 +00001630 *ppBtree = p;
drha059ad02001-04-17 20:09:11 +00001631 return SQLITE_OK;
1632}
1633
1634/*
1635** Close an open database and invalidate all cursors.
1636*/
danielk1977aef0bf62005-12-30 16:28:01 +00001637int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001638 BtShared *pBt = p->pBt;
1639 BtCursor *pCur;
1640
danielk1977da184232006-01-05 11:34:32 +00001641#ifndef SQLITE_OMIT_SHARED_CACHE
drh6f7adc82006-01-11 21:41:20 +00001642 ThreadData *pTsd;
danielk1977da184232006-01-05 11:34:32 +00001643#endif
1644
danielk1977aef0bf62005-12-30 16:28:01 +00001645 /* Close all cursors opened via this handle. */
1646 pCur = pBt->pCursor;
1647 while( pCur ){
1648 BtCursor *pTmp = pCur;
1649 pCur = pCur->pNext;
1650 if( pTmp->pBtree==p ){
1651 sqlite3BtreeCloseCursor(pTmp);
1652 }
drha059ad02001-04-17 20:09:11 +00001653 }
danielk1977aef0bf62005-12-30 16:28:01 +00001654
danielk19778d34dfd2006-01-24 16:37:57 +00001655 /* Rollback any active transaction and free the handle structure.
1656 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1657 ** this handle.
1658 */
danielk1977b597f742006-01-15 11:39:18 +00001659 sqlite3BtreeRollback(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001660 sqliteFree(p);
1661
1662#ifndef SQLITE_OMIT_SHARED_CACHE
1663 /* If there are still other outstanding references to the shared-btree
1664 ** structure, return now. The remainder of this procedure cleans
1665 ** up the shared-btree.
1666 */
1667 assert( pBt->nRef>0 );
1668 pBt->nRef--;
1669 if( pBt->nRef ){
1670 return SQLITE_OK;
1671 }
1672
danielk197754f01982006-01-18 15:25:17 +00001673 /* Remove the shared-btree from the thread wide list. Call
1674 ** ThreadDataReadOnly() and then cast away the const property of the
1675 ** pointer to avoid allocating thread data if it is not really required.
1676 */
1677 pTsd = (ThreadData *)sqlite3ThreadDataReadOnly();
danielk1977aef0bf62005-12-30 16:28:01 +00001678 if( pTsd->pBtree==pBt ){
danielk197754f01982006-01-18 15:25:17 +00001679 assert( pTsd==sqlite3ThreadData() );
danielk1977aef0bf62005-12-30 16:28:01 +00001680 pTsd->pBtree = pBt->pNext;
1681 }else{
1682 BtShared *pPrev;
drh74161702006-02-24 02:53:49 +00001683 for(pPrev=pTsd->pBtree; pPrev && pPrev->pNext!=pBt; pPrev=pPrev->pNext){}
danielk1977aef0bf62005-12-30 16:28:01 +00001684 if( pPrev ){
danielk197754f01982006-01-18 15:25:17 +00001685 assert( pTsd==sqlite3ThreadData() );
danielk1977aef0bf62005-12-30 16:28:01 +00001686 pPrev->pNext = pBt->pNext;
1687 }
1688 }
1689#endif
1690
1691 /* Close the pager and free the shared-btree structure */
1692 assert( !pBt->pCursor );
danielk19773b8a05f2007-03-19 17:44:26 +00001693 sqlite3PagerClose(pBt->pPager);
danielk1977da184232006-01-05 11:34:32 +00001694 if( pBt->xFreeSchema && pBt->pSchema ){
1695 pBt->xFreeSchema(pBt->pSchema);
1696 }
danielk1977de0fe3e2006-01-06 06:33:12 +00001697 sqliteFree(pBt->pSchema);
drha059ad02001-04-17 20:09:11 +00001698 sqliteFree(pBt);
1699 return SQLITE_OK;
1700}
1701
1702/*
drh90f5ecb2004-07-22 01:19:35 +00001703** Change the busy handler callback function.
1704*/
danielk1977aef0bf62005-12-30 16:28:01 +00001705int sqlite3BtreeSetBusyHandler(Btree *p, BusyHandler *pHandler){
1706 BtShared *pBt = p->pBt;
drhb8ef32c2005-03-14 02:01:49 +00001707 pBt->pBusyHandler = pHandler;
danielk19773b8a05f2007-03-19 17:44:26 +00001708 sqlite3PagerSetBusyhandler(pBt->pPager, pHandler);
drh90f5ecb2004-07-22 01:19:35 +00001709 return SQLITE_OK;
1710}
1711
1712/*
drhda47d772002-12-02 04:25:19 +00001713** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001714**
1715** The maximum number of cache pages is set to the absolute
1716** value of mxPage. If mxPage is negative, the pager will
1717** operate asynchronously - it will not stop to do fsync()s
1718** to insure data is written to the disk surface before
1719** continuing. Transactions still work if synchronous is off,
1720** and the database cannot be corrupted if this program
1721** crashes. But if the operating system crashes or there is
1722** an abrupt power failure when synchronous is off, the database
1723** could be left in an inconsistent and unrecoverable state.
1724** Synchronous is on by default so database corruption is not
1725** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001726*/
danielk1977aef0bf62005-12-30 16:28:01 +00001727int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
1728 BtShared *pBt = p->pBt;
danielk19773b8a05f2007-03-19 17:44:26 +00001729 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhf57b14a2001-09-14 18:54:08 +00001730 return SQLITE_OK;
1731}
1732
1733/*
drh973b6e32003-02-12 14:09:42 +00001734** Change the way data is synced to disk in order to increase or decrease
1735** how well the database resists damage due to OS crashes and power
1736** failures. Level 1 is the same as asynchronous (no syncs() occur and
1737** there is a high probability of damage) Level 2 is the default. There
1738** is a very low but non-zero probability of damage. Level 3 reduces the
1739** probability of damage to near zero but with a write performance reduction.
1740*/
danielk197793758c82005-01-21 08:13:14 +00001741#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00001742int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00001743 BtShared *pBt = p->pBt;
danielk19773b8a05f2007-03-19 17:44:26 +00001744 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drh973b6e32003-02-12 14:09:42 +00001745 return SQLITE_OK;
1746}
danielk197793758c82005-01-21 08:13:14 +00001747#endif
drh973b6e32003-02-12 14:09:42 +00001748
drh2c8997b2005-08-27 16:36:48 +00001749/*
1750** Return TRUE if the given btree is set to safety level 1. In other
1751** words, return TRUE if no sync() occurs on the disk files.
1752*/
danielk1977aef0bf62005-12-30 16:28:01 +00001753int sqlite3BtreeSyncDisabled(Btree *p){
1754 BtShared *pBt = p->pBt;
drh2c8997b2005-08-27 16:36:48 +00001755 assert( pBt && pBt->pPager );
danielk19773b8a05f2007-03-19 17:44:26 +00001756 return sqlite3PagerNosync(pBt->pPager);
drh2c8997b2005-08-27 16:36:48 +00001757}
1758
danielk1977576ec6b2005-01-21 11:55:25 +00001759#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00001760/*
drh90f5ecb2004-07-22 01:19:35 +00001761** Change the default pages size and the number of reserved bytes per page.
drh06f50212004-11-02 14:24:33 +00001762**
1763** The page size must be a power of 2 between 512 and 65536. If the page
1764** size supplied does not meet this constraint then the page size is not
1765** changed.
1766**
1767** Page sizes are constrained to be a power of two so that the region
1768** of the database file used for locking (beginning at PENDING_BYTE,
1769** the first byte past the 1GB boundary, 0x40000000) needs to occur
1770** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00001771**
1772** If parameter nReserve is less than zero, then the number of reserved
1773** bytes per page is left unchanged.
drh90f5ecb2004-07-22 01:19:35 +00001774*/
danielk1977aef0bf62005-12-30 16:28:01 +00001775int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
1776 BtShared *pBt = p->pBt;
drh90f5ecb2004-07-22 01:19:35 +00001777 if( pBt->pageSizeFixed ){
1778 return SQLITE_READONLY;
1779 }
1780 if( nReserve<0 ){
1781 nReserve = pBt->pageSize - pBt->usableSize;
1782 }
drh06f50212004-11-02 14:24:33 +00001783 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
1784 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00001785 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00001786 assert( !pBt->pPage1 && !pBt->pCursor );
danielk19773b8a05f2007-03-19 17:44:26 +00001787 pBt->pageSize = sqlite3PagerSetPagesize(pBt->pPager, pageSize);
drh90f5ecb2004-07-22 01:19:35 +00001788 }
1789 pBt->usableSize = pBt->pageSize - nReserve;
1790 return SQLITE_OK;
1791}
1792
1793/*
1794** Return the currently defined page size
1795*/
danielk1977aef0bf62005-12-30 16:28:01 +00001796int sqlite3BtreeGetPageSize(Btree *p){
1797 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00001798}
danielk1977aef0bf62005-12-30 16:28:01 +00001799int sqlite3BtreeGetReserve(Btree *p){
1800 return p->pBt->pageSize - p->pBt->usableSize;
drh2011d5f2004-07-22 02:40:37 +00001801}
danielk1977576ec6b2005-01-21 11:55:25 +00001802#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00001803
1804/*
danielk1977951af802004-11-05 15:45:09 +00001805** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
1806** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
1807** is disabled. The default value for the auto-vacuum property is
1808** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
1809*/
danielk1977aef0bf62005-12-30 16:28:01 +00001810int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
1811 BtShared *pBt = p->pBt;;
danielk1977951af802004-11-05 15:45:09 +00001812#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00001813 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00001814#else
1815 if( pBt->pageSizeFixed ){
1816 return SQLITE_READONLY;
1817 }
1818 pBt->autoVacuum = (autoVacuum?1:0);
1819 return SQLITE_OK;
1820#endif
1821}
1822
1823/*
1824** Return the value of the 'auto-vacuum' property. If auto-vacuum is
1825** enabled 1 is returned. Otherwise 0.
1826*/
danielk1977aef0bf62005-12-30 16:28:01 +00001827int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00001828#ifdef SQLITE_OMIT_AUTOVACUUM
1829 return 0;
1830#else
danielk1977aef0bf62005-12-30 16:28:01 +00001831 return p->pBt->autoVacuum;
danielk1977951af802004-11-05 15:45:09 +00001832#endif
1833}
1834
1835
1836/*
drha34b6762004-05-07 13:30:42 +00001837** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00001838** also acquire a readlock on that file.
1839**
1840** SQLITE_OK is returned on success. If the file is not a
1841** well-formed database file, then SQLITE_CORRUPT is returned.
1842** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
1843** is returned if we run out of memory. SQLITE_PROTOCOL is returned
1844** if there is a locking protocol violation.
1845*/
danielk1977aef0bf62005-12-30 16:28:01 +00001846static int lockBtree(BtShared *pBt){
drh07d183d2005-05-01 22:52:42 +00001847 int rc, pageSize;
drh3aac2dd2004-04-26 14:10:20 +00001848 MemPage *pPage1;
drha34b6762004-05-07 13:30:42 +00001849 if( pBt->pPage1 ) return SQLITE_OK;
drh0787db62007-03-04 13:15:27 +00001850 rc = getPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00001851 if( rc!=SQLITE_OK ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00001852
drh306dc212001-05-21 13:45:10 +00001853
1854 /* Do some checking to help insure the file we opened really is
1855 ** a valid database file.
1856 */
drhb6f41482004-05-14 01:58:11 +00001857 rc = SQLITE_NOTADB;
danielk19773b8a05f2007-03-19 17:44:26 +00001858 if( sqlite3PagerPagecount(pBt->pPager)>0 ){
drhb6f41482004-05-14 01:58:11 +00001859 u8 *page1 = pPage1->aData;
1860 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00001861 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00001862 }
drhb6f41482004-05-14 01:58:11 +00001863 if( page1[18]>1 || page1[19]>1 ){
1864 goto page1_init_failed;
1865 }
drh07d183d2005-05-01 22:52:42 +00001866 pageSize = get2byte(&page1[16]);
1867 if( ((pageSize-1)&pageSize)!=0 ){
1868 goto page1_init_failed;
1869 }
1870 assert( (pageSize & 7)==0 );
1871 pBt->pageSize = pageSize;
1872 pBt->usableSize = pageSize - page1[20];
drhb6f41482004-05-14 01:58:11 +00001873 if( pBt->usableSize<500 ){
1874 goto page1_init_failed;
1875 }
1876 pBt->maxEmbedFrac = page1[21];
1877 pBt->minEmbedFrac = page1[22];
1878 pBt->minLeafFrac = page1[23];
drh057cd3a2005-02-15 16:23:02 +00001879#ifndef SQLITE_OMIT_AUTOVACUUM
1880 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
1881#endif
drh306dc212001-05-21 13:45:10 +00001882 }
drhb6f41482004-05-14 01:58:11 +00001883
1884 /* maxLocal is the maximum amount of payload to store locally for
1885 ** a cell. Make sure it is small enough so that at least minFanout
1886 ** cells can will fit on one page. We assume a 10-byte page header.
1887 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00001888 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00001889 ** 4-byte child pointer
1890 ** 9-byte nKey value
1891 ** 4-byte nData value
1892 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00001893 ** So a cell consists of a 2-byte poiner, a header which is as much as
1894 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
1895 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00001896 */
drh43605152004-05-29 21:46:49 +00001897 pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
1898 pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
1899 pBt->maxLeaf = pBt->usableSize - 35;
1900 pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
drhb6f41482004-05-14 01:58:11 +00001901 if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
1902 goto page1_init_failed;
1903 }
drh2e38c322004-09-03 18:38:44 +00001904 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00001905 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00001906 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00001907
drh72f82862001-05-24 21:06:34 +00001908page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00001909 releasePage(pPage1);
1910 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00001911 return rc;
drh306dc212001-05-21 13:45:10 +00001912}
1913
1914/*
drhb8ef32c2005-03-14 02:01:49 +00001915** This routine works like lockBtree() except that it also invokes the
1916** busy callback if there is lock contention.
1917*/
danielk1977aef0bf62005-12-30 16:28:01 +00001918static int lockBtreeWithRetry(Btree *pRef){
drhb8ef32c2005-03-14 02:01:49 +00001919 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00001920 if( pRef->inTrans==TRANS_NONE ){
1921 u8 inTransaction = pRef->pBt->inTransaction;
1922 btreeIntegrity(pRef);
1923 rc = sqlite3BtreeBeginTrans(pRef, 0);
1924 pRef->pBt->inTransaction = inTransaction;
1925 pRef->inTrans = TRANS_NONE;
1926 if( rc==SQLITE_OK ){
1927 pRef->pBt->nTransaction--;
1928 }
1929 btreeIntegrity(pRef);
drhb8ef32c2005-03-14 02:01:49 +00001930 }
1931 return rc;
1932}
1933
1934
1935/*
drhb8ca3072001-12-05 00:21:20 +00001936** If there are no outstanding cursors and we are not in the middle
1937** of a transaction but there is a read lock on the database, then
1938** this routine unrefs the first page of the database file which
1939** has the effect of releasing the read lock.
1940**
1941** If there are any outstanding cursors, this routine is a no-op.
1942**
1943** If there is a transaction in progress, this routine is a no-op.
1944*/
danielk1977aef0bf62005-12-30 16:28:01 +00001945static void unlockBtreeIfUnused(BtShared *pBt){
1946 if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00001947 if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
drh24c9a2e2007-01-05 02:00:47 +00001948 if( pBt->pPage1->aData==0 ){
1949 MemPage *pPage = pBt->pPage1;
1950 pPage->aData = &((u8*)pPage)[-pBt->pageSize];
1951 pPage->pBt = pBt;
1952 pPage->pgno = 1;
1953 }
1954 releasePage(pBt->pPage1);
drh51c6d962004-06-06 00:42:25 +00001955 }
drh3aac2dd2004-04-26 14:10:20 +00001956 pBt->pPage1 = 0;
drh3aac2dd2004-04-26 14:10:20 +00001957 pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001958 }
1959}
1960
1961/*
drh9e572e62004-04-23 23:43:10 +00001962** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00001963** file.
drh8b2f49b2001-06-08 00:21:52 +00001964*/
danielk1977aef0bf62005-12-30 16:28:01 +00001965static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00001966 MemPage *pP1;
1967 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00001968 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001969 if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001970 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00001971 assert( pP1!=0 );
1972 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00001973 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00001974 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00001975 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
1976 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00001977 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00001978 data[18] = 1;
1979 data[19] = 1;
drhb6f41482004-05-14 01:58:11 +00001980 data[20] = pBt->pageSize - pBt->usableSize;
1981 data[21] = pBt->maxEmbedFrac;
1982 data[22] = pBt->minEmbedFrac;
1983 data[23] = pBt->minLeafFrac;
1984 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00001985 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00001986 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00001987#ifndef SQLITE_OMIT_AUTOVACUUM
1988 if( pBt->autoVacuum ){
1989 put4byte(&data[36 + 4*4], 1);
1990 }
1991#endif
drh8b2f49b2001-06-08 00:21:52 +00001992 return SQLITE_OK;
1993}
1994
1995/*
danielk1977ee5741e2004-05-31 10:01:34 +00001996** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00001997** is started if the second argument is nonzero, otherwise a read-
1998** transaction. If the second argument is 2 or more and exclusive
1999** transaction is started, meaning that no other process is allowed
2000** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002001** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002002** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002003**
danielk1977ee5741e2004-05-31 10:01:34 +00002004** A write-transaction must be started before attempting any
2005** changes to the database. None of the following routines
2006** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002007**
drh23e11ca2004-05-04 17:27:28 +00002008** sqlite3BtreeCreateTable()
2009** sqlite3BtreeCreateIndex()
2010** sqlite3BtreeClearTable()
2011** sqlite3BtreeDropTable()
2012** sqlite3BtreeInsert()
2013** sqlite3BtreeDelete()
2014** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002015**
drhb8ef32c2005-03-14 02:01:49 +00002016** If an initial attempt to acquire the lock fails because of lock contention
2017** and the database was previously unlocked, then invoke the busy handler
2018** if there is one. But if there was previously a read-lock, do not
2019** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2020** returned when there is already a read-lock in order to avoid a deadlock.
2021**
2022** Suppose there are two processes A and B. A has a read lock and B has
2023** a reserved lock. B tries to promote to exclusive but is blocked because
2024** of A's read lock. A tries to promote to reserved but is blocked by B.
2025** One or the other of the two processes must give way or there can be
2026** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2027** when A already has a read lock, we encourage A to give up and let B
2028** proceed.
drha059ad02001-04-17 20:09:11 +00002029*/
danielk1977aef0bf62005-12-30 16:28:01 +00002030int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
2031 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002032 int rc = SQLITE_OK;
2033
danielk1977aef0bf62005-12-30 16:28:01 +00002034 btreeIntegrity(p);
2035
danielk1977ee5741e2004-05-31 10:01:34 +00002036 /* If the btree is already in a write-transaction, or it
2037 ** is already in a read-transaction and a read-transaction
2038 ** is requested, this is a no-op.
2039 */
danielk1977aef0bf62005-12-30 16:28:01 +00002040 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
danielk1977ee5741e2004-05-31 10:01:34 +00002041 return SQLITE_OK;
2042 }
drhb8ef32c2005-03-14 02:01:49 +00002043
2044 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002045 if( pBt->readOnly && wrflag ){
2046 return SQLITE_READONLY;
2047 }
2048
danielk1977aef0bf62005-12-30 16:28:01 +00002049 /* If another database handle has already opened a write transaction
2050 ** on this shared-btree structure and a second write transaction is
2051 ** requested, return SQLITE_BUSY.
2052 */
2053 if( pBt->inTransaction==TRANS_WRITE && wrflag ){
2054 return SQLITE_BUSY;
2055 }
2056
drhb8ef32c2005-03-14 02:01:49 +00002057 do {
2058 if( pBt->pPage1==0 ){
2059 rc = lockBtree(pBt);
drh8c42ca92001-06-22 19:15:00 +00002060 }
drhb8ef32c2005-03-14 02:01:49 +00002061
2062 if( rc==SQLITE_OK && wrflag ){
danielk19773b8a05f2007-03-19 17:44:26 +00002063 rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
drhb8ef32c2005-03-14 02:01:49 +00002064 if( rc==SQLITE_OK ){
2065 rc = newDatabase(pBt);
2066 }
2067 }
2068
2069 if( rc==SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002070 if( wrflag ) pBt->inStmt = 0;
2071 }else{
2072 unlockBtreeIfUnused(pBt);
2073 }
danielk1977aef0bf62005-12-30 16:28:01 +00002074 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
drha4afb652005-07-09 02:16:02 +00002075 sqlite3InvokeBusyHandler(pBt->pBusyHandler) );
danielk1977aef0bf62005-12-30 16:28:01 +00002076
2077 if( rc==SQLITE_OK ){
2078 if( p->inTrans==TRANS_NONE ){
2079 pBt->nTransaction++;
2080 }
2081 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2082 if( p->inTrans>pBt->inTransaction ){
2083 pBt->inTransaction = p->inTrans;
2084 }
2085 }
2086
2087 btreeIntegrity(p);
drhb8ca3072001-12-05 00:21:20 +00002088 return rc;
drha059ad02001-04-17 20:09:11 +00002089}
2090
danielk1977687566d2004-11-02 12:56:41 +00002091#ifndef SQLITE_OMIT_AUTOVACUUM
2092
2093/*
2094** Set the pointer-map entries for all children of page pPage. Also, if
2095** pPage contains cells that point to overflow pages, set the pointer
2096** map entries for the overflow pages as well.
2097*/
2098static int setChildPtrmaps(MemPage *pPage){
2099 int i; /* Counter variable */
2100 int nCell; /* Number of cells in page pPage */
2101 int rc = SQLITE_OK; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002102 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00002103 int isInitOrig = pPage->isInit;
2104 Pgno pgno = pPage->pgno;
2105
2106 initPage(pPage, 0);
2107 nCell = pPage->nCell;
2108
2109 for(i=0; i<nCell; i++){
danielk1977687566d2004-11-02 12:56:41 +00002110 u8 *pCell = findCell(pPage, i);
2111
danielk197726836652005-01-17 01:33:13 +00002112 rc = ptrmapPutOvflPtr(pPage, pCell);
2113 if( rc!=SQLITE_OK ){
2114 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002115 }
danielk197726836652005-01-17 01:33:13 +00002116
danielk1977687566d2004-11-02 12:56:41 +00002117 if( !pPage->leaf ){
2118 Pgno childPgno = get4byte(pCell);
2119 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2120 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
2121 }
2122 }
2123
2124 if( !pPage->leaf ){
2125 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2126 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2127 }
2128
2129set_child_ptrmaps_out:
2130 pPage->isInit = isInitOrig;
2131 return rc;
2132}
2133
2134/*
2135** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
2136** page, is a pointer to page iFrom. Modify this pointer so that it points to
2137** iTo. Parameter eType describes the type of pointer to be modified, as
2138** follows:
2139**
2140** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2141** page of pPage.
2142**
2143** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2144** page pointed to by one of the cells on pPage.
2145**
2146** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2147** overflow page in the list.
2148*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002149static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
danielk1977687566d2004-11-02 12:56:41 +00002150 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002151 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002152 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002153 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002154 }
danielk1977f78fc082004-11-02 14:40:32 +00002155 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002156 }else{
2157 int isInitOrig = pPage->isInit;
2158 int i;
2159 int nCell;
2160
2161 initPage(pPage, 0);
2162 nCell = pPage->nCell;
2163
danielk1977687566d2004-11-02 12:56:41 +00002164 for(i=0; i<nCell; i++){
2165 u8 *pCell = findCell(pPage, i);
2166 if( eType==PTRMAP_OVERFLOW1 ){
2167 CellInfo info;
2168 parseCellPtr(pPage, pCell, &info);
2169 if( info.iOverflow ){
2170 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2171 put4byte(&pCell[info.iOverflow], iTo);
2172 break;
2173 }
2174 }
2175 }else{
2176 if( get4byte(pCell)==iFrom ){
2177 put4byte(pCell, iTo);
2178 break;
2179 }
2180 }
2181 }
2182
2183 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002184 if( eType!=PTRMAP_BTREE ||
2185 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002186 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002187 }
danielk1977687566d2004-11-02 12:56:41 +00002188 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2189 }
2190
2191 pPage->isInit = isInitOrig;
2192 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002193 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002194}
2195
danielk1977003ba062004-11-04 02:57:33 +00002196
danielk19777701e812005-01-10 12:59:51 +00002197/*
2198** Move the open database page pDbPage to location iFreePage in the
2199** database. The pDbPage reference remains valid.
2200*/
danielk1977003ba062004-11-04 02:57:33 +00002201static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002202 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002203 MemPage *pDbPage, /* Open page to move */
2204 u8 eType, /* Pointer map 'type' entry for pDbPage */
2205 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
2206 Pgno iFreePage /* The location to move pDbPage to */
danielk1977003ba062004-11-04 02:57:33 +00002207){
2208 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2209 Pgno iDbPage = pDbPage->pgno;
2210 Pager *pPager = pBt->pPager;
2211 int rc;
2212
danielk1977a0bf2652004-11-04 14:30:04 +00002213 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2214 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
danielk1977003ba062004-11-04 02:57:33 +00002215
2216 /* Move page iDbPage from it's current location to page number iFreePage */
2217 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2218 iDbPage, iFreePage, iPtrPage, eType));
danielk19773b8a05f2007-03-19 17:44:26 +00002219 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
danielk1977003ba062004-11-04 02:57:33 +00002220 if( rc!=SQLITE_OK ){
2221 return rc;
2222 }
2223 pDbPage->pgno = iFreePage;
2224
2225 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2226 ** that point to overflow pages. The pointer map entries for all these
2227 ** pages need to be changed.
2228 **
2229 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2230 ** pointer to a subsequent overflow page. If this is the case, then
2231 ** the pointer map needs to be updated for the subsequent overflow page.
2232 */
danielk1977a0bf2652004-11-04 14:30:04 +00002233 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002234 rc = setChildPtrmaps(pDbPage);
2235 if( rc!=SQLITE_OK ){
2236 return rc;
2237 }
2238 }else{
2239 Pgno nextOvfl = get4byte(pDbPage->aData);
2240 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002241 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2242 if( rc!=SQLITE_OK ){
2243 return rc;
2244 }
2245 }
2246 }
2247
2248 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2249 ** that it points at iFreePage. Also fix the pointer map entry for
2250 ** iPtrPage.
2251 */
danielk1977a0bf2652004-11-04 14:30:04 +00002252 if( eType!=PTRMAP_ROOTPAGE ){
drh0787db62007-03-04 13:15:27 +00002253 rc = getPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002254 if( rc!=SQLITE_OK ){
2255 return rc;
2256 }
danielk19773b8a05f2007-03-19 17:44:26 +00002257 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002258 if( rc!=SQLITE_OK ){
2259 releasePage(pPtrPage);
2260 return rc;
2261 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002262 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002263 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002264 if( rc==SQLITE_OK ){
2265 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2266 }
danielk1977003ba062004-11-04 02:57:33 +00002267 }
danielk1977003ba062004-11-04 02:57:33 +00002268 return rc;
2269}
2270
danielk1977687566d2004-11-02 12:56:41 +00002271/* Forward declaration required by autoVacuumCommit(). */
danielk1977aef0bf62005-12-30 16:28:01 +00002272static int allocatePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002273
2274/*
danielk19773b8a05f2007-03-19 17:44:26 +00002275** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002276** is commited for an auto-vacuum database.
2277*/
danielk1977aef0bf62005-12-30 16:28:01 +00002278static int autoVacuumCommit(BtShared *pBt, Pgno *nTrunc){
danielk1977687566d2004-11-02 12:56:41 +00002279 Pager *pPager = pBt->pPager;
danielk1977e501b892006-01-09 06:29:47 +00002280 Pgno nFreeList; /* Number of pages remaining on the free-list. */
2281 int nPtrMap; /* Number of pointer-map pages deallocated */
2282 Pgno origSize; /* Pages in the database file */
2283 Pgno finSize; /* Pages in the database file after truncation */
2284 int rc; /* Return code */
danielk1977687566d2004-11-02 12:56:41 +00002285 u8 eType;
danielk1977a19df672004-11-03 11:37:07 +00002286 int pgsz = pBt->pageSize; /* Page size for this database */
danielk1977687566d2004-11-02 12:56:41 +00002287 Pgno iDbPage; /* The database page to move */
danielk1977687566d2004-11-02 12:56:41 +00002288 MemPage *pDbMemPage = 0; /* "" */
2289 Pgno iPtrPage; /* The page that contains a pointer to iDbPage */
danielk1977687566d2004-11-02 12:56:41 +00002290 Pgno iFreePage; /* The free-list page to move iDbPage to */
2291 MemPage *pFreeMemPage = 0; /* "" */
2292
2293#ifndef NDEBUG
danielk19773b8a05f2007-03-19 17:44:26 +00002294 int nRef = sqlite3PagerRefcount(pPager);
danielk1977687566d2004-11-02 12:56:41 +00002295#endif
2296
2297 assert( pBt->autoVacuum );
danielk19773b8a05f2007-03-19 17:44:26 +00002298 if( PTRMAP_ISPAGE(pBt, sqlite3PagerPagecount(pPager)) ){
drh49285702005-09-17 15:20:26 +00002299 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002300 }
danielk1977687566d2004-11-02 12:56:41 +00002301
2302 /* Figure out how many free-pages are in the database. If there are no
2303 ** free pages, then auto-vacuum is a no-op.
2304 */
2305 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977a19df672004-11-03 11:37:07 +00002306 if( nFreeList==0 ){
danielk1977d761c0c2004-11-05 16:37:02 +00002307 *nTrunc = 0;
danielk1977a19df672004-11-03 11:37:07 +00002308 return SQLITE_OK;
2309 }
danielk1977687566d2004-11-02 12:56:41 +00002310
danielk1977266664d2006-02-10 08:24:21 +00002311 /* This block figures out how many pages there are in the database
2312 ** now (variable origSize), and how many there will be after the
2313 ** truncation (variable finSize).
2314 **
2315 ** The final size is the original size, less the number of free pages
2316 ** in the database, less any pointer-map pages that will no longer
2317 ** be required, less 1 if the pending-byte page was part of the database
2318 ** but is not after the truncation.
2319 **/
danielk19773b8a05f2007-03-19 17:44:26 +00002320 origSize = sqlite3PagerPagecount(pPager);
danielk1977266664d2006-02-10 08:24:21 +00002321 if( origSize==PENDING_BYTE_PAGE(pBt) ){
2322 origSize--;
2323 }
2324 nPtrMap = (nFreeList-origSize+PTRMAP_PAGENO(pBt, origSize)+pgsz/5)/(pgsz/5);
danielk1977a19df672004-11-03 11:37:07 +00002325 finSize = origSize - nFreeList - nPtrMap;
danielk1977266664d2006-02-10 08:24:21 +00002326 if( origSize>PENDING_BYTE_PAGE(pBt) && finSize<=PENDING_BYTE_PAGE(pBt) ){
danielk1977599fcba2004-11-08 07:13:13 +00002327 finSize--;
danielk1977266664d2006-02-10 08:24:21 +00002328 }
2329 while( PTRMAP_ISPAGE(pBt, finSize) || finSize==PENDING_BYTE_PAGE(pBt) ){
2330 finSize--;
danielk1977599fcba2004-11-08 07:13:13 +00002331 }
danielk1977a19df672004-11-03 11:37:07 +00002332 TRACE(("AUTOVACUUM: Begin (db size %d->%d)\n", origSize, finSize));
danielk1977687566d2004-11-02 12:56:41 +00002333
danielk1977a19df672004-11-03 11:37:07 +00002334 /* Variable 'finSize' will be the size of the file in pages after
danielk1977687566d2004-11-02 12:56:41 +00002335 ** the auto-vacuum has completed (the current file size minus the number
2336 ** of pages on the free list). Loop through the pages that lie beyond
2337 ** this mark, and if they are not already on the free list, move them
danielk1977a19df672004-11-03 11:37:07 +00002338 ** to a free page earlier in the file (somewhere before finSize).
danielk1977687566d2004-11-02 12:56:41 +00002339 */
danielk1977a19df672004-11-03 11:37:07 +00002340 for( iDbPage=finSize+1; iDbPage<=origSize; iDbPage++ ){
danielk1977599fcba2004-11-08 07:13:13 +00002341 /* If iDbPage is a pointer map page, or the pending-byte page, skip it. */
danielk1977266664d2006-02-10 08:24:21 +00002342 if( PTRMAP_ISPAGE(pBt, iDbPage) || iDbPage==PENDING_BYTE_PAGE(pBt) ){
danielk1977599fcba2004-11-08 07:13:13 +00002343 continue;
2344 }
2345
danielk1977687566d2004-11-02 12:56:41 +00002346 rc = ptrmapGet(pBt, iDbPage, &eType, &iPtrPage);
2347 if( rc!=SQLITE_OK ) goto autovacuum_out;
drhccae6022005-02-26 17:31:26 +00002348 if( eType==PTRMAP_ROOTPAGE ){
drh49285702005-09-17 15:20:26 +00002349 rc = SQLITE_CORRUPT_BKPT;
drhccae6022005-02-26 17:31:26 +00002350 goto autovacuum_out;
2351 }
danielk1977687566d2004-11-02 12:56:41 +00002352
danielk1977599fcba2004-11-08 07:13:13 +00002353 /* If iDbPage is free, do not swap it. */
2354 if( eType==PTRMAP_FREEPAGE ){
danielk1977687566d2004-11-02 12:56:41 +00002355 continue;
2356 }
drh0787db62007-03-04 13:15:27 +00002357 rc = getPage(pBt, iDbPage, &pDbMemPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00002358 if( rc!=SQLITE_OK ) goto autovacuum_out;
danielk1977687566d2004-11-02 12:56:41 +00002359
2360 /* Find the next page in the free-list that is not already at the end
2361 ** of the file. A page can be pulled off the free list using the
2362 ** allocatePage() routine.
2363 */
2364 do{
2365 if( pFreeMemPage ){
2366 releasePage(pFreeMemPage);
2367 pFreeMemPage = 0;
2368 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00002369 rc = allocatePage(pBt, &pFreeMemPage, &iFreePage, 0, 0);
danielk1977ac11ee62005-01-15 12:45:51 +00002370 if( rc!=SQLITE_OK ){
2371 releasePage(pDbMemPage);
2372 goto autovacuum_out;
2373 }
danielk1977a19df672004-11-03 11:37:07 +00002374 assert( iFreePage<=origSize );
2375 }while( iFreePage>finSize );
danielk1977687566d2004-11-02 12:56:41 +00002376 releasePage(pFreeMemPage);
2377 pFreeMemPage = 0;
danielk1977687566d2004-11-02 12:56:41 +00002378
danielk1977e501b892006-01-09 06:29:47 +00002379 /* Relocate the page into the body of the file. Note that although the
2380 ** page has moved within the database file, the pDbMemPage pointer
2381 ** remains valid. This means that this function can run without
2382 ** invalidating cursors open on the btree. This is important in
2383 ** shared-cache mode.
2384 */
danielk1977003ba062004-11-04 02:57:33 +00002385 rc = relocatePage(pBt, pDbMemPage, eType, iPtrPage, iFreePage);
danielk1977687566d2004-11-02 12:56:41 +00002386 releasePage(pDbMemPage);
danielk1977687566d2004-11-02 12:56:41 +00002387 if( rc!=SQLITE_OK ) goto autovacuum_out;
danielk1977687566d2004-11-02 12:56:41 +00002388 }
2389
2390 /* The entire free-list has been swapped to the end of the file. So
danielk1977a19df672004-11-03 11:37:07 +00002391 ** truncate the database file to finSize pages and consider the
danielk1977687566d2004-11-02 12:56:41 +00002392 ** free-list empty.
2393 */
danielk19773b8a05f2007-03-19 17:44:26 +00002394 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
danielk1977687566d2004-11-02 12:56:41 +00002395 if( rc!=SQLITE_OK ) goto autovacuum_out;
2396 put4byte(&pBt->pPage1->aData[32], 0);
2397 put4byte(&pBt->pPage1->aData[36], 0);
danielk1977d761c0c2004-11-05 16:37:02 +00002398 *nTrunc = finSize;
danielk1977266664d2006-02-10 08:24:21 +00002399 assert( finSize!=PENDING_BYTE_PAGE(pBt) );
danielk1977687566d2004-11-02 12:56:41 +00002400
2401autovacuum_out:
danielk19773b8a05f2007-03-19 17:44:26 +00002402 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002403 if( rc!=SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00002404 sqlite3PagerRollback(pPager);
danielk1977687566d2004-11-02 12:56:41 +00002405 }
2406 return rc;
2407}
2408#endif
2409
2410/*
drh2aa679f2001-06-25 02:11:07 +00002411** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002412**
2413** This will release the write lock on the database file. If there
2414** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002415*/
danielk1977aef0bf62005-12-30 16:28:01 +00002416int sqlite3BtreeCommit(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002417 BtShared *pBt = p->pBt;
2418
2419 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002420
2421 /* If the handle has a write-transaction open, commit the shared-btrees
2422 ** transaction and set the shared state to TRANS_READ.
2423 */
2424 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00002425 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002426 assert( pBt->inTransaction==TRANS_WRITE );
2427 assert( pBt->nTransaction>0 );
danielk19773b8a05f2007-03-19 17:44:26 +00002428 rc = sqlite3PagerCommit(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00002429 if( rc!=SQLITE_OK ){
2430 return rc;
2431 }
danielk1977aef0bf62005-12-30 16:28:01 +00002432 pBt->inTransaction = TRANS_READ;
2433 pBt->inStmt = 0;
danielk1977ee5741e2004-05-31 10:01:34 +00002434 }
danielk19777f7bc662006-01-23 13:47:47 +00002435 unlockAllTables(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002436
2437 /* If the handle has any kind of transaction open, decrement the transaction
2438 ** count of the shared btree. If the transaction count reaches 0, set
2439 ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
2440 ** will unlock the pager.
2441 */
2442 if( p->inTrans!=TRANS_NONE ){
2443 pBt->nTransaction--;
2444 if( 0==pBt->nTransaction ){
2445 pBt->inTransaction = TRANS_NONE;
2446 }
2447 }
2448
2449 /* Set the handles current transaction state to TRANS_NONE and unlock
2450 ** the pager if this call closed the only read or write transaction.
2451 */
2452 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002453 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002454
2455 btreeIntegrity(p);
danielk19777f7bc662006-01-23 13:47:47 +00002456 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002457}
2458
danielk1977fbcd5852004-06-15 02:44:18 +00002459#ifndef NDEBUG
2460/*
2461** Return the number of write-cursors open on this handle. This is for use
2462** in assert() expressions, so it is only compiled if NDEBUG is not
2463** defined.
2464*/
danielk1977aef0bf62005-12-30 16:28:01 +00002465static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00002466 BtCursor *pCur;
2467 int r = 0;
2468 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
danielk1977aef0bf62005-12-30 16:28:01 +00002469 if( pCur->wrFlag ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00002470 }
2471 return r;
2472}
2473#endif
2474
drh77bba592006-08-13 18:39:26 +00002475#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
drhda200cc2004-05-09 11:51:38 +00002476/*
2477** Print debugging information about all cursors to standard output.
2478*/
danielk1977aef0bf62005-12-30 16:28:01 +00002479void sqlite3BtreeCursorList(Btree *p){
drhda200cc2004-05-09 11:51:38 +00002480 BtCursor *pCur;
danielk1977aef0bf62005-12-30 16:28:01 +00002481 BtShared *pBt = p->pBt;
drhda200cc2004-05-09 11:51:38 +00002482 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
2483 MemPage *pPage = pCur->pPage;
2484 char *zMode = pCur->wrFlag ? "rw" : "ro";
drhfe63d1c2004-09-08 20:13:04 +00002485 sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n",
2486 pCur, pCur->pgnoRoot, zMode,
drhda200cc2004-05-09 11:51:38 +00002487 pPage ? pPage->pgno : 0, pCur->idx,
danielk1977da184232006-01-05 11:34:32 +00002488 (pCur->eState==CURSOR_VALID) ? "" : " eof"
drhda200cc2004-05-09 11:51:38 +00002489 );
2490 }
2491}
2492#endif
2493
drhc39e0002004-05-07 23:50:57 +00002494/*
drhecdc7532001-09-23 02:35:53 +00002495** Rollback the transaction in progress. All cursors will be
2496** invalided by this operation. Any attempt to use a cursor
2497** that was open at the beginning of this operation will result
2498** in an error.
drh5e00f6c2001-09-13 13:46:56 +00002499**
2500** This will release the write lock on the database file. If there
2501** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002502*/
danielk1977aef0bf62005-12-30 16:28:01 +00002503int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00002504 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002505 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00002506 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00002507
danielk19772b8c13e2006-01-24 14:21:24 +00002508 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00002509#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00002510 if( rc!=SQLITE_OK ){
danielk19778d34dfd2006-01-24 16:37:57 +00002511 /* This is a horrible situation. An IO or malloc() error occured whilst
2512 ** trying to save cursor positions. If this is an automatic rollback (as
2513 ** the result of a constraint, malloc() failure or IO error) then
2514 ** the cache may be internally inconsistent (not contain valid trees) so
2515 ** we cannot simply return the error to the caller. Instead, abort
2516 ** all queries that may be using any of the cursors that failed to save.
2517 */
2518 while( pBt->pCursor ){
2519 sqlite3 *db = pBt->pCursor->pBtree->pSqlite;
2520 if( db ){
2521 sqlite3AbortOtherActiveVdbes(db, 0);
2522 }
2523 }
danielk19772b8c13e2006-01-24 14:21:24 +00002524 }
danielk19778d34dfd2006-01-24 16:37:57 +00002525#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002526 btreeIntegrity(p);
2527 unlockAllTables(p);
2528
2529 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00002530 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00002531
danielk19778d34dfd2006-01-24 16:37:57 +00002532 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00002533 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00002534 if( rc2!=SQLITE_OK ){
2535 rc = rc2;
2536 }
2537
drh24cd67e2004-05-10 16:18:47 +00002538 /* The rollback may have destroyed the pPage1->aData value. So
2539 ** call getPage() on page 1 again to make sure pPage1->aData is
2540 ** set correctly. */
drh0787db62007-03-04 13:15:27 +00002541 if( getPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00002542 releasePage(pPage1);
2543 }
danielk1977fbcd5852004-06-15 02:44:18 +00002544 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002545 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00002546 }
danielk1977aef0bf62005-12-30 16:28:01 +00002547
2548 if( p->inTrans!=TRANS_NONE ){
2549 assert( pBt->nTransaction>0 );
2550 pBt->nTransaction--;
2551 if( 0==pBt->nTransaction ){
2552 pBt->inTransaction = TRANS_NONE;
2553 }
2554 }
2555
2556 p->inTrans = TRANS_NONE;
danielk1977ee5741e2004-05-31 10:01:34 +00002557 pBt->inStmt = 0;
drh5e00f6c2001-09-13 13:46:56 +00002558 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002559
2560 btreeIntegrity(p);
drha059ad02001-04-17 20:09:11 +00002561 return rc;
2562}
2563
2564/*
drhab01f612004-05-22 02:55:23 +00002565** Start a statement subtransaction. The subtransaction can
2566** can be rolled back independently of the main transaction.
2567** You must start a transaction before starting a subtransaction.
2568** The subtransaction is ended automatically if the main transaction
drh663fc632002-02-02 18:49:19 +00002569** commits or rolls back.
2570**
drhab01f612004-05-22 02:55:23 +00002571** Only one subtransaction may be active at a time. It is an error to try
2572** to start a new subtransaction if another subtransaction is already active.
2573**
2574** Statement subtransactions are used around individual SQL statements
2575** that are contained within a BEGIN...COMMIT block. If a constraint
2576** error occurs within the statement, the effect of that one statement
2577** can be rolled back without having to rollback the entire transaction.
drh663fc632002-02-02 18:49:19 +00002578*/
danielk1977aef0bf62005-12-30 16:28:01 +00002579int sqlite3BtreeBeginStmt(Btree *p){
drh663fc632002-02-02 18:49:19 +00002580 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002581 BtShared *pBt = p->pBt;
2582 if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
drhf74b8d92002-09-01 23:20:45 +00002583 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh0d65dc02002-02-03 00:56:09 +00002584 }
danielk1977aef0bf62005-12-30 16:28:01 +00002585 assert( pBt->inTransaction==TRANS_WRITE );
danielk19773b8a05f2007-03-19 17:44:26 +00002586 rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
drh3aac2dd2004-04-26 14:10:20 +00002587 pBt->inStmt = 1;
drh663fc632002-02-02 18:49:19 +00002588 return rc;
2589}
2590
2591
2592/*
drhab01f612004-05-22 02:55:23 +00002593** Commit the statment subtransaction currently in progress. If no
2594** subtransaction is active, this is a no-op.
drh663fc632002-02-02 18:49:19 +00002595*/
danielk1977aef0bf62005-12-30 16:28:01 +00002596int sqlite3BtreeCommitStmt(Btree *p){
drh663fc632002-02-02 18:49:19 +00002597 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002598 BtShared *pBt = p->pBt;
drh3aac2dd2004-04-26 14:10:20 +00002599 if( pBt->inStmt && !pBt->readOnly ){
danielk19773b8a05f2007-03-19 17:44:26 +00002600 rc = sqlite3PagerStmtCommit(pBt->pPager);
drh663fc632002-02-02 18:49:19 +00002601 }else{
2602 rc = SQLITE_OK;
2603 }
drh3aac2dd2004-04-26 14:10:20 +00002604 pBt->inStmt = 0;
drh663fc632002-02-02 18:49:19 +00002605 return rc;
2606}
2607
2608/*
drhab01f612004-05-22 02:55:23 +00002609** Rollback the active statement subtransaction. If no subtransaction
2610** is active this routine is a no-op.
drh663fc632002-02-02 18:49:19 +00002611**
drhab01f612004-05-22 02:55:23 +00002612** All cursors will be invalidated by this operation. Any attempt
drh663fc632002-02-02 18:49:19 +00002613** to use a cursor that was open at the beginning of this operation
2614** will result in an error.
2615*/
danielk1977aef0bf62005-12-30 16:28:01 +00002616int sqlite3BtreeRollbackStmt(Btree *p){
danielk197797a227c2006-01-20 16:32:04 +00002617 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002618 BtShared *pBt = p->pBt;
danielk197797a227c2006-01-20 16:32:04 +00002619 sqlite3MallocDisallow();
2620 if( pBt->inStmt && !pBt->readOnly ){
danielk19773b8a05f2007-03-19 17:44:26 +00002621 rc = sqlite3PagerStmtRollback(pBt->pPager);
danielk197797a227c2006-01-20 16:32:04 +00002622 assert( countWriteCursors(pBt)==0 );
2623 pBt->inStmt = 0;
2624 }
2625 sqlite3MallocAllow();
drh663fc632002-02-02 18:49:19 +00002626 return rc;
2627}
2628
2629/*
drh3aac2dd2004-04-26 14:10:20 +00002630** Default key comparison function to be used if no comparison function
2631** is specified on the sqlite3BtreeCursor() call.
2632*/
2633static int dfltCompare(
2634 void *NotUsed, /* User data is not used */
2635 int n1, const void *p1, /* First key to compare */
2636 int n2, const void *p2 /* Second key to compare */
2637){
2638 int c;
2639 c = memcmp(p1, p2, n1<n2 ? n1 : n2);
2640 if( c==0 ){
2641 c = n1 - n2;
2642 }
2643 return c;
2644}
2645
2646/*
drh8b2f49b2001-06-08 00:21:52 +00002647** Create a new cursor for the BTree whose root is on the page
2648** iTable. The act of acquiring a cursor gets a read lock on
2649** the database file.
drh1bee3d72001-10-15 00:44:35 +00002650**
2651** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00002652** If wrFlag==1, then the cursor can be used for reading or for
2653** writing if other conditions for writing are also met. These
2654** are the conditions that must be met in order for writing to
2655** be allowed:
drh6446c4d2001-12-15 14:22:18 +00002656**
drhf74b8d92002-09-01 23:20:45 +00002657** 1: The cursor must have been opened with wrFlag==1
2658**
drhfe5d71d2007-03-19 11:54:10 +00002659** 2: Other database connections that share the same pager cache
2660** but which are not in the READ_UNCOMMITTED state may not have
2661** cursors open with wrFlag==0 on the same table. Otherwise
2662** the changes made by this write cursor would be visible to
2663** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00002664**
2665** 3: The database must be writable (not on read-only media)
2666**
2667** 4: There must be an active transaction.
2668**
drh6446c4d2001-12-15 14:22:18 +00002669** No checking is done to make sure that page iTable really is the
2670** root page of a b-tree. If it is not, then the cursor acquired
2671** will not work correctly.
drh3aac2dd2004-04-26 14:10:20 +00002672**
2673** The comparison function must be logically the same for every cursor
2674** on a particular table. Changing the comparison function will result
2675** in incorrect operations. If the comparison function is NULL, a
2676** default comparison function is used. The comparison function is
2677** always ignored for INTKEY tables.
drha059ad02001-04-17 20:09:11 +00002678*/
drh3aac2dd2004-04-26 14:10:20 +00002679int sqlite3BtreeCursor(
danielk1977aef0bf62005-12-30 16:28:01 +00002680 Btree *p, /* The btree */
drh3aac2dd2004-04-26 14:10:20 +00002681 int iTable, /* Root page of table to open */
2682 int wrFlag, /* 1 to write. 0 read-only */
2683 int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
2684 void *pArg, /* First arg to xCompare() */
2685 BtCursor **ppCur /* Write new cursor here */
2686){
drha059ad02001-04-17 20:09:11 +00002687 int rc;
drh8dcd7ca2004-08-08 19:43:29 +00002688 BtCursor *pCur;
danielk1977aef0bf62005-12-30 16:28:01 +00002689 BtShared *pBt = p->pBt;
drhecdc7532001-09-23 02:35:53 +00002690
drh8dcd7ca2004-08-08 19:43:29 +00002691 *ppCur = 0;
2692 if( wrFlag ){
drh8dcd7ca2004-08-08 19:43:29 +00002693 if( pBt->readOnly ){
2694 return SQLITE_READONLY;
2695 }
drh980b1a72006-08-16 16:42:48 +00002696 if( checkReadLocks(p, iTable, 0) ){
drh8dcd7ca2004-08-08 19:43:29 +00002697 return SQLITE_LOCKED;
2698 }
drha0c9a112004-03-10 13:42:37 +00002699 }
danielk1977aef0bf62005-12-30 16:28:01 +00002700
drh4b70f112004-05-02 21:12:19 +00002701 if( pBt->pPage1==0 ){
danielk1977aef0bf62005-12-30 16:28:01 +00002702 rc = lockBtreeWithRetry(p);
drha059ad02001-04-17 20:09:11 +00002703 if( rc!=SQLITE_OK ){
drha059ad02001-04-17 20:09:11 +00002704 return rc;
2705 }
2706 }
danielk1977da184232006-01-05 11:34:32 +00002707 pCur = sqliteMalloc( sizeof(*pCur) );
drha059ad02001-04-17 20:09:11 +00002708 if( pCur==0 ){
drhbd03cae2001-06-02 02:40:57 +00002709 rc = SQLITE_NOMEM;
2710 goto create_cursor_exception;
2711 }
drh8b2f49b2001-06-08 00:21:52 +00002712 pCur->pgnoRoot = (Pgno)iTable;
danielk19773b8a05f2007-03-19 17:44:26 +00002713 if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){
drh24cd67e2004-05-10 16:18:47 +00002714 rc = SQLITE_EMPTY;
2715 goto create_cursor_exception;
2716 }
drhde647132004-05-07 17:57:49 +00002717 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
drhbd03cae2001-06-02 02:40:57 +00002718 if( rc!=SQLITE_OK ){
2719 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00002720 }
danielk1977aef0bf62005-12-30 16:28:01 +00002721
danielk1977aef0bf62005-12-30 16:28:01 +00002722 /* Now that no other errors can occur, finish filling in the BtCursor
2723 ** variables, link the cursor into the BtShared list and set *ppCur (the
2724 ** output argument to this function).
2725 */
drh3aac2dd2004-04-26 14:10:20 +00002726 pCur->xCompare = xCmp ? xCmp : dfltCompare;
2727 pCur->pArg = pArg;
danielk1977aef0bf62005-12-30 16:28:01 +00002728 pCur->pBtree = p;
drhecdc7532001-09-23 02:35:53 +00002729 pCur->wrFlag = wrFlag;
drha059ad02001-04-17 20:09:11 +00002730 pCur->pNext = pBt->pCursor;
2731 if( pCur->pNext ){
2732 pCur->pNext->pPrev = pCur;
2733 }
2734 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00002735 pCur->eState = CURSOR_INVALID;
drh2af926b2001-05-15 00:39:25 +00002736 *ppCur = pCur;
drhbd03cae2001-06-02 02:40:57 +00002737
danielk1977aef0bf62005-12-30 16:28:01 +00002738 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00002739create_cursor_exception:
drhbd03cae2001-06-02 02:40:57 +00002740 if( pCur ){
drh3aac2dd2004-04-26 14:10:20 +00002741 releasePage(pCur->pPage);
drhbd03cae2001-06-02 02:40:57 +00002742 sqliteFree(pCur);
2743 }
drh5e00f6c2001-09-13 13:46:56 +00002744 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00002745 return rc;
drha059ad02001-04-17 20:09:11 +00002746}
2747
drh7a224de2004-06-02 01:22:02 +00002748#if 0 /* Not Used */
drhd3d39e92004-05-20 22:16:29 +00002749/*
2750** Change the value of the comparison function used by a cursor.
2751*/
danielk1977bf3b7212004-05-18 10:06:24 +00002752void sqlite3BtreeSetCompare(
drhd3d39e92004-05-20 22:16:29 +00002753 BtCursor *pCur, /* The cursor to whose comparison function is changed */
2754 int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */
2755 void *pArg /* First argument to xCmp() */
danielk1977bf3b7212004-05-18 10:06:24 +00002756){
2757 pCur->xCompare = xCmp ? xCmp : dfltCompare;
2758 pCur->pArg = pArg;
2759}
drh7a224de2004-06-02 01:22:02 +00002760#endif
danielk1977bf3b7212004-05-18 10:06:24 +00002761
drha059ad02001-04-17 20:09:11 +00002762/*
drh5e00f6c2001-09-13 13:46:56 +00002763** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00002764** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00002765*/
drh3aac2dd2004-04-26 14:10:20 +00002766int sqlite3BtreeCloseCursor(BtCursor *pCur){
danielk1977aef0bf62005-12-30 16:28:01 +00002767 BtShared *pBt = pCur->pBtree->pBt;
drh777e4c42006-01-13 04:31:58 +00002768 restoreOrClearCursorPosition(pCur, 0);
drha059ad02001-04-17 20:09:11 +00002769 if( pCur->pPrev ){
2770 pCur->pPrev->pNext = pCur->pNext;
2771 }else{
2772 pBt->pCursor = pCur->pNext;
2773 }
2774 if( pCur->pNext ){
2775 pCur->pNext->pPrev = pCur->pPrev;
2776 }
drh3aac2dd2004-04-26 14:10:20 +00002777 releasePage(pCur->pPage);
drh5e00f6c2001-09-13 13:46:56 +00002778 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00002779 sqliteFree(pCur);
drh8c42ca92001-06-22 19:15:00 +00002780 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002781}
2782
drh7e3b0a02001-04-28 16:52:40 +00002783/*
drh5e2f8b92001-05-28 00:41:15 +00002784** Make a temporary cursor by filling in the fields of pTempCur.
2785** The temporary cursor is not on the cursor list for the Btree.
2786*/
drh14acc042001-06-10 19:56:58 +00002787static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
drh5e2f8b92001-05-28 00:41:15 +00002788 memcpy(pTempCur, pCur, sizeof(*pCur));
2789 pTempCur->pNext = 0;
2790 pTempCur->pPrev = 0;
drhecdc7532001-09-23 02:35:53 +00002791 if( pTempCur->pPage ){
danielk19773b8a05f2007-03-19 17:44:26 +00002792 sqlite3PagerRef(pTempCur->pPage->pDbPage);
drhecdc7532001-09-23 02:35:53 +00002793 }
drh5e2f8b92001-05-28 00:41:15 +00002794}
2795
2796/*
drhbd03cae2001-06-02 02:40:57 +00002797** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00002798** function above.
2799*/
drh14acc042001-06-10 19:56:58 +00002800static void releaseTempCursor(BtCursor *pCur){
drhecdc7532001-09-23 02:35:53 +00002801 if( pCur->pPage ){
danielk19773b8a05f2007-03-19 17:44:26 +00002802 sqlite3PagerUnref(pCur->pPage->pDbPage);
drhecdc7532001-09-23 02:35:53 +00002803 }
drh5e2f8b92001-05-28 00:41:15 +00002804}
2805
2806/*
drh9188b382004-05-14 21:12:22 +00002807** Make sure the BtCursor.info field of the given cursor is valid.
drhab01f612004-05-22 02:55:23 +00002808** If it is not already valid, call parseCell() to fill it in.
2809**
2810** BtCursor.info is a cache of the information in the current cell.
2811** Using this cache reduces the number of calls to parseCell().
drh9188b382004-05-14 21:12:22 +00002812*/
2813static void getCellInfo(BtCursor *pCur){
drh271efa52004-05-30 19:19:05 +00002814 if( pCur->info.nSize==0 ){
drh3a41a3f2004-05-30 02:14:17 +00002815 parseCell(pCur->pPage, pCur->idx, &pCur->info);
drh9188b382004-05-14 21:12:22 +00002816 }else{
2817#ifndef NDEBUG
2818 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00002819 memset(&info, 0, sizeof(info));
drh3a41a3f2004-05-30 02:14:17 +00002820 parseCell(pCur->pPage, pCur->idx, &info);
drh9188b382004-05-14 21:12:22 +00002821 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
2822#endif
2823 }
2824}
2825
2826/*
drh3aac2dd2004-04-26 14:10:20 +00002827** Set *pSize to the size of the buffer needed to hold the value of
2828** the key for the current entry. If the cursor is not pointing
2829** to a valid entry, *pSize is set to 0.
2830**
drh4b70f112004-05-02 21:12:19 +00002831** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00002832** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00002833*/
drh4a1c3802004-05-12 15:15:47 +00002834int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh777e4c42006-01-13 04:31:58 +00002835 int rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00002836 if( rc==SQLITE_OK ){
2837 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
2838 if( pCur->eState==CURSOR_INVALID ){
2839 *pSize = 0;
2840 }else{
2841 getCellInfo(pCur);
2842 *pSize = pCur->info.nKey;
2843 }
drh72f82862001-05-24 21:06:34 +00002844 }
danielk1977da184232006-01-05 11:34:32 +00002845 return rc;
drha059ad02001-04-17 20:09:11 +00002846}
drh2af926b2001-05-15 00:39:25 +00002847
drh72f82862001-05-24 21:06:34 +00002848/*
drh0e1c19e2004-05-11 00:58:56 +00002849** Set *pSize to the number of bytes of data in the entry the
2850** cursor currently points to. Always return SQLITE_OK.
2851** Failure is not possible. If the cursor is not currently
2852** pointing to an entry (which can happen, for example, if
2853** the database is empty) then *pSize is set to 0.
2854*/
2855int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh777e4c42006-01-13 04:31:58 +00002856 int rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00002857 if( rc==SQLITE_OK ){
2858 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
2859 if( pCur->eState==CURSOR_INVALID ){
2860 /* Not pointing at a valid entry - set *pSize to 0. */
2861 *pSize = 0;
2862 }else{
2863 getCellInfo(pCur);
2864 *pSize = pCur->info.nData;
2865 }
drh0e1c19e2004-05-11 00:58:56 +00002866 }
danielk1977da184232006-01-05 11:34:32 +00002867 return rc;
drh0e1c19e2004-05-11 00:58:56 +00002868}
2869
2870/*
drh72f82862001-05-24 21:06:34 +00002871** Read payload information from the entry that the pCur cursor is
2872** pointing to. Begin reading the payload at "offset" and read
2873** a total of "amt" bytes. Put the result in zBuf.
2874**
2875** This routine does not make a distinction between key and data.
drhab01f612004-05-22 02:55:23 +00002876** It just reads bytes from the payload area. Data might appear
2877** on the main page or be scattered out on multiple overflow pages.
drh72f82862001-05-24 21:06:34 +00002878*/
drh3aac2dd2004-04-26 14:10:20 +00002879static int getPayload(
2880 BtCursor *pCur, /* Cursor pointing to entry to read from */
2881 int offset, /* Begin reading this far into payload */
2882 int amt, /* Read this many bytes */
2883 unsigned char *pBuf, /* Write the bytes into this buffer */
2884 int skipKey /* offset begins at data if this is true */
2885){
2886 unsigned char *aPayload;
drh2af926b2001-05-15 00:39:25 +00002887 Pgno nextPage;
drh8c42ca92001-06-22 19:15:00 +00002888 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002889 MemPage *pPage;
danielk1977aef0bf62005-12-30 16:28:01 +00002890 BtShared *pBt;
drh6f11bef2004-05-13 01:12:56 +00002891 int ovflSize;
drhfa1a98a2004-05-14 19:08:17 +00002892 u32 nKey;
drh3aac2dd2004-04-26 14:10:20 +00002893
drh72f82862001-05-24 21:06:34 +00002894 assert( pCur!=0 && pCur->pPage!=0 );
danielk1977da184232006-01-05 11:34:32 +00002895 assert( pCur->eState==CURSOR_VALID );
danielk1977aef0bf62005-12-30 16:28:01 +00002896 pBt = pCur->pBtree->pBt;
drh3aac2dd2004-04-26 14:10:20 +00002897 pPage = pCur->pPage;
2898 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh9188b382004-05-14 21:12:22 +00002899 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00002900 aPayload = pCur->info.pCell + pCur->info.nHeader;
drh3aac2dd2004-04-26 14:10:20 +00002901 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00002902 nKey = 0;
2903 }else{
2904 nKey = pCur->info.nKey;
drh3aac2dd2004-04-26 14:10:20 +00002905 }
2906 assert( offset>=0 );
2907 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00002908 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00002909 }
drhfa1a98a2004-05-14 19:08:17 +00002910 if( offset+amt > nKey+pCur->info.nData ){
drha34b6762004-05-07 13:30:42 +00002911 return SQLITE_ERROR;
drh3aac2dd2004-04-26 14:10:20 +00002912 }
drhfa1a98a2004-05-14 19:08:17 +00002913 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00002914 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00002915 if( a+offset>pCur->info.nLocal ){
2916 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00002917 }
drha34b6762004-05-07 13:30:42 +00002918 memcpy(pBuf, &aPayload[offset], a);
drh2af926b2001-05-15 00:39:25 +00002919 if( a==amt ){
2920 return SQLITE_OK;
2921 }
drh2aa679f2001-06-25 02:11:07 +00002922 offset = 0;
drha34b6762004-05-07 13:30:42 +00002923 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00002924 amt -= a;
drhdd793422001-06-28 01:54:48 +00002925 }else{
drhfa1a98a2004-05-14 19:08:17 +00002926 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00002927 }
danielk1977cfe9a692004-06-16 12:00:29 +00002928 ovflSize = pBt->usableSize - 4;
drhbd03cae2001-06-02 02:40:57 +00002929 if( amt>0 ){
drhfa1a98a2004-05-14 19:08:17 +00002930 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977cfe9a692004-06-16 12:00:29 +00002931 while( amt>0 && nextPage ){
danielk19773b8a05f2007-03-19 17:44:26 +00002932 DbPage *pDbPage;
2933 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977cfe9a692004-06-16 12:00:29 +00002934 if( rc!=0 ){
2935 return rc;
drh2af926b2001-05-15 00:39:25 +00002936 }
danielk19773b8a05f2007-03-19 17:44:26 +00002937 aPayload = sqlite3PagerGetData(pDbPage);
danielk1977cfe9a692004-06-16 12:00:29 +00002938 nextPage = get4byte(aPayload);
2939 if( offset<ovflSize ){
2940 int a = amt;
2941 if( a + offset > ovflSize ){
2942 a = ovflSize - offset;
2943 }
2944 memcpy(pBuf, &aPayload[offset+4], a);
2945 offset = 0;
2946 amt -= a;
2947 pBuf += a;
2948 }else{
2949 offset -= ovflSize;
2950 }
danielk19773b8a05f2007-03-19 17:44:26 +00002951 sqlite3PagerUnref(pDbPage);
drh2af926b2001-05-15 00:39:25 +00002952 }
drh2af926b2001-05-15 00:39:25 +00002953 }
danielk1977cfe9a692004-06-16 12:00:29 +00002954
drha7fcb052001-12-14 15:09:55 +00002955 if( amt>0 ){
drh49285702005-09-17 15:20:26 +00002956 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00002957 }
2958 return SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +00002959}
2960
drh72f82862001-05-24 21:06:34 +00002961/*
drh3aac2dd2004-04-26 14:10:20 +00002962** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00002963** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00002964** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00002965**
drh3aac2dd2004-04-26 14:10:20 +00002966** Return SQLITE_OK on success or an error code if anything goes
2967** wrong. An error is returned if "offset+amt" is larger than
2968** the available payload.
drh72f82862001-05-24 21:06:34 +00002969*/
drha34b6762004-05-07 13:30:42 +00002970int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh777e4c42006-01-13 04:31:58 +00002971 int rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00002972 if( rc==SQLITE_OK ){
2973 assert( pCur->eState==CURSOR_VALID );
2974 assert( pCur->pPage!=0 );
2975 if( pCur->pPage->intKey ){
2976 return SQLITE_CORRUPT_BKPT;
2977 }
2978 assert( pCur->pPage->intKey==0 );
2979 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
2980 rc = getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh6575a222005-03-10 17:06:34 +00002981 }
danielk1977da184232006-01-05 11:34:32 +00002982 return rc;
drh3aac2dd2004-04-26 14:10:20 +00002983}
2984
2985/*
drh3aac2dd2004-04-26 14:10:20 +00002986** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00002987** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00002988** begins at "offset".
2989**
2990** Return SQLITE_OK on success or an error code if anything goes
2991** wrong. An error is returned if "offset+amt" is larger than
2992** the available payload.
drh72f82862001-05-24 21:06:34 +00002993*/
drh3aac2dd2004-04-26 14:10:20 +00002994int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh777e4c42006-01-13 04:31:58 +00002995 int rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00002996 if( rc==SQLITE_OK ){
2997 assert( pCur->eState==CURSOR_VALID );
2998 assert( pCur->pPage!=0 );
2999 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
3000 rc = getPayload(pCur, offset, amt, pBuf, 1);
3001 }
3002 return rc;
drh2af926b2001-05-15 00:39:25 +00003003}
3004
drh72f82862001-05-24 21:06:34 +00003005/*
drh0e1c19e2004-05-11 00:58:56 +00003006** Return a pointer to payload information from the entry that the
3007** pCur cursor is pointing to. The pointer is to the beginning of
3008** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003009** skipKey==1. The number of bytes of available key/data is written
3010** into *pAmt. If *pAmt==0, then the value returned will not be
3011** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003012**
3013** This routine is an optimization. It is common for the entire key
3014** and data to fit on the local page and for there to be no overflow
3015** pages. When that is so, this routine can be used to access the
3016** key and data without making a copy. If the key and/or data spills
3017** onto overflow pages, then getPayload() must be used to reassembly
3018** the key/data and copy it into a preallocated buffer.
3019**
3020** The pointer returned by this routine looks directly into the cached
3021** page of the database. The data might change or move the next time
3022** any btree routine is called.
3023*/
3024static const unsigned char *fetchPayload(
3025 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003026 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003027 int skipKey /* read beginning at data if this is true */
3028){
3029 unsigned char *aPayload;
3030 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003031 u32 nKey;
3032 int nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003033
3034 assert( pCur!=0 && pCur->pPage!=0 );
danielk1977da184232006-01-05 11:34:32 +00003035 assert( pCur->eState==CURSOR_VALID );
drh0e1c19e2004-05-11 00:58:56 +00003036 pPage = pCur->pPage;
drh0e1c19e2004-05-11 00:58:56 +00003037 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh9188b382004-05-14 21:12:22 +00003038 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003039 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003040 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003041 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003042 nKey = 0;
3043 }else{
3044 nKey = pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003045 }
drh0e1c19e2004-05-11 00:58:56 +00003046 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003047 aPayload += nKey;
3048 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003049 }else{
drhfa1a98a2004-05-14 19:08:17 +00003050 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003051 if( nLocal>nKey ){
3052 nLocal = nKey;
3053 }
drh0e1c19e2004-05-11 00:58:56 +00003054 }
drhe51c44f2004-05-30 20:46:09 +00003055 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003056 return aPayload;
3057}
3058
3059
3060/*
drhe51c44f2004-05-30 20:46:09 +00003061** For the entry that cursor pCur is point to, return as
3062** many bytes of the key or data as are available on the local
3063** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003064**
3065** The pointer returned is ephemeral. The key/data may move
3066** or be destroyed on the next call to any Btree routine.
3067**
3068** These routines is used to get quick access to key and data
3069** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003070*/
drhe51c44f2004-05-30 20:46:09 +00003071const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
danielk1977da184232006-01-05 11:34:32 +00003072 if( pCur->eState==CURSOR_VALID ){
3073 return (const void*)fetchPayload(pCur, pAmt, 0);
3074 }
3075 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003076}
drhe51c44f2004-05-30 20:46:09 +00003077const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
danielk1977da184232006-01-05 11:34:32 +00003078 if( pCur->eState==CURSOR_VALID ){
3079 return (const void*)fetchPayload(pCur, pAmt, 1);
3080 }
3081 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003082}
3083
3084
3085/*
drh8178a752003-01-05 21:41:40 +00003086** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003087** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003088*/
drh3aac2dd2004-04-26 14:10:20 +00003089static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003090 int rc;
3091 MemPage *pNewPage;
drh3aac2dd2004-04-26 14:10:20 +00003092 MemPage *pOldPage;
danielk1977aef0bf62005-12-30 16:28:01 +00003093 BtShared *pBt = pCur->pBtree->pBt;
drh72f82862001-05-24 21:06:34 +00003094
danielk1977da184232006-01-05 11:34:32 +00003095 assert( pCur->eState==CURSOR_VALID );
drhde647132004-05-07 17:57:49 +00003096 rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
drh6019e162001-07-02 17:51:45 +00003097 if( rc ) return rc;
drh428ae8c2003-01-04 16:48:09 +00003098 pNewPage->idxParent = pCur->idx;
drh3aac2dd2004-04-26 14:10:20 +00003099 pOldPage = pCur->pPage;
3100 pOldPage->idxShift = 0;
3101 releasePage(pOldPage);
drh72f82862001-05-24 21:06:34 +00003102 pCur->pPage = pNewPage;
3103 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00003104 pCur->info.nSize = 0;
drh4be295b2003-12-16 03:44:47 +00003105 if( pNewPage->nCell<1 ){
drh49285702005-09-17 15:20:26 +00003106 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003107 }
drh72f82862001-05-24 21:06:34 +00003108 return SQLITE_OK;
3109}
3110
3111/*
drh8856d6a2004-04-29 14:42:46 +00003112** Return true if the page is the virtual root of its table.
3113**
3114** The virtual root page is the root page for most tables. But
3115** for the table rooted on page 1, sometime the real root page
3116** is empty except for the right-pointer. In such cases the
3117** virtual root page is the page that the right-pointer of page
3118** 1 is pointing to.
3119*/
3120static int isRootPage(MemPage *pPage){
3121 MemPage *pParent = pPage->pParent;
drhda200cc2004-05-09 11:51:38 +00003122 if( pParent==0 ) return 1;
3123 if( pParent->pgno>1 ) return 0;
3124 if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
drh8856d6a2004-04-29 14:42:46 +00003125 return 0;
3126}
3127
3128/*
drh5e2f8b92001-05-28 00:41:15 +00003129** Move the cursor up to the parent page.
3130**
3131** pCur->idx is set to the cell index that contains the pointer
3132** to the page we are coming from. If we are coming from the
3133** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003134** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003135*/
drh8178a752003-01-05 21:41:40 +00003136static void moveToParent(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00003137 MemPage *pParent;
drh8178a752003-01-05 21:41:40 +00003138 MemPage *pPage;
drh428ae8c2003-01-04 16:48:09 +00003139 int idxParent;
drh3aac2dd2004-04-26 14:10:20 +00003140
danielk1977da184232006-01-05 11:34:32 +00003141 assert( pCur->eState==CURSOR_VALID );
drh8178a752003-01-05 21:41:40 +00003142 pPage = pCur->pPage;
3143 assert( pPage!=0 );
drh8856d6a2004-04-29 14:42:46 +00003144 assert( !isRootPage(pPage) );
drh8178a752003-01-05 21:41:40 +00003145 pParent = pPage->pParent;
3146 assert( pParent!=0 );
3147 idxParent = pPage->idxParent;
danielk19773b8a05f2007-03-19 17:44:26 +00003148 sqlite3PagerRef(pParent->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00003149 releasePage(pPage);
drh72f82862001-05-24 21:06:34 +00003150 pCur->pPage = pParent;
drh271efa52004-05-30 19:19:05 +00003151 pCur->info.nSize = 0;
drh428ae8c2003-01-04 16:48:09 +00003152 assert( pParent->idxShift==0 );
drh43605152004-05-29 21:46:49 +00003153 pCur->idx = idxParent;
drh72f82862001-05-24 21:06:34 +00003154}
3155
3156/*
3157** Move the cursor to the root page
3158*/
drh5e2f8b92001-05-28 00:41:15 +00003159static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00003160 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00003161 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00003162 BtShared *pBt = pCur->pBtree->pBt;
drhbd03cae2001-06-02 02:40:57 +00003163
drh777e4c42006-01-13 04:31:58 +00003164 restoreOrClearCursorPosition(pCur, 0);
drh777e4c42006-01-13 04:31:58 +00003165 pRoot = pCur->pPage;
danielk197797a227c2006-01-20 16:32:04 +00003166 if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
drh777e4c42006-01-13 04:31:58 +00003167 assert( pRoot->isInit );
3168 }else{
3169 if(
3170 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
3171 ){
3172 pCur->eState = CURSOR_INVALID;
3173 return rc;
3174 }
3175 releasePage(pCur->pPage);
drh777e4c42006-01-13 04:31:58 +00003176 pCur->pPage = pRoot;
drhc39e0002004-05-07 23:50:57 +00003177 }
drh72f82862001-05-24 21:06:34 +00003178 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00003179 pCur->info.nSize = 0;
drh8856d6a2004-04-29 14:42:46 +00003180 if( pRoot->nCell==0 && !pRoot->leaf ){
3181 Pgno subpage;
3182 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00003183 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00003184 assert( subpage>0 );
danielk1977da184232006-01-05 11:34:32 +00003185 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00003186 rc = moveToChild(pCur, subpage);
drh8856d6a2004-04-29 14:42:46 +00003187 }
danielk1977da184232006-01-05 11:34:32 +00003188 pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00003189 return rc;
drh72f82862001-05-24 21:06:34 +00003190}
drh2af926b2001-05-15 00:39:25 +00003191
drh5e2f8b92001-05-28 00:41:15 +00003192/*
3193** Move the cursor down to the left-most leaf entry beneath the
3194** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00003195**
3196** The left-most leaf is the one with the smallest key - the first
3197** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00003198*/
3199static int moveToLeftmost(BtCursor *pCur){
3200 Pgno pgno;
3201 int rc;
drh3aac2dd2004-04-26 14:10:20 +00003202 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00003203
danielk1977da184232006-01-05 11:34:32 +00003204 assert( pCur->eState==CURSOR_VALID );
drh3aac2dd2004-04-26 14:10:20 +00003205 while( !(pPage = pCur->pPage)->leaf ){
drha34b6762004-05-07 13:30:42 +00003206 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00003207 pgno = get4byte(findCell(pPage, pCur->idx));
drh8178a752003-01-05 21:41:40 +00003208 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00003209 if( rc ) return rc;
3210 }
3211 return SQLITE_OK;
3212}
3213
drh2dcc9aa2002-12-04 13:40:25 +00003214/*
3215** Move the cursor down to the right-most leaf entry beneath the
3216** page to which it is currently pointing. Notice the difference
3217** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
3218** finds the left-most entry beneath the *entry* whereas moveToRightmost()
3219** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00003220**
3221** The right-most entry is the one with the largest key - the last
3222** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00003223*/
3224static int moveToRightmost(BtCursor *pCur){
3225 Pgno pgno;
3226 int rc;
drh3aac2dd2004-04-26 14:10:20 +00003227 MemPage *pPage;
drh2dcc9aa2002-12-04 13:40:25 +00003228
danielk1977da184232006-01-05 11:34:32 +00003229 assert( pCur->eState==CURSOR_VALID );
drh3aac2dd2004-04-26 14:10:20 +00003230 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00003231 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh3aac2dd2004-04-26 14:10:20 +00003232 pCur->idx = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00003233 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00003234 if( rc ) return rc;
3235 }
drh3aac2dd2004-04-26 14:10:20 +00003236 pCur->idx = pPage->nCell - 1;
drh271efa52004-05-30 19:19:05 +00003237 pCur->info.nSize = 0;
drh2dcc9aa2002-12-04 13:40:25 +00003238 return SQLITE_OK;
3239}
3240
drh5e00f6c2001-09-13 13:46:56 +00003241/* Move the cursor to the first entry in the table. Return SQLITE_OK
3242** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003243** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00003244*/
drh3aac2dd2004-04-26 14:10:20 +00003245int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00003246 int rc;
3247 rc = moveToRoot(pCur);
3248 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00003249 if( pCur->eState==CURSOR_INVALID ){
drhc39e0002004-05-07 23:50:57 +00003250 assert( pCur->pPage->nCell==0 );
drh5e00f6c2001-09-13 13:46:56 +00003251 *pRes = 1;
3252 return SQLITE_OK;
3253 }
drhc39e0002004-05-07 23:50:57 +00003254 assert( pCur->pPage->nCell>0 );
drh5e00f6c2001-09-13 13:46:56 +00003255 *pRes = 0;
3256 rc = moveToLeftmost(pCur);
3257 return rc;
3258}
drh5e2f8b92001-05-28 00:41:15 +00003259
drh9562b552002-02-19 15:00:07 +00003260/* Move the cursor to the last entry in the table. Return SQLITE_OK
3261** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003262** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00003263*/
drh3aac2dd2004-04-26 14:10:20 +00003264int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00003265 int rc;
drh9562b552002-02-19 15:00:07 +00003266 rc = moveToRoot(pCur);
3267 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00003268 if( CURSOR_INVALID==pCur->eState ){
drhc39e0002004-05-07 23:50:57 +00003269 assert( pCur->pPage->nCell==0 );
drh9562b552002-02-19 15:00:07 +00003270 *pRes = 1;
3271 return SQLITE_OK;
3272 }
danielk1977da184232006-01-05 11:34:32 +00003273 assert( pCur->eState==CURSOR_VALID );
drh9562b552002-02-19 15:00:07 +00003274 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00003275 rc = moveToRightmost(pCur);
drh9562b552002-02-19 15:00:07 +00003276 return rc;
3277}
3278
drh3aac2dd2004-04-26 14:10:20 +00003279/* Move the cursor so that it points to an entry near pKey/nKey.
drh72f82862001-05-24 21:06:34 +00003280** Return a success code.
3281**
drh3aac2dd2004-04-26 14:10:20 +00003282** For INTKEY tables, only the nKey parameter is used. pKey is
3283** ignored. For other tables, nKey is the number of bytes of data
drh0b2f3162005-12-21 18:36:45 +00003284** in pKey. The comparison function specified when the cursor was
drh3aac2dd2004-04-26 14:10:20 +00003285** created is used to compare keys.
3286**
drh5e2f8b92001-05-28 00:41:15 +00003287** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00003288** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00003289** were present. The cursor might point to an entry that comes
3290** before or after the key.
3291**
drhbd03cae2001-06-02 02:40:57 +00003292** The result of comparing the key with the entry to which the
drhab01f612004-05-22 02:55:23 +00003293** cursor is written to *pRes if pRes!=NULL. The meaning of
drhbd03cae2001-06-02 02:40:57 +00003294** this value is as follows:
3295**
3296** *pRes<0 The cursor is left pointing at an entry that
drh1a844c32002-12-04 22:29:28 +00003297** is smaller than pKey or if the table is empty
3298** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00003299**
3300** *pRes==0 The cursor is left pointing at an entry that
3301** exactly matches pKey.
3302**
3303** *pRes>0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00003304** is larger than pKey.
drha059ad02001-04-17 20:09:11 +00003305*/
drh4a1c3802004-05-12 15:15:47 +00003306int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){
drh72f82862001-05-24 21:06:34 +00003307 int rc;
drh777e4c42006-01-13 04:31:58 +00003308 int tryRightmost;
drh5e2f8b92001-05-28 00:41:15 +00003309 rc = moveToRoot(pCur);
drh72f82862001-05-24 21:06:34 +00003310 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00003311 assert( pCur->pPage );
3312 assert( pCur->pPage->isInit );
drh777e4c42006-01-13 04:31:58 +00003313 tryRightmost = pCur->pPage->intKey;
danielk1977da184232006-01-05 11:34:32 +00003314 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00003315 *pRes = -1;
drhc39e0002004-05-07 23:50:57 +00003316 assert( pCur->pPage->nCell==0 );
3317 return SQLITE_OK;
3318 }
drh14684382006-11-30 13:05:29 +00003319 for(;;){
drh72f82862001-05-24 21:06:34 +00003320 int lwr, upr;
3321 Pgno chldPg;
3322 MemPage *pPage = pCur->pPage;
drh1a844c32002-12-04 22:29:28 +00003323 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00003324 lwr = 0;
3325 upr = pPage->nCell-1;
drh4eec4c12005-01-21 00:22:37 +00003326 if( !pPage->intKey && pKey==0 ){
drh49285702005-09-17 15:20:26 +00003327 return SQLITE_CORRUPT_BKPT;
drh4eec4c12005-01-21 00:22:37 +00003328 }
drh72f82862001-05-24 21:06:34 +00003329 while( lwr<=upr ){
danielk197713adf8a2004-06-03 16:08:41 +00003330 void *pCellKey;
drh4a1c3802004-05-12 15:15:47 +00003331 i64 nCellKey;
drh72f82862001-05-24 21:06:34 +00003332 pCur->idx = (lwr+upr)/2;
drh366fda62006-01-13 02:35:09 +00003333 pCur->info.nSize = 0;
drh3aac2dd2004-04-26 14:10:20 +00003334 if( pPage->intKey ){
drh777e4c42006-01-13 04:31:58 +00003335 u8 *pCell;
3336 if( tryRightmost ){
3337 pCur->idx = upr;
3338 }
3339 pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
drhd172f862006-01-12 15:01:15 +00003340 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00003341 u32 dummy;
drhd172f862006-01-12 15:01:15 +00003342 pCell += getVarint32(pCell, &dummy);
3343 }
danielk1977bab45c62006-01-16 15:14:27 +00003344 getVarint(pCell, (u64 *)&nCellKey);
drh3aac2dd2004-04-26 14:10:20 +00003345 if( nCellKey<nKey ){
3346 c = -1;
3347 }else if( nCellKey>nKey ){
3348 c = +1;
drh777e4c42006-01-13 04:31:58 +00003349 tryRightmost = 0;
drh3aac2dd2004-04-26 14:10:20 +00003350 }else{
3351 c = 0;
3352 }
drh3aac2dd2004-04-26 14:10:20 +00003353 }else{
drhe51c44f2004-05-30 20:46:09 +00003354 int available;
danielk197713adf8a2004-06-03 16:08:41 +00003355 pCellKey = (void *)fetchPayload(pCur, &available, 0);
drh366fda62006-01-13 02:35:09 +00003356 nCellKey = pCur->info.nKey;
drhe51c44f2004-05-30 20:46:09 +00003357 if( available>=nCellKey ){
3358 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
3359 }else{
3360 pCellKey = sqliteMallocRaw( nCellKey );
3361 if( pCellKey==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00003362 rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
drhe51c44f2004-05-30 20:46:09 +00003363 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
3364 sqliteFree(pCellKey);
3365 if( rc ) return rc;
3366 }
drh3aac2dd2004-04-26 14:10:20 +00003367 }
drh72f82862001-05-24 21:06:34 +00003368 if( c==0 ){
drh8b18dd42004-05-12 19:18:15 +00003369 if( pPage->leafData && !pPage->leaf ){
drhfc70e6f2004-05-12 21:11:27 +00003370 lwr = pCur->idx;
3371 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00003372 break;
3373 }else{
drh8b18dd42004-05-12 19:18:15 +00003374 if( pRes ) *pRes = 0;
3375 return SQLITE_OK;
3376 }
drh72f82862001-05-24 21:06:34 +00003377 }
3378 if( c<0 ){
3379 lwr = pCur->idx+1;
3380 }else{
3381 upr = pCur->idx-1;
3382 }
3383 }
3384 assert( lwr==upr+1 );
drh7aa128d2002-06-21 13:09:16 +00003385 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00003386 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00003387 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00003388 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00003389 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00003390 }else{
drh43605152004-05-29 21:46:49 +00003391 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00003392 }
3393 if( chldPg==0 ){
drhc39e0002004-05-07 23:50:57 +00003394 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh72f82862001-05-24 21:06:34 +00003395 if( pRes ) *pRes = c;
3396 return SQLITE_OK;
3397 }
drh428ae8c2003-01-04 16:48:09 +00003398 pCur->idx = lwr;
drh271efa52004-05-30 19:19:05 +00003399 pCur->info.nSize = 0;
drh8178a752003-01-05 21:41:40 +00003400 rc = moveToChild(pCur, chldPg);
drhc39e0002004-05-07 23:50:57 +00003401 if( rc ){
3402 return rc;
3403 }
drh72f82862001-05-24 21:06:34 +00003404 }
drhbd03cae2001-06-02 02:40:57 +00003405 /* NOT REACHED */
drh72f82862001-05-24 21:06:34 +00003406}
3407
3408/*
drhc39e0002004-05-07 23:50:57 +00003409** Return TRUE if the cursor is not pointing at an entry of the table.
3410**
3411** TRUE will be returned after a call to sqlite3BtreeNext() moves
3412** past the last entry in the table or sqlite3BtreePrev() moves past
3413** the first entry. TRUE is also returned if the table is empty.
3414*/
3415int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00003416 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
3417 ** have been deleted? This API will need to change to return an error code
3418 ** as well as the boolean result value.
3419 */
3420 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00003421}
3422
3423/*
drhbd03cae2001-06-02 02:40:57 +00003424** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00003425** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00003426** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00003427** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00003428*/
drh3aac2dd2004-04-26 14:10:20 +00003429int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00003430 int rc;
danielk197797a227c2006-01-20 16:32:04 +00003431 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00003432
danielk1977da184232006-01-05 11:34:32 +00003433#ifndef SQLITE_OMIT_SHARED_CACHE
drh777e4c42006-01-13 04:31:58 +00003434 rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00003435 if( rc!=SQLITE_OK ){
3436 return rc;
3437 }
3438 if( pCur->skip>0 ){
3439 pCur->skip = 0;
3440 *pRes = 0;
3441 return SQLITE_OK;
3442 }
3443 pCur->skip = 0;
danielk197797a227c2006-01-20 16:32:04 +00003444#endif
danielk1977da184232006-01-05 11:34:32 +00003445
drh8c1238a2003-01-02 14:43:55 +00003446 assert( pRes!=0 );
danielk197797a227c2006-01-20 16:32:04 +00003447 pPage = pCur->pPage;
danielk1977da184232006-01-05 11:34:32 +00003448 if( CURSOR_INVALID==pCur->eState ){
drh8c1238a2003-01-02 14:43:55 +00003449 *pRes = 1;
drhc39e0002004-05-07 23:50:57 +00003450 return SQLITE_OK;
drhecdc7532001-09-23 02:35:53 +00003451 }
drh8178a752003-01-05 21:41:40 +00003452 assert( pPage->isInit );
drh8178a752003-01-05 21:41:40 +00003453 assert( pCur->idx<pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00003454
drh72f82862001-05-24 21:06:34 +00003455 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00003456 pCur->info.nSize = 0;
drh8178a752003-01-05 21:41:40 +00003457 if( pCur->idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00003458 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003459 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00003460 if( rc ) return rc;
3461 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00003462 *pRes = 0;
3463 return rc;
drh72f82862001-05-24 21:06:34 +00003464 }
drh5e2f8b92001-05-28 00:41:15 +00003465 do{
drh8856d6a2004-04-29 14:42:46 +00003466 if( isRootPage(pPage) ){
drh8c1238a2003-01-02 14:43:55 +00003467 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00003468 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00003469 return SQLITE_OK;
3470 }
drh8178a752003-01-05 21:41:40 +00003471 moveToParent(pCur);
3472 pPage = pCur->pPage;
3473 }while( pCur->idx>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00003474 *pRes = 0;
drh8b18dd42004-05-12 19:18:15 +00003475 if( pPage->leafData ){
3476 rc = sqlite3BtreeNext(pCur, pRes);
3477 }else{
3478 rc = SQLITE_OK;
3479 }
3480 return rc;
drh8178a752003-01-05 21:41:40 +00003481 }
3482 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00003483 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00003484 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00003485 }
drh5e2f8b92001-05-28 00:41:15 +00003486 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00003487 return rc;
drh72f82862001-05-24 21:06:34 +00003488}
3489
drh3b7511c2001-05-26 13:15:44 +00003490/*
drh2dcc9aa2002-12-04 13:40:25 +00003491** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00003492** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00003493** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00003494** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00003495*/
drh3aac2dd2004-04-26 14:10:20 +00003496int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00003497 int rc;
3498 Pgno pgno;
drh8178a752003-01-05 21:41:40 +00003499 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00003500
3501#ifndef SQLITE_OMIT_SHARED_CACHE
drh777e4c42006-01-13 04:31:58 +00003502 rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00003503 if( rc!=SQLITE_OK ){
3504 return rc;
3505 }
3506 if( pCur->skip<0 ){
3507 pCur->skip = 0;
3508 *pRes = 0;
3509 return SQLITE_OK;
3510 }
3511 pCur->skip = 0;
3512#endif
3513
3514 if( CURSOR_INVALID==pCur->eState ){
drhc39e0002004-05-07 23:50:57 +00003515 *pRes = 1;
3516 return SQLITE_OK;
3517 }
danielk19776a43f9b2004-11-16 04:57:24 +00003518
drh8178a752003-01-05 21:41:40 +00003519 pPage = pCur->pPage;
drh8178a752003-01-05 21:41:40 +00003520 assert( pPage->isInit );
drh2dcc9aa2002-12-04 13:40:25 +00003521 assert( pCur->idx>=0 );
drha34b6762004-05-07 13:30:42 +00003522 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003523 pgno = get4byte( findCell(pPage, pCur->idx) );
drh8178a752003-01-05 21:41:40 +00003524 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00003525 if( rc ) return rc;
3526 rc = moveToRightmost(pCur);
3527 }else{
3528 while( pCur->idx==0 ){
drh8856d6a2004-04-29 14:42:46 +00003529 if( isRootPage(pPage) ){
danielk1977da184232006-01-05 11:34:32 +00003530 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00003531 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00003532 return SQLITE_OK;
3533 }
drh8178a752003-01-05 21:41:40 +00003534 moveToParent(pCur);
3535 pPage = pCur->pPage;
drh2dcc9aa2002-12-04 13:40:25 +00003536 }
3537 pCur->idx--;
drh271efa52004-05-30 19:19:05 +00003538 pCur->info.nSize = 0;
drh8237d452004-11-22 19:07:09 +00003539 if( pPage->leafData && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00003540 rc = sqlite3BtreePrevious(pCur, pRes);
3541 }else{
3542 rc = SQLITE_OK;
3543 }
drh2dcc9aa2002-12-04 13:40:25 +00003544 }
drh8178a752003-01-05 21:41:40 +00003545 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00003546 return rc;
3547}
3548
3549/*
drh3b7511c2001-05-26 13:15:44 +00003550** Allocate a new page from the database file.
3551**
danielk19773b8a05f2007-03-19 17:44:26 +00003552** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00003553** has already been called on the new page.) The new page has also
3554** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00003555** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00003556**
3557** SQLITE_OK is returned on success. Any other return value indicates
3558** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00003559** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00003560**
drh199e3cf2002-07-18 11:01:47 +00003561** If the "nearby" parameter is not 0, then a (feeble) effort is made to
3562** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00003563** attempt to keep related pages close to each other in the database file,
3564** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00003565**
3566** If the "exact" parameter is not 0, and the page-number nearby exists
3567** anywhere on the free-list, then it is guarenteed to be returned. This
3568** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00003569*/
danielk1977cb1a7eb2004-11-05 12:27:02 +00003570static int allocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003571 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00003572 MemPage **ppPage,
3573 Pgno *pPgno,
3574 Pgno nearby,
3575 u8 exact
3576){
drh3aac2dd2004-04-26 14:10:20 +00003577 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00003578 int rc;
drh3aac2dd2004-04-26 14:10:20 +00003579 int n; /* Number of pages on the freelist */
3580 int k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00003581 MemPage *pTrunk = 0;
3582 MemPage *pPrevTrunk = 0;
drh30e58752002-03-02 20:41:57 +00003583
drh3aac2dd2004-04-26 14:10:20 +00003584 pPage1 = pBt->pPage1;
3585 n = get4byte(&pPage1->aData[36]);
3586 if( n>0 ){
drh91025292004-05-03 19:49:32 +00003587 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00003588 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003589 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
3590
3591 /* If the 'exact' parameter was true and a query of the pointer-map
3592 ** shows that the page 'nearby' is somewhere on the free-list, then
3593 ** the entire-list will be searched for that page.
3594 */
3595#ifndef SQLITE_OMIT_AUTOVACUUM
3596 if( exact ){
3597 u8 eType;
3598 assert( nearby>0 );
3599 assert( pBt->autoVacuum );
3600 rc = ptrmapGet(pBt, nearby, &eType, 0);
3601 if( rc ) return rc;
3602 if( eType==PTRMAP_FREEPAGE ){
3603 searchList = 1;
3604 }
3605 *pPgno = nearby;
3606 }
3607#endif
3608
3609 /* Decrement the free-list count by 1. Set iTrunk to the index of the
3610 ** first free-list trunk page. iPrevTrunk is initially 1.
3611 */
danielk19773b8a05f2007-03-19 17:44:26 +00003612 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00003613 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003614 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00003615
3616 /* The code within this loop is run only once if the 'searchList' variable
3617 ** is not true. Otherwise, it runs once for each trunk-page on the
3618 ** free-list until the page 'nearby' is located.
3619 */
3620 do {
3621 pPrevTrunk = pTrunk;
3622 if( pPrevTrunk ){
3623 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00003624 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00003625 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00003626 }
drh0787db62007-03-04 13:15:27 +00003627 rc = getPage(pBt, iTrunk, &pTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00003628 if( rc ){
drhd3627af2006-12-18 18:34:51 +00003629 pTrunk = 0;
3630 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003631 }
3632
3633 k = get4byte(&pTrunk->aData[4]);
3634 if( k==0 && !searchList ){
3635 /* The trunk has no leaves and the list is not being searched.
3636 ** So extract the trunk page itself and use it as the newly
3637 ** allocated page */
3638 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00003639 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00003640 if( rc ){
3641 goto end_allocate_page;
3642 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003643 *pPgno = iTrunk;
3644 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
3645 *ppPage = pTrunk;
3646 pTrunk = 0;
3647 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
3648 }else if( k>pBt->usableSize/4 - 8 ){
3649 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00003650 rc = SQLITE_CORRUPT_BKPT;
3651 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003652#ifndef SQLITE_OMIT_AUTOVACUUM
3653 }else if( searchList && nearby==iTrunk ){
3654 /* The list is being searched and this trunk page is the page
3655 ** to allocate, regardless of whether it has leaves.
3656 */
3657 assert( *pPgno==iTrunk );
3658 *ppPage = pTrunk;
3659 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00003660 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00003661 if( rc ){
3662 goto end_allocate_page;
3663 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003664 if( k==0 ){
3665 if( !pPrevTrunk ){
3666 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
3667 }else{
3668 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
3669 }
3670 }else{
3671 /* The trunk page is required by the caller but it contains
3672 ** pointers to free-list leaves. The first leaf becomes a trunk
3673 ** page in this case.
3674 */
3675 MemPage *pNewTrunk;
3676 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh0787db62007-03-04 13:15:27 +00003677 rc = getPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00003678 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00003679 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003680 }
danielk19773b8a05f2007-03-19 17:44:26 +00003681 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00003682 if( rc!=SQLITE_OK ){
3683 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00003684 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003685 }
3686 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
3687 put4byte(&pNewTrunk->aData[4], k-1);
3688 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00003689 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00003690 if( !pPrevTrunk ){
3691 put4byte(&pPage1->aData[32], iNewTrunk);
3692 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00003693 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00003694 if( rc ){
3695 goto end_allocate_page;
3696 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003697 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
3698 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003699 }
3700 pTrunk = 0;
3701 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
3702#endif
3703 }else{
3704 /* Extract a leaf from the trunk */
3705 int closest;
3706 Pgno iPage;
3707 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003708 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00003709 if( rc ){
3710 goto end_allocate_page;
3711 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003712 if( nearby>0 ){
3713 int i, dist;
3714 closest = 0;
3715 dist = get4byte(&aData[8]) - nearby;
3716 if( dist<0 ) dist = -dist;
3717 for(i=1; i<k; i++){
3718 int d2 = get4byte(&aData[8+i*4]) - nearby;
3719 if( d2<0 ) d2 = -d2;
3720 if( d2<dist ){
3721 closest = i;
3722 dist = d2;
3723 }
3724 }
3725 }else{
3726 closest = 0;
3727 }
3728
3729 iPage = get4byte(&aData[8+closest*4]);
3730 if( !searchList || iPage==nearby ){
3731 *pPgno = iPage;
danielk19773b8a05f2007-03-19 17:44:26 +00003732 if( *pPgno>sqlite3PagerPagecount(pBt->pPager) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00003733 /* Free page off the end of the file */
drh49285702005-09-17 15:20:26 +00003734 return SQLITE_CORRUPT_BKPT;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003735 }
3736 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
3737 ": %d more free pages\n",
3738 *pPgno, closest+1, k, pTrunk->pgno, n-1));
3739 if( closest<k-1 ){
3740 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
3741 }
3742 put4byte(&aData[4], k-1);
drh0787db62007-03-04 13:15:27 +00003743 rc = getPage(pBt, *pPgno, ppPage, 1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00003744 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00003745 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00003746 if( rc!=SQLITE_OK ){
3747 releasePage(*ppPage);
3748 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003749 }
3750 searchList = 0;
3751 }
drhee696e22004-08-30 16:52:17 +00003752 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003753 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00003754 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00003755 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00003756 }else{
drh3aac2dd2004-04-26 14:10:20 +00003757 /* There are no pages on the freelist, so create a new page at the
3758 ** end of the file */
danielk19773b8a05f2007-03-19 17:44:26 +00003759 *pPgno = sqlite3PagerPagecount(pBt->pPager) + 1;
danielk1977afcdd022004-10-31 16:25:42 +00003760
3761#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00003762 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00003763 /* If *pPgno refers to a pointer-map page, allocate two new pages
3764 ** at the end of the file instead of one. The first allocated page
3765 ** becomes a new pointer-map page, the second is used by the caller.
3766 */
3767 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00003768 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk1977afcdd022004-10-31 16:25:42 +00003769 (*pPgno)++;
3770 }
3771#endif
3772
danielk1977599fcba2004-11-08 07:13:13 +00003773 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh0787db62007-03-04 13:15:27 +00003774 rc = getPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00003775 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00003776 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00003777 if( rc!=SQLITE_OK ){
3778 releasePage(*ppPage);
3779 }
drh3a4c1412004-05-09 20:40:11 +00003780 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00003781 }
danielk1977599fcba2004-11-08 07:13:13 +00003782
3783 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00003784
3785end_allocate_page:
3786 releasePage(pTrunk);
3787 releasePage(pPrevTrunk);
drh3b7511c2001-05-26 13:15:44 +00003788 return rc;
3789}
3790
3791/*
drh3aac2dd2004-04-26 14:10:20 +00003792** Add a page of the database file to the freelist.
drh5e2f8b92001-05-28 00:41:15 +00003793**
danielk19773b8a05f2007-03-19 17:44:26 +00003794** sqlite3PagerUnref() is NOT called for pPage.
drh3b7511c2001-05-26 13:15:44 +00003795*/
drh3aac2dd2004-04-26 14:10:20 +00003796static int freePage(MemPage *pPage){
danielk1977aef0bf62005-12-30 16:28:01 +00003797 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00003798 MemPage *pPage1 = pBt->pPage1;
3799 int rc, n, k;
drh8b2f49b2001-06-08 00:21:52 +00003800
drh3aac2dd2004-04-26 14:10:20 +00003801 /* Prepare the page for freeing */
3802 assert( pPage->pgno>1 );
3803 pPage->isInit = 0;
3804 releasePage(pPage->pParent);
3805 pPage->pParent = 0;
3806
drha34b6762004-05-07 13:30:42 +00003807 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00003808 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00003809 if( rc ) return rc;
3810 n = get4byte(&pPage1->aData[36]);
3811 put4byte(&pPage1->aData[36], n+1);
3812
drhfcce93f2006-02-22 03:08:32 +00003813#ifdef SQLITE_SECURE_DELETE
3814 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
3815 ** always fully overwrite deleted information with zeros.
3816 */
danielk19773b8a05f2007-03-19 17:44:26 +00003817 rc = sqlite3PagerWrite(pPage->pDbPage);
drhfcce93f2006-02-22 03:08:32 +00003818 if( rc ) return rc;
3819 memset(pPage->aData, 0, pPage->pBt->pageSize);
3820#endif
3821
danielk1977687566d2004-11-02 12:56:41 +00003822#ifndef SQLITE_OMIT_AUTOVACUUM
3823 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00003824 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00003825 */
3826 if( pBt->autoVacuum ){
3827 rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
danielk1977a64a0352004-11-05 01:45:13 +00003828 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003829 }
3830#endif
3831
drh3aac2dd2004-04-26 14:10:20 +00003832 if( n==0 ){
3833 /* This is the first free page */
danielk19773b8a05f2007-03-19 17:44:26 +00003834 rc = sqlite3PagerWrite(pPage->pDbPage);
drhda200cc2004-05-09 11:51:38 +00003835 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003836 memset(pPage->aData, 0, 8);
drha34b6762004-05-07 13:30:42 +00003837 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00003838 TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
drh3aac2dd2004-04-26 14:10:20 +00003839 }else{
3840 /* Other free pages already exist. Retrive the first trunk page
3841 ** of the freelist and find out how many leaves it has. */
drha34b6762004-05-07 13:30:42 +00003842 MemPage *pTrunk;
drh0787db62007-03-04 13:15:27 +00003843 rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
drh3b7511c2001-05-26 13:15:44 +00003844 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003845 k = get4byte(&pTrunk->aData[4]);
drhee696e22004-08-30 16:52:17 +00003846 if( k>=pBt->usableSize/4 - 8 ){
drh3aac2dd2004-04-26 14:10:20 +00003847 /* The trunk is full. Turn the page being freed into a new
3848 ** trunk page with no leaves. */
danielk19773b8a05f2007-03-19 17:44:26 +00003849 rc = sqlite3PagerWrite(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00003850 if( rc ) return rc;
3851 put4byte(pPage->aData, pTrunk->pgno);
3852 put4byte(&pPage->aData[4], 0);
3853 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00003854 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
3855 pPage->pgno, pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00003856 }else{
3857 /* Add the newly freed page as a leaf on the current trunk */
danielk19773b8a05f2007-03-19 17:44:26 +00003858 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00003859 if( rc ) return rc;
3860 put4byte(&pTrunk->aData[4], k+1);
3861 put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
drhfcce93f2006-02-22 03:08:32 +00003862#ifndef SQLITE_SECURE_DELETE
danielk19773b8a05f2007-03-19 17:44:26 +00003863 sqlite3PagerDontWrite(pBt->pPager, pPage->pgno);
drhfcce93f2006-02-22 03:08:32 +00003864#endif
drh3a4c1412004-05-09 20:40:11 +00003865 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00003866 }
3867 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00003868 }
drh3b7511c2001-05-26 13:15:44 +00003869 return rc;
3870}
3871
3872/*
drh3aac2dd2004-04-26 14:10:20 +00003873** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00003874*/
drh3aac2dd2004-04-26 14:10:20 +00003875static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00003876 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00003877 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00003878 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00003879 int rc;
drh94440812007-03-06 11:42:19 +00003880 int nOvfl;
3881 int ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00003882
drh43605152004-05-29 21:46:49 +00003883 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00003884 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00003885 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00003886 }
drh6f11bef2004-05-13 01:12:56 +00003887 ovflPgno = get4byte(&pCell[info.iOverflow]);
drh94440812007-03-06 11:42:19 +00003888 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00003889 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
3890 assert( ovflPgno==0 || nOvfl>0 );
3891 while( nOvfl-- ){
drh3aac2dd2004-04-26 14:10:20 +00003892 MemPage *pOvfl;
danielk19773b8a05f2007-03-19 17:44:26 +00003893 if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){
drh49285702005-09-17 15:20:26 +00003894 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00003895 }
drh72365832007-03-06 15:53:44 +00003896 rc = getPage(pBt, ovflPgno, &pOvfl, 0);
drh3b7511c2001-05-26 13:15:44 +00003897 if( rc ) return rc;
drh72365832007-03-06 15:53:44 +00003898 if( nOvfl ){
3899 ovflPgno = get4byte(pOvfl->aData);
3900 }
drha34b6762004-05-07 13:30:42 +00003901 rc = freePage(pOvfl);
danielk19773b8a05f2007-03-19 17:44:26 +00003902 sqlite3PagerUnref(pOvfl->pDbPage);
danielk19776b456a22005-03-21 04:04:02 +00003903 if( rc ) return rc;
drh3b7511c2001-05-26 13:15:44 +00003904 }
drh5e2f8b92001-05-28 00:41:15 +00003905 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00003906}
3907
3908/*
drh91025292004-05-03 19:49:32 +00003909** Create the byte sequence used to represent a cell on page pPage
3910** and write that byte sequence into pCell[]. Overflow pages are
3911** allocated and filled in as necessary. The calling procedure
3912** is responsible for making sure sufficient space has been allocated
3913** for pCell[].
3914**
3915** Note that pCell does not necessary need to point to the pPage->aData
3916** area. pCell might point to some temporary storage. The cell will
3917** be constructed in this temporary area then copied into pPage->aData
3918** later.
drh3b7511c2001-05-26 13:15:44 +00003919*/
3920static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00003921 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00003922 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00003923 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00003924 const void *pData,int nData, /* The data */
3925 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00003926){
drh3b7511c2001-05-26 13:15:44 +00003927 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00003928 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00003929 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00003930 int spaceLeft;
3931 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00003932 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00003933 unsigned char *pPrior;
3934 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00003935 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00003936 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00003937 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00003938 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00003939
drh91025292004-05-03 19:49:32 +00003940 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00003941 nHeader = 0;
drh91025292004-05-03 19:49:32 +00003942 if( !pPage->leaf ){
3943 nHeader += 4;
3944 }
drh8b18dd42004-05-12 19:18:15 +00003945 if( pPage->hasData ){
drh91025292004-05-03 19:49:32 +00003946 nHeader += putVarint(&pCell[nHeader], nData);
drh6f11bef2004-05-13 01:12:56 +00003947 }else{
drh91025292004-05-03 19:49:32 +00003948 nData = 0;
3949 }
drh6f11bef2004-05-13 01:12:56 +00003950 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh43605152004-05-29 21:46:49 +00003951 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00003952 assert( info.nHeader==nHeader );
3953 assert( info.nKey==nKey );
3954 assert( info.nData==nData );
3955
3956 /* Fill in the payload */
drh3aac2dd2004-04-26 14:10:20 +00003957 nPayload = nData;
3958 if( pPage->intKey ){
3959 pSrc = pData;
3960 nSrc = nData;
drh91025292004-05-03 19:49:32 +00003961 nData = 0;
drh3aac2dd2004-04-26 14:10:20 +00003962 }else{
3963 nPayload += nKey;
3964 pSrc = pKey;
3965 nSrc = nKey;
3966 }
drh6f11bef2004-05-13 01:12:56 +00003967 *pnSize = info.nSize;
3968 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00003969 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00003970 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00003971
drh3b7511c2001-05-26 13:15:44 +00003972 while( nPayload>0 ){
3973 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00003974#ifndef SQLITE_OMIT_AUTOVACUUM
3975 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
3976#endif
danielk1977cb1a7eb2004-11-05 12:27:02 +00003977 rc = allocatePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00003978#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00003979 /* If the database supports auto-vacuum, and the second or subsequent
3980 ** overflow page is being allocated, add an entry to the pointer-map
3981 ** for that page now. The entry for the first overflow page will be
3982 ** added later, by the insertCell() routine.
danielk1977afcdd022004-10-31 16:25:42 +00003983 */
danielk1977a19df672004-11-03 11:37:07 +00003984 if( pBt->autoVacuum && pgnoPtrmap!=0 && rc==SQLITE_OK ){
3985 rc = ptrmapPut(pBt, pgnoOvfl, PTRMAP_OVERFLOW2, pgnoPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00003986 }
3987#endif
drh3b7511c2001-05-26 13:15:44 +00003988 if( rc ){
drh9b171272004-05-08 02:03:22 +00003989 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00003990 return rc;
3991 }
drh3aac2dd2004-04-26 14:10:20 +00003992 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00003993 releasePage(pToRelease);
3994 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00003995 pPrior = pOvfl->aData;
3996 put4byte(pPrior, 0);
3997 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00003998 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00003999 }
4000 n = nPayload;
4001 if( n>spaceLeft ) n = spaceLeft;
drh3aac2dd2004-04-26 14:10:20 +00004002 if( n>nSrc ) n = nSrc;
drhff3b1702006-03-11 12:04:18 +00004003 assert( pSrc );
drh3aac2dd2004-04-26 14:10:20 +00004004 memcpy(pPayload, pSrc, n);
drh3b7511c2001-05-26 13:15:44 +00004005 nPayload -= n;
drhde647132004-05-07 17:57:49 +00004006 pPayload += n;
drh9b171272004-05-08 02:03:22 +00004007 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00004008 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00004009 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00004010 if( nSrc==0 ){
4011 nSrc = nData;
4012 pSrc = pData;
4013 }
drhdd793422001-06-28 01:54:48 +00004014 }
drh9b171272004-05-08 02:03:22 +00004015 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004016 return SQLITE_OK;
4017}
4018
4019/*
drhbd03cae2001-06-02 02:40:57 +00004020** Change the MemPage.pParent pointer on the page whose number is
drh8b2f49b2001-06-08 00:21:52 +00004021** given in the second argument so that MemPage.pParent holds the
drhbd03cae2001-06-02 02:40:57 +00004022** pointer in the third argument.
4023*/
danielk1977aef0bf62005-12-30 16:28:01 +00004024static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){
drhbd03cae2001-06-02 02:40:57 +00004025 MemPage *pThis;
danielk19773b8a05f2007-03-19 17:44:26 +00004026 DbPage *pDbPage;
drhbd03cae2001-06-02 02:40:57 +00004027
drh43617e92006-03-06 20:55:46 +00004028 assert( pNewParent!=0 );
danielk1977afcdd022004-10-31 16:25:42 +00004029 if( pgno==0 ) return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00004030 assert( pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004031 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
4032 if( pDbPage ){
4033 pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
drhda200cc2004-05-09 11:51:38 +00004034 if( pThis->isInit ){
danielk19773b8a05f2007-03-19 17:44:26 +00004035 assert( pThis->aData==(sqlite3PagerGetData(pDbPage)) );
drhda200cc2004-05-09 11:51:38 +00004036 if( pThis->pParent!=pNewParent ){
danielk19773b8a05f2007-03-19 17:44:26 +00004037 if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
drhda200cc2004-05-09 11:51:38 +00004038 pThis->pParent = pNewParent;
danielk19773b8a05f2007-03-19 17:44:26 +00004039 sqlite3PagerRef(pNewParent->pDbPage);
drhda200cc2004-05-09 11:51:38 +00004040 }
4041 pThis->idxParent = idx;
drhdd793422001-06-28 01:54:48 +00004042 }
danielk19773b8a05f2007-03-19 17:44:26 +00004043 sqlite3PagerUnref(pDbPage);
drhbd03cae2001-06-02 02:40:57 +00004044 }
danielk1977afcdd022004-10-31 16:25:42 +00004045
4046#ifndef SQLITE_OMIT_AUTOVACUUM
4047 if( pBt->autoVacuum ){
4048 return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
4049 }
4050#endif
4051 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004052}
4053
danielk1977ac11ee62005-01-15 12:45:51 +00004054
4055
drhbd03cae2001-06-02 02:40:57 +00004056/*
drh4b70f112004-05-02 21:12:19 +00004057** Change the pParent pointer of all children of pPage to point back
4058** to pPage.
4059**
drhbd03cae2001-06-02 02:40:57 +00004060** In other words, for every child of pPage, invoke reparentPage()
drh5e00f6c2001-09-13 13:46:56 +00004061** to make sure that each child knows that pPage is its parent.
drhbd03cae2001-06-02 02:40:57 +00004062**
4063** This routine gets called after you memcpy() one page into
4064** another.
4065*/
danielk1977afcdd022004-10-31 16:25:42 +00004066static int reparentChildPages(MemPage *pPage){
drhbd03cae2001-06-02 02:40:57 +00004067 int i;
danielk1977aef0bf62005-12-30 16:28:01 +00004068 BtShared *pBt = pPage->pBt;
danielk1977afcdd022004-10-31 16:25:42 +00004069 int rc = SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00004070
danielk1977afcdd022004-10-31 16:25:42 +00004071 if( pPage->leaf ) return SQLITE_OK;
danielk1977afcdd022004-10-31 16:25:42 +00004072
drhbd03cae2001-06-02 02:40:57 +00004073 for(i=0; i<pPage->nCell; i++){
danielk1977afcdd022004-10-31 16:25:42 +00004074 u8 *pCell = findCell(pPage, i);
4075 if( !pPage->leaf ){
4076 rc = reparentPage(pBt, get4byte(pCell), pPage, i);
4077 if( rc!=SQLITE_OK ) return rc;
4078 }
drhbd03cae2001-06-02 02:40:57 +00004079 }
danielk1977afcdd022004-10-31 16:25:42 +00004080 if( !pPage->leaf ){
4081 rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]),
4082 pPage, i);
4083 pPage->idxShift = 0;
4084 }
4085 return rc;
drh14acc042001-06-10 19:56:58 +00004086}
4087
4088/*
4089** Remove the i-th cell from pPage. This routine effects pPage only.
4090** The cell content is not freed or deallocated. It is assumed that
4091** the cell content has been copied someplace else. This routine just
4092** removes the reference to the cell from pPage.
4093**
4094** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00004095*/
drh4b70f112004-05-02 21:12:19 +00004096static void dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00004097 int i; /* Loop counter */
4098 int pc; /* Offset to cell content of cell being deleted */
4099 u8 *data; /* pPage->aData */
4100 u8 *ptr; /* Used to move bytes around within data[] */
4101
drh8c42ca92001-06-22 19:15:00 +00004102 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00004103 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00004104 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhda200cc2004-05-09 11:51:38 +00004105 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00004106 ptr = &data[pPage->cellOffset + 2*idx];
4107 pc = get2byte(ptr);
4108 assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
drhde647132004-05-07 17:57:49 +00004109 freeSpace(pPage, pc, sz);
drh43605152004-05-29 21:46:49 +00004110 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
4111 ptr[0] = ptr[2];
4112 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00004113 }
4114 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00004115 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
4116 pPage->nFree += 2;
drh428ae8c2003-01-04 16:48:09 +00004117 pPage->idxShift = 1;
drh14acc042001-06-10 19:56:58 +00004118}
4119
4120/*
4121** Insert a new cell on pPage at cell index "i". pCell points to the
4122** content of the cell.
4123**
4124** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00004125** will not fit, then make a copy of the cell content into pTemp if
4126** pTemp is not null. Regardless of pTemp, allocate a new entry
4127** in pPage->aOvfl[] and make it point to the cell content (either
4128** in pTemp or the original pCell) and also record its index.
4129** Allocating a new entry in pPage->aCell[] implies that
4130** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00004131**
4132** If nSkip is non-zero, then do not copy the first nSkip bytes of the
4133** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00004134** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00004135** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00004136*/
danielk1977e80463b2004-11-03 03:01:16 +00004137static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00004138 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00004139 int i, /* New cell becomes the i-th cell of the page */
4140 u8 *pCell, /* Content of the new cell */
4141 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00004142 u8 *pTemp, /* Temp storage space for pCell, if needed */
4143 u8 nSkip /* Do not write the first nSkip bytes of the cell */
drh24cd67e2004-05-10 16:18:47 +00004144){
drh43605152004-05-29 21:46:49 +00004145 int idx; /* Where to write new cell content in data[] */
4146 int j; /* Loop counter */
4147 int top; /* First byte of content for any cell in data[] */
4148 int end; /* First byte past the last cell pointer in data[] */
4149 int ins; /* Index in data[] where new cell pointer is inserted */
4150 int hdr; /* Offset into data[] of the page header */
4151 int cellOffset; /* Address of first cell pointer in data[] */
4152 u8 *data; /* The content of the whole page */
4153 u8 *ptr; /* Used for moving information around in data[] */
4154
4155 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
4156 assert( sz==cellSizePtr(pPage, pCell) );
danielk19773b8a05f2007-03-19 17:44:26 +00004157 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00004158 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00004159 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00004160 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00004161 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00004162 }
drh43605152004-05-29 21:46:49 +00004163 j = pPage->nOverflow++;
4164 assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
4165 pPage->aOvfl[j].pCell = pCell;
4166 pPage->aOvfl[j].idx = i;
4167 pPage->nFree = 0;
drh14acc042001-06-10 19:56:58 +00004168 }else{
drh43605152004-05-29 21:46:49 +00004169 data = pPage->aData;
4170 hdr = pPage->hdrOffset;
4171 top = get2byte(&data[hdr+5]);
4172 cellOffset = pPage->cellOffset;
4173 end = cellOffset + 2*pPage->nCell + 2;
4174 ins = cellOffset + 2*i;
4175 if( end > top - sz ){
danielk19776b456a22005-03-21 04:04:02 +00004176 int rc = defragmentPage(pPage);
4177 if( rc!=SQLITE_OK ) return rc;
drh43605152004-05-29 21:46:49 +00004178 top = get2byte(&data[hdr+5]);
4179 assert( end + sz <= top );
4180 }
4181 idx = allocateSpace(pPage, sz);
4182 assert( idx>0 );
4183 assert( end <= get2byte(&data[hdr+5]) );
4184 pPage->nCell++;
4185 pPage->nFree -= 2;
danielk1977a3ad5e72005-01-07 08:56:44 +00004186 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00004187 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
4188 ptr[0] = ptr[-2];
4189 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00004190 }
drh43605152004-05-29 21:46:49 +00004191 put2byte(&data[ins], idx);
4192 put2byte(&data[hdr+3], pPage->nCell);
4193 pPage->idxShift = 1;
danielk1977a19df672004-11-03 11:37:07 +00004194#ifndef SQLITE_OMIT_AUTOVACUUM
4195 if( pPage->pBt->autoVacuum ){
4196 /* The cell may contain a pointer to an overflow page. If so, write
4197 ** the entry for the overflow page into the pointer map.
4198 */
4199 CellInfo info;
4200 parseCellPtr(pPage, pCell, &info);
drh72365832007-03-06 15:53:44 +00004201 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk1977a19df672004-11-03 11:37:07 +00004202 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
4203 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
4204 int rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
4205 if( rc!=SQLITE_OK ) return rc;
4206 }
4207 }
4208#endif
drh14acc042001-06-10 19:56:58 +00004209 }
danielk1977e80463b2004-11-03 03:01:16 +00004210
danielk1977e80463b2004-11-03 03:01:16 +00004211 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00004212}
4213
4214/*
drhfa1a98a2004-05-14 19:08:17 +00004215** Add a list of cells to a page. The page should be initially empty.
4216** The cells are guaranteed to fit on the page.
4217*/
4218static void assemblePage(
4219 MemPage *pPage, /* The page to be assemblied */
4220 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00004221 u8 **apCell, /* Pointers to cell bodies */
drhfa1a98a2004-05-14 19:08:17 +00004222 int *aSize /* Sizes of the cells */
4223){
4224 int i; /* Loop counter */
4225 int totalSize; /* Total size of all cells */
4226 int hdr; /* Index of page header */
drh43605152004-05-29 21:46:49 +00004227 int cellptr; /* Address of next cell pointer */
4228 int cellbody; /* Address of next cell body */
drhfa1a98a2004-05-14 19:08:17 +00004229 u8 *data; /* Data for the page */
4230
drh43605152004-05-29 21:46:49 +00004231 assert( pPage->nOverflow==0 );
drhfa1a98a2004-05-14 19:08:17 +00004232 totalSize = 0;
4233 for(i=0; i<nCell; i++){
4234 totalSize += aSize[i];
4235 }
drh43605152004-05-29 21:46:49 +00004236 assert( totalSize+2*nCell<=pPage->nFree );
drhfa1a98a2004-05-14 19:08:17 +00004237 assert( pPage->nCell==0 );
drh43605152004-05-29 21:46:49 +00004238 cellptr = pPage->cellOffset;
drhfa1a98a2004-05-14 19:08:17 +00004239 data = pPage->aData;
4240 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00004241 put2byte(&data[hdr+3], nCell);
drh09d0deb2005-08-02 17:13:09 +00004242 if( nCell ){
4243 cellbody = allocateSpace(pPage, totalSize);
4244 assert( cellbody>0 );
4245 assert( pPage->nFree >= 2*nCell );
4246 pPage->nFree -= 2*nCell;
4247 for(i=0; i<nCell; i++){
4248 put2byte(&data[cellptr], cellbody);
4249 memcpy(&data[cellbody], apCell[i], aSize[i]);
4250 cellptr += 2;
4251 cellbody += aSize[i];
4252 }
4253 assert( cellbody==pPage->pBt->usableSize );
drhfa1a98a2004-05-14 19:08:17 +00004254 }
4255 pPage->nCell = nCell;
drhfa1a98a2004-05-14 19:08:17 +00004256}
4257
drh14acc042001-06-10 19:56:58 +00004258/*
drhc3b70572003-01-04 19:44:07 +00004259** The following parameters determine how many adjacent pages get involved
4260** in a balancing operation. NN is the number of neighbors on either side
4261** of the page that participate in the balancing operation. NB is the
4262** total number of pages that participate, including the target page and
4263** NN neighbors on either side.
4264**
4265** The minimum value of NN is 1 (of course). Increasing NN above 1
4266** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
4267** in exchange for a larger degradation in INSERT and UPDATE performance.
4268** The value of NN appears to give the best results overall.
4269*/
4270#define NN 1 /* Number of neighbors on either side of pPage */
4271#define NB (NN*2+1) /* Total pages involved in the balance */
4272
drh43605152004-05-29 21:46:49 +00004273/* Forward reference */
danielk1977ac245ec2005-01-14 13:50:11 +00004274static int balance(MemPage*, int);
4275
drh615ae552005-01-16 23:21:00 +00004276#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00004277/*
4278** This version of balance() handles the common special case where
4279** a new entry is being inserted on the extreme right-end of the
4280** tree, in other words, when the new entry will become the largest
4281** entry in the tree.
4282**
4283** Instead of trying balance the 3 right-most leaf pages, just add
4284** a new page to the right-hand side and put the one new entry in
4285** that page. This leaves the right side of the tree somewhat
4286** unbalanced. But odds are that we will be inserting new entries
4287** at the end soon afterwards so the nearly empty page will quickly
4288** fill up. On average.
4289**
4290** pPage is the leaf page which is the right-most page in the tree.
4291** pParent is its parent. pPage must have a single overflow entry
4292** which is also the right-most entry on the page.
4293*/
danielk1977ac245ec2005-01-14 13:50:11 +00004294static int balance_quick(MemPage *pPage, MemPage *pParent){
4295 int rc;
4296 MemPage *pNew;
4297 Pgno pgnoNew;
4298 u8 *pCell;
4299 int szCell;
4300 CellInfo info;
danielk1977aef0bf62005-12-30 16:28:01 +00004301 BtShared *pBt = pPage->pBt;
danielk197779a40da2005-01-16 08:00:01 +00004302 int parentIdx = pParent->nCell; /* pParent new divider cell index */
4303 int parentSize; /* Size of new divider cell */
4304 u8 parentCell[64]; /* Space for the new divider cell */
danielk1977ac245ec2005-01-14 13:50:11 +00004305
4306 /* Allocate a new page. Insert the overflow cell from pPage
4307 ** into it. Then remove the overflow cell from pPage.
4308 */
danielk1977ac11ee62005-01-15 12:45:51 +00004309 rc = allocatePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk1977ac245ec2005-01-14 13:50:11 +00004310 if( rc!=SQLITE_OK ){
4311 return rc;
4312 }
4313 pCell = pPage->aOvfl[0].pCell;
4314 szCell = cellSizePtr(pPage, pCell);
4315 zeroPage(pNew, pPage->aData[0]);
4316 assemblePage(pNew, 1, &pCell, &szCell);
4317 pPage->nOverflow = 0;
4318
danielk197779a40da2005-01-16 08:00:01 +00004319 /* Set the parent of the newly allocated page to pParent. */
4320 pNew->pParent = pParent;
danielk19773b8a05f2007-03-19 17:44:26 +00004321 sqlite3PagerRef(pParent->pDbPage);
danielk197779a40da2005-01-16 08:00:01 +00004322
danielk1977ac245ec2005-01-14 13:50:11 +00004323 /* pPage is currently the right-child of pParent. Change this
4324 ** so that the right-child is the new page allocated above and
danielk197779a40da2005-01-16 08:00:01 +00004325 ** pPage is the next-to-right child.
danielk1977ac245ec2005-01-14 13:50:11 +00004326 */
danielk1977ac11ee62005-01-15 12:45:51 +00004327 assert( pPage->nCell>0 );
danielk1977ac245ec2005-01-14 13:50:11 +00004328 parseCellPtr(pPage, findCell(pPage, pPage->nCell-1), &info);
4329 rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, &parentSize);
4330 if( rc!=SQLITE_OK ){
danielk197779a40da2005-01-16 08:00:01 +00004331 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00004332 }
4333 assert( parentSize<64 );
4334 rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
4335 if( rc!=SQLITE_OK ){
danielk197779a40da2005-01-16 08:00:01 +00004336 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00004337 }
4338 put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
4339 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
4340
danielk197779a40da2005-01-16 08:00:01 +00004341#ifndef SQLITE_OMIT_AUTOVACUUM
4342 /* If this is an auto-vacuum database, update the pointer map
4343 ** with entries for the new page, and any pointer from the
4344 ** cell on the page to an overflow page.
4345 */
danielk1977ac11ee62005-01-15 12:45:51 +00004346 if( pBt->autoVacuum ){
4347 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
4348 if( rc!=SQLITE_OK ){
4349 return rc;
4350 }
danielk197779a40da2005-01-16 08:00:01 +00004351 rc = ptrmapPutOvfl(pNew, 0);
4352 if( rc!=SQLITE_OK ){
4353 return rc;
danielk1977ac11ee62005-01-15 12:45:51 +00004354 }
4355 }
danielk197779a40da2005-01-16 08:00:01 +00004356#endif
danielk1977ac11ee62005-01-15 12:45:51 +00004357
danielk197779a40da2005-01-16 08:00:01 +00004358 /* Release the reference to the new page and balance the parent page,
4359 ** in case the divider cell inserted caused it to become overfull.
4360 */
danielk1977ac245ec2005-01-14 13:50:11 +00004361 releasePage(pNew);
4362 return balance(pParent, 0);
4363}
drh615ae552005-01-16 23:21:00 +00004364#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00004365
drhc3b70572003-01-04 19:44:07 +00004366/*
danielk1977ac11ee62005-01-15 12:45:51 +00004367** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
4368** if the database supports auto-vacuum or not. Because it is used
4369** within an expression that is an argument to another macro
4370** (sqliteMallocRaw), it is not possible to use conditional compilation.
4371** So, this macro is defined instead.
4372*/
4373#ifndef SQLITE_OMIT_AUTOVACUUM
4374#define ISAUTOVACUUM (pBt->autoVacuum)
4375#else
4376#define ISAUTOVACUUM 0
4377#endif
4378
4379/*
drhab01f612004-05-22 02:55:23 +00004380** This routine redistributes Cells on pPage and up to NN*2 siblings
drh8b2f49b2001-06-08 00:21:52 +00004381** of pPage so that all pages have about the same amount of free space.
drh0c6cc4e2004-06-15 02:13:26 +00004382** Usually NN siblings on either side of pPage is used in the balancing,
4383** though more siblings might come from one side if pPage is the first
drhab01f612004-05-22 02:55:23 +00004384** or last child of its parent. If pPage has fewer than 2*NN siblings
drh8b2f49b2001-06-08 00:21:52 +00004385** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00004386** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00004387**
drh0c6cc4e2004-06-15 02:13:26 +00004388** The number of siblings of pPage might be increased or decreased by one or
4389** two in an effort to keep pages nearly full but not over full. The root page
drhab01f612004-05-22 02:55:23 +00004390** is special and is allowed to be nearly empty. If pPage is
drh8c42ca92001-06-22 19:15:00 +00004391** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00004392** or decreased by one, as necessary, to keep the root page from being
drhab01f612004-05-22 02:55:23 +00004393** overfull or completely empty.
drh14acc042001-06-10 19:56:58 +00004394**
drh8b2f49b2001-06-08 00:21:52 +00004395** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00004396** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00004397** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00004398** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00004399**
drh8c42ca92001-06-22 19:15:00 +00004400** In the course of balancing the siblings of pPage, the parent of pPage
4401** might become overfull or underfull. If that happens, then this routine
4402** is called recursively on the parent.
4403**
drh5e00f6c2001-09-13 13:46:56 +00004404** If this routine fails for any reason, it might leave the database
4405** in a corrupted state. So if this routine fails, the database should
4406** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00004407*/
drh43605152004-05-29 21:46:49 +00004408static int balance_nonroot(MemPage *pPage){
drh8b2f49b2001-06-08 00:21:52 +00004409 MemPage *pParent; /* The parent of pPage */
danielk1977aef0bf62005-12-30 16:28:01 +00004410 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00004411 int nCell = 0; /* Number of cells in apCell[] */
4412 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
drh8b2f49b2001-06-08 00:21:52 +00004413 int nOld; /* Number of pages in apOld[] */
4414 int nNew; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00004415 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00004416 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00004417 int idx; /* Index of pPage in pParent->aCell[] */
4418 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00004419 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00004420 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00004421 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00004422 int usableSpace; /* Bytes in pPage beyond the header */
4423 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00004424 int subtotal; /* Subtotal of bytes in cells on one page */
drhb6f41482004-05-14 01:58:11 +00004425 int iSpace = 0; /* First unused byte of aSpace[] */
drhc3b70572003-01-04 19:44:07 +00004426 MemPage *apOld[NB]; /* pPage and up to two siblings */
4427 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00004428 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00004429 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
4430 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
drh4b70f112004-05-02 21:12:19 +00004431 u8 *apDiv[NB]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00004432 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
4433 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00004434 u8 **apCell = 0; /* All cells begin balanced */
drh2e38c322004-09-03 18:38:44 +00004435 int *szCell; /* Local size of all cells in apCell[] */
4436 u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
4437 u8 *aSpace; /* Space to hold copies of dividers cells */
danielk19774e17d142005-01-16 09:06:33 +00004438#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977ac11ee62005-01-15 12:45:51 +00004439 u8 *aFrom = 0;
4440#endif
drh8b2f49b2001-06-08 00:21:52 +00004441
drh14acc042001-06-10 19:56:58 +00004442 /*
drh43605152004-05-29 21:46:49 +00004443 ** Find the parent page.
drh8b2f49b2001-06-08 00:21:52 +00004444 */
drh3a4c1412004-05-09 20:40:11 +00004445 assert( pPage->isInit );
danielk19773b8a05f2007-03-19 17:44:26 +00004446 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh4b70f112004-05-02 21:12:19 +00004447 pBt = pPage->pBt;
drh14acc042001-06-10 19:56:58 +00004448 pParent = pPage->pParent;
drh43605152004-05-29 21:46:49 +00004449 assert( pParent );
danielk19773b8a05f2007-03-19 17:44:26 +00004450 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
danielk197707cb5602006-01-20 10:55:05 +00004451 return rc;
4452 }
drh43605152004-05-29 21:46:49 +00004453 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
drh2e38c322004-09-03 18:38:44 +00004454
drh615ae552005-01-16 23:21:00 +00004455#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00004456 /*
4457 ** A special case: If a new entry has just been inserted into a
4458 ** table (that is, a btree with integer keys and all data at the leaves)
drh09d0deb2005-08-02 17:13:09 +00004459 ** and the new entry is the right-most entry in the tree (it has the
drhf222e712005-01-14 22:55:49 +00004460 ** largest key) then use the special balance_quick() routine for
4461 ** balancing. balance_quick() is much faster and results in a tighter
4462 ** packing of data in the common case.
4463 */
danielk1977ac245ec2005-01-14 13:50:11 +00004464 if( pPage->leaf &&
4465 pPage->intKey &&
4466 pPage->leafData &&
4467 pPage->nOverflow==1 &&
4468 pPage->aOvfl[0].idx==pPage->nCell &&
danielk1977ac11ee62005-01-15 12:45:51 +00004469 pPage->pParent->pgno!=1 &&
danielk1977ac245ec2005-01-14 13:50:11 +00004470 get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
4471 ){
danielk1977ac11ee62005-01-15 12:45:51 +00004472 /*
4473 ** TODO: Check the siblings to the left of pPage. It may be that
4474 ** they are not full and no new page is required.
4475 */
danielk1977ac245ec2005-01-14 13:50:11 +00004476 return balance_quick(pPage, pParent);
4477 }
4478#endif
4479
drh2e38c322004-09-03 18:38:44 +00004480 /*
drh4b70f112004-05-02 21:12:19 +00004481 ** Find the cell in the parent page whose left child points back
drh14acc042001-06-10 19:56:58 +00004482 ** to pPage. The "idx" variable is the index of that cell. If pPage
4483 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00004484 */
drhbb49aba2003-01-04 18:53:27 +00004485 if( pParent->idxShift ){
drha34b6762004-05-07 13:30:42 +00004486 Pgno pgno;
drh4b70f112004-05-02 21:12:19 +00004487 pgno = pPage->pgno;
danielk19773b8a05f2007-03-19 17:44:26 +00004488 assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbb49aba2003-01-04 18:53:27 +00004489 for(idx=0; idx<pParent->nCell; idx++){
drh43605152004-05-29 21:46:49 +00004490 if( get4byte(findCell(pParent, idx))==pgno ){
drhbb49aba2003-01-04 18:53:27 +00004491 break;
4492 }
drh8b2f49b2001-06-08 00:21:52 +00004493 }
drh4b70f112004-05-02 21:12:19 +00004494 assert( idx<pParent->nCell
drh43605152004-05-29 21:46:49 +00004495 || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
drhbb49aba2003-01-04 18:53:27 +00004496 }else{
4497 idx = pPage->idxParent;
drh8b2f49b2001-06-08 00:21:52 +00004498 }
drh8b2f49b2001-06-08 00:21:52 +00004499
4500 /*
drh14acc042001-06-10 19:56:58 +00004501 ** Initialize variables so that it will be safe to jump
drh5edc3122001-09-13 21:53:09 +00004502 ** directly to balance_cleanup at any moment.
drh8b2f49b2001-06-08 00:21:52 +00004503 */
drh14acc042001-06-10 19:56:58 +00004504 nOld = nNew = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004505 sqlite3PagerRef(pParent->pDbPage);
drh14acc042001-06-10 19:56:58 +00004506
4507 /*
drh4b70f112004-05-02 21:12:19 +00004508 ** Find sibling pages to pPage and the cells in pParent that divide
drhc3b70572003-01-04 19:44:07 +00004509 ** the siblings. An attempt is made to find NN siblings on either
4510 ** side of pPage. More siblings are taken from one side, however, if
4511 ** pPage there are fewer than NN siblings on the other side. If pParent
4512 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00004513 */
drhc3b70572003-01-04 19:44:07 +00004514 nxDiv = idx - NN;
4515 if( nxDiv + NB > pParent->nCell ){
4516 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00004517 }
drhc3b70572003-01-04 19:44:07 +00004518 if( nxDiv<0 ){
4519 nxDiv = 0;
4520 }
drh8b2f49b2001-06-08 00:21:52 +00004521 nDiv = 0;
drhc3b70572003-01-04 19:44:07 +00004522 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00004523 if( k<pParent->nCell ){
drh43605152004-05-29 21:46:49 +00004524 apDiv[i] = findCell(pParent, k);
drh8b2f49b2001-06-08 00:21:52 +00004525 nDiv++;
drha34b6762004-05-07 13:30:42 +00004526 assert( !pParent->leaf );
drh43605152004-05-29 21:46:49 +00004527 pgnoOld[i] = get4byte(apDiv[i]);
drh14acc042001-06-10 19:56:58 +00004528 }else if( k==pParent->nCell ){
drh43605152004-05-29 21:46:49 +00004529 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
drh14acc042001-06-10 19:56:58 +00004530 }else{
4531 break;
drh8b2f49b2001-06-08 00:21:52 +00004532 }
drhde647132004-05-07 17:57:49 +00004533 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
drh6019e162001-07-02 17:51:45 +00004534 if( rc ) goto balance_cleanup;
drh428ae8c2003-01-04 16:48:09 +00004535 apOld[i]->idxParent = k;
drh91025292004-05-03 19:49:32 +00004536 apCopy[i] = 0;
4537 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00004538 nOld++;
danielk1977634f2982005-03-28 08:44:07 +00004539 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
drh8b2f49b2001-06-08 00:21:52 +00004540 }
4541
drh8d97f1f2005-05-05 18:14:13 +00004542 /* Make nMaxCells a multiple of 2 in order to preserve 8-byte
4543 ** alignment */
4544 nMaxCells = (nMaxCells + 1)&~1;
4545
drh8b2f49b2001-06-08 00:21:52 +00004546 /*
danielk1977634f2982005-03-28 08:44:07 +00004547 ** Allocate space for memory structures
4548 */
4549 apCell = sqliteMallocRaw(
4550 nMaxCells*sizeof(u8*) /* apCell */
4551 + nMaxCells*sizeof(int) /* szCell */
drhc96d8532005-05-03 12:30:33 +00004552 + ROUND8(sizeof(MemPage))*NB /* aCopy */
drh07d183d2005-05-01 22:52:42 +00004553 + pBt->pageSize*(5+NB) /* aSpace */
drhc96d8532005-05-03 12:30:33 +00004554 + (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */
danielk1977634f2982005-03-28 08:44:07 +00004555 );
4556 if( apCell==0 ){
4557 rc = SQLITE_NOMEM;
4558 goto balance_cleanup;
4559 }
4560 szCell = (int*)&apCell[nMaxCells];
4561 aCopy[0] = (u8*)&szCell[nMaxCells];
drhc96d8532005-05-03 12:30:33 +00004562 assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00004563 for(i=1; i<NB; i++){
drhc96d8532005-05-03 12:30:33 +00004564 aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
4565 assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00004566 }
drhc96d8532005-05-03 12:30:33 +00004567 aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
4568 assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00004569#ifndef SQLITE_OMIT_AUTOVACUUM
4570 if( pBt->autoVacuum ){
drh07d183d2005-05-01 22:52:42 +00004571 aFrom = &aSpace[5*pBt->pageSize];
danielk1977634f2982005-03-28 08:44:07 +00004572 }
4573#endif
4574
4575 /*
drh14acc042001-06-10 19:56:58 +00004576 ** Make copies of the content of pPage and its siblings into aOld[].
4577 ** The rest of this function will use data from the copies rather
4578 ** that the original pages since the original pages will be in the
4579 ** process of being overwritten.
4580 */
4581 for(i=0; i<nOld; i++){
drh07d183d2005-05-01 22:52:42 +00004582 MemPage *p = apCopy[i] = (MemPage*)&aCopy[i][pBt->pageSize];
drh07d183d2005-05-01 22:52:42 +00004583 p->aData = &((u8*)p)[-pBt->pageSize];
4584 memcpy(p->aData, apOld[i]->aData, pBt->pageSize + sizeof(MemPage));
4585 /* The memcpy() above changes the value of p->aData so we have to
4586 ** set it again. */
drh07d183d2005-05-01 22:52:42 +00004587 p->aData = &((u8*)p)[-pBt->pageSize];
drh14acc042001-06-10 19:56:58 +00004588 }
4589
4590 /*
4591 ** Load pointers to all cells on sibling pages and the divider cells
4592 ** into the local apCell[] array. Make copies of the divider cells
drhb6f41482004-05-14 01:58:11 +00004593 ** into space obtained form aSpace[] and remove the the divider Cells
4594 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00004595 **
4596 ** If the siblings are on leaf pages, then the child pointers of the
4597 ** divider cells are stripped from the cells before they are copied
drh96f5b762004-05-16 16:24:36 +00004598 ** into aSpace[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00004599 ** child pointers. If siblings are not leaves, then all cell in
4600 ** apCell[] include child pointers. Either way, all cells in apCell[]
4601 ** are alike.
drh96f5b762004-05-16 16:24:36 +00004602 **
4603 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
4604 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00004605 */
4606 nCell = 0;
drh4b70f112004-05-02 21:12:19 +00004607 leafCorrection = pPage->leaf*4;
drh8b18dd42004-05-12 19:18:15 +00004608 leafData = pPage->leafData && pPage->leaf;
drh8b2f49b2001-06-08 00:21:52 +00004609 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00004610 MemPage *pOld = apCopy[i];
drh43605152004-05-29 21:46:49 +00004611 int limit = pOld->nCell+pOld->nOverflow;
4612 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00004613 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00004614 apCell[nCell] = findOverflowCell(pOld, j);
4615 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk1977ac11ee62005-01-15 12:45:51 +00004616#ifndef SQLITE_OMIT_AUTOVACUUM
4617 if( pBt->autoVacuum ){
4618 int a;
4619 aFrom[nCell] = i;
4620 for(a=0; a<pOld->nOverflow; a++){
4621 if( pOld->aOvfl[a].pCell==apCell[nCell] ){
4622 aFrom[nCell] = 0xFF;
4623 break;
4624 }
4625 }
4626 }
4627#endif
drh14acc042001-06-10 19:56:58 +00004628 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00004629 }
4630 if( i<nOld-1 ){
drh43605152004-05-29 21:46:49 +00004631 int sz = cellSizePtr(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00004632 if( leafData ){
drh96f5b762004-05-16 16:24:36 +00004633 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
4634 ** are duplicates of keys on the child pages. We need to remove
4635 ** the divider cells from pParent, but the dividers cells are not
4636 ** added to apCell[] because they are duplicates of child cells.
4637 */
drh8b18dd42004-05-12 19:18:15 +00004638 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00004639 }else{
drhb6f41482004-05-14 01:58:11 +00004640 u8 *pTemp;
danielk1977634f2982005-03-28 08:44:07 +00004641 assert( nCell<nMaxCells );
drhb6f41482004-05-14 01:58:11 +00004642 szCell[nCell] = sz;
4643 pTemp = &aSpace[iSpace];
4644 iSpace += sz;
drh07d183d2005-05-01 22:52:42 +00004645 assert( iSpace<=pBt->pageSize*5 );
drhb6f41482004-05-14 01:58:11 +00004646 memcpy(pTemp, apDiv[i], sz);
4647 apCell[nCell] = pTemp+leafCorrection;
danielk1977ac11ee62005-01-15 12:45:51 +00004648#ifndef SQLITE_OMIT_AUTOVACUUM
4649 if( pBt->autoVacuum ){
4650 aFrom[nCell] = 0xFF;
4651 }
4652#endif
drhb6f41482004-05-14 01:58:11 +00004653 dropCell(pParent, nxDiv, sz);
drh8b18dd42004-05-12 19:18:15 +00004654 szCell[nCell] -= leafCorrection;
drh43605152004-05-29 21:46:49 +00004655 assert( get4byte(pTemp)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00004656 if( !pOld->leaf ){
4657 assert( leafCorrection==0 );
4658 /* The right pointer of the child page pOld becomes the left
4659 ** pointer of the divider cell */
drh43605152004-05-29 21:46:49 +00004660 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
drh8b18dd42004-05-12 19:18:15 +00004661 }else{
4662 assert( leafCorrection==4 );
4663 }
4664 nCell++;
drh4b70f112004-05-02 21:12:19 +00004665 }
drh8b2f49b2001-06-08 00:21:52 +00004666 }
4667 }
4668
4669 /*
drh6019e162001-07-02 17:51:45 +00004670 ** Figure out the number of pages needed to hold all nCell cells.
4671 ** Store this number in "k". Also compute szNew[] which is the total
4672 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00004673 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00004674 ** cntNew[k] should equal nCell.
4675 **
drh96f5b762004-05-16 16:24:36 +00004676 ** Values computed by this block:
4677 **
4678 ** k: The total number of sibling pages
4679 ** szNew[i]: Spaced used on the i-th sibling page.
4680 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
4681 ** the right of the i-th sibling page.
4682 ** usableSpace: Number of bytes of space available on each sibling.
4683 **
drh8b2f49b2001-06-08 00:21:52 +00004684 */
drh43605152004-05-29 21:46:49 +00004685 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00004686 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00004687 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00004688 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00004689 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00004690 szNew[k] = subtotal - szCell[i];
4691 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00004692 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00004693 subtotal = 0;
4694 k++;
4695 }
4696 }
4697 szNew[k] = subtotal;
4698 cntNew[k] = nCell;
4699 k++;
drh96f5b762004-05-16 16:24:36 +00004700
4701 /*
4702 ** The packing computed by the previous block is biased toward the siblings
4703 ** on the left side. The left siblings are always nearly full, while the
4704 ** right-most sibling might be nearly empty. This block of code attempts
4705 ** to adjust the packing of siblings to get a better balance.
4706 **
4707 ** This adjustment is more than an optimization. The packing above might
4708 ** be so out of balance as to be illegal. For example, the right-most
4709 ** sibling might be completely empty. This adjustment is not optional.
4710 */
drh6019e162001-07-02 17:51:45 +00004711 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00004712 int szRight = szNew[i]; /* Size of sibling on the right */
4713 int szLeft = szNew[i-1]; /* Size of sibling on the left */
4714 int r; /* Index of right-most cell in left sibling */
4715 int d; /* Index of first cell to the left of right sibling */
4716
4717 r = cntNew[i-1] - 1;
4718 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00004719 assert( d<nMaxCells );
4720 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00004721 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
4722 szRight += szCell[d] + 2;
4723 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00004724 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00004725 r = cntNew[i-1] - 1;
4726 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00004727 }
drh96f5b762004-05-16 16:24:36 +00004728 szNew[i] = szRight;
4729 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00004730 }
drh09d0deb2005-08-02 17:13:09 +00004731
4732 /* Either we found one or more cells (cntnew[0])>0) or we are the
4733 ** a virtual root page. A virtual root page is when the real root
4734 ** page is page 1 and we are the only child of that page.
4735 */
4736 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00004737
4738 /*
drh6b308672002-07-08 02:16:37 +00004739 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00004740 */
drh4b70f112004-05-02 21:12:19 +00004741 assert( pPage->pgno>1 );
4742 pageFlags = pPage->aData[0];
drh14acc042001-06-10 19:56:58 +00004743 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00004744 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00004745 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00004746 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00004747 pgnoNew[i] = pgnoOld[i];
4748 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004749 rc = sqlite3PagerWrite(pNew->pDbPage);
danielk197728129562005-01-11 10:25:06 +00004750 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00004751 }else{
drh7aa8f852006-03-28 00:24:44 +00004752 assert( i>0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004753 rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
drh6b308672002-07-08 02:16:37 +00004754 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00004755 apNew[i] = pNew;
drh6b308672002-07-08 02:16:37 +00004756 }
drh14acc042001-06-10 19:56:58 +00004757 nNew++;
drhda200cc2004-05-09 11:51:38 +00004758 zeroPage(pNew, pageFlags);
drh8b2f49b2001-06-08 00:21:52 +00004759 }
4760
danielk1977299b1872004-11-22 10:02:10 +00004761 /* Free any old pages that were not reused as new pages.
4762 */
4763 while( i<nOld ){
4764 rc = freePage(apOld[i]);
4765 if( rc ) goto balance_cleanup;
4766 releasePage(apOld[i]);
4767 apOld[i] = 0;
4768 i++;
4769 }
4770
drh8b2f49b2001-06-08 00:21:52 +00004771 /*
drhf9ffac92002-03-02 19:00:31 +00004772 ** Put the new pages in accending order. This helps to
4773 ** keep entries in the disk file in order so that a scan
4774 ** of the table is a linear scan through the file. That
4775 ** in turn helps the operating system to deliver pages
4776 ** from the disk more rapidly.
4777 **
4778 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00004779 ** n is never more than NB (a small constant), that should
4780 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00004781 **
drhc3b70572003-01-04 19:44:07 +00004782 ** When NB==3, this one optimization makes the database
4783 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00004784 */
4785 for(i=0; i<k-1; i++){
4786 int minV = pgnoNew[i];
4787 int minI = i;
4788 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00004789 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00004790 minI = j;
4791 minV = pgnoNew[j];
4792 }
4793 }
4794 if( minI>i ){
4795 int t;
4796 MemPage *pT;
4797 t = pgnoNew[i];
4798 pT = apNew[i];
4799 pgnoNew[i] = pgnoNew[minI];
4800 apNew[i] = apNew[minI];
4801 pgnoNew[minI] = t;
4802 apNew[minI] = pT;
4803 }
4804 }
drha2fce642004-06-05 00:01:44 +00004805 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
drh24cd67e2004-05-10 16:18:47 +00004806 pgnoOld[0],
4807 nOld>=2 ? pgnoOld[1] : 0,
4808 nOld>=3 ? pgnoOld[2] : 0,
drh10c0fa62004-05-18 12:50:17 +00004809 pgnoNew[0], szNew[0],
4810 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
4811 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
drha2fce642004-06-05 00:01:44 +00004812 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
4813 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
drh24cd67e2004-05-10 16:18:47 +00004814
drhf9ffac92002-03-02 19:00:31 +00004815 /*
drh14acc042001-06-10 19:56:58 +00004816 ** Evenly distribute the data in apCell[] across the new pages.
4817 ** Insert divider cells into pParent as necessary.
4818 */
4819 j = 0;
4820 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00004821 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00004822 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00004823 assert( j<nMaxCells );
drh4b70f112004-05-02 21:12:19 +00004824 assert( pNew->pgno==pgnoNew[i] );
drhfa1a98a2004-05-14 19:08:17 +00004825 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00004826 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00004827 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00004828
4829#ifndef SQLITE_OMIT_AUTOVACUUM
4830 /* If this is an auto-vacuum database, update the pointer map entries
4831 ** that point to the siblings that were rearranged. These can be: left
4832 ** children of cells, the right-child of the page, or overflow pages
4833 ** pointed to by cells.
4834 */
4835 if( pBt->autoVacuum ){
4836 for(k=j; k<cntNew[i]; k++){
danielk1977634f2982005-03-28 08:44:07 +00004837 assert( k<nMaxCells );
danielk1977ac11ee62005-01-15 12:45:51 +00004838 if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
danielk197779a40da2005-01-16 08:00:01 +00004839 rc = ptrmapPutOvfl(pNew, k-j);
4840 if( rc!=SQLITE_OK ){
4841 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00004842 }
4843 }
4844 }
4845 }
4846#endif
4847
4848 j = cntNew[i];
4849
4850 /* If the sibling page assembled above was not the right-most sibling,
4851 ** insert a divider cell into the parent page.
4852 */
drh14acc042001-06-10 19:56:58 +00004853 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00004854 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00004855 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00004856 int sz;
danielk1977634f2982005-03-28 08:44:07 +00004857
4858 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00004859 pCell = apCell[j];
4860 sz = szCell[j] + leafCorrection;
drh4b70f112004-05-02 21:12:19 +00004861 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00004862 memcpy(&pNew->aData[8], pCell, 4);
drh24cd67e2004-05-10 16:18:47 +00004863 pTemp = 0;
drh8b18dd42004-05-12 19:18:15 +00004864 }else if( leafData ){
danielk1977ac11ee62005-01-15 12:45:51 +00004865 /* If the tree is a leaf-data tree, and the siblings are leaves,
4866 ** then there is no divider cell in apCell[]. Instead, the divider
4867 ** cell consists of the integer key for the right-most cell of
4868 ** the sibling-page assembled above only.
4869 */
drh6f11bef2004-05-13 01:12:56 +00004870 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00004871 j--;
drh43605152004-05-29 21:46:49 +00004872 parseCellPtr(pNew, apCell[j], &info);
drhb6f41482004-05-14 01:58:11 +00004873 pCell = &aSpace[iSpace];
drh6f11bef2004-05-13 01:12:56 +00004874 fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz);
drhb6f41482004-05-14 01:58:11 +00004875 iSpace += sz;
drh07d183d2005-05-01 22:52:42 +00004876 assert( iSpace<=pBt->pageSize*5 );
drh8b18dd42004-05-12 19:18:15 +00004877 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00004878 }else{
4879 pCell -= 4;
drhb6f41482004-05-14 01:58:11 +00004880 pTemp = &aSpace[iSpace];
4881 iSpace += sz;
drh07d183d2005-05-01 22:52:42 +00004882 assert( iSpace<=pBt->pageSize*5 );
drh4b70f112004-05-02 21:12:19 +00004883 }
danielk1977a3ad5e72005-01-07 08:56:44 +00004884 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
danielk1977e80463b2004-11-03 03:01:16 +00004885 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00004886 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +00004887#ifndef SQLITE_OMIT_AUTOVACUUM
4888 /* If this is an auto-vacuum database, and not a leaf-data tree,
4889 ** then update the pointer map with an entry for the overflow page
4890 ** that the cell just inserted points to (if any).
4891 */
4892 if( pBt->autoVacuum && !leafData ){
danielk197779a40da2005-01-16 08:00:01 +00004893 rc = ptrmapPutOvfl(pParent, nxDiv);
4894 if( rc!=SQLITE_OK ){
4895 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00004896 }
4897 }
4898#endif
drh14acc042001-06-10 19:56:58 +00004899 j++;
4900 nxDiv++;
4901 }
4902 }
drh6019e162001-07-02 17:51:45 +00004903 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00004904 assert( nOld>0 );
4905 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00004906 if( (pageFlags & PTF_LEAF)==0 ){
drh43605152004-05-29 21:46:49 +00004907 memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
drh14acc042001-06-10 19:56:58 +00004908 }
drh43605152004-05-29 21:46:49 +00004909 if( nxDiv==pParent->nCell+pParent->nOverflow ){
drh4b70f112004-05-02 21:12:19 +00004910 /* Right-most sibling is the right-most child of pParent */
drh43605152004-05-29 21:46:49 +00004911 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
drh4b70f112004-05-02 21:12:19 +00004912 }else{
4913 /* Right-most sibling is the left child of the first entry in pParent
4914 ** past the right-most divider entry */
drh43605152004-05-29 21:46:49 +00004915 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00004916 }
4917
4918 /*
4919 ** Reparent children of all cells.
drh8b2f49b2001-06-08 00:21:52 +00004920 */
4921 for(i=0; i<nNew; i++){
danielk1977afcdd022004-10-31 16:25:42 +00004922 rc = reparentChildPages(apNew[i]);
4923 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh8b2f49b2001-06-08 00:21:52 +00004924 }
danielk1977afcdd022004-10-31 16:25:42 +00004925 rc = reparentChildPages(pParent);
4926 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh8b2f49b2001-06-08 00:21:52 +00004927
4928 /*
drh3a4c1412004-05-09 20:40:11 +00004929 ** Balance the parent page. Note that the current page (pPage) might
danielk1977ac11ee62005-01-15 12:45:51 +00004930 ** have been added to the freelist so it might no longer be initialized.
drh3a4c1412004-05-09 20:40:11 +00004931 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00004932 */
drhda200cc2004-05-09 11:51:38 +00004933 assert( pParent->isInit );
danielk1977ac245ec2005-01-14 13:50:11 +00004934 rc = balance(pParent, 0);
drhda200cc2004-05-09 11:51:38 +00004935
drh8b2f49b2001-06-08 00:21:52 +00004936 /*
drh14acc042001-06-10 19:56:58 +00004937 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00004938 */
drh14acc042001-06-10 19:56:58 +00004939balance_cleanup:
drh2e38c322004-09-03 18:38:44 +00004940 sqliteFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00004941 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00004942 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00004943 }
drh14acc042001-06-10 19:56:58 +00004944 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00004945 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00004946 }
drh91025292004-05-03 19:49:32 +00004947 releasePage(pParent);
drh3a4c1412004-05-09 20:40:11 +00004948 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
4949 pPage->pgno, nOld, nNew, nCell));
drh8b2f49b2001-06-08 00:21:52 +00004950 return rc;
4951}
4952
4953/*
drh43605152004-05-29 21:46:49 +00004954** This routine is called for the root page of a btree when the root
4955** page contains no cells. This is an opportunity to make the tree
4956** shallower by one level.
4957*/
4958static int balance_shallower(MemPage *pPage){
4959 MemPage *pChild; /* The only child page of pPage */
4960 Pgno pgnoChild; /* Page number for pChild */
drh2e38c322004-09-03 18:38:44 +00004961 int rc = SQLITE_OK; /* Return code from subprocedures */
danielk1977aef0bf62005-12-30 16:28:01 +00004962 BtShared *pBt; /* The main BTree structure */
drh2e38c322004-09-03 18:38:44 +00004963 int mxCellPerPage; /* Maximum number of cells per page */
4964 u8 **apCell; /* All cells from pages being balanced */
4965 int *szCell; /* Local size of all cells */
drh43605152004-05-29 21:46:49 +00004966
4967 assert( pPage->pParent==0 );
4968 assert( pPage->nCell==0 );
drh2e38c322004-09-03 18:38:44 +00004969 pBt = pPage->pBt;
4970 mxCellPerPage = MX_CELL(pBt);
4971 apCell = sqliteMallocRaw( mxCellPerPage*(sizeof(u8*)+sizeof(int)) );
4972 if( apCell==0 ) return SQLITE_NOMEM;
4973 szCell = (int*)&apCell[mxCellPerPage];
drh43605152004-05-29 21:46:49 +00004974 if( pPage->leaf ){
4975 /* The table is completely empty */
4976 TRACE(("BALANCE: empty table %d\n", pPage->pgno));
4977 }else{
4978 /* The root page is empty but has one child. Transfer the
4979 ** information from that one child into the root page if it
4980 ** will fit. This reduces the depth of the tree by one.
4981 **
4982 ** If the root page is page 1, it has less space available than
4983 ** its child (due to the 100 byte header that occurs at the beginning
4984 ** of the database fle), so it might not be able to hold all of the
4985 ** information currently contained in the child. If this is the
4986 ** case, then do not do the transfer. Leave page 1 empty except
4987 ** for the right-pointer to the child page. The child page becomes
4988 ** the virtual root of the tree.
4989 */
4990 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
4991 assert( pgnoChild>0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004992 assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) );
drh0787db62007-03-04 13:15:27 +00004993 rc = getPage(pPage->pBt, pgnoChild, &pChild, 0);
drh2e38c322004-09-03 18:38:44 +00004994 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00004995 if( pPage->pgno==1 ){
4996 rc = initPage(pChild, pPage);
drh2e38c322004-09-03 18:38:44 +00004997 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00004998 assert( pChild->nOverflow==0 );
4999 if( pChild->nFree>=100 ){
5000 /* The child information will fit on the root page, so do the
5001 ** copy */
5002 int i;
5003 zeroPage(pPage, pChild->aData[0]);
5004 for(i=0; i<pChild->nCell; i++){
5005 apCell[i] = findCell(pChild,i);
5006 szCell[i] = cellSizePtr(pChild, apCell[i]);
5007 }
5008 assemblePage(pPage, pChild->nCell, apCell, szCell);
danielk1977ae825582004-11-23 09:06:55 +00005009 /* Copy the right-pointer of the child to the parent. */
5010 put4byte(&pPage->aData[pPage->hdrOffset+8],
5011 get4byte(&pChild->aData[pChild->hdrOffset+8]));
drh43605152004-05-29 21:46:49 +00005012 freePage(pChild);
5013 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
5014 }else{
5015 /* The child has more information that will fit on the root.
5016 ** The tree is already balanced. Do nothing. */
5017 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
5018 }
5019 }else{
5020 memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
5021 pPage->isInit = 0;
5022 pPage->pParent = 0;
5023 rc = initPage(pPage, 0);
5024 assert( rc==SQLITE_OK );
5025 freePage(pChild);
5026 TRACE(("BALANCE: transfer child %d into root %d\n",
5027 pChild->pgno, pPage->pgno));
5028 }
danielk1977afcdd022004-10-31 16:25:42 +00005029 rc = reparentChildPages(pPage);
danielk1977ac11ee62005-01-15 12:45:51 +00005030 assert( pPage->nOverflow==0 );
5031#ifndef SQLITE_OMIT_AUTOVACUUM
5032 if( pBt->autoVacuum ){
danielk1977aac0a382005-01-16 11:07:06 +00005033 int i;
danielk1977ac11ee62005-01-15 12:45:51 +00005034 for(i=0; i<pPage->nCell; i++){
danielk197779a40da2005-01-16 08:00:01 +00005035 rc = ptrmapPutOvfl(pPage, i);
5036 if( rc!=SQLITE_OK ){
5037 goto end_shallow_balance;
danielk1977ac11ee62005-01-15 12:45:51 +00005038 }
5039 }
5040 }
5041#endif
danielk1977afcdd022004-10-31 16:25:42 +00005042 if( rc!=SQLITE_OK ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00005043 releasePage(pChild);
5044 }
drh2e38c322004-09-03 18:38:44 +00005045end_shallow_balance:
5046 sqliteFree(apCell);
5047 return rc;
drh43605152004-05-29 21:46:49 +00005048}
5049
5050
5051/*
5052** The root page is overfull
5053**
5054** When this happens, Create a new child page and copy the
5055** contents of the root into the child. Then make the root
5056** page an empty page with rightChild pointing to the new
5057** child. Finally, call balance_internal() on the new child
5058** to cause it to split.
5059*/
5060static int balance_deeper(MemPage *pPage){
5061 int rc; /* Return value from subprocedures */
5062 MemPage *pChild; /* Pointer to a new child page */
5063 Pgno pgnoChild; /* Page number of the new child page */
danielk1977aef0bf62005-12-30 16:28:01 +00005064 BtShared *pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00005065 int usableSize; /* Total usable size of a page */
5066 u8 *data; /* Content of the parent page */
5067 u8 *cdata; /* Content of the child page */
5068 int hdr; /* Offset to page header in parent */
5069 int brk; /* Offset to content of first cell in parent */
5070
5071 assert( pPage->pParent==0 );
5072 assert( pPage->nOverflow>0 );
5073 pBt = pPage->pBt;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005074 rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
drh43605152004-05-29 21:46:49 +00005075 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005076 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
drh43605152004-05-29 21:46:49 +00005077 usableSize = pBt->usableSize;
5078 data = pPage->aData;
5079 hdr = pPage->hdrOffset;
5080 brk = get2byte(&data[hdr+5]);
5081 cdata = pChild->aData;
5082 memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
5083 memcpy(&cdata[brk], &data[brk], usableSize-brk);
danielk1977c7dc7532004-11-17 10:22:03 +00005084 assert( pChild->isInit==0 );
drh43605152004-05-29 21:46:49 +00005085 rc = initPage(pChild, pPage);
danielk19776b456a22005-03-21 04:04:02 +00005086 if( rc ) goto balancedeeper_out;
drh43605152004-05-29 21:46:49 +00005087 memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
5088 pChild->nOverflow = pPage->nOverflow;
5089 if( pChild->nOverflow ){
5090 pChild->nFree = 0;
5091 }
5092 assert( pChild->nCell==pPage->nCell );
5093 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
5094 put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
5095 TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
danielk19774e17d142005-01-16 09:06:33 +00005096#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977ac11ee62005-01-15 12:45:51 +00005097 if( pBt->autoVacuum ){
5098 int i;
5099 rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
danielk19776b456a22005-03-21 04:04:02 +00005100 if( rc ) goto balancedeeper_out;
danielk1977ac11ee62005-01-15 12:45:51 +00005101 for(i=0; i<pChild->nCell; i++){
danielk197779a40da2005-01-16 08:00:01 +00005102 rc = ptrmapPutOvfl(pChild, i);
5103 if( rc!=SQLITE_OK ){
5104 return rc;
danielk1977ac11ee62005-01-15 12:45:51 +00005105 }
5106 }
5107 }
danielk19774e17d142005-01-16 09:06:33 +00005108#endif
drh43605152004-05-29 21:46:49 +00005109 rc = balance_nonroot(pChild);
danielk19776b456a22005-03-21 04:04:02 +00005110
5111balancedeeper_out:
drh43605152004-05-29 21:46:49 +00005112 releasePage(pChild);
5113 return rc;
5114}
5115
5116/*
5117** Decide if the page pPage needs to be balanced. If balancing is
5118** required, call the appropriate balancing routine.
5119*/
danielk1977ac245ec2005-01-14 13:50:11 +00005120static int balance(MemPage *pPage, int insert){
drh43605152004-05-29 21:46:49 +00005121 int rc = SQLITE_OK;
5122 if( pPage->pParent==0 ){
5123 if( pPage->nOverflow>0 ){
5124 rc = balance_deeper(pPage);
5125 }
danielk1977687566d2004-11-02 12:56:41 +00005126 if( rc==SQLITE_OK && pPage->nCell==0 ){
drh43605152004-05-29 21:46:49 +00005127 rc = balance_shallower(pPage);
5128 }
5129 }else{
danielk1977ac245ec2005-01-14 13:50:11 +00005130 if( pPage->nOverflow>0 ||
5131 (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
drh43605152004-05-29 21:46:49 +00005132 rc = balance_nonroot(pPage);
5133 }
5134 }
5135 return rc;
5136}
5137
5138/*
drh8dcd7ca2004-08-08 19:43:29 +00005139** This routine checks all cursors that point to table pgnoRoot.
drh980b1a72006-08-16 16:42:48 +00005140** If any of those cursors were opened with wrFlag==0 in a different
5141** database connection (a database connection that shares the pager
5142** cache with the current connection) and that other connection
5143** is not in the ReadUncommmitted state, then this routine returns
5144** SQLITE_LOCKED.
danielk1977299b1872004-11-22 10:02:10 +00005145**
5146** In addition to checking for read-locks (where a read-lock
5147** means a cursor opened with wrFlag==0) this routine also moves
drh980b1a72006-08-16 16:42:48 +00005148** all cursors write cursors so that they are pointing to the
5149** first Cell on the root page. This is necessary because an insert
danielk1977299b1872004-11-22 10:02:10 +00005150** or delete might change the number of cells on a page or delete
5151** a page entirely and we do not want to leave any cursors
5152** pointing to non-existant pages or cells.
drhf74b8d92002-09-01 23:20:45 +00005153*/
drh980b1a72006-08-16 16:42:48 +00005154static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
danielk1977299b1872004-11-22 10:02:10 +00005155 BtCursor *p;
drh980b1a72006-08-16 16:42:48 +00005156 BtShared *pBt = pBtree->pBt;
5157 sqlite3 *db = pBtree->pSqlite;
danielk1977299b1872004-11-22 10:02:10 +00005158 for(p=pBt->pCursor; p; p=p->pNext){
drh980b1a72006-08-16 16:42:48 +00005159 if( p==pExclude ) continue;
5160 if( p->eState!=CURSOR_VALID ) continue;
5161 if( p->pgnoRoot!=pgnoRoot ) continue;
5162 if( p->wrFlag==0 ){
5163 sqlite3 *dbOther = p->pBtree->pSqlite;
5164 if( dbOther==0 ||
5165 (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
5166 return SQLITE_LOCKED;
5167 }
5168 }else if( p->pPage->pgno!=p->pgnoRoot ){
danielk1977299b1872004-11-22 10:02:10 +00005169 moveToRoot(p);
5170 }
5171 }
drhf74b8d92002-09-01 23:20:45 +00005172 return SQLITE_OK;
5173}
5174
5175/*
drh3b7511c2001-05-26 13:15:44 +00005176** Insert a new record into the BTree. The key is given by (pKey,nKey)
5177** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00005178** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00005179** is left pointing at a random location.
5180**
5181** For an INTKEY table, only the nKey value of the key is used. pKey is
5182** ignored. For a ZERODATA table, the pData and nData are both ignored.
drh3b7511c2001-05-26 13:15:44 +00005183*/
drh3aac2dd2004-04-26 14:10:20 +00005184int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00005185 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00005186 const void *pKey, i64 nKey, /* The key of the new record */
drh5c4d9702001-08-20 00:33:58 +00005187 const void *pData, int nData /* The data of the new record */
drh3b7511c2001-05-26 13:15:44 +00005188){
drh3b7511c2001-05-26 13:15:44 +00005189 int rc;
5190 int loc;
drh14acc042001-06-10 19:56:58 +00005191 int szNew;
drh3b7511c2001-05-26 13:15:44 +00005192 MemPage *pPage;
danielk1977aef0bf62005-12-30 16:28:01 +00005193 BtShared *pBt = pCur->pBtree->pBt;
drha34b6762004-05-07 13:30:42 +00005194 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00005195 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00005196
danielk1977aef0bf62005-12-30 16:28:01 +00005197 if( pBt->inTransaction!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005198 /* Must start a transaction before doing an insert */
5199 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00005200 }
drhf74b8d92002-09-01 23:20:45 +00005201 assert( !pBt->readOnly );
drhecdc7532001-09-23 02:35:53 +00005202 if( !pCur->wrFlag ){
5203 return SQLITE_PERM; /* Cursor not open for writing */
5204 }
drh980b1a72006-08-16 16:42:48 +00005205 if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
drhf74b8d92002-09-01 23:20:45 +00005206 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
5207 }
danielk1977da184232006-01-05 11:34:32 +00005208
5209 /* Save the positions of any other cursors open on this table */
drh777e4c42006-01-13 04:31:58 +00005210 restoreOrClearCursorPosition(pCur, 0);
danielk19772e94d4d2006-01-09 05:36:27 +00005211 if(
danielk19772e94d4d2006-01-09 05:36:27 +00005212 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
5213 SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc))
5214 ){
danielk1977da184232006-01-05 11:34:32 +00005215 return rc;
5216 }
5217
drh14acc042001-06-10 19:56:58 +00005218 pPage = pCur->pPage;
drh4a1c3802004-05-12 15:15:47 +00005219 assert( pPage->intKey || nKey>=0 );
drh8b18dd42004-05-12 19:18:15 +00005220 assert( pPage->leaf || !pPage->leafData );
drh3a4c1412004-05-09 20:40:11 +00005221 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
5222 pCur->pgnoRoot, nKey, nData, pPage->pgno,
5223 loc==0 ? "overwrite" : "new entry"));
drh7aa128d2002-06-21 13:09:16 +00005224 assert( pPage->isInit );
danielk19773b8a05f2007-03-19 17:44:26 +00005225 rc = sqlite3PagerWrite(pPage->pDbPage);
drhbd03cae2001-06-02 02:40:57 +00005226 if( rc ) return rc;
drh2e38c322004-09-03 18:38:44 +00005227 newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) );
5228 if( newCell==0 ) return SQLITE_NOMEM;
drha34b6762004-05-07 13:30:42 +00005229 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew);
drh2e38c322004-09-03 18:38:44 +00005230 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00005231 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00005232 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk1977da184232006-01-05 11:34:32 +00005233 if( loc==0 && CURSOR_VALID==pCur->eState ){
drha34b6762004-05-07 13:30:42 +00005234 int szOld;
5235 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005236 oldCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00005237 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005238 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00005239 }
drh43605152004-05-29 21:46:49 +00005240 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00005241 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00005242 if( rc ) goto end_insert;
drh4b70f112004-05-02 21:12:19 +00005243 dropCell(pPage, pCur->idx, szOld);
drh7c717f72001-06-24 20:39:41 +00005244 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00005245 assert( pPage->leaf );
drh14acc042001-06-10 19:56:58 +00005246 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00005247 pCur->info.nSize = 0;
drh14acc042001-06-10 19:56:58 +00005248 }else{
drh4b70f112004-05-02 21:12:19 +00005249 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00005250 }
danielk1977a3ad5e72005-01-07 08:56:44 +00005251 rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
danielk1977e80463b2004-11-03 03:01:16 +00005252 if( rc!=SQLITE_OK ) goto end_insert;
danielk1977ac245ec2005-01-14 13:50:11 +00005253 rc = balance(pPage, 1);
drh23e11ca2004-05-04 17:27:28 +00005254 /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
drh3fc190c2001-09-14 03:24:23 +00005255 /* fflush(stdout); */
danielk1977299b1872004-11-22 10:02:10 +00005256 if( rc==SQLITE_OK ){
5257 moveToRoot(pCur);
5258 }
drh2e38c322004-09-03 18:38:44 +00005259end_insert:
5260 sqliteFree(newCell);
drh5e2f8b92001-05-28 00:41:15 +00005261 return rc;
5262}
5263
5264/*
drh4b70f112004-05-02 21:12:19 +00005265** Delete the entry that the cursor is pointing to. The cursor
5266** is left pointing at a random location.
drh3b7511c2001-05-26 13:15:44 +00005267*/
drh3aac2dd2004-04-26 14:10:20 +00005268int sqlite3BtreeDelete(BtCursor *pCur){
drh5e2f8b92001-05-28 00:41:15 +00005269 MemPage *pPage = pCur->pPage;
drh4b70f112004-05-02 21:12:19 +00005270 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00005271 int rc;
danielk1977cfe9a692004-06-16 12:00:29 +00005272 Pgno pgnoChild = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00005273 BtShared *pBt = pCur->pBtree->pBt;
drh8b2f49b2001-06-08 00:21:52 +00005274
drh7aa128d2002-06-21 13:09:16 +00005275 assert( pPage->isInit );
danielk1977aef0bf62005-12-30 16:28:01 +00005276 if( pBt->inTransaction!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005277 /* Must start a transaction before doing a delete */
5278 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00005279 }
drhf74b8d92002-09-01 23:20:45 +00005280 assert( !pBt->readOnly );
drhbd03cae2001-06-02 02:40:57 +00005281 if( pCur->idx >= pPage->nCell ){
5282 return SQLITE_ERROR; /* The cursor is not pointing to anything */
5283 }
drhecdc7532001-09-23 02:35:53 +00005284 if( !pCur->wrFlag ){
5285 return SQLITE_PERM; /* Did not open this cursor for writing */
5286 }
drh980b1a72006-08-16 16:42:48 +00005287 if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
drhf74b8d92002-09-01 23:20:45 +00005288 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
5289 }
danielk1977da184232006-01-05 11:34:32 +00005290
5291 /* Restore the current cursor position (a no-op if the cursor is not in
5292 ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
danielk19773b8a05f2007-03-19 17:44:26 +00005293 ** open on the same table. Then call sqlite3PagerWrite() on the page
danielk1977da184232006-01-05 11:34:32 +00005294 ** that the entry will be deleted from.
5295 */
5296 if(
drhd1167392006-01-23 13:00:35 +00005297 (rc = restoreOrClearCursorPosition(pCur, 1))!=0 ||
5298 (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
danielk19773b8a05f2007-03-19 17:44:26 +00005299 (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
danielk1977da184232006-01-05 11:34:32 +00005300 ){
5301 return rc;
5302 }
danielk1977e6efa742004-11-10 11:55:10 +00005303
5304 /* Locate the cell within it's page and leave pCell pointing to the
5305 ** data. The clearCell() call frees any overflow pages associated with the
5306 ** cell. The cell itself is still intact.
5307 */
danielk1977299b1872004-11-22 10:02:10 +00005308 pCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00005309 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005310 pgnoChild = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00005311 }
danielk197728129562005-01-11 10:25:06 +00005312 rc = clearCell(pPage, pCell);
5313 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00005314
drh4b70f112004-05-02 21:12:19 +00005315 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00005316 /*
drh5e00f6c2001-09-13 13:46:56 +00005317 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00005318 ** do something we will leave a hole on an internal page.
5319 ** We have to fill the hole by moving in a cell from a leaf. The
5320 ** next Cell after the one to be deleted is guaranteed to exist and
danielk1977299b1872004-11-22 10:02:10 +00005321 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00005322 */
drh14acc042001-06-10 19:56:58 +00005323 BtCursor leafCur;
drh4b70f112004-05-02 21:12:19 +00005324 unsigned char *pNext;
drh02afc862006-01-20 18:10:57 +00005325 int szNext; /* The compiler warning is wrong: szNext is always
5326 ** initialized before use. Adding an extra initialization
5327 ** to silence the compiler slows down the code. */
danielk1977299b1872004-11-22 10:02:10 +00005328 int notUsed;
danielk19776b456a22005-03-21 04:04:02 +00005329 unsigned char *tempCell = 0;
drh8b18dd42004-05-12 19:18:15 +00005330 assert( !pPage->leafData );
drh14acc042001-06-10 19:56:58 +00005331 getTempCursor(pCur, &leafCur);
danielk1977299b1872004-11-22 10:02:10 +00005332 rc = sqlite3BtreeNext(&leafCur, &notUsed);
drh14acc042001-06-10 19:56:58 +00005333 if( rc!=SQLITE_OK ){
drhee696e22004-08-30 16:52:17 +00005334 if( rc!=SQLITE_NOMEM ){
drh49285702005-09-17 15:20:26 +00005335 rc = SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00005336 }
drh5e2f8b92001-05-28 00:41:15 +00005337 }
danielk19776b456a22005-03-21 04:04:02 +00005338 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005339 rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
danielk19776b456a22005-03-21 04:04:02 +00005340 }
5341 if( rc==SQLITE_OK ){
5342 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
5343 pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
5344 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
5345 pNext = findCell(leafCur.pPage, leafCur.idx);
5346 szNext = cellSizePtr(leafCur.pPage, pNext);
5347 assert( MX_CELL_SIZE(pBt)>=szNext+4 );
5348 tempCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) );
5349 if( tempCell==0 ){
5350 rc = SQLITE_NOMEM;
5351 }
5352 }
5353 if( rc==SQLITE_OK ){
5354 rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
5355 }
5356 if( rc==SQLITE_OK ){
5357 put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
5358 rc = balance(pPage, 0);
5359 }
5360 if( rc==SQLITE_OK ){
5361 dropCell(leafCur.pPage, leafCur.idx, szNext);
5362 rc = balance(leafCur.pPage, 0);
5363 }
drh2e38c322004-09-03 18:38:44 +00005364 sqliteFree(tempCell);
drh8c42ca92001-06-22 19:15:00 +00005365 releaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00005366 }else{
danielk1977299b1872004-11-22 10:02:10 +00005367 TRACE(("DELETE: table=%d delete from leaf %d\n",
5368 pCur->pgnoRoot, pPage->pgno));
5369 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
danielk1977ac245ec2005-01-14 13:50:11 +00005370 rc = balance(pPage, 0);
drh5e2f8b92001-05-28 00:41:15 +00005371 }
danielk19776b456a22005-03-21 04:04:02 +00005372 if( rc==SQLITE_OK ){
5373 moveToRoot(pCur);
5374 }
drh5e2f8b92001-05-28 00:41:15 +00005375 return rc;
drh3b7511c2001-05-26 13:15:44 +00005376}
drh8b2f49b2001-06-08 00:21:52 +00005377
5378/*
drhc6b52df2002-01-04 03:09:29 +00005379** Create a new BTree table. Write into *piTable the page
5380** number for the root page of the new table.
5381**
drhab01f612004-05-22 02:55:23 +00005382** The type of type is determined by the flags parameter. Only the
5383** following values of flags are currently in use. Other values for
5384** flags might not work:
5385**
5386** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
5387** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00005388*/
danielk1977aef0bf62005-12-30 16:28:01 +00005389int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
5390 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00005391 MemPage *pRoot;
5392 Pgno pgnoRoot;
5393 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00005394 if( pBt->inTransaction!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005395 /* Must start a transaction first */
5396 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00005397 }
danielk197728129562005-01-11 10:25:06 +00005398 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00005399
5400 /* It is illegal to create a table if any cursors are open on the
5401 ** database. This is because in auto-vacuum mode the backend may
5402 ** need to move a database page to make room for the new root-page.
5403 ** If an open cursor was using the page a problem would occur.
5404 */
5405 if( pBt->pCursor ){
5406 return SQLITE_LOCKED;
5407 }
5408
danielk1977003ba062004-11-04 02:57:33 +00005409#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977cb1a7eb2004-11-05 12:27:02 +00005410 rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drh8b2f49b2001-06-08 00:21:52 +00005411 if( rc ) return rc;
danielk1977003ba062004-11-04 02:57:33 +00005412#else
danielk1977687566d2004-11-02 12:56:41 +00005413 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00005414 Pgno pgnoMove; /* Move a page here to make room for the root-page */
5415 MemPage *pPageMove; /* The page to move to. */
5416
danielk1977003ba062004-11-04 02:57:33 +00005417 /* Read the value of meta[3] from the database to determine where the
5418 ** root page of the new table should go. meta[3] is the largest root-page
5419 ** created so far, so the new root-page is (meta[3]+1).
5420 */
danielk1977aef0bf62005-12-30 16:28:01 +00005421 rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00005422 if( rc!=SQLITE_OK ) return rc;
5423 pgnoRoot++;
5424
danielk1977599fcba2004-11-08 07:13:13 +00005425 /* The new root-page may not be allocated on a pointer-map page, or the
5426 ** PENDING_BYTE page.
5427 */
danielk1977266664d2006-02-10 08:24:21 +00005428 if( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00005429 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00005430 pgnoRoot++;
5431 }
5432 assert( pgnoRoot>=3 );
5433
5434 /* Allocate a page. The page that currently resides at pgnoRoot will
5435 ** be moved to the allocated page (unless the allocated page happens
5436 ** to reside at pgnoRoot).
5437 */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005438 rc = allocatePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00005439 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00005440 return rc;
5441 }
danielk1977003ba062004-11-04 02:57:33 +00005442
5443 if( pgnoMove!=pgnoRoot ){
5444 u8 eType;
5445 Pgno iPtrPage;
5446
5447 releasePage(pPageMove);
drh0787db62007-03-04 13:15:27 +00005448 rc = getPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00005449 if( rc!=SQLITE_OK ){
5450 return rc;
5451 }
5452 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drhccae6022005-02-26 17:31:26 +00005453 if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00005454 releasePage(pRoot);
5455 return rc;
5456 }
drhccae6022005-02-26 17:31:26 +00005457 assert( eType!=PTRMAP_ROOTPAGE );
5458 assert( eType!=PTRMAP_FREEPAGE );
danielk19773b8a05f2007-03-19 17:44:26 +00005459 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk19775fd057a2005-03-09 13:09:43 +00005460 if( rc!=SQLITE_OK ){
5461 releasePage(pRoot);
5462 return rc;
5463 }
danielk1977003ba062004-11-04 02:57:33 +00005464 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
5465 releasePage(pRoot);
5466 if( rc!=SQLITE_OK ){
5467 return rc;
5468 }
drh0787db62007-03-04 13:15:27 +00005469 rc = getPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00005470 if( rc!=SQLITE_OK ){
5471 return rc;
5472 }
danielk19773b8a05f2007-03-19 17:44:26 +00005473 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00005474 if( rc!=SQLITE_OK ){
5475 releasePage(pRoot);
5476 return rc;
5477 }
5478 }else{
5479 pRoot = pPageMove;
5480 }
5481
danielk197742741be2005-01-08 12:42:39 +00005482 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00005483 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
5484 if( rc ){
5485 releasePage(pRoot);
5486 return rc;
5487 }
danielk1977aef0bf62005-12-30 16:28:01 +00005488 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00005489 if( rc ){
5490 releasePage(pRoot);
5491 return rc;
5492 }
danielk197742741be2005-01-08 12:42:39 +00005493
danielk1977003ba062004-11-04 02:57:33 +00005494 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00005495 rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00005496 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00005497 }
5498#endif
danielk19773b8a05f2007-03-19 17:44:26 +00005499 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00005500 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00005501 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00005502 *piTable = (int)pgnoRoot;
5503 return SQLITE_OK;
5504}
5505
5506/*
5507** Erase the given database page and all its children. Return
5508** the page to the freelist.
5509*/
drh4b70f112004-05-02 21:12:19 +00005510static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00005511 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00005512 Pgno pgno, /* Page number to clear */
5513 MemPage *pParent, /* Parent page. NULL for the root */
5514 int freePageFlag /* Deallocate page if true */
5515){
danielk19776b456a22005-03-21 04:04:02 +00005516 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00005517 int rc;
drh4b70f112004-05-02 21:12:19 +00005518 unsigned char *pCell;
5519 int i;
drh8b2f49b2001-06-08 00:21:52 +00005520
danielk19773b8a05f2007-03-19 17:44:26 +00005521 if( pgno>sqlite3PagerPagecount(pBt->pPager) ){
drh49285702005-09-17 15:20:26 +00005522 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005523 }
5524
drhde647132004-05-07 17:57:49 +00005525 rc = getAndInitPage(pBt, pgno, &pPage, pParent);
danielk19776b456a22005-03-21 04:04:02 +00005526 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00005527 for(i=0; i<pPage->nCell; i++){
drh43605152004-05-29 21:46:49 +00005528 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00005529 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005530 rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
danielk19776b456a22005-03-21 04:04:02 +00005531 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00005532 }
drh4b70f112004-05-02 21:12:19 +00005533 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00005534 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00005535 }
drha34b6762004-05-07 13:30:42 +00005536 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005537 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
danielk19776b456a22005-03-21 04:04:02 +00005538 if( rc ) goto cleardatabasepage_out;
drh2aa679f2001-06-25 02:11:07 +00005539 }
5540 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00005541 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00005542 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00005543 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00005544 }
danielk19776b456a22005-03-21 04:04:02 +00005545
5546cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00005547 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00005548 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005549}
5550
5551/*
drhab01f612004-05-22 02:55:23 +00005552** Delete all information from a single table in the database. iTable is
5553** the page number of the root of the table. After this routine returns,
5554** the root page is empty, but still exists.
5555**
5556** This routine will fail with SQLITE_LOCKED if there are any open
5557** read cursors on the table. Open write cursors are moved to the
5558** root of the table.
drh8b2f49b2001-06-08 00:21:52 +00005559*/
danielk1977aef0bf62005-12-30 16:28:01 +00005560int sqlite3BtreeClearTable(Btree *p, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00005561 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00005562 BtShared *pBt = p->pBt;
5563 if( p->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005564 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00005565 }
drh980b1a72006-08-16 16:42:48 +00005566 rc = checkReadLocks(p, iTable, 0);
5567 if( rc ){
5568 return rc;
drhecdc7532001-09-23 02:35:53 +00005569 }
danielk1977ed429312006-01-19 08:43:31 +00005570
5571 /* Save the position of all cursors open on this table */
5572 if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
5573 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005574 }
danielk1977ed429312006-01-19 08:43:31 +00005575
5576 return clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
drh8b2f49b2001-06-08 00:21:52 +00005577}
5578
5579/*
5580** Erase all information in a table and add the root of the table to
5581** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00005582** page 1) is never added to the freelist.
5583**
5584** This routine will fail with SQLITE_LOCKED if there are any open
5585** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00005586**
5587** If AUTOVACUUM is enabled and the page at iTable is not the last
5588** root page in the database file, then the last root page
5589** in the database file is moved into the slot formerly occupied by
5590** iTable and that last slot formerly occupied by the last root page
5591** is added to the freelist instead of iTable. In this say, all
5592** root pages are kept at the beginning of the database file, which
5593** is necessary for AUTOVACUUM to work right. *piMoved is set to the
5594** page number that used to be the last root page in the file before
5595** the move. If no page gets moved, *piMoved is set to 0.
5596** The last root page is recorded in meta[3] and the value of
5597** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00005598*/
danielk1977aef0bf62005-12-30 16:28:01 +00005599int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00005600 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00005601 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00005602 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00005603
danielk1977aef0bf62005-12-30 16:28:01 +00005604 if( p->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005605 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00005606 }
danielk1977a0bf2652004-11-04 14:30:04 +00005607
danielk1977e6efa742004-11-10 11:55:10 +00005608 /* It is illegal to drop a table if any cursors are open on the
5609 ** database. This is because in auto-vacuum mode the backend may
5610 ** need to move another root-page to fill a gap left by the deleted
5611 ** root page. If an open cursor was using this page a problem would
5612 ** occur.
5613 */
5614 if( pBt->pCursor ){
5615 return SQLITE_LOCKED;
drh5df72a52002-06-06 23:16:05 +00005616 }
danielk1977a0bf2652004-11-04 14:30:04 +00005617
drh0787db62007-03-04 13:15:27 +00005618 rc = getPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00005619 if( rc ) return rc;
danielk1977aef0bf62005-12-30 16:28:01 +00005620 rc = sqlite3BtreeClearTable(p, iTable);
danielk19776b456a22005-03-21 04:04:02 +00005621 if( rc ){
5622 releasePage(pPage);
5623 return rc;
5624 }
danielk1977a0bf2652004-11-04 14:30:04 +00005625
drh205f48e2004-11-05 00:43:11 +00005626 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00005627
drh4b70f112004-05-02 21:12:19 +00005628 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00005629#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00005630 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00005631 releasePage(pPage);
5632#else
5633 if( pBt->autoVacuum ){
5634 Pgno maxRootPgno;
danielk1977aef0bf62005-12-30 16:28:01 +00005635 rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00005636 if( rc!=SQLITE_OK ){
5637 releasePage(pPage);
5638 return rc;
5639 }
5640
5641 if( iTable==maxRootPgno ){
5642 /* If the table being dropped is the table with the largest root-page
5643 ** number in the database, put the root page on the free list.
5644 */
5645 rc = freePage(pPage);
5646 releasePage(pPage);
5647 if( rc!=SQLITE_OK ){
5648 return rc;
5649 }
5650 }else{
5651 /* The table being dropped does not have the largest root-page
5652 ** number in the database. So move the page that does into the
5653 ** gap left by the deleted root-page.
5654 */
5655 MemPage *pMove;
5656 releasePage(pPage);
drh0787db62007-03-04 13:15:27 +00005657 rc = getPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00005658 if( rc!=SQLITE_OK ){
5659 return rc;
5660 }
5661 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
5662 releasePage(pMove);
5663 if( rc!=SQLITE_OK ){
5664 return rc;
5665 }
drh0787db62007-03-04 13:15:27 +00005666 rc = getPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00005667 if( rc!=SQLITE_OK ){
5668 return rc;
5669 }
5670 rc = freePage(pMove);
5671 releasePage(pMove);
5672 if( rc!=SQLITE_OK ){
5673 return rc;
5674 }
5675 *piMoved = maxRootPgno;
5676 }
5677
danielk1977599fcba2004-11-08 07:13:13 +00005678 /* Set the new 'max-root-page' value in the database header. This
5679 ** is the old value less one, less one more if that happens to
5680 ** be a root-page number, less one again if that is the
5681 ** PENDING_BYTE_PAGE.
5682 */
danielk197787a6e732004-11-05 12:58:25 +00005683 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00005684 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
5685 maxRootPgno--;
5686 }
danielk1977266664d2006-02-10 08:24:21 +00005687 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00005688 maxRootPgno--;
5689 }
danielk1977599fcba2004-11-08 07:13:13 +00005690 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
5691
danielk1977aef0bf62005-12-30 16:28:01 +00005692 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00005693 }else{
5694 rc = freePage(pPage);
5695 releasePage(pPage);
5696 }
5697#endif
drh2aa679f2001-06-25 02:11:07 +00005698 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00005699 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00005700 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00005701 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00005702 }
drh8b2f49b2001-06-08 00:21:52 +00005703 return rc;
5704}
5705
drh001bbcb2003-03-19 03:14:00 +00005706
drh8b2f49b2001-06-08 00:21:52 +00005707/*
drh23e11ca2004-05-04 17:27:28 +00005708** Read the meta-information out of a database file. Meta[0]
5709** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00005710** through meta[15] are available for use by higher layers. Meta[0]
5711** is read-only, the others are read/write.
5712**
5713** The schema layer numbers meta values differently. At the schema
5714** layer (and the SetCookie and ReadCookie opcodes) the number of
5715** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00005716*/
danielk1977aef0bf62005-12-30 16:28:01 +00005717int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk19773b8a05f2007-03-19 17:44:26 +00005718 DbPage *pDbPage;
drh8b2f49b2001-06-08 00:21:52 +00005719 int rc;
drh4b70f112004-05-02 21:12:19 +00005720 unsigned char *pP1;
danielk1977aef0bf62005-12-30 16:28:01 +00005721 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00005722
danielk1977da184232006-01-05 11:34:32 +00005723 /* Reading a meta-data value requires a read-lock on page 1 (and hence
5724 ** the sqlite_master table. We grab this lock regardless of whether or
5725 ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
5726 ** 1 is treated as a special case by queryTableLock() and lockTable()).
5727 */
5728 rc = queryTableLock(p, 1, READ_LOCK);
5729 if( rc!=SQLITE_OK ){
5730 return rc;
5731 }
5732
drh23e11ca2004-05-04 17:27:28 +00005733 assert( idx>=0 && idx<=15 );
danielk19773b8a05f2007-03-19 17:44:26 +00005734 rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00005735 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005736 pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
drh23e11ca2004-05-04 17:27:28 +00005737 *pMeta = get4byte(&pP1[36 + idx*4]);
danielk19773b8a05f2007-03-19 17:44:26 +00005738 sqlite3PagerUnref(pDbPage);
drhae157872004-08-14 19:20:09 +00005739
danielk1977599fcba2004-11-08 07:13:13 +00005740 /* If autovacuumed is disabled in this build but we are trying to
5741 ** access an autovacuumed database, then make the database readonly.
5742 */
danielk1977003ba062004-11-04 02:57:33 +00005743#ifdef SQLITE_OMIT_AUTOVACUUM
drhae157872004-08-14 19:20:09 +00005744 if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00005745#endif
drhae157872004-08-14 19:20:09 +00005746
danielk1977da184232006-01-05 11:34:32 +00005747 /* Grab the read-lock on page 1. */
5748 rc = lockTable(p, 1, READ_LOCK);
5749 return rc;
drh8b2f49b2001-06-08 00:21:52 +00005750}
5751
5752/*
drh23e11ca2004-05-04 17:27:28 +00005753** Write meta-information back into the database. Meta[0] is
5754** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00005755*/
danielk1977aef0bf62005-12-30 16:28:01 +00005756int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
5757 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00005758 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00005759 int rc;
drh23e11ca2004-05-04 17:27:28 +00005760 assert( idx>=1 && idx<=15 );
danielk1977aef0bf62005-12-30 16:28:01 +00005761 if( p->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00005762 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh5df72a52002-06-06 23:16:05 +00005763 }
drhde647132004-05-07 17:57:49 +00005764 assert( pBt->pPage1!=0 );
5765 pP1 = pBt->pPage1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00005766 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
drh4b70f112004-05-02 21:12:19 +00005767 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00005768 put4byte(&pP1[36 + idx*4], iMeta);
drh8b2f49b2001-06-08 00:21:52 +00005769 return SQLITE_OK;
5770}
drh8c42ca92001-06-22 19:15:00 +00005771
drhf328bc82004-05-10 23:29:49 +00005772/*
5773** Return the flag byte at the beginning of the page that the cursor
5774** is currently pointing to.
5775*/
5776int sqlite3BtreeFlags(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005777 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
drh777e4c42006-01-13 04:31:58 +00005778 ** restoreOrClearCursorPosition() here.
danielk1977da184232006-01-05 11:34:32 +00005779 */
drhf328bc82004-05-10 23:29:49 +00005780 MemPage *pPage = pCur->pPage;
5781 return pPage ? pPage->aData[pPage->hdrOffset] : 0;
5782}
5783
danielk1977b5402fb2005-01-12 07:15:04 +00005784#ifdef SQLITE_DEBUG
drh8c42ca92001-06-22 19:15:00 +00005785/*
5786** Print a disassembly of the given page on standard output. This routine
5787** is used for debugging and testing only.
5788*/
danielk1977aef0bf62005-12-30 16:28:01 +00005789static int btreePageDump(BtShared *pBt, int pgno, int recursive, MemPage *pParent){
drh8c42ca92001-06-22 19:15:00 +00005790 int rc;
5791 MemPage *pPage;
drhc8629a12004-05-08 20:07:40 +00005792 int i, j, c;
drh8c42ca92001-06-22 19:15:00 +00005793 int nFree;
5794 u16 idx;
drhab9f7f12004-05-08 10:56:11 +00005795 int hdr;
drh43605152004-05-29 21:46:49 +00005796 int nCell;
drha2fce642004-06-05 00:01:44 +00005797 int isInit;
drhab9f7f12004-05-08 10:56:11 +00005798 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00005799 char range[20];
5800 unsigned char payload[20];
drhab9f7f12004-05-08 10:56:11 +00005801
drh0787db62007-03-04 13:15:27 +00005802 rc = getPage(pBt, (Pgno)pgno, &pPage, 0);
drha2fce642004-06-05 00:01:44 +00005803 isInit = pPage->isInit;
5804 if( pPage->isInit==0 ){
danielk1977c7dc7532004-11-17 10:22:03 +00005805 initPage(pPage, pParent);
drha2fce642004-06-05 00:01:44 +00005806 }
drh8c42ca92001-06-22 19:15:00 +00005807 if( rc ){
5808 return rc;
5809 }
drhab9f7f12004-05-08 10:56:11 +00005810 hdr = pPage->hdrOffset;
5811 data = pPage->aData;
drhc8629a12004-05-08 20:07:40 +00005812 c = data[hdr];
drh8b18dd42004-05-12 19:18:15 +00005813 pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0;
drhc8629a12004-05-08 20:07:40 +00005814 pPage->zeroData = (c & PTF_ZERODATA)!=0;
drh8b18dd42004-05-12 19:18:15 +00005815 pPage->leafData = (c & PTF_LEAFDATA)!=0;
drhc8629a12004-05-08 20:07:40 +00005816 pPage->leaf = (c & PTF_LEAF)!=0;
drh8b18dd42004-05-12 19:18:15 +00005817 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
drh43605152004-05-29 21:46:49 +00005818 nCell = get2byte(&data[hdr+3]);
drhfe63d1c2004-09-08 20:13:04 +00005819 sqlite3DebugPrintf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno,
drh43605152004-05-29 21:46:49 +00005820 data[hdr], data[hdr+7],
drhda200cc2004-05-09 11:51:38 +00005821 (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0);
drhab9f7f12004-05-08 10:56:11 +00005822 assert( hdr == (pgno==1 ? 100 : 0) );
drh43605152004-05-29 21:46:49 +00005823 idx = hdr + 12 - pPage->leaf*4;
5824 for(i=0; i<nCell; i++){
drh6f11bef2004-05-13 01:12:56 +00005825 CellInfo info;
drh4b70f112004-05-02 21:12:19 +00005826 Pgno child;
drh43605152004-05-29 21:46:49 +00005827 unsigned char *pCell;
drh6f11bef2004-05-13 01:12:56 +00005828 int sz;
drh43605152004-05-29 21:46:49 +00005829 int addr;
drh6f11bef2004-05-13 01:12:56 +00005830
drh43605152004-05-29 21:46:49 +00005831 addr = get2byte(&data[idx + 2*i]);
5832 pCell = &data[addr];
5833 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005834 sz = info.nSize;
drh43605152004-05-29 21:46:49 +00005835 sprintf(range,"%d..%d", addr, addr+sz-1);
drh4b70f112004-05-02 21:12:19 +00005836 if( pPage->leaf ){
5837 child = 0;
5838 }else{
drh43605152004-05-29 21:46:49 +00005839 child = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00005840 }
drh6f11bef2004-05-13 01:12:56 +00005841 sz = info.nData;
5842 if( !pPage->intKey ) sz += info.nKey;
drh8c42ca92001-06-22 19:15:00 +00005843 if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
drh6f11bef2004-05-13 01:12:56 +00005844 memcpy(payload, &pCell[info.nHeader], sz);
drh8c42ca92001-06-22 19:15:00 +00005845 for(j=0; j<sz; j++){
5846 if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
5847 }
5848 payload[sz] = 0;
drhfe63d1c2004-09-08 20:13:04 +00005849 sqlite3DebugPrintf(
drh6f11bef2004-05-13 01:12:56 +00005850 "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n",
5851 i, range, child, info.nKey, info.nData, payload
drh8c42ca92001-06-22 19:15:00 +00005852 );
drh8c42ca92001-06-22 19:15:00 +00005853 }
drh4b70f112004-05-02 21:12:19 +00005854 if( !pPage->leaf ){
drhfe63d1c2004-09-08 20:13:04 +00005855 sqlite3DebugPrintf("right_child: %d\n", get4byte(&data[hdr+8]));
drh4b70f112004-05-02 21:12:19 +00005856 }
drh8c42ca92001-06-22 19:15:00 +00005857 nFree = 0;
5858 i = 0;
drhab9f7f12004-05-08 10:56:11 +00005859 idx = get2byte(&data[hdr+1]);
drhb6f41482004-05-14 01:58:11 +00005860 while( idx>0 && idx<pPage->pBt->usableSize ){
drhab9f7f12004-05-08 10:56:11 +00005861 int sz = get2byte(&data[idx+2]);
drh4b70f112004-05-02 21:12:19 +00005862 sprintf(range,"%d..%d", idx, idx+sz-1);
5863 nFree += sz;
drhfe63d1c2004-09-08 20:13:04 +00005864 sqlite3DebugPrintf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
drh4b70f112004-05-02 21:12:19 +00005865 i, range, sz, nFree);
drhab9f7f12004-05-08 10:56:11 +00005866 idx = get2byte(&data[idx]);
drh2aa679f2001-06-25 02:11:07 +00005867 i++;
drh8c42ca92001-06-22 19:15:00 +00005868 }
5869 if( idx!=0 ){
drhfe63d1c2004-09-08 20:13:04 +00005870 sqlite3DebugPrintf("ERROR: next freeblock index out of range: %d\n", idx);
drh8c42ca92001-06-22 19:15:00 +00005871 }
drha34b6762004-05-07 13:30:42 +00005872 if( recursive && !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005873 for(i=0; i<nCell; i++){
5874 unsigned char *pCell = findCell(pPage, i);
danielk1977c7dc7532004-11-17 10:22:03 +00005875 btreePageDump(pBt, get4byte(pCell), 1, pPage);
drha34b6762004-05-07 13:30:42 +00005876 idx = get2byte(pCell);
drh6019e162001-07-02 17:51:45 +00005877 }
danielk1977c7dc7532004-11-17 10:22:03 +00005878 btreePageDump(pBt, get4byte(&data[hdr+8]), 1, pPage);
drh6019e162001-07-02 17:51:45 +00005879 }
drha2fce642004-06-05 00:01:44 +00005880 pPage->isInit = isInit;
danielk19773b8a05f2007-03-19 17:44:26 +00005881 sqlite3PagerUnref(pPage->pDbPage);
drh3644f082004-05-10 18:45:09 +00005882 fflush(stdout);
drh8c42ca92001-06-22 19:15:00 +00005883 return SQLITE_OK;
5884}
danielk1977aef0bf62005-12-30 16:28:01 +00005885int sqlite3BtreePageDump(Btree *p, int pgno, int recursive){
5886 return btreePageDump(p->pBt, pgno, recursive, 0);
danielk1977c7dc7532004-11-17 10:22:03 +00005887}
drhaaab5722002-02-19 13:39:21 +00005888#endif
drh8c42ca92001-06-22 19:15:00 +00005889
drh77bba592006-08-13 18:39:26 +00005890#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
drh8c42ca92001-06-22 19:15:00 +00005891/*
drh2aa679f2001-06-25 02:11:07 +00005892** Fill aResult[] with information about the entry and page that the
5893** cursor is pointing to.
5894**
5895** aResult[0] = The page number
5896** aResult[1] = The entry number
5897** aResult[2] = Total number of entries on this page
drh3e27c022004-07-23 00:01:38 +00005898** aResult[3] = Cell size (local payload + header)
drh2aa679f2001-06-25 02:11:07 +00005899** aResult[4] = Number of free bytes on this page
5900** aResult[5] = Number of free blocks on the page
drh3e27c022004-07-23 00:01:38 +00005901** aResult[6] = Total payload size (local + overflow)
5902** aResult[7] = Header size in bytes
5903** aResult[8] = Local payload size
5904** aResult[9] = Parent page number
drh50c67062007-02-10 19:22:35 +00005905** aResult[10]= Page number of the first overflow page
drh5eddca62001-06-30 21:53:53 +00005906**
5907** This routine is used for testing and debugging only.
drh8c42ca92001-06-22 19:15:00 +00005908*/
drh3e27c022004-07-23 00:01:38 +00005909int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){
drh2aa679f2001-06-25 02:11:07 +00005910 int cnt, idx;
5911 MemPage *pPage = pCur->pPage;
drh3e27c022004-07-23 00:01:38 +00005912 BtCursor tmpCur;
drhda200cc2004-05-09 11:51:38 +00005913
drh777e4c42006-01-13 04:31:58 +00005914 int rc = restoreOrClearCursorPosition(pCur, 1);
danielk1977da184232006-01-05 11:34:32 +00005915 if( rc!=SQLITE_OK ){
5916 return rc;
5917 }
5918
drh4b70f112004-05-02 21:12:19 +00005919 assert( pPage->isInit );
drh3e27c022004-07-23 00:01:38 +00005920 getTempCursor(pCur, &tmpCur);
5921 while( upCnt-- ){
5922 moveToParent(&tmpCur);
5923 }
5924 pPage = tmpCur.pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00005925 aResult[0] = sqlite3PagerPagenumber(pPage->pDbPage);
drh91025292004-05-03 19:49:32 +00005926 assert( aResult[0]==pPage->pgno );
drh3e27c022004-07-23 00:01:38 +00005927 aResult[1] = tmpCur.idx;
drh2aa679f2001-06-25 02:11:07 +00005928 aResult[2] = pPage->nCell;
drh3e27c022004-07-23 00:01:38 +00005929 if( tmpCur.idx>=0 && tmpCur.idx<pPage->nCell ){
5930 getCellInfo(&tmpCur);
5931 aResult[3] = tmpCur.info.nSize;
5932 aResult[6] = tmpCur.info.nData;
5933 aResult[7] = tmpCur.info.nHeader;
5934 aResult[8] = tmpCur.info.nLocal;
drh2aa679f2001-06-25 02:11:07 +00005935 }else{
5936 aResult[3] = 0;
5937 aResult[6] = 0;
drh3e27c022004-07-23 00:01:38 +00005938 aResult[7] = 0;
5939 aResult[8] = 0;
drh2aa679f2001-06-25 02:11:07 +00005940 }
5941 aResult[4] = pPage->nFree;
5942 cnt = 0;
drh4b70f112004-05-02 21:12:19 +00005943 idx = get2byte(&pPage->aData[pPage->hdrOffset+1]);
drhb6f41482004-05-14 01:58:11 +00005944 while( idx>0 && idx<pPage->pBt->usableSize ){
drh2aa679f2001-06-25 02:11:07 +00005945 cnt++;
drh4b70f112004-05-02 21:12:19 +00005946 idx = get2byte(&pPage->aData[idx]);
drh2aa679f2001-06-25 02:11:07 +00005947 }
5948 aResult[5] = cnt;
drh3e27c022004-07-23 00:01:38 +00005949 if( pPage->pParent==0 || isRootPage(pPage) ){
5950 aResult[9] = 0;
5951 }else{
5952 aResult[9] = pPage->pParent->pgno;
5953 }
drh50c67062007-02-10 19:22:35 +00005954 if( tmpCur.info.iOverflow ){
5955 aResult[10] = get4byte(&tmpCur.info.pCell[tmpCur.info.iOverflow]);
5956 }else{
5957 aResult[10] = 0;
5958 }
drh3e27c022004-07-23 00:01:38 +00005959 releaseTempCursor(&tmpCur);
drh8c42ca92001-06-22 19:15:00 +00005960 return SQLITE_OK;
5961}
drhaaab5722002-02-19 13:39:21 +00005962#endif
drhdd793422001-06-28 01:54:48 +00005963
drhdd793422001-06-28 01:54:48 +00005964/*
drh5eddca62001-06-30 21:53:53 +00005965** Return the pager associated with a BTree. This routine is used for
5966** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00005967*/
danielk1977aef0bf62005-12-30 16:28:01 +00005968Pager *sqlite3BtreePager(Btree *p){
5969 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00005970}
drh5eddca62001-06-30 21:53:53 +00005971
5972/*
5973** This structure is passed around through all the sanity checking routines
5974** in order to keep track of some global state information.
5975*/
drhaaab5722002-02-19 13:39:21 +00005976typedef struct IntegrityCk IntegrityCk;
5977struct IntegrityCk {
danielk1977aef0bf62005-12-30 16:28:01 +00005978 BtShared *pBt; /* The tree being checked out */
drh1dcdbc02007-01-27 02:24:54 +00005979 Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
5980 int nPage; /* Number of pages in the database */
5981 int *anRef; /* Number of times each page is referenced */
5982 int mxErr; /* Stop accumulating errors when this reaches zero */
5983 char *zErrMsg; /* An error message. NULL if no errors seen. */
5984 int nErr; /* Number of messages written to zErrMsg so far */
drh5eddca62001-06-30 21:53:53 +00005985};
5986
drhb7f91642004-10-31 02:22:47 +00005987#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00005988/*
5989** Append a message to the error message string.
5990*/
drh2e38c322004-09-03 18:38:44 +00005991static void checkAppendMsg(
5992 IntegrityCk *pCheck,
5993 char *zMsg1,
5994 const char *zFormat,
5995 ...
5996){
5997 va_list ap;
5998 char *zMsg2;
drh1dcdbc02007-01-27 02:24:54 +00005999 if( !pCheck->mxErr ) return;
6000 pCheck->mxErr--;
6001 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00006002 va_start(ap, zFormat);
6003 zMsg2 = sqlite3VMPrintf(zFormat, ap);
6004 va_end(ap);
6005 if( zMsg1==0 ) zMsg1 = "";
drh5eddca62001-06-30 21:53:53 +00006006 if( pCheck->zErrMsg ){
6007 char *zOld = pCheck->zErrMsg;
6008 pCheck->zErrMsg = 0;
danielk19774adee202004-05-08 08:23:19 +00006009 sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00006010 sqliteFree(zOld);
6011 }else{
danielk19774adee202004-05-08 08:23:19 +00006012 sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00006013 }
drh2e38c322004-09-03 18:38:44 +00006014 sqliteFree(zMsg2);
drh5eddca62001-06-30 21:53:53 +00006015}
drhb7f91642004-10-31 02:22:47 +00006016#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00006017
drhb7f91642004-10-31 02:22:47 +00006018#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006019/*
6020** Add 1 to the reference count for page iPage. If this is the second
6021** reference to the page, add an error message to pCheck->zErrMsg.
6022** Return 1 if there are 2 ore more references to the page and 0 if
6023** if this is the first reference to the page.
6024**
6025** Also check that the page number is in bounds.
6026*/
drhaaab5722002-02-19 13:39:21 +00006027static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00006028 if( iPage==0 ) return 1;
drh0de8c112002-07-06 16:32:14 +00006029 if( iPage>pCheck->nPage || iPage<0 ){
drh2e38c322004-09-03 18:38:44 +00006030 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00006031 return 1;
6032 }
6033 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00006034 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00006035 return 1;
6036 }
6037 return (pCheck->anRef[iPage]++)>1;
6038}
6039
danielk1977afcdd022004-10-31 16:25:42 +00006040#ifndef SQLITE_OMIT_AUTOVACUUM
6041/*
6042** Check that the entry in the pointer-map for page iChild maps to
6043** page iParent, pointer type ptrType. If not, append an error message
6044** to pCheck.
6045*/
6046static void checkPtrmap(
6047 IntegrityCk *pCheck, /* Integrity check context */
6048 Pgno iChild, /* Child page number */
6049 u8 eType, /* Expected pointer map type */
6050 Pgno iParent, /* Expected pointer map parent page number */
6051 char *zContext /* Context description (used for error msg) */
6052){
6053 int rc;
6054 u8 ePtrmapType;
6055 Pgno iPtrmapParent;
6056
6057 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
6058 if( rc!=SQLITE_OK ){
6059 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
6060 return;
6061 }
6062
6063 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
6064 checkAppendMsg(pCheck, zContext,
6065 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
6066 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
6067 }
6068}
6069#endif
6070
drh5eddca62001-06-30 21:53:53 +00006071/*
6072** Check the integrity of the freelist or of an overflow page list.
6073** Verify that the number of pages on the list is N.
6074*/
drh30e58752002-03-02 20:41:57 +00006075static void checkList(
6076 IntegrityCk *pCheck, /* Integrity checking context */
6077 int isFreeList, /* True for a freelist. False for overflow page list */
6078 int iPage, /* Page number for first page in the list */
6079 int N, /* Expected number of pages in the list */
6080 char *zContext /* Context for error messages */
6081){
6082 int i;
drh3a4c1412004-05-09 20:40:11 +00006083 int expected = N;
6084 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00006085 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00006086 DbPage *pOvflPage;
6087 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00006088 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00006089 checkAppendMsg(pCheck, zContext,
6090 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00006091 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00006092 break;
6093 }
6094 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00006095 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00006096 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00006097 break;
6098 }
danielk19773b8a05f2007-03-19 17:44:26 +00006099 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00006100 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00006101 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00006102#ifndef SQLITE_OMIT_AUTOVACUUM
6103 if( pCheck->pBt->autoVacuum ){
6104 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
6105 }
6106#endif
drh855eb1c2004-08-31 13:45:11 +00006107 if( n>pCheck->pBt->usableSize/4-8 ){
drh2e38c322004-09-03 18:38:44 +00006108 checkAppendMsg(pCheck, zContext,
6109 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00006110 N--;
6111 }else{
6112 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00006113 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00006114#ifndef SQLITE_OMIT_AUTOVACUUM
6115 if( pCheck->pBt->autoVacuum ){
6116 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
6117 }
6118#endif
6119 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00006120 }
6121 N -= n;
drh30e58752002-03-02 20:41:57 +00006122 }
drh30e58752002-03-02 20:41:57 +00006123 }
danielk1977afcdd022004-10-31 16:25:42 +00006124#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00006125 else{
6126 /* If this database supports auto-vacuum and iPage is not the last
6127 ** page in this overflow list, check that the pointer-map entry for
6128 ** the following page matches iPage.
6129 */
6130 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00006131 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00006132 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
6133 }
danielk1977afcdd022004-10-31 16:25:42 +00006134 }
6135#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006136 iPage = get4byte(pOvflData);
6137 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00006138 }
6139}
drhb7f91642004-10-31 02:22:47 +00006140#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00006141
drhb7f91642004-10-31 02:22:47 +00006142#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006143/*
6144** Do various sanity checks on a single page of a tree. Return
6145** the tree depth. Root pages return 0. Parents of root pages
6146** return 1, and so forth.
6147**
6148** These checks are done:
6149**
6150** 1. Make sure that cells and freeblocks do not overlap
6151** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00006152** NO 2. Make sure cell keys are in order.
6153** NO 3. Make sure no key is less than or equal to zLowerBound.
6154** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00006155** 5. Check the integrity of overflow pages.
6156** 6. Recursively call checkTreePage on all children.
6157** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00006158** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00006159** the root of the tree.
6160*/
6161static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00006162 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00006163 int iPage, /* Page number of the page to check */
6164 MemPage *pParent, /* Parent page */
drh74161702006-02-24 02:53:49 +00006165 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00006166){
6167 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00006168 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00006169 int hdr, cellStart;
6170 int nCell;
drhda200cc2004-05-09 11:51:38 +00006171 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00006172 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00006173 int usableSize;
drh5eddca62001-06-30 21:53:53 +00006174 char zContext[100];
drh2e38c322004-09-03 18:38:44 +00006175 char *hit;
drh5eddca62001-06-30 21:53:53 +00006176
danielk1977ef73ee92004-11-06 12:26:07 +00006177 sprintf(zContext, "Page %d: ", iPage);
6178
drh5eddca62001-06-30 21:53:53 +00006179 /* Check that the page exists
6180 */
drhd9cb6ac2005-10-20 07:28:17 +00006181 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00006182 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00006183 if( iPage==0 ) return 0;
6184 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh0787db62007-03-04 13:15:27 +00006185 if( (rc = getPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00006186 checkAppendMsg(pCheck, zContext,
6187 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00006188 return 0;
6189 }
drh4b70f112004-05-02 21:12:19 +00006190 if( (rc = initPage(pPage, pParent))!=0 ){
drh2e38c322004-09-03 18:38:44 +00006191 checkAppendMsg(pCheck, zContext, "initPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00006192 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00006193 return 0;
6194 }
6195
6196 /* Check out all the cells.
6197 */
6198 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00006199 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00006200 u8 *pCell;
6201 int sz;
6202 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00006203
6204 /* Check payload overflow pages
6205 */
drh3a4c1412004-05-09 20:40:11 +00006206 sprintf(zContext, "On tree page %d cell %d: ", iPage, i);
drh43605152004-05-29 21:46:49 +00006207 pCell = findCell(pPage,i);
6208 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00006209 sz = info.nData;
6210 if( !pPage->intKey ) sz += info.nKey;
drh72365832007-03-06 15:53:44 +00006211 assert( sz==info.nPayload );
drh6f11bef2004-05-13 01:12:56 +00006212 if( sz>info.nLocal ){
drhb6f41482004-05-14 01:58:11 +00006213 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00006214 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
6215#ifndef SQLITE_OMIT_AUTOVACUUM
6216 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00006217 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00006218 }
6219#endif
6220 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00006221 }
6222
6223 /* Check sanity of left child page.
6224 */
drhda200cc2004-05-09 11:51:38 +00006225 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006226 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00006227#ifndef SQLITE_OMIT_AUTOVACUUM
6228 if( pBt->autoVacuum ){
6229 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
6230 }
6231#endif
drh74161702006-02-24 02:53:49 +00006232 d2 = checkTreePage(pCheck,pgno,pPage,zContext);
drhda200cc2004-05-09 11:51:38 +00006233 if( i>0 && d2!=depth ){
6234 checkAppendMsg(pCheck, zContext, "Child page depth differs");
6235 }
6236 depth = d2;
drh5eddca62001-06-30 21:53:53 +00006237 }
drh5eddca62001-06-30 21:53:53 +00006238 }
drhda200cc2004-05-09 11:51:38 +00006239 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006240 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drhda200cc2004-05-09 11:51:38 +00006241 sprintf(zContext, "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00006242#ifndef SQLITE_OMIT_AUTOVACUUM
6243 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00006244 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006245 }
6246#endif
drh74161702006-02-24 02:53:49 +00006247 checkTreePage(pCheck, pgno, pPage, zContext);
drhda200cc2004-05-09 11:51:38 +00006248 }
drh5eddca62001-06-30 21:53:53 +00006249
6250 /* Check for complete coverage of the page
6251 */
drhda200cc2004-05-09 11:51:38 +00006252 data = pPage->aData;
6253 hdr = pPage->hdrOffset;
drh2e38c322004-09-03 18:38:44 +00006254 hit = sqliteMalloc( usableSize );
6255 if( hit ){
6256 memset(hit, 1, get2byte(&data[hdr+5]));
6257 nCell = get2byte(&data[hdr+3]);
6258 cellStart = hdr + 12 - 4*pPage->leaf;
6259 for(i=0; i<nCell; i++){
6260 int pc = get2byte(&data[cellStart+i*2]);
6261 int size = cellSizePtr(pPage, &data[pc]);
6262 int j;
danielk19777701e812005-01-10 12:59:51 +00006263 if( (pc+size-1)>=usableSize || pc<0 ){
6264 checkAppendMsg(pCheck, 0,
6265 "Corruption detected in cell %d on page %d",i,iPage,0);
6266 }else{
6267 for(j=pc+size-1; j>=pc; j--) hit[j]++;
6268 }
drh2e38c322004-09-03 18:38:44 +00006269 }
6270 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
6271 cnt++){
6272 int size = get2byte(&data[i+2]);
6273 int j;
danielk19777701e812005-01-10 12:59:51 +00006274 if( (i+size-1)>=usableSize || i<0 ){
6275 checkAppendMsg(pCheck, 0,
6276 "Corruption detected in cell %d on page %d",i,iPage,0);
6277 }else{
6278 for(j=i+size-1; j>=i; j--) hit[j]++;
6279 }
drh2e38c322004-09-03 18:38:44 +00006280 i = get2byte(&data[i]);
6281 }
6282 for(i=cnt=0; i<usableSize; i++){
6283 if( hit[i]==0 ){
6284 cnt++;
6285 }else if( hit[i]>1 ){
6286 checkAppendMsg(pCheck, 0,
6287 "Multiple uses for byte %d of page %d", i, iPage);
6288 break;
6289 }
6290 }
6291 if( cnt!=data[hdr+7] ){
6292 checkAppendMsg(pCheck, 0,
6293 "Fragmented space is %d byte reported as %d on page %d",
6294 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00006295 }
6296 }
drh2e38c322004-09-03 18:38:44 +00006297 sqliteFree(hit);
drh6019e162001-07-02 17:51:45 +00006298
drh4b70f112004-05-02 21:12:19 +00006299 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00006300 return depth+1;
drh5eddca62001-06-30 21:53:53 +00006301}
drhb7f91642004-10-31 02:22:47 +00006302#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00006303
drhb7f91642004-10-31 02:22:47 +00006304#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00006305/*
6306** This routine does a complete check of the given BTree file. aRoot[] is
6307** an array of pages numbers were each page number is the root page of
6308** a table. nRoot is the number of entries in aRoot.
6309**
6310** If everything checks out, this routine returns NULL. If something is
6311** amiss, an error message is written into memory obtained from malloc()
6312** and a pointer to that error message is returned. The calling function
6313** is responsible for freeing the error message when it is done.
6314*/
drh1dcdbc02007-01-27 02:24:54 +00006315char *sqlite3BtreeIntegrityCheck(
6316 Btree *p, /* The btree to be checked */
6317 int *aRoot, /* An array of root pages numbers for individual trees */
6318 int nRoot, /* Number of entries in aRoot[] */
6319 int mxErr, /* Stop reporting errors after this many */
6320 int *pnErr /* Write number of errors seen to this variable */
6321){
drh5eddca62001-06-30 21:53:53 +00006322 int i;
6323 int nRef;
drhaaab5722002-02-19 13:39:21 +00006324 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00006325 BtShared *pBt = p->pBt;
drh5eddca62001-06-30 21:53:53 +00006326
danielk19773b8a05f2007-03-19 17:44:26 +00006327 nRef = sqlite3PagerRefcount(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00006328 if( lockBtreeWithRetry(p)!=SQLITE_OK ){
drhefc251d2001-07-01 22:12:01 +00006329 return sqliteStrDup("Unable to acquire a read lock on the database");
6330 }
drh5eddca62001-06-30 21:53:53 +00006331 sCheck.pBt = pBt;
6332 sCheck.pPager = pBt->pPager;
danielk19773b8a05f2007-03-19 17:44:26 +00006333 sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager);
drh1dcdbc02007-01-27 02:24:54 +00006334 sCheck.mxErr = mxErr;
6335 sCheck.nErr = 0;
6336 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00006337 if( sCheck.nPage==0 ){
6338 unlockBtreeIfUnused(pBt);
6339 return 0;
6340 }
drh8c1238a2003-01-02 14:43:55 +00006341 sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00006342 if( !sCheck.anRef ){
6343 unlockBtreeIfUnused(pBt);
drh1dcdbc02007-01-27 02:24:54 +00006344 *pnErr = 1;
danielk1977ac245ec2005-01-14 13:50:11 +00006345 return sqlite3MPrintf("Unable to malloc %d bytes",
6346 (sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
6347 }
drhda200cc2004-05-09 11:51:38 +00006348 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00006349 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00006350 if( i<=sCheck.nPage ){
6351 sCheck.anRef[i] = 1;
6352 }
drh5eddca62001-06-30 21:53:53 +00006353 sCheck.zErrMsg = 0;
6354
6355 /* Check the integrity of the freelist
6356 */
drha34b6762004-05-07 13:30:42 +00006357 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
6358 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00006359
6360 /* Check all the tables.
6361 */
drh1dcdbc02007-01-27 02:24:54 +00006362 for(i=0; i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00006363 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00006364#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00006365 if( pBt->autoVacuum && aRoot[i]>1 ){
6366 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
6367 }
6368#endif
drh74161702006-02-24 02:53:49 +00006369 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00006370 }
6371
6372 /* Make sure every page in the file is referenced
6373 */
drh1dcdbc02007-01-27 02:24:54 +00006374 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00006375#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00006376 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00006377 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00006378 }
danielk1977afcdd022004-10-31 16:25:42 +00006379#else
6380 /* If the database supports auto-vacuum, make sure no tables contain
6381 ** references to pointer-map pages.
6382 */
6383 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00006384 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00006385 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
6386 }
6387 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00006388 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00006389 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
6390 }
6391#endif
drh5eddca62001-06-30 21:53:53 +00006392 }
6393
6394 /* Make sure this analysis did not leave any unref() pages
6395 */
drh5e00f6c2001-09-13 13:46:56 +00006396 unlockBtreeIfUnused(pBt);
danielk19773b8a05f2007-03-19 17:44:26 +00006397 if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
drh2e38c322004-09-03 18:38:44 +00006398 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00006399 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00006400 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00006401 );
drh5eddca62001-06-30 21:53:53 +00006402 }
6403
6404 /* Clean up and report errors.
6405 */
6406 sqliteFree(sCheck.anRef);
drh1dcdbc02007-01-27 02:24:54 +00006407 *pnErr = sCheck.nErr;
drh5eddca62001-06-30 21:53:53 +00006408 return sCheck.zErrMsg;
6409}
drhb7f91642004-10-31 02:22:47 +00006410#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00006411
drh73509ee2003-04-06 20:44:45 +00006412/*
6413** Return the full pathname of the underlying database file.
6414*/
danielk1977aef0bf62005-12-30 16:28:01 +00006415const char *sqlite3BtreeGetFilename(Btree *p){
6416 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006417 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00006418}
6419
6420/*
danielk19775865e3d2004-06-14 06:03:57 +00006421** Return the pathname of the directory that contains the database file.
6422*/
danielk1977aef0bf62005-12-30 16:28:01 +00006423const char *sqlite3BtreeGetDirname(Btree *p){
6424 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006425 return sqlite3PagerDirname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00006426}
6427
6428/*
6429** Return the pathname of the journal file for this database. The return
6430** value of this routine is the same regardless of whether the journal file
6431** has been created or not.
6432*/
danielk1977aef0bf62005-12-30 16:28:01 +00006433const char *sqlite3BtreeGetJournalname(Btree *p){
6434 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006435 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00006436}
6437
drhb7f91642004-10-31 02:22:47 +00006438#ifndef SQLITE_OMIT_VACUUM
danielk19775865e3d2004-06-14 06:03:57 +00006439/*
drhf7c57532003-04-25 13:22:51 +00006440** Copy the complete content of pBtFrom into pBtTo. A transaction
6441** must be active for both files.
6442**
6443** The size of file pBtFrom may be reduced by this operation.
drh43605152004-05-29 21:46:49 +00006444** If anything goes wrong, the transaction on pBtFrom is rolled back.
drh73509ee2003-04-06 20:44:45 +00006445*/
danielk1977aef0bf62005-12-30 16:28:01 +00006446int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
drhf7c57532003-04-25 13:22:51 +00006447 int rc = SQLITE_OK;
drh50f2f432005-09-16 11:32:18 +00006448 Pgno i, nPage, nToPage, iSkip;
drhf7c57532003-04-25 13:22:51 +00006449
danielk1977aef0bf62005-12-30 16:28:01 +00006450 BtShared *pBtTo = pTo->pBt;
6451 BtShared *pBtFrom = pFrom->pBt;
6452
6453 if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
danielk1977ee5741e2004-05-31 10:01:34 +00006454 return SQLITE_ERROR;
6455 }
drhf7c57532003-04-25 13:22:51 +00006456 if( pBtTo->pCursor ) return SQLITE_BUSY;
danielk19773b8a05f2007-03-19 17:44:26 +00006457 nToPage = sqlite3PagerPagecount(pBtTo->pPager);
6458 nPage = sqlite3PagerPagecount(pBtFrom->pPager);
drh50f2f432005-09-16 11:32:18 +00006459 iSkip = PENDING_BYTE_PAGE(pBtTo);
danielk1977369f27e2004-06-15 11:40:04 +00006460 for(i=1; rc==SQLITE_OK && i<=nPage; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00006461 DbPage *pDbPage;
drh50f2f432005-09-16 11:32:18 +00006462 if( i==iSkip ) continue;
danielk19773b8a05f2007-03-19 17:44:26 +00006463 rc = sqlite3PagerGet(pBtFrom->pPager, i, &pDbPage);
drhf7c57532003-04-25 13:22:51 +00006464 if( rc ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00006465 rc = sqlite3PagerOverwrite(pBtTo->pPager, i, sqlite3PagerGetData(pDbPage));
6466 sqlite3PagerUnref(pDbPage);
drhf7c57532003-04-25 13:22:51 +00006467 }
drh2e6d11b2003-04-25 15:37:57 +00006468 for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00006469 DbPage *pDbPage;
drh49285702005-09-17 15:20:26 +00006470 if( i==iSkip ) continue;
danielk19773b8a05f2007-03-19 17:44:26 +00006471 rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
drh2e6d11b2003-04-25 15:37:57 +00006472 if( rc ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00006473 rc = sqlite3PagerWrite(pDbPage);
6474 sqlite3PagerUnref(pDbPage);
6475 sqlite3PagerDontWrite(pBtTo->pPager, i);
drh2e6d11b2003-04-25 15:37:57 +00006476 }
6477 if( !rc && nPage<nToPage ){
danielk19773b8a05f2007-03-19 17:44:26 +00006478 rc = sqlite3PagerTruncate(pBtTo->pPager, nPage);
drh2e6d11b2003-04-25 15:37:57 +00006479 }
drhf7c57532003-04-25 13:22:51 +00006480 if( rc ){
danielk1977aef0bf62005-12-30 16:28:01 +00006481 sqlite3BtreeRollback(pTo);
drhf7c57532003-04-25 13:22:51 +00006482 }
6483 return rc;
drh73509ee2003-04-06 20:44:45 +00006484}
drhb7f91642004-10-31 02:22:47 +00006485#endif /* SQLITE_OMIT_VACUUM */
danielk19771d850a72004-05-31 08:26:49 +00006486
6487/*
6488** Return non-zero if a transaction is active.
6489*/
danielk1977aef0bf62005-12-30 16:28:01 +00006490int sqlite3BtreeIsInTrans(Btree *p){
6491 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00006492}
6493
6494/*
6495** Return non-zero if a statement transaction is active.
6496*/
danielk1977aef0bf62005-12-30 16:28:01 +00006497int sqlite3BtreeIsInStmt(Btree *p){
6498 return (p->pBt && p->pBt->inStmt);
danielk19771d850a72004-05-31 08:26:49 +00006499}
danielk197713adf8a2004-06-03 16:08:41 +00006500
6501/*
danielk19772372c2b2006-06-27 16:34:56 +00006502** Return non-zero if a read (or write) transaction is active.
6503*/
6504int sqlite3BtreeIsInReadTrans(Btree *p){
6505 return (p && (p->inTrans!=TRANS_NONE));
6506}
6507
6508/*
danielk197713adf8a2004-06-03 16:08:41 +00006509** This call is a no-op if no write-transaction is currently active on pBt.
6510**
6511** Otherwise, sync the database file for the btree pBt. zMaster points to
6512** the name of a master journal file that should be written into the
6513** individual journal file, or is NULL, indicating no master journal file
6514** (single database transaction).
6515**
6516** When this is called, the master journal should already have been
6517** created, populated with this journal pointer and synced to disk.
6518**
6519** Once this is routine has returned, the only thing required to commit
6520** the write-transaction for this database file is to delete the journal.
6521*/
danielk1977aef0bf62005-12-30 16:28:01 +00006522int sqlite3BtreeSync(Btree *p, const char *zMaster){
danielk1977266664d2006-02-10 08:24:21 +00006523 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00006524 if( p->inTrans==TRANS_WRITE ){
6525 BtShared *pBt = p->pBt;
danielk1977d761c0c2004-11-05 16:37:02 +00006526 Pgno nTrunc = 0;
danielk1977266664d2006-02-10 08:24:21 +00006527#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00006528 if( pBt->autoVacuum ){
danielk1977266664d2006-02-10 08:24:21 +00006529 rc = autoVacuumCommit(pBt, &nTrunc);
6530 if( rc!=SQLITE_OK ){
6531 return rc;
6532 }
danielk1977687566d2004-11-02 12:56:41 +00006533 }
6534#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006535 rc = sqlite3PagerSync(pBt->pPager, zMaster, nTrunc);
danielk197713adf8a2004-06-03 16:08:41 +00006536 }
danielk1977266664d2006-02-10 08:24:21 +00006537 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00006538}
danielk1977aef0bf62005-12-30 16:28:01 +00006539
danielk1977da184232006-01-05 11:34:32 +00006540/*
6541** This function returns a pointer to a blob of memory associated with
6542** a single shared-btree. The memory is used by client code for it's own
6543** purposes (for example, to store a high-level schema associated with
6544** the shared-btree). The btree layer manages reference counting issues.
6545**
6546** The first time this is called on a shared-btree, nBytes bytes of memory
6547** are allocated, zeroed, and returned to the caller. For each subsequent
6548** call the nBytes parameter is ignored and a pointer to the same blob
6549** of memory returned.
6550**
6551** Just before the shared-btree is closed, the function passed as the
6552** xFree argument when the memory allocation was made is invoked on the
6553** blob of allocated memory. This function should not call sqliteFree()
6554** on the memory, the btree layer does that.
6555*/
6556void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
6557 BtShared *pBt = p->pBt;
6558 if( !pBt->pSchema ){
6559 pBt->pSchema = sqliteMalloc(nBytes);
6560 pBt->xFreeSchema = xFree;
6561 }
6562 return pBt->pSchema;
6563}
6564
danielk1977c87d34d2006-01-06 13:00:28 +00006565/*
6566** Return true if another user of the same shared btree as the argument
6567** handle holds an exclusive lock on the sqlite_master table.
6568*/
6569int sqlite3BtreeSchemaLocked(Btree *p){
6570 return (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
6571}
6572
drha154dcd2006-03-22 22:10:07 +00006573
6574#ifndef SQLITE_OMIT_SHARED_CACHE
6575/*
6576** Obtain a lock on the table whose root page is iTab. The
6577** lock is a write lock if isWritelock is true or a read lock
6578** if it is false.
6579*/
danielk1977c00da102006-01-07 13:21:04 +00006580int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00006581 int rc = SQLITE_OK;
danielk1977c00da102006-01-07 13:21:04 +00006582 u8 lockType = (isWriteLock?WRITE_LOCK:READ_LOCK);
danielk19772e94d4d2006-01-09 05:36:27 +00006583 rc = queryTableLock(p, iTab, lockType);
danielk1977c00da102006-01-07 13:21:04 +00006584 if( rc==SQLITE_OK ){
6585 rc = lockTable(p, iTab, lockType);
6586 }
6587 return rc;
6588}
drha154dcd2006-03-22 22:10:07 +00006589#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00006590
drh6f7adc82006-01-11 21:41:20 +00006591/*
6592** The following debugging interface has to be in this file (rather
6593** than in, for example, test1.c) so that it can get access to
6594** the definition of BtShared.
6595*/
danielk197707cb5602006-01-20 10:55:05 +00006596#if defined(SQLITE_DEBUG) && defined(TCLSH)
danielk1977b82e7ed2006-01-11 14:09:31 +00006597#include <tcl.h>
6598int sqlite3_shared_cache_report(
6599 void * clientData,
6600 Tcl_Interp *interp,
6601 int objc,
6602 Tcl_Obj *CONST objv[]
6603){
drha154dcd2006-03-22 22:10:07 +00006604#ifndef SQLITE_OMIT_SHARED_CACHE
drh6f7adc82006-01-11 21:41:20 +00006605 const ThreadData *pTd = sqlite3ThreadDataReadOnly();
danielk1977b82e7ed2006-01-11 14:09:31 +00006606 if( pTd->useSharedData ){
6607 BtShared *pBt;
6608 Tcl_Obj *pRet = Tcl_NewObj();
6609 for(pBt=pTd->pBtree; pBt; pBt=pBt->pNext){
danielk19773b8a05f2007-03-19 17:44:26 +00006610 const char *zFile = sqlite3PagerFilename(pBt->pPager);
danielk1977b82e7ed2006-01-11 14:09:31 +00006611 Tcl_ListObjAppendElement(interp, pRet, Tcl_NewStringObj(zFile, -1));
6612 Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(pBt->nRef));
6613 }
6614 Tcl_SetObjResult(interp, pRet);
6615 }
drha154dcd2006-03-22 22:10:07 +00006616#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00006617 return TCL_OK;
6618}
6619#endif