blob: 135b40139f70a2aae9d10fd8b8282ad379e9b6af [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000179 }
180 }
181 }else{
182 iTab = iRoot;
183 }
184
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
192 ){
193 return 1;
194 }
195 }
196
197 /* Failed to find the required lock. */
198 return 0;
199}
drh0ee3dbe2009-10-16 15:05:18 +0000200#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000201
drh0ee3dbe2009-10-16 15:05:18 +0000202#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000203/*
drh0ee3dbe2009-10-16 15:05:18 +0000204**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000205**
drh0ee3dbe2009-10-16 15:05:18 +0000206** Return true if it would be illegal for pBtree to write into the
207** table or index rooted at iRoot because other shared connections are
208** simultaneously reading that same table or index.
209**
210** It is illegal for pBtree to write if some other Btree object that
211** shares the same BtShared object is currently reading or writing
212** the iRoot table. Except, if the other Btree object has the
213** read-uncommitted flag set, then it is OK for the other object to
214** have a read cursor.
215**
216** For example, before writing to any part of the table or index
217** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000218**
219** assert( !hasReadConflicts(pBtree, iRoot) );
220*/
221static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227 ){
228 return 1;
229 }
230 }
231 return 0;
232}
233#endif /* #ifdef SQLITE_DEBUG */
234
danielk1977da184232006-01-05 11:34:32 +0000235/*
drh0ee3dbe2009-10-16 15:05:18 +0000236** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000237** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000238** SQLITE_OK if the lock may be obtained (by calling
239** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000240*/
drhc25eabe2009-02-24 18:57:31 +0000241static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
244
drh1fee73e2007-08-29 04:00:57 +0000245 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000249
danielk19775b413d72009-04-01 09:41:54 +0000250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
253 */
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256
drh0ee3dbe2009-10-16 15:05:18 +0000257 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000258 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000259 return SQLITE_OK;
260 }
261
danielk1977641b0f42007-12-21 04:47:25 +0000262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
264 */
drhc9166342012-01-05 23:32:06 +0000265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000268 }
269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
273 **
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275 **
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
279 */
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000286 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000287 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000288 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000289 }
290 }
291 return SQLITE_OK;
292}
drhe53831d2007-08-17 01:14:38 +0000293#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000294
drhe53831d2007-08-17 01:14:38 +0000295#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000296/*
297** Add a lock on the table with root-page iTable to the shared-btree used
298** by Btree handle p. Parameter eLock must be either READ_LOCK or
299** WRITE_LOCK.
300**
danielk19779d104862009-07-09 08:27:14 +0000301** This function assumes the following:
302**
drh0ee3dbe2009-10-16 15:05:18 +0000303** (a) The specified Btree object p is connected to a sharable
304** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000305**
drh0ee3dbe2009-10-16 15:05:18 +0000306** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000307** with the requested lock (i.e. querySharedCacheTableLock() has
308** already been called and returned SQLITE_OK).
309**
310** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000312*/
drhc25eabe2009-02-24 18:57:31 +0000313static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
317
drh1fee73e2007-08-29 04:00:57 +0000318 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000321
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327
danielk19779d104862009-07-09 08:27:14 +0000328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000332
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
338 }
339 }
340
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
343 */
344 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( !pLock ){
347 return SQLITE_NOMEM;
348 }
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
353 }
354
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
358 */
359 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
362 }
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 return SQLITE_OK;
365}
drhe53831d2007-08-17 01:14:38 +0000366#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000367
drhe53831d2007-08-17 01:14:38 +0000368#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000369/*
drhc25eabe2009-02-24 18:57:31 +0000370** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000371** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000372**
drh0ee3dbe2009-10-16 15:05:18 +0000373** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000374** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000375** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000376*/
drhc25eabe2009-02-24 18:57:31 +0000377static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000380
drh1fee73e2007-08-29 04:00:57 +0000381 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000382 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000383 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000384
danielk1977aef0bf62005-12-30 16:28:01 +0000385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000388 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
394 }
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }else{
396 ppIter = &pLock->pNext;
397 }
398 }
danielk1977641b0f42007-12-21 04:47:25 +0000399
drhc9166342012-01-05 23:32:06 +0000400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000404 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000405 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000409 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000410 **
drhc9166342012-01-05 23:32:06 +0000411 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000412 ** be zero already. So this next line is harmless in that case.
413 */
drhc9166342012-01-05 23:32:06 +0000414 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000415 }
danielk1977aef0bf62005-12-30 16:28:01 +0000416}
danielk197794b30732009-07-02 17:21:57 +0000417
danielk1977e0d9e6f2009-07-03 16:25:06 +0000418/*
drh0ee3dbe2009-10-16 15:05:18 +0000419** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000420*/
danielk197794b30732009-07-02 17:21:57 +0000421static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
430 }
431 }
432}
433
danielk1977aef0bf62005-12-30 16:28:01 +0000434#endif /* SQLITE_OMIT_SHARED_CACHE */
435
drh980b1a72006-08-16 16:42:48 +0000436static void releasePage(MemPage *pPage); /* Forward reference */
437
drh1fee73e2007-08-29 04:00:57 +0000438/*
drh0ee3dbe2009-10-16 15:05:18 +0000439***** This routine is used inside of assert() only ****
440**
441** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000442*/
drh0ee3dbe2009-10-16 15:05:18 +0000443#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000444static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000445 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000446}
447#endif
448
danielk197792d4d7a2007-05-04 12:05:56 +0000449/*
dan5a500af2014-03-11 20:33:04 +0000450** Invalidate the overflow cache of the cursor passed as the first argument.
451** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000452*/
drh036dbec2014-03-11 23:40:44 +0000453#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000454
455/*
456** Invalidate the overflow page-list cache for all cursors opened
457** on the shared btree structure pBt.
458*/
459static void invalidateAllOverflowCache(BtShared *pBt){
460 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000461 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000462 for(p=pBt->pCursor; p; p=p->pNext){
463 invalidateOverflowCache(p);
464 }
465}
danielk197796d48e92009-06-29 06:00:37 +0000466
dan5a500af2014-03-11 20:33:04 +0000467#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000468/*
469** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000470** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000471** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000472**
473** If argument isClearTable is true, then the entire contents of the
474** table is about to be deleted. In this case invalidate all incrblob
475** cursors open on any row within the table with root-page pgnoRoot.
476**
477** Otherwise, if argument isClearTable is false, then the row with
478** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000479** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000480*/
481static void invalidateIncrblobCursors(
482 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000483 i64 iRow, /* The rowid that might be changing */
484 int isClearTable /* True if all rows are being deleted */
485){
486 BtCursor *p;
487 BtShared *pBt = pBtree->pBt;
488 assert( sqlite3BtreeHoldsMutex(pBtree) );
489 for(p=pBt->pCursor; p; p=p->pNext){
drh3f387402014-09-24 01:23:00 +0000490 if( (p->curFlags & BTCF_Incrblob)!=0
491 && (isClearTable || p->info.nKey==iRow)
492 ){
danielk197796d48e92009-06-29 06:00:37 +0000493 p->eState = CURSOR_INVALID;
494 }
495 }
496}
497
danielk197792d4d7a2007-05-04 12:05:56 +0000498#else
dan5a500af2014-03-11 20:33:04 +0000499 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000500 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000501#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000502
drh980b1a72006-08-16 16:42:48 +0000503/*
danielk1977bea2a942009-01-20 17:06:27 +0000504** Set bit pgno of the BtShared.pHasContent bitvec. This is called
505** when a page that previously contained data becomes a free-list leaf
506** page.
507**
508** The BtShared.pHasContent bitvec exists to work around an obscure
509** bug caused by the interaction of two useful IO optimizations surrounding
510** free-list leaf pages:
511**
512** 1) When all data is deleted from a page and the page becomes
513** a free-list leaf page, the page is not written to the database
514** (as free-list leaf pages contain no meaningful data). Sometimes
515** such a page is not even journalled (as it will not be modified,
516** why bother journalling it?).
517**
518** 2) When a free-list leaf page is reused, its content is not read
519** from the database or written to the journal file (why should it
520** be, if it is not at all meaningful?).
521**
522** By themselves, these optimizations work fine and provide a handy
523** performance boost to bulk delete or insert operations. However, if
524** a page is moved to the free-list and then reused within the same
525** transaction, a problem comes up. If the page is not journalled when
526** it is moved to the free-list and it is also not journalled when it
527** is extracted from the free-list and reused, then the original data
528** may be lost. In the event of a rollback, it may not be possible
529** to restore the database to its original configuration.
530**
531** The solution is the BtShared.pHasContent bitvec. Whenever a page is
532** moved to become a free-list leaf page, the corresponding bit is
533** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000534** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000535** set in BtShared.pHasContent. The contents of the bitvec are cleared
536** at the end of every transaction.
537*/
538static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
539 int rc = SQLITE_OK;
540 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000541 assert( pgno<=pBt->nPage );
542 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000543 if( !pBt->pHasContent ){
544 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000545 }
546 }
547 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
548 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
549 }
550 return rc;
551}
552
553/*
554** Query the BtShared.pHasContent vector.
555**
556** This function is called when a free-list leaf page is removed from the
557** free-list for reuse. It returns false if it is safe to retrieve the
558** page from the pager layer with the 'no-content' flag set. True otherwise.
559*/
560static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
561 Bitvec *p = pBt->pHasContent;
562 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
563}
564
565/*
566** Clear (destroy) the BtShared.pHasContent bitvec. This should be
567** invoked at the conclusion of each write-transaction.
568*/
569static void btreeClearHasContent(BtShared *pBt){
570 sqlite3BitvecDestroy(pBt->pHasContent);
571 pBt->pHasContent = 0;
572}
573
574/*
drh138eeeb2013-03-27 03:15:23 +0000575** Release all of the apPage[] pages for a cursor.
576*/
577static void btreeReleaseAllCursorPages(BtCursor *pCur){
578 int i;
579 for(i=0; i<=pCur->iPage; i++){
580 releasePage(pCur->apPage[i]);
581 pCur->apPage[i] = 0;
582 }
583 pCur->iPage = -1;
584}
585
586
587/*
drh980b1a72006-08-16 16:42:48 +0000588** Save the current cursor position in the variables BtCursor.nKey
589** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000590**
591** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
592** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000593*/
594static int saveCursorPosition(BtCursor *pCur){
595 int rc;
596
597 assert( CURSOR_VALID==pCur->eState );
598 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000599 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000600
601 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000602 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000603
604 /* If this is an intKey table, then the above call to BtreeKeySize()
605 ** stores the integer key in pCur->nKey. In this case this value is
606 ** all that is required. Otherwise, if pCur is not open on an intKey
607 ** table, then malloc space for and store the pCur->nKey bytes of key
608 ** data.
609 */
drh4c301aa2009-07-15 17:25:45 +0000610 if( 0==pCur->apPage[0]->intKey ){
drhda4ca9d2014-09-09 17:27:35 +0000611 void *pKey = sqlite3Malloc( pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000612 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000613 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000614 if( rc==SQLITE_OK ){
615 pCur->pKey = pKey;
616 }else{
drh17435752007-08-16 04:30:38 +0000617 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000618 }
619 }else{
620 rc = SQLITE_NOMEM;
621 }
622 }
danielk197771d5d2c2008-09-29 11:49:47 +0000623 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000624
625 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000626 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000627 pCur->eState = CURSOR_REQUIRESEEK;
628 }
629
danielk197792d4d7a2007-05-04 12:05:56 +0000630 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000631 return rc;
632}
633
drh637f3d82014-08-22 22:26:07 +0000634/* Forward reference */
635static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
636
drh980b1a72006-08-16 16:42:48 +0000637/*
drh0ee3dbe2009-10-16 15:05:18 +0000638** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000639** the table with root-page iRoot. "Saving the cursor position" means that
640** the location in the btree is remembered in such a way that it can be
641** moved back to the same spot after the btree has been modified. This
642** routine is called just before cursor pExcept is used to modify the
643** table, for example in BtreeDelete() or BtreeInsert().
644**
645** Implementation note: This routine merely checks to see if any cursors
646** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
647** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000648*/
649static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000650 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000651 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000652 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000653 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000654 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
655 }
656 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;
657}
658
659/* This helper routine to saveAllCursors does the actual work of saving
660** the cursors if and when a cursor is found that actually requires saving.
661** The common case is that no cursors need to be saved, so this routine is
662** broken out from its caller to avoid unnecessary stack pointer movement.
663*/
664static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000665 BtCursor *p, /* The first cursor that needs saving */
666 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
667 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000668){
669 do{
drh138eeeb2013-03-27 03:15:23 +0000670 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
671 if( p->eState==CURSOR_VALID ){
672 int rc = saveCursorPosition(p);
673 if( SQLITE_OK!=rc ){
674 return rc;
675 }
676 }else{
677 testcase( p->iPage>0 );
678 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000679 }
680 }
drh637f3d82014-08-22 22:26:07 +0000681 p = p->pNext;
682 }while( p );
drh980b1a72006-08-16 16:42:48 +0000683 return SQLITE_OK;
684}
685
686/*
drhbf700f32007-03-31 02:36:44 +0000687** Clear the current cursor position.
688*/
danielk1977be51a652008-10-08 17:58:48 +0000689void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000690 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000691 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000692 pCur->pKey = 0;
693 pCur->eState = CURSOR_INVALID;
694}
695
696/*
danielk19773509a652009-07-06 18:56:13 +0000697** In this version of BtreeMoveto, pKey is a packed index record
698** such as is generated by the OP_MakeRecord opcode. Unpack the
699** record and then call BtreeMovetoUnpacked() to do the work.
700*/
701static int btreeMoveto(
702 BtCursor *pCur, /* Cursor open on the btree to be searched */
703 const void *pKey, /* Packed key if the btree is an index */
704 i64 nKey, /* Integer key for tables. Size of pKey for indices */
705 int bias, /* Bias search to the high end */
706 int *pRes /* Write search results here */
707){
708 int rc; /* Status code */
709 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000710 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000711 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000712
713 if( pKey ){
714 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000715 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
716 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
717 );
danielk19773509a652009-07-06 18:56:13 +0000718 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000719 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000720 if( pIdxKey->nField==0 ){
721 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
722 return SQLITE_CORRUPT_BKPT;
723 }
danielk19773509a652009-07-06 18:56:13 +0000724 }else{
725 pIdxKey = 0;
726 }
727 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000728 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000729 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000730 }
731 return rc;
732}
733
734/*
drh980b1a72006-08-16 16:42:48 +0000735** Restore the cursor to the position it was in (or as close to as possible)
736** when saveCursorPosition() was called. Note that this call deletes the
737** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000738** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000739** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000740*/
danielk197730548662009-07-09 05:07:37 +0000741static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000742 int rc;
drh1fee73e2007-08-29 04:00:57 +0000743 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000744 assert( pCur->eState>=CURSOR_REQUIRESEEK );
745 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000746 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000747 }
drh980b1a72006-08-16 16:42:48 +0000748 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000749 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000750 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000751 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000752 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000753 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh9b47ee32013-08-20 03:13:51 +0000754 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
755 pCur->eState = CURSOR_SKIPNEXT;
756 }
drh980b1a72006-08-16 16:42:48 +0000757 }
758 return rc;
759}
760
drha3460582008-07-11 21:02:53 +0000761#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000762 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000763 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000764 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000765
drha3460582008-07-11 21:02:53 +0000766/*
drh6848dad2014-08-22 23:33:03 +0000767** Determine whether or not a cursor has moved from the position where
768** it was last placed, or has been invalidated for any other reason.
769** Cursors can move when the row they are pointing at is deleted out
770** from under them, for example. Cursor might also move if a btree
771** is rebalanced.
drha3460582008-07-11 21:02:53 +0000772**
drh6848dad2014-08-22 23:33:03 +0000773** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000774**
drh6848dad2014-08-22 23:33:03 +0000775** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
776** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000777*/
drh6848dad2014-08-22 23:33:03 +0000778int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
779 return pCur && pCur->eState!=CURSOR_VALID;
780}
781
782/*
783** This routine restores a cursor back to its original position after it
784** has been moved by some outside activity (such as a btree rebalance or
785** a row having been deleted out from under the cursor).
786**
787** On success, the *pDifferentRow parameter is false if the cursor is left
788** pointing at exactly the same row. *pDifferntRow is the row the cursor
789** was pointing to has been deleted, forcing the cursor to point to some
790** nearby row.
791**
792** This routine should only be called for a cursor that just returned
793** TRUE from sqlite3BtreeCursorHasMoved().
794*/
795int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000796 int rc;
797
drh6848dad2014-08-22 23:33:03 +0000798 assert( pCur!=0 );
799 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000800 rc = restoreCursorPosition(pCur);
801 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000802 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000803 return rc;
804 }
drh9b47ee32013-08-20 03:13:51 +0000805 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
drh6848dad2014-08-22 23:33:03 +0000806 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000807 }else{
drh6848dad2014-08-22 23:33:03 +0000808 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000809 }
810 return SQLITE_OK;
811}
812
danielk1977599fcba2004-11-08 07:13:13 +0000813#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000814/*
drha3152892007-05-05 11:48:52 +0000815** Given a page number of a regular database page, return the page
816** number for the pointer-map page that contains the entry for the
817** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000818**
819** Return 0 (not a valid page) for pgno==1 since there is
820** no pointer map associated with page 1. The integrity_check logic
821** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000822*/
danielk1977266664d2006-02-10 08:24:21 +0000823static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000824 int nPagesPerMapPage;
825 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000826 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000827 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000828 nPagesPerMapPage = (pBt->usableSize/5)+1;
829 iPtrMap = (pgno-2)/nPagesPerMapPage;
830 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000831 if( ret==PENDING_BYTE_PAGE(pBt) ){
832 ret++;
833 }
834 return ret;
835}
danielk1977a19df672004-11-03 11:37:07 +0000836
danielk1977afcdd022004-10-31 16:25:42 +0000837/*
danielk1977afcdd022004-10-31 16:25:42 +0000838** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000839**
840** This routine updates the pointer map entry for page number 'key'
841** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000842**
843** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
844** a no-op. If an error occurs, the appropriate error code is written
845** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000846*/
drh98add2e2009-07-20 17:11:49 +0000847static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000848 DbPage *pDbPage; /* The pointer map page */
849 u8 *pPtrmap; /* The pointer map data */
850 Pgno iPtrmap; /* The pointer map page number */
851 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000852 int rc; /* Return code from subfunctions */
853
854 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000855
drh1fee73e2007-08-29 04:00:57 +0000856 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000857 /* The master-journal page number must never be used as a pointer map page */
858 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
859
danielk1977ac11ee62005-01-15 12:45:51 +0000860 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000861 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000862 *pRC = SQLITE_CORRUPT_BKPT;
863 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000864 }
danielk1977266664d2006-02-10 08:24:21 +0000865 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000866 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000867 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000868 *pRC = rc;
869 return;
danielk1977afcdd022004-10-31 16:25:42 +0000870 }
danielk19778c666b12008-07-18 09:34:57 +0000871 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000872 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000873 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000874 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000875 }
drhfc243732011-05-17 15:21:56 +0000876 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000877 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000878
drh615ae552005-01-16 23:21:00 +0000879 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
880 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000881 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000882 if( rc==SQLITE_OK ){
883 pPtrmap[offset] = eType;
884 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000885 }
danielk1977afcdd022004-10-31 16:25:42 +0000886 }
887
drh4925a552009-07-07 11:39:58 +0000888ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000889 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000890}
891
892/*
893** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000894**
895** This routine retrieves the pointer map entry for page 'key', writing
896** the type and parent page number to *pEType and *pPgno respectively.
897** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000898*/
danielk1977aef0bf62005-12-30 16:28:01 +0000899static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000900 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000901 int iPtrmap; /* Pointer map page index */
902 u8 *pPtrmap; /* Pointer map page data */
903 int offset; /* Offset of entry in pointer map */
904 int rc;
905
drh1fee73e2007-08-29 04:00:57 +0000906 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000907
danielk1977266664d2006-02-10 08:24:21 +0000908 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000909 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000910 if( rc!=0 ){
911 return rc;
912 }
danielk19773b8a05f2007-03-19 17:44:26 +0000913 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000914
danielk19778c666b12008-07-18 09:34:57 +0000915 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000916 if( offset<0 ){
917 sqlite3PagerUnref(pDbPage);
918 return SQLITE_CORRUPT_BKPT;
919 }
920 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000921 assert( pEType!=0 );
922 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000923 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000924
danielk19773b8a05f2007-03-19 17:44:26 +0000925 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000926 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000927 return SQLITE_OK;
928}
929
danielk197785d90ca2008-07-19 14:25:15 +0000930#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000931 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000932 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000933 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000934#endif
danielk1977afcdd022004-10-31 16:25:42 +0000935
drh0d316a42002-08-11 20:10:47 +0000936/*
drh271efa52004-05-30 19:19:05 +0000937** Given a btree page and a cell index (0 means the first cell on
938** the page, 1 means the second cell, and so forth) return a pointer
939** to the cell content.
940**
941** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000942*/
drh1688c862008-07-18 02:44:17 +0000943#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000944 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000945#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
946
drh43605152004-05-29 21:46:49 +0000947
948/*
drh93a960a2008-07-10 00:32:42 +0000949** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000950** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000951*/
952static u8 *findOverflowCell(MemPage *pPage, int iCell){
953 int i;
drh1fee73e2007-08-29 04:00:57 +0000954 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000955 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000956 int k;
drh2cbd78b2012-02-02 19:37:18 +0000957 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000958 if( k<=iCell ){
959 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000960 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000961 }
962 iCell--;
963 }
964 }
danielk19771cc5ed82007-05-16 17:28:43 +0000965 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000966}
967
968/*
969** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000970** are two versions of this function. btreeParseCell() takes a
971** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000972** takes a pointer to the body of the cell as its second argument.
drh43605152004-05-29 21:46:49 +0000973*/
danielk197730548662009-07-09 05:07:37 +0000974static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000975 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000976 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000977 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000978){
drh3e28ff52014-09-24 00:59:08 +0000979 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +0000980 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000981
drh1fee73e2007-08-29 04:00:57 +0000982 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +0000983 assert( pPage->leaf==0 || pPage->leaf==1 );
drh3e28ff52014-09-24 00:59:08 +0000984 if( pPage->intKeyLeaf ){
985 assert( pPage->childPtrSize==0 );
986 pIter = pCell + getVarint32(pCell, nPayload);
drhab1cc582014-09-23 21:25:19 +0000987 pIter += getVarint(pIter, (u64*)&pInfo->nKey);
drh3e28ff52014-09-24 00:59:08 +0000988 }else if( pPage->noPayload ){
989 assert( pPage->childPtrSize==4 );
990 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
991 pInfo->nPayload = 0;
992 pInfo->nLocal = 0;
993 pInfo->iOverflow = 0;
994 pInfo->pPayload = 0;
995 return;
drh504b6982006-01-22 21:52:56 +0000996 }else{
drh3e28ff52014-09-24 00:59:08 +0000997 pIter = pCell + pPage->childPtrSize;
drhab1cc582014-09-23 21:25:19 +0000998 pIter += getVarint32(pIter, nPayload);
drh79df1f42008-07-18 00:57:33 +0000999 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +00001000 }
drh72365832007-03-06 15:53:44 +00001001 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001002 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001003 testcase( nPayload==pPage->maxLocal );
1004 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001005 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001006 /* This is the (easy) common case where the entire payload fits
1007 ** on the local page. No overflow is required.
1008 */
drhab1cc582014-09-23 21:25:19 +00001009 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1010 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001011 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001012 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001013 }else{
drh271efa52004-05-30 19:19:05 +00001014 /* If the payload will not fit completely on the local page, we have
1015 ** to decide how much to store locally and how much to spill onto
1016 ** overflow pages. The strategy is to minimize the amount of unused
1017 ** space on overflow pages while keeping the amount of local storage
1018 ** in between minLocal and maxLocal.
1019 **
1020 ** Warning: changing the way overflow payload is distributed in any
1021 ** way will result in an incompatible file format.
1022 */
1023 int minLocal; /* Minimum amount of payload held locally */
1024 int maxLocal; /* Maximum amount of payload held locally */
1025 int surplus; /* Overflow payload available for local storage */
1026
1027 minLocal = pPage->minLocal;
1028 maxLocal = pPage->maxLocal;
1029 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001030 testcase( surplus==maxLocal );
1031 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +00001032 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +00001033 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +00001034 }else{
drhf49661a2008-12-10 16:45:50 +00001035 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +00001036 }
drhab1cc582014-09-23 21:25:19 +00001037 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
drh6f11bef2004-05-13 01:12:56 +00001038 pInfo->nSize = pInfo->iOverflow + 4;
1039 }
drh3aac2dd2004-04-26 14:10:20 +00001040}
danielk197730548662009-07-09 05:07:37 +00001041static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001042 MemPage *pPage, /* Page containing the cell */
1043 int iCell, /* The cell index. First cell is 0 */
1044 CellInfo *pInfo /* Fill in this structure */
1045){
drhc4683832014-09-23 23:12:53 +00001046 btreeParseCellPtr(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001047}
drh3aac2dd2004-04-26 14:10:20 +00001048
1049/*
drh43605152004-05-29 21:46:49 +00001050** Compute the total number of bytes that a Cell needs in the cell
1051** data area of the btree-page. The return number includes the cell
1052** data header and the local payload, but not any overflow page or
1053** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001054*/
danielk1977ae5558b2009-04-29 11:31:47 +00001055static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001056 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1057 u8 *pEnd; /* End mark for a varint */
1058 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001059
1060#ifdef SQLITE_DEBUG
1061 /* The value returned by this function should always be the same as
1062 ** the (CellInfo.nSize) value found by doing a full parse of the
1063 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1064 ** this function verifies that this invariant is not violated. */
1065 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001066 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001067#endif
1068
drh3e28ff52014-09-24 00:59:08 +00001069 if( pPage->noPayload ){
1070 pEnd = &pIter[9];
1071 while( (*pIter++)&0x80 && pIter<pEnd );
1072 assert( pPage->childPtrSize==4 );
1073 return (u16)(pIter - pCell);
drhdc41d602014-09-22 19:51:35 +00001074 }
drh3e28ff52014-09-24 00:59:08 +00001075 nSize = *pIter;
1076 if( nSize>=0x80 ){
1077 pEnd = &pIter[9];
1078 nSize &= 0x7f;
1079 do{
1080 nSize = (nSize<<7) | (*++pIter & 0x7f);
1081 }while( *(pIter)>=0x80 && pIter<pEnd );
1082 }
1083 pIter++;
drhdc41d602014-09-22 19:51:35 +00001084 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001085 /* pIter now points at the 64-bit integer key value, a variable length
1086 ** integer. The following block moves pIter to point at the first byte
1087 ** past the end of the key value. */
1088 pEnd = &pIter[9];
1089 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001090 }
drh0a45c272009-07-08 01:49:11 +00001091 testcase( nSize==pPage->maxLocal );
1092 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001093 if( nSize<=pPage->maxLocal ){
1094 nSize += (u32)(pIter - pCell);
1095 if( nSize<4 ) nSize = 4;
1096 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001097 int minLocal = pPage->minLocal;
1098 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001099 testcase( nSize==pPage->maxLocal );
1100 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001101 if( nSize>pPage->maxLocal ){
1102 nSize = minLocal;
1103 }
drh3e28ff52014-09-24 00:59:08 +00001104 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001105 }
drhdc41d602014-09-22 19:51:35 +00001106 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001107 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001108}
drh0ee3dbe2009-10-16 15:05:18 +00001109
1110#ifdef SQLITE_DEBUG
1111/* This variation on cellSizePtr() is used inside of assert() statements
1112** only. */
drha9121e42008-02-19 14:59:35 +00001113static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001114 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001115}
danielk1977bc6ada42004-06-30 08:20:16 +00001116#endif
drh3b7511c2001-05-26 13:15:44 +00001117
danielk197779a40da2005-01-16 08:00:01 +00001118#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001119/*
danielk197726836652005-01-17 01:33:13 +00001120** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001121** to an overflow page, insert an entry into the pointer-map
1122** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001123*/
drh98add2e2009-07-20 17:11:49 +00001124static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001125 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001126 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001127 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001128 btreeParseCellPtr(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001129 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001130 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001131 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001132 }
danielk1977ac11ee62005-01-15 12:45:51 +00001133}
danielk197779a40da2005-01-16 08:00:01 +00001134#endif
1135
danielk1977ac11ee62005-01-15 12:45:51 +00001136
drhda200cc2004-05-09 11:51:38 +00001137/*
drh72f82862001-05-24 21:06:34 +00001138** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001139** end of the page and all free space is collected into one
1140** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001141** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001142*/
shane0af3f892008-11-12 04:55:34 +00001143static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001144 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001145 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001146 int hdr; /* Offset to the page header */
1147 int size; /* Size of a cell */
1148 int usableSize; /* Number of usable bytes on a page */
1149 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001150 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001151 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001152 unsigned char *data; /* The page data */
1153 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001154 int iCellFirst; /* First allowable cell index */
1155 int iCellLast; /* Last possible cell index */
1156
drh2af926b2001-05-15 00:39:25 +00001157
danielk19773b8a05f2007-03-19 17:44:26 +00001158 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001159 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001160 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001161 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001162 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001163 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001164 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001165 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001166 cellOffset = pPage->cellOffset;
1167 nCell = pPage->nCell;
1168 assert( nCell==get2byte(&data[hdr+3]) );
1169 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001170 cbrk = get2byte(&data[hdr+5]);
1171 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1172 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001173 iCellFirst = cellOffset + 2*nCell;
1174 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001175 for(i=0; i<nCell; i++){
1176 u8 *pAddr; /* The i-th cell pointer */
1177 pAddr = &data[cellOffset + i*2];
1178 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001179 testcase( pc==iCellFirst );
1180 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001181#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001182 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001183 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1184 */
1185 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001186 return SQLITE_CORRUPT_BKPT;
1187 }
drh17146622009-07-07 17:38:38 +00001188#endif
1189 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001190 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001191 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001192#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1193 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001194 return SQLITE_CORRUPT_BKPT;
1195 }
drh17146622009-07-07 17:38:38 +00001196#else
1197 if( cbrk<iCellFirst || pc+size>usableSize ){
1198 return SQLITE_CORRUPT_BKPT;
1199 }
1200#endif
drh7157e1d2009-07-09 13:25:32 +00001201 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001202 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001203 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001204 memcpy(&data[cbrk], &temp[pc], size);
1205 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001206 }
drh17146622009-07-07 17:38:38 +00001207 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001208 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001209 data[hdr+1] = 0;
1210 data[hdr+2] = 0;
1211 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001212 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001213 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001214 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001215 return SQLITE_CORRUPT_BKPT;
1216 }
shane0af3f892008-11-12 04:55:34 +00001217 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001218}
1219
drha059ad02001-04-17 20:09:11 +00001220/*
danielk19776011a752009-04-01 16:25:32 +00001221** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001222** as the first argument. Write into *pIdx the index into pPage->aData[]
1223** of the first byte of allocated space. Return either SQLITE_OK or
1224** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001225**
drh0a45c272009-07-08 01:49:11 +00001226** The caller guarantees that there is sufficient space to make the
1227** allocation. This routine might need to defragment in order to bring
1228** all the space together, however. This routine will avoid using
1229** the first two bytes past the cell pointer area since presumably this
1230** allocation is being made in order to insert a new cell, so we will
1231** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001232*/
drh0a45c272009-07-08 01:49:11 +00001233static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001234 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1235 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001236 int top; /* First byte of cell content area */
1237 int gap; /* First byte of gap between cell pointers and cell content */
1238 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001239 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001240
danielk19773b8a05f2007-03-19 17:44:26 +00001241 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001242 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001243 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001244 assert( nByte>=0 ); /* Minimum cell size is 4 */
1245 assert( pPage->nFree>=nByte );
1246 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001247 usableSize = pPage->pBt->usableSize;
1248 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001249
drh0a45c272009-07-08 01:49:11 +00001250 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1251 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001252 assert( gap<=65536 );
1253 top = get2byte(&data[hdr+5]);
1254 if( gap>top ){
1255 if( top==0 ){
1256 top = 65536;
1257 }else{
1258 return SQLITE_CORRUPT_BKPT;
1259 }
1260 }
drh4c04f3c2014-08-20 11:56:14 +00001261
1262 /* If there is enough space between gap and top for one more cell pointer
1263 ** array entry offset, and if the freelist is not empty, then search the
1264 ** freelist looking for a free slot big enough to satisfy the request.
1265 */
drh0a45c272009-07-08 01:49:11 +00001266 testcase( gap+2==top );
1267 testcase( gap+1==top );
1268 testcase( gap==top );
drh4c04f3c2014-08-20 11:56:14 +00001269 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
danielk19776011a752009-04-01 16:25:32 +00001270 int pc, addr;
1271 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001272 int size; /* Size of the free slot */
1273 if( pc>usableSize-4 || pc<addr+4 ){
1274 return SQLITE_CORRUPT_BKPT;
1275 }
1276 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001277 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001278 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001279 testcase( x==4 );
1280 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001281 if( x<4 ){
drh4c04f3c2014-08-20 11:56:14 +00001282 if( data[hdr+7]>=60 ) goto defragment_page;
danielk1977fad91942009-04-29 17:49:59 +00001283 /* Remove the slot from the free-list. Update the number of
1284 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001285 memcpy(&data[addr], &data[pc], 2);
drh75b31dc2014-08-20 00:54:46 +00001286 data[hdr+7] += (u8)x;
drh00ce3942009-12-06 03:35:51 +00001287 }else if( size+pc > usableSize ){
1288 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001289 }else{
danielk1977fad91942009-04-29 17:49:59 +00001290 /* The slot remains on the free-list. Reduce its size to account
1291 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001292 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001293 }
drh0a45c272009-07-08 01:49:11 +00001294 *pIdx = pc + x;
1295 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001296 }
drh9e572e62004-04-23 23:43:10 +00001297 }
1298 }
drh43605152004-05-29 21:46:49 +00001299
drh4c04f3c2014-08-20 11:56:14 +00001300 /* The request could not be fulfilled using a freelist slot. Check
1301 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001302 */
1303 testcase( gap+2+nByte==top );
1304 if( gap+2+nByte>top ){
drh4c04f3c2014-08-20 11:56:14 +00001305defragment_page:
drh90555262014-08-20 13:17:43 +00001306 testcase( pPage->nCell==0 );
drh0a45c272009-07-08 01:49:11 +00001307 rc = defragmentPage(pPage);
1308 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001309 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001310 assert( gap+nByte<=top );
1311 }
1312
1313
drh43605152004-05-29 21:46:49 +00001314 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001315 ** and the cell content area. The btreeInitPage() call has already
1316 ** validated the freelist. Given that the freelist is valid, there
1317 ** is no way that the allocation can extend off the end of the page.
1318 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001319 */
drh0a45c272009-07-08 01:49:11 +00001320 top -= nByte;
drh43605152004-05-29 21:46:49 +00001321 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001322 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001323 *pIdx = top;
1324 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001325}
1326
1327/*
drh9e572e62004-04-23 23:43:10 +00001328** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001329** The first byte of the new free block is pPage->aData[iStart]
1330** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001331**
drh5f5c7532014-08-20 17:56:27 +00001332** Adjacent freeblocks are coalesced.
1333**
1334** Note that even though the freeblock list was checked by btreeInitPage(),
1335** that routine will not detect overlap between cells or freeblocks. Nor
1336** does it detect cells or freeblocks that encrouch into the reserved bytes
1337** at the end of the page. So do additional corruption checks inside this
1338** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001339*/
drh5f5c7532014-08-20 17:56:27 +00001340static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001341 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001342 u16 iFreeBlk; /* Address of the next freeblock */
1343 u8 hdr; /* Page header size. 0 or 100 */
1344 u8 nFrag = 0; /* Reduction in fragmentation */
1345 u16 iOrigSize = iSize; /* Original value of iSize */
1346 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1347 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001348 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001349
drh9e572e62004-04-23 23:43:10 +00001350 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001351 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh7fb91642014-08-20 14:37:09 +00001352 assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
drh5f5c7532014-08-20 17:56:27 +00001353 assert( iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001354 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001355 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001356 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001357
drh5f5c7532014-08-20 17:56:27 +00001358 /* Overwrite deleted information with zeros when the secure_delete
1359 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001360 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001361 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001362 }
drhfcce93f2006-02-22 03:08:32 +00001363
drh5f5c7532014-08-20 17:56:27 +00001364 /* The list of freeblocks must be in ascending order. Find the
1365 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001366 */
drh43605152004-05-29 21:46:49 +00001367 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001368 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001369 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1370 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1371 }else{
1372 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1373 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1374 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001375 }
drh7bc4c452014-08-20 18:43:44 +00001376 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1377 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1378
1379 /* At this point:
1380 ** iFreeBlk: First freeblock after iStart, or zero if none
1381 ** iPtr: The address of a pointer iFreeBlk
1382 **
1383 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1384 */
1385 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1386 nFrag = iFreeBlk - iEnd;
1387 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1388 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1389 iSize = iEnd - iStart;
1390 iFreeBlk = get2byte(&data[iFreeBlk]);
1391 }
1392
drh3f387402014-09-24 01:23:00 +00001393 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1394 ** pointer in the page header) then check to see if iStart should be
1395 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001396 */
1397 if( iPtr>hdr+1 ){
1398 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1399 if( iPtrEnd+3>=iStart ){
1400 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1401 nFrag += iStart - iPtrEnd;
1402 iSize = iEnd - iPtr;
1403 iStart = iPtr;
1404 }
1405 }
1406 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1407 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001408 }
drh7bc4c452014-08-20 18:43:44 +00001409 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001410 /* The new freeblock is at the beginning of the cell content area,
1411 ** so just extend the cell content area rather than create another
1412 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001413 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001414 put2byte(&data[hdr+1], iFreeBlk);
1415 put2byte(&data[hdr+5], iEnd);
1416 }else{
1417 /* Insert the new freeblock into the freelist */
1418 put2byte(&data[iPtr], iStart);
1419 put2byte(&data[iStart], iFreeBlk);
1420 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001421 }
drh5f5c7532014-08-20 17:56:27 +00001422 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001423 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001424}
1425
1426/*
drh271efa52004-05-30 19:19:05 +00001427** Decode the flags byte (the first byte of the header) for a page
1428** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001429**
1430** Only the following combinations are supported. Anything different
1431** indicates a corrupt database files:
1432**
1433** PTF_ZERODATA
1434** PTF_ZERODATA | PTF_LEAF
1435** PTF_LEAFDATA | PTF_INTKEY
1436** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001437*/
drh44845222008-07-17 18:39:57 +00001438static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001439 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001440
1441 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001442 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001443 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001444 flagByte &= ~PTF_LEAF;
1445 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001446 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001447 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1448 pPage->intKey = 1;
drh3e28ff52014-09-24 00:59:08 +00001449 pPage->intKeyLeaf = pPage->leaf;
1450 pPage->noPayload = !pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001451 pPage->maxLocal = pBt->maxLeaf;
1452 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001453 }else if( flagByte==PTF_ZERODATA ){
1454 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001455 pPage->intKeyLeaf = 0;
1456 pPage->noPayload = 0;
drh271efa52004-05-30 19:19:05 +00001457 pPage->maxLocal = pBt->maxLocal;
1458 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001459 }else{
1460 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001461 }
drhc9166342012-01-05 23:32:06 +00001462 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001463 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001464}
1465
1466/*
drh7e3b0a02001-04-28 16:52:40 +00001467** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001468**
1469** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001470** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001471** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1472** guarantee that the page is well-formed. It only shows that
1473** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001474*/
danielk197730548662009-07-09 05:07:37 +00001475static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001476
danielk197771d5d2c2008-09-29 11:49:47 +00001477 assert( pPage->pBt!=0 );
1478 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001479 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001480 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1481 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001482
1483 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001484 u16 pc; /* Address of a freeblock within pPage->aData[] */
1485 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001486 u8 *data; /* Equal to pPage->aData */
1487 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001488 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001489 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001490 int nFree; /* Number of unused bytes on the page */
1491 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001492 int iCellFirst; /* First allowable cell or freeblock offset */
1493 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001494
1495 pBt = pPage->pBt;
1496
danielk1977eaa06f62008-09-18 17:34:44 +00001497 hdr = pPage->hdrOffset;
1498 data = pPage->aData;
1499 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001500 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1501 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001502 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001503 usableSize = pBt->usableSize;
1504 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001505 pPage->aDataEnd = &data[usableSize];
1506 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001507 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001508 pPage->nCell = get2byte(&data[hdr+3]);
1509 if( pPage->nCell>MX_CELL(pBt) ){
1510 /* To many cells for a single page. The page must be corrupt */
1511 return SQLITE_CORRUPT_BKPT;
1512 }
drhb908d762009-07-08 16:54:40 +00001513 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001514
shane5eff7cf2009-08-10 03:57:58 +00001515 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001516 ** of page when parsing a cell.
1517 **
1518 ** The following block of code checks early to see if a cell extends
1519 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1520 ** returned if it does.
1521 */
drh0a45c272009-07-08 01:49:11 +00001522 iCellFirst = cellOffset + 2*pPage->nCell;
1523 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001524#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001525 {
drh69e931e2009-06-03 21:04:35 +00001526 int i; /* Index into the cell pointer array */
1527 int sz; /* Size of a cell */
1528
drh69e931e2009-06-03 21:04:35 +00001529 if( !pPage->leaf ) iCellLast--;
1530 for(i=0; i<pPage->nCell; i++){
1531 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001532 testcase( pc==iCellFirst );
1533 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001534 if( pc<iCellFirst || pc>iCellLast ){
1535 return SQLITE_CORRUPT_BKPT;
1536 }
1537 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001538 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001539 if( pc+sz>usableSize ){
1540 return SQLITE_CORRUPT_BKPT;
1541 }
1542 }
drh0a45c272009-07-08 01:49:11 +00001543 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001544 }
1545#endif
1546
danielk1977eaa06f62008-09-18 17:34:44 +00001547 /* Compute the total free space on the page */
1548 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001549 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001550 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001551 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001552 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001553 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001554 return SQLITE_CORRUPT_BKPT;
1555 }
1556 next = get2byte(&data[pc]);
1557 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001558 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1559 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001560 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001561 return SQLITE_CORRUPT_BKPT;
1562 }
shane85095702009-06-15 16:27:08 +00001563 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001564 pc = next;
1565 }
danielk197793c829c2009-06-03 17:26:17 +00001566
1567 /* At this point, nFree contains the sum of the offset to the start
1568 ** of the cell-content area plus the number of free bytes within
1569 ** the cell-content area. If this is greater than the usable-size
1570 ** of the page, then the page must be corrupted. This check also
1571 ** serves to verify that the offset to the start of the cell-content
1572 ** area, according to the page header, lies within the page.
1573 */
1574 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001575 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001576 }
shane5eff7cf2009-08-10 03:57:58 +00001577 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001578 pPage->isInit = 1;
1579 }
drh9e572e62004-04-23 23:43:10 +00001580 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001581}
1582
1583/*
drh8b2f49b2001-06-08 00:21:52 +00001584** Set up a raw page so that it looks like a database page holding
1585** no entries.
drhbd03cae2001-06-02 02:40:57 +00001586*/
drh9e572e62004-04-23 23:43:10 +00001587static void zeroPage(MemPage *pPage, int flags){
1588 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001589 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001590 u8 hdr = pPage->hdrOffset;
1591 u16 first;
drh9e572e62004-04-23 23:43:10 +00001592
danielk19773b8a05f2007-03-19 17:44:26 +00001593 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001594 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1595 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001596 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001597 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001598 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001599 memset(&data[hdr], 0, pBt->usableSize - hdr);
1600 }
drh1bd10f82008-12-10 21:19:56 +00001601 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001602 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001603 memset(&data[hdr+1], 0, 4);
1604 data[hdr+7] = 0;
1605 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001606 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001607 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001608 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001609 pPage->aDataEnd = &data[pBt->usableSize];
1610 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001611 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001612 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1613 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001614 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001615 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001616}
1617
drh897a8202008-09-18 01:08:15 +00001618
1619/*
1620** Convert a DbPage obtained from the pager into a MemPage used by
1621** the btree layer.
1622*/
1623static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1624 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1625 pPage->aData = sqlite3PagerGetData(pDbPage);
1626 pPage->pDbPage = pDbPage;
1627 pPage->pBt = pBt;
1628 pPage->pgno = pgno;
1629 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1630 return pPage;
1631}
1632
drhbd03cae2001-06-02 02:40:57 +00001633/*
drh3aac2dd2004-04-26 14:10:20 +00001634** Get a page from the pager. Initialize the MemPage.pBt and
1635** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001636**
1637** If the noContent flag is set, it means that we do not care about
1638** the content of the page at this time. So do not go to the disk
1639** to fetch the content. Just fill in the content with zeros for now.
1640** If in the future we call sqlite3PagerWrite() on this page, that
1641** means we have started to be concerned about content and the disk
1642** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001643*/
danielk197730548662009-07-09 05:07:37 +00001644static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001645 BtShared *pBt, /* The btree */
1646 Pgno pgno, /* Number of the page to fetch */
1647 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001648 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001649){
drh3aac2dd2004-04-26 14:10:20 +00001650 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001651 DbPage *pDbPage;
1652
drhb00fc3b2013-08-21 23:42:32 +00001653 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001654 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001655 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001656 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001657 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001658 return SQLITE_OK;
1659}
1660
1661/*
danielk1977bea2a942009-01-20 17:06:27 +00001662** Retrieve a page from the pager cache. If the requested page is not
1663** already in the pager cache return NULL. Initialize the MemPage.pBt and
1664** MemPage.aData elements if needed.
1665*/
1666static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1667 DbPage *pDbPage;
1668 assert( sqlite3_mutex_held(pBt->mutex) );
1669 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1670 if( pDbPage ){
1671 return btreePageFromDbPage(pDbPage, pgno, pBt);
1672 }
1673 return 0;
1674}
1675
1676/*
danielk197789d40042008-11-17 14:20:56 +00001677** Return the size of the database file in pages. If there is any kind of
1678** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001679*/
drhb1299152010-03-30 22:58:33 +00001680static Pgno btreePagecount(BtShared *pBt){
1681 return pBt->nPage;
1682}
1683u32 sqlite3BtreeLastPage(Btree *p){
1684 assert( sqlite3BtreeHoldsMutex(p) );
1685 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001686 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001687}
1688
1689/*
danielk197789bc4bc2009-07-21 19:25:24 +00001690** Get a page from the pager and initialize it. This routine is just a
1691** convenience wrapper around separate calls to btreeGetPage() and
1692** btreeInitPage().
1693**
1694** If an error occurs, then the value *ppPage is set to is undefined. It
1695** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001696*/
1697static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001698 BtShared *pBt, /* The database file */
1699 Pgno pgno, /* Number of the page to get */
1700 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001701 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001702){
1703 int rc;
drh1fee73e2007-08-29 04:00:57 +00001704 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001705 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001706
danba3cbf32010-06-30 04:29:03 +00001707 if( pgno>btreePagecount(pBt) ){
1708 rc = SQLITE_CORRUPT_BKPT;
1709 }else{
drhb00fc3b2013-08-21 23:42:32 +00001710 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001711 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001712 rc = btreeInitPage(*ppPage);
1713 if( rc!=SQLITE_OK ){
1714 releasePage(*ppPage);
1715 }
danielk197789bc4bc2009-07-21 19:25:24 +00001716 }
drhee696e22004-08-30 16:52:17 +00001717 }
danba3cbf32010-06-30 04:29:03 +00001718
1719 testcase( pgno==0 );
1720 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001721 return rc;
1722}
1723
1724/*
drh3aac2dd2004-04-26 14:10:20 +00001725** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001726** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001727*/
drh4b70f112004-05-02 21:12:19 +00001728static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001729 if( pPage ){
1730 assert( pPage->aData );
1731 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001732 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001733 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1734 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001735 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001736 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001737 }
1738}
1739
1740/*
drha6abd042004-06-09 17:37:22 +00001741** During a rollback, when the pager reloads information into the cache
1742** so that the cache is restored to its original state at the start of
1743** the transaction, for each page restored this routine is called.
1744**
1745** This routine needs to reset the extra data section at the end of the
1746** page to agree with the restored data.
1747*/
danielk1977eaa06f62008-09-18 17:34:44 +00001748static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001749 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001750 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001751 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001752 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001753 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001754 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001755 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001756 /* pPage might not be a btree page; it might be an overflow page
1757 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001758 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001759 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001760 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001761 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001762 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001763 }
drha6abd042004-06-09 17:37:22 +00001764 }
1765}
1766
1767/*
drhe5fe6902007-12-07 18:55:28 +00001768** Invoke the busy handler for a btree.
1769*/
danielk19771ceedd32008-11-19 10:22:33 +00001770static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001771 BtShared *pBt = (BtShared*)pArg;
1772 assert( pBt->db );
1773 assert( sqlite3_mutex_held(pBt->db->mutex) );
1774 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1775}
1776
1777/*
drhad3e0102004-09-03 23:32:18 +00001778** Open a database file.
1779**
drh382c0242001-10-06 16:33:02 +00001780** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001781** then an ephemeral database is created. The ephemeral database might
1782** be exclusively in memory, or it might use a disk-based memory cache.
1783** Either way, the ephemeral database will be automatically deleted
1784** when sqlite3BtreeClose() is called.
1785**
drhe53831d2007-08-17 01:14:38 +00001786** If zFilename is ":memory:" then an in-memory database is created
1787** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001788**
drh33f111d2012-01-17 15:29:14 +00001789** The "flags" parameter is a bitmask that might contain bits like
1790** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001791**
drhc47fd8e2009-04-30 13:30:32 +00001792** If the database is already opened in the same database connection
1793** and we are in shared cache mode, then the open will fail with an
1794** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1795** objects in the same database connection since doing so will lead
1796** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001797*/
drh23e11ca2004-05-04 17:27:28 +00001798int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001799 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001800 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001801 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001802 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001803 int flags, /* Options */
1804 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001805){
drh7555d8e2009-03-20 13:15:30 +00001806 BtShared *pBt = 0; /* Shared part of btree structure */
1807 Btree *p; /* Handle to return */
1808 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1809 int rc = SQLITE_OK; /* Result code from this function */
1810 u8 nReserve; /* Byte of unused space on each page */
1811 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001812
drh75c014c2010-08-30 15:02:28 +00001813 /* True if opening an ephemeral, temporary database */
1814 const int isTempDb = zFilename==0 || zFilename[0]==0;
1815
danielk1977aef0bf62005-12-30 16:28:01 +00001816 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001817 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001818 */
drhb0a7c9c2010-12-06 21:09:59 +00001819#ifdef SQLITE_OMIT_MEMORYDB
1820 const int isMemdb = 0;
1821#else
1822 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001823 || (isTempDb && sqlite3TempInMemory(db))
1824 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001825#endif
1826
drhe5fe6902007-12-07 18:55:28 +00001827 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001828 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001829 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001830 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1831
1832 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1833 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1834
1835 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1836 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001837
drh75c014c2010-08-30 15:02:28 +00001838 if( isMemdb ){
1839 flags |= BTREE_MEMORY;
1840 }
1841 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1842 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1843 }
drh17435752007-08-16 04:30:38 +00001844 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001845 if( !p ){
1846 return SQLITE_NOMEM;
1847 }
1848 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001849 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001850#ifndef SQLITE_OMIT_SHARED_CACHE
1851 p->lock.pBtree = p;
1852 p->lock.iTable = 1;
1853#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001854
drh198bf392006-01-06 21:52:49 +00001855#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001856 /*
1857 ** If this Btree is a candidate for shared cache, try to find an
1858 ** existing BtShared object that we can share with
1859 */
drh4ab9d252012-05-26 20:08:49 +00001860 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001861 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001862 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001863 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001864 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001865 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001866 if( !zFullPathname ){
1867 sqlite3_free(p);
1868 return SQLITE_NOMEM;
1869 }
drhafc8b7f2012-05-26 18:06:38 +00001870 if( isMemdb ){
1871 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1872 }else{
1873 rc = sqlite3OsFullPathname(pVfs, zFilename,
1874 nFullPathname, zFullPathname);
1875 if( rc ){
1876 sqlite3_free(zFullPathname);
1877 sqlite3_free(p);
1878 return rc;
1879 }
drh070ad6b2011-11-17 11:43:19 +00001880 }
drh30ddce62011-10-15 00:16:30 +00001881#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001882 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1883 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001884 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001885 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001886#endif
drh78f82d12008-09-02 00:52:52 +00001887 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001888 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001889 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001890 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001891 int iDb;
1892 for(iDb=db->nDb-1; iDb>=0; iDb--){
1893 Btree *pExisting = db->aDb[iDb].pBt;
1894 if( pExisting && pExisting->pBt==pBt ){
1895 sqlite3_mutex_leave(mutexShared);
1896 sqlite3_mutex_leave(mutexOpen);
1897 sqlite3_free(zFullPathname);
1898 sqlite3_free(p);
1899 return SQLITE_CONSTRAINT;
1900 }
1901 }
drhff0587c2007-08-29 17:43:19 +00001902 p->pBt = pBt;
1903 pBt->nRef++;
1904 break;
1905 }
1906 }
1907 sqlite3_mutex_leave(mutexShared);
1908 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001909 }
drhff0587c2007-08-29 17:43:19 +00001910#ifdef SQLITE_DEBUG
1911 else{
1912 /* In debug mode, we mark all persistent databases as sharable
1913 ** even when they are not. This exercises the locking code and
1914 ** gives more opportunity for asserts(sqlite3_mutex_held())
1915 ** statements to find locking problems.
1916 */
1917 p->sharable = 1;
1918 }
1919#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001920 }
1921#endif
drha059ad02001-04-17 20:09:11 +00001922 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001923 /*
1924 ** The following asserts make sure that structures used by the btree are
1925 ** the right size. This is to guard against size changes that result
1926 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001927 */
drhe53831d2007-08-17 01:14:38 +00001928 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1929 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1930 assert( sizeof(u32)==4 );
1931 assert( sizeof(u16)==2 );
1932 assert( sizeof(Pgno)==4 );
1933
1934 pBt = sqlite3MallocZero( sizeof(*pBt) );
1935 if( pBt==0 ){
1936 rc = SQLITE_NOMEM;
1937 goto btree_open_out;
1938 }
danielk197771d5d2c2008-09-29 11:49:47 +00001939 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001940 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001941 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00001942 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00001943 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1944 }
1945 if( rc!=SQLITE_OK ){
1946 goto btree_open_out;
1947 }
shanehbd2aaf92010-09-01 02:38:21 +00001948 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001949 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001950 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001951 p->pBt = pBt;
1952
drhe53831d2007-08-17 01:14:38 +00001953 pBt->pCursor = 0;
1954 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001955 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001956#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001957 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001958#endif
drhb2eced52010-08-12 02:41:12 +00001959 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001960 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1961 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001962 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001963#ifndef SQLITE_OMIT_AUTOVACUUM
1964 /* If the magic name ":memory:" will create an in-memory database, then
1965 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1966 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1967 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1968 ** regular file-name. In this case the auto-vacuum applies as per normal.
1969 */
1970 if( zFilename && !isMemdb ){
1971 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1972 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1973 }
1974#endif
1975 nReserve = 0;
1976 }else{
1977 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001978 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001979#ifndef SQLITE_OMIT_AUTOVACUUM
1980 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1981 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1982#endif
1983 }
drhfa9601a2009-06-18 17:22:39 +00001984 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001985 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001986 pBt->usableSize = pBt->pageSize - nReserve;
1987 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001988
1989#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1990 /* Add the new BtShared object to the linked list sharable BtShareds.
1991 */
1992 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001993 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001994 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001995 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001996 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001997 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001998 if( pBt->mutex==0 ){
1999 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002000 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002001 goto btree_open_out;
2002 }
drhff0587c2007-08-29 17:43:19 +00002003 }
drhe53831d2007-08-17 01:14:38 +00002004 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002005 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2006 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002007 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002008 }
drheee46cf2004-11-06 00:02:48 +00002009#endif
drh90f5ecb2004-07-22 01:19:35 +00002010 }
danielk1977aef0bf62005-12-30 16:28:01 +00002011
drhcfed7bc2006-03-13 14:28:05 +00002012#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002013 /* If the new Btree uses a sharable pBtShared, then link the new
2014 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002015 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002016 */
drhe53831d2007-08-17 01:14:38 +00002017 if( p->sharable ){
2018 int i;
2019 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002020 for(i=0; i<db->nDb; i++){
2021 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002022 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2023 if( p->pBt<pSib->pBt ){
2024 p->pNext = pSib;
2025 p->pPrev = 0;
2026 pSib->pPrev = p;
2027 }else{
drhabddb0c2007-08-20 13:14:28 +00002028 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002029 pSib = pSib->pNext;
2030 }
2031 p->pNext = pSib->pNext;
2032 p->pPrev = pSib;
2033 if( p->pNext ){
2034 p->pNext->pPrev = p;
2035 }
2036 pSib->pNext = p;
2037 }
2038 break;
2039 }
2040 }
danielk1977aef0bf62005-12-30 16:28:01 +00002041 }
danielk1977aef0bf62005-12-30 16:28:01 +00002042#endif
2043 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002044
2045btree_open_out:
2046 if( rc!=SQLITE_OK ){
2047 if( pBt && pBt->pPager ){
2048 sqlite3PagerClose(pBt->pPager);
2049 }
drh17435752007-08-16 04:30:38 +00002050 sqlite3_free(pBt);
2051 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002052 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002053 }else{
2054 /* If the B-Tree was successfully opened, set the pager-cache size to the
2055 ** default value. Except, when opening on an existing shared pager-cache,
2056 ** do not change the pager-cache size.
2057 */
2058 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2059 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2060 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002061 }
drh7555d8e2009-03-20 13:15:30 +00002062 if( mutexOpen ){
2063 assert( sqlite3_mutex_held(mutexOpen) );
2064 sqlite3_mutex_leave(mutexOpen);
2065 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002066 return rc;
drha059ad02001-04-17 20:09:11 +00002067}
2068
2069/*
drhe53831d2007-08-17 01:14:38 +00002070** Decrement the BtShared.nRef counter. When it reaches zero,
2071** remove the BtShared structure from the sharing list. Return
2072** true if the BtShared.nRef counter reaches zero and return
2073** false if it is still positive.
2074*/
2075static int removeFromSharingList(BtShared *pBt){
2076#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002077 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002078 BtShared *pList;
2079 int removed = 0;
2080
drhd677b3d2007-08-20 22:48:41 +00002081 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002082 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002083 sqlite3_mutex_enter(pMaster);
2084 pBt->nRef--;
2085 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002086 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2087 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002088 }else{
drh78f82d12008-09-02 00:52:52 +00002089 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002090 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002091 pList=pList->pNext;
2092 }
drh34004ce2008-07-11 16:15:17 +00002093 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002094 pList->pNext = pBt->pNext;
2095 }
2096 }
drh3285db22007-09-03 22:00:39 +00002097 if( SQLITE_THREADSAFE ){
2098 sqlite3_mutex_free(pBt->mutex);
2099 }
drhe53831d2007-08-17 01:14:38 +00002100 removed = 1;
2101 }
2102 sqlite3_mutex_leave(pMaster);
2103 return removed;
2104#else
2105 return 1;
2106#endif
2107}
2108
2109/*
drhf7141992008-06-19 00:16:08 +00002110** Make sure pBt->pTmpSpace points to an allocation of
2111** MX_CELL_SIZE(pBt) bytes.
2112*/
2113static void allocateTempSpace(BtShared *pBt){
2114 if( !pBt->pTmpSpace ){
2115 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002116
2117 /* One of the uses of pBt->pTmpSpace is to format cells before
2118 ** inserting them into a leaf page (function fillInCell()). If
2119 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2120 ** by the various routines that manipulate binary cells. Which
2121 ** can mean that fillInCell() only initializes the first 2 or 3
2122 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2123 ** it into a database page. This is not actually a problem, but it
2124 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2125 ** data is passed to system call write(). So to avoid this error,
2126 ** zero the first 4 bytes of temp space here. */
2127 if( pBt->pTmpSpace ) memset(pBt->pTmpSpace, 0, 4);
drhf7141992008-06-19 00:16:08 +00002128 }
2129}
2130
2131/*
2132** Free the pBt->pTmpSpace allocation
2133*/
2134static void freeTempSpace(BtShared *pBt){
2135 sqlite3PageFree( pBt->pTmpSpace);
2136 pBt->pTmpSpace = 0;
2137}
2138
2139/*
drha059ad02001-04-17 20:09:11 +00002140** Close an open database and invalidate all cursors.
2141*/
danielk1977aef0bf62005-12-30 16:28:01 +00002142int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002143 BtShared *pBt = p->pBt;
2144 BtCursor *pCur;
2145
danielk1977aef0bf62005-12-30 16:28:01 +00002146 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002147 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002148 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002149 pCur = pBt->pCursor;
2150 while( pCur ){
2151 BtCursor *pTmp = pCur;
2152 pCur = pCur->pNext;
2153 if( pTmp->pBtree==p ){
2154 sqlite3BtreeCloseCursor(pTmp);
2155 }
drha059ad02001-04-17 20:09:11 +00002156 }
danielk1977aef0bf62005-12-30 16:28:01 +00002157
danielk19778d34dfd2006-01-24 16:37:57 +00002158 /* Rollback any active transaction and free the handle structure.
2159 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2160 ** this handle.
2161 */
drh0f198a72012-02-13 16:43:16 +00002162 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002163 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002164
danielk1977aef0bf62005-12-30 16:28:01 +00002165 /* If there are still other outstanding references to the shared-btree
2166 ** structure, return now. The remainder of this procedure cleans
2167 ** up the shared-btree.
2168 */
drhe53831d2007-08-17 01:14:38 +00002169 assert( p->wantToLock==0 && p->locked==0 );
2170 if( !p->sharable || removeFromSharingList(pBt) ){
2171 /* The pBt is no longer on the sharing list, so we can access
2172 ** it without having to hold the mutex.
2173 **
2174 ** Clean out and delete the BtShared object.
2175 */
2176 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002177 sqlite3PagerClose(pBt->pPager);
2178 if( pBt->xFreeSchema && pBt->pSchema ){
2179 pBt->xFreeSchema(pBt->pSchema);
2180 }
drhb9755982010-07-24 16:34:37 +00002181 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002182 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002183 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002184 }
2185
drhe53831d2007-08-17 01:14:38 +00002186#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002187 assert( p->wantToLock==0 );
2188 assert( p->locked==0 );
2189 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2190 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002191#endif
2192
drhe53831d2007-08-17 01:14:38 +00002193 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002194 return SQLITE_OK;
2195}
2196
2197/*
drhda47d772002-12-02 04:25:19 +00002198** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002199**
2200** The maximum number of cache pages is set to the absolute
2201** value of mxPage. If mxPage is negative, the pager will
2202** operate asynchronously - it will not stop to do fsync()s
2203** to insure data is written to the disk surface before
2204** continuing. Transactions still work if synchronous is off,
2205** and the database cannot be corrupted if this program
2206** crashes. But if the operating system crashes or there is
2207** an abrupt power failure when synchronous is off, the database
2208** could be left in an inconsistent and unrecoverable state.
2209** Synchronous is on by default so database corruption is not
2210** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002211*/
danielk1977aef0bf62005-12-30 16:28:01 +00002212int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2213 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002214 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002215 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002216 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002217 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002218 return SQLITE_OK;
2219}
2220
drh18c7e402014-03-14 11:46:10 +00002221#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002222/*
dan5d8a1372013-03-19 19:28:06 +00002223** Change the limit on the amount of the database file that may be
2224** memory mapped.
2225*/
drh9b4c59f2013-04-15 17:03:42 +00002226int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002227 BtShared *pBt = p->pBt;
2228 assert( sqlite3_mutex_held(p->db->mutex) );
2229 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002230 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002231 sqlite3BtreeLeave(p);
2232 return SQLITE_OK;
2233}
drh18c7e402014-03-14 11:46:10 +00002234#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002235
2236/*
drh973b6e32003-02-12 14:09:42 +00002237** Change the way data is synced to disk in order to increase or decrease
2238** how well the database resists damage due to OS crashes and power
2239** failures. Level 1 is the same as asynchronous (no syncs() occur and
2240** there is a high probability of damage) Level 2 is the default. There
2241** is a very low but non-zero probability of damage. Level 3 reduces the
2242** probability of damage to near zero but with a write performance reduction.
2243*/
danielk197793758c82005-01-21 08:13:14 +00002244#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002245int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002246 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002247 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002248){
danielk1977aef0bf62005-12-30 16:28:01 +00002249 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002250 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002251 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002252 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002253 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002254 return SQLITE_OK;
2255}
danielk197793758c82005-01-21 08:13:14 +00002256#endif
drh973b6e32003-02-12 14:09:42 +00002257
drh2c8997b2005-08-27 16:36:48 +00002258/*
2259** Return TRUE if the given btree is set to safety level 1. In other
2260** words, return TRUE if no sync() occurs on the disk files.
2261*/
danielk1977aef0bf62005-12-30 16:28:01 +00002262int sqlite3BtreeSyncDisabled(Btree *p){
2263 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002264 int rc;
drhe5fe6902007-12-07 18:55:28 +00002265 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002266 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002267 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002268 rc = sqlite3PagerNosync(pBt->pPager);
2269 sqlite3BtreeLeave(p);
2270 return rc;
drh2c8997b2005-08-27 16:36:48 +00002271}
2272
drh973b6e32003-02-12 14:09:42 +00002273/*
drh90f5ecb2004-07-22 01:19:35 +00002274** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002275** Or, if the page size has already been fixed, return SQLITE_READONLY
2276** without changing anything.
drh06f50212004-11-02 14:24:33 +00002277**
2278** The page size must be a power of 2 between 512 and 65536. If the page
2279** size supplied does not meet this constraint then the page size is not
2280** changed.
2281**
2282** Page sizes are constrained to be a power of two so that the region
2283** of the database file used for locking (beginning at PENDING_BYTE,
2284** the first byte past the 1GB boundary, 0x40000000) needs to occur
2285** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002286**
2287** If parameter nReserve is less than zero, then the number of reserved
2288** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002289**
drhc9166342012-01-05 23:32:06 +00002290** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002291** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002292*/
drhce4869f2009-04-02 20:16:58 +00002293int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002294 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002295 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002296 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002297 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002298 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002299 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002300 return SQLITE_READONLY;
2301 }
2302 if( nReserve<0 ){
2303 nReserve = pBt->pageSize - pBt->usableSize;
2304 }
drhf49661a2008-12-10 16:45:50 +00002305 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002306 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2307 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002308 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002309 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002310 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002311 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002312 }
drhfa9601a2009-06-18 17:22:39 +00002313 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002314 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002315 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002316 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002317 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002318}
2319
2320/*
2321** Return the currently defined page size
2322*/
danielk1977aef0bf62005-12-30 16:28:01 +00002323int sqlite3BtreeGetPageSize(Btree *p){
2324 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002325}
drh7f751222009-03-17 22:33:00 +00002326
drha1f38532012-10-01 12:44:26 +00002327#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002328/*
2329** This function is similar to sqlite3BtreeGetReserve(), except that it
2330** may only be called if it is guaranteed that the b-tree mutex is already
2331** held.
2332**
2333** This is useful in one special case in the backup API code where it is
2334** known that the shared b-tree mutex is held, but the mutex on the
2335** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2336** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002337** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002338*/
2339int sqlite3BtreeGetReserveNoMutex(Btree *p){
2340 assert( sqlite3_mutex_held(p->pBt->mutex) );
2341 return p->pBt->pageSize - p->pBt->usableSize;
2342}
drha1f38532012-10-01 12:44:26 +00002343#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002344
danbb2b4412011-04-06 17:54:31 +00002345#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002346/*
2347** Return the number of bytes of space at the end of every page that
2348** are intentually left unused. This is the "reserved" space that is
2349** sometimes used by extensions.
2350*/
danielk1977aef0bf62005-12-30 16:28:01 +00002351int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002352 int n;
2353 sqlite3BtreeEnter(p);
2354 n = p->pBt->pageSize - p->pBt->usableSize;
2355 sqlite3BtreeLeave(p);
2356 return n;
drh2011d5f2004-07-22 02:40:37 +00002357}
drhf8e632b2007-05-08 14:51:36 +00002358
2359/*
2360** Set the maximum page count for a database if mxPage is positive.
2361** No changes are made if mxPage is 0 or negative.
2362** Regardless of the value of mxPage, return the maximum page count.
2363*/
2364int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002365 int n;
2366 sqlite3BtreeEnter(p);
2367 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2368 sqlite3BtreeLeave(p);
2369 return n;
drhf8e632b2007-05-08 14:51:36 +00002370}
drh5b47efa2010-02-12 18:18:39 +00002371
2372/*
drhc9166342012-01-05 23:32:06 +00002373** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2374** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002375** setting after the change.
2376*/
2377int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2378 int b;
drhaf034ed2010-02-12 19:46:26 +00002379 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002380 sqlite3BtreeEnter(p);
2381 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002382 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2383 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002384 }
drhc9166342012-01-05 23:32:06 +00002385 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002386 sqlite3BtreeLeave(p);
2387 return b;
2388}
danielk1977576ec6b2005-01-21 11:55:25 +00002389#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002390
2391/*
danielk1977951af802004-11-05 15:45:09 +00002392** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2393** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2394** is disabled. The default value for the auto-vacuum property is
2395** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2396*/
danielk1977aef0bf62005-12-30 16:28:01 +00002397int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002398#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002399 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002400#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002401 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002402 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002403 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002404
2405 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002406 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002407 rc = SQLITE_READONLY;
2408 }else{
drh076d4662009-02-18 20:31:18 +00002409 pBt->autoVacuum = av ?1:0;
2410 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002411 }
drhd677b3d2007-08-20 22:48:41 +00002412 sqlite3BtreeLeave(p);
2413 return rc;
danielk1977951af802004-11-05 15:45:09 +00002414#endif
2415}
2416
2417/*
2418** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2419** enabled 1 is returned. Otherwise 0.
2420*/
danielk1977aef0bf62005-12-30 16:28:01 +00002421int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002422#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002423 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002424#else
drhd677b3d2007-08-20 22:48:41 +00002425 int rc;
2426 sqlite3BtreeEnter(p);
2427 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002428 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2429 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2430 BTREE_AUTOVACUUM_INCR
2431 );
drhd677b3d2007-08-20 22:48:41 +00002432 sqlite3BtreeLeave(p);
2433 return rc;
danielk1977951af802004-11-05 15:45:09 +00002434#endif
2435}
2436
2437
2438/*
drha34b6762004-05-07 13:30:42 +00002439** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002440** also acquire a readlock on that file.
2441**
2442** SQLITE_OK is returned on success. If the file is not a
2443** well-formed database file, then SQLITE_CORRUPT is returned.
2444** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002445** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002446*/
danielk1977aef0bf62005-12-30 16:28:01 +00002447static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002448 int rc; /* Result code from subfunctions */
2449 MemPage *pPage1; /* Page 1 of the database file */
2450 int nPage; /* Number of pages in the database */
2451 int nPageFile = 0; /* Number of pages in the database file */
2452 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002453
drh1fee73e2007-08-29 04:00:57 +00002454 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002455 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002456 rc = sqlite3PagerSharedLock(pBt->pPager);
2457 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002458 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002459 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002460
2461 /* Do some checking to help insure the file we opened really is
2462 ** a valid database file.
2463 */
drhc2a4bab2010-04-02 12:46:45 +00002464 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002465 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002466 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002467 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002468 }
2469 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002470 u32 pageSize;
2471 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002472 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002473 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002474 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002475 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002476 }
dan5cf53532010-05-01 16:40:20 +00002477
2478#ifdef SQLITE_OMIT_WAL
2479 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002480 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002481 }
2482 if( page1[19]>1 ){
2483 goto page1_init_failed;
2484 }
2485#else
dane04dc882010-04-20 18:53:15 +00002486 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002487 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002488 }
dane04dc882010-04-20 18:53:15 +00002489 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002490 goto page1_init_failed;
2491 }
drhe5ae5732008-06-15 02:51:47 +00002492
dana470aeb2010-04-21 11:43:38 +00002493 /* If the write version is set to 2, this database should be accessed
2494 ** in WAL mode. If the log is not already open, open it now. Then
2495 ** return SQLITE_OK and return without populating BtShared.pPage1.
2496 ** The caller detects this and calls this function again. This is
2497 ** required as the version of page 1 currently in the page1 buffer
2498 ** may not be the latest version - there may be a newer one in the log
2499 ** file.
2500 */
drhc9166342012-01-05 23:32:06 +00002501 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002502 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002503 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002504 if( rc!=SQLITE_OK ){
2505 goto page1_init_failed;
2506 }else if( isOpen==0 ){
2507 releasePage(pPage1);
2508 return SQLITE_OK;
2509 }
dan8b5444b2010-04-27 14:37:47 +00002510 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002511 }
dan5cf53532010-05-01 16:40:20 +00002512#endif
dane04dc882010-04-20 18:53:15 +00002513
drhe5ae5732008-06-15 02:51:47 +00002514 /* The maximum embedded fraction must be exactly 25%. And the minimum
2515 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2516 ** The original design allowed these amounts to vary, but as of
2517 ** version 3.6.0, we require them to be fixed.
2518 */
2519 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2520 goto page1_init_failed;
2521 }
drhb2eced52010-08-12 02:41:12 +00002522 pageSize = (page1[16]<<8) | (page1[17]<<16);
2523 if( ((pageSize-1)&pageSize)!=0
2524 || pageSize>SQLITE_MAX_PAGE_SIZE
2525 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002526 ){
drh07d183d2005-05-01 22:52:42 +00002527 goto page1_init_failed;
2528 }
2529 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002530 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002531 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002532 /* After reading the first page of the database assuming a page size
2533 ** of BtShared.pageSize, we have discovered that the page-size is
2534 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2535 ** zero and return SQLITE_OK. The caller will call this function
2536 ** again with the correct page-size.
2537 */
2538 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002539 pBt->usableSize = usableSize;
2540 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002541 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002542 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2543 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002544 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002545 }
danecac6702011-02-09 18:19:20 +00002546 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002547 rc = SQLITE_CORRUPT_BKPT;
2548 goto page1_init_failed;
2549 }
drhb33e1b92009-06-18 11:29:20 +00002550 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002551 goto page1_init_failed;
2552 }
drh43b18e12010-08-17 19:40:08 +00002553 pBt->pageSize = pageSize;
2554 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002555#ifndef SQLITE_OMIT_AUTOVACUUM
2556 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002557 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002558#endif
drh306dc212001-05-21 13:45:10 +00002559 }
drhb6f41482004-05-14 01:58:11 +00002560
2561 /* maxLocal is the maximum amount of payload to store locally for
2562 ** a cell. Make sure it is small enough so that at least minFanout
2563 ** cells can will fit on one page. We assume a 10-byte page header.
2564 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002565 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002566 ** 4-byte child pointer
2567 ** 9-byte nKey value
2568 ** 4-byte nData value
2569 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002570 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002571 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2572 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002573 */
shaneh1df2db72010-08-18 02:28:48 +00002574 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2575 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2576 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2577 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002578 if( pBt->maxLocal>127 ){
2579 pBt->max1bytePayload = 127;
2580 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002581 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002582 }
drh2e38c322004-09-03 18:38:44 +00002583 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002584 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002585 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002586 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002587
drh72f82862001-05-24 21:06:34 +00002588page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002589 releasePage(pPage1);
2590 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002591 return rc;
drh306dc212001-05-21 13:45:10 +00002592}
2593
drh85ec3b62013-05-14 23:12:06 +00002594#ifndef NDEBUG
2595/*
2596** Return the number of cursors open on pBt. This is for use
2597** in assert() expressions, so it is only compiled if NDEBUG is not
2598** defined.
2599**
2600** Only write cursors are counted if wrOnly is true. If wrOnly is
2601** false then all cursors are counted.
2602**
2603** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002604** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002605** have been tripped into the CURSOR_FAULT state are not counted.
2606*/
2607static int countValidCursors(BtShared *pBt, int wrOnly){
2608 BtCursor *pCur;
2609 int r = 0;
2610 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002611 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2612 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002613 }
2614 return r;
2615}
2616#endif
2617
drh306dc212001-05-21 13:45:10 +00002618/*
drhb8ca3072001-12-05 00:21:20 +00002619** If there are no outstanding cursors and we are not in the middle
2620** of a transaction but there is a read lock on the database, then
2621** this routine unrefs the first page of the database file which
2622** has the effect of releasing the read lock.
2623**
drhb8ca3072001-12-05 00:21:20 +00002624** If there is a transaction in progress, this routine is a no-op.
2625*/
danielk1977aef0bf62005-12-30 16:28:01 +00002626static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002627 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002628 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002629 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00002630 MemPage *pPage1 = pBt->pPage1;
2631 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00002632 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00002633 pBt->pPage1 = 0;
drhb2325b72014-09-24 18:31:07 +00002634 releasePage(pPage1);
drhb8ca3072001-12-05 00:21:20 +00002635 }
2636}
2637
2638/*
drhe39f2f92009-07-23 01:43:59 +00002639** If pBt points to an empty file then convert that empty file
2640** into a new empty database by initializing the first page of
2641** the database.
drh8b2f49b2001-06-08 00:21:52 +00002642*/
danielk1977aef0bf62005-12-30 16:28:01 +00002643static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002644 MemPage *pP1;
2645 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002646 int rc;
drhd677b3d2007-08-20 22:48:41 +00002647
drh1fee73e2007-08-29 04:00:57 +00002648 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002649 if( pBt->nPage>0 ){
2650 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002651 }
drh3aac2dd2004-04-26 14:10:20 +00002652 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002653 assert( pP1!=0 );
2654 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002655 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002656 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002657 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2658 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002659 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2660 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002661 data[18] = 1;
2662 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002663 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2664 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002665 data[21] = 64;
2666 data[22] = 32;
2667 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002668 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002669 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002670 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002671#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002672 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002673 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002674 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002675 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002676#endif
drhdd3cd972010-03-27 17:12:36 +00002677 pBt->nPage = 1;
2678 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002679 return SQLITE_OK;
2680}
2681
2682/*
danb483eba2012-10-13 19:58:11 +00002683** Initialize the first page of the database file (creating a database
2684** consisting of a single page and no schema objects). Return SQLITE_OK
2685** if successful, or an SQLite error code otherwise.
2686*/
2687int sqlite3BtreeNewDb(Btree *p){
2688 int rc;
2689 sqlite3BtreeEnter(p);
2690 p->pBt->nPage = 0;
2691 rc = newDatabase(p->pBt);
2692 sqlite3BtreeLeave(p);
2693 return rc;
2694}
2695
2696/*
danielk1977ee5741e2004-05-31 10:01:34 +00002697** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002698** is started if the second argument is nonzero, otherwise a read-
2699** transaction. If the second argument is 2 or more and exclusive
2700** transaction is started, meaning that no other process is allowed
2701** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002702** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002703** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002704**
danielk1977ee5741e2004-05-31 10:01:34 +00002705** A write-transaction must be started before attempting any
2706** changes to the database. None of the following routines
2707** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002708**
drh23e11ca2004-05-04 17:27:28 +00002709** sqlite3BtreeCreateTable()
2710** sqlite3BtreeCreateIndex()
2711** sqlite3BtreeClearTable()
2712** sqlite3BtreeDropTable()
2713** sqlite3BtreeInsert()
2714** sqlite3BtreeDelete()
2715** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002716**
drhb8ef32c2005-03-14 02:01:49 +00002717** If an initial attempt to acquire the lock fails because of lock contention
2718** and the database was previously unlocked, then invoke the busy handler
2719** if there is one. But if there was previously a read-lock, do not
2720** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2721** returned when there is already a read-lock in order to avoid a deadlock.
2722**
2723** Suppose there are two processes A and B. A has a read lock and B has
2724** a reserved lock. B tries to promote to exclusive but is blocked because
2725** of A's read lock. A tries to promote to reserved but is blocked by B.
2726** One or the other of the two processes must give way or there can be
2727** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2728** when A already has a read lock, we encourage A to give up and let B
2729** proceed.
drha059ad02001-04-17 20:09:11 +00002730*/
danielk1977aef0bf62005-12-30 16:28:01 +00002731int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002732 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002733 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002734 int rc = SQLITE_OK;
2735
drhd677b3d2007-08-20 22:48:41 +00002736 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002737 btreeIntegrity(p);
2738
danielk1977ee5741e2004-05-31 10:01:34 +00002739 /* If the btree is already in a write-transaction, or it
2740 ** is already in a read-transaction and a read-transaction
2741 ** is requested, this is a no-op.
2742 */
danielk1977aef0bf62005-12-30 16:28:01 +00002743 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002744 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002745 }
dan56c517a2013-09-26 11:04:33 +00002746 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002747
2748 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002749 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002750 rc = SQLITE_READONLY;
2751 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002752 }
2753
danielk1977404ca072009-03-16 13:19:36 +00002754#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002755 /* If another database handle has already opened a write transaction
2756 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002757 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002758 */
drhc9166342012-01-05 23:32:06 +00002759 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2760 || (pBt->btsFlags & BTS_PENDING)!=0
2761 ){
danielk1977404ca072009-03-16 13:19:36 +00002762 pBlock = pBt->pWriter->db;
2763 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002764 BtLock *pIter;
2765 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2766 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002767 pBlock = pIter->pBtree->db;
2768 break;
danielk1977641b0f42007-12-21 04:47:25 +00002769 }
2770 }
2771 }
danielk1977404ca072009-03-16 13:19:36 +00002772 if( pBlock ){
2773 sqlite3ConnectionBlocked(p->db, pBlock);
2774 rc = SQLITE_LOCKED_SHAREDCACHE;
2775 goto trans_begun;
2776 }
danielk1977641b0f42007-12-21 04:47:25 +00002777#endif
2778
danielk1977602b4662009-07-02 07:47:33 +00002779 /* Any read-only or read-write transaction implies a read-lock on
2780 ** page 1. So if some other shared-cache client already has a write-lock
2781 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002782 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2783 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002784
drhc9166342012-01-05 23:32:06 +00002785 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2786 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002787 do {
danielk1977295dc102009-04-01 19:07:03 +00002788 /* Call lockBtree() until either pBt->pPage1 is populated or
2789 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2790 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2791 ** reading page 1 it discovers that the page-size of the database
2792 ** file is not pBt->pageSize. In this case lockBtree() will update
2793 ** pBt->pageSize to the page-size of the file on disk.
2794 */
2795 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002796
drhb8ef32c2005-03-14 02:01:49 +00002797 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002798 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002799 rc = SQLITE_READONLY;
2800 }else{
danielk1977d8293352009-04-30 09:10:37 +00002801 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002802 if( rc==SQLITE_OK ){
2803 rc = newDatabase(pBt);
2804 }
drhb8ef32c2005-03-14 02:01:49 +00002805 }
2806 }
2807
danielk1977bd434552009-03-18 10:33:00 +00002808 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002809 unlockBtreeIfUnused(pBt);
2810 }
danf9b76712010-06-01 14:12:45 +00002811 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002812 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002813
2814 if( rc==SQLITE_OK ){
2815 if( p->inTrans==TRANS_NONE ){
2816 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002817#ifndef SQLITE_OMIT_SHARED_CACHE
2818 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002819 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002820 p->lock.eLock = READ_LOCK;
2821 p->lock.pNext = pBt->pLock;
2822 pBt->pLock = &p->lock;
2823 }
2824#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002825 }
2826 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2827 if( p->inTrans>pBt->inTransaction ){
2828 pBt->inTransaction = p->inTrans;
2829 }
danielk1977404ca072009-03-16 13:19:36 +00002830 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002831 MemPage *pPage1 = pBt->pPage1;
2832#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002833 assert( !pBt->pWriter );
2834 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002835 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2836 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002837#endif
dan59257dc2010-08-04 11:34:31 +00002838
2839 /* If the db-size header field is incorrect (as it may be if an old
2840 ** client has been writing the database file), update it now. Doing
2841 ** this sooner rather than later means the database size can safely
2842 ** re-read the database size from page 1 if a savepoint or transaction
2843 ** rollback occurs within the transaction.
2844 */
2845 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2846 rc = sqlite3PagerWrite(pPage1->pDbPage);
2847 if( rc==SQLITE_OK ){
2848 put4byte(&pPage1->aData[28], pBt->nPage);
2849 }
2850 }
2851 }
danielk1977aef0bf62005-12-30 16:28:01 +00002852 }
2853
drhd677b3d2007-08-20 22:48:41 +00002854
2855trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002856 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002857 /* This call makes sure that the pager has the correct number of
2858 ** open savepoints. If the second parameter is greater than 0 and
2859 ** the sub-journal is not already open, then it will be opened here.
2860 */
danielk1977fd7f0452008-12-17 17:30:26 +00002861 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2862 }
danielk197712dd5492008-12-18 15:45:07 +00002863
danielk1977aef0bf62005-12-30 16:28:01 +00002864 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002865 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002866 return rc;
drha059ad02001-04-17 20:09:11 +00002867}
2868
danielk1977687566d2004-11-02 12:56:41 +00002869#ifndef SQLITE_OMIT_AUTOVACUUM
2870
2871/*
2872** Set the pointer-map entries for all children of page pPage. Also, if
2873** pPage contains cells that point to overflow pages, set the pointer
2874** map entries for the overflow pages as well.
2875*/
2876static int setChildPtrmaps(MemPage *pPage){
2877 int i; /* Counter variable */
2878 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002879 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002880 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002881 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002882 Pgno pgno = pPage->pgno;
2883
drh1fee73e2007-08-29 04:00:57 +00002884 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002885 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002886 if( rc!=SQLITE_OK ){
2887 goto set_child_ptrmaps_out;
2888 }
danielk1977687566d2004-11-02 12:56:41 +00002889 nCell = pPage->nCell;
2890
2891 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002892 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002893
drh98add2e2009-07-20 17:11:49 +00002894 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002895
danielk1977687566d2004-11-02 12:56:41 +00002896 if( !pPage->leaf ){
2897 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002898 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002899 }
2900 }
2901
2902 if( !pPage->leaf ){
2903 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002904 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002905 }
2906
2907set_child_ptrmaps_out:
2908 pPage->isInit = isInitOrig;
2909 return rc;
2910}
2911
2912/*
drhf3aed592009-07-08 18:12:49 +00002913** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2914** that it points to iTo. Parameter eType describes the type of pointer to
2915** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002916**
2917** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2918** page of pPage.
2919**
2920** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2921** page pointed to by one of the cells on pPage.
2922**
2923** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2924** overflow page in the list.
2925*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002926static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002927 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002928 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002929 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002930 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002931 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002932 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002933 }
danielk1977f78fc082004-11-02 14:40:32 +00002934 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002935 }else{
drhf49661a2008-12-10 16:45:50 +00002936 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002937 int i;
2938 int nCell;
2939
danielk197730548662009-07-09 05:07:37 +00002940 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002941 nCell = pPage->nCell;
2942
danielk1977687566d2004-11-02 12:56:41 +00002943 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002944 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002945 if( eType==PTRMAP_OVERFLOW1 ){
2946 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002947 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002948 if( info.iOverflow
2949 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2950 && iFrom==get4byte(&pCell[info.iOverflow])
2951 ){
2952 put4byte(&pCell[info.iOverflow], iTo);
2953 break;
danielk1977687566d2004-11-02 12:56:41 +00002954 }
2955 }else{
2956 if( get4byte(pCell)==iFrom ){
2957 put4byte(pCell, iTo);
2958 break;
2959 }
2960 }
2961 }
2962
2963 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002964 if( eType!=PTRMAP_BTREE ||
2965 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002966 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002967 }
danielk1977687566d2004-11-02 12:56:41 +00002968 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2969 }
2970
2971 pPage->isInit = isInitOrig;
2972 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002973 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002974}
2975
danielk1977003ba062004-11-04 02:57:33 +00002976
danielk19777701e812005-01-10 12:59:51 +00002977/*
2978** Move the open database page pDbPage to location iFreePage in the
2979** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002980**
2981** The isCommit flag indicates that there is no need to remember that
2982** the journal needs to be sync()ed before database page pDbPage->pgno
2983** can be written to. The caller has already promised not to write to that
2984** page.
danielk19777701e812005-01-10 12:59:51 +00002985*/
danielk1977003ba062004-11-04 02:57:33 +00002986static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002987 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002988 MemPage *pDbPage, /* Open page to move */
2989 u8 eType, /* Pointer map 'type' entry for pDbPage */
2990 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002991 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002992 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002993){
2994 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2995 Pgno iDbPage = pDbPage->pgno;
2996 Pager *pPager = pBt->pPager;
2997 int rc;
2998
danielk1977a0bf2652004-11-04 14:30:04 +00002999 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3000 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003001 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003002 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003003
drh85b623f2007-12-13 21:54:09 +00003004 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003005 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3006 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003007 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003008 if( rc!=SQLITE_OK ){
3009 return rc;
3010 }
3011 pDbPage->pgno = iFreePage;
3012
3013 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3014 ** that point to overflow pages. The pointer map entries for all these
3015 ** pages need to be changed.
3016 **
3017 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3018 ** pointer to a subsequent overflow page. If this is the case, then
3019 ** the pointer map needs to be updated for the subsequent overflow page.
3020 */
danielk1977a0bf2652004-11-04 14:30:04 +00003021 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003022 rc = setChildPtrmaps(pDbPage);
3023 if( rc!=SQLITE_OK ){
3024 return rc;
3025 }
3026 }else{
3027 Pgno nextOvfl = get4byte(pDbPage->aData);
3028 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003029 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003030 if( rc!=SQLITE_OK ){
3031 return rc;
3032 }
3033 }
3034 }
3035
3036 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3037 ** that it points at iFreePage. Also fix the pointer map entry for
3038 ** iPtrPage.
3039 */
danielk1977a0bf2652004-11-04 14:30:04 +00003040 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003041 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003042 if( rc!=SQLITE_OK ){
3043 return rc;
3044 }
danielk19773b8a05f2007-03-19 17:44:26 +00003045 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003046 if( rc!=SQLITE_OK ){
3047 releasePage(pPtrPage);
3048 return rc;
3049 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003050 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003051 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003052 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003053 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003054 }
danielk1977003ba062004-11-04 02:57:33 +00003055 }
danielk1977003ba062004-11-04 02:57:33 +00003056 return rc;
3057}
3058
danielk1977dddbcdc2007-04-26 14:42:34 +00003059/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003060static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003061
3062/*
dan51f0b6d2013-02-22 20:16:34 +00003063** Perform a single step of an incremental-vacuum. If successful, return
3064** SQLITE_OK. If there is no work to do (and therefore no point in
3065** calling this function again), return SQLITE_DONE. Or, if an error
3066** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003067**
peter.d.reid60ec9142014-09-06 16:39:46 +00003068** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003069** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003070**
dan51f0b6d2013-02-22 20:16:34 +00003071** Parameter nFin is the number of pages that this database would contain
3072** were this function called until it returns SQLITE_DONE.
3073**
3074** If the bCommit parameter is non-zero, this function assumes that the
3075** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003076** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003077** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003078*/
dan51f0b6d2013-02-22 20:16:34 +00003079static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003080 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003081 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003082
drh1fee73e2007-08-29 04:00:57 +00003083 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003084 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003085
3086 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003087 u8 eType;
3088 Pgno iPtrPage;
3089
3090 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003091 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003092 return SQLITE_DONE;
3093 }
3094
3095 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3096 if( rc!=SQLITE_OK ){
3097 return rc;
3098 }
3099 if( eType==PTRMAP_ROOTPAGE ){
3100 return SQLITE_CORRUPT_BKPT;
3101 }
3102
3103 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003104 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003105 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003106 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003107 ** truncated to zero after this function returns, so it doesn't
3108 ** matter if it still contains some garbage entries.
3109 */
3110 Pgno iFreePg;
3111 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003112 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003113 if( rc!=SQLITE_OK ){
3114 return rc;
3115 }
3116 assert( iFreePg==iLastPg );
3117 releasePage(pFreePg);
3118 }
3119 } else {
3120 Pgno iFreePg; /* Index of free page to move pLastPg to */
3121 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003122 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3123 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003124
drhb00fc3b2013-08-21 23:42:32 +00003125 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003126 if( rc!=SQLITE_OK ){
3127 return rc;
3128 }
3129
dan51f0b6d2013-02-22 20:16:34 +00003130 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003131 ** is swapped with the first free page pulled off the free list.
3132 **
dan51f0b6d2013-02-22 20:16:34 +00003133 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003134 ** looping until a free-page located within the first nFin pages
3135 ** of the file is found.
3136 */
dan51f0b6d2013-02-22 20:16:34 +00003137 if( bCommit==0 ){
3138 eMode = BTALLOC_LE;
3139 iNear = nFin;
3140 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003141 do {
3142 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003143 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003144 if( rc!=SQLITE_OK ){
3145 releasePage(pLastPg);
3146 return rc;
3147 }
3148 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003149 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003150 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003151
dane1df4e32013-03-05 11:27:04 +00003152 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003153 releasePage(pLastPg);
3154 if( rc!=SQLITE_OK ){
3155 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003156 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003157 }
3158 }
3159
dan51f0b6d2013-02-22 20:16:34 +00003160 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003161 do {
danielk19773460d192008-12-27 15:23:13 +00003162 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003163 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3164 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003165 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003166 }
3167 return SQLITE_OK;
3168}
3169
3170/*
dan51f0b6d2013-02-22 20:16:34 +00003171** The database opened by the first argument is an auto-vacuum database
3172** nOrig pages in size containing nFree free pages. Return the expected
3173** size of the database in pages following an auto-vacuum operation.
3174*/
3175static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3176 int nEntry; /* Number of entries on one ptrmap page */
3177 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3178 Pgno nFin; /* Return value */
3179
3180 nEntry = pBt->usableSize/5;
3181 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3182 nFin = nOrig - nFree - nPtrmap;
3183 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3184 nFin--;
3185 }
3186 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3187 nFin--;
3188 }
dan51f0b6d2013-02-22 20:16:34 +00003189
3190 return nFin;
3191}
3192
3193/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003194** A write-transaction must be opened before calling this function.
3195** It performs a single unit of work towards an incremental vacuum.
3196**
3197** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003198** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003199** SQLITE_OK is returned. Otherwise an SQLite error code.
3200*/
3201int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003202 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003203 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003204
3205 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003206 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3207 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003208 rc = SQLITE_DONE;
3209 }else{
dan51f0b6d2013-02-22 20:16:34 +00003210 Pgno nOrig = btreePagecount(pBt);
3211 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3212 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3213
dan91384712013-02-24 11:50:43 +00003214 if( nOrig<nFin ){
3215 rc = SQLITE_CORRUPT_BKPT;
3216 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003217 rc = saveAllCursors(pBt, 0, 0);
3218 if( rc==SQLITE_OK ){
3219 invalidateAllOverflowCache(pBt);
3220 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3221 }
dan51f0b6d2013-02-22 20:16:34 +00003222 if( rc==SQLITE_OK ){
3223 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3224 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3225 }
3226 }else{
3227 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003228 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003229 }
drhd677b3d2007-08-20 22:48:41 +00003230 sqlite3BtreeLeave(p);
3231 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003232}
3233
3234/*
danielk19773b8a05f2007-03-19 17:44:26 +00003235** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003236** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003237**
3238** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3239** the database file should be truncated to during the commit process.
3240** i.e. the database has been reorganized so that only the first *pnTrunc
3241** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003242*/
danielk19773460d192008-12-27 15:23:13 +00003243static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003244 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003245 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003246 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003247
drh1fee73e2007-08-29 04:00:57 +00003248 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003249 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003250 assert(pBt->autoVacuum);
3251 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003252 Pgno nFin; /* Number of pages in database after autovacuuming */
3253 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003254 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003255 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003256
drhb1299152010-03-30 22:58:33 +00003257 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003258 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3259 /* It is not possible to create a database for which the final page
3260 ** is either a pointer-map page or the pending-byte page. If one
3261 ** is encountered, this indicates corruption.
3262 */
danielk19773460d192008-12-27 15:23:13 +00003263 return SQLITE_CORRUPT_BKPT;
3264 }
danielk1977ef165ce2009-04-06 17:50:03 +00003265
danielk19773460d192008-12-27 15:23:13 +00003266 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003267 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003268 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003269 if( nFin<nOrig ){
3270 rc = saveAllCursors(pBt, 0, 0);
3271 }
danielk19773460d192008-12-27 15:23:13 +00003272 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003273 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003274 }
danielk19773460d192008-12-27 15:23:13 +00003275 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003276 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3277 put4byte(&pBt->pPage1->aData[32], 0);
3278 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003279 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003280 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003281 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003282 }
3283 if( rc!=SQLITE_OK ){
3284 sqlite3PagerRollback(pPager);
3285 }
danielk1977687566d2004-11-02 12:56:41 +00003286 }
3287
dan0aed84d2013-03-26 14:16:20 +00003288 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003289 return rc;
3290}
danielk1977dddbcdc2007-04-26 14:42:34 +00003291
danielk1977a50d9aa2009-06-08 14:49:45 +00003292#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3293# define setChildPtrmaps(x) SQLITE_OK
3294#endif
danielk1977687566d2004-11-02 12:56:41 +00003295
3296/*
drh80e35f42007-03-30 14:06:34 +00003297** This routine does the first phase of a two-phase commit. This routine
3298** causes a rollback journal to be created (if it does not already exist)
3299** and populated with enough information so that if a power loss occurs
3300** the database can be restored to its original state by playing back
3301** the journal. Then the contents of the journal are flushed out to
3302** the disk. After the journal is safely on oxide, the changes to the
3303** database are written into the database file and flushed to oxide.
3304** At the end of this call, the rollback journal still exists on the
3305** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003306** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003307** commit process.
3308**
3309** This call is a no-op if no write-transaction is currently active on pBt.
3310**
3311** Otherwise, sync the database file for the btree pBt. zMaster points to
3312** the name of a master journal file that should be written into the
3313** individual journal file, or is NULL, indicating no master journal file
3314** (single database transaction).
3315**
3316** When this is called, the master journal should already have been
3317** created, populated with this journal pointer and synced to disk.
3318**
3319** Once this is routine has returned, the only thing required to commit
3320** the write-transaction for this database file is to delete the journal.
3321*/
3322int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3323 int rc = SQLITE_OK;
3324 if( p->inTrans==TRANS_WRITE ){
3325 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003326 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003327#ifndef SQLITE_OMIT_AUTOVACUUM
3328 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003329 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003330 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003331 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003332 return rc;
3333 }
3334 }
danbc1a3c62013-02-23 16:40:46 +00003335 if( pBt->bDoTruncate ){
3336 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3337 }
drh80e35f42007-03-30 14:06:34 +00003338#endif
drh49b9d332009-01-02 18:10:42 +00003339 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003340 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003341 }
3342 return rc;
3343}
3344
3345/*
danielk197794b30732009-07-02 17:21:57 +00003346** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3347** at the conclusion of a transaction.
3348*/
3349static void btreeEndTransaction(Btree *p){
3350 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003351 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003352 assert( sqlite3BtreeHoldsMutex(p) );
3353
danbc1a3c62013-02-23 16:40:46 +00003354#ifndef SQLITE_OMIT_AUTOVACUUM
3355 pBt->bDoTruncate = 0;
3356#endif
danc0537fe2013-06-28 19:41:43 +00003357 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003358 /* If there are other active statements that belong to this database
3359 ** handle, downgrade to a read-only transaction. The other statements
3360 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003361 downgradeAllSharedCacheTableLocks(p);
3362 p->inTrans = TRANS_READ;
3363 }else{
3364 /* If the handle had any kind of transaction open, decrement the
3365 ** transaction count of the shared btree. If the transaction count
3366 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3367 ** call below will unlock the pager. */
3368 if( p->inTrans!=TRANS_NONE ){
3369 clearAllSharedCacheTableLocks(p);
3370 pBt->nTransaction--;
3371 if( 0==pBt->nTransaction ){
3372 pBt->inTransaction = TRANS_NONE;
3373 }
3374 }
3375
3376 /* Set the current transaction state to TRANS_NONE and unlock the
3377 ** pager if this call closed the only read or write transaction. */
3378 p->inTrans = TRANS_NONE;
3379 unlockBtreeIfUnused(pBt);
3380 }
3381
3382 btreeIntegrity(p);
3383}
3384
3385/*
drh2aa679f2001-06-25 02:11:07 +00003386** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003387**
drh6e345992007-03-30 11:12:08 +00003388** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003389** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3390** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3391** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003392** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003393** routine has to do is delete or truncate or zero the header in the
3394** the rollback journal (which causes the transaction to commit) and
3395** drop locks.
drh6e345992007-03-30 11:12:08 +00003396**
dan60939d02011-03-29 15:40:55 +00003397** Normally, if an error occurs while the pager layer is attempting to
3398** finalize the underlying journal file, this function returns an error and
3399** the upper layer will attempt a rollback. However, if the second argument
3400** is non-zero then this b-tree transaction is part of a multi-file
3401** transaction. In this case, the transaction has already been committed
3402** (by deleting a master journal file) and the caller will ignore this
3403** functions return code. So, even if an error occurs in the pager layer,
3404** reset the b-tree objects internal state to indicate that the write
3405** transaction has been closed. This is quite safe, as the pager will have
3406** transitioned to the error state.
3407**
drh5e00f6c2001-09-13 13:46:56 +00003408** This will release the write lock on the database file. If there
3409** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003410*/
dan60939d02011-03-29 15:40:55 +00003411int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003412
drh075ed302010-10-14 01:17:30 +00003413 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003414 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003415 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003416
3417 /* If the handle has a write-transaction open, commit the shared-btrees
3418 ** transaction and set the shared state to TRANS_READ.
3419 */
3420 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003421 int rc;
drh075ed302010-10-14 01:17:30 +00003422 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003423 assert( pBt->inTransaction==TRANS_WRITE );
3424 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003425 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003426 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003427 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003428 return rc;
3429 }
danielk1977aef0bf62005-12-30 16:28:01 +00003430 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003431 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003432 }
danielk1977aef0bf62005-12-30 16:28:01 +00003433
danielk197794b30732009-07-02 17:21:57 +00003434 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003435 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003436 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003437}
3438
drh80e35f42007-03-30 14:06:34 +00003439/*
3440** Do both phases of a commit.
3441*/
3442int sqlite3BtreeCommit(Btree *p){
3443 int rc;
drhd677b3d2007-08-20 22:48:41 +00003444 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003445 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3446 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003447 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003448 }
drhd677b3d2007-08-20 22:48:41 +00003449 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003450 return rc;
3451}
3452
drhc39e0002004-05-07 23:50:57 +00003453/*
drhfb982642007-08-30 01:19:59 +00003454** This routine sets the state to CURSOR_FAULT and the error
3455** code to errCode for every cursor on BtShared that pBtree
3456** references.
3457**
3458** Every cursor is tripped, including cursors that belong
3459** to other database connections that happen to be sharing
3460** the cache with pBtree.
3461**
3462** This routine gets called when a rollback occurs.
3463** All cursors using the same cache must be tripped
3464** to prevent them from trying to use the btree after
3465** the rollback. The rollback may have deleted tables
3466** or moved root pages, so it is not sufficient to
3467** save the state of the cursor. The cursor must be
3468** invalidated.
3469*/
3470void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3471 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003472 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003473 sqlite3BtreeEnter(pBtree);
3474 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003475 int i;
danielk1977be51a652008-10-08 17:58:48 +00003476 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003477 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003478 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003479 for(i=0; i<=p->iPage; i++){
3480 releasePage(p->apPage[i]);
3481 p->apPage[i] = 0;
3482 }
drhfb982642007-08-30 01:19:59 +00003483 }
3484 sqlite3BtreeLeave(pBtree);
3485}
3486
3487/*
drhecdc7532001-09-23 02:35:53 +00003488** Rollback the transaction in progress. All cursors will be
3489** invalided by this operation. Any attempt to use a cursor
3490** that was open at the beginning of this operation will result
3491** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003492**
3493** This will release the write lock on the database file. If there
3494** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003495*/
drh0f198a72012-02-13 16:43:16 +00003496int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003497 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003498 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003499 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003500
drhd677b3d2007-08-20 22:48:41 +00003501 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003502 if( tripCode==SQLITE_OK ){
3503 rc = tripCode = saveAllCursors(pBt, 0, 0);
3504 }else{
3505 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003506 }
drh0f198a72012-02-13 16:43:16 +00003507 if( tripCode ){
3508 sqlite3BtreeTripAllCursors(p, tripCode);
3509 }
danielk1977aef0bf62005-12-30 16:28:01 +00003510 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003511
3512 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003513 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003514
danielk19778d34dfd2006-01-24 16:37:57 +00003515 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003516 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003517 if( rc2!=SQLITE_OK ){
3518 rc = rc2;
3519 }
3520
drh24cd67e2004-05-10 16:18:47 +00003521 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003522 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003523 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003524 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003525 int nPage = get4byte(28+(u8*)pPage1->aData);
3526 testcase( nPage==0 );
3527 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3528 testcase( pBt->nPage!=nPage );
3529 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003530 releasePage(pPage1);
3531 }
drh85ec3b62013-05-14 23:12:06 +00003532 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003533 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003534 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003535 }
danielk1977aef0bf62005-12-30 16:28:01 +00003536
danielk197794b30732009-07-02 17:21:57 +00003537 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003538 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003539 return rc;
3540}
3541
3542/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003543** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003544** back independently of the main transaction. You must start a transaction
3545** before starting a subtransaction. The subtransaction is ended automatically
3546** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003547**
3548** Statement subtransactions are used around individual SQL statements
3549** that are contained within a BEGIN...COMMIT block. If a constraint
3550** error occurs within the statement, the effect of that one statement
3551** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003552**
3553** A statement sub-transaction is implemented as an anonymous savepoint. The
3554** value passed as the second parameter is the total number of savepoints,
3555** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3556** are no active savepoints and no other statement-transactions open,
3557** iStatement is 1. This anonymous savepoint can be released or rolled back
3558** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003559*/
danielk1977bd434552009-03-18 10:33:00 +00003560int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003561 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003562 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003563 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003564 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003565 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003566 assert( iStatement>0 );
3567 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003568 assert( pBt->inTransaction==TRANS_WRITE );
3569 /* At the pager level, a statement transaction is a savepoint with
3570 ** an index greater than all savepoints created explicitly using
3571 ** SQL statements. It is illegal to open, release or rollback any
3572 ** such savepoints while the statement transaction savepoint is active.
3573 */
3574 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003575 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003576 return rc;
3577}
3578
3579/*
danielk1977fd7f0452008-12-17 17:30:26 +00003580** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3581** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003582** savepoint identified by parameter iSavepoint, depending on the value
3583** of op.
3584**
3585** Normally, iSavepoint is greater than or equal to zero. However, if op is
3586** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3587** contents of the entire transaction are rolled back. This is different
3588** from a normal transaction rollback, as no locks are released and the
3589** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003590*/
3591int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3592 int rc = SQLITE_OK;
3593 if( p && p->inTrans==TRANS_WRITE ){
3594 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003595 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3596 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3597 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003598 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003599 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003600 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3601 pBt->nPage = 0;
3602 }
drh9f0bbf92009-01-02 21:08:09 +00003603 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003604 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003605
3606 /* The database size was written into the offset 28 of the header
3607 ** when the transaction started, so we know that the value at offset
3608 ** 28 is nonzero. */
3609 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003610 }
danielk1977fd7f0452008-12-17 17:30:26 +00003611 sqlite3BtreeLeave(p);
3612 }
3613 return rc;
3614}
3615
3616/*
drh8b2f49b2001-06-08 00:21:52 +00003617** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003618** iTable. If a read-only cursor is requested, it is assumed that
3619** the caller already has at least a read-only transaction open
3620** on the database already. If a write-cursor is requested, then
3621** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003622**
3623** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003624** If wrFlag==1, then the cursor can be used for reading or for
3625** writing if other conditions for writing are also met. These
3626** are the conditions that must be met in order for writing to
3627** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003628**
drhf74b8d92002-09-01 23:20:45 +00003629** 1: The cursor must have been opened with wrFlag==1
3630**
drhfe5d71d2007-03-19 11:54:10 +00003631** 2: Other database connections that share the same pager cache
3632** but which are not in the READ_UNCOMMITTED state may not have
3633** cursors open with wrFlag==0 on the same table. Otherwise
3634** the changes made by this write cursor would be visible to
3635** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003636**
3637** 3: The database must be writable (not on read-only media)
3638**
3639** 4: There must be an active transaction.
3640**
drh6446c4d2001-12-15 14:22:18 +00003641** No checking is done to make sure that page iTable really is the
3642** root page of a b-tree. If it is not, then the cursor acquired
3643** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003644**
drhf25a5072009-11-18 23:01:25 +00003645** It is assumed that the sqlite3BtreeCursorZero() has been called
3646** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003647*/
drhd677b3d2007-08-20 22:48:41 +00003648static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003649 Btree *p, /* The btree */
3650 int iTable, /* Root page of table to open */
3651 int wrFlag, /* 1 to write. 0 read-only */
3652 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3653 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003654){
danielk19773e8add92009-07-04 17:16:00 +00003655 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003656
drh1fee73e2007-08-29 04:00:57 +00003657 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003658 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003659
danielk1977602b4662009-07-02 07:47:33 +00003660 /* The following assert statements verify that if this is a sharable
3661 ** b-tree database, the connection is holding the required table locks,
3662 ** and that no other connection has any open cursor that conflicts with
3663 ** this lock. */
3664 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003665 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3666
danielk19773e8add92009-07-04 17:16:00 +00003667 /* Assert that the caller has opened the required transaction. */
3668 assert( p->inTrans>TRANS_NONE );
3669 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3670 assert( pBt->pPage1 && pBt->pPage1->aData );
3671
drhc9166342012-01-05 23:32:06 +00003672 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003673 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003674 }
drh3fbb0222014-09-24 19:47:27 +00003675 if( wrFlag ){
3676 allocateTempSpace(pBt);
3677 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
3678 }
drhb1299152010-03-30 22:58:33 +00003679 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003680 assert( wrFlag==0 );
3681 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003682 }
danielk1977aef0bf62005-12-30 16:28:01 +00003683
danielk1977aef0bf62005-12-30 16:28:01 +00003684 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003685 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003686 pCur->pgnoRoot = (Pgno)iTable;
3687 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003688 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003689 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003690 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00003691 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
3692 pCur->curFlags = wrFlag;
drha059ad02001-04-17 20:09:11 +00003693 pCur->pNext = pBt->pCursor;
3694 if( pCur->pNext ){
3695 pCur->pNext->pPrev = pCur;
3696 }
3697 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003698 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00003699 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003700}
drhd677b3d2007-08-20 22:48:41 +00003701int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003702 Btree *p, /* The btree */
3703 int iTable, /* Root page of table to open */
3704 int wrFlag, /* 1 to write. 0 read-only */
3705 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3706 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003707){
3708 int rc;
3709 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003710 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003711 sqlite3BtreeLeave(p);
3712 return rc;
3713}
drh7f751222009-03-17 22:33:00 +00003714
3715/*
3716** Return the size of a BtCursor object in bytes.
3717**
3718** This interfaces is needed so that users of cursors can preallocate
3719** sufficient storage to hold a cursor. The BtCursor object is opaque
3720** to users so they cannot do the sizeof() themselves - they must call
3721** this routine.
3722*/
3723int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003724 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003725}
3726
drh7f751222009-03-17 22:33:00 +00003727/*
drhf25a5072009-11-18 23:01:25 +00003728** Initialize memory that will be converted into a BtCursor object.
3729**
3730** The simple approach here would be to memset() the entire object
3731** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3732** do not need to be zeroed and they are large, so we can save a lot
3733** of run-time by skipping the initialization of those elements.
3734*/
3735void sqlite3BtreeCursorZero(BtCursor *p){
3736 memset(p, 0, offsetof(BtCursor, iPage));
3737}
3738
3739/*
drh5e00f6c2001-09-13 13:46:56 +00003740** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003741** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003742*/
drh3aac2dd2004-04-26 14:10:20 +00003743int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003744 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003745 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003746 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003747 BtShared *pBt = pCur->pBt;
3748 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003749 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003750 if( pCur->pPrev ){
3751 pCur->pPrev->pNext = pCur->pNext;
3752 }else{
3753 pBt->pCursor = pCur->pNext;
3754 }
3755 if( pCur->pNext ){
3756 pCur->pNext->pPrev = pCur->pPrev;
3757 }
danielk197771d5d2c2008-09-29 11:49:47 +00003758 for(i=0; i<=pCur->iPage; i++){
3759 releasePage(pCur->apPage[i]);
3760 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003761 unlockBtreeIfUnused(pBt);
dan5a500af2014-03-11 20:33:04 +00003762 sqlite3DbFree(pBtree->db, pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00003763 /* sqlite3_free(pCur); */
3764 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003765 }
drh8c42ca92001-06-22 19:15:00 +00003766 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003767}
3768
drh5e2f8b92001-05-28 00:41:15 +00003769/*
drh86057612007-06-26 01:04:48 +00003770** Make sure the BtCursor* given in the argument has a valid
3771** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003772** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003773**
3774** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003775** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003776**
3777** 2007-06-25: There is a bug in some versions of MSVC that cause the
3778** compiler to crash when getCellInfo() is implemented as a macro.
3779** But there is a measureable speed advantage to using the macro on gcc
3780** (when less compiler optimizations like -Os or -O0 are used and the
peter.d.reid60ec9142014-09-06 16:39:46 +00003781** compiler is not doing aggressive inlining.) So we use a real function
drh86057612007-06-26 01:04:48 +00003782** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003783*/
drh9188b382004-05-14 21:12:22 +00003784#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003785 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003786 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003787 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003788 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003789 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00003790 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003791 }
danielk19771cc5ed82007-05-16 17:28:43 +00003792#else
3793 #define assertCellInfo(x)
3794#endif
drh86057612007-06-26 01:04:48 +00003795#ifdef _MSC_VER
3796 /* Use a real function in MSVC to work around bugs in that compiler. */
3797 static void getCellInfo(BtCursor *pCur){
3798 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003799 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003800 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drh036dbec2014-03-11 23:40:44 +00003801 pCur->curFlags |= BTCF_ValidNKey;
drh86057612007-06-26 01:04:48 +00003802 }else{
3803 assertCellInfo(pCur);
3804 }
3805 }
3806#else /* if not _MSC_VER */
3807 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003808#define getCellInfo(pCur) \
3809 if( pCur->info.nSize==0 ){ \
3810 int iPage = pCur->iPage; \
drh036dbec2014-03-11 23:40:44 +00003811 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3812 pCur->curFlags |= BTCF_ValidNKey; \
danielk197771d5d2c2008-09-29 11:49:47 +00003813 }else{ \
3814 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003815 }
3816#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003817
drhea8ffdf2009-07-22 00:35:23 +00003818#ifndef NDEBUG /* The next routine used only within assert() statements */
3819/*
3820** Return true if the given BtCursor is valid. A valid cursor is one
3821** that is currently pointing to a row in a (non-empty) table.
3822** This is a verification routine is used only within assert() statements.
3823*/
3824int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3825 return pCur && pCur->eState==CURSOR_VALID;
3826}
3827#endif /* NDEBUG */
3828
drh9188b382004-05-14 21:12:22 +00003829/*
drh3aac2dd2004-04-26 14:10:20 +00003830** Set *pSize to the size of the buffer needed to hold the value of
3831** the key for the current entry. If the cursor is not pointing
3832** to a valid entry, *pSize is set to 0.
3833**
drh4b70f112004-05-02 21:12:19 +00003834** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003835** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003836**
3837** The caller must position the cursor prior to invoking this routine.
3838**
3839** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003840*/
drh4a1c3802004-05-12 15:15:47 +00003841int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003842 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003843 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3844 if( pCur->eState!=CURSOR_VALID ){
3845 *pSize = 0;
3846 }else{
3847 getCellInfo(pCur);
3848 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003849 }
drhea8ffdf2009-07-22 00:35:23 +00003850 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003851}
drh2af926b2001-05-15 00:39:25 +00003852
drh72f82862001-05-24 21:06:34 +00003853/*
drh0e1c19e2004-05-11 00:58:56 +00003854** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003855** cursor currently points to.
3856**
3857** The caller must guarantee that the cursor is pointing to a non-NULL
3858** valid entry. In other words, the calling procedure must guarantee
3859** that the cursor has Cursor.eState==CURSOR_VALID.
3860**
3861** Failure is not possible. This function always returns SQLITE_OK.
3862** It might just as well be a procedure (returning void) but we continue
3863** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003864*/
3865int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003866 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003867 assert( pCur->eState==CURSOR_VALID );
drh3e28ff52014-09-24 00:59:08 +00003868 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00003869 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00003870 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00003871 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003872}
3873
3874/*
danielk1977d04417962007-05-02 13:16:30 +00003875** Given the page number of an overflow page in the database (parameter
3876** ovfl), this function finds the page number of the next page in the
3877** linked list of overflow pages. If possible, it uses the auto-vacuum
3878** pointer-map data instead of reading the content of page ovfl to do so.
3879**
3880** If an error occurs an SQLite error code is returned. Otherwise:
3881**
danielk1977bea2a942009-01-20 17:06:27 +00003882** The page number of the next overflow page in the linked list is
3883** written to *pPgnoNext. If page ovfl is the last page in its linked
3884** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003885**
danielk1977bea2a942009-01-20 17:06:27 +00003886** If ppPage is not NULL, and a reference to the MemPage object corresponding
3887** to page number pOvfl was obtained, then *ppPage is set to point to that
3888** reference. It is the responsibility of the caller to call releasePage()
3889** on *ppPage to free the reference. In no reference was obtained (because
3890** the pointer-map was used to obtain the value for *pPgnoNext), then
3891** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003892*/
3893static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003894 BtShared *pBt, /* The database file */
3895 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003896 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003897 Pgno *pPgnoNext /* OUT: Next overflow page number */
3898){
3899 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003900 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003901 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003902
drh1fee73e2007-08-29 04:00:57 +00003903 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003904 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003905
3906#ifndef SQLITE_OMIT_AUTOVACUUM
3907 /* Try to find the next page in the overflow list using the
3908 ** autovacuum pointer-map pages. Guess that the next page in
3909 ** the overflow list is page number (ovfl+1). If that guess turns
3910 ** out to be wrong, fall back to loading the data of page
3911 ** number ovfl to determine the next page number.
3912 */
3913 if( pBt->autoVacuum ){
3914 Pgno pgno;
3915 Pgno iGuess = ovfl+1;
3916 u8 eType;
3917
3918 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3919 iGuess++;
3920 }
3921
drhb1299152010-03-30 22:58:33 +00003922 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003923 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003924 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003925 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003926 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003927 }
3928 }
3929 }
3930#endif
3931
danielk1977d8a3f3d2009-07-11 11:45:23 +00003932 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003933 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00003934 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003935 assert( rc==SQLITE_OK || pPage==0 );
3936 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003937 next = get4byte(pPage->aData);
3938 }
danielk1977443c0592009-01-16 15:21:05 +00003939 }
danielk197745d68822009-01-16 16:23:38 +00003940
danielk1977bea2a942009-01-20 17:06:27 +00003941 *pPgnoNext = next;
3942 if( ppPage ){
3943 *ppPage = pPage;
3944 }else{
3945 releasePage(pPage);
3946 }
3947 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003948}
3949
danielk1977da107192007-05-04 08:32:13 +00003950/*
3951** Copy data from a buffer to a page, or from a page to a buffer.
3952**
3953** pPayload is a pointer to data stored on database page pDbPage.
3954** If argument eOp is false, then nByte bytes of data are copied
3955** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3956** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3957** of data are copied from the buffer pBuf to pPayload.
3958**
3959** SQLITE_OK is returned on success, otherwise an error code.
3960*/
3961static int copyPayload(
3962 void *pPayload, /* Pointer to page data */
3963 void *pBuf, /* Pointer to buffer */
3964 int nByte, /* Number of bytes to copy */
3965 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3966 DbPage *pDbPage /* Page containing pPayload */
3967){
3968 if( eOp ){
3969 /* Copy data from buffer to page (a write operation) */
3970 int rc = sqlite3PagerWrite(pDbPage);
3971 if( rc!=SQLITE_OK ){
3972 return rc;
3973 }
3974 memcpy(pPayload, pBuf, nByte);
3975 }else{
3976 /* Copy data from page to buffer (a read operation) */
3977 memcpy(pBuf, pPayload, nByte);
3978 }
3979 return SQLITE_OK;
3980}
danielk1977d04417962007-05-02 13:16:30 +00003981
3982/*
danielk19779f8d6402007-05-02 17:48:45 +00003983** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00003984** for the entry that the pCur cursor is pointing to. The eOp
3985** argument is interpreted as follows:
3986**
3987** 0: The operation is a read. Populate the overflow cache.
3988** 1: The operation is a write. Populate the overflow cache.
3989** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00003990**
3991** A total of "amt" bytes are read or written beginning at "offset".
3992** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003993**
drh3bcdfd22009-07-12 02:32:21 +00003994** The content being read or written might appear on the main page
3995** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003996**
dan5a500af2014-03-11 20:33:04 +00003997** If the current cursor entry uses one or more overflow pages and the
3998** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00003999** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004000** Subsequent calls use this cache to make seeking to the supplied offset
4001** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004002**
4003** Once an overflow page-list cache has been allocated, it may be
4004** invalidated if some other cursor writes to the same table, or if
4005** the cursor is moved to a different row. Additionally, in auto-vacuum
4006** mode, the following events may invalidate an overflow page-list cache.
4007**
4008** * An incremental vacuum,
4009** * A commit in auto_vacuum="full" mode,
4010** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004011*/
danielk19779f8d6402007-05-02 17:48:45 +00004012static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004013 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004014 u32 offset, /* Begin reading this far into payload */
4015 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004016 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004017 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004018){
4019 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004020 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004021 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004022 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004023 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004024#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh3f387402014-09-24 01:23:00 +00004025 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004026#endif
drh3aac2dd2004-04-26 14:10:20 +00004027
danielk1977da107192007-05-04 08:32:13 +00004028 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004029 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004030 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004031 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004032 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004033
drh86057612007-06-26 01:04:48 +00004034 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004035 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004036#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004037 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004038#endif
drhab1cc582014-09-23 21:25:19 +00004039 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004040
drhab1cc582014-09-23 21:25:19 +00004041 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004042 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004043 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004044 }
danielk1977da107192007-05-04 08:32:13 +00004045
4046 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004047 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004048 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004049 if( a+offset>pCur->info.nLocal ){
4050 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004051 }
dan5a500af2014-03-11 20:33:04 +00004052 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004053 offset = 0;
drha34b6762004-05-07 13:30:42 +00004054 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004055 amt -= a;
drhdd793422001-06-28 01:54:48 +00004056 }else{
drhfa1a98a2004-05-14 19:08:17 +00004057 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004058 }
danielk1977da107192007-05-04 08:32:13 +00004059
4060 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004061 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004062 Pgno nextPage;
4063
drhfa1a98a2004-05-14 19:08:17 +00004064 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004065
drha38c9512014-04-01 01:24:34 +00004066 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4067 ** Except, do not allocate aOverflow[] for eOp==2.
4068 **
4069 ** The aOverflow[] array is sized at one entry for each overflow page
4070 ** in the overflow chain. The page number of the first overflow page is
4071 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4072 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004073 */
drh036dbec2014-03-11 23:40:44 +00004074 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004075 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004076 if( nOvfl>pCur->nOvflAlloc ){
4077 Pgno *aNew = (Pgno*)sqlite3DbRealloc(
4078 pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4079 );
4080 if( aNew==0 ){
4081 rc = SQLITE_NOMEM;
4082 }else{
4083 pCur->nOvflAlloc = nOvfl*2;
4084 pCur->aOverflow = aNew;
4085 }
4086 }
4087 if( rc==SQLITE_OK ){
4088 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004089 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004090 }
4091 }
danielk1977da107192007-05-04 08:32:13 +00004092
4093 /* If the overflow page-list cache has been allocated and the
4094 ** entry for the first required overflow page is valid, skip
4095 ** directly to it.
4096 */
drh3f387402014-09-24 01:23:00 +00004097 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4098 && pCur->aOverflow[offset/ovflSize]
4099 ){
danielk19772dec9702007-05-02 16:48:37 +00004100 iIdx = (offset/ovflSize);
4101 nextPage = pCur->aOverflow[iIdx];
4102 offset = (offset%ovflSize);
4103 }
danielk1977da107192007-05-04 08:32:13 +00004104
4105 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4106
danielk1977da107192007-05-04 08:32:13 +00004107 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004108 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004109 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4110 pCur->aOverflow[iIdx] = nextPage;
4111 }
danielk1977da107192007-05-04 08:32:13 +00004112
danielk1977d04417962007-05-02 13:16:30 +00004113 if( offset>=ovflSize ){
4114 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004115 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004116 ** data is not required. So first try to lookup the overflow
4117 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004118 ** function.
drha38c9512014-04-01 01:24:34 +00004119 **
4120 ** Note that the aOverflow[] array must be allocated because eOp!=2
4121 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004122 */
drha38c9512014-04-01 01:24:34 +00004123 assert( eOp!=2 );
4124 assert( pCur->curFlags & BTCF_ValidOvfl );
4125 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004126 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004127 }else{
danielk1977da107192007-05-04 08:32:13 +00004128 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004129 }
danielk1977da107192007-05-04 08:32:13 +00004130 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004131 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004132 /* Need to read this page properly. It contains some of the
4133 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004134 */
danf4ba1092011-10-08 14:57:07 +00004135#ifdef SQLITE_DIRECT_OVERFLOW_READ
4136 sqlite3_file *fd;
4137#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004138 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004139 if( a + offset > ovflSize ){
4140 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004141 }
danf4ba1092011-10-08 14:57:07 +00004142
4143#ifdef SQLITE_DIRECT_OVERFLOW_READ
4144 /* If all the following are true:
4145 **
4146 ** 1) this is a read operation, and
4147 ** 2) data is required from the start of this overflow page, and
4148 ** 3) the database is file-backed, and
4149 ** 4) there is no open write-transaction, and
4150 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004151 ** 6) all data from the page is being read.
danf4ba1092011-10-08 14:57:07 +00004152 **
4153 ** then data can be read directly from the database file into the
4154 ** output buffer, bypassing the page-cache altogether. This speeds
4155 ** up loading large records that span many overflow pages.
4156 */
dan5a500af2014-03-11 20:33:04 +00004157 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004158 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004159 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004160 && pBt->inTransaction==TRANS_READ /* (4) */
4161 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4162 && pBt->pPage1->aData[19]==0x01 /* (5) */
4163 ){
4164 u8 aSave[4];
4165 u8 *aWrite = &pBuf[-4];
4166 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004167 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004168 nextPage = get4byte(aWrite);
4169 memcpy(aWrite, aSave, 4);
4170 }else
4171#endif
4172
4173 {
4174 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004175 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004176 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004177 );
danf4ba1092011-10-08 14:57:07 +00004178 if( rc==SQLITE_OK ){
4179 aPayload = sqlite3PagerGetData(pDbPage);
4180 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004181 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004182 sqlite3PagerUnref(pDbPage);
4183 offset = 0;
4184 }
4185 }
4186 amt -= a;
4187 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004188 }
drh2af926b2001-05-15 00:39:25 +00004189 }
drh2af926b2001-05-15 00:39:25 +00004190 }
danielk1977cfe9a692004-06-16 12:00:29 +00004191
danielk1977da107192007-05-04 08:32:13 +00004192 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004193 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004194 }
danielk1977da107192007-05-04 08:32:13 +00004195 return rc;
drh2af926b2001-05-15 00:39:25 +00004196}
4197
drh72f82862001-05-24 21:06:34 +00004198/*
drh3aac2dd2004-04-26 14:10:20 +00004199** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004200** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004201** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004202**
drh5d1a8722009-07-22 18:07:40 +00004203** The caller must ensure that pCur is pointing to a valid row
4204** in the table.
4205**
drh3aac2dd2004-04-26 14:10:20 +00004206** Return SQLITE_OK on success or an error code if anything goes
4207** wrong. An error is returned if "offset+amt" is larger than
4208** the available payload.
drh72f82862001-05-24 21:06:34 +00004209*/
drha34b6762004-05-07 13:30:42 +00004210int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004211 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004212 assert( pCur->eState==CURSOR_VALID );
4213 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4214 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4215 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004216}
4217
4218/*
drh3aac2dd2004-04-26 14:10:20 +00004219** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004220** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004221** begins at "offset".
4222**
4223** Return SQLITE_OK on success or an error code if anything goes
4224** wrong. An error is returned if "offset+amt" is larger than
4225** the available payload.
drh72f82862001-05-24 21:06:34 +00004226*/
drh3aac2dd2004-04-26 14:10:20 +00004227int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004228 int rc;
4229
danielk19773588ceb2008-06-10 17:30:26 +00004230#ifndef SQLITE_OMIT_INCRBLOB
4231 if ( pCur->eState==CURSOR_INVALID ){
4232 return SQLITE_ABORT;
4233 }
4234#endif
4235
drh1fee73e2007-08-29 04:00:57 +00004236 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004237 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004238 if( rc==SQLITE_OK ){
4239 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004240 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4241 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004242 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004243 }
4244 return rc;
drh2af926b2001-05-15 00:39:25 +00004245}
4246
drh72f82862001-05-24 21:06:34 +00004247/*
drh0e1c19e2004-05-11 00:58:56 +00004248** Return a pointer to payload information from the entry that the
4249** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004250** the key if index btrees (pPage->intKey==0) and is the data for
4251** table btrees (pPage->intKey==1). The number of bytes of available
4252** key/data is written into *pAmt. If *pAmt==0, then the value
4253** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004254**
4255** This routine is an optimization. It is common for the entire key
4256** and data to fit on the local page and for there to be no overflow
4257** pages. When that is so, this routine can be used to access the
4258** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004259** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004260** the key/data and copy it into a preallocated buffer.
4261**
4262** The pointer returned by this routine looks directly into the cached
4263** page of the database. The data might change or move the next time
4264** any btree routine is called.
4265*/
drh2a8d2262013-12-09 20:43:22 +00004266static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004267 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004268 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004269){
danielk197771d5d2c2008-09-29 11:49:47 +00004270 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004271 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004272 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004273 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004274 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004275 assert( pCur->info.nSize>0 );
drh2a8d2262013-12-09 20:43:22 +00004276 *pAmt = pCur->info.nLocal;
drhab1cc582014-09-23 21:25:19 +00004277 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004278}
4279
4280
4281/*
drhe51c44f2004-05-30 20:46:09 +00004282** For the entry that cursor pCur is point to, return as
4283** many bytes of the key or data as are available on the local
4284** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004285**
4286** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004287** or be destroyed on the next call to any Btree routine,
4288** including calls from other threads against the same cache.
4289** Hence, a mutex on the BtShared should be held prior to calling
4290** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004291**
4292** These routines is used to get quick access to key and data
4293** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004294*/
drh501932c2013-11-21 21:59:53 +00004295const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004296 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004297}
drh501932c2013-11-21 21:59:53 +00004298const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004299 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004300}
4301
4302
4303/*
drh8178a752003-01-05 21:41:40 +00004304** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004305** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004306**
4307** This function returns SQLITE_CORRUPT if the page-header flags field of
4308** the new child page does not match the flags field of the parent (i.e.
4309** if an intkey page appears to be the parent of a non-intkey page, or
4310** vice-versa).
drh72f82862001-05-24 21:06:34 +00004311*/
drh3aac2dd2004-04-26 14:10:20 +00004312static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004313 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004314 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004315 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004316 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004317
drh1fee73e2007-08-29 04:00:57 +00004318 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004319 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004320 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004321 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004322 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4323 return SQLITE_CORRUPT_BKPT;
4324 }
drhb00fc3b2013-08-21 23:42:32 +00004325 rc = getAndInitPage(pBt, newPgno, &pNewPage,
drh036dbec2014-03-11 23:40:44 +00004326 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004327 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004328 pCur->apPage[i+1] = pNewPage;
4329 pCur->aiIdx[i+1] = 0;
4330 pCur->iPage++;
4331
drh271efa52004-05-30 19:19:05 +00004332 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004333 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk1977bd5969a2009-07-11 17:39:42 +00004334 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004335 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004336 }
drh72f82862001-05-24 21:06:34 +00004337 return SQLITE_OK;
4338}
4339
danbb246c42012-01-12 14:25:55 +00004340#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004341/*
4342** Page pParent is an internal (non-leaf) tree page. This function
4343** asserts that page number iChild is the left-child if the iIdx'th
4344** cell in page pParent. Or, if iIdx is equal to the total number of
4345** cells in pParent, that page number iChild is the right-child of
4346** the page.
4347*/
4348static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4349 assert( iIdx<=pParent->nCell );
4350 if( iIdx==pParent->nCell ){
4351 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4352 }else{
4353 assert( get4byte(findCell(pParent, iIdx))==iChild );
4354 }
4355}
4356#else
4357# define assertParentIndex(x,y,z)
4358#endif
4359
drh72f82862001-05-24 21:06:34 +00004360/*
drh5e2f8b92001-05-28 00:41:15 +00004361** Move the cursor up to the parent page.
4362**
4363** pCur->idx is set to the cell index that contains the pointer
4364** to the page we are coming from. If we are coming from the
4365** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004366** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004367*/
danielk197730548662009-07-09 05:07:37 +00004368static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004369 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004370 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004371 assert( pCur->iPage>0 );
4372 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004373
4374 /* UPDATE: It is actually possible for the condition tested by the assert
4375 ** below to be untrue if the database file is corrupt. This can occur if
4376 ** one cursor has modified page pParent while a reference to it is held
4377 ** by a second cursor. Which can only happen if a single page is linked
4378 ** into more than one b-tree structure in a corrupt database. */
4379#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004380 assertParentIndex(
4381 pCur->apPage[pCur->iPage-1],
4382 pCur->aiIdx[pCur->iPage-1],
4383 pCur->apPage[pCur->iPage]->pgno
4384 );
danbb246c42012-01-12 14:25:55 +00004385#endif
dan6c2688c2012-01-12 15:05:03 +00004386 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004387
danielk197771d5d2c2008-09-29 11:49:47 +00004388 releasePage(pCur->apPage[pCur->iPage]);
4389 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004390 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004391 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh72f82862001-05-24 21:06:34 +00004392}
4393
4394/*
danielk19778f880a82009-07-13 09:41:45 +00004395** Move the cursor to point to the root page of its b-tree structure.
4396**
4397** If the table has a virtual root page, then the cursor is moved to point
4398** to the virtual root page instead of the actual root page. A table has a
4399** virtual root page when the actual root page contains no cells and a
4400** single child page. This can only happen with the table rooted at page 1.
4401**
4402** If the b-tree structure is empty, the cursor state is set to
4403** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4404** cell located on the root (or virtual root) page and the cursor state
4405** is set to CURSOR_VALID.
4406**
4407** If this function returns successfully, it may be assumed that the
4408** page-header flags indicate that the [virtual] root-page is the expected
4409** kind of b-tree page (i.e. if when opening the cursor the caller did not
4410** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4411** indicating a table b-tree, or if the caller did specify a KeyInfo
4412** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4413** b-tree).
drh72f82862001-05-24 21:06:34 +00004414*/
drh5e2f8b92001-05-28 00:41:15 +00004415static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004416 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004417 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004418
drh1fee73e2007-08-29 04:00:57 +00004419 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004420 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4421 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4422 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4423 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4424 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004425 assert( pCur->skipNext!=SQLITE_OK );
4426 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004427 }
danielk1977be51a652008-10-08 17:58:48 +00004428 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004429 }
danielk197771d5d2c2008-09-29 11:49:47 +00004430
4431 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004432 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004433 }else if( pCur->pgnoRoot==0 ){
4434 pCur->eState = CURSOR_INVALID;
4435 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004436 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004437 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh036dbec2014-03-11 23:40:44 +00004438 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004439 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004440 pCur->eState = CURSOR_INVALID;
4441 return rc;
4442 }
danielk1977172114a2009-07-07 15:47:12 +00004443 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004444 }
danielk197771d5d2c2008-09-29 11:49:47 +00004445 pRoot = pCur->apPage[0];
4446 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004447
4448 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4449 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4450 ** NULL, the caller expects a table b-tree. If this is not the case,
4451 ** return an SQLITE_CORRUPT error.
4452 **
4453 ** Earlier versions of SQLite assumed that this test could not fail
4454 ** if the root page was already loaded when this function was called (i.e.
4455 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4456 ** in such a way that page pRoot is linked into a second b-tree table
4457 ** (or the freelist). */
4458 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4459 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4460 return SQLITE_CORRUPT_BKPT;
4461 }
danielk19778f880a82009-07-13 09:41:45 +00004462
danielk197771d5d2c2008-09-29 11:49:47 +00004463 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004464 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004465 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004466
drh4e8fe3f2013-12-06 23:25:27 +00004467 if( pRoot->nCell>0 ){
4468 pCur->eState = CURSOR_VALID;
4469 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004470 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004471 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004472 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004473 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004474 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004475 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004476 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004477 }
4478 return rc;
drh72f82862001-05-24 21:06:34 +00004479}
drh2af926b2001-05-15 00:39:25 +00004480
drh5e2f8b92001-05-28 00:41:15 +00004481/*
4482** Move the cursor down to the left-most leaf entry beneath the
4483** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004484**
4485** The left-most leaf is the one with the smallest key - the first
4486** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004487*/
4488static int moveToLeftmost(BtCursor *pCur){
4489 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004490 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004491 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004492
drh1fee73e2007-08-29 04:00:57 +00004493 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004494 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004495 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4496 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4497 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004498 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004499 }
drhd677b3d2007-08-20 22:48:41 +00004500 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004501}
4502
drh2dcc9aa2002-12-04 13:40:25 +00004503/*
4504** Move the cursor down to the right-most leaf entry beneath the
4505** page to which it is currently pointing. Notice the difference
4506** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4507** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4508** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004509**
4510** The right-most entry is the one with the largest key - the last
4511** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004512*/
4513static int moveToRightmost(BtCursor *pCur){
4514 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004515 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004516 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004517
drh1fee73e2007-08-29 04:00:57 +00004518 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004519 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004520 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004521 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004522 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004523 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004524 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004525 }
drhee6438d2014-09-01 13:29:32 +00004526 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4527 assert( pCur->info.nSize==0 );
4528 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4529 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004530}
4531
drh5e00f6c2001-09-13 13:46:56 +00004532/* Move the cursor to the first entry in the table. Return SQLITE_OK
4533** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004534** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004535*/
drh3aac2dd2004-04-26 14:10:20 +00004536int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004537 int rc;
drhd677b3d2007-08-20 22:48:41 +00004538
drh1fee73e2007-08-29 04:00:57 +00004539 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004540 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004541 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004542 if( rc==SQLITE_OK ){
4543 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004544 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004545 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004546 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004547 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004548 *pRes = 0;
4549 rc = moveToLeftmost(pCur);
4550 }
drh5e00f6c2001-09-13 13:46:56 +00004551 }
drh5e00f6c2001-09-13 13:46:56 +00004552 return rc;
4553}
drh5e2f8b92001-05-28 00:41:15 +00004554
drh9562b552002-02-19 15:00:07 +00004555/* Move the cursor to the last entry in the table. Return SQLITE_OK
4556** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004557** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004558*/
drh3aac2dd2004-04-26 14:10:20 +00004559int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004560 int rc;
drhd677b3d2007-08-20 22:48:41 +00004561
drh1fee73e2007-08-29 04:00:57 +00004562 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004563 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004564
4565 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004566 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004567#ifdef SQLITE_DEBUG
4568 /* This block serves to assert() that the cursor really does point
4569 ** to the last entry in the b-tree. */
4570 int ii;
4571 for(ii=0; ii<pCur->iPage; ii++){
4572 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4573 }
4574 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4575 assert( pCur->apPage[pCur->iPage]->leaf );
4576#endif
4577 return SQLITE_OK;
4578 }
4579
drh9562b552002-02-19 15:00:07 +00004580 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004581 if( rc==SQLITE_OK ){
4582 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004583 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004584 *pRes = 1;
4585 }else{
4586 assert( pCur->eState==CURSOR_VALID );
4587 *pRes = 0;
4588 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004589 if( rc==SQLITE_OK ){
4590 pCur->curFlags |= BTCF_AtLast;
4591 }else{
4592 pCur->curFlags &= ~BTCF_AtLast;
4593 }
4594
drhd677b3d2007-08-20 22:48:41 +00004595 }
drh9562b552002-02-19 15:00:07 +00004596 }
drh9562b552002-02-19 15:00:07 +00004597 return rc;
4598}
4599
drhe14006d2008-03-25 17:23:32 +00004600/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004601** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004602**
drhe63d9992008-08-13 19:11:48 +00004603** For INTKEY tables, the intKey parameter is used. pIdxKey
4604** must be NULL. For index tables, pIdxKey is used and intKey
4605** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004606**
drh5e2f8b92001-05-28 00:41:15 +00004607** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004608** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004609** were present. The cursor might point to an entry that comes
4610** before or after the key.
4611**
drh64022502009-01-09 14:11:04 +00004612** An integer is written into *pRes which is the result of
4613** comparing the key with the entry to which the cursor is
4614** pointing. The meaning of the integer written into
4615** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004616**
4617** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004618** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004619** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004620**
4621** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004622** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004623**
4624** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004625** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004626**
drha059ad02001-04-17 20:09:11 +00004627*/
drhe63d9992008-08-13 19:11:48 +00004628int sqlite3BtreeMovetoUnpacked(
4629 BtCursor *pCur, /* The cursor to be moved */
4630 UnpackedRecord *pIdxKey, /* Unpacked index key */
4631 i64 intKey, /* The table key */
4632 int biasRight, /* If true, bias the search to the high end */
4633 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004634){
drh72f82862001-05-24 21:06:34 +00004635 int rc;
dan3b9330f2014-02-27 20:44:18 +00004636 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004637
drh1fee73e2007-08-29 04:00:57 +00004638 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004639 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004640 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004641 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004642
4643 /* If the cursor is already positioned at the point we are trying
4644 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00004645 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00004646 && pCur->apPage[0]->intKey
4647 ){
drhe63d9992008-08-13 19:11:48 +00004648 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004649 *pRes = 0;
4650 return SQLITE_OK;
4651 }
drh036dbec2014-03-11 23:40:44 +00004652 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004653 *pRes = -1;
4654 return SQLITE_OK;
4655 }
4656 }
4657
dan1fed5da2014-02-25 21:01:25 +00004658 if( pIdxKey ){
4659 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00004660 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00004661 assert( pIdxKey->default_rc==1
4662 || pIdxKey->default_rc==0
4663 || pIdxKey->default_rc==-1
4664 );
drh13a747e2014-03-03 21:46:55 +00004665 }else{
drhb6e8fd12014-03-06 01:56:33 +00004666 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004667 }
4668
drh5e2f8b92001-05-28 00:41:15 +00004669 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004670 if( rc ){
4671 return rc;
4672 }
dana205a482011-08-27 18:48:57 +00004673 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4674 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4675 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004676 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004677 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004678 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004679 return SQLITE_OK;
4680 }
danielk197771d5d2c2008-09-29 11:49:47 +00004681 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004682 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004683 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004684 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004685 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004686 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004687
4688 /* pPage->nCell must be greater than zero. If this is the root-page
4689 ** the cursor would have been INVALID above and this for(;;) loop
4690 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004691 ** would have already detected db corruption. Similarly, pPage must
4692 ** be the right kind (index or table) of b-tree page. Otherwise
4693 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004694 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004695 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004696 lwr = 0;
4697 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00004698 assert( biasRight==0 || biasRight==1 );
4699 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00004700 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00004701 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00004702 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004703 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00004704 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3e28ff52014-09-24 00:59:08 +00004705 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00004706 while( 0x80 <= *(pCell++) ){
4707 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4708 }
drhd172f862006-01-12 15:01:15 +00004709 }
drha2c20e42008-03-29 16:01:04 +00004710 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00004711 if( nCellKey<intKey ){
4712 lwr = idx+1;
4713 if( lwr>upr ){ c = -1; break; }
4714 }else if( nCellKey>intKey ){
4715 upr = idx-1;
4716 if( lwr>upr ){ c = +1; break; }
4717 }else{
4718 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00004719 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00004720 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00004721 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004722 if( !pPage->leaf ){
4723 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00004724 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00004725 }else{
4726 *pRes = 0;
4727 rc = SQLITE_OK;
4728 goto moveto_finish;
4729 }
drhd793f442013-11-25 14:10:15 +00004730 }
drhebf10b12013-11-25 17:38:26 +00004731 assert( lwr+upr>=0 );
4732 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00004733 }
4734 }else{
4735 for(;;){
4736 int nCell;
drhec3e6b12013-11-25 02:38:55 +00004737 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4738
drhb2eced52010-08-12 02:41:12 +00004739 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004740 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004741 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004742 ** varint. This information is used to attempt to avoid parsing
4743 ** the entire cell by checking for the cases where the record is
4744 ** stored entirely within the b-tree page by inspecting the first
4745 ** 2 bytes of the cell.
4746 */
drhec3e6b12013-11-25 02:38:55 +00004747 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00004748 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00004749 /* This branch runs if the record-size field of the cell is a
4750 ** single byte varint and the record fits entirely on the main
4751 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004752 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00004753 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00004754 }else if( !(pCell[1] & 0x80)
4755 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4756 ){
4757 /* The record-size field is a 2 byte varint and the record
4758 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004759 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00004760 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004761 }else{
danielk197711c327a2009-05-04 19:01:26 +00004762 /* The record flows over onto one or more overflow pages. In
4763 ** this case the whole cell needs to be parsed, a buffer allocated
4764 ** and accessPayload() used to retrieve the record into the
4765 ** buffer before VdbeRecordCompare() can be called. */
4766 void *pCellKey;
4767 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004768 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004769 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004770 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004771 if( pCellKey==0 ){
4772 rc = SQLITE_NOMEM;
4773 goto moveto_finish;
4774 }
drhd793f442013-11-25 14:10:15 +00004775 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00004776 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00004777 if( rc ){
4778 sqlite3_free(pCellKey);
4779 goto moveto_finish;
4780 }
drh75179de2014-09-16 14:37:35 +00004781 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004782 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004783 }
dan38fdead2014-04-01 10:19:02 +00004784 assert(
4785 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00004786 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00004787 );
drhbb933ef2013-11-25 15:01:38 +00004788 if( c<0 ){
4789 lwr = idx+1;
4790 }else if( c>0 ){
4791 upr = idx-1;
4792 }else{
4793 assert( c==0 );
drh64022502009-01-09 14:11:04 +00004794 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004795 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00004796 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00004797 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00004798 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004799 }
drhebf10b12013-11-25 17:38:26 +00004800 if( lwr>upr ) break;
4801 assert( lwr+upr>=0 );
4802 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00004803 }
drh72f82862001-05-24 21:06:34 +00004804 }
drhb07028f2011-10-14 21:49:18 +00004805 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004806 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004807 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00004808 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00004809 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004810 *pRes = c;
4811 rc = SQLITE_OK;
4812 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00004813 }
4814moveto_next_layer:
4815 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004816 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004817 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004818 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004819 }
drhf49661a2008-12-10 16:45:50 +00004820 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00004821 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00004822 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00004823 }
drh1e968a02008-03-25 00:22:21 +00004824moveto_finish:
drhd2022b02013-11-25 16:23:52 +00004825 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004826 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00004827 return rc;
4828}
4829
drhd677b3d2007-08-20 22:48:41 +00004830
drh72f82862001-05-24 21:06:34 +00004831/*
drhc39e0002004-05-07 23:50:57 +00004832** Return TRUE if the cursor is not pointing at an entry of the table.
4833**
4834** TRUE will be returned after a call to sqlite3BtreeNext() moves
4835** past the last entry in the table or sqlite3BtreePrev() moves past
4836** the first entry. TRUE is also returned if the table is empty.
4837*/
4838int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004839 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4840 ** have been deleted? This API will need to change to return an error code
4841 ** as well as the boolean result value.
4842 */
4843 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004844}
4845
4846/*
drhbd03cae2001-06-02 02:40:57 +00004847** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004848** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004849** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004850** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00004851**
drhee6438d2014-09-01 13:29:32 +00004852** The main entry point is sqlite3BtreeNext(). That routine is optimized
4853** for the common case of merely incrementing the cell counter BtCursor.aiIdx
4854** to the next cell on the current page. The (slower) btreeNext() helper
4855** routine is called when it is necessary to move to a different page or
4856** to restore the cursor.
4857**
drhe39a7322014-02-03 14:04:11 +00004858** The calling function will set *pRes to 0 or 1. The initial *pRes value
4859** will be 1 if the cursor being stepped corresponds to an SQL index and
4860** if this routine could have been skipped if that SQL index had been
4861** a unique index. Otherwise the caller will have set *pRes to zero.
4862** Zero is the common case. The btree implementation is free to use the
4863** initial *pRes value as a hint to improve performance, but the current
4864** SQLite btree implementation does not. (Note that the comdb2 btree
4865** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00004866*/
drhee6438d2014-09-01 13:29:32 +00004867static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004868 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004869 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004870 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004871
drh1fee73e2007-08-29 04:00:57 +00004872 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00004873 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004874 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00004875 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00004876 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00004877 rc = restoreCursorPosition(pCur);
4878 if( rc!=SQLITE_OK ){
4879 return rc;
4880 }
4881 if( CURSOR_INVALID==pCur->eState ){
4882 *pRes = 1;
4883 return SQLITE_OK;
4884 }
drh9b47ee32013-08-20 03:13:51 +00004885 if( pCur->skipNext ){
4886 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4887 pCur->eState = CURSOR_VALID;
4888 if( pCur->skipNext>0 ){
4889 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00004890 return SQLITE_OK;
4891 }
drhf66f26a2013-08-19 20:04:10 +00004892 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004893 }
danielk1977da184232006-01-05 11:34:32 +00004894 }
danielk1977da184232006-01-05 11:34:32 +00004895
danielk197771d5d2c2008-09-29 11:49:47 +00004896 pPage = pCur->apPage[pCur->iPage];
4897 idx = ++pCur->aiIdx[pCur->iPage];
4898 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004899
4900 /* If the database file is corrupt, it is possible for the value of idx
4901 ** to be invalid here. This can only occur if a second cursor modifies
4902 ** the page while cursor pCur is holding a reference to it. Which can
4903 ** only happen if the database is corrupt in such a way as to link the
4904 ** page into more than one b-tree structure. */
4905 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004906
danielk197771d5d2c2008-09-29 11:49:47 +00004907 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004908 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004909 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00004910 if( rc ) return rc;
4911 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00004912 }
drh5e2f8b92001-05-28 00:41:15 +00004913 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004914 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004915 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004916 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004917 return SQLITE_OK;
4918 }
danielk197730548662009-07-09 05:07:37 +00004919 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004920 pPage = pCur->apPage[pCur->iPage];
4921 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00004922 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00004923 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00004924 }else{
drhee6438d2014-09-01 13:29:32 +00004925 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00004926 }
drh8178a752003-01-05 21:41:40 +00004927 }
drh3aac2dd2004-04-26 14:10:20 +00004928 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004929 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00004930 }else{
4931 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00004932 }
drh72f82862001-05-24 21:06:34 +00004933}
drhee6438d2014-09-01 13:29:32 +00004934int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
4935 MemPage *pPage;
4936 assert( cursorHoldsMutex(pCur) );
4937 assert( pRes!=0 );
4938 assert( *pRes==0 || *pRes==1 );
4939 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
4940 pCur->info.nSize = 0;
4941 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4942 *pRes = 0;
4943 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
4944 pPage = pCur->apPage[pCur->iPage];
4945 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
4946 pCur->aiIdx[pCur->iPage]--;
4947 return btreeNext(pCur, pRes);
4948 }
4949 if( pPage->leaf ){
4950 return SQLITE_OK;
4951 }else{
4952 return moveToLeftmost(pCur);
4953 }
4954}
drh72f82862001-05-24 21:06:34 +00004955
drh3b7511c2001-05-26 13:15:44 +00004956/*
drh2dcc9aa2002-12-04 13:40:25 +00004957** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004958** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004959** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004960** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00004961**
drhee6438d2014-09-01 13:29:32 +00004962** The main entry point is sqlite3BtreePrevious(). That routine is optimized
4963** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00004964** to the previous cell on the current page. The (slower) btreePrevious()
4965** helper routine is called when it is necessary to move to a different page
4966** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00004967**
drhe39a7322014-02-03 14:04:11 +00004968** The calling function will set *pRes to 0 or 1. The initial *pRes value
4969** will be 1 if the cursor being stepped corresponds to an SQL index and
4970** if this routine could have been skipped if that SQL index had been
4971** a unique index. Otherwise the caller will have set *pRes to zero.
4972** Zero is the common case. The btree implementation is free to use the
4973** initial *pRes value as a hint to improve performance, but the current
4974** SQLite btree implementation does not. (Note that the comdb2 btree
4975** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00004976*/
drhee6438d2014-09-01 13:29:32 +00004977static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004978 int rc;
drh8178a752003-01-05 21:41:40 +00004979 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004980
drh1fee73e2007-08-29 04:00:57 +00004981 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00004982 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00004983 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00004984 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004985 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
4986 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00004987 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00004988 assert( pCur->eState>=CURSOR_REQUIRESEEK );
4989 rc = btreeRestoreCursorPosition(pCur);
4990 if( rc!=SQLITE_OK ){
4991 return rc;
drhf66f26a2013-08-19 20:04:10 +00004992 }
4993 if( CURSOR_INVALID==pCur->eState ){
4994 *pRes = 1;
4995 return SQLITE_OK;
4996 }
drh9b47ee32013-08-20 03:13:51 +00004997 if( pCur->skipNext ){
4998 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4999 pCur->eState = CURSOR_VALID;
5000 if( pCur->skipNext<0 ){
5001 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005002 return SQLITE_OK;
5003 }
drhf66f26a2013-08-19 20:04:10 +00005004 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005005 }
danielk1977da184232006-01-05 11:34:32 +00005006 }
danielk1977da184232006-01-05 11:34:32 +00005007
danielk197771d5d2c2008-09-29 11:49:47 +00005008 pPage = pCur->apPage[pCur->iPage];
5009 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005010 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005011 int idx = pCur->aiIdx[pCur->iPage];
5012 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005013 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005014 rc = moveToRightmost(pCur);
5015 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005016 while( pCur->aiIdx[pCur->iPage]==0 ){
5017 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005018 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005019 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005020 return SQLITE_OK;
5021 }
danielk197730548662009-07-09 05:07:37 +00005022 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005023 }
drhee6438d2014-09-01 13:29:32 +00005024 assert( pCur->info.nSize==0 );
5025 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005026
5027 pCur->aiIdx[pCur->iPage]--;
5028 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005029 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005030 rc = sqlite3BtreePrevious(pCur, pRes);
5031 }else{
5032 rc = SQLITE_OK;
5033 }
drh2dcc9aa2002-12-04 13:40:25 +00005034 }
drh2dcc9aa2002-12-04 13:40:25 +00005035 return rc;
5036}
drhee6438d2014-09-01 13:29:32 +00005037int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5038 assert( cursorHoldsMutex(pCur) );
5039 assert( pRes!=0 );
5040 assert( *pRes==0 || *pRes==1 );
5041 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5042 *pRes = 0;
5043 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5044 pCur->info.nSize = 0;
5045 if( pCur->eState!=CURSOR_VALID
5046 || pCur->aiIdx[pCur->iPage]==0
5047 || pCur->apPage[pCur->iPage]->leaf==0
5048 ){
5049 return btreePrevious(pCur, pRes);
5050 }
5051 pCur->aiIdx[pCur->iPage]--;
5052 return SQLITE_OK;
5053}
drh2dcc9aa2002-12-04 13:40:25 +00005054
5055/*
drh3b7511c2001-05-26 13:15:44 +00005056** Allocate a new page from the database file.
5057**
danielk19773b8a05f2007-03-19 17:44:26 +00005058** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005059** has already been called on the new page.) The new page has also
5060** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005061** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005062**
5063** SQLITE_OK is returned on success. Any other return value indicates
5064** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00005065** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00005066**
drh82e647d2013-03-02 03:25:55 +00005067** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005068** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005069** attempt to keep related pages close to each other in the database file,
5070** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005071**
drh82e647d2013-03-02 03:25:55 +00005072** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5073** anywhere on the free-list, then it is guaranteed to be returned. If
5074** eMode is BTALLOC_LT then the page returned will be less than or equal
5075** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5076** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005077*/
drh4f0c5872007-03-26 22:05:01 +00005078static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005079 BtShared *pBt, /* The btree */
5080 MemPage **ppPage, /* Store pointer to the allocated page here */
5081 Pgno *pPgno, /* Store the page number here */
5082 Pgno nearby, /* Search for a page near this one */
5083 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005084){
drh3aac2dd2004-04-26 14:10:20 +00005085 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005086 int rc;
drh35cd6432009-06-05 14:17:21 +00005087 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005088 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005089 MemPage *pTrunk = 0;
5090 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005091 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005092
drh1fee73e2007-08-29 04:00:57 +00005093 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005094 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005095 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005096 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00005097 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005098 testcase( n==mxPage-1 );
5099 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005100 return SQLITE_CORRUPT_BKPT;
5101 }
drh3aac2dd2004-04-26 14:10:20 +00005102 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005103 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005104 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005105 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5106
drh82e647d2013-03-02 03:25:55 +00005107 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005108 ** shows that the page 'nearby' is somewhere on the free-list, then
5109 ** the entire-list will be searched for that page.
5110 */
5111#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005112 if( eMode==BTALLOC_EXACT ){
5113 if( nearby<=mxPage ){
5114 u8 eType;
5115 assert( nearby>0 );
5116 assert( pBt->autoVacuum );
5117 rc = ptrmapGet(pBt, nearby, &eType, 0);
5118 if( rc ) return rc;
5119 if( eType==PTRMAP_FREEPAGE ){
5120 searchList = 1;
5121 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005122 }
dan51f0b6d2013-02-22 20:16:34 +00005123 }else if( eMode==BTALLOC_LE ){
5124 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005125 }
5126#endif
5127
5128 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5129 ** first free-list trunk page. iPrevTrunk is initially 1.
5130 */
danielk19773b8a05f2007-03-19 17:44:26 +00005131 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005132 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005133 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005134
5135 /* The code within this loop is run only once if the 'searchList' variable
5136 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005137 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5138 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005139 */
5140 do {
5141 pPrevTrunk = pTrunk;
5142 if( pPrevTrunk ){
5143 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005144 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00005145 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005146 }
drhdf35a082009-07-09 02:24:35 +00005147 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005148 if( iTrunk>mxPage ){
5149 rc = SQLITE_CORRUPT_BKPT;
5150 }else{
drhb00fc3b2013-08-21 23:42:32 +00005151 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005152 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005153 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005154 pTrunk = 0;
5155 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005156 }
drhb07028f2011-10-14 21:49:18 +00005157 assert( pTrunk!=0 );
5158 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005159
drh93b4fc72011-04-07 14:47:01 +00005160 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005161 if( k==0 && !searchList ){
5162 /* The trunk has no leaves and the list is not being searched.
5163 ** So extract the trunk page itself and use it as the newly
5164 ** allocated page */
5165 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005166 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005167 if( rc ){
5168 goto end_allocate_page;
5169 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005170 *pPgno = iTrunk;
5171 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5172 *ppPage = pTrunk;
5173 pTrunk = 0;
5174 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005175 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005176 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005177 rc = SQLITE_CORRUPT_BKPT;
5178 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005179#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005180 }else if( searchList
5181 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5182 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005183 /* The list is being searched and this trunk page is the page
5184 ** to allocate, regardless of whether it has leaves.
5185 */
dan51f0b6d2013-02-22 20:16:34 +00005186 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005187 *ppPage = pTrunk;
5188 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005189 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005190 if( rc ){
5191 goto end_allocate_page;
5192 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005193 if( k==0 ){
5194 if( !pPrevTrunk ){
5195 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5196 }else{
danf48c3552010-08-23 15:41:24 +00005197 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5198 if( rc!=SQLITE_OK ){
5199 goto end_allocate_page;
5200 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005201 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5202 }
5203 }else{
5204 /* The trunk page is required by the caller but it contains
5205 ** pointers to free-list leaves. The first leaf becomes a trunk
5206 ** page in this case.
5207 */
5208 MemPage *pNewTrunk;
5209 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005210 if( iNewTrunk>mxPage ){
5211 rc = SQLITE_CORRUPT_BKPT;
5212 goto end_allocate_page;
5213 }
drhdf35a082009-07-09 02:24:35 +00005214 testcase( iNewTrunk==mxPage );
drhb00fc3b2013-08-21 23:42:32 +00005215 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005216 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005217 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005218 }
danielk19773b8a05f2007-03-19 17:44:26 +00005219 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005220 if( rc!=SQLITE_OK ){
5221 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005222 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005223 }
5224 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5225 put4byte(&pNewTrunk->aData[4], k-1);
5226 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005227 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005228 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005229 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005230 put4byte(&pPage1->aData[32], iNewTrunk);
5231 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005232 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005233 if( rc ){
5234 goto end_allocate_page;
5235 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005236 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5237 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005238 }
5239 pTrunk = 0;
5240 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5241#endif
danielk1977e5765212009-06-17 11:13:28 +00005242 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005243 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005244 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005245 Pgno iPage;
5246 unsigned char *aData = pTrunk->aData;
5247 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005248 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005249 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005250 if( eMode==BTALLOC_LE ){
5251 for(i=0; i<k; i++){
5252 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005253 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005254 closest = i;
5255 break;
5256 }
5257 }
5258 }else{
5259 int dist;
5260 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5261 for(i=1; i<k; i++){
5262 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5263 if( d2<dist ){
5264 closest = i;
5265 dist = d2;
5266 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005267 }
5268 }
5269 }else{
5270 closest = 0;
5271 }
5272
5273 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005274 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005275 if( iPage>mxPage ){
5276 rc = SQLITE_CORRUPT_BKPT;
5277 goto end_allocate_page;
5278 }
drhdf35a082009-07-09 02:24:35 +00005279 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005280 if( !searchList
5281 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5282 ){
danielk1977bea2a942009-01-20 17:06:27 +00005283 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005284 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005285 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5286 ": %d more free pages\n",
5287 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005288 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5289 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005290 if( closest<k-1 ){
5291 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5292 }
5293 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005294 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drhb00fc3b2013-08-21 23:42:32 +00005295 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005296 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005297 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005298 if( rc!=SQLITE_OK ){
5299 releasePage(*ppPage);
5300 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005301 }
5302 searchList = 0;
5303 }
drhee696e22004-08-30 16:52:17 +00005304 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005305 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005306 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005307 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005308 }else{
danbc1a3c62013-02-23 16:40:46 +00005309 /* There are no pages on the freelist, so append a new page to the
5310 ** database image.
5311 **
5312 ** Normally, new pages allocated by this block can be requested from the
5313 ** pager layer with the 'no-content' flag set. This prevents the pager
5314 ** from trying to read the pages content from disk. However, if the
5315 ** current transaction has already run one or more incremental-vacuum
5316 ** steps, then the page we are about to allocate may contain content
5317 ** that is required in the event of a rollback. In this case, do
5318 ** not set the no-content flag. This causes the pager to load and journal
5319 ** the current page content before overwriting it.
5320 **
5321 ** Note that the pager will not actually attempt to load or journal
5322 ** content for any page that really does lie past the end of the database
5323 ** file on disk. So the effects of disabling the no-content optimization
5324 ** here are confined to those pages that lie between the end of the
5325 ** database image and the end of the database file.
5326 */
drh3f387402014-09-24 01:23:00 +00005327 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005328
drhdd3cd972010-03-27 17:12:36 +00005329 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5330 if( rc ) return rc;
5331 pBt->nPage++;
5332 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005333
danielk1977afcdd022004-10-31 16:25:42 +00005334#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005335 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005336 /* If *pPgno refers to a pointer-map page, allocate two new pages
5337 ** at the end of the file instead of one. The first allocated page
5338 ** becomes a new pointer-map page, the second is used by the caller.
5339 */
danielk1977ac861692009-03-28 10:54:22 +00005340 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005341 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5342 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005343 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005344 if( rc==SQLITE_OK ){
5345 rc = sqlite3PagerWrite(pPg->pDbPage);
5346 releasePage(pPg);
5347 }
5348 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005349 pBt->nPage++;
5350 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005351 }
5352#endif
drhdd3cd972010-03-27 17:12:36 +00005353 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5354 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005355
danielk1977599fcba2004-11-08 07:13:13 +00005356 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005357 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005358 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005359 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005360 if( rc!=SQLITE_OK ){
5361 releasePage(*ppPage);
5362 }
drh3a4c1412004-05-09 20:40:11 +00005363 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005364 }
danielk1977599fcba2004-11-08 07:13:13 +00005365
5366 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005367
5368end_allocate_page:
5369 releasePage(pTrunk);
5370 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005371 if( rc==SQLITE_OK ){
5372 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5373 releasePage(*ppPage);
dan7df42ab2014-01-20 18:25:44 +00005374 *ppPage = 0;
danielk1977b247c212008-11-21 09:09:01 +00005375 return SQLITE_CORRUPT_BKPT;
5376 }
5377 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005378 }else{
5379 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005380 }
drh93b4fc72011-04-07 14:47:01 +00005381 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005382 return rc;
5383}
5384
5385/*
danielk1977bea2a942009-01-20 17:06:27 +00005386** This function is used to add page iPage to the database file free-list.
5387** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005388**
danielk1977bea2a942009-01-20 17:06:27 +00005389** The value passed as the second argument to this function is optional.
5390** If the caller happens to have a pointer to the MemPage object
5391** corresponding to page iPage handy, it may pass it as the second value.
5392** Otherwise, it may pass NULL.
5393**
5394** If a pointer to a MemPage object is passed as the second argument,
5395** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005396*/
danielk1977bea2a942009-01-20 17:06:27 +00005397static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5398 MemPage *pTrunk = 0; /* Free-list trunk page */
5399 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5400 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5401 MemPage *pPage; /* Page being freed. May be NULL. */
5402 int rc; /* Return Code */
5403 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005404
danielk1977bea2a942009-01-20 17:06:27 +00005405 assert( sqlite3_mutex_held(pBt->mutex) );
5406 assert( iPage>1 );
5407 assert( !pMemPage || pMemPage->pgno==iPage );
5408
5409 if( pMemPage ){
5410 pPage = pMemPage;
5411 sqlite3PagerRef(pPage->pDbPage);
5412 }else{
5413 pPage = btreePageLookup(pBt, iPage);
5414 }
drh3aac2dd2004-04-26 14:10:20 +00005415
drha34b6762004-05-07 13:30:42 +00005416 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005417 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005418 if( rc ) goto freepage_out;
5419 nFree = get4byte(&pPage1->aData[36]);
5420 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005421
drhc9166342012-01-05 23:32:06 +00005422 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005423 /* If the secure_delete option is enabled, then
5424 ** always fully overwrite deleted information with zeros.
5425 */
drhb00fc3b2013-08-21 23:42:32 +00005426 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005427 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005428 ){
5429 goto freepage_out;
5430 }
5431 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005432 }
drhfcce93f2006-02-22 03:08:32 +00005433
danielk1977687566d2004-11-02 12:56:41 +00005434 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005435 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005436 */
danielk197785d90ca2008-07-19 14:25:15 +00005437 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005438 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005439 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005440 }
danielk1977687566d2004-11-02 12:56:41 +00005441
danielk1977bea2a942009-01-20 17:06:27 +00005442 /* Now manipulate the actual database free-list structure. There are two
5443 ** possibilities. If the free-list is currently empty, or if the first
5444 ** trunk page in the free-list is full, then this page will become a
5445 ** new free-list trunk page. Otherwise, it will become a leaf of the
5446 ** first trunk page in the current free-list. This block tests if it
5447 ** is possible to add the page as a new free-list leaf.
5448 */
5449 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005450 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005451
5452 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005453 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005454 if( rc!=SQLITE_OK ){
5455 goto freepage_out;
5456 }
5457
5458 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005459 assert( pBt->usableSize>32 );
5460 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005461 rc = SQLITE_CORRUPT_BKPT;
5462 goto freepage_out;
5463 }
drheeb844a2009-08-08 18:01:07 +00005464 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005465 /* In this case there is room on the trunk page to insert the page
5466 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005467 **
5468 ** Note that the trunk page is not really full until it contains
5469 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5470 ** coded. But due to a coding error in versions of SQLite prior to
5471 ** 3.6.0, databases with freelist trunk pages holding more than
5472 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5473 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005474 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005475 ** for now. At some point in the future (once everyone has upgraded
5476 ** to 3.6.0 or later) we should consider fixing the conditional above
5477 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5478 */
danielk19773b8a05f2007-03-19 17:44:26 +00005479 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005480 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005481 put4byte(&pTrunk->aData[4], nLeaf+1);
5482 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005483 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005484 sqlite3PagerDontWrite(pPage->pDbPage);
5485 }
danielk1977bea2a942009-01-20 17:06:27 +00005486 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005487 }
drh3a4c1412004-05-09 20:40:11 +00005488 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005489 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005490 }
drh3b7511c2001-05-26 13:15:44 +00005491 }
danielk1977bea2a942009-01-20 17:06:27 +00005492
5493 /* If control flows to this point, then it was not possible to add the
5494 ** the page being freed as a leaf page of the first trunk in the free-list.
5495 ** Possibly because the free-list is empty, or possibly because the
5496 ** first trunk in the free-list is full. Either way, the page being freed
5497 ** will become the new first trunk page in the free-list.
5498 */
drhb00fc3b2013-08-21 23:42:32 +00005499 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005500 goto freepage_out;
5501 }
5502 rc = sqlite3PagerWrite(pPage->pDbPage);
5503 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005504 goto freepage_out;
5505 }
5506 put4byte(pPage->aData, iTrunk);
5507 put4byte(&pPage->aData[4], 0);
5508 put4byte(&pPage1->aData[32], iPage);
5509 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5510
5511freepage_out:
5512 if( pPage ){
5513 pPage->isInit = 0;
5514 }
5515 releasePage(pPage);
5516 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005517 return rc;
5518}
drhc314dc72009-07-21 11:52:34 +00005519static void freePage(MemPage *pPage, int *pRC){
5520 if( (*pRC)==SQLITE_OK ){
5521 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5522 }
danielk1977bea2a942009-01-20 17:06:27 +00005523}
drh3b7511c2001-05-26 13:15:44 +00005524
5525/*
drh9bfdc252014-09-24 02:05:41 +00005526** Free any overflow pages associated with the given Cell. Write the
5527** local Cell size (the number of bytes on the original page, omitting
5528** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005529*/
drh9bfdc252014-09-24 02:05:41 +00005530static int clearCell(
5531 MemPage *pPage, /* The page that contains the Cell */
5532 unsigned char *pCell, /* First byte of the Cell */
5533 u16 *pnSize /* Write the size of the Cell here */
5534){
danielk1977aef0bf62005-12-30 16:28:01 +00005535 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005536 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005537 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005538 int rc;
drh94440812007-03-06 11:42:19 +00005539 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005540 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005541
drh1fee73e2007-08-29 04:00:57 +00005542 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005543 btreeParseCellPtr(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005544 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005545 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005546 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005547 }
drhe42a9b42011-08-31 13:27:19 +00005548 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005549 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005550 }
drh6f11bef2004-05-13 01:12:56 +00005551 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005552 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005553 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005554 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5555 assert( ovflPgno==0 || nOvfl>0 );
5556 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005557 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005558 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005559 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005560 /* 0 is not a legal page number and page 1 cannot be an
5561 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5562 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005563 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005564 }
danielk1977bea2a942009-01-20 17:06:27 +00005565 if( nOvfl ){
5566 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5567 if( rc ) return rc;
5568 }
dan887d4b22010-02-25 12:09:16 +00005569
shaneh1da207e2010-03-09 14:41:12 +00005570 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005571 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5572 ){
5573 /* There is no reason any cursor should have an outstanding reference
5574 ** to an overflow page belonging to a cell that is being deleted/updated.
5575 ** So if there exists more than one reference to this page, then it
5576 ** must not really be an overflow page and the database must be corrupt.
5577 ** It is helpful to detect this before calling freePage2(), as
5578 ** freePage2() may zero the page contents if secure-delete mode is
5579 ** enabled. If this 'overflow' page happens to be a page that the
5580 ** caller is iterating through or using in some other way, this
5581 ** can be problematic.
5582 */
5583 rc = SQLITE_CORRUPT_BKPT;
5584 }else{
5585 rc = freePage2(pBt, pOvfl, ovflPgno);
5586 }
5587
danielk1977bea2a942009-01-20 17:06:27 +00005588 if( pOvfl ){
5589 sqlite3PagerUnref(pOvfl->pDbPage);
5590 }
drh3b7511c2001-05-26 13:15:44 +00005591 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005592 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005593 }
drh5e2f8b92001-05-28 00:41:15 +00005594 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005595}
5596
5597/*
drh91025292004-05-03 19:49:32 +00005598** Create the byte sequence used to represent a cell on page pPage
5599** and write that byte sequence into pCell[]. Overflow pages are
5600** allocated and filled in as necessary. The calling procedure
5601** is responsible for making sure sufficient space has been allocated
5602** for pCell[].
5603**
5604** Note that pCell does not necessary need to point to the pPage->aData
5605** area. pCell might point to some temporary storage. The cell will
5606** be constructed in this temporary area then copied into pPage->aData
5607** later.
drh3b7511c2001-05-26 13:15:44 +00005608*/
5609static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005610 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005611 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005612 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005613 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005614 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005615 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005616){
drh3b7511c2001-05-26 13:15:44 +00005617 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005618 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005619 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005620 int spaceLeft;
5621 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005622 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005623 unsigned char *pPrior;
5624 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005625 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005626 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005627 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00005628
drh1fee73e2007-08-29 04:00:57 +00005629 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005630
drhc5053fb2008-11-27 02:22:10 +00005631 /* pPage is not necessarily writeable since pCell might be auxiliary
5632 ** buffer space that is separate from the pPage buffer area */
5633 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5634 || sqlite3PagerIswriteable(pPage->pDbPage) );
5635
drh91025292004-05-03 19:49:32 +00005636 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00005637 nHeader = pPage->childPtrSize;
5638 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00005639 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00005640 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00005641 }else{
drh6200c882014-09-23 22:36:25 +00005642 assert( nData==0 );
5643 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00005644 }
drh6f11bef2004-05-13 01:12:56 +00005645 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00005646
drh6200c882014-09-23 22:36:25 +00005647 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00005648 if( pPage->intKey ){
5649 pSrc = pData;
5650 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005651 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005652 }else{
danielk197731d31b82009-07-13 13:18:07 +00005653 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5654 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005655 }
drh6200c882014-09-23 22:36:25 +00005656 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005657 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005658 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005659 }
drh6200c882014-09-23 22:36:25 +00005660 if( nPayload<=pPage->maxLocal ){
5661 n = nHeader + nPayload;
5662 testcase( n==3 );
5663 testcase( n==4 );
5664 if( n<4 ) n = 4;
5665 *pnSize = n;
5666 spaceLeft = nPayload;
5667 pPrior = pCell;
5668 }else{
5669 int mn = pPage->minLocal;
5670 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
5671 testcase( n==pPage->maxLocal );
5672 testcase( n==pPage->maxLocal+1 );
5673 if( n > pPage->maxLocal ) n = mn;
5674 spaceLeft = n;
5675 *pnSize = n + nHeader + 4;
5676 pPrior = &pCell[nHeader+n];
5677 }
drh3aac2dd2004-04-26 14:10:20 +00005678 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00005679
drh6200c882014-09-23 22:36:25 +00005680 /* At this point variables should be set as follows:
5681 **
5682 ** nPayload Total payload size in bytes
5683 ** pPayload Begin writing payload here
5684 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
5685 ** that means content must spill into overflow pages.
5686 ** *pnSize Size of the local cell (not counting overflow pages)
5687 ** pPrior Where to write the pgno of the first overflow page
5688 **
5689 ** Use a call to btreeParseCellPtr() to verify that the values above
5690 ** were computed correctly.
5691 */
5692#if SQLITE_DEBUG
5693 {
5694 CellInfo info;
5695 btreeParseCellPtr(pPage, pCell, &info);
5696 assert( nHeader=(int)(info.pPayload - pCell) );
5697 assert( info.nKey==nKey );
5698 assert( *pnSize == info.nSize );
5699 assert( spaceLeft == info.nLocal );
5700 assert( pPrior == &pCell[info.iOverflow] );
5701 }
5702#endif
5703
5704 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00005705 while( nPayload>0 ){
5706 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005707#ifndef SQLITE_OMIT_AUTOVACUUM
5708 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005709 if( pBt->autoVacuum ){
5710 do{
5711 pgnoOvfl++;
5712 } while(
5713 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5714 );
danielk1977b39f70b2007-05-17 18:28:11 +00005715 }
danielk1977afcdd022004-10-31 16:25:42 +00005716#endif
drhf49661a2008-12-10 16:45:50 +00005717 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005718#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005719 /* If the database supports auto-vacuum, and the second or subsequent
5720 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005721 ** for that page now.
5722 **
5723 ** If this is the first overflow page, then write a partial entry
5724 ** to the pointer-map. If we write nothing to this pointer-map slot,
5725 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005726 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005727 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005728 */
danielk19774ef24492007-05-23 09:52:41 +00005729 if( pBt->autoVacuum && rc==SQLITE_OK ){
5730 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005731 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005732 if( rc ){
5733 releasePage(pOvfl);
5734 }
danielk1977afcdd022004-10-31 16:25:42 +00005735 }
5736#endif
drh3b7511c2001-05-26 13:15:44 +00005737 if( rc ){
drh9b171272004-05-08 02:03:22 +00005738 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005739 return rc;
5740 }
drhc5053fb2008-11-27 02:22:10 +00005741
5742 /* If pToRelease is not zero than pPrior points into the data area
5743 ** of pToRelease. Make sure pToRelease is still writeable. */
5744 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5745
5746 /* If pPrior is part of the data area of pPage, then make sure pPage
5747 ** is still writeable */
5748 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5749 || sqlite3PagerIswriteable(pPage->pDbPage) );
5750
drh3aac2dd2004-04-26 14:10:20 +00005751 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005752 releasePage(pToRelease);
5753 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005754 pPrior = pOvfl->aData;
5755 put4byte(pPrior, 0);
5756 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005757 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005758 }
5759 n = nPayload;
5760 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005761
5762 /* If pToRelease is not zero than pPayload points into the data area
5763 ** of pToRelease. Make sure pToRelease is still writeable. */
5764 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5765
5766 /* If pPayload is part of the data area of pPage, then make sure pPage
5767 ** is still writeable */
5768 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5769 || sqlite3PagerIswriteable(pPage->pDbPage) );
5770
drhb026e052007-05-02 01:34:31 +00005771 if( nSrc>0 ){
5772 if( n>nSrc ) n = nSrc;
5773 assert( pSrc );
5774 memcpy(pPayload, pSrc, n);
5775 }else{
5776 memset(pPayload, 0, n);
5777 }
drh3b7511c2001-05-26 13:15:44 +00005778 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005779 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005780 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005781 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005782 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005783 if( nSrc==0 ){
5784 nSrc = nData;
5785 pSrc = pData;
5786 }
drhdd793422001-06-28 01:54:48 +00005787 }
drh9b171272004-05-08 02:03:22 +00005788 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005789 return SQLITE_OK;
5790}
5791
drh14acc042001-06-10 19:56:58 +00005792/*
5793** Remove the i-th cell from pPage. This routine effects pPage only.
5794** The cell content is not freed or deallocated. It is assumed that
5795** the cell content has been copied someplace else. This routine just
5796** removes the reference to the cell from pPage.
5797**
5798** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005799*/
drh98add2e2009-07-20 17:11:49 +00005800static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005801 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005802 u8 *data; /* pPage->aData */
5803 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005804 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005805 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005806
drh98add2e2009-07-20 17:11:49 +00005807 if( *pRC ) return;
5808
drh8c42ca92001-06-22 19:15:00 +00005809 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005810 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005811 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005812 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005813 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005814 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005815 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005816 hdr = pPage->hdrOffset;
5817 testcase( pc==get2byte(&data[hdr+5]) );
5818 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005819 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005820 *pRC = SQLITE_CORRUPT_BKPT;
5821 return;
shane0af3f892008-11-12 04:55:34 +00005822 }
shanedcc50b72008-11-13 18:29:50 +00005823 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005824 if( rc ){
5825 *pRC = rc;
5826 return;
shanedcc50b72008-11-13 18:29:50 +00005827 }
drh14acc042001-06-10 19:56:58 +00005828 pPage->nCell--;
drh9bb7c4f2013-12-09 01:58:11 +00005829 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
drhc314dc72009-07-21 11:52:34 +00005830 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005831 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005832}
5833
5834/*
5835** Insert a new cell on pPage at cell index "i". pCell points to the
5836** content of the cell.
5837**
5838** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005839** will not fit, then make a copy of the cell content into pTemp if
5840** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005841** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005842** in pTemp or the original pCell) and also record its index.
5843** Allocating a new entry in pPage->aCell[] implies that
5844** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005845**
5846** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5847** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005848** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005849** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005850*/
drh98add2e2009-07-20 17:11:49 +00005851static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005852 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005853 int i, /* New cell becomes the i-th cell of the page */
5854 u8 *pCell, /* Content of the new cell */
5855 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005856 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005857 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5858 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005859){
drh383d30f2010-02-26 13:07:37 +00005860 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005861 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005862 int end; /* First byte past the last cell pointer in data[] */
5863 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005864 int cellOffset; /* Address of first cell pointer in data[] */
5865 u8 *data; /* The content of the whole page */
danielk19774dbaa892009-06-16 16:50:22 +00005866 int nSkip = (iChild ? 4 : 0);
5867
drh98add2e2009-07-20 17:11:49 +00005868 if( *pRC ) return;
5869
drh43605152004-05-29 21:46:49 +00005870 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00005871 assert( MX_CELL(pPage->pBt)<=10921 );
5872 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00005873 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5874 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005875 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005876 /* The cell should normally be sized correctly. However, when moving a
5877 ** malformed cell from a leaf page to an interior page, if the cell size
5878 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5879 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5880 ** the term after the || in the following assert(). */
5881 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005882 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005883 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005884 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005885 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005886 }
danielk19774dbaa892009-06-16 16:50:22 +00005887 if( iChild ){
5888 put4byte(pCell, iChild);
5889 }
drh43605152004-05-29 21:46:49 +00005890 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005891 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5892 pPage->apOvfl[j] = pCell;
5893 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005894 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005895 int rc = sqlite3PagerWrite(pPage->pDbPage);
5896 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005897 *pRC = rc;
5898 return;
danielk19776e465eb2007-08-21 13:11:00 +00005899 }
5900 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005901 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005902 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005903 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005904 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005905 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005906 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005907 /* The allocateSpace() routine guarantees the following two properties
5908 ** if it returns success */
5909 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005910 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005911 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005912 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005913 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005914 if( iChild ){
5915 put4byte(&data[idx], iChild);
5916 }
drh8f518832013-12-09 02:32:19 +00005917 memmove(&data[ins+2], &data[ins], end-ins);
drh43605152004-05-29 21:46:49 +00005918 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005919 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005920#ifndef SQLITE_OMIT_AUTOVACUUM
5921 if( pPage->pBt->autoVacuum ){
5922 /* The cell may contain a pointer to an overflow page. If so, write
5923 ** the entry for the overflow page into the pointer map.
5924 */
drh98add2e2009-07-20 17:11:49 +00005925 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005926 }
5927#endif
drh14acc042001-06-10 19:56:58 +00005928 }
5929}
5930
5931/*
drhfa1a98a2004-05-14 19:08:17 +00005932** Add a list of cells to a page. The page should be initially empty.
5933** The cells are guaranteed to fit on the page.
5934*/
5935static void assemblePage(
peter.d.reid60ec9142014-09-06 16:39:46 +00005936 MemPage *pPage, /* The page to be assembled */
drhfa1a98a2004-05-14 19:08:17 +00005937 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005938 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005939 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005940){
5941 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005942 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005943 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005944 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5945 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5946 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005947
drh43605152004-05-29 21:46:49 +00005948 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005949 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005950 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5951 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005952 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005953
5954 /* Check that the page has just been zeroed by zeroPage() */
5955 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005956 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005957
drh3def2352011-11-11 00:27:15 +00005958 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005959 cellbody = nUsable;
5960 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005961 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005962 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005963 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005964 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005965 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005966 }
danielk1977fad91942009-04-29 17:49:59 +00005967 put2byte(&data[hdr+3], nCell);
5968 put2byte(&data[hdr+5], cellbody);
5969 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005970 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005971}
5972
drh14acc042001-06-10 19:56:58 +00005973/*
drhc3b70572003-01-04 19:44:07 +00005974** The following parameters determine how many adjacent pages get involved
5975** in a balancing operation. NN is the number of neighbors on either side
5976** of the page that participate in the balancing operation. NB is the
5977** total number of pages that participate, including the target page and
5978** NN neighbors on either side.
5979**
5980** The minimum value of NN is 1 (of course). Increasing NN above 1
5981** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5982** in exchange for a larger degradation in INSERT and UPDATE performance.
5983** The value of NN appears to give the best results overall.
5984*/
5985#define NN 1 /* Number of neighbors on either side of pPage */
5986#define NB (NN*2+1) /* Total pages involved in the balance */
5987
danielk1977ac245ec2005-01-14 13:50:11 +00005988
drh615ae552005-01-16 23:21:00 +00005989#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005990/*
5991** This version of balance() handles the common special case where
5992** a new entry is being inserted on the extreme right-end of the
5993** tree, in other words, when the new entry will become the largest
5994** entry in the tree.
5995**
drhc314dc72009-07-21 11:52:34 +00005996** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005997** a new page to the right-hand side and put the one new entry in
5998** that page. This leaves the right side of the tree somewhat
5999** unbalanced. But odds are that we will be inserting new entries
6000** at the end soon afterwards so the nearly empty page will quickly
6001** fill up. On average.
6002**
6003** pPage is the leaf page which is the right-most page in the tree.
6004** pParent is its parent. pPage must have a single overflow entry
6005** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006006**
6007** The pSpace buffer is used to store a temporary copy of the divider
6008** cell that will be inserted into pParent. Such a cell consists of a 4
6009** byte page number followed by a variable length integer. In other
6010** words, at most 13 bytes. Hence the pSpace buffer must be at
6011** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006012*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006013static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6014 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006015 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006016 int rc; /* Return Code */
6017 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006018
drh1fee73e2007-08-29 04:00:57 +00006019 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006020 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006021 assert( pPage->nOverflow==1 );
6022
drh5d433ce2010-08-14 16:02:52 +00006023 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00006024 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006025
danielk1977a50d9aa2009-06-08 14:49:45 +00006026 /* Allocate a new page. This page will become the right-sibling of
6027 ** pPage. Make the parent page writable, so that the new divider cell
6028 ** may be inserted. If both these operations are successful, proceed.
6029 */
drh4f0c5872007-03-26 22:05:01 +00006030 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006031
danielk1977eaa06f62008-09-18 17:34:44 +00006032 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006033
6034 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006035 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00006036 u16 szCell = cellSizePtr(pPage, pCell);
6037 u8 *pStop;
6038
drhc5053fb2008-11-27 02:22:10 +00006039 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006040 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6041 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00006042 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00006043
6044 /* If this is an auto-vacuum database, update the pointer map
6045 ** with entries for the new page, and any pointer from the
6046 ** cell on the page to an overflow page. If either of these
6047 ** operations fails, the return code is set, but the contents
6048 ** of the parent page are still manipulated by thh code below.
6049 ** That is Ok, at this point the parent page is guaranteed to
6050 ** be marked as dirty. Returning an error code will cause a
6051 ** rollback, undoing any changes made to the parent page.
6052 */
6053 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006054 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6055 if( szCell>pNew->minLocal ){
6056 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006057 }
6058 }
danielk1977eaa06f62008-09-18 17:34:44 +00006059
danielk19776f235cc2009-06-04 14:46:08 +00006060 /* Create a divider cell to insert into pParent. The divider cell
6061 ** consists of a 4-byte page number (the page number of pPage) and
6062 ** a variable length key value (which must be the same value as the
6063 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006064 **
danielk19776f235cc2009-06-04 14:46:08 +00006065 ** To find the largest key value on pPage, first find the right-most
6066 ** cell on pPage. The first two fields of this cell are the
6067 ** record-length (a variable length integer at most 32-bits in size)
6068 ** and the key value (a variable length integer, may have any value).
6069 ** The first of the while(...) loops below skips over the record-length
6070 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006071 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006072 */
danielk1977eaa06f62008-09-18 17:34:44 +00006073 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006074 pStop = &pCell[9];
6075 while( (*(pCell++)&0x80) && pCell<pStop );
6076 pStop = &pCell[9];
6077 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6078
danielk19774dbaa892009-06-16 16:50:22 +00006079 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006080 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6081 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006082
6083 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006084 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6085
danielk1977e08a3c42008-09-18 18:17:03 +00006086 /* Release the reference to the new page. */
6087 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006088 }
6089
danielk1977eaa06f62008-09-18 17:34:44 +00006090 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006091}
drh615ae552005-01-16 23:21:00 +00006092#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006093
danielk19774dbaa892009-06-16 16:50:22 +00006094#if 0
drhc3b70572003-01-04 19:44:07 +00006095/*
danielk19774dbaa892009-06-16 16:50:22 +00006096** This function does not contribute anything to the operation of SQLite.
6097** it is sometimes activated temporarily while debugging code responsible
6098** for setting pointer-map entries.
6099*/
6100static int ptrmapCheckPages(MemPage **apPage, int nPage){
6101 int i, j;
6102 for(i=0; i<nPage; i++){
6103 Pgno n;
6104 u8 e;
6105 MemPage *pPage = apPage[i];
6106 BtShared *pBt = pPage->pBt;
6107 assert( pPage->isInit );
6108
6109 for(j=0; j<pPage->nCell; j++){
6110 CellInfo info;
6111 u8 *z;
6112
6113 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00006114 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006115 if( info.iOverflow ){
6116 Pgno ovfl = get4byte(&z[info.iOverflow]);
6117 ptrmapGet(pBt, ovfl, &e, &n);
6118 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6119 }
6120 if( !pPage->leaf ){
6121 Pgno child = get4byte(z);
6122 ptrmapGet(pBt, child, &e, &n);
6123 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6124 }
6125 }
6126 if( !pPage->leaf ){
6127 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6128 ptrmapGet(pBt, child, &e, &n);
6129 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6130 }
6131 }
6132 return 1;
6133}
6134#endif
6135
danielk1977cd581a72009-06-23 15:43:39 +00006136/*
6137** This function is used to copy the contents of the b-tree node stored
6138** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6139** the pointer-map entries for each child page are updated so that the
6140** parent page stored in the pointer map is page pTo. If pFrom contained
6141** any cells with overflow page pointers, then the corresponding pointer
6142** map entries are also updated so that the parent page is page pTo.
6143**
6144** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006145** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006146**
danielk197730548662009-07-09 05:07:37 +00006147** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006148**
6149** The performance of this function is not critical. It is only used by
6150** the balance_shallower() and balance_deeper() procedures, neither of
6151** which are called often under normal circumstances.
6152*/
drhc314dc72009-07-21 11:52:34 +00006153static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6154 if( (*pRC)==SQLITE_OK ){
6155 BtShared * const pBt = pFrom->pBt;
6156 u8 * const aFrom = pFrom->aData;
6157 u8 * const aTo = pTo->aData;
6158 int const iFromHdr = pFrom->hdrOffset;
6159 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006160 int rc;
drhc314dc72009-07-21 11:52:34 +00006161 int iData;
6162
6163
6164 assert( pFrom->isInit );
6165 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006166 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006167
6168 /* Copy the b-tree node content from page pFrom to page pTo. */
6169 iData = get2byte(&aFrom[iFromHdr+5]);
6170 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6171 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6172
6173 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006174 ** match the new data. The initialization of pTo can actually fail under
6175 ** fairly obscure circumstances, even though it is a copy of initialized
6176 ** page pFrom.
6177 */
drhc314dc72009-07-21 11:52:34 +00006178 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006179 rc = btreeInitPage(pTo);
6180 if( rc!=SQLITE_OK ){
6181 *pRC = rc;
6182 return;
6183 }
drhc314dc72009-07-21 11:52:34 +00006184
6185 /* If this is an auto-vacuum database, update the pointer-map entries
6186 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6187 */
6188 if( ISAUTOVACUUM ){
6189 *pRC = setChildPtrmaps(pTo);
6190 }
danielk1977cd581a72009-06-23 15:43:39 +00006191 }
danielk1977cd581a72009-06-23 15:43:39 +00006192}
6193
6194/*
danielk19774dbaa892009-06-16 16:50:22 +00006195** This routine redistributes cells on the iParentIdx'th child of pParent
6196** (hereafter "the page") and up to 2 siblings so that all pages have about the
6197** same amount of free space. Usually a single sibling on either side of the
6198** page are used in the balancing, though both siblings might come from one
6199** side if the page is the first or last child of its parent. If the page
6200** has fewer than 2 siblings (something which can only happen if the page
6201** is a root page or a child of a root page) then all available siblings
6202** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006203**
danielk19774dbaa892009-06-16 16:50:22 +00006204** The number of siblings of the page might be increased or decreased by
6205** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006206**
danielk19774dbaa892009-06-16 16:50:22 +00006207** Note that when this routine is called, some of the cells on the page
6208** might not actually be stored in MemPage.aData[]. This can happen
6209** if the page is overfull. This routine ensures that all cells allocated
6210** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006211**
danielk19774dbaa892009-06-16 16:50:22 +00006212** In the course of balancing the page and its siblings, cells may be
6213** inserted into or removed from the parent page (pParent). Doing so
6214** may cause the parent page to become overfull or underfull. If this
6215** happens, it is the responsibility of the caller to invoke the correct
6216** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006217**
drh5e00f6c2001-09-13 13:46:56 +00006218** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006219** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006220** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006221**
6222** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006223** buffer big enough to hold one page. If while inserting cells into the parent
6224** page (pParent) the parent page becomes overfull, this buffer is
6225** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006226** a maximum of four divider cells into the parent page, and the maximum
6227** size of a cell stored within an internal node is always less than 1/4
6228** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6229** enough for all overflow cells.
6230**
6231** If aOvflSpace is set to a null pointer, this function returns
6232** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006233*/
mistachkine7c54162012-10-02 22:54:27 +00006234#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6235#pragma optimize("", off)
6236#endif
danielk19774dbaa892009-06-16 16:50:22 +00006237static int balance_nonroot(
6238 MemPage *pParent, /* Parent page of siblings being balanced */
6239 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006240 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006241 int isRoot, /* True if pParent is a root-page */
6242 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006243){
drh16a9b832007-05-05 18:39:25 +00006244 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006245 int nCell = 0; /* Number of cells in apCell[] */
6246 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006247 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006248 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006249 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006250 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006251 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006252 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006253 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006254 int usableSpace; /* Bytes in pPage beyond the header */
6255 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006256 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006257 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006258 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006259 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006260 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00006261 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00006262 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006263 u8 *pRight; /* Location in parent of right-sibling pointer */
6264 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006265 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6266 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006267 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006268 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006269 u8 *aSpace1; /* Space for copies of dividers cells */
6270 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00006271
danielk1977a50d9aa2009-06-08 14:49:45 +00006272 pBt = pParent->pBt;
6273 assert( sqlite3_mutex_held(pBt->mutex) );
6274 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006275
danielk1977e5765212009-06-17 11:13:28 +00006276#if 0
drh43605152004-05-29 21:46:49 +00006277 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006278#endif
drh2e38c322004-09-03 18:38:44 +00006279
danielk19774dbaa892009-06-16 16:50:22 +00006280 /* At this point pParent may have at most one overflow cell. And if
6281 ** this overflow cell is present, it must be the cell with
6282 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006283 ** is called (indirectly) from sqlite3BtreeDelete().
6284 */
danielk19774dbaa892009-06-16 16:50:22 +00006285 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006286 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006287
danielk197711a8a862009-06-17 11:49:52 +00006288 if( !aOvflSpace ){
6289 return SQLITE_NOMEM;
6290 }
6291
danielk1977a50d9aa2009-06-08 14:49:45 +00006292 /* Find the sibling pages to balance. Also locate the cells in pParent
6293 ** that divide the siblings. An attempt is made to find NN siblings on
6294 ** either side of pPage. More siblings are taken from one side, however,
6295 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006296 ** has NB or fewer children then all children of pParent are taken.
6297 **
6298 ** This loop also drops the divider cells from the parent page. This
6299 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006300 ** overflow cells in the parent page, since if any existed they will
6301 ** have already been removed.
6302 */
danielk19774dbaa892009-06-16 16:50:22 +00006303 i = pParent->nOverflow + pParent->nCell;
6304 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006305 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006306 }else{
dan7d6885a2012-08-08 14:04:56 +00006307 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006308 if( iParentIdx==0 ){
6309 nxDiv = 0;
6310 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006311 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006312 }else{
dan7d6885a2012-08-08 14:04:56 +00006313 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006314 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006315 }
dan7d6885a2012-08-08 14:04:56 +00006316 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006317 }
dan7d6885a2012-08-08 14:04:56 +00006318 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006319 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6320 pRight = &pParent->aData[pParent->hdrOffset+8];
6321 }else{
6322 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6323 }
6324 pgno = get4byte(pRight);
6325 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006326 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006327 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006328 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006329 goto balance_cleanup;
6330 }
danielk1977634f2982005-03-28 08:44:07 +00006331 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006332 if( (i--)==0 ) break;
6333
drh2cbd78b2012-02-02 19:37:18 +00006334 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6335 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006336 pgno = get4byte(apDiv[i]);
6337 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6338 pParent->nOverflow = 0;
6339 }else{
6340 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6341 pgno = get4byte(apDiv[i]);
6342 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6343
6344 /* Drop the cell from the parent page. apDiv[i] still points to
6345 ** the cell within the parent, even though it has been dropped.
6346 ** This is safe because dropping a cell only overwrites the first
6347 ** four bytes of it, and this function does not need the first
6348 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006349 ** later on.
6350 **
drh8a575d92011-10-12 17:00:28 +00006351 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006352 ** the dropCell() routine will overwrite the entire cell with zeroes.
6353 ** In this case, temporarily copy the cell into the aOvflSpace[]
6354 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6355 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006356 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006357 int iOff;
6358
6359 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006360 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006361 rc = SQLITE_CORRUPT_BKPT;
6362 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6363 goto balance_cleanup;
6364 }else{
6365 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6366 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6367 }
drh5b47efa2010-02-12 18:18:39 +00006368 }
drh98add2e2009-07-20 17:11:49 +00006369 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006370 }
drh8b2f49b2001-06-08 00:21:52 +00006371 }
6372
drha9121e42008-02-19 14:59:35 +00006373 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006374 ** alignment */
drha9121e42008-02-19 14:59:35 +00006375 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006376
drh8b2f49b2001-06-08 00:21:52 +00006377 /*
danielk1977634f2982005-03-28 08:44:07 +00006378 ** Allocate space for memory structures
6379 */
danielk19774dbaa892009-06-16 16:50:22 +00006380 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006381 szScratch =
drha9121e42008-02-19 14:59:35 +00006382 nMaxCells*sizeof(u8*) /* apCell */
6383 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006384 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006385 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006386 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006387 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006388 rc = SQLITE_NOMEM;
6389 goto balance_cleanup;
6390 }
drha9121e42008-02-19 14:59:35 +00006391 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006392 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006393 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006394
6395 /*
6396 ** Load pointers to all cells on sibling pages and the divider cells
6397 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006398 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006399 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006400 **
6401 ** If the siblings are on leaf pages, then the child pointers of the
6402 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006403 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006404 ** child pointers. If siblings are not leaves, then all cell in
6405 ** apCell[] include child pointers. Either way, all cells in apCell[]
6406 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006407 **
6408 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6409 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006410 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006411 leafCorrection = apOld[0]->leaf*4;
drh3e28ff52014-09-24 00:59:08 +00006412 leafData = apOld[0]->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00006413 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006414 int limit;
6415
6416 /* Before doing anything else, take a copy of the i'th original sibling
6417 ** The rest of this function will use data from the copies rather
6418 ** that the original pages since the original pages will be in the
6419 ** process of being overwritten. */
6420 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6421 memcpy(pOld, apOld[i], sizeof(MemPage));
6422 pOld->aData = (void*)&pOld[1];
6423 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6424
6425 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006426 if( pOld->nOverflow>0 ){
6427 for(j=0; j<limit; j++){
6428 assert( nCell<nMaxCells );
6429 apCell[nCell] = findOverflowCell(pOld, j);
6430 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6431 nCell++;
6432 }
6433 }else{
6434 u8 *aData = pOld->aData;
6435 u16 maskPage = pOld->maskPage;
6436 u16 cellOffset = pOld->cellOffset;
6437 for(j=0; j<limit; j++){
6438 assert( nCell<nMaxCells );
6439 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6440 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6441 nCell++;
6442 }
6443 }
danielk19774dbaa892009-06-16 16:50:22 +00006444 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006445 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006446 u8 *pTemp;
6447 assert( nCell<nMaxCells );
6448 szCell[nCell] = sz;
6449 pTemp = &aSpace1[iSpace1];
6450 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006451 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006452 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006453 memcpy(pTemp, apDiv[i], sz);
6454 apCell[nCell] = pTemp+leafCorrection;
6455 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006456 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006457 if( !pOld->leaf ){
6458 assert( leafCorrection==0 );
6459 assert( pOld->hdrOffset==0 );
6460 /* The right pointer of the child page pOld becomes the left
6461 ** pointer of the divider cell */
6462 memcpy(apCell[nCell], &pOld->aData[8], 4);
6463 }else{
6464 assert( leafCorrection==4 );
6465 if( szCell[nCell]<4 ){
6466 /* Do not allow any cells smaller than 4 bytes. */
6467 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006468 }
6469 }
drh14acc042001-06-10 19:56:58 +00006470 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006471 }
drh8b2f49b2001-06-08 00:21:52 +00006472 }
6473
6474 /*
drh6019e162001-07-02 17:51:45 +00006475 ** Figure out the number of pages needed to hold all nCell cells.
6476 ** Store this number in "k". Also compute szNew[] which is the total
6477 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006478 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006479 ** cntNew[k] should equal nCell.
6480 **
drh96f5b762004-05-16 16:24:36 +00006481 ** Values computed by this block:
6482 **
6483 ** k: The total number of sibling pages
6484 ** szNew[i]: Spaced used on the i-th sibling page.
6485 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6486 ** the right of the i-th sibling page.
6487 ** usableSpace: Number of bytes of space available on each sibling.
6488 **
drh8b2f49b2001-06-08 00:21:52 +00006489 */
drh43605152004-05-29 21:46:49 +00006490 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006491 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006492 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006493 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006494 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006495 szNew[k] = subtotal - szCell[i];
6496 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006497 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006498 subtotal = 0;
6499 k++;
drh9978c972010-02-23 17:36:32 +00006500 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006501 }
6502 }
6503 szNew[k] = subtotal;
6504 cntNew[k] = nCell;
6505 k++;
drh96f5b762004-05-16 16:24:36 +00006506
6507 /*
6508 ** The packing computed by the previous block is biased toward the siblings
6509 ** on the left side. The left siblings are always nearly full, while the
6510 ** right-most sibling might be nearly empty. This block of code attempts
6511 ** to adjust the packing of siblings to get a better balance.
6512 **
6513 ** This adjustment is more than an optimization. The packing above might
6514 ** be so out of balance as to be illegal. For example, the right-most
6515 ** sibling might be completely empty. This adjustment is not optional.
6516 */
drh6019e162001-07-02 17:51:45 +00006517 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006518 int szRight = szNew[i]; /* Size of sibling on the right */
6519 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6520 int r; /* Index of right-most cell in left sibling */
6521 int d; /* Index of first cell to the left of right sibling */
6522
6523 r = cntNew[i-1] - 1;
6524 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006525 assert( d<nMaxCells );
6526 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006527 while( szRight==0
6528 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6529 ){
drh43605152004-05-29 21:46:49 +00006530 szRight += szCell[d] + 2;
6531 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006532 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006533 r = cntNew[i-1] - 1;
6534 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006535 }
drh96f5b762004-05-16 16:24:36 +00006536 szNew[i] = szRight;
6537 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006538 }
drh09d0deb2005-08-02 17:13:09 +00006539
danielk19776f235cc2009-06-04 14:46:08 +00006540 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006541 ** a virtual root page. A virtual root page is when the real root
6542 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006543 **
6544 ** UPDATE: The assert() below is not necessarily true if the database
6545 ** file is corrupt. The corruption will be detected and reported later
6546 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006547 */
drh2f32fba2012-01-02 16:38:57 +00006548#if 0
drh09d0deb2005-08-02 17:13:09 +00006549 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006550#endif
drh8b2f49b2001-06-08 00:21:52 +00006551
danielk1977e5765212009-06-17 11:13:28 +00006552 TRACE(("BALANCE: old: %d %d %d ",
6553 apOld[0]->pgno,
6554 nOld>=2 ? apOld[1]->pgno : 0,
6555 nOld>=3 ? apOld[2]->pgno : 0
6556 ));
6557
drh8b2f49b2001-06-08 00:21:52 +00006558 /*
drh6b308672002-07-08 02:16:37 +00006559 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006560 */
drheac74422009-06-14 12:47:11 +00006561 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006562 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006563 goto balance_cleanup;
6564 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006565 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006566 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006567 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006568 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006569 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006570 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006571 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006572 nNew++;
danielk197728129562005-01-11 10:25:06 +00006573 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006574 }else{
drh7aa8f852006-03-28 00:24:44 +00006575 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006576 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006577 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006578 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006579 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006580
6581 /* Set the pointer-map entry for the new sibling page. */
6582 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006583 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006584 if( rc!=SQLITE_OK ){
6585 goto balance_cleanup;
6586 }
6587 }
drh6b308672002-07-08 02:16:37 +00006588 }
drh8b2f49b2001-06-08 00:21:52 +00006589 }
6590
danielk1977299b1872004-11-22 10:02:10 +00006591 /* Free any old pages that were not reused as new pages.
6592 */
6593 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006594 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006595 if( rc ) goto balance_cleanup;
6596 releasePage(apOld[i]);
6597 apOld[i] = 0;
6598 i++;
6599 }
6600
drh8b2f49b2001-06-08 00:21:52 +00006601 /*
peter.d.reid60ec9142014-09-06 16:39:46 +00006602 ** Put the new pages in ascending order. This helps to
drhf9ffac92002-03-02 19:00:31 +00006603 ** keep entries in the disk file in order so that a scan
6604 ** of the table is a linear scan through the file. That
6605 ** in turn helps the operating system to deliver pages
6606 ** from the disk more rapidly.
6607 **
6608 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006609 ** n is never more than NB (a small constant), that should
6610 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006611 **
drhc3b70572003-01-04 19:44:07 +00006612 ** When NB==3, this one optimization makes the database
6613 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006614 */
6615 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006616 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006617 int minI = i;
6618 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006619 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006620 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006621 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006622 }
6623 }
6624 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006625 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006626 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006627 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006628 apNew[minI] = pT;
6629 }
6630 }
danielk1977e5765212009-06-17 11:13:28 +00006631 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006632 apNew[0]->pgno, szNew[0],
6633 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6634 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6635 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6636 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6637
6638 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6639 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006640
drhf9ffac92002-03-02 19:00:31 +00006641 /*
drh14acc042001-06-10 19:56:58 +00006642 ** Evenly distribute the data in apCell[] across the new pages.
6643 ** Insert divider cells into pParent as necessary.
6644 */
6645 j = 0;
6646 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006647 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006648 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006649 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006650 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006651 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006652 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006653 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006654
danielk1977ac11ee62005-01-15 12:45:51 +00006655 j = cntNew[i];
6656
6657 /* If the sibling page assembled above was not the right-most sibling,
6658 ** insert a divider cell into the parent page.
6659 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006660 assert( i<nNew-1 || j==nCell );
6661 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006662 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006663 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006664 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006665
6666 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006667 pCell = apCell[j];
6668 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006669 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006670 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006671 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006672 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006673 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006674 ** then there is no divider cell in apCell[]. Instead, the divider
6675 ** cell consists of the integer key for the right-most cell of
6676 ** the sibling-page assembled above only.
6677 */
drh6f11bef2004-05-13 01:12:56 +00006678 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006679 j--;
danielk197730548662009-07-09 05:07:37 +00006680 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006681 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006682 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006683 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006684 }else{
6685 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006686 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006687 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006688 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006689 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006690 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006691 ** insertCell(), so reparse the cell now.
6692 **
6693 ** Note that this can never happen in an SQLite data file, as all
6694 ** cells are at least 4 bytes. It only happens in b-trees used
6695 ** to evaluate "IN (SELECT ...)" and similar clauses.
6696 */
6697 if( szCell[j]==4 ){
6698 assert(leafCorrection==4);
6699 sz = cellSizePtr(pParent, pCell);
6700 }
drh4b70f112004-05-02 21:12:19 +00006701 }
danielk19776067a9b2009-06-09 09:41:00 +00006702 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006703 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006704 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006705 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006706 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006707 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006708
drh14acc042001-06-10 19:56:58 +00006709 j++;
6710 nxDiv++;
6711 }
6712 }
drh6019e162001-07-02 17:51:45 +00006713 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006714 assert( nOld>0 );
6715 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006716 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006717 u8 *zChild = &apCopy[nOld-1]->aData[8];
6718 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006719 }
6720
danielk197713bd99f2009-06-24 05:40:34 +00006721 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6722 /* The root page of the b-tree now contains no cells. The only sibling
6723 ** page is the right-child of the parent. Copy the contents of the
6724 ** child page into the parent, decreasing the overall height of the
6725 ** b-tree structure by one. This is described as the "balance-shallower"
6726 ** sub-algorithm in some documentation.
6727 **
6728 ** If this is an auto-vacuum database, the call to copyNodeContent()
6729 ** sets all pointer-map entries corresponding to database image pages
6730 ** for which the pointer is stored within the content being copied.
6731 **
6732 ** The second assert below verifies that the child page is defragmented
6733 ** (it must be, as it was just reconstructed using assemblePage()). This
6734 ** is important if the parent page happens to be page 1 of the database
6735 ** image. */
6736 assert( nNew==1 );
6737 assert( apNew[0]->nFree ==
6738 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6739 );
drhc314dc72009-07-21 11:52:34 +00006740 copyNodeContent(apNew[0], pParent, &rc);
6741 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006742 }else if( ISAUTOVACUUM ){
6743 /* Fix the pointer-map entries for all the cells that were shifted around.
6744 ** There are several different types of pointer-map entries that need to
6745 ** be dealt with by this routine. Some of these have been set already, but
6746 ** many have not. The following is a summary:
6747 **
6748 ** 1) The entries associated with new sibling pages that were not
6749 ** siblings when this function was called. These have already
6750 ** been set. We don't need to worry about old siblings that were
6751 ** moved to the free-list - the freePage() code has taken care
6752 ** of those.
6753 **
6754 ** 2) The pointer-map entries associated with the first overflow
6755 ** page in any overflow chains used by new divider cells. These
6756 ** have also already been taken care of by the insertCell() code.
6757 **
6758 ** 3) If the sibling pages are not leaves, then the child pages of
6759 ** cells stored on the sibling pages may need to be updated.
6760 **
6761 ** 4) If the sibling pages are not internal intkey nodes, then any
6762 ** overflow pages used by these cells may need to be updated
6763 ** (internal intkey nodes never contain pointers to overflow pages).
6764 **
6765 ** 5) If the sibling pages are not leaves, then the pointer-map
6766 ** entries for the right-child pages of each sibling may need
6767 ** to be updated.
6768 **
6769 ** Cases 1 and 2 are dealt with above by other code. The next
6770 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6771 ** setting a pointer map entry is a relatively expensive operation, this
6772 ** code only sets pointer map entries for child or overflow pages that have
6773 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006774 MemPage *pNew = apNew[0];
6775 MemPage *pOld = apCopy[0];
6776 int nOverflow = pOld->nOverflow;
6777 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006778 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006779 j = 0; /* Current 'old' sibling page */
6780 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006781 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006782 int isDivider = 0;
6783 while( i==iNextOld ){
6784 /* Cell i is the cell immediately following the last cell on old
6785 ** sibling page j. If the siblings are not leaf pages of an
6786 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006787 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006788 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006789 pOld = apCopy[++j];
6790 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6791 if( pOld->nOverflow ){
6792 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006793 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006794 }
6795 isDivider = !leafData;
6796 }
6797
6798 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006799 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6800 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006801 if( i==iOverflow ){
6802 isDivider = 1;
6803 if( (--nOverflow)>0 ){
6804 iOverflow++;
6805 }
6806 }
6807
6808 if( i==cntNew[k] ){
6809 /* Cell i is the cell immediately following the last cell on new
6810 ** sibling page k. If the siblings are not leaf pages of an
6811 ** intkey b-tree, then cell i is a divider cell. */
6812 pNew = apNew[++k];
6813 if( !leafData ) continue;
6814 }
danielk19774dbaa892009-06-16 16:50:22 +00006815 assert( j<nOld );
6816 assert( k<nNew );
6817
6818 /* If the cell was originally divider cell (and is not now) or
6819 ** an overflow cell, or if the cell was located on a different sibling
6820 ** page before the balancing, then the pointer map entries associated
6821 ** with any child or overflow pages need to be updated. */
6822 if( isDivider || pOld->pgno!=pNew->pgno ){
6823 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006824 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006825 }
drh98add2e2009-07-20 17:11:49 +00006826 if( szCell[i]>pNew->minLocal ){
6827 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006828 }
6829 }
6830 }
6831
6832 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006833 for(i=0; i<nNew; i++){
6834 u32 key = get4byte(&apNew[i]->aData[8]);
6835 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006836 }
6837 }
6838
6839#if 0
6840 /* The ptrmapCheckPages() contains assert() statements that verify that
6841 ** all pointer map pages are set correctly. This is helpful while
6842 ** debugging. This is usually disabled because a corrupt database may
6843 ** cause an assert() statement to fail. */
6844 ptrmapCheckPages(apNew, nNew);
6845 ptrmapCheckPages(&pParent, 1);
6846#endif
6847 }
6848
danielk197771d5d2c2008-09-29 11:49:47 +00006849 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006850 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6851 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006852
drh8b2f49b2001-06-08 00:21:52 +00006853 /*
drh14acc042001-06-10 19:56:58 +00006854 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006855 */
drh14acc042001-06-10 19:56:58 +00006856balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006857 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006858 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006859 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006860 }
drh14acc042001-06-10 19:56:58 +00006861 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006862 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006863 }
danielk1977eaa06f62008-09-18 17:34:44 +00006864
drh8b2f49b2001-06-08 00:21:52 +00006865 return rc;
6866}
mistachkine7c54162012-10-02 22:54:27 +00006867#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6868#pragma optimize("", on)
6869#endif
drh8b2f49b2001-06-08 00:21:52 +00006870
drh43605152004-05-29 21:46:49 +00006871
6872/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006873** This function is called when the root page of a b-tree structure is
6874** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006875**
danielk1977a50d9aa2009-06-08 14:49:45 +00006876** A new child page is allocated and the contents of the current root
6877** page, including overflow cells, are copied into the child. The root
6878** page is then overwritten to make it an empty page with the right-child
6879** pointer pointing to the new page.
6880**
6881** Before returning, all pointer-map entries corresponding to pages
6882** that the new child-page now contains pointers to are updated. The
6883** entry corresponding to the new right-child pointer of the root
6884** page is also updated.
6885**
6886** If successful, *ppChild is set to contain a reference to the child
6887** page and SQLITE_OK is returned. In this case the caller is required
6888** to call releasePage() on *ppChild exactly once. If an error occurs,
6889** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006890*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006891static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6892 int rc; /* Return value from subprocedures */
6893 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006894 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006895 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006896
danielk1977a50d9aa2009-06-08 14:49:45 +00006897 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006898 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006899
danielk1977a50d9aa2009-06-08 14:49:45 +00006900 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6901 ** page that will become the new right-child of pPage. Copy the contents
6902 ** of the node stored on pRoot into the new child page.
6903 */
drh98add2e2009-07-20 17:11:49 +00006904 rc = sqlite3PagerWrite(pRoot->pDbPage);
6905 if( rc==SQLITE_OK ){
6906 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006907 copyNodeContent(pRoot, pChild, &rc);
6908 if( ISAUTOVACUUM ){
6909 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006910 }
6911 }
6912 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006913 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006914 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006915 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006916 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006917 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6918 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6919 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006920
danielk1977a50d9aa2009-06-08 14:49:45 +00006921 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6922
6923 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006924 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6925 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6926 memcpy(pChild->apOvfl, pRoot->apOvfl,
6927 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006928 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006929
6930 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6931 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6932 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6933
6934 *ppChild = pChild;
6935 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006936}
6937
6938/*
danielk197771d5d2c2008-09-29 11:49:47 +00006939** The page that pCur currently points to has just been modified in
6940** some way. This function figures out if this modification means the
6941** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006942** routine. Balancing routines are:
6943**
6944** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006945** balance_deeper()
6946** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006947*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006948static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006949 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006950 const int nMin = pCur->pBt->usableSize * 2 / 3;
6951 u8 aBalanceQuickSpace[13];
6952 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006953
shane75ac1de2009-06-09 18:58:52 +00006954 TESTONLY( int balance_quick_called = 0 );
6955 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006956
6957 do {
6958 int iPage = pCur->iPage;
6959 MemPage *pPage = pCur->apPage[iPage];
6960
6961 if( iPage==0 ){
6962 if( pPage->nOverflow ){
6963 /* The root page of the b-tree is overfull. In this case call the
6964 ** balance_deeper() function to create a new child for the root-page
6965 ** and copy the current contents of the root-page to it. The
6966 ** next iteration of the do-loop will balance the child page.
6967 */
6968 assert( (balance_deeper_called++)==0 );
6969 rc = balance_deeper(pPage, &pCur->apPage[1]);
6970 if( rc==SQLITE_OK ){
6971 pCur->iPage = 1;
6972 pCur->aiIdx[0] = 0;
6973 pCur->aiIdx[1] = 0;
6974 assert( pCur->apPage[1]->nOverflow );
6975 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006976 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006977 break;
6978 }
6979 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6980 break;
6981 }else{
6982 MemPage * const pParent = pCur->apPage[iPage-1];
6983 int const iIdx = pCur->aiIdx[iPage-1];
6984
6985 rc = sqlite3PagerWrite(pParent->pDbPage);
6986 if( rc==SQLITE_OK ){
6987#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00006988 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00006989 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006990 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006991 && pParent->pgno!=1
6992 && pParent->nCell==iIdx
6993 ){
6994 /* Call balance_quick() to create a new sibling of pPage on which
6995 ** to store the overflow cell. balance_quick() inserts a new cell
6996 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00006997 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00006998 ** use either balance_nonroot() or balance_deeper(). Until this
6999 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7000 ** buffer.
7001 **
7002 ** The purpose of the following assert() is to check that only a
7003 ** single call to balance_quick() is made for each call to this
7004 ** function. If this were not verified, a subtle bug involving reuse
7005 ** of the aBalanceQuickSpace[] might sneak in.
7006 */
7007 assert( (balance_quick_called++)==0 );
7008 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7009 }else
7010#endif
7011 {
7012 /* In this case, call balance_nonroot() to redistribute cells
7013 ** between pPage and up to 2 of its sibling pages. This involves
7014 ** modifying the contents of pParent, which may cause pParent to
7015 ** become overfull or underfull. The next iteration of the do-loop
7016 ** will balance the parent page to correct this.
7017 **
7018 ** If the parent page becomes overfull, the overflow cell or cells
7019 ** are stored in the pSpace buffer allocated immediately below.
7020 ** A subsequent iteration of the do-loop will deal with this by
7021 ** calling balance_nonroot() (balance_deeper() may be called first,
7022 ** but it doesn't deal with overflow cells - just moves them to a
7023 ** different page). Once this subsequent call to balance_nonroot()
7024 ** has completed, it is safe to release the pSpace buffer used by
7025 ** the previous call, as the overflow cell data will have been
7026 ** copied either into the body of a database page or into the new
7027 ** pSpace buffer passed to the latter call to balance_nonroot().
7028 */
7029 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00007030 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00007031 if( pFree ){
7032 /* If pFree is not NULL, it points to the pSpace buffer used
7033 ** by a previous call to balance_nonroot(). Its contents are
7034 ** now stored either on real database pages or within the
7035 ** new pSpace buffer, so it may be safely freed here. */
7036 sqlite3PageFree(pFree);
7037 }
7038
danielk19774dbaa892009-06-16 16:50:22 +00007039 /* The pSpace buffer will be freed after the next call to
7040 ** balance_nonroot(), or just before this function returns, whichever
7041 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007042 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007043 }
7044 }
7045
7046 pPage->nOverflow = 0;
7047
7048 /* The next iteration of the do-loop balances the parent page. */
7049 releasePage(pPage);
7050 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00007051 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007052 }while( rc==SQLITE_OK );
7053
7054 if( pFree ){
7055 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007056 }
7057 return rc;
7058}
7059
drhf74b8d92002-09-01 23:20:45 +00007060
7061/*
drh3b7511c2001-05-26 13:15:44 +00007062** Insert a new record into the BTree. The key is given by (pKey,nKey)
7063** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007064** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007065** is left pointing at a random location.
7066**
7067** For an INTKEY table, only the nKey value of the key is used. pKey is
7068** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007069**
7070** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007071** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007072** been performed. seekResult is the search result returned (a negative
7073** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007074** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007075** (pKey, nKey)).
7076**
drh3e9ca092009-09-08 01:14:48 +00007077** If the seekResult parameter is non-zero, then the caller guarantees that
7078** cursor pCur is pointing at the existing copy of a row that is to be
7079** overwritten. If the seekResult parameter is 0, then cursor pCur may
7080** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007081** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007082*/
drh3aac2dd2004-04-26 14:10:20 +00007083int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007084 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007085 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007086 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007087 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007088 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007089 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007090){
drh3b7511c2001-05-26 13:15:44 +00007091 int rc;
drh3e9ca092009-09-08 01:14:48 +00007092 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007093 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007094 int idx;
drh3b7511c2001-05-26 13:15:44 +00007095 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007096 Btree *p = pCur->pBtree;
7097 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007098 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007099 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007100
drh98add2e2009-07-20 17:11:49 +00007101 if( pCur->eState==CURSOR_FAULT ){
7102 assert( pCur->skipNext!=SQLITE_OK );
7103 return pCur->skipNext;
7104 }
7105
drh1fee73e2007-08-29 04:00:57 +00007106 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007107 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7108 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007109 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007110 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7111
danielk197731d31b82009-07-13 13:18:07 +00007112 /* Assert that the caller has been consistent. If this cursor was opened
7113 ** expecting an index b-tree, then the caller should be inserting blob
7114 ** keys with no associated data. If the cursor was opened expecting an
7115 ** intkey table, the caller should be inserting integer keys with a
7116 ** blob of associated data. */
7117 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7118
danielk19779c3acf32009-05-02 07:36:49 +00007119 /* Save the positions of any other cursors open on this table.
7120 **
danielk19773509a652009-07-06 18:56:13 +00007121 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007122 ** example, when inserting data into a table with auto-generated integer
7123 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7124 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007125 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007126 ** that the cursor is already where it needs to be and returns without
7127 ** doing any work. To avoid thwarting these optimizations, it is important
7128 ** not to clear the cursor here.
7129 */
drh4c301aa2009-07-15 17:25:45 +00007130 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7131 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007132
drhd60f4f42012-03-23 14:23:52 +00007133 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00007134 /* If this is an insert into a table b-tree, invalidate any incrblob
7135 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007136 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007137
7138 /* If the cursor is currently on the last row and we are appending a
7139 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7140 ** call */
drh3f387402014-09-24 01:23:00 +00007141 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7142 && pCur->info.nKey==nKey-1 ){
drhe0670b62014-02-12 21:31:12 +00007143 loc = -1;
7144 }
drhd60f4f42012-03-23 14:23:52 +00007145 }
7146
drh4c301aa2009-07-15 17:25:45 +00007147 if( !loc ){
7148 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7149 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007150 }
danielk1977b980d2212009-06-22 18:03:51 +00007151 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007152
danielk197771d5d2c2008-09-29 11:49:47 +00007153 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007154 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007155 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007156
drh3a4c1412004-05-09 20:40:11 +00007157 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7158 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7159 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007160 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007161 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007162 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00007163 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007164 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00007165 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007166 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007167 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007168 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007169 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007170 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007171 rc = sqlite3PagerWrite(pPage->pDbPage);
7172 if( rc ){
7173 goto end_insert;
7174 }
danielk197771d5d2c2008-09-29 11:49:47 +00007175 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007176 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007177 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007178 }
drh9bfdc252014-09-24 02:05:41 +00007179 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00007180 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007181 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007182 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007183 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007184 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007185 }else{
drh4b70f112004-05-02 21:12:19 +00007186 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007187 }
drh98add2e2009-07-20 17:11:49 +00007188 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007189 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007190
mistachkin48864df2013-03-21 21:20:32 +00007191 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007192 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007193 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007194 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007195 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007196 ** Previous versions of SQLite called moveToRoot() to move the cursor
7197 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007198 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7199 ** set the cursor state to "invalid". This makes common insert operations
7200 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007201 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007202 ** There is a subtle but important optimization here too. When inserting
7203 ** multiple records into an intkey b-tree using a single cursor (as can
7204 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7205 ** is advantageous to leave the cursor pointing to the last entry in
7206 ** the b-tree if possible. If the cursor is left pointing to the last
7207 ** entry in the table, and the next row inserted has an integer key
7208 ** larger than the largest existing key, it is possible to insert the
7209 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007210 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007211 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007212 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00007213 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00007214 rc = balance(pCur);
7215
7216 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007217 ** fails. Internal data structure corruption will result otherwise.
7218 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7219 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007220 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007221 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007222 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007223 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007224
drh2e38c322004-09-03 18:38:44 +00007225end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007226 return rc;
7227}
7228
7229/*
drh4b70f112004-05-02 21:12:19 +00007230** Delete the entry that the cursor is pointing to. The cursor
peter.d.reid60ec9142014-09-06 16:39:46 +00007231** is left pointing at an arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007232*/
drh3aac2dd2004-04-26 14:10:20 +00007233int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007234 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007235 BtShared *pBt = p->pBt;
7236 int rc; /* Return code */
7237 MemPage *pPage; /* Page to delete cell from */
7238 unsigned char *pCell; /* Pointer to cell to delete */
7239 int iCellIdx; /* Index of cell to delete */
7240 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00007241 u16 szCell; /* Size of the cell being deleted */
drh8b2f49b2001-06-08 00:21:52 +00007242
drh1fee73e2007-08-29 04:00:57 +00007243 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007244 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007245 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00007246 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00007247 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7248 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7249
danielk19774dbaa892009-06-16 16:50:22 +00007250 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7251 || NEVER(pCur->eState!=CURSOR_VALID)
7252 ){
7253 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007254 }
danielk1977da184232006-01-05 11:34:32 +00007255
danielk19774dbaa892009-06-16 16:50:22 +00007256 iCellDepth = pCur->iPage;
7257 iCellIdx = pCur->aiIdx[iCellDepth];
7258 pPage = pCur->apPage[iCellDepth];
7259 pCell = findCell(pPage, iCellIdx);
7260
7261 /* If the page containing the entry to delete is not a leaf page, move
7262 ** the cursor to the largest entry in the tree that is smaller than
7263 ** the entry being deleted. This cell will replace the cell being deleted
7264 ** from the internal node. The 'previous' entry is used for this instead
7265 ** of the 'next' entry, as the previous entry is always a part of the
7266 ** sub-tree headed by the child page of the cell being deleted. This makes
7267 ** balancing the tree following the delete operation easier. */
7268 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00007269 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00007270 rc = sqlite3BtreePrevious(pCur, &notUsed);
7271 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007272 }
7273
7274 /* Save the positions of any other cursors open on this table before
7275 ** making any modifications. Make the page containing the entry to be
7276 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007277 ** entry and finally remove the cell itself from within the page.
7278 */
7279 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7280 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007281
7282 /* If this is a delete operation to remove a row from a table b-tree,
7283 ** invalidate any incrblob cursors open on the row being deleted. */
7284 if( pCur->pKeyInfo==0 ){
7285 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7286 }
7287
drha4ec1d42009-07-11 13:13:11 +00007288 rc = sqlite3PagerWrite(pPage->pDbPage);
7289 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00007290 rc = clearCell(pPage, pCell, &szCell);
7291 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007292 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007293
danielk19774dbaa892009-06-16 16:50:22 +00007294 /* If the cell deleted was not located on a leaf page, then the cursor
7295 ** is currently pointing to the largest entry in the sub-tree headed
7296 ** by the child-page of the cell that was just deleted from an internal
7297 ** node. The cell from the leaf node needs to be moved to the internal
7298 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007299 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007300 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7301 int nCell;
7302 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7303 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007304
danielk19774dbaa892009-06-16 16:50:22 +00007305 pCell = findCell(pLeaf, pLeaf->nCell-1);
7306 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007307 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00007308 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007309 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00007310 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007311 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7312 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007313 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007314 }
danielk19774dbaa892009-06-16 16:50:22 +00007315
7316 /* Balance the tree. If the entry deleted was located on a leaf page,
7317 ** then the cursor still points to that page. In this case the first
7318 ** call to balance() repairs the tree, and the if(...) condition is
7319 ** never true.
7320 **
7321 ** Otherwise, if the entry deleted was on an internal node page, then
7322 ** pCur is pointing to the leaf page from which a cell was removed to
7323 ** replace the cell deleted from the internal node. This is slightly
7324 ** tricky as the leaf node may be underfull, and the internal node may
7325 ** be either under or overfull. In this case run the balancing algorithm
7326 ** on the leaf node first. If the balance proceeds far enough up the
7327 ** tree that we can be sure that any problem in the internal node has
7328 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7329 ** walk the cursor up the tree to the internal node and balance it as
7330 ** well. */
7331 rc = balance(pCur);
7332 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7333 while( pCur->iPage>iCellDepth ){
7334 releasePage(pCur->apPage[pCur->iPage--]);
7335 }
7336 rc = balance(pCur);
7337 }
7338
danielk19776b456a22005-03-21 04:04:02 +00007339 if( rc==SQLITE_OK ){
7340 moveToRoot(pCur);
7341 }
drh5e2f8b92001-05-28 00:41:15 +00007342 return rc;
drh3b7511c2001-05-26 13:15:44 +00007343}
drh8b2f49b2001-06-08 00:21:52 +00007344
7345/*
drhc6b52df2002-01-04 03:09:29 +00007346** Create a new BTree table. Write into *piTable the page
7347** number for the root page of the new table.
7348**
drhab01f612004-05-22 02:55:23 +00007349** The type of type is determined by the flags parameter. Only the
7350** following values of flags are currently in use. Other values for
7351** flags might not work:
7352**
7353** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7354** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007355*/
drhd4187c72010-08-30 22:15:45 +00007356static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007357 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007358 MemPage *pRoot;
7359 Pgno pgnoRoot;
7360 int rc;
drhd4187c72010-08-30 22:15:45 +00007361 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007362
drh1fee73e2007-08-29 04:00:57 +00007363 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007364 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007365 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007366
danielk1977003ba062004-11-04 02:57:33 +00007367#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007368 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007369 if( rc ){
7370 return rc;
7371 }
danielk1977003ba062004-11-04 02:57:33 +00007372#else
danielk1977687566d2004-11-02 12:56:41 +00007373 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007374 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7375 MemPage *pPageMove; /* The page to move to. */
7376
danielk197720713f32007-05-03 11:43:33 +00007377 /* Creating a new table may probably require moving an existing database
7378 ** to make room for the new tables root page. In case this page turns
7379 ** out to be an overflow page, delete all overflow page-map caches
7380 ** held by open cursors.
7381 */
danielk197792d4d7a2007-05-04 12:05:56 +00007382 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007383
danielk1977003ba062004-11-04 02:57:33 +00007384 /* Read the value of meta[3] from the database to determine where the
7385 ** root page of the new table should go. meta[3] is the largest root-page
7386 ** created so far, so the new root-page is (meta[3]+1).
7387 */
danielk1977602b4662009-07-02 07:47:33 +00007388 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007389 pgnoRoot++;
7390
danielk1977599fcba2004-11-08 07:13:13 +00007391 /* The new root-page may not be allocated on a pointer-map page, or the
7392 ** PENDING_BYTE page.
7393 */
drh72190432008-01-31 14:54:43 +00007394 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007395 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007396 pgnoRoot++;
7397 }
7398 assert( pgnoRoot>=3 );
7399
7400 /* Allocate a page. The page that currently resides at pgnoRoot will
7401 ** be moved to the allocated page (unless the allocated page happens
7402 ** to reside at pgnoRoot).
7403 */
dan51f0b6d2013-02-22 20:16:34 +00007404 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007405 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007406 return rc;
7407 }
danielk1977003ba062004-11-04 02:57:33 +00007408
7409 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007410 /* pgnoRoot is the page that will be used for the root-page of
7411 ** the new table (assuming an error did not occur). But we were
7412 ** allocated pgnoMove. If required (i.e. if it was not allocated
7413 ** by extending the file), the current page at position pgnoMove
7414 ** is already journaled.
7415 */
drheeb844a2009-08-08 18:01:07 +00007416 u8 eType = 0;
7417 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007418
danf7679ad2013-04-03 11:38:36 +00007419 /* Save the positions of any open cursors. This is required in
7420 ** case they are holding a reference to an xFetch reference
7421 ** corresponding to page pgnoRoot. */
7422 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007423 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007424 if( rc!=SQLITE_OK ){
7425 return rc;
7426 }
danielk1977f35843b2007-04-07 15:03:17 +00007427
7428 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00007429 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007430 if( rc!=SQLITE_OK ){
7431 return rc;
7432 }
7433 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007434 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7435 rc = SQLITE_CORRUPT_BKPT;
7436 }
7437 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007438 releasePage(pRoot);
7439 return rc;
7440 }
drhccae6022005-02-26 17:31:26 +00007441 assert( eType!=PTRMAP_ROOTPAGE );
7442 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007443 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007444 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007445
7446 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007447 if( rc!=SQLITE_OK ){
7448 return rc;
7449 }
drhb00fc3b2013-08-21 23:42:32 +00007450 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007451 if( rc!=SQLITE_OK ){
7452 return rc;
7453 }
danielk19773b8a05f2007-03-19 17:44:26 +00007454 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007455 if( rc!=SQLITE_OK ){
7456 releasePage(pRoot);
7457 return rc;
7458 }
7459 }else{
7460 pRoot = pPageMove;
7461 }
7462
danielk197742741be2005-01-08 12:42:39 +00007463 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007464 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007465 if( rc ){
7466 releasePage(pRoot);
7467 return rc;
7468 }
drhbf592832010-03-30 15:51:12 +00007469
7470 /* When the new root page was allocated, page 1 was made writable in
7471 ** order either to increase the database filesize, or to decrement the
7472 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7473 */
7474 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007475 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007476 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007477 releasePage(pRoot);
7478 return rc;
7479 }
danielk197742741be2005-01-08 12:42:39 +00007480
danielk1977003ba062004-11-04 02:57:33 +00007481 }else{
drh4f0c5872007-03-26 22:05:01 +00007482 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007483 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007484 }
7485#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007486 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007487 if( createTabFlags & BTREE_INTKEY ){
7488 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7489 }else{
7490 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7491 }
7492 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007493 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007494 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007495 *piTable = (int)pgnoRoot;
7496 return SQLITE_OK;
7497}
drhd677b3d2007-08-20 22:48:41 +00007498int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7499 int rc;
7500 sqlite3BtreeEnter(p);
7501 rc = btreeCreateTable(p, piTable, flags);
7502 sqlite3BtreeLeave(p);
7503 return rc;
7504}
drh8b2f49b2001-06-08 00:21:52 +00007505
7506/*
7507** Erase the given database page and all its children. Return
7508** the page to the freelist.
7509*/
drh4b70f112004-05-02 21:12:19 +00007510static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007511 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007512 Pgno pgno, /* Page number to clear */
7513 int freePageFlag, /* Deallocate page if true */
7514 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007515){
danielk1977146ba992009-07-22 14:08:13 +00007516 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007517 int rc;
drh4b70f112004-05-02 21:12:19 +00007518 unsigned char *pCell;
7519 int i;
dan8ce71842014-01-14 20:14:09 +00007520 int hdr;
drh9bfdc252014-09-24 02:05:41 +00007521 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00007522
drh1fee73e2007-08-29 04:00:57 +00007523 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007524 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007525 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007526 }
7527
dan11dcd112013-03-15 18:29:18 +00007528 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00007529 if( rc ) return rc;
dan8ce71842014-01-14 20:14:09 +00007530 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00007531 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007532 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007533 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007534 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007535 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007536 }
drh9bfdc252014-09-24 02:05:41 +00007537 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00007538 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007539 }
drha34b6762004-05-07 13:30:42 +00007540 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00007541 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007542 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007543 }else if( pnChange ){
7544 assert( pPage->intKey );
7545 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007546 }
7547 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007548 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007549 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00007550 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007551 }
danielk19776b456a22005-03-21 04:04:02 +00007552
7553cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007554 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007555 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007556}
7557
7558/*
drhab01f612004-05-22 02:55:23 +00007559** Delete all information from a single table in the database. iTable is
7560** the page number of the root of the table. After this routine returns,
7561** the root page is empty, but still exists.
7562**
7563** This routine will fail with SQLITE_LOCKED if there are any open
7564** read cursors on the table. Open write cursors are moved to the
7565** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007566**
7567** If pnChange is not NULL, then table iTable must be an intkey table. The
7568** integer value pointed to by pnChange is incremented by the number of
7569** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007570*/
danielk1977c7af4842008-10-27 13:59:33 +00007571int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007572 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007573 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007574 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007575 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007576
drhc046e3e2009-07-15 11:26:44 +00007577 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007578
drhc046e3e2009-07-15 11:26:44 +00007579 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007580 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7581 ** is the root of a table b-tree - if it is not, the following call is
7582 ** a no-op). */
7583 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007584 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007585 }
drhd677b3d2007-08-20 22:48:41 +00007586 sqlite3BtreeLeave(p);
7587 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007588}
7589
7590/*
drh079a3072014-03-19 14:10:55 +00007591** Delete all information from the single table that pCur is open on.
7592**
7593** This routine only work for pCur on an ephemeral table.
7594*/
7595int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
7596 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
7597}
7598
7599/*
drh8b2f49b2001-06-08 00:21:52 +00007600** Erase all information in a table and add the root of the table to
7601** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007602** page 1) is never added to the freelist.
7603**
7604** This routine will fail with SQLITE_LOCKED if there are any open
7605** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007606**
7607** If AUTOVACUUM is enabled and the page at iTable is not the last
7608** root page in the database file, then the last root page
7609** in the database file is moved into the slot formerly occupied by
7610** iTable and that last slot formerly occupied by the last root page
7611** is added to the freelist instead of iTable. In this say, all
7612** root pages are kept at the beginning of the database file, which
7613** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7614** page number that used to be the last root page in the file before
7615** the move. If no page gets moved, *piMoved is set to 0.
7616** The last root page is recorded in meta[3] and the value of
7617** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007618*/
danielk197789d40042008-11-17 14:20:56 +00007619static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007620 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007621 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007622 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007623
drh1fee73e2007-08-29 04:00:57 +00007624 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007625 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007626
danielk1977e6efa742004-11-10 11:55:10 +00007627 /* It is illegal to drop a table if any cursors are open on the
7628 ** database. This is because in auto-vacuum mode the backend may
7629 ** need to move another root-page to fill a gap left by the deleted
7630 ** root page. If an open cursor was using this page a problem would
7631 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007632 **
7633 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007634 */
drhc046e3e2009-07-15 11:26:44 +00007635 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007636 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7637 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007638 }
danielk1977a0bf2652004-11-04 14:30:04 +00007639
drhb00fc3b2013-08-21 23:42:32 +00007640 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007641 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007642 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007643 if( rc ){
7644 releasePage(pPage);
7645 return rc;
7646 }
danielk1977a0bf2652004-11-04 14:30:04 +00007647
drh205f48e2004-11-05 00:43:11 +00007648 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007649
drh4b70f112004-05-02 21:12:19 +00007650 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007651#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007652 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007653 releasePage(pPage);
7654#else
7655 if( pBt->autoVacuum ){
7656 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007657 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007658
7659 if( iTable==maxRootPgno ){
7660 /* If the table being dropped is the table with the largest root-page
7661 ** number in the database, put the root page on the free list.
7662 */
drhc314dc72009-07-21 11:52:34 +00007663 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007664 releasePage(pPage);
7665 if( rc!=SQLITE_OK ){
7666 return rc;
7667 }
7668 }else{
7669 /* The table being dropped does not have the largest root-page
7670 ** number in the database. So move the page that does into the
7671 ** gap left by the deleted root-page.
7672 */
7673 MemPage *pMove;
7674 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00007675 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007676 if( rc!=SQLITE_OK ){
7677 return rc;
7678 }
danielk19774c999992008-07-16 18:17:55 +00007679 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007680 releasePage(pMove);
7681 if( rc!=SQLITE_OK ){
7682 return rc;
7683 }
drhfe3313f2009-07-21 19:02:20 +00007684 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00007685 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007686 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007687 releasePage(pMove);
7688 if( rc!=SQLITE_OK ){
7689 return rc;
7690 }
7691 *piMoved = maxRootPgno;
7692 }
7693
danielk1977599fcba2004-11-08 07:13:13 +00007694 /* Set the new 'max-root-page' value in the database header. This
7695 ** is the old value less one, less one more if that happens to
7696 ** be a root-page number, less one again if that is the
7697 ** PENDING_BYTE_PAGE.
7698 */
danielk197787a6e732004-11-05 12:58:25 +00007699 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007700 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7701 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007702 maxRootPgno--;
7703 }
danielk1977599fcba2004-11-08 07:13:13 +00007704 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7705
danielk1977aef0bf62005-12-30 16:28:01 +00007706 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007707 }else{
drhc314dc72009-07-21 11:52:34 +00007708 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007709 releasePage(pPage);
7710 }
7711#endif
drh2aa679f2001-06-25 02:11:07 +00007712 }else{
drhc046e3e2009-07-15 11:26:44 +00007713 /* If sqlite3BtreeDropTable was called on page 1.
7714 ** This really never should happen except in a corrupt
7715 ** database.
7716 */
drha34b6762004-05-07 13:30:42 +00007717 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007718 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007719 }
drh8b2f49b2001-06-08 00:21:52 +00007720 return rc;
7721}
drhd677b3d2007-08-20 22:48:41 +00007722int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7723 int rc;
7724 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007725 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007726 sqlite3BtreeLeave(p);
7727 return rc;
7728}
drh8b2f49b2001-06-08 00:21:52 +00007729
drh001bbcb2003-03-19 03:14:00 +00007730
drh8b2f49b2001-06-08 00:21:52 +00007731/*
danielk1977602b4662009-07-02 07:47:33 +00007732** This function may only be called if the b-tree connection already
7733** has a read or write transaction open on the database.
7734**
drh23e11ca2004-05-04 17:27:28 +00007735** Read the meta-information out of a database file. Meta[0]
7736** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007737** through meta[15] are available for use by higher layers. Meta[0]
7738** is read-only, the others are read/write.
7739**
7740** The schema layer numbers meta values differently. At the schema
7741** layer (and the SetCookie and ReadCookie opcodes) the number of
7742** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007743*/
danielk1977602b4662009-07-02 07:47:33 +00007744void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007745 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007746
drhd677b3d2007-08-20 22:48:41 +00007747 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007748 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007749 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007750 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007751 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007752
danielk1977602b4662009-07-02 07:47:33 +00007753 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007754
danielk1977602b4662009-07-02 07:47:33 +00007755 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7756 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007757#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007758 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7759 pBt->btsFlags |= BTS_READ_ONLY;
7760 }
danielk1977003ba062004-11-04 02:57:33 +00007761#endif
drhae157872004-08-14 19:20:09 +00007762
drhd677b3d2007-08-20 22:48:41 +00007763 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007764}
7765
7766/*
drh23e11ca2004-05-04 17:27:28 +00007767** Write meta-information back into the database. Meta[0] is
7768** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007769*/
danielk1977aef0bf62005-12-30 16:28:01 +00007770int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7771 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007772 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007773 int rc;
drh23e11ca2004-05-04 17:27:28 +00007774 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007775 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007776 assert( p->inTrans==TRANS_WRITE );
7777 assert( pBt->pPage1!=0 );
7778 pP1 = pBt->pPage1->aData;
7779 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7780 if( rc==SQLITE_OK ){
7781 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007782#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007783 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007784 assert( pBt->autoVacuum || iMeta==0 );
7785 assert( iMeta==0 || iMeta==1 );
7786 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007787 }
drh64022502009-01-09 14:11:04 +00007788#endif
drh5df72a52002-06-06 23:16:05 +00007789 }
drhd677b3d2007-08-20 22:48:41 +00007790 sqlite3BtreeLeave(p);
7791 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007792}
drh8c42ca92001-06-22 19:15:00 +00007793
danielk1977a5533162009-02-24 10:01:51 +00007794#ifndef SQLITE_OMIT_BTREECOUNT
7795/*
7796** The first argument, pCur, is a cursor opened on some b-tree. Count the
7797** number of entries in the b-tree and write the result to *pnEntry.
7798**
7799** SQLITE_OK is returned if the operation is successfully executed.
7800** Otherwise, if an error is encountered (i.e. an IO error or database
7801** corruption) an SQLite error code is returned.
7802*/
7803int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7804 i64 nEntry = 0; /* Value to return in *pnEntry */
7805 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007806
7807 if( pCur->pgnoRoot==0 ){
7808 *pnEntry = 0;
7809 return SQLITE_OK;
7810 }
danielk1977a5533162009-02-24 10:01:51 +00007811 rc = moveToRoot(pCur);
7812
7813 /* Unless an error occurs, the following loop runs one iteration for each
7814 ** page in the B-Tree structure (not including overflow pages).
7815 */
7816 while( rc==SQLITE_OK ){
7817 int iIdx; /* Index of child node in parent */
7818 MemPage *pPage; /* Current page of the b-tree */
7819
7820 /* If this is a leaf page or the tree is not an int-key tree, then
7821 ** this page contains countable entries. Increment the entry counter
7822 ** accordingly.
7823 */
7824 pPage = pCur->apPage[pCur->iPage];
7825 if( pPage->leaf || !pPage->intKey ){
7826 nEntry += pPage->nCell;
7827 }
7828
7829 /* pPage is a leaf node. This loop navigates the cursor so that it
7830 ** points to the first interior cell that it points to the parent of
7831 ** the next page in the tree that has not yet been visited. The
7832 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7833 ** of the page, or to the number of cells in the page if the next page
7834 ** to visit is the right-child of its parent.
7835 **
7836 ** If all pages in the tree have been visited, return SQLITE_OK to the
7837 ** caller.
7838 */
7839 if( pPage->leaf ){
7840 do {
7841 if( pCur->iPage==0 ){
7842 /* All pages of the b-tree have been visited. Return successfully. */
7843 *pnEntry = nEntry;
7844 return SQLITE_OK;
7845 }
danielk197730548662009-07-09 05:07:37 +00007846 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007847 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7848
7849 pCur->aiIdx[pCur->iPage]++;
7850 pPage = pCur->apPage[pCur->iPage];
7851 }
7852
7853 /* Descend to the child node of the cell that the cursor currently
7854 ** points at. This is the right-child if (iIdx==pPage->nCell).
7855 */
7856 iIdx = pCur->aiIdx[pCur->iPage];
7857 if( iIdx==pPage->nCell ){
7858 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7859 }else{
7860 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7861 }
7862 }
7863
shanebe217792009-03-05 04:20:31 +00007864 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007865 return rc;
7866}
7867#endif
drhdd793422001-06-28 01:54:48 +00007868
drhdd793422001-06-28 01:54:48 +00007869/*
drh5eddca62001-06-30 21:53:53 +00007870** Return the pager associated with a BTree. This routine is used for
7871** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007872*/
danielk1977aef0bf62005-12-30 16:28:01 +00007873Pager *sqlite3BtreePager(Btree *p){
7874 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007875}
drh5eddca62001-06-30 21:53:53 +00007876
drhb7f91642004-10-31 02:22:47 +00007877#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007878/*
7879** Append a message to the error message string.
7880*/
drh2e38c322004-09-03 18:38:44 +00007881static void checkAppendMsg(
7882 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00007883 const char *zFormat,
7884 ...
7885){
7886 va_list ap;
drh867db832014-09-26 02:41:05 +00007887 char zBuf[200];
drh1dcdbc02007-01-27 02:24:54 +00007888 if( !pCheck->mxErr ) return;
7889 pCheck->mxErr--;
7890 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007891 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007892 if( pCheck->errMsg.nChar ){
7893 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007894 }
drh867db832014-09-26 02:41:05 +00007895 if( pCheck->zPfx ){
7896 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
7897 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
drhf089aa42008-07-08 19:34:06 +00007898 }
7899 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7900 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00007901 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00007902 pCheck->mallocFailed = 1;
7903 }
drh5eddca62001-06-30 21:53:53 +00007904}
drhb7f91642004-10-31 02:22:47 +00007905#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007906
drhb7f91642004-10-31 02:22:47 +00007907#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007908
7909/*
7910** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7911** corresponds to page iPg is already set.
7912*/
7913static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7914 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7915 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7916}
7917
7918/*
7919** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7920*/
7921static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7922 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7923 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7924}
7925
7926
drh5eddca62001-06-30 21:53:53 +00007927/*
7928** Add 1 to the reference count for page iPage. If this is the second
7929** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00007930** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00007931** if this is the first reference to the page.
7932**
7933** Also check that the page number is in bounds.
7934*/
drh867db832014-09-26 02:41:05 +00007935static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00007936 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007937 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00007938 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007939 return 1;
7940 }
dan1235bb12012-04-03 17:43:28 +00007941 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00007942 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007943 return 1;
7944 }
dan1235bb12012-04-03 17:43:28 +00007945 setPageReferenced(pCheck, iPage);
7946 return 0;
drh5eddca62001-06-30 21:53:53 +00007947}
7948
danielk1977afcdd022004-10-31 16:25:42 +00007949#ifndef SQLITE_OMIT_AUTOVACUUM
7950/*
7951** Check that the entry in the pointer-map for page iChild maps to
7952** page iParent, pointer type ptrType. If not, append an error message
7953** to pCheck.
7954*/
7955static void checkPtrmap(
7956 IntegrityCk *pCheck, /* Integrity check context */
7957 Pgno iChild, /* Child page number */
7958 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00007959 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00007960){
7961 int rc;
7962 u8 ePtrmapType;
7963 Pgno iPtrmapParent;
7964
7965 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7966 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007967 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00007968 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00007969 return;
7970 }
7971
7972 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00007973 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00007974 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7975 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7976 }
7977}
7978#endif
7979
drh5eddca62001-06-30 21:53:53 +00007980/*
7981** Check the integrity of the freelist or of an overflow page list.
7982** Verify that the number of pages on the list is N.
7983*/
drh30e58752002-03-02 20:41:57 +00007984static void checkList(
7985 IntegrityCk *pCheck, /* Integrity checking context */
7986 int isFreeList, /* True for a freelist. False for overflow page list */
7987 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00007988 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00007989){
7990 int i;
drh3a4c1412004-05-09 20:40:11 +00007991 int expected = N;
7992 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007993 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007994 DbPage *pOvflPage;
7995 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007996 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00007997 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00007998 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007999 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008000 break;
8001 }
drh867db832014-09-26 02:41:05 +00008002 if( checkRef(pCheck, iPage) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00008003 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh867db832014-09-26 02:41:05 +00008004 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008005 break;
8006 }
danielk19773b8a05f2007-03-19 17:44:26 +00008007 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008008 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008009 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008010#ifndef SQLITE_OMIT_AUTOVACUUM
8011 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008012 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008013 }
8014#endif
drh43b18e12010-08-17 19:40:08 +00008015 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008016 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008017 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008018 N--;
8019 }else{
8020 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008021 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008022#ifndef SQLITE_OMIT_AUTOVACUUM
8023 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008024 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008025 }
8026#endif
drh867db832014-09-26 02:41:05 +00008027 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008028 }
8029 N -= n;
drh30e58752002-03-02 20:41:57 +00008030 }
drh30e58752002-03-02 20:41:57 +00008031 }
danielk1977afcdd022004-10-31 16:25:42 +00008032#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008033 else{
8034 /* If this database supports auto-vacuum and iPage is not the last
8035 ** page in this overflow list, check that the pointer-map entry for
8036 ** the following page matches iPage.
8037 */
8038 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008039 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008040 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008041 }
danielk1977afcdd022004-10-31 16:25:42 +00008042 }
8043#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008044 iPage = get4byte(pOvflData);
8045 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00008046 }
8047}
drhb7f91642004-10-31 02:22:47 +00008048#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008049
drhb7f91642004-10-31 02:22:47 +00008050#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008051/*
8052** Do various sanity checks on a single page of a tree. Return
8053** the tree depth. Root pages return 0. Parents of root pages
8054** return 1, and so forth.
8055**
8056** These checks are done:
8057**
8058** 1. Make sure that cells and freeblocks do not overlap
8059** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00008060** NO 2. Make sure cell keys are in order.
8061** NO 3. Make sure no key is less than or equal to zLowerBound.
8062** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00008063** 5. Check the integrity of overflow pages.
8064** 6. Recursively call checkTreePage on all children.
8065** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00008066** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00008067** the root of the tree.
8068*/
8069static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00008070 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00008071 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00008072 i64 *pnParentMinKey,
8073 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00008074){
8075 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00008076 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00008077 int hdr, cellStart;
8078 int nCell;
drhda200cc2004-05-09 11:51:38 +00008079 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00008080 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00008081 int usableSize;
shane0af3f892008-11-12 04:55:34 +00008082 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00008083 i64 nMinKey = 0;
8084 i64 nMaxKey = 0;
drh867db832014-09-26 02:41:05 +00008085 const char *saved_zPfx = pCheck->zPfx;
8086 int saved_v1 = pCheck->v1;
8087 int saved_v2 = pCheck->v2;
danielk1977ef73ee92004-11-06 12:26:07 +00008088
drh5eddca62001-06-30 21:53:53 +00008089 /* Check that the page exists
8090 */
drhd9cb6ac2005-10-20 07:28:17 +00008091 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00008092 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00008093 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00008094 if( checkRef(pCheck, iPage) ) return 0;
8095 pCheck->zPfx = "Page %d: ";
8096 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00008097 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00008098 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008099 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00008100 depth = -1;
8101 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008102 }
danielk197793caf5a2009-07-11 06:55:33 +00008103
8104 /* Clear MemPage.isInit to make sure the corruption detection code in
8105 ** btreeInitPage() is executed. */
8106 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00008107 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00008108 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00008109 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00008110 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00008111 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008112 depth = -1;
8113 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008114 }
8115
8116 /* Check out all the cells.
8117 */
8118 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00008119 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00008120 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00008121 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00008122 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00008123
8124 /* Check payload overflow pages
8125 */
drh867db832014-09-26 02:41:05 +00008126 pCheck->zPfx = "On tree page %d cell %d: ";
8127 pCheck->v1 = iPage;
8128 pCheck->v2 = i;
danielk19771cc5ed82007-05-16 17:28:43 +00008129 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00008130 btreeParseCellPtr(pPage, pCell, &info);
drhab1cc582014-09-23 21:25:19 +00008131 sz = info.nPayload;
shaneh195475d2010-02-19 04:28:08 +00008132 /* For intKey pages, check that the keys are in order.
8133 */
drhab1cc582014-09-23 21:25:19 +00008134 if( pPage->intKey ){
8135 if( i==0 ){
8136 nMinKey = nMaxKey = info.nKey;
8137 }else if( info.nKey <= nMaxKey ){
drh867db832014-09-26 02:41:05 +00008138 checkAppendMsg(pCheck,
drhab1cc582014-09-23 21:25:19 +00008139 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
shaneh195475d2010-02-19 04:28:08 +00008140 }
8141 nMaxKey = info.nKey;
8142 }
danielk19775be31f52009-03-30 13:53:43 +00008143 if( (sz>info.nLocal)
8144 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8145 ){
drhb6f41482004-05-14 01:58:11 +00008146 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008147 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8148#ifndef SQLITE_OMIT_AUTOVACUUM
8149 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008150 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008151 }
8152#endif
drh867db832014-09-26 02:41:05 +00008153 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00008154 }
8155
8156 /* Check sanity of left child page.
8157 */
drhda200cc2004-05-09 11:51:38 +00008158 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008159 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008160#ifndef SQLITE_OMIT_AUTOVACUUM
8161 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008162 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008163 }
8164#endif
drh867db832014-09-26 02:41:05 +00008165 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008166 if( i>0 && d2!=depth ){
drh867db832014-09-26 02:41:05 +00008167 checkAppendMsg(pCheck, "Child page depth differs");
drhda200cc2004-05-09 11:51:38 +00008168 }
8169 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008170 }
drh5eddca62001-06-30 21:53:53 +00008171 }
shaneh195475d2010-02-19 04:28:08 +00008172
drhda200cc2004-05-09 11:51:38 +00008173 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008174 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh867db832014-09-26 02:41:05 +00008175 pCheck->zPfx = "On page %d at right child: ";
8176 pCheck->v1 = iPage;
danielk1977afcdd022004-10-31 16:25:42 +00008177#ifndef SQLITE_OMIT_AUTOVACUUM
8178 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008179 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008180 }
8181#endif
drh867db832014-09-26 02:41:05 +00008182 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008183 }
drh5eddca62001-06-30 21:53:53 +00008184
shaneh195475d2010-02-19 04:28:08 +00008185 /* For intKey leaf pages, check that the min/max keys are in order
8186 ** with any left/parent/right pages.
8187 */
drh867db832014-09-26 02:41:05 +00008188 pCheck->zPfx = "Page %d: ";
8189 pCheck->v1 = iPage;
shaneh195475d2010-02-19 04:28:08 +00008190 if( pPage->leaf && pPage->intKey ){
8191 /* if we are a left child page */
8192 if( pnParentMinKey ){
8193 /* if we are the left most child page */
8194 if( !pnParentMaxKey ){
8195 if( nMaxKey > *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00008196 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008197 "Rowid %lld out of order (max larger than parent min of %lld)",
8198 nMaxKey, *pnParentMinKey);
8199 }
8200 }else{
8201 if( nMinKey <= *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00008202 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008203 "Rowid %lld out of order (min less than parent min of %lld)",
8204 nMinKey, *pnParentMinKey);
8205 }
8206 if( nMaxKey > *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00008207 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008208 "Rowid %lld out of order (max larger than parent max of %lld)",
8209 nMaxKey, *pnParentMaxKey);
8210 }
8211 *pnParentMinKey = nMaxKey;
8212 }
8213 /* else if we're a right child page */
8214 } else if( pnParentMaxKey ){
8215 if( nMinKey <= *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00008216 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008217 "Rowid %lld out of order (min less than parent max of %lld)",
8218 nMinKey, *pnParentMaxKey);
8219 }
8220 }
8221 }
8222
drh5eddca62001-06-30 21:53:53 +00008223 /* Check for complete coverage of the page
8224 */
drhda200cc2004-05-09 11:51:38 +00008225 data = pPage->aData;
8226 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008227 hit = sqlite3PageMalloc( pBt->pageSize );
drh867db832014-09-26 02:41:05 +00008228 pCheck->zPfx = 0;
drhc890fec2008-08-01 20:10:08 +00008229 if( hit==0 ){
8230 pCheck->mallocFailed = 1;
8231 }else{
drh5d433ce2010-08-14 16:02:52 +00008232 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008233 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008234 memset(hit+contentOffset, 0, usableSize-contentOffset);
8235 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00008236 nCell = get2byte(&data[hdr+3]);
8237 cellStart = hdr + 12 - 4*pPage->leaf;
8238 for(i=0; i<nCell; i++){
8239 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008240 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008241 int j;
drh8c2bbb62009-07-10 02:52:20 +00008242 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008243 size = cellSizePtr(pPage, &data[pc]);
8244 }
drh43b18e12010-08-17 19:40:08 +00008245 if( (int)(pc+size-1)>=usableSize ){
drh867db832014-09-26 02:41:05 +00008246 pCheck->zPfx = 0;
8247 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008248 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008249 }else{
8250 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8251 }
drh2e38c322004-09-03 18:38:44 +00008252 }
drh8c2bbb62009-07-10 02:52:20 +00008253 i = get2byte(&data[hdr+1]);
8254 while( i>0 ){
8255 int size, j;
8256 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8257 size = get2byte(&data[i+2]);
8258 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8259 for(j=i+size-1; j>=i; j--) hit[j]++;
8260 j = get2byte(&data[i]);
8261 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8262 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8263 i = j;
drh2e38c322004-09-03 18:38:44 +00008264 }
8265 for(i=cnt=0; i<usableSize; i++){
8266 if( hit[i]==0 ){
8267 cnt++;
8268 }else if( hit[i]>1 ){
drh867db832014-09-26 02:41:05 +00008269 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008270 "Multiple uses for byte %d of page %d", i, iPage);
8271 break;
8272 }
8273 }
8274 if( cnt!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00008275 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00008276 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008277 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008278 }
8279 }
drh8c2bbb62009-07-10 02:52:20 +00008280 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008281 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008282
8283end_of_check:
8284 pCheck->zPfx = saved_zPfx;
8285 pCheck->v1 = saved_v1;
8286 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00008287 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008288}
drhb7f91642004-10-31 02:22:47 +00008289#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008290
drhb7f91642004-10-31 02:22:47 +00008291#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008292/*
8293** This routine does a complete check of the given BTree file. aRoot[] is
8294** an array of pages numbers were each page number is the root page of
8295** a table. nRoot is the number of entries in aRoot.
8296**
danielk19773509a652009-07-06 18:56:13 +00008297** A read-only or read-write transaction must be opened before calling
8298** this function.
8299**
drhc890fec2008-08-01 20:10:08 +00008300** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008301** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008302** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008303** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008304*/
drh1dcdbc02007-01-27 02:24:54 +00008305char *sqlite3BtreeIntegrityCheck(
8306 Btree *p, /* The btree to be checked */
8307 int *aRoot, /* An array of root pages numbers for individual trees */
8308 int nRoot, /* Number of entries in aRoot[] */
8309 int mxErr, /* Stop reporting errors after this many */
8310 int *pnErr /* Write number of errors seen to this variable */
8311){
danielk197789d40042008-11-17 14:20:56 +00008312 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008313 int nRef;
drhaaab5722002-02-19 13:39:21 +00008314 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008315 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008316 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008317
drhd677b3d2007-08-20 22:48:41 +00008318 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008319 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008320 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008321 sCheck.pBt = pBt;
8322 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008323 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008324 sCheck.mxErr = mxErr;
8325 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008326 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00008327 sCheck.zPfx = 0;
8328 sCheck.v1 = 0;
8329 sCheck.v2 = 0;
drh1dcdbc02007-01-27 02:24:54 +00008330 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008331 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008332 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008333 return 0;
8334 }
dan1235bb12012-04-03 17:43:28 +00008335
8336 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8337 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008338 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008339 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008340 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008341 }
drh42cac6d2004-11-20 20:31:11 +00008342 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008343 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008344 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008345 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008346
8347 /* Check the integrity of the freelist
8348 */
drh867db832014-09-26 02:41:05 +00008349 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00008350 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00008351 get4byte(&pBt->pPage1->aData[36]));
8352 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00008353
8354 /* Check all the tables.
8355 */
danielk197789d40042008-11-17 14:20:56 +00008356 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008357 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008358#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008359 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00008360 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008361 }
8362#endif
drh867db832014-09-26 02:41:05 +00008363 sCheck.zPfx = "List of tree roots: ";
8364 checkTreePage(&sCheck, aRoot[i], NULL, NULL);
8365 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00008366 }
8367
8368 /* Make sure every page in the file is referenced
8369 */
drh1dcdbc02007-01-27 02:24:54 +00008370 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008371#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008372 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00008373 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008374 }
danielk1977afcdd022004-10-31 16:25:42 +00008375#else
8376 /* If the database supports auto-vacuum, make sure no tables contain
8377 ** references to pointer-map pages.
8378 */
dan1235bb12012-04-03 17:43:28 +00008379 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008380 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00008381 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00008382 }
dan1235bb12012-04-03 17:43:28 +00008383 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008384 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00008385 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00008386 }
8387#endif
drh5eddca62001-06-30 21:53:53 +00008388 }
8389
drh64022502009-01-09 14:11:04 +00008390 /* Make sure this analysis did not leave any unref() pages.
8391 ** This is an internal consistency check; an integrity check
8392 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008393 */
drh64022502009-01-09 14:11:04 +00008394 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh867db832014-09-26 02:41:05 +00008395 checkAppendMsg(&sCheck,
drh5eddca62001-06-30 21:53:53 +00008396 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008397 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008398 );
drh5eddca62001-06-30 21:53:53 +00008399 }
8400
8401 /* Clean up and report errors.
8402 */
drhd677b3d2007-08-20 22:48:41 +00008403 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008404 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008405 if( sCheck.mallocFailed ){
8406 sqlite3StrAccumReset(&sCheck.errMsg);
8407 *pnErr = sCheck.nErr+1;
8408 return 0;
8409 }
drh1dcdbc02007-01-27 02:24:54 +00008410 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008411 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8412 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008413}
drhb7f91642004-10-31 02:22:47 +00008414#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008415
drh73509ee2003-04-06 20:44:45 +00008416/*
drhd4e0bb02012-05-27 01:19:04 +00008417** Return the full pathname of the underlying database file. Return
8418** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008419**
8420** The pager filename is invariant as long as the pager is
8421** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008422*/
danielk1977aef0bf62005-12-30 16:28:01 +00008423const char *sqlite3BtreeGetFilename(Btree *p){
8424 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008425 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008426}
8427
8428/*
danielk19775865e3d2004-06-14 06:03:57 +00008429** Return the pathname of the journal file for this database. The return
8430** value of this routine is the same regardless of whether the journal file
8431** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008432**
8433** The pager journal filename is invariant as long as the pager is
8434** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008435*/
danielk1977aef0bf62005-12-30 16:28:01 +00008436const char *sqlite3BtreeGetJournalname(Btree *p){
8437 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008438 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008439}
8440
danielk19771d850a72004-05-31 08:26:49 +00008441/*
8442** Return non-zero if a transaction is active.
8443*/
danielk1977aef0bf62005-12-30 16:28:01 +00008444int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008445 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008446 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008447}
8448
dana550f2d2010-08-02 10:47:05 +00008449#ifndef SQLITE_OMIT_WAL
8450/*
8451** Run a checkpoint on the Btree passed as the first argument.
8452**
8453** Return SQLITE_LOCKED if this or any other connection has an open
8454** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008455**
dancdc1f042010-11-18 12:11:05 +00008456** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008457*/
dancdc1f042010-11-18 12:11:05 +00008458int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008459 int rc = SQLITE_OK;
8460 if( p ){
8461 BtShared *pBt = p->pBt;
8462 sqlite3BtreeEnter(p);
8463 if( pBt->inTransaction!=TRANS_NONE ){
8464 rc = SQLITE_LOCKED;
8465 }else{
dancdc1f042010-11-18 12:11:05 +00008466 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008467 }
8468 sqlite3BtreeLeave(p);
8469 }
8470 return rc;
8471}
8472#endif
8473
danielk19771d850a72004-05-31 08:26:49 +00008474/*
danielk19772372c2b2006-06-27 16:34:56 +00008475** Return non-zero if a read (or write) transaction is active.
8476*/
8477int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008478 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008479 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008480 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008481}
8482
danielk197704103022009-02-03 16:51:24 +00008483int sqlite3BtreeIsInBackup(Btree *p){
8484 assert( p );
8485 assert( sqlite3_mutex_held(p->db->mutex) );
8486 return p->nBackup!=0;
8487}
8488
danielk19772372c2b2006-06-27 16:34:56 +00008489/*
danielk1977da184232006-01-05 11:34:32 +00008490** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008491** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008492** purposes (for example, to store a high-level schema associated with
8493** the shared-btree). The btree layer manages reference counting issues.
8494**
8495** The first time this is called on a shared-btree, nBytes bytes of memory
8496** are allocated, zeroed, and returned to the caller. For each subsequent
8497** call the nBytes parameter is ignored and a pointer to the same blob
8498** of memory returned.
8499**
danielk1977171bfed2008-06-23 09:50:50 +00008500** If the nBytes parameter is 0 and the blob of memory has not yet been
8501** allocated, a null pointer is returned. If the blob has already been
8502** allocated, it is returned as normal.
8503**
danielk1977da184232006-01-05 11:34:32 +00008504** Just before the shared-btree is closed, the function passed as the
8505** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008506** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008507** on the memory, the btree layer does that.
8508*/
8509void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8510 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008511 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008512 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008513 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008514 pBt->xFreeSchema = xFree;
8515 }
drh27641702007-08-22 02:56:42 +00008516 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008517 return pBt->pSchema;
8518}
8519
danielk1977c87d34d2006-01-06 13:00:28 +00008520/*
danielk1977404ca072009-03-16 13:19:36 +00008521** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8522** btree as the argument handle holds an exclusive lock on the
8523** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008524*/
8525int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008526 int rc;
drhe5fe6902007-12-07 18:55:28 +00008527 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008528 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008529 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8530 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008531 sqlite3BtreeLeave(p);
8532 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008533}
8534
drha154dcd2006-03-22 22:10:07 +00008535
8536#ifndef SQLITE_OMIT_SHARED_CACHE
8537/*
8538** Obtain a lock on the table whose root page is iTab. The
8539** lock is a write lock if isWritelock is true or a read lock
8540** if it is false.
8541*/
danielk1977c00da102006-01-07 13:21:04 +00008542int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008543 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008544 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008545 if( p->sharable ){
8546 u8 lockType = READ_LOCK + isWriteLock;
8547 assert( READ_LOCK+1==WRITE_LOCK );
8548 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008549
drh6a9ad3d2008-04-02 16:29:30 +00008550 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008551 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008552 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008553 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008554 }
8555 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008556 }
8557 return rc;
8558}
drha154dcd2006-03-22 22:10:07 +00008559#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008560
danielk1977b4e9af92007-05-01 17:49:49 +00008561#ifndef SQLITE_OMIT_INCRBLOB
8562/*
8563** Argument pCsr must be a cursor opened for writing on an
8564** INTKEY table currently pointing at a valid table entry.
8565** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008566**
8567** Only the data content may only be modified, it is not possible to
8568** change the length of the data stored. If this function is called with
8569** parameters that attempt to write past the end of the existing data,
8570** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008571*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008572int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008573 int rc;
drh1fee73e2007-08-29 04:00:57 +00008574 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008575 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00008576 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00008577
danielk1977c9000e62009-07-08 13:55:28 +00008578 rc = restoreCursorPosition(pCsr);
8579 if( rc!=SQLITE_OK ){
8580 return rc;
8581 }
danielk19773588ceb2008-06-10 17:30:26 +00008582 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8583 if( pCsr->eState!=CURSOR_VALID ){
8584 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008585 }
8586
dan227a1c42013-04-03 11:17:39 +00008587 /* Save the positions of all other cursors open on this table. This is
8588 ** required in case any of them are holding references to an xFetch
8589 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00008590 **
drh3f387402014-09-24 01:23:00 +00008591 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00008592 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8593 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00008594 */
drh370c9f42013-04-03 20:04:04 +00008595 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8596 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00008597
danielk1977c9000e62009-07-08 13:55:28 +00008598 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008599 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008600 ** (b) there is a read/write transaction open,
8601 ** (c) the connection holds a write-lock on the table (if required),
8602 ** (d) there are no conflicting read-locks, and
8603 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008604 */
drh036dbec2014-03-11 23:40:44 +00008605 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00008606 return SQLITE_READONLY;
8607 }
drhc9166342012-01-05 23:32:06 +00008608 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8609 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008610 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8611 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008612 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008613
drhfb192682009-07-11 18:26:28 +00008614 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008615}
danielk19772dec9702007-05-02 16:48:37 +00008616
8617/*
dan5a500af2014-03-11 20:33:04 +00008618** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00008619*/
dan5a500af2014-03-11 20:33:04 +00008620void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00008621 pCur->curFlags |= BTCF_Incrblob;
danielk19772dec9702007-05-02 16:48:37 +00008622}
danielk1977b4e9af92007-05-01 17:49:49 +00008623#endif
dane04dc882010-04-20 18:53:15 +00008624
8625/*
8626** Set both the "read version" (single byte at byte offset 18) and
8627** "write version" (single byte at byte offset 19) fields in the database
8628** header to iVersion.
8629*/
8630int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8631 BtShared *pBt = pBtree->pBt;
8632 int rc; /* Return code */
8633
dane04dc882010-04-20 18:53:15 +00008634 assert( iVersion==1 || iVersion==2 );
8635
danb9780022010-04-21 18:37:57 +00008636 /* If setting the version fields to 1, do not automatically open the
8637 ** WAL connection, even if the version fields are currently set to 2.
8638 */
drhc9166342012-01-05 23:32:06 +00008639 pBt->btsFlags &= ~BTS_NO_WAL;
8640 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008641
8642 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008643 if( rc==SQLITE_OK ){
8644 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008645 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008646 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008647 if( rc==SQLITE_OK ){
8648 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8649 if( rc==SQLITE_OK ){
8650 aData[18] = (u8)iVersion;
8651 aData[19] = (u8)iVersion;
8652 }
8653 }
8654 }
dane04dc882010-04-20 18:53:15 +00008655 }
8656
drhc9166342012-01-05 23:32:06 +00008657 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008658 return rc;
8659}
dan428c2182012-08-06 18:50:11 +00008660
8661/*
8662** set the mask of hint flags for cursor pCsr. Currently the only valid
8663** values are 0 and BTREE_BULKLOAD.
8664*/
8665void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8666 assert( mask==BTREE_BULKLOAD || mask==0 );
8667 pCsr->hints = mask;
8668}
drh781597f2014-05-21 08:21:07 +00008669
8670/*
8671** Return true if the given Btree is read-only.
8672*/
8673int sqlite3BtreeIsReadonly(Btree *p){
8674 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
8675}