blob: 46eb5be3030c22c9810707cc515b3e4bc40eeaa2 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000179 }
180 }
181 }else{
182 iTab = iRoot;
183 }
184
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
192 ){
193 return 1;
194 }
195 }
196
197 /* Failed to find the required lock. */
198 return 0;
199}
drh0ee3dbe2009-10-16 15:05:18 +0000200#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000201
drh0ee3dbe2009-10-16 15:05:18 +0000202#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000203/*
drh0ee3dbe2009-10-16 15:05:18 +0000204**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000205**
drh0ee3dbe2009-10-16 15:05:18 +0000206** Return true if it would be illegal for pBtree to write into the
207** table or index rooted at iRoot because other shared connections are
208** simultaneously reading that same table or index.
209**
210** It is illegal for pBtree to write if some other Btree object that
211** shares the same BtShared object is currently reading or writing
212** the iRoot table. Except, if the other Btree object has the
213** read-uncommitted flag set, then it is OK for the other object to
214** have a read cursor.
215**
216** For example, before writing to any part of the table or index
217** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000218**
219** assert( !hasReadConflicts(pBtree, iRoot) );
220*/
221static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227 ){
228 return 1;
229 }
230 }
231 return 0;
232}
233#endif /* #ifdef SQLITE_DEBUG */
234
danielk1977da184232006-01-05 11:34:32 +0000235/*
drh0ee3dbe2009-10-16 15:05:18 +0000236** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000237** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000238** SQLITE_OK if the lock may be obtained (by calling
239** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000240*/
drhc25eabe2009-02-24 18:57:31 +0000241static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
244
drh1fee73e2007-08-29 04:00:57 +0000245 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000249
danielk19775b413d72009-04-01 09:41:54 +0000250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
253 */
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256
drh0ee3dbe2009-10-16 15:05:18 +0000257 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000258 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000259 return SQLITE_OK;
260 }
261
danielk1977641b0f42007-12-21 04:47:25 +0000262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
264 */
drhc9166342012-01-05 23:32:06 +0000265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000268 }
269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
273 **
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275 **
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
279 */
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000286 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000287 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000288 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000289 }
290 }
291 return SQLITE_OK;
292}
drhe53831d2007-08-17 01:14:38 +0000293#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000294
drhe53831d2007-08-17 01:14:38 +0000295#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000296/*
297** Add a lock on the table with root-page iTable to the shared-btree used
298** by Btree handle p. Parameter eLock must be either READ_LOCK or
299** WRITE_LOCK.
300**
danielk19779d104862009-07-09 08:27:14 +0000301** This function assumes the following:
302**
drh0ee3dbe2009-10-16 15:05:18 +0000303** (a) The specified Btree object p is connected to a sharable
304** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000305**
drh0ee3dbe2009-10-16 15:05:18 +0000306** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000307** with the requested lock (i.e. querySharedCacheTableLock() has
308** already been called and returned SQLITE_OK).
309**
310** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000312*/
drhc25eabe2009-02-24 18:57:31 +0000313static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
317
drh1fee73e2007-08-29 04:00:57 +0000318 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000321
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327
danielk19779d104862009-07-09 08:27:14 +0000328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000332
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
338 }
339 }
340
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
343 */
344 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( !pLock ){
347 return SQLITE_NOMEM;
348 }
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
353 }
354
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
358 */
359 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
362 }
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 return SQLITE_OK;
365}
drhe53831d2007-08-17 01:14:38 +0000366#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000367
drhe53831d2007-08-17 01:14:38 +0000368#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000369/*
drhc25eabe2009-02-24 18:57:31 +0000370** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000371** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000372**
drh0ee3dbe2009-10-16 15:05:18 +0000373** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000374** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000375** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000376*/
drhc25eabe2009-02-24 18:57:31 +0000377static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000380
drh1fee73e2007-08-29 04:00:57 +0000381 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000382 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000383 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000384
danielk1977aef0bf62005-12-30 16:28:01 +0000385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000388 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
394 }
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }else{
396 ppIter = &pLock->pNext;
397 }
398 }
danielk1977641b0f42007-12-21 04:47:25 +0000399
drhc9166342012-01-05 23:32:06 +0000400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000404 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000405 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000409 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000410 **
drhc9166342012-01-05 23:32:06 +0000411 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000412 ** be zero already. So this next line is harmless in that case.
413 */
drhc9166342012-01-05 23:32:06 +0000414 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000415 }
danielk1977aef0bf62005-12-30 16:28:01 +0000416}
danielk197794b30732009-07-02 17:21:57 +0000417
danielk1977e0d9e6f2009-07-03 16:25:06 +0000418/*
drh0ee3dbe2009-10-16 15:05:18 +0000419** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000420*/
danielk197794b30732009-07-02 17:21:57 +0000421static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
430 }
431 }
432}
433
danielk1977aef0bf62005-12-30 16:28:01 +0000434#endif /* SQLITE_OMIT_SHARED_CACHE */
435
drh980b1a72006-08-16 16:42:48 +0000436static void releasePage(MemPage *pPage); /* Forward reference */
437
drh1fee73e2007-08-29 04:00:57 +0000438/*
drh0ee3dbe2009-10-16 15:05:18 +0000439***** This routine is used inside of assert() only ****
440**
441** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000442*/
drh0ee3dbe2009-10-16 15:05:18 +0000443#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000444static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000445 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000446}
447#endif
448
danielk197792d4d7a2007-05-04 12:05:56 +0000449/*
dan5a500af2014-03-11 20:33:04 +0000450** Invalidate the overflow cache of the cursor passed as the first argument.
451** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000452*/
drh036dbec2014-03-11 23:40:44 +0000453#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000454
455/*
456** Invalidate the overflow page-list cache for all cursors opened
457** on the shared btree structure pBt.
458*/
459static void invalidateAllOverflowCache(BtShared *pBt){
460 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000461 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000462 for(p=pBt->pCursor; p; p=p->pNext){
463 invalidateOverflowCache(p);
464 }
465}
danielk197796d48e92009-06-29 06:00:37 +0000466
dan5a500af2014-03-11 20:33:04 +0000467#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000468/*
469** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000470** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000471** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000472**
473** If argument isClearTable is true, then the entire contents of the
474** table is about to be deleted. In this case invalidate all incrblob
475** cursors open on any row within the table with root-page pgnoRoot.
476**
477** Otherwise, if argument isClearTable is false, then the row with
478** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000479** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000480*/
481static void invalidateIncrblobCursors(
482 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000483 i64 iRow, /* The rowid that might be changing */
484 int isClearTable /* True if all rows are being deleted */
485){
486 BtCursor *p;
487 BtShared *pBt = pBtree->pBt;
488 assert( sqlite3BtreeHoldsMutex(pBtree) );
489 for(p=pBt->pCursor; p; p=p->pNext){
drh036dbec2014-03-11 23:40:44 +0000490 if( (p->curFlags & BTCF_Incrblob)!=0 && (isClearTable || p->info.nKey==iRow) ){
danielk197796d48e92009-06-29 06:00:37 +0000491 p->eState = CURSOR_INVALID;
492 }
493 }
494}
495
danielk197792d4d7a2007-05-04 12:05:56 +0000496#else
dan5a500af2014-03-11 20:33:04 +0000497 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000498 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000499#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000500
drh980b1a72006-08-16 16:42:48 +0000501/*
danielk1977bea2a942009-01-20 17:06:27 +0000502** Set bit pgno of the BtShared.pHasContent bitvec. This is called
503** when a page that previously contained data becomes a free-list leaf
504** page.
505**
506** The BtShared.pHasContent bitvec exists to work around an obscure
507** bug caused by the interaction of two useful IO optimizations surrounding
508** free-list leaf pages:
509**
510** 1) When all data is deleted from a page and the page becomes
511** a free-list leaf page, the page is not written to the database
512** (as free-list leaf pages contain no meaningful data). Sometimes
513** such a page is not even journalled (as it will not be modified,
514** why bother journalling it?).
515**
516** 2) When a free-list leaf page is reused, its content is not read
517** from the database or written to the journal file (why should it
518** be, if it is not at all meaningful?).
519**
520** By themselves, these optimizations work fine and provide a handy
521** performance boost to bulk delete or insert operations. However, if
522** a page is moved to the free-list and then reused within the same
523** transaction, a problem comes up. If the page is not journalled when
524** it is moved to the free-list and it is also not journalled when it
525** is extracted from the free-list and reused, then the original data
526** may be lost. In the event of a rollback, it may not be possible
527** to restore the database to its original configuration.
528**
529** The solution is the BtShared.pHasContent bitvec. Whenever a page is
530** moved to become a free-list leaf page, the corresponding bit is
531** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000532** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000533** set in BtShared.pHasContent. The contents of the bitvec are cleared
534** at the end of every transaction.
535*/
536static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
537 int rc = SQLITE_OK;
538 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000539 assert( pgno<=pBt->nPage );
540 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000541 if( !pBt->pHasContent ){
542 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000543 }
544 }
545 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
546 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
547 }
548 return rc;
549}
550
551/*
552** Query the BtShared.pHasContent vector.
553**
554** This function is called when a free-list leaf page is removed from the
555** free-list for reuse. It returns false if it is safe to retrieve the
556** page from the pager layer with the 'no-content' flag set. True otherwise.
557*/
558static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
559 Bitvec *p = pBt->pHasContent;
560 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
561}
562
563/*
564** Clear (destroy) the BtShared.pHasContent bitvec. This should be
565** invoked at the conclusion of each write-transaction.
566*/
567static void btreeClearHasContent(BtShared *pBt){
568 sqlite3BitvecDestroy(pBt->pHasContent);
569 pBt->pHasContent = 0;
570}
571
572/*
drh138eeeb2013-03-27 03:15:23 +0000573** Release all of the apPage[] pages for a cursor.
574*/
575static void btreeReleaseAllCursorPages(BtCursor *pCur){
576 int i;
577 for(i=0; i<=pCur->iPage; i++){
578 releasePage(pCur->apPage[i]);
579 pCur->apPage[i] = 0;
580 }
581 pCur->iPage = -1;
582}
583
584
585/*
drh980b1a72006-08-16 16:42:48 +0000586** Save the current cursor position in the variables BtCursor.nKey
587** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000588**
589** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
590** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000591*/
592static int saveCursorPosition(BtCursor *pCur){
593 int rc;
594
595 assert( CURSOR_VALID==pCur->eState );
596 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000597 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000598
599 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000600 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000601
602 /* If this is an intKey table, then the above call to BtreeKeySize()
603 ** stores the integer key in pCur->nKey. In this case this value is
604 ** all that is required. Otherwise, if pCur is not open on an intKey
605 ** table, then malloc space for and store the pCur->nKey bytes of key
606 ** data.
607 */
drh4c301aa2009-07-15 17:25:45 +0000608 if( 0==pCur->apPage[0]->intKey ){
drhda4ca9d2014-09-09 17:27:35 +0000609 void *pKey = sqlite3Malloc( pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000610 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000611 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000612 if( rc==SQLITE_OK ){
613 pCur->pKey = pKey;
614 }else{
drh17435752007-08-16 04:30:38 +0000615 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000616 }
617 }else{
618 rc = SQLITE_NOMEM;
619 }
620 }
danielk197771d5d2c2008-09-29 11:49:47 +0000621 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000622
623 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000624 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000625 pCur->eState = CURSOR_REQUIRESEEK;
626 }
627
danielk197792d4d7a2007-05-04 12:05:56 +0000628 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000629 return rc;
630}
631
drh637f3d82014-08-22 22:26:07 +0000632/* Forward reference */
633static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
634
drh980b1a72006-08-16 16:42:48 +0000635/*
drh0ee3dbe2009-10-16 15:05:18 +0000636** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000637** the table with root-page iRoot. "Saving the cursor position" means that
638** the location in the btree is remembered in such a way that it can be
639** moved back to the same spot after the btree has been modified. This
640** routine is called just before cursor pExcept is used to modify the
641** table, for example in BtreeDelete() or BtreeInsert().
642**
643** Implementation note: This routine merely checks to see if any cursors
644** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
645** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000646*/
647static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000648 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000649 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000650 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000651 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000652 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
653 }
654 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;
655}
656
657/* This helper routine to saveAllCursors does the actual work of saving
658** the cursors if and when a cursor is found that actually requires saving.
659** The common case is that no cursors need to be saved, so this routine is
660** broken out from its caller to avoid unnecessary stack pointer movement.
661*/
662static int SQLITE_NOINLINE saveCursorsOnList(
663 BtCursor *p, /* The first cursor that needs saving */
664 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
665 BtCursor *pExcept /* Do not save this cursor */
666){
667 do{
drh138eeeb2013-03-27 03:15:23 +0000668 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
669 if( p->eState==CURSOR_VALID ){
670 int rc = saveCursorPosition(p);
671 if( SQLITE_OK!=rc ){
672 return rc;
673 }
674 }else{
675 testcase( p->iPage>0 );
676 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000677 }
678 }
drh637f3d82014-08-22 22:26:07 +0000679 p = p->pNext;
680 }while( p );
drh980b1a72006-08-16 16:42:48 +0000681 return SQLITE_OK;
682}
683
684/*
drhbf700f32007-03-31 02:36:44 +0000685** Clear the current cursor position.
686*/
danielk1977be51a652008-10-08 17:58:48 +0000687void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000688 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000689 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000690 pCur->pKey = 0;
691 pCur->eState = CURSOR_INVALID;
692}
693
694/*
danielk19773509a652009-07-06 18:56:13 +0000695** In this version of BtreeMoveto, pKey is a packed index record
696** such as is generated by the OP_MakeRecord opcode. Unpack the
697** record and then call BtreeMovetoUnpacked() to do the work.
698*/
699static int btreeMoveto(
700 BtCursor *pCur, /* Cursor open on the btree to be searched */
701 const void *pKey, /* Packed key if the btree is an index */
702 i64 nKey, /* Integer key for tables. Size of pKey for indices */
703 int bias, /* Bias search to the high end */
704 int *pRes /* Write search results here */
705){
706 int rc; /* Status code */
707 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000708 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000709 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000710
711 if( pKey ){
712 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000713 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
714 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
715 );
danielk19773509a652009-07-06 18:56:13 +0000716 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000717 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000718 if( pIdxKey->nField==0 ){
719 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
720 return SQLITE_CORRUPT_BKPT;
721 }
danielk19773509a652009-07-06 18:56:13 +0000722 }else{
723 pIdxKey = 0;
724 }
725 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000726 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000727 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000728 }
729 return rc;
730}
731
732/*
drh980b1a72006-08-16 16:42:48 +0000733** Restore the cursor to the position it was in (or as close to as possible)
734** when saveCursorPosition() was called. Note that this call deletes the
735** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000736** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000737** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000738*/
danielk197730548662009-07-09 05:07:37 +0000739static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000740 int rc;
drh1fee73e2007-08-29 04:00:57 +0000741 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000742 assert( pCur->eState>=CURSOR_REQUIRESEEK );
743 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000744 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000745 }
drh980b1a72006-08-16 16:42:48 +0000746 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000747 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000748 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000749 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000750 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000751 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh9b47ee32013-08-20 03:13:51 +0000752 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
753 pCur->eState = CURSOR_SKIPNEXT;
754 }
drh980b1a72006-08-16 16:42:48 +0000755 }
756 return rc;
757}
758
drha3460582008-07-11 21:02:53 +0000759#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000760 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000761 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000762 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000763
drha3460582008-07-11 21:02:53 +0000764/*
drh6848dad2014-08-22 23:33:03 +0000765** Determine whether or not a cursor has moved from the position where
766** it was last placed, or has been invalidated for any other reason.
767** Cursors can move when the row they are pointing at is deleted out
768** from under them, for example. Cursor might also move if a btree
769** is rebalanced.
drha3460582008-07-11 21:02:53 +0000770**
drh6848dad2014-08-22 23:33:03 +0000771** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000772**
drh6848dad2014-08-22 23:33:03 +0000773** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
774** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000775*/
drh6848dad2014-08-22 23:33:03 +0000776int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
777 return pCur && pCur->eState!=CURSOR_VALID;
778}
779
780/*
781** This routine restores a cursor back to its original position after it
782** has been moved by some outside activity (such as a btree rebalance or
783** a row having been deleted out from under the cursor).
784**
785** On success, the *pDifferentRow parameter is false if the cursor is left
786** pointing at exactly the same row. *pDifferntRow is the row the cursor
787** was pointing to has been deleted, forcing the cursor to point to some
788** nearby row.
789**
790** This routine should only be called for a cursor that just returned
791** TRUE from sqlite3BtreeCursorHasMoved().
792*/
793int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000794 int rc;
795
drh6848dad2014-08-22 23:33:03 +0000796 assert( pCur!=0 );
797 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000798 rc = restoreCursorPosition(pCur);
799 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000800 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000801 return rc;
802 }
drh9b47ee32013-08-20 03:13:51 +0000803 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
drh6848dad2014-08-22 23:33:03 +0000804 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000805 }else{
drh6848dad2014-08-22 23:33:03 +0000806 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000807 }
808 return SQLITE_OK;
809}
810
danielk1977599fcba2004-11-08 07:13:13 +0000811#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000812/*
drha3152892007-05-05 11:48:52 +0000813** Given a page number of a regular database page, return the page
814** number for the pointer-map page that contains the entry for the
815** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000816**
817** Return 0 (not a valid page) for pgno==1 since there is
818** no pointer map associated with page 1. The integrity_check logic
819** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000820*/
danielk1977266664d2006-02-10 08:24:21 +0000821static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000822 int nPagesPerMapPage;
823 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000824 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000825 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000826 nPagesPerMapPage = (pBt->usableSize/5)+1;
827 iPtrMap = (pgno-2)/nPagesPerMapPage;
828 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000829 if( ret==PENDING_BYTE_PAGE(pBt) ){
830 ret++;
831 }
832 return ret;
833}
danielk1977a19df672004-11-03 11:37:07 +0000834
danielk1977afcdd022004-10-31 16:25:42 +0000835/*
danielk1977afcdd022004-10-31 16:25:42 +0000836** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000837**
838** This routine updates the pointer map entry for page number 'key'
839** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000840**
841** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
842** a no-op. If an error occurs, the appropriate error code is written
843** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000844*/
drh98add2e2009-07-20 17:11:49 +0000845static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000846 DbPage *pDbPage; /* The pointer map page */
847 u8 *pPtrmap; /* The pointer map data */
848 Pgno iPtrmap; /* The pointer map page number */
849 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000850 int rc; /* Return code from subfunctions */
851
852 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000853
drh1fee73e2007-08-29 04:00:57 +0000854 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000855 /* The master-journal page number must never be used as a pointer map page */
856 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
857
danielk1977ac11ee62005-01-15 12:45:51 +0000858 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000859 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000860 *pRC = SQLITE_CORRUPT_BKPT;
861 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000862 }
danielk1977266664d2006-02-10 08:24:21 +0000863 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000864 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000865 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000866 *pRC = rc;
867 return;
danielk1977afcdd022004-10-31 16:25:42 +0000868 }
danielk19778c666b12008-07-18 09:34:57 +0000869 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000870 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000871 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000872 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000873 }
drhfc243732011-05-17 15:21:56 +0000874 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000875 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000876
drh615ae552005-01-16 23:21:00 +0000877 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
878 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000879 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000880 if( rc==SQLITE_OK ){
881 pPtrmap[offset] = eType;
882 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000883 }
danielk1977afcdd022004-10-31 16:25:42 +0000884 }
885
drh4925a552009-07-07 11:39:58 +0000886ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000887 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000888}
889
890/*
891** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000892**
893** This routine retrieves the pointer map entry for page 'key', writing
894** the type and parent page number to *pEType and *pPgno respectively.
895** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000896*/
danielk1977aef0bf62005-12-30 16:28:01 +0000897static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000898 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000899 int iPtrmap; /* Pointer map page index */
900 u8 *pPtrmap; /* Pointer map page data */
901 int offset; /* Offset of entry in pointer map */
902 int rc;
903
drh1fee73e2007-08-29 04:00:57 +0000904 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000905
danielk1977266664d2006-02-10 08:24:21 +0000906 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000907 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000908 if( rc!=0 ){
909 return rc;
910 }
danielk19773b8a05f2007-03-19 17:44:26 +0000911 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000912
danielk19778c666b12008-07-18 09:34:57 +0000913 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000914 if( offset<0 ){
915 sqlite3PagerUnref(pDbPage);
916 return SQLITE_CORRUPT_BKPT;
917 }
918 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000919 assert( pEType!=0 );
920 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000921 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000922
danielk19773b8a05f2007-03-19 17:44:26 +0000923 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000924 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000925 return SQLITE_OK;
926}
927
danielk197785d90ca2008-07-19 14:25:15 +0000928#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000929 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000930 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000931 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000932#endif
danielk1977afcdd022004-10-31 16:25:42 +0000933
drh0d316a42002-08-11 20:10:47 +0000934/*
drh271efa52004-05-30 19:19:05 +0000935** Given a btree page and a cell index (0 means the first cell on
936** the page, 1 means the second cell, and so forth) return a pointer
937** to the cell content.
938**
939** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000940*/
drh1688c862008-07-18 02:44:17 +0000941#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000942 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000943#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
944
drh43605152004-05-29 21:46:49 +0000945
946/*
drh93a960a2008-07-10 00:32:42 +0000947** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000948** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000949*/
950static u8 *findOverflowCell(MemPage *pPage, int iCell){
951 int i;
drh1fee73e2007-08-29 04:00:57 +0000952 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000953 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000954 int k;
drh2cbd78b2012-02-02 19:37:18 +0000955 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000956 if( k<=iCell ){
957 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000958 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000959 }
960 iCell--;
961 }
962 }
danielk19771cc5ed82007-05-16 17:28:43 +0000963 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000964}
965
966/*
967** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000968** are two versions of this function. btreeParseCell() takes a
969** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000970** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000971**
972** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000973** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000974*/
danielk197730548662009-07-09 05:07:37 +0000975static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000976 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000977 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000978 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000979){
drhf49661a2008-12-10 16:45:50 +0000980 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000981 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000982
drh1fee73e2007-08-29 04:00:57 +0000983 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000984
drh43605152004-05-29 21:46:49 +0000985 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000986 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000987 n = pPage->childPtrSize;
988 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000989 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000990 if( pPage->hasData ){
drh13c77bf2013-08-21 15:52:22 +0000991 assert( n==0 );
992 n = getVarint32(pCell, nPayload);
drh79df1f42008-07-18 00:57:33 +0000993 }else{
994 nPayload = 0;
995 }
drh1bd10f82008-12-10 21:19:56 +0000996 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000997 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000998 }else{
drh79df1f42008-07-18 00:57:33 +0000999 pInfo->nData = 0;
1000 n += getVarint32(&pCell[n], nPayload);
1001 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +00001002 }
drh72365832007-03-06 15:53:44 +00001003 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +00001004 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +00001005 testcase( nPayload==pPage->maxLocal );
1006 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +00001007 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +00001008 /* This is the (easy) common case where the entire payload fits
1009 ** on the local page. No overflow is required.
1010 */
drh41692e92011-01-25 04:34:51 +00001011 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001012 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001013 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001014 }else{
drh271efa52004-05-30 19:19:05 +00001015 /* If the payload will not fit completely on the local page, we have
1016 ** to decide how much to store locally and how much to spill onto
1017 ** overflow pages. The strategy is to minimize the amount of unused
1018 ** space on overflow pages while keeping the amount of local storage
1019 ** in between minLocal and maxLocal.
1020 **
1021 ** Warning: changing the way overflow payload is distributed in any
1022 ** way will result in an incompatible file format.
1023 */
1024 int minLocal; /* Minimum amount of payload held locally */
1025 int maxLocal; /* Maximum amount of payload held locally */
1026 int surplus; /* Overflow payload available for local storage */
1027
1028 minLocal = pPage->minLocal;
1029 maxLocal = pPage->maxLocal;
1030 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001031 testcase( surplus==maxLocal );
1032 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +00001033 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +00001034 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +00001035 }else{
drhf49661a2008-12-10 16:45:50 +00001036 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +00001037 }
drhf49661a2008-12-10 16:45:50 +00001038 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +00001039 pInfo->nSize = pInfo->iOverflow + 4;
1040 }
drh3aac2dd2004-04-26 14:10:20 +00001041}
danielk19771cc5ed82007-05-16 17:28:43 +00001042#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +00001043 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
1044static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001045 MemPage *pPage, /* Page containing the cell */
1046 int iCell, /* The cell index. First cell is 0 */
1047 CellInfo *pInfo /* Fill in this structure */
1048){
danielk19771cc5ed82007-05-16 17:28:43 +00001049 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +00001050}
drh3aac2dd2004-04-26 14:10:20 +00001051
1052/*
drh43605152004-05-29 21:46:49 +00001053** Compute the total number of bytes that a Cell needs in the cell
1054** data area of the btree-page. The return number includes the cell
1055** data header and the local payload, but not any overflow page or
1056** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001057*/
danielk1977ae5558b2009-04-29 11:31:47 +00001058static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1059 u8 *pIter = &pCell[pPage->childPtrSize];
drhdc41d602014-09-22 19:51:35 +00001060 u8 *pEnd;
danielk1977ae5558b2009-04-29 11:31:47 +00001061 u32 nSize;
1062
1063#ifdef SQLITE_DEBUG
1064 /* The value returned by this function should always be the same as
1065 ** the (CellInfo.nSize) value found by doing a full parse of the
1066 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1067 ** this function verifies that this invariant is not violated. */
1068 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001069 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001070#endif
1071
drhdc41d602014-09-22 19:51:35 +00001072 if( pPage->intKey==0 || pPage->hasData ){
1073 nSize = *pIter;
1074 if( nSize>=0x80 ){
1075 pEnd = &pIter[9];
1076 nSize &= 0x7f;
1077 do{
1078 nSize = (nSize<<7) | (*++pIter & 0x7f);
1079 }while( *(pIter)>=0x80 && pIter<&pCell[6] );
danielk1977ae5558b2009-04-29 11:31:47 +00001080 }
drhdc41d602014-09-22 19:51:35 +00001081 pIter++;
1082 }else{
1083 nSize = 0;
1084 }
1085 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001086 /* pIter now points at the 64-bit integer key value, a variable length
1087 ** integer. The following block moves pIter to point at the first byte
1088 ** past the end of the key value. */
1089 pEnd = &pIter[9];
1090 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001091 }
1092
drh0a45c272009-07-08 01:49:11 +00001093 testcase( nSize==pPage->maxLocal );
1094 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001095 if( nSize>pPage->maxLocal ){
1096 int minLocal = pPage->minLocal;
1097 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001098 testcase( nSize==pPage->maxLocal );
1099 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001100 if( nSize>pPage->maxLocal ){
1101 nSize = minLocal;
1102 }
1103 nSize += 4;
1104 }
shane75ac1de2009-06-09 18:58:52 +00001105 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001106
1107 /* The minimum size of any cell is 4 bytes. */
1108 if( nSize<4 ){
1109 nSize = 4;
1110 }
1111
drhdc41d602014-09-22 19:51:35 +00001112 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001113 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001114}
drh0ee3dbe2009-10-16 15:05:18 +00001115
1116#ifdef SQLITE_DEBUG
1117/* This variation on cellSizePtr() is used inside of assert() statements
1118** only. */
drha9121e42008-02-19 14:59:35 +00001119static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001120 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001121}
danielk1977bc6ada42004-06-30 08:20:16 +00001122#endif
drh3b7511c2001-05-26 13:15:44 +00001123
danielk197779a40da2005-01-16 08:00:01 +00001124#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001125/*
danielk197726836652005-01-17 01:33:13 +00001126** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001127** to an overflow page, insert an entry into the pointer-map
1128** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001129*/
drh98add2e2009-07-20 17:11:49 +00001130static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001131 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001132 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001133 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001134 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001135 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001136 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001137 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001138 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001139 }
danielk1977ac11ee62005-01-15 12:45:51 +00001140}
danielk197779a40da2005-01-16 08:00:01 +00001141#endif
1142
danielk1977ac11ee62005-01-15 12:45:51 +00001143
drhda200cc2004-05-09 11:51:38 +00001144/*
drh72f82862001-05-24 21:06:34 +00001145** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001146** end of the page and all free space is collected into one
1147** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001148** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001149*/
shane0af3f892008-11-12 04:55:34 +00001150static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001151 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001152 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001153 int hdr; /* Offset to the page header */
1154 int size; /* Size of a cell */
1155 int usableSize; /* Number of usable bytes on a page */
1156 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001157 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001158 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001159 unsigned char *data; /* The page data */
1160 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001161 int iCellFirst; /* First allowable cell index */
1162 int iCellLast; /* Last possible cell index */
1163
drh2af926b2001-05-15 00:39:25 +00001164
danielk19773b8a05f2007-03-19 17:44:26 +00001165 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001166 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001167 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001168 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001169 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001170 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001171 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001172 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001173 cellOffset = pPage->cellOffset;
1174 nCell = pPage->nCell;
1175 assert( nCell==get2byte(&data[hdr+3]) );
1176 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001177 cbrk = get2byte(&data[hdr+5]);
1178 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1179 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001180 iCellFirst = cellOffset + 2*nCell;
1181 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001182 for(i=0; i<nCell; i++){
1183 u8 *pAddr; /* The i-th cell pointer */
1184 pAddr = &data[cellOffset + i*2];
1185 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001186 testcase( pc==iCellFirst );
1187 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001188#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001189 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001190 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1191 */
1192 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001193 return SQLITE_CORRUPT_BKPT;
1194 }
drh17146622009-07-07 17:38:38 +00001195#endif
1196 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001197 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001198 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001199#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1200 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001201 return SQLITE_CORRUPT_BKPT;
1202 }
drh17146622009-07-07 17:38:38 +00001203#else
1204 if( cbrk<iCellFirst || pc+size>usableSize ){
1205 return SQLITE_CORRUPT_BKPT;
1206 }
1207#endif
drh7157e1d2009-07-09 13:25:32 +00001208 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001209 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001210 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001211 memcpy(&data[cbrk], &temp[pc], size);
1212 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001213 }
drh17146622009-07-07 17:38:38 +00001214 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001215 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001216 data[hdr+1] = 0;
1217 data[hdr+2] = 0;
1218 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001219 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001220 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001221 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001222 return SQLITE_CORRUPT_BKPT;
1223 }
shane0af3f892008-11-12 04:55:34 +00001224 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001225}
1226
drha059ad02001-04-17 20:09:11 +00001227/*
danielk19776011a752009-04-01 16:25:32 +00001228** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001229** as the first argument. Write into *pIdx the index into pPage->aData[]
1230** of the first byte of allocated space. Return either SQLITE_OK or
1231** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001232**
drh0a45c272009-07-08 01:49:11 +00001233** The caller guarantees that there is sufficient space to make the
1234** allocation. This routine might need to defragment in order to bring
1235** all the space together, however. This routine will avoid using
1236** the first two bytes past the cell pointer area since presumably this
1237** allocation is being made in order to insert a new cell, so we will
1238** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001239*/
drh0a45c272009-07-08 01:49:11 +00001240static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001241 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1242 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001243 int top; /* First byte of cell content area */
1244 int gap; /* First byte of gap between cell pointers and cell content */
1245 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001246 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001247
danielk19773b8a05f2007-03-19 17:44:26 +00001248 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001249 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001250 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001251 assert( nByte>=0 ); /* Minimum cell size is 4 */
1252 assert( pPage->nFree>=nByte );
1253 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001254 usableSize = pPage->pBt->usableSize;
1255 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001256
drh0a45c272009-07-08 01:49:11 +00001257 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1258 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001259 assert( gap<=65536 );
1260 top = get2byte(&data[hdr+5]);
1261 if( gap>top ){
1262 if( top==0 ){
1263 top = 65536;
1264 }else{
1265 return SQLITE_CORRUPT_BKPT;
1266 }
1267 }
drh4c04f3c2014-08-20 11:56:14 +00001268
1269 /* If there is enough space between gap and top for one more cell pointer
1270 ** array entry offset, and if the freelist is not empty, then search the
1271 ** freelist looking for a free slot big enough to satisfy the request.
1272 */
drh0a45c272009-07-08 01:49:11 +00001273 testcase( gap+2==top );
1274 testcase( gap+1==top );
1275 testcase( gap==top );
drh4c04f3c2014-08-20 11:56:14 +00001276 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
danielk19776011a752009-04-01 16:25:32 +00001277 int pc, addr;
1278 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001279 int size; /* Size of the free slot */
1280 if( pc>usableSize-4 || pc<addr+4 ){
1281 return SQLITE_CORRUPT_BKPT;
1282 }
1283 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001284 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001285 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001286 testcase( x==4 );
1287 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001288 if( x<4 ){
drh4c04f3c2014-08-20 11:56:14 +00001289 if( data[hdr+7]>=60 ) goto defragment_page;
danielk1977fad91942009-04-29 17:49:59 +00001290 /* Remove the slot from the free-list. Update the number of
1291 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001292 memcpy(&data[addr], &data[pc], 2);
drh75b31dc2014-08-20 00:54:46 +00001293 data[hdr+7] += (u8)x;
drh00ce3942009-12-06 03:35:51 +00001294 }else if( size+pc > usableSize ){
1295 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001296 }else{
danielk1977fad91942009-04-29 17:49:59 +00001297 /* The slot remains on the free-list. Reduce its size to account
1298 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001299 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001300 }
drh0a45c272009-07-08 01:49:11 +00001301 *pIdx = pc + x;
1302 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001303 }
drh9e572e62004-04-23 23:43:10 +00001304 }
1305 }
drh43605152004-05-29 21:46:49 +00001306
drh4c04f3c2014-08-20 11:56:14 +00001307 /* The request could not be fulfilled using a freelist slot. Check
1308 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001309 */
1310 testcase( gap+2+nByte==top );
1311 if( gap+2+nByte>top ){
drh4c04f3c2014-08-20 11:56:14 +00001312defragment_page:
drh90555262014-08-20 13:17:43 +00001313 testcase( pPage->nCell==0 );
drh0a45c272009-07-08 01:49:11 +00001314 rc = defragmentPage(pPage);
1315 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001316 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001317 assert( gap+nByte<=top );
1318 }
1319
1320
drh43605152004-05-29 21:46:49 +00001321 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001322 ** and the cell content area. The btreeInitPage() call has already
1323 ** validated the freelist. Given that the freelist is valid, there
1324 ** is no way that the allocation can extend off the end of the page.
1325 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001326 */
drh0a45c272009-07-08 01:49:11 +00001327 top -= nByte;
drh43605152004-05-29 21:46:49 +00001328 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001329 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001330 *pIdx = top;
1331 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001332}
1333
1334/*
drh9e572e62004-04-23 23:43:10 +00001335** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001336** The first byte of the new free block is pPage->aData[iStart]
1337** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001338**
drh5f5c7532014-08-20 17:56:27 +00001339** Adjacent freeblocks are coalesced.
1340**
1341** Note that even though the freeblock list was checked by btreeInitPage(),
1342** that routine will not detect overlap between cells or freeblocks. Nor
1343** does it detect cells or freeblocks that encrouch into the reserved bytes
1344** at the end of the page. So do additional corruption checks inside this
1345** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001346*/
drh5f5c7532014-08-20 17:56:27 +00001347static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1348 u16 iPtr; /* Address of pointer to next freeblock */
1349 u16 iFreeBlk; /* Address of the next freeblock */
1350 u8 hdr; /* Page header size. 0 or 100 */
1351 u8 nFrag = 0; /* Reduction in fragmentation */
1352 u16 iOrigSize = iSize; /* Original value of iSize */
1353 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1354 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001355 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001356
drh9e572e62004-04-23 23:43:10 +00001357 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001358 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh7fb91642014-08-20 14:37:09 +00001359 assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
drh5f5c7532014-08-20 17:56:27 +00001360 assert( iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001361 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001362 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001363 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001364
drh5f5c7532014-08-20 17:56:27 +00001365 /* Overwrite deleted information with zeros when the secure_delete
1366 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001367 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001368 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001369 }
drhfcce93f2006-02-22 03:08:32 +00001370
drh5f5c7532014-08-20 17:56:27 +00001371 /* The list of freeblocks must be in ascending order. Find the
1372 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001373 */
drh43605152004-05-29 21:46:49 +00001374 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001375 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001376 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1377 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1378 }else{
1379 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1380 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1381 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001382 }
drh7bc4c452014-08-20 18:43:44 +00001383 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1384 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1385
1386 /* At this point:
1387 ** iFreeBlk: First freeblock after iStart, or zero if none
1388 ** iPtr: The address of a pointer iFreeBlk
1389 **
1390 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1391 */
1392 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1393 nFrag = iFreeBlk - iEnd;
1394 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1395 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1396 iSize = iEnd - iStart;
1397 iFreeBlk = get2byte(&data[iFreeBlk]);
1398 }
1399
1400 /* If iPtr is another freeblock (that is, if iPtr is not the freelist pointer
1401 ** in the page header) then check to see if iStart should be coalesced
1402 ** onto the end of iPtr.
1403 */
1404 if( iPtr>hdr+1 ){
1405 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1406 if( iPtrEnd+3>=iStart ){
1407 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1408 nFrag += iStart - iPtrEnd;
1409 iSize = iEnd - iPtr;
1410 iStart = iPtr;
1411 }
1412 }
1413 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1414 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001415 }
drh7bc4c452014-08-20 18:43:44 +00001416 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001417 /* The new freeblock is at the beginning of the cell content area,
1418 ** so just extend the cell content area rather than create another
1419 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001420 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001421 put2byte(&data[hdr+1], iFreeBlk);
1422 put2byte(&data[hdr+5], iEnd);
1423 }else{
1424 /* Insert the new freeblock into the freelist */
1425 put2byte(&data[iPtr], iStart);
1426 put2byte(&data[iStart], iFreeBlk);
1427 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001428 }
drh5f5c7532014-08-20 17:56:27 +00001429 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001430 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001431}
1432
1433/*
drh271efa52004-05-30 19:19:05 +00001434** Decode the flags byte (the first byte of the header) for a page
1435** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001436**
1437** Only the following combinations are supported. Anything different
1438** indicates a corrupt database files:
1439**
1440** PTF_ZERODATA
1441** PTF_ZERODATA | PTF_LEAF
1442** PTF_LEAFDATA | PTF_INTKEY
1443** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001444*/
drh44845222008-07-17 18:39:57 +00001445static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001446 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001447
1448 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001449 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001450 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001451 flagByte &= ~PTF_LEAF;
1452 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001453 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001454 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1455 pPage->intKey = 1;
1456 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001457 pPage->maxLocal = pBt->maxLeaf;
1458 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001459 }else if( flagByte==PTF_ZERODATA ){
1460 pPage->intKey = 0;
1461 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001462 pPage->maxLocal = pBt->maxLocal;
1463 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001464 }else{
1465 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001466 }
drhc9166342012-01-05 23:32:06 +00001467 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001468 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001469}
1470
1471/*
drh7e3b0a02001-04-28 16:52:40 +00001472** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001473**
1474** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001475** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001476** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1477** guarantee that the page is well-formed. It only shows that
1478** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001479*/
danielk197730548662009-07-09 05:07:37 +00001480static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001481
danielk197771d5d2c2008-09-29 11:49:47 +00001482 assert( pPage->pBt!=0 );
1483 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001484 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001485 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1486 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001487
1488 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001489 u16 pc; /* Address of a freeblock within pPage->aData[] */
1490 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001491 u8 *data; /* Equal to pPage->aData */
1492 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001493 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001494 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001495 int nFree; /* Number of unused bytes on the page */
1496 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001497 int iCellFirst; /* First allowable cell or freeblock offset */
1498 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001499
1500 pBt = pPage->pBt;
1501
danielk1977eaa06f62008-09-18 17:34:44 +00001502 hdr = pPage->hdrOffset;
1503 data = pPage->aData;
1504 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001505 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1506 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001507 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001508 usableSize = pBt->usableSize;
1509 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001510 pPage->aDataEnd = &data[usableSize];
1511 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001512 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001513 pPage->nCell = get2byte(&data[hdr+3]);
1514 if( pPage->nCell>MX_CELL(pBt) ){
1515 /* To many cells for a single page. The page must be corrupt */
1516 return SQLITE_CORRUPT_BKPT;
1517 }
drhb908d762009-07-08 16:54:40 +00001518 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001519
shane5eff7cf2009-08-10 03:57:58 +00001520 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001521 ** of page when parsing a cell.
1522 **
1523 ** The following block of code checks early to see if a cell extends
1524 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1525 ** returned if it does.
1526 */
drh0a45c272009-07-08 01:49:11 +00001527 iCellFirst = cellOffset + 2*pPage->nCell;
1528 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001529#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001530 {
drh69e931e2009-06-03 21:04:35 +00001531 int i; /* Index into the cell pointer array */
1532 int sz; /* Size of a cell */
1533
drh69e931e2009-06-03 21:04:35 +00001534 if( !pPage->leaf ) iCellLast--;
1535 for(i=0; i<pPage->nCell; i++){
1536 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001537 testcase( pc==iCellFirst );
1538 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001539 if( pc<iCellFirst || pc>iCellLast ){
1540 return SQLITE_CORRUPT_BKPT;
1541 }
1542 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001543 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001544 if( pc+sz>usableSize ){
1545 return SQLITE_CORRUPT_BKPT;
1546 }
1547 }
drh0a45c272009-07-08 01:49:11 +00001548 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001549 }
1550#endif
1551
danielk1977eaa06f62008-09-18 17:34:44 +00001552 /* Compute the total free space on the page */
1553 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001554 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001555 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001556 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001557 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001558 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001559 return SQLITE_CORRUPT_BKPT;
1560 }
1561 next = get2byte(&data[pc]);
1562 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001563 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1564 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001565 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001566 return SQLITE_CORRUPT_BKPT;
1567 }
shane85095702009-06-15 16:27:08 +00001568 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001569 pc = next;
1570 }
danielk197793c829c2009-06-03 17:26:17 +00001571
1572 /* At this point, nFree contains the sum of the offset to the start
1573 ** of the cell-content area plus the number of free bytes within
1574 ** the cell-content area. If this is greater than the usable-size
1575 ** of the page, then the page must be corrupted. This check also
1576 ** serves to verify that the offset to the start of the cell-content
1577 ** area, according to the page header, lies within the page.
1578 */
1579 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001580 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001581 }
shane5eff7cf2009-08-10 03:57:58 +00001582 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001583 pPage->isInit = 1;
1584 }
drh9e572e62004-04-23 23:43:10 +00001585 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001586}
1587
1588/*
drh8b2f49b2001-06-08 00:21:52 +00001589** Set up a raw page so that it looks like a database page holding
1590** no entries.
drhbd03cae2001-06-02 02:40:57 +00001591*/
drh9e572e62004-04-23 23:43:10 +00001592static void zeroPage(MemPage *pPage, int flags){
1593 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001594 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001595 u8 hdr = pPage->hdrOffset;
1596 u16 first;
drh9e572e62004-04-23 23:43:10 +00001597
danielk19773b8a05f2007-03-19 17:44:26 +00001598 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001599 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1600 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001601 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001602 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001603 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001604 memset(&data[hdr], 0, pBt->usableSize - hdr);
1605 }
drh1bd10f82008-12-10 21:19:56 +00001606 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001607 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001608 memset(&data[hdr+1], 0, 4);
1609 data[hdr+7] = 0;
1610 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001611 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001612 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001613 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001614 pPage->aDataEnd = &data[pBt->usableSize];
1615 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001616 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001617 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1618 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001619 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001620 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001621}
1622
drh897a8202008-09-18 01:08:15 +00001623
1624/*
1625** Convert a DbPage obtained from the pager into a MemPage used by
1626** the btree layer.
1627*/
1628static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1629 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1630 pPage->aData = sqlite3PagerGetData(pDbPage);
1631 pPage->pDbPage = pDbPage;
1632 pPage->pBt = pBt;
1633 pPage->pgno = pgno;
1634 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1635 return pPage;
1636}
1637
drhbd03cae2001-06-02 02:40:57 +00001638/*
drh3aac2dd2004-04-26 14:10:20 +00001639** Get a page from the pager. Initialize the MemPage.pBt and
1640** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001641**
1642** If the noContent flag is set, it means that we do not care about
1643** the content of the page at this time. So do not go to the disk
1644** to fetch the content. Just fill in the content with zeros for now.
1645** If in the future we call sqlite3PagerWrite() on this page, that
1646** means we have started to be concerned about content and the disk
1647** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001648*/
danielk197730548662009-07-09 05:07:37 +00001649static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001650 BtShared *pBt, /* The btree */
1651 Pgno pgno, /* Number of the page to fetch */
1652 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001653 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001654){
drh3aac2dd2004-04-26 14:10:20 +00001655 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001656 DbPage *pDbPage;
1657
drhb00fc3b2013-08-21 23:42:32 +00001658 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001659 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001660 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001661 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001662 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001663 return SQLITE_OK;
1664}
1665
1666/*
danielk1977bea2a942009-01-20 17:06:27 +00001667** Retrieve a page from the pager cache. If the requested page is not
1668** already in the pager cache return NULL. Initialize the MemPage.pBt and
1669** MemPage.aData elements if needed.
1670*/
1671static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1672 DbPage *pDbPage;
1673 assert( sqlite3_mutex_held(pBt->mutex) );
1674 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1675 if( pDbPage ){
1676 return btreePageFromDbPage(pDbPage, pgno, pBt);
1677 }
1678 return 0;
1679}
1680
1681/*
danielk197789d40042008-11-17 14:20:56 +00001682** Return the size of the database file in pages. If there is any kind of
1683** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001684*/
drhb1299152010-03-30 22:58:33 +00001685static Pgno btreePagecount(BtShared *pBt){
1686 return pBt->nPage;
1687}
1688u32 sqlite3BtreeLastPage(Btree *p){
1689 assert( sqlite3BtreeHoldsMutex(p) );
1690 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001691 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001692}
1693
1694/*
danielk197789bc4bc2009-07-21 19:25:24 +00001695** Get a page from the pager and initialize it. This routine is just a
1696** convenience wrapper around separate calls to btreeGetPage() and
1697** btreeInitPage().
1698**
1699** If an error occurs, then the value *ppPage is set to is undefined. It
1700** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001701*/
1702static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001703 BtShared *pBt, /* The database file */
1704 Pgno pgno, /* Number of the page to get */
1705 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001706 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001707){
1708 int rc;
drh1fee73e2007-08-29 04:00:57 +00001709 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001710 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001711
danba3cbf32010-06-30 04:29:03 +00001712 if( pgno>btreePagecount(pBt) ){
1713 rc = SQLITE_CORRUPT_BKPT;
1714 }else{
drhb00fc3b2013-08-21 23:42:32 +00001715 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001716 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001717 rc = btreeInitPage(*ppPage);
1718 if( rc!=SQLITE_OK ){
1719 releasePage(*ppPage);
1720 }
danielk197789bc4bc2009-07-21 19:25:24 +00001721 }
drhee696e22004-08-30 16:52:17 +00001722 }
danba3cbf32010-06-30 04:29:03 +00001723
1724 testcase( pgno==0 );
1725 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001726 return rc;
1727}
1728
1729/*
drh3aac2dd2004-04-26 14:10:20 +00001730** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001731** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001732*/
drh4b70f112004-05-02 21:12:19 +00001733static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001734 if( pPage ){
1735 assert( pPage->aData );
1736 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001737 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001738 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1739 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001740 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001741 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001742 }
1743}
1744
1745/*
drha6abd042004-06-09 17:37:22 +00001746** During a rollback, when the pager reloads information into the cache
1747** so that the cache is restored to its original state at the start of
1748** the transaction, for each page restored this routine is called.
1749**
1750** This routine needs to reset the extra data section at the end of the
1751** page to agree with the restored data.
1752*/
danielk1977eaa06f62008-09-18 17:34:44 +00001753static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001754 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001755 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001756 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001757 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001758 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001759 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001760 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001761 /* pPage might not be a btree page; it might be an overflow page
1762 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001763 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001764 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001765 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001766 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001767 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001768 }
drha6abd042004-06-09 17:37:22 +00001769 }
1770}
1771
1772/*
drhe5fe6902007-12-07 18:55:28 +00001773** Invoke the busy handler for a btree.
1774*/
danielk19771ceedd32008-11-19 10:22:33 +00001775static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001776 BtShared *pBt = (BtShared*)pArg;
1777 assert( pBt->db );
1778 assert( sqlite3_mutex_held(pBt->db->mutex) );
1779 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1780}
1781
1782/*
drhad3e0102004-09-03 23:32:18 +00001783** Open a database file.
1784**
drh382c0242001-10-06 16:33:02 +00001785** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001786** then an ephemeral database is created. The ephemeral database might
1787** be exclusively in memory, or it might use a disk-based memory cache.
1788** Either way, the ephemeral database will be automatically deleted
1789** when sqlite3BtreeClose() is called.
1790**
drhe53831d2007-08-17 01:14:38 +00001791** If zFilename is ":memory:" then an in-memory database is created
1792** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001793**
drh33f111d2012-01-17 15:29:14 +00001794** The "flags" parameter is a bitmask that might contain bits like
1795** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001796**
drhc47fd8e2009-04-30 13:30:32 +00001797** If the database is already opened in the same database connection
1798** and we are in shared cache mode, then the open will fail with an
1799** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1800** objects in the same database connection since doing so will lead
1801** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001802*/
drh23e11ca2004-05-04 17:27:28 +00001803int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001804 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001805 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001806 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001807 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001808 int flags, /* Options */
1809 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001810){
drh7555d8e2009-03-20 13:15:30 +00001811 BtShared *pBt = 0; /* Shared part of btree structure */
1812 Btree *p; /* Handle to return */
1813 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1814 int rc = SQLITE_OK; /* Result code from this function */
1815 u8 nReserve; /* Byte of unused space on each page */
1816 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001817
drh75c014c2010-08-30 15:02:28 +00001818 /* True if opening an ephemeral, temporary database */
1819 const int isTempDb = zFilename==0 || zFilename[0]==0;
1820
danielk1977aef0bf62005-12-30 16:28:01 +00001821 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001822 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001823 */
drhb0a7c9c2010-12-06 21:09:59 +00001824#ifdef SQLITE_OMIT_MEMORYDB
1825 const int isMemdb = 0;
1826#else
1827 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001828 || (isTempDb && sqlite3TempInMemory(db))
1829 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001830#endif
1831
drhe5fe6902007-12-07 18:55:28 +00001832 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001833 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001834 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001835 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1836
1837 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1838 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1839
1840 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1841 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001842
drh75c014c2010-08-30 15:02:28 +00001843 if( isMemdb ){
1844 flags |= BTREE_MEMORY;
1845 }
1846 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1847 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1848 }
drh17435752007-08-16 04:30:38 +00001849 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001850 if( !p ){
1851 return SQLITE_NOMEM;
1852 }
1853 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001854 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001855#ifndef SQLITE_OMIT_SHARED_CACHE
1856 p->lock.pBtree = p;
1857 p->lock.iTable = 1;
1858#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001859
drh198bf392006-01-06 21:52:49 +00001860#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001861 /*
1862 ** If this Btree is a candidate for shared cache, try to find an
1863 ** existing BtShared object that we can share with
1864 */
drh4ab9d252012-05-26 20:08:49 +00001865 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001866 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001867 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001868 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001869 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001870 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001871 if( !zFullPathname ){
1872 sqlite3_free(p);
1873 return SQLITE_NOMEM;
1874 }
drhafc8b7f2012-05-26 18:06:38 +00001875 if( isMemdb ){
1876 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1877 }else{
1878 rc = sqlite3OsFullPathname(pVfs, zFilename,
1879 nFullPathname, zFullPathname);
1880 if( rc ){
1881 sqlite3_free(zFullPathname);
1882 sqlite3_free(p);
1883 return rc;
1884 }
drh070ad6b2011-11-17 11:43:19 +00001885 }
drh30ddce62011-10-15 00:16:30 +00001886#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001887 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1888 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001889 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001890 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001891#endif
drh78f82d12008-09-02 00:52:52 +00001892 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001893 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001894 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001895 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001896 int iDb;
1897 for(iDb=db->nDb-1; iDb>=0; iDb--){
1898 Btree *pExisting = db->aDb[iDb].pBt;
1899 if( pExisting && pExisting->pBt==pBt ){
1900 sqlite3_mutex_leave(mutexShared);
1901 sqlite3_mutex_leave(mutexOpen);
1902 sqlite3_free(zFullPathname);
1903 sqlite3_free(p);
1904 return SQLITE_CONSTRAINT;
1905 }
1906 }
drhff0587c2007-08-29 17:43:19 +00001907 p->pBt = pBt;
1908 pBt->nRef++;
1909 break;
1910 }
1911 }
1912 sqlite3_mutex_leave(mutexShared);
1913 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001914 }
drhff0587c2007-08-29 17:43:19 +00001915#ifdef SQLITE_DEBUG
1916 else{
1917 /* In debug mode, we mark all persistent databases as sharable
1918 ** even when they are not. This exercises the locking code and
1919 ** gives more opportunity for asserts(sqlite3_mutex_held())
1920 ** statements to find locking problems.
1921 */
1922 p->sharable = 1;
1923 }
1924#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001925 }
1926#endif
drha059ad02001-04-17 20:09:11 +00001927 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001928 /*
1929 ** The following asserts make sure that structures used by the btree are
1930 ** the right size. This is to guard against size changes that result
1931 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001932 */
drhe53831d2007-08-17 01:14:38 +00001933 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1934 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1935 assert( sizeof(u32)==4 );
1936 assert( sizeof(u16)==2 );
1937 assert( sizeof(Pgno)==4 );
1938
1939 pBt = sqlite3MallocZero( sizeof(*pBt) );
1940 if( pBt==0 ){
1941 rc = SQLITE_NOMEM;
1942 goto btree_open_out;
1943 }
danielk197771d5d2c2008-09-29 11:49:47 +00001944 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001945 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001946 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00001947 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00001948 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1949 }
1950 if( rc!=SQLITE_OK ){
1951 goto btree_open_out;
1952 }
shanehbd2aaf92010-09-01 02:38:21 +00001953 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001954 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001955 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001956 p->pBt = pBt;
1957
drhe53831d2007-08-17 01:14:38 +00001958 pBt->pCursor = 0;
1959 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001960 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001961#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001962 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001963#endif
drhb2eced52010-08-12 02:41:12 +00001964 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001965 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1966 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001967 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001968#ifndef SQLITE_OMIT_AUTOVACUUM
1969 /* If the magic name ":memory:" will create an in-memory database, then
1970 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1971 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1972 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1973 ** regular file-name. In this case the auto-vacuum applies as per normal.
1974 */
1975 if( zFilename && !isMemdb ){
1976 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1977 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1978 }
1979#endif
1980 nReserve = 0;
1981 }else{
1982 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001983 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001984#ifndef SQLITE_OMIT_AUTOVACUUM
1985 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1986 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1987#endif
1988 }
drhfa9601a2009-06-18 17:22:39 +00001989 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001990 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001991 pBt->usableSize = pBt->pageSize - nReserve;
1992 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001993
1994#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1995 /* Add the new BtShared object to the linked list sharable BtShareds.
1996 */
1997 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001998 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001999 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002000 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002001 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002002 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002003 if( pBt->mutex==0 ){
2004 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002005 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002006 goto btree_open_out;
2007 }
drhff0587c2007-08-29 17:43:19 +00002008 }
drhe53831d2007-08-17 01:14:38 +00002009 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002010 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2011 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002012 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002013 }
drheee46cf2004-11-06 00:02:48 +00002014#endif
drh90f5ecb2004-07-22 01:19:35 +00002015 }
danielk1977aef0bf62005-12-30 16:28:01 +00002016
drhcfed7bc2006-03-13 14:28:05 +00002017#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002018 /* If the new Btree uses a sharable pBtShared, then link the new
2019 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002020 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002021 */
drhe53831d2007-08-17 01:14:38 +00002022 if( p->sharable ){
2023 int i;
2024 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002025 for(i=0; i<db->nDb; i++){
2026 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002027 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2028 if( p->pBt<pSib->pBt ){
2029 p->pNext = pSib;
2030 p->pPrev = 0;
2031 pSib->pPrev = p;
2032 }else{
drhabddb0c2007-08-20 13:14:28 +00002033 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002034 pSib = pSib->pNext;
2035 }
2036 p->pNext = pSib->pNext;
2037 p->pPrev = pSib;
2038 if( p->pNext ){
2039 p->pNext->pPrev = p;
2040 }
2041 pSib->pNext = p;
2042 }
2043 break;
2044 }
2045 }
danielk1977aef0bf62005-12-30 16:28:01 +00002046 }
danielk1977aef0bf62005-12-30 16:28:01 +00002047#endif
2048 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002049
2050btree_open_out:
2051 if( rc!=SQLITE_OK ){
2052 if( pBt && pBt->pPager ){
2053 sqlite3PagerClose(pBt->pPager);
2054 }
drh17435752007-08-16 04:30:38 +00002055 sqlite3_free(pBt);
2056 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002057 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002058 }else{
2059 /* If the B-Tree was successfully opened, set the pager-cache size to the
2060 ** default value. Except, when opening on an existing shared pager-cache,
2061 ** do not change the pager-cache size.
2062 */
2063 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2064 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2065 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002066 }
drh7555d8e2009-03-20 13:15:30 +00002067 if( mutexOpen ){
2068 assert( sqlite3_mutex_held(mutexOpen) );
2069 sqlite3_mutex_leave(mutexOpen);
2070 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002071 return rc;
drha059ad02001-04-17 20:09:11 +00002072}
2073
2074/*
drhe53831d2007-08-17 01:14:38 +00002075** Decrement the BtShared.nRef counter. When it reaches zero,
2076** remove the BtShared structure from the sharing list. Return
2077** true if the BtShared.nRef counter reaches zero and return
2078** false if it is still positive.
2079*/
2080static int removeFromSharingList(BtShared *pBt){
2081#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002082 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002083 BtShared *pList;
2084 int removed = 0;
2085
drhd677b3d2007-08-20 22:48:41 +00002086 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002087 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002088 sqlite3_mutex_enter(pMaster);
2089 pBt->nRef--;
2090 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002091 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2092 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002093 }else{
drh78f82d12008-09-02 00:52:52 +00002094 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002095 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002096 pList=pList->pNext;
2097 }
drh34004ce2008-07-11 16:15:17 +00002098 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002099 pList->pNext = pBt->pNext;
2100 }
2101 }
drh3285db22007-09-03 22:00:39 +00002102 if( SQLITE_THREADSAFE ){
2103 sqlite3_mutex_free(pBt->mutex);
2104 }
drhe53831d2007-08-17 01:14:38 +00002105 removed = 1;
2106 }
2107 sqlite3_mutex_leave(pMaster);
2108 return removed;
2109#else
2110 return 1;
2111#endif
2112}
2113
2114/*
drhf7141992008-06-19 00:16:08 +00002115** Make sure pBt->pTmpSpace points to an allocation of
2116** MX_CELL_SIZE(pBt) bytes.
2117*/
2118static void allocateTempSpace(BtShared *pBt){
2119 if( !pBt->pTmpSpace ){
2120 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002121
2122 /* One of the uses of pBt->pTmpSpace is to format cells before
2123 ** inserting them into a leaf page (function fillInCell()). If
2124 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2125 ** by the various routines that manipulate binary cells. Which
2126 ** can mean that fillInCell() only initializes the first 2 or 3
2127 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2128 ** it into a database page. This is not actually a problem, but it
2129 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2130 ** data is passed to system call write(). So to avoid this error,
2131 ** zero the first 4 bytes of temp space here. */
2132 if( pBt->pTmpSpace ) memset(pBt->pTmpSpace, 0, 4);
drhf7141992008-06-19 00:16:08 +00002133 }
2134}
2135
2136/*
2137** Free the pBt->pTmpSpace allocation
2138*/
2139static void freeTempSpace(BtShared *pBt){
2140 sqlite3PageFree( pBt->pTmpSpace);
2141 pBt->pTmpSpace = 0;
2142}
2143
2144/*
drha059ad02001-04-17 20:09:11 +00002145** Close an open database and invalidate all cursors.
2146*/
danielk1977aef0bf62005-12-30 16:28:01 +00002147int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002148 BtShared *pBt = p->pBt;
2149 BtCursor *pCur;
2150
danielk1977aef0bf62005-12-30 16:28:01 +00002151 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002152 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002153 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002154 pCur = pBt->pCursor;
2155 while( pCur ){
2156 BtCursor *pTmp = pCur;
2157 pCur = pCur->pNext;
2158 if( pTmp->pBtree==p ){
2159 sqlite3BtreeCloseCursor(pTmp);
2160 }
drha059ad02001-04-17 20:09:11 +00002161 }
danielk1977aef0bf62005-12-30 16:28:01 +00002162
danielk19778d34dfd2006-01-24 16:37:57 +00002163 /* Rollback any active transaction and free the handle structure.
2164 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2165 ** this handle.
2166 */
drh0f198a72012-02-13 16:43:16 +00002167 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002168 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002169
danielk1977aef0bf62005-12-30 16:28:01 +00002170 /* If there are still other outstanding references to the shared-btree
2171 ** structure, return now. The remainder of this procedure cleans
2172 ** up the shared-btree.
2173 */
drhe53831d2007-08-17 01:14:38 +00002174 assert( p->wantToLock==0 && p->locked==0 );
2175 if( !p->sharable || removeFromSharingList(pBt) ){
2176 /* The pBt is no longer on the sharing list, so we can access
2177 ** it without having to hold the mutex.
2178 **
2179 ** Clean out and delete the BtShared object.
2180 */
2181 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002182 sqlite3PagerClose(pBt->pPager);
2183 if( pBt->xFreeSchema && pBt->pSchema ){
2184 pBt->xFreeSchema(pBt->pSchema);
2185 }
drhb9755982010-07-24 16:34:37 +00002186 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002187 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002188 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002189 }
2190
drhe53831d2007-08-17 01:14:38 +00002191#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002192 assert( p->wantToLock==0 );
2193 assert( p->locked==0 );
2194 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2195 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002196#endif
2197
drhe53831d2007-08-17 01:14:38 +00002198 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002199 return SQLITE_OK;
2200}
2201
2202/*
drhda47d772002-12-02 04:25:19 +00002203** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002204**
2205** The maximum number of cache pages is set to the absolute
2206** value of mxPage. If mxPage is negative, the pager will
2207** operate asynchronously - it will not stop to do fsync()s
2208** to insure data is written to the disk surface before
2209** continuing. Transactions still work if synchronous is off,
2210** and the database cannot be corrupted if this program
2211** crashes. But if the operating system crashes or there is
2212** an abrupt power failure when synchronous is off, the database
2213** could be left in an inconsistent and unrecoverable state.
2214** Synchronous is on by default so database corruption is not
2215** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002216*/
danielk1977aef0bf62005-12-30 16:28:01 +00002217int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2218 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002219 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002220 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002221 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002222 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002223 return SQLITE_OK;
2224}
2225
drh18c7e402014-03-14 11:46:10 +00002226#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002227/*
dan5d8a1372013-03-19 19:28:06 +00002228** Change the limit on the amount of the database file that may be
2229** memory mapped.
2230*/
drh9b4c59f2013-04-15 17:03:42 +00002231int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002232 BtShared *pBt = p->pBt;
2233 assert( sqlite3_mutex_held(p->db->mutex) );
2234 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002235 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002236 sqlite3BtreeLeave(p);
2237 return SQLITE_OK;
2238}
drh18c7e402014-03-14 11:46:10 +00002239#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002240
2241/*
drh973b6e32003-02-12 14:09:42 +00002242** Change the way data is synced to disk in order to increase or decrease
2243** how well the database resists damage due to OS crashes and power
2244** failures. Level 1 is the same as asynchronous (no syncs() occur and
2245** there is a high probability of damage) Level 2 is the default. There
2246** is a very low but non-zero probability of damage. Level 3 reduces the
2247** probability of damage to near zero but with a write performance reduction.
2248*/
danielk197793758c82005-01-21 08:13:14 +00002249#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002250int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002251 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002252 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002253){
danielk1977aef0bf62005-12-30 16:28:01 +00002254 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002255 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002256 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002257 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002258 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002259 return SQLITE_OK;
2260}
danielk197793758c82005-01-21 08:13:14 +00002261#endif
drh973b6e32003-02-12 14:09:42 +00002262
drh2c8997b2005-08-27 16:36:48 +00002263/*
2264** Return TRUE if the given btree is set to safety level 1. In other
2265** words, return TRUE if no sync() occurs on the disk files.
2266*/
danielk1977aef0bf62005-12-30 16:28:01 +00002267int sqlite3BtreeSyncDisabled(Btree *p){
2268 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002269 int rc;
drhe5fe6902007-12-07 18:55:28 +00002270 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002271 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002272 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002273 rc = sqlite3PagerNosync(pBt->pPager);
2274 sqlite3BtreeLeave(p);
2275 return rc;
drh2c8997b2005-08-27 16:36:48 +00002276}
2277
drh973b6e32003-02-12 14:09:42 +00002278/*
drh90f5ecb2004-07-22 01:19:35 +00002279** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002280** Or, if the page size has already been fixed, return SQLITE_READONLY
2281** without changing anything.
drh06f50212004-11-02 14:24:33 +00002282**
2283** The page size must be a power of 2 between 512 and 65536. If the page
2284** size supplied does not meet this constraint then the page size is not
2285** changed.
2286**
2287** Page sizes are constrained to be a power of two so that the region
2288** of the database file used for locking (beginning at PENDING_BYTE,
2289** the first byte past the 1GB boundary, 0x40000000) needs to occur
2290** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002291**
2292** If parameter nReserve is less than zero, then the number of reserved
2293** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002294**
drhc9166342012-01-05 23:32:06 +00002295** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002296** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002297*/
drhce4869f2009-04-02 20:16:58 +00002298int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002299 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002300 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002301 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002302 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002303 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002304 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002305 return SQLITE_READONLY;
2306 }
2307 if( nReserve<0 ){
2308 nReserve = pBt->pageSize - pBt->usableSize;
2309 }
drhf49661a2008-12-10 16:45:50 +00002310 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002311 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2312 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002313 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002314 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002315 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002316 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002317 }
drhfa9601a2009-06-18 17:22:39 +00002318 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002319 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002320 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002321 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002322 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002323}
2324
2325/*
2326** Return the currently defined page size
2327*/
danielk1977aef0bf62005-12-30 16:28:01 +00002328int sqlite3BtreeGetPageSize(Btree *p){
2329 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002330}
drh7f751222009-03-17 22:33:00 +00002331
drha1f38532012-10-01 12:44:26 +00002332#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002333/*
2334** This function is similar to sqlite3BtreeGetReserve(), except that it
2335** may only be called if it is guaranteed that the b-tree mutex is already
2336** held.
2337**
2338** This is useful in one special case in the backup API code where it is
2339** known that the shared b-tree mutex is held, but the mutex on the
2340** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2341** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002342** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002343*/
2344int sqlite3BtreeGetReserveNoMutex(Btree *p){
2345 assert( sqlite3_mutex_held(p->pBt->mutex) );
2346 return p->pBt->pageSize - p->pBt->usableSize;
2347}
drha1f38532012-10-01 12:44:26 +00002348#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002349
danbb2b4412011-04-06 17:54:31 +00002350#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002351/*
2352** Return the number of bytes of space at the end of every page that
2353** are intentually left unused. This is the "reserved" space that is
2354** sometimes used by extensions.
2355*/
danielk1977aef0bf62005-12-30 16:28:01 +00002356int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002357 int n;
2358 sqlite3BtreeEnter(p);
2359 n = p->pBt->pageSize - p->pBt->usableSize;
2360 sqlite3BtreeLeave(p);
2361 return n;
drh2011d5f2004-07-22 02:40:37 +00002362}
drhf8e632b2007-05-08 14:51:36 +00002363
2364/*
2365** Set the maximum page count for a database if mxPage is positive.
2366** No changes are made if mxPage is 0 or negative.
2367** Regardless of the value of mxPage, return the maximum page count.
2368*/
2369int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002370 int n;
2371 sqlite3BtreeEnter(p);
2372 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2373 sqlite3BtreeLeave(p);
2374 return n;
drhf8e632b2007-05-08 14:51:36 +00002375}
drh5b47efa2010-02-12 18:18:39 +00002376
2377/*
drhc9166342012-01-05 23:32:06 +00002378** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2379** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002380** setting after the change.
2381*/
2382int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2383 int b;
drhaf034ed2010-02-12 19:46:26 +00002384 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002385 sqlite3BtreeEnter(p);
2386 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002387 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2388 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002389 }
drhc9166342012-01-05 23:32:06 +00002390 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002391 sqlite3BtreeLeave(p);
2392 return b;
2393}
danielk1977576ec6b2005-01-21 11:55:25 +00002394#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002395
2396/*
danielk1977951af802004-11-05 15:45:09 +00002397** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2398** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2399** is disabled. The default value for the auto-vacuum property is
2400** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2401*/
danielk1977aef0bf62005-12-30 16:28:01 +00002402int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002403#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002404 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002405#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002406 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002407 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002408 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002409
2410 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002411 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002412 rc = SQLITE_READONLY;
2413 }else{
drh076d4662009-02-18 20:31:18 +00002414 pBt->autoVacuum = av ?1:0;
2415 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002416 }
drhd677b3d2007-08-20 22:48:41 +00002417 sqlite3BtreeLeave(p);
2418 return rc;
danielk1977951af802004-11-05 15:45:09 +00002419#endif
2420}
2421
2422/*
2423** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2424** enabled 1 is returned. Otherwise 0.
2425*/
danielk1977aef0bf62005-12-30 16:28:01 +00002426int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002427#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002428 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002429#else
drhd677b3d2007-08-20 22:48:41 +00002430 int rc;
2431 sqlite3BtreeEnter(p);
2432 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002433 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2434 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2435 BTREE_AUTOVACUUM_INCR
2436 );
drhd677b3d2007-08-20 22:48:41 +00002437 sqlite3BtreeLeave(p);
2438 return rc;
danielk1977951af802004-11-05 15:45:09 +00002439#endif
2440}
2441
2442
2443/*
drha34b6762004-05-07 13:30:42 +00002444** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002445** also acquire a readlock on that file.
2446**
2447** SQLITE_OK is returned on success. If the file is not a
2448** well-formed database file, then SQLITE_CORRUPT is returned.
2449** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002450** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002451*/
danielk1977aef0bf62005-12-30 16:28:01 +00002452static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002453 int rc; /* Result code from subfunctions */
2454 MemPage *pPage1; /* Page 1 of the database file */
2455 int nPage; /* Number of pages in the database */
2456 int nPageFile = 0; /* Number of pages in the database file */
2457 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002458
drh1fee73e2007-08-29 04:00:57 +00002459 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002460 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002461 rc = sqlite3PagerSharedLock(pBt->pPager);
2462 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002463 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002464 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002465
2466 /* Do some checking to help insure the file we opened really is
2467 ** a valid database file.
2468 */
drhc2a4bab2010-04-02 12:46:45 +00002469 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002470 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002471 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002472 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002473 }
2474 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002475 u32 pageSize;
2476 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002477 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002478 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002479 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002480 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002481 }
dan5cf53532010-05-01 16:40:20 +00002482
2483#ifdef SQLITE_OMIT_WAL
2484 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002485 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002486 }
2487 if( page1[19]>1 ){
2488 goto page1_init_failed;
2489 }
2490#else
dane04dc882010-04-20 18:53:15 +00002491 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002492 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002493 }
dane04dc882010-04-20 18:53:15 +00002494 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002495 goto page1_init_failed;
2496 }
drhe5ae5732008-06-15 02:51:47 +00002497
dana470aeb2010-04-21 11:43:38 +00002498 /* If the write version is set to 2, this database should be accessed
2499 ** in WAL mode. If the log is not already open, open it now. Then
2500 ** return SQLITE_OK and return without populating BtShared.pPage1.
2501 ** The caller detects this and calls this function again. This is
2502 ** required as the version of page 1 currently in the page1 buffer
2503 ** may not be the latest version - there may be a newer one in the log
2504 ** file.
2505 */
drhc9166342012-01-05 23:32:06 +00002506 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002507 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002508 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002509 if( rc!=SQLITE_OK ){
2510 goto page1_init_failed;
2511 }else if( isOpen==0 ){
2512 releasePage(pPage1);
2513 return SQLITE_OK;
2514 }
dan8b5444b2010-04-27 14:37:47 +00002515 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002516 }
dan5cf53532010-05-01 16:40:20 +00002517#endif
dane04dc882010-04-20 18:53:15 +00002518
drhe5ae5732008-06-15 02:51:47 +00002519 /* The maximum embedded fraction must be exactly 25%. And the minimum
2520 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2521 ** The original design allowed these amounts to vary, but as of
2522 ** version 3.6.0, we require them to be fixed.
2523 */
2524 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2525 goto page1_init_failed;
2526 }
drhb2eced52010-08-12 02:41:12 +00002527 pageSize = (page1[16]<<8) | (page1[17]<<16);
2528 if( ((pageSize-1)&pageSize)!=0
2529 || pageSize>SQLITE_MAX_PAGE_SIZE
2530 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002531 ){
drh07d183d2005-05-01 22:52:42 +00002532 goto page1_init_failed;
2533 }
2534 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002535 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002536 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002537 /* After reading the first page of the database assuming a page size
2538 ** of BtShared.pageSize, we have discovered that the page-size is
2539 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2540 ** zero and return SQLITE_OK. The caller will call this function
2541 ** again with the correct page-size.
2542 */
2543 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002544 pBt->usableSize = usableSize;
2545 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002546 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002547 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2548 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002549 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002550 }
danecac6702011-02-09 18:19:20 +00002551 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002552 rc = SQLITE_CORRUPT_BKPT;
2553 goto page1_init_failed;
2554 }
drhb33e1b92009-06-18 11:29:20 +00002555 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002556 goto page1_init_failed;
2557 }
drh43b18e12010-08-17 19:40:08 +00002558 pBt->pageSize = pageSize;
2559 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002560#ifndef SQLITE_OMIT_AUTOVACUUM
2561 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002562 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002563#endif
drh306dc212001-05-21 13:45:10 +00002564 }
drhb6f41482004-05-14 01:58:11 +00002565
2566 /* maxLocal is the maximum amount of payload to store locally for
2567 ** a cell. Make sure it is small enough so that at least minFanout
2568 ** cells can will fit on one page. We assume a 10-byte page header.
2569 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002570 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002571 ** 4-byte child pointer
2572 ** 9-byte nKey value
2573 ** 4-byte nData value
2574 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002575 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002576 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2577 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002578 */
shaneh1df2db72010-08-18 02:28:48 +00002579 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2580 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2581 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2582 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002583 if( pBt->maxLocal>127 ){
2584 pBt->max1bytePayload = 127;
2585 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002586 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002587 }
drh2e38c322004-09-03 18:38:44 +00002588 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002589 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002590 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002591 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002592
drh72f82862001-05-24 21:06:34 +00002593page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002594 releasePage(pPage1);
2595 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002596 return rc;
drh306dc212001-05-21 13:45:10 +00002597}
2598
drh85ec3b62013-05-14 23:12:06 +00002599#ifndef NDEBUG
2600/*
2601** Return the number of cursors open on pBt. This is for use
2602** in assert() expressions, so it is only compiled if NDEBUG is not
2603** defined.
2604**
2605** Only write cursors are counted if wrOnly is true. If wrOnly is
2606** false then all cursors are counted.
2607**
2608** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002609** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002610** have been tripped into the CURSOR_FAULT state are not counted.
2611*/
2612static int countValidCursors(BtShared *pBt, int wrOnly){
2613 BtCursor *pCur;
2614 int r = 0;
2615 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002616 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2617 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002618 }
2619 return r;
2620}
2621#endif
2622
drh306dc212001-05-21 13:45:10 +00002623/*
drhb8ca3072001-12-05 00:21:20 +00002624** If there are no outstanding cursors and we are not in the middle
2625** of a transaction but there is a read lock on the database, then
2626** this routine unrefs the first page of the database file which
2627** has the effect of releasing the read lock.
2628**
drhb8ca3072001-12-05 00:21:20 +00002629** If there is a transaction in progress, this routine is a no-op.
2630*/
danielk1977aef0bf62005-12-30 16:28:01 +00002631static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002632 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002633 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002634 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002635 assert( pBt->pPage1->aData );
2636 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2637 assert( pBt->pPage1->aData );
2638 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002639 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002640 }
2641}
2642
2643/*
drhe39f2f92009-07-23 01:43:59 +00002644** If pBt points to an empty file then convert that empty file
2645** into a new empty database by initializing the first page of
2646** the database.
drh8b2f49b2001-06-08 00:21:52 +00002647*/
danielk1977aef0bf62005-12-30 16:28:01 +00002648static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002649 MemPage *pP1;
2650 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002651 int rc;
drhd677b3d2007-08-20 22:48:41 +00002652
drh1fee73e2007-08-29 04:00:57 +00002653 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002654 if( pBt->nPage>0 ){
2655 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002656 }
drh3aac2dd2004-04-26 14:10:20 +00002657 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002658 assert( pP1!=0 );
2659 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002660 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002661 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002662 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2663 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002664 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2665 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002666 data[18] = 1;
2667 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002668 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2669 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002670 data[21] = 64;
2671 data[22] = 32;
2672 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002673 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002674 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002675 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002676#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002677 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002678 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002679 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002680 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002681#endif
drhdd3cd972010-03-27 17:12:36 +00002682 pBt->nPage = 1;
2683 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002684 return SQLITE_OK;
2685}
2686
2687/*
danb483eba2012-10-13 19:58:11 +00002688** Initialize the first page of the database file (creating a database
2689** consisting of a single page and no schema objects). Return SQLITE_OK
2690** if successful, or an SQLite error code otherwise.
2691*/
2692int sqlite3BtreeNewDb(Btree *p){
2693 int rc;
2694 sqlite3BtreeEnter(p);
2695 p->pBt->nPage = 0;
2696 rc = newDatabase(p->pBt);
2697 sqlite3BtreeLeave(p);
2698 return rc;
2699}
2700
2701/*
danielk1977ee5741e2004-05-31 10:01:34 +00002702** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002703** is started if the second argument is nonzero, otherwise a read-
2704** transaction. If the second argument is 2 or more and exclusive
2705** transaction is started, meaning that no other process is allowed
2706** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002707** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002708** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002709**
danielk1977ee5741e2004-05-31 10:01:34 +00002710** A write-transaction must be started before attempting any
2711** changes to the database. None of the following routines
2712** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002713**
drh23e11ca2004-05-04 17:27:28 +00002714** sqlite3BtreeCreateTable()
2715** sqlite3BtreeCreateIndex()
2716** sqlite3BtreeClearTable()
2717** sqlite3BtreeDropTable()
2718** sqlite3BtreeInsert()
2719** sqlite3BtreeDelete()
2720** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002721**
drhb8ef32c2005-03-14 02:01:49 +00002722** If an initial attempt to acquire the lock fails because of lock contention
2723** and the database was previously unlocked, then invoke the busy handler
2724** if there is one. But if there was previously a read-lock, do not
2725** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2726** returned when there is already a read-lock in order to avoid a deadlock.
2727**
2728** Suppose there are two processes A and B. A has a read lock and B has
2729** a reserved lock. B tries to promote to exclusive but is blocked because
2730** of A's read lock. A tries to promote to reserved but is blocked by B.
2731** One or the other of the two processes must give way or there can be
2732** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2733** when A already has a read lock, we encourage A to give up and let B
2734** proceed.
drha059ad02001-04-17 20:09:11 +00002735*/
danielk1977aef0bf62005-12-30 16:28:01 +00002736int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002737 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002738 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002739 int rc = SQLITE_OK;
2740
drhd677b3d2007-08-20 22:48:41 +00002741 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002742 btreeIntegrity(p);
2743
danielk1977ee5741e2004-05-31 10:01:34 +00002744 /* If the btree is already in a write-transaction, or it
2745 ** is already in a read-transaction and a read-transaction
2746 ** is requested, this is a no-op.
2747 */
danielk1977aef0bf62005-12-30 16:28:01 +00002748 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002749 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002750 }
dan56c517a2013-09-26 11:04:33 +00002751 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002752
2753 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002754 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002755 rc = SQLITE_READONLY;
2756 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002757 }
2758
danielk1977404ca072009-03-16 13:19:36 +00002759#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002760 /* If another database handle has already opened a write transaction
2761 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002762 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002763 */
drhc9166342012-01-05 23:32:06 +00002764 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2765 || (pBt->btsFlags & BTS_PENDING)!=0
2766 ){
danielk1977404ca072009-03-16 13:19:36 +00002767 pBlock = pBt->pWriter->db;
2768 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002769 BtLock *pIter;
2770 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2771 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002772 pBlock = pIter->pBtree->db;
2773 break;
danielk1977641b0f42007-12-21 04:47:25 +00002774 }
2775 }
2776 }
danielk1977404ca072009-03-16 13:19:36 +00002777 if( pBlock ){
2778 sqlite3ConnectionBlocked(p->db, pBlock);
2779 rc = SQLITE_LOCKED_SHAREDCACHE;
2780 goto trans_begun;
2781 }
danielk1977641b0f42007-12-21 04:47:25 +00002782#endif
2783
danielk1977602b4662009-07-02 07:47:33 +00002784 /* Any read-only or read-write transaction implies a read-lock on
2785 ** page 1. So if some other shared-cache client already has a write-lock
2786 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002787 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2788 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002789
drhc9166342012-01-05 23:32:06 +00002790 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2791 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002792 do {
danielk1977295dc102009-04-01 19:07:03 +00002793 /* Call lockBtree() until either pBt->pPage1 is populated or
2794 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2795 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2796 ** reading page 1 it discovers that the page-size of the database
2797 ** file is not pBt->pageSize. In this case lockBtree() will update
2798 ** pBt->pageSize to the page-size of the file on disk.
2799 */
2800 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002801
drhb8ef32c2005-03-14 02:01:49 +00002802 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002803 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002804 rc = SQLITE_READONLY;
2805 }else{
danielk1977d8293352009-04-30 09:10:37 +00002806 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002807 if( rc==SQLITE_OK ){
2808 rc = newDatabase(pBt);
2809 }
drhb8ef32c2005-03-14 02:01:49 +00002810 }
2811 }
2812
danielk1977bd434552009-03-18 10:33:00 +00002813 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002814 unlockBtreeIfUnused(pBt);
2815 }
danf9b76712010-06-01 14:12:45 +00002816 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002817 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002818
2819 if( rc==SQLITE_OK ){
2820 if( p->inTrans==TRANS_NONE ){
2821 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002822#ifndef SQLITE_OMIT_SHARED_CACHE
2823 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002824 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002825 p->lock.eLock = READ_LOCK;
2826 p->lock.pNext = pBt->pLock;
2827 pBt->pLock = &p->lock;
2828 }
2829#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002830 }
2831 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2832 if( p->inTrans>pBt->inTransaction ){
2833 pBt->inTransaction = p->inTrans;
2834 }
danielk1977404ca072009-03-16 13:19:36 +00002835 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002836 MemPage *pPage1 = pBt->pPage1;
2837#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002838 assert( !pBt->pWriter );
2839 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002840 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2841 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002842#endif
dan59257dc2010-08-04 11:34:31 +00002843
2844 /* If the db-size header field is incorrect (as it may be if an old
2845 ** client has been writing the database file), update it now. Doing
2846 ** this sooner rather than later means the database size can safely
2847 ** re-read the database size from page 1 if a savepoint or transaction
2848 ** rollback occurs within the transaction.
2849 */
2850 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2851 rc = sqlite3PagerWrite(pPage1->pDbPage);
2852 if( rc==SQLITE_OK ){
2853 put4byte(&pPage1->aData[28], pBt->nPage);
2854 }
2855 }
2856 }
danielk1977aef0bf62005-12-30 16:28:01 +00002857 }
2858
drhd677b3d2007-08-20 22:48:41 +00002859
2860trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002861 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002862 /* This call makes sure that the pager has the correct number of
2863 ** open savepoints. If the second parameter is greater than 0 and
2864 ** the sub-journal is not already open, then it will be opened here.
2865 */
danielk1977fd7f0452008-12-17 17:30:26 +00002866 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2867 }
danielk197712dd5492008-12-18 15:45:07 +00002868
danielk1977aef0bf62005-12-30 16:28:01 +00002869 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002870 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002871 return rc;
drha059ad02001-04-17 20:09:11 +00002872}
2873
danielk1977687566d2004-11-02 12:56:41 +00002874#ifndef SQLITE_OMIT_AUTOVACUUM
2875
2876/*
2877** Set the pointer-map entries for all children of page pPage. Also, if
2878** pPage contains cells that point to overflow pages, set the pointer
2879** map entries for the overflow pages as well.
2880*/
2881static int setChildPtrmaps(MemPage *pPage){
2882 int i; /* Counter variable */
2883 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002884 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002885 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002886 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002887 Pgno pgno = pPage->pgno;
2888
drh1fee73e2007-08-29 04:00:57 +00002889 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002890 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002891 if( rc!=SQLITE_OK ){
2892 goto set_child_ptrmaps_out;
2893 }
danielk1977687566d2004-11-02 12:56:41 +00002894 nCell = pPage->nCell;
2895
2896 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002897 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002898
drh98add2e2009-07-20 17:11:49 +00002899 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002900
danielk1977687566d2004-11-02 12:56:41 +00002901 if( !pPage->leaf ){
2902 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002903 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002904 }
2905 }
2906
2907 if( !pPage->leaf ){
2908 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002909 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002910 }
2911
2912set_child_ptrmaps_out:
2913 pPage->isInit = isInitOrig;
2914 return rc;
2915}
2916
2917/*
drhf3aed592009-07-08 18:12:49 +00002918** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2919** that it points to iTo. Parameter eType describes the type of pointer to
2920** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002921**
2922** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2923** page of pPage.
2924**
2925** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2926** page pointed to by one of the cells on pPage.
2927**
2928** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2929** overflow page in the list.
2930*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002931static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002932 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002933 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002934 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002935 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002936 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002937 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002938 }
danielk1977f78fc082004-11-02 14:40:32 +00002939 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002940 }else{
drhf49661a2008-12-10 16:45:50 +00002941 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002942 int i;
2943 int nCell;
2944
danielk197730548662009-07-09 05:07:37 +00002945 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002946 nCell = pPage->nCell;
2947
danielk1977687566d2004-11-02 12:56:41 +00002948 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002949 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002950 if( eType==PTRMAP_OVERFLOW1 ){
2951 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002952 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002953 if( info.iOverflow
2954 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2955 && iFrom==get4byte(&pCell[info.iOverflow])
2956 ){
2957 put4byte(&pCell[info.iOverflow], iTo);
2958 break;
danielk1977687566d2004-11-02 12:56:41 +00002959 }
2960 }else{
2961 if( get4byte(pCell)==iFrom ){
2962 put4byte(pCell, iTo);
2963 break;
2964 }
2965 }
2966 }
2967
2968 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002969 if( eType!=PTRMAP_BTREE ||
2970 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002971 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002972 }
danielk1977687566d2004-11-02 12:56:41 +00002973 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2974 }
2975
2976 pPage->isInit = isInitOrig;
2977 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002978 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002979}
2980
danielk1977003ba062004-11-04 02:57:33 +00002981
danielk19777701e812005-01-10 12:59:51 +00002982/*
2983** Move the open database page pDbPage to location iFreePage in the
2984** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002985**
2986** The isCommit flag indicates that there is no need to remember that
2987** the journal needs to be sync()ed before database page pDbPage->pgno
2988** can be written to. The caller has already promised not to write to that
2989** page.
danielk19777701e812005-01-10 12:59:51 +00002990*/
danielk1977003ba062004-11-04 02:57:33 +00002991static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002992 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002993 MemPage *pDbPage, /* Open page to move */
2994 u8 eType, /* Pointer map 'type' entry for pDbPage */
2995 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002996 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002997 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002998){
2999 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3000 Pgno iDbPage = pDbPage->pgno;
3001 Pager *pPager = pBt->pPager;
3002 int rc;
3003
danielk1977a0bf2652004-11-04 14:30:04 +00003004 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3005 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003006 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003007 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003008
drh85b623f2007-12-13 21:54:09 +00003009 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003010 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3011 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003012 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003013 if( rc!=SQLITE_OK ){
3014 return rc;
3015 }
3016 pDbPage->pgno = iFreePage;
3017
3018 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3019 ** that point to overflow pages. The pointer map entries for all these
3020 ** pages need to be changed.
3021 **
3022 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3023 ** pointer to a subsequent overflow page. If this is the case, then
3024 ** the pointer map needs to be updated for the subsequent overflow page.
3025 */
danielk1977a0bf2652004-11-04 14:30:04 +00003026 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003027 rc = setChildPtrmaps(pDbPage);
3028 if( rc!=SQLITE_OK ){
3029 return rc;
3030 }
3031 }else{
3032 Pgno nextOvfl = get4byte(pDbPage->aData);
3033 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003034 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003035 if( rc!=SQLITE_OK ){
3036 return rc;
3037 }
3038 }
3039 }
3040
3041 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3042 ** that it points at iFreePage. Also fix the pointer map entry for
3043 ** iPtrPage.
3044 */
danielk1977a0bf2652004-11-04 14:30:04 +00003045 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003046 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003047 if( rc!=SQLITE_OK ){
3048 return rc;
3049 }
danielk19773b8a05f2007-03-19 17:44:26 +00003050 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003051 if( rc!=SQLITE_OK ){
3052 releasePage(pPtrPage);
3053 return rc;
3054 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003055 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003056 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003057 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003058 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003059 }
danielk1977003ba062004-11-04 02:57:33 +00003060 }
danielk1977003ba062004-11-04 02:57:33 +00003061 return rc;
3062}
3063
danielk1977dddbcdc2007-04-26 14:42:34 +00003064/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003065static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003066
3067/*
dan51f0b6d2013-02-22 20:16:34 +00003068** Perform a single step of an incremental-vacuum. If successful, return
3069** SQLITE_OK. If there is no work to do (and therefore no point in
3070** calling this function again), return SQLITE_DONE. Or, if an error
3071** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003072**
peter.d.reid60ec9142014-09-06 16:39:46 +00003073** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003074** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003075**
dan51f0b6d2013-02-22 20:16:34 +00003076** Parameter nFin is the number of pages that this database would contain
3077** were this function called until it returns SQLITE_DONE.
3078**
3079** If the bCommit parameter is non-zero, this function assumes that the
3080** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003081** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003082** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003083*/
dan51f0b6d2013-02-22 20:16:34 +00003084static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003085 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003086 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003087
drh1fee73e2007-08-29 04:00:57 +00003088 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003089 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003090
3091 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003092 u8 eType;
3093 Pgno iPtrPage;
3094
3095 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003096 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003097 return SQLITE_DONE;
3098 }
3099
3100 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3101 if( rc!=SQLITE_OK ){
3102 return rc;
3103 }
3104 if( eType==PTRMAP_ROOTPAGE ){
3105 return SQLITE_CORRUPT_BKPT;
3106 }
3107
3108 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003109 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003110 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003111 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003112 ** truncated to zero after this function returns, so it doesn't
3113 ** matter if it still contains some garbage entries.
3114 */
3115 Pgno iFreePg;
3116 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003117 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003118 if( rc!=SQLITE_OK ){
3119 return rc;
3120 }
3121 assert( iFreePg==iLastPg );
3122 releasePage(pFreePg);
3123 }
3124 } else {
3125 Pgno iFreePg; /* Index of free page to move pLastPg to */
3126 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003127 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3128 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003129
drhb00fc3b2013-08-21 23:42:32 +00003130 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003131 if( rc!=SQLITE_OK ){
3132 return rc;
3133 }
3134
dan51f0b6d2013-02-22 20:16:34 +00003135 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003136 ** is swapped with the first free page pulled off the free list.
3137 **
dan51f0b6d2013-02-22 20:16:34 +00003138 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003139 ** looping until a free-page located within the first nFin pages
3140 ** of the file is found.
3141 */
dan51f0b6d2013-02-22 20:16:34 +00003142 if( bCommit==0 ){
3143 eMode = BTALLOC_LE;
3144 iNear = nFin;
3145 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003146 do {
3147 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003148 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003149 if( rc!=SQLITE_OK ){
3150 releasePage(pLastPg);
3151 return rc;
3152 }
3153 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003154 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003155 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003156
dane1df4e32013-03-05 11:27:04 +00003157 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003158 releasePage(pLastPg);
3159 if( rc!=SQLITE_OK ){
3160 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003161 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003162 }
3163 }
3164
dan51f0b6d2013-02-22 20:16:34 +00003165 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003166 do {
danielk19773460d192008-12-27 15:23:13 +00003167 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003168 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3169 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003170 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003171 }
3172 return SQLITE_OK;
3173}
3174
3175/*
dan51f0b6d2013-02-22 20:16:34 +00003176** The database opened by the first argument is an auto-vacuum database
3177** nOrig pages in size containing nFree free pages. Return the expected
3178** size of the database in pages following an auto-vacuum operation.
3179*/
3180static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3181 int nEntry; /* Number of entries on one ptrmap page */
3182 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3183 Pgno nFin; /* Return value */
3184
3185 nEntry = pBt->usableSize/5;
3186 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3187 nFin = nOrig - nFree - nPtrmap;
3188 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3189 nFin--;
3190 }
3191 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3192 nFin--;
3193 }
dan51f0b6d2013-02-22 20:16:34 +00003194
3195 return nFin;
3196}
3197
3198/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003199** A write-transaction must be opened before calling this function.
3200** It performs a single unit of work towards an incremental vacuum.
3201**
3202** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003203** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003204** SQLITE_OK is returned. Otherwise an SQLite error code.
3205*/
3206int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003207 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003208 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003209
3210 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003211 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3212 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003213 rc = SQLITE_DONE;
3214 }else{
dan51f0b6d2013-02-22 20:16:34 +00003215 Pgno nOrig = btreePagecount(pBt);
3216 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3217 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3218
dan91384712013-02-24 11:50:43 +00003219 if( nOrig<nFin ){
3220 rc = SQLITE_CORRUPT_BKPT;
3221 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003222 rc = saveAllCursors(pBt, 0, 0);
3223 if( rc==SQLITE_OK ){
3224 invalidateAllOverflowCache(pBt);
3225 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3226 }
dan51f0b6d2013-02-22 20:16:34 +00003227 if( rc==SQLITE_OK ){
3228 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3229 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3230 }
3231 }else{
3232 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003233 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003234 }
drhd677b3d2007-08-20 22:48:41 +00003235 sqlite3BtreeLeave(p);
3236 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003237}
3238
3239/*
danielk19773b8a05f2007-03-19 17:44:26 +00003240** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003241** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003242**
3243** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3244** the database file should be truncated to during the commit process.
3245** i.e. the database has been reorganized so that only the first *pnTrunc
3246** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003247*/
danielk19773460d192008-12-27 15:23:13 +00003248static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003249 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003250 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003251 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003252
drh1fee73e2007-08-29 04:00:57 +00003253 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003254 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003255 assert(pBt->autoVacuum);
3256 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003257 Pgno nFin; /* Number of pages in database after autovacuuming */
3258 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003259 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003260 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003261
drhb1299152010-03-30 22:58:33 +00003262 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003263 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3264 /* It is not possible to create a database for which the final page
3265 ** is either a pointer-map page or the pending-byte page. If one
3266 ** is encountered, this indicates corruption.
3267 */
danielk19773460d192008-12-27 15:23:13 +00003268 return SQLITE_CORRUPT_BKPT;
3269 }
danielk1977ef165ce2009-04-06 17:50:03 +00003270
danielk19773460d192008-12-27 15:23:13 +00003271 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003272 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003273 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003274 if( nFin<nOrig ){
3275 rc = saveAllCursors(pBt, 0, 0);
3276 }
danielk19773460d192008-12-27 15:23:13 +00003277 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003278 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003279 }
danielk19773460d192008-12-27 15:23:13 +00003280 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003281 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3282 put4byte(&pBt->pPage1->aData[32], 0);
3283 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003284 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003285 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003286 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003287 }
3288 if( rc!=SQLITE_OK ){
3289 sqlite3PagerRollback(pPager);
3290 }
danielk1977687566d2004-11-02 12:56:41 +00003291 }
3292
dan0aed84d2013-03-26 14:16:20 +00003293 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003294 return rc;
3295}
danielk1977dddbcdc2007-04-26 14:42:34 +00003296
danielk1977a50d9aa2009-06-08 14:49:45 +00003297#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3298# define setChildPtrmaps(x) SQLITE_OK
3299#endif
danielk1977687566d2004-11-02 12:56:41 +00003300
3301/*
drh80e35f42007-03-30 14:06:34 +00003302** This routine does the first phase of a two-phase commit. This routine
3303** causes a rollback journal to be created (if it does not already exist)
3304** and populated with enough information so that if a power loss occurs
3305** the database can be restored to its original state by playing back
3306** the journal. Then the contents of the journal are flushed out to
3307** the disk. After the journal is safely on oxide, the changes to the
3308** database are written into the database file and flushed to oxide.
3309** At the end of this call, the rollback journal still exists on the
3310** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003311** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003312** commit process.
3313**
3314** This call is a no-op if no write-transaction is currently active on pBt.
3315**
3316** Otherwise, sync the database file for the btree pBt. zMaster points to
3317** the name of a master journal file that should be written into the
3318** individual journal file, or is NULL, indicating no master journal file
3319** (single database transaction).
3320**
3321** When this is called, the master journal should already have been
3322** created, populated with this journal pointer and synced to disk.
3323**
3324** Once this is routine has returned, the only thing required to commit
3325** the write-transaction for this database file is to delete the journal.
3326*/
3327int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3328 int rc = SQLITE_OK;
3329 if( p->inTrans==TRANS_WRITE ){
3330 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003331 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003332#ifndef SQLITE_OMIT_AUTOVACUUM
3333 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003334 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003335 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003336 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003337 return rc;
3338 }
3339 }
danbc1a3c62013-02-23 16:40:46 +00003340 if( pBt->bDoTruncate ){
3341 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3342 }
drh80e35f42007-03-30 14:06:34 +00003343#endif
drh49b9d332009-01-02 18:10:42 +00003344 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003345 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003346 }
3347 return rc;
3348}
3349
3350/*
danielk197794b30732009-07-02 17:21:57 +00003351** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3352** at the conclusion of a transaction.
3353*/
3354static void btreeEndTransaction(Btree *p){
3355 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003356 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003357 assert( sqlite3BtreeHoldsMutex(p) );
3358
danbc1a3c62013-02-23 16:40:46 +00003359#ifndef SQLITE_OMIT_AUTOVACUUM
3360 pBt->bDoTruncate = 0;
3361#endif
danc0537fe2013-06-28 19:41:43 +00003362 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003363 /* If there are other active statements that belong to this database
3364 ** handle, downgrade to a read-only transaction. The other statements
3365 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003366 downgradeAllSharedCacheTableLocks(p);
3367 p->inTrans = TRANS_READ;
3368 }else{
3369 /* If the handle had any kind of transaction open, decrement the
3370 ** transaction count of the shared btree. If the transaction count
3371 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3372 ** call below will unlock the pager. */
3373 if( p->inTrans!=TRANS_NONE ){
3374 clearAllSharedCacheTableLocks(p);
3375 pBt->nTransaction--;
3376 if( 0==pBt->nTransaction ){
3377 pBt->inTransaction = TRANS_NONE;
3378 }
3379 }
3380
3381 /* Set the current transaction state to TRANS_NONE and unlock the
3382 ** pager if this call closed the only read or write transaction. */
3383 p->inTrans = TRANS_NONE;
3384 unlockBtreeIfUnused(pBt);
3385 }
3386
3387 btreeIntegrity(p);
3388}
3389
3390/*
drh2aa679f2001-06-25 02:11:07 +00003391** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003392**
drh6e345992007-03-30 11:12:08 +00003393** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003394** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3395** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3396** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003397** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003398** routine has to do is delete or truncate or zero the header in the
3399** the rollback journal (which causes the transaction to commit) and
3400** drop locks.
drh6e345992007-03-30 11:12:08 +00003401**
dan60939d02011-03-29 15:40:55 +00003402** Normally, if an error occurs while the pager layer is attempting to
3403** finalize the underlying journal file, this function returns an error and
3404** the upper layer will attempt a rollback. However, if the second argument
3405** is non-zero then this b-tree transaction is part of a multi-file
3406** transaction. In this case, the transaction has already been committed
3407** (by deleting a master journal file) and the caller will ignore this
3408** functions return code. So, even if an error occurs in the pager layer,
3409** reset the b-tree objects internal state to indicate that the write
3410** transaction has been closed. This is quite safe, as the pager will have
3411** transitioned to the error state.
3412**
drh5e00f6c2001-09-13 13:46:56 +00003413** This will release the write lock on the database file. If there
3414** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003415*/
dan60939d02011-03-29 15:40:55 +00003416int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003417
drh075ed302010-10-14 01:17:30 +00003418 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003419 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003420 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003421
3422 /* If the handle has a write-transaction open, commit the shared-btrees
3423 ** transaction and set the shared state to TRANS_READ.
3424 */
3425 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003426 int rc;
drh075ed302010-10-14 01:17:30 +00003427 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003428 assert( pBt->inTransaction==TRANS_WRITE );
3429 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003430 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003431 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003432 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003433 return rc;
3434 }
danielk1977aef0bf62005-12-30 16:28:01 +00003435 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003436 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003437 }
danielk1977aef0bf62005-12-30 16:28:01 +00003438
danielk197794b30732009-07-02 17:21:57 +00003439 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003440 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003441 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003442}
3443
drh80e35f42007-03-30 14:06:34 +00003444/*
3445** Do both phases of a commit.
3446*/
3447int sqlite3BtreeCommit(Btree *p){
3448 int rc;
drhd677b3d2007-08-20 22:48:41 +00003449 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003450 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3451 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003452 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003453 }
drhd677b3d2007-08-20 22:48:41 +00003454 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003455 return rc;
3456}
3457
drhc39e0002004-05-07 23:50:57 +00003458/*
drhfb982642007-08-30 01:19:59 +00003459** This routine sets the state to CURSOR_FAULT and the error
3460** code to errCode for every cursor on BtShared that pBtree
3461** references.
3462**
3463** Every cursor is tripped, including cursors that belong
3464** to other database connections that happen to be sharing
3465** the cache with pBtree.
3466**
3467** This routine gets called when a rollback occurs.
3468** All cursors using the same cache must be tripped
3469** to prevent them from trying to use the btree after
3470** the rollback. The rollback may have deleted tables
3471** or moved root pages, so it is not sufficient to
3472** save the state of the cursor. The cursor must be
3473** invalidated.
3474*/
3475void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3476 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003477 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003478 sqlite3BtreeEnter(pBtree);
3479 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003480 int i;
danielk1977be51a652008-10-08 17:58:48 +00003481 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003482 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003483 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003484 for(i=0; i<=p->iPage; i++){
3485 releasePage(p->apPage[i]);
3486 p->apPage[i] = 0;
3487 }
drhfb982642007-08-30 01:19:59 +00003488 }
3489 sqlite3BtreeLeave(pBtree);
3490}
3491
3492/*
drhecdc7532001-09-23 02:35:53 +00003493** Rollback the transaction in progress. All cursors will be
3494** invalided by this operation. Any attempt to use a cursor
3495** that was open at the beginning of this operation will result
3496** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003497**
3498** This will release the write lock on the database file. If there
3499** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003500*/
drh0f198a72012-02-13 16:43:16 +00003501int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003502 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003503 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003504 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003505
drhd677b3d2007-08-20 22:48:41 +00003506 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003507 if( tripCode==SQLITE_OK ){
3508 rc = tripCode = saveAllCursors(pBt, 0, 0);
3509 }else{
3510 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003511 }
drh0f198a72012-02-13 16:43:16 +00003512 if( tripCode ){
3513 sqlite3BtreeTripAllCursors(p, tripCode);
3514 }
danielk1977aef0bf62005-12-30 16:28:01 +00003515 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003516
3517 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003518 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003519
danielk19778d34dfd2006-01-24 16:37:57 +00003520 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003521 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003522 if( rc2!=SQLITE_OK ){
3523 rc = rc2;
3524 }
3525
drh24cd67e2004-05-10 16:18:47 +00003526 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003527 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003528 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003529 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003530 int nPage = get4byte(28+(u8*)pPage1->aData);
3531 testcase( nPage==0 );
3532 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3533 testcase( pBt->nPage!=nPage );
3534 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003535 releasePage(pPage1);
3536 }
drh85ec3b62013-05-14 23:12:06 +00003537 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003538 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003539 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003540 }
danielk1977aef0bf62005-12-30 16:28:01 +00003541
danielk197794b30732009-07-02 17:21:57 +00003542 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003543 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003544 return rc;
3545}
3546
3547/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003548** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003549** back independently of the main transaction. You must start a transaction
3550** before starting a subtransaction. The subtransaction is ended automatically
3551** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003552**
3553** Statement subtransactions are used around individual SQL statements
3554** that are contained within a BEGIN...COMMIT block. If a constraint
3555** error occurs within the statement, the effect of that one statement
3556** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003557**
3558** A statement sub-transaction is implemented as an anonymous savepoint. The
3559** value passed as the second parameter is the total number of savepoints,
3560** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3561** are no active savepoints and no other statement-transactions open,
3562** iStatement is 1. This anonymous savepoint can be released or rolled back
3563** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003564*/
danielk1977bd434552009-03-18 10:33:00 +00003565int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003566 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003567 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003568 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003569 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003570 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003571 assert( iStatement>0 );
3572 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003573 assert( pBt->inTransaction==TRANS_WRITE );
3574 /* At the pager level, a statement transaction is a savepoint with
3575 ** an index greater than all savepoints created explicitly using
3576 ** SQL statements. It is illegal to open, release or rollback any
3577 ** such savepoints while the statement transaction savepoint is active.
3578 */
3579 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003580 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003581 return rc;
3582}
3583
3584/*
danielk1977fd7f0452008-12-17 17:30:26 +00003585** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3586** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003587** savepoint identified by parameter iSavepoint, depending on the value
3588** of op.
3589**
3590** Normally, iSavepoint is greater than or equal to zero. However, if op is
3591** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3592** contents of the entire transaction are rolled back. This is different
3593** from a normal transaction rollback, as no locks are released and the
3594** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003595*/
3596int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3597 int rc = SQLITE_OK;
3598 if( p && p->inTrans==TRANS_WRITE ){
3599 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003600 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3601 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3602 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003603 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003604 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003605 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3606 pBt->nPage = 0;
3607 }
drh9f0bbf92009-01-02 21:08:09 +00003608 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003609 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003610
3611 /* The database size was written into the offset 28 of the header
3612 ** when the transaction started, so we know that the value at offset
3613 ** 28 is nonzero. */
3614 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003615 }
danielk1977fd7f0452008-12-17 17:30:26 +00003616 sqlite3BtreeLeave(p);
3617 }
3618 return rc;
3619}
3620
3621/*
drh8b2f49b2001-06-08 00:21:52 +00003622** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003623** iTable. If a read-only cursor is requested, it is assumed that
3624** the caller already has at least a read-only transaction open
3625** on the database already. If a write-cursor is requested, then
3626** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003627**
3628** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003629** If wrFlag==1, then the cursor can be used for reading or for
3630** writing if other conditions for writing are also met. These
3631** are the conditions that must be met in order for writing to
3632** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003633**
drhf74b8d92002-09-01 23:20:45 +00003634** 1: The cursor must have been opened with wrFlag==1
3635**
drhfe5d71d2007-03-19 11:54:10 +00003636** 2: Other database connections that share the same pager cache
3637** but which are not in the READ_UNCOMMITTED state may not have
3638** cursors open with wrFlag==0 on the same table. Otherwise
3639** the changes made by this write cursor would be visible to
3640** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003641**
3642** 3: The database must be writable (not on read-only media)
3643**
3644** 4: There must be an active transaction.
3645**
drh6446c4d2001-12-15 14:22:18 +00003646** No checking is done to make sure that page iTable really is the
3647** root page of a b-tree. If it is not, then the cursor acquired
3648** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003649**
drhf25a5072009-11-18 23:01:25 +00003650** It is assumed that the sqlite3BtreeCursorZero() has been called
3651** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003652*/
drhd677b3d2007-08-20 22:48:41 +00003653static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003654 Btree *p, /* The btree */
3655 int iTable, /* Root page of table to open */
3656 int wrFlag, /* 1 to write. 0 read-only */
3657 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3658 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003659){
danielk19773e8add92009-07-04 17:16:00 +00003660 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003661
drh1fee73e2007-08-29 04:00:57 +00003662 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003663 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003664
danielk1977602b4662009-07-02 07:47:33 +00003665 /* The following assert statements verify that if this is a sharable
3666 ** b-tree database, the connection is holding the required table locks,
3667 ** and that no other connection has any open cursor that conflicts with
3668 ** this lock. */
3669 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003670 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3671
danielk19773e8add92009-07-04 17:16:00 +00003672 /* Assert that the caller has opened the required transaction. */
3673 assert( p->inTrans>TRANS_NONE );
3674 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3675 assert( pBt->pPage1 && pBt->pPage1->aData );
3676
drhc9166342012-01-05 23:32:06 +00003677 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003678 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003679 }
drhb1299152010-03-30 22:58:33 +00003680 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003681 assert( wrFlag==0 );
3682 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003683 }
danielk1977aef0bf62005-12-30 16:28:01 +00003684
danielk1977aef0bf62005-12-30 16:28:01 +00003685 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003686 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003687 pCur->pgnoRoot = (Pgno)iTable;
3688 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003689 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003690 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003691 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00003692 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
3693 pCur->curFlags = wrFlag;
drha059ad02001-04-17 20:09:11 +00003694 pCur->pNext = pBt->pCursor;
3695 if( pCur->pNext ){
3696 pCur->pNext->pPrev = pCur;
3697 }
3698 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003699 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00003700 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003701}
drhd677b3d2007-08-20 22:48:41 +00003702int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003703 Btree *p, /* The btree */
3704 int iTable, /* Root page of table to open */
3705 int wrFlag, /* 1 to write. 0 read-only */
3706 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3707 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003708){
3709 int rc;
3710 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003711 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003712 sqlite3BtreeLeave(p);
3713 return rc;
3714}
drh7f751222009-03-17 22:33:00 +00003715
3716/*
3717** Return the size of a BtCursor object in bytes.
3718**
3719** This interfaces is needed so that users of cursors can preallocate
3720** sufficient storage to hold a cursor. The BtCursor object is opaque
3721** to users so they cannot do the sizeof() themselves - they must call
3722** this routine.
3723*/
3724int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003725 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003726}
3727
drh7f751222009-03-17 22:33:00 +00003728/*
drhf25a5072009-11-18 23:01:25 +00003729** Initialize memory that will be converted into a BtCursor object.
3730**
3731** The simple approach here would be to memset() the entire object
3732** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3733** do not need to be zeroed and they are large, so we can save a lot
3734** of run-time by skipping the initialization of those elements.
3735*/
3736void sqlite3BtreeCursorZero(BtCursor *p){
3737 memset(p, 0, offsetof(BtCursor, iPage));
3738}
3739
3740/*
drh5e00f6c2001-09-13 13:46:56 +00003741** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003742** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003743*/
drh3aac2dd2004-04-26 14:10:20 +00003744int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003745 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003746 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003747 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003748 BtShared *pBt = pCur->pBt;
3749 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003750 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003751 if( pCur->pPrev ){
3752 pCur->pPrev->pNext = pCur->pNext;
3753 }else{
3754 pBt->pCursor = pCur->pNext;
3755 }
3756 if( pCur->pNext ){
3757 pCur->pNext->pPrev = pCur->pPrev;
3758 }
danielk197771d5d2c2008-09-29 11:49:47 +00003759 for(i=0; i<=pCur->iPage; i++){
3760 releasePage(pCur->apPage[i]);
3761 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003762 unlockBtreeIfUnused(pBt);
dan5a500af2014-03-11 20:33:04 +00003763 sqlite3DbFree(pBtree->db, pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00003764 /* sqlite3_free(pCur); */
3765 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003766 }
drh8c42ca92001-06-22 19:15:00 +00003767 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003768}
3769
drh5e2f8b92001-05-28 00:41:15 +00003770/*
drh86057612007-06-26 01:04:48 +00003771** Make sure the BtCursor* given in the argument has a valid
3772** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003773** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003774**
3775** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003776** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003777**
3778** 2007-06-25: There is a bug in some versions of MSVC that cause the
3779** compiler to crash when getCellInfo() is implemented as a macro.
3780** But there is a measureable speed advantage to using the macro on gcc
3781** (when less compiler optimizations like -Os or -O0 are used and the
peter.d.reid60ec9142014-09-06 16:39:46 +00003782** compiler is not doing aggressive inlining.) So we use a real function
drh86057612007-06-26 01:04:48 +00003783** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003784*/
drh9188b382004-05-14 21:12:22 +00003785#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003786 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003787 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003788 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003789 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003790 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00003791 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003792 }
danielk19771cc5ed82007-05-16 17:28:43 +00003793#else
3794 #define assertCellInfo(x)
3795#endif
drh86057612007-06-26 01:04:48 +00003796#ifdef _MSC_VER
3797 /* Use a real function in MSVC to work around bugs in that compiler. */
3798 static void getCellInfo(BtCursor *pCur){
3799 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003800 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003801 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drh036dbec2014-03-11 23:40:44 +00003802 pCur->curFlags |= BTCF_ValidNKey;
drh86057612007-06-26 01:04:48 +00003803 }else{
3804 assertCellInfo(pCur);
3805 }
3806 }
3807#else /* if not _MSC_VER */
3808 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003809#define getCellInfo(pCur) \
3810 if( pCur->info.nSize==0 ){ \
3811 int iPage = pCur->iPage; \
drh036dbec2014-03-11 23:40:44 +00003812 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3813 pCur->curFlags |= BTCF_ValidNKey; \
danielk197771d5d2c2008-09-29 11:49:47 +00003814 }else{ \
3815 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003816 }
3817#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003818
drhea8ffdf2009-07-22 00:35:23 +00003819#ifndef NDEBUG /* The next routine used only within assert() statements */
3820/*
3821** Return true if the given BtCursor is valid. A valid cursor is one
3822** that is currently pointing to a row in a (non-empty) table.
3823** This is a verification routine is used only within assert() statements.
3824*/
3825int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3826 return pCur && pCur->eState==CURSOR_VALID;
3827}
3828#endif /* NDEBUG */
3829
drh9188b382004-05-14 21:12:22 +00003830/*
drh3aac2dd2004-04-26 14:10:20 +00003831** Set *pSize to the size of the buffer needed to hold the value of
3832** the key for the current entry. If the cursor is not pointing
3833** to a valid entry, *pSize is set to 0.
3834**
drh4b70f112004-05-02 21:12:19 +00003835** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003836** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003837**
3838** The caller must position the cursor prior to invoking this routine.
3839**
3840** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003841*/
drh4a1c3802004-05-12 15:15:47 +00003842int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003843 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003844 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3845 if( pCur->eState!=CURSOR_VALID ){
3846 *pSize = 0;
3847 }else{
3848 getCellInfo(pCur);
3849 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003850 }
drhea8ffdf2009-07-22 00:35:23 +00003851 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003852}
drh2af926b2001-05-15 00:39:25 +00003853
drh72f82862001-05-24 21:06:34 +00003854/*
drh0e1c19e2004-05-11 00:58:56 +00003855** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003856** cursor currently points to.
3857**
3858** The caller must guarantee that the cursor is pointing to a non-NULL
3859** valid entry. In other words, the calling procedure must guarantee
3860** that the cursor has Cursor.eState==CURSOR_VALID.
3861**
3862** Failure is not possible. This function always returns SQLITE_OK.
3863** It might just as well be a procedure (returning void) but we continue
3864** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003865*/
3866int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003867 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003868 assert( pCur->eState==CURSOR_VALID );
3869 getCellInfo(pCur);
3870 *pSize = pCur->info.nData;
3871 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003872}
3873
3874/*
danielk1977d04417962007-05-02 13:16:30 +00003875** Given the page number of an overflow page in the database (parameter
3876** ovfl), this function finds the page number of the next page in the
3877** linked list of overflow pages. If possible, it uses the auto-vacuum
3878** pointer-map data instead of reading the content of page ovfl to do so.
3879**
3880** If an error occurs an SQLite error code is returned. Otherwise:
3881**
danielk1977bea2a942009-01-20 17:06:27 +00003882** The page number of the next overflow page in the linked list is
3883** written to *pPgnoNext. If page ovfl is the last page in its linked
3884** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003885**
danielk1977bea2a942009-01-20 17:06:27 +00003886** If ppPage is not NULL, and a reference to the MemPage object corresponding
3887** to page number pOvfl was obtained, then *ppPage is set to point to that
3888** reference. It is the responsibility of the caller to call releasePage()
3889** on *ppPage to free the reference. In no reference was obtained (because
3890** the pointer-map was used to obtain the value for *pPgnoNext), then
3891** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003892*/
3893static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003894 BtShared *pBt, /* The database file */
3895 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003896 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003897 Pgno *pPgnoNext /* OUT: Next overflow page number */
3898){
3899 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003900 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003901 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003902
drh1fee73e2007-08-29 04:00:57 +00003903 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003904 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003905
3906#ifndef SQLITE_OMIT_AUTOVACUUM
3907 /* Try to find the next page in the overflow list using the
3908 ** autovacuum pointer-map pages. Guess that the next page in
3909 ** the overflow list is page number (ovfl+1). If that guess turns
3910 ** out to be wrong, fall back to loading the data of page
3911 ** number ovfl to determine the next page number.
3912 */
3913 if( pBt->autoVacuum ){
3914 Pgno pgno;
3915 Pgno iGuess = ovfl+1;
3916 u8 eType;
3917
3918 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3919 iGuess++;
3920 }
3921
drhb1299152010-03-30 22:58:33 +00003922 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003923 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003924 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003925 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003926 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003927 }
3928 }
3929 }
3930#endif
3931
danielk1977d8a3f3d2009-07-11 11:45:23 +00003932 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003933 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00003934 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003935 assert( rc==SQLITE_OK || pPage==0 );
3936 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003937 next = get4byte(pPage->aData);
3938 }
danielk1977443c0592009-01-16 15:21:05 +00003939 }
danielk197745d68822009-01-16 16:23:38 +00003940
danielk1977bea2a942009-01-20 17:06:27 +00003941 *pPgnoNext = next;
3942 if( ppPage ){
3943 *ppPage = pPage;
3944 }else{
3945 releasePage(pPage);
3946 }
3947 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003948}
3949
danielk1977da107192007-05-04 08:32:13 +00003950/*
3951** Copy data from a buffer to a page, or from a page to a buffer.
3952**
3953** pPayload is a pointer to data stored on database page pDbPage.
3954** If argument eOp is false, then nByte bytes of data are copied
3955** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3956** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3957** of data are copied from the buffer pBuf to pPayload.
3958**
3959** SQLITE_OK is returned on success, otherwise an error code.
3960*/
3961static int copyPayload(
3962 void *pPayload, /* Pointer to page data */
3963 void *pBuf, /* Pointer to buffer */
3964 int nByte, /* Number of bytes to copy */
3965 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3966 DbPage *pDbPage /* Page containing pPayload */
3967){
3968 if( eOp ){
3969 /* Copy data from buffer to page (a write operation) */
3970 int rc = sqlite3PagerWrite(pDbPage);
3971 if( rc!=SQLITE_OK ){
3972 return rc;
3973 }
3974 memcpy(pPayload, pBuf, nByte);
3975 }else{
3976 /* Copy data from page to buffer (a read operation) */
3977 memcpy(pBuf, pPayload, nByte);
3978 }
3979 return SQLITE_OK;
3980}
danielk1977d04417962007-05-02 13:16:30 +00003981
3982/*
danielk19779f8d6402007-05-02 17:48:45 +00003983** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00003984** for the entry that the pCur cursor is pointing to. The eOp
3985** argument is interpreted as follows:
3986**
3987** 0: The operation is a read. Populate the overflow cache.
3988** 1: The operation is a write. Populate the overflow cache.
3989** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00003990**
3991** A total of "amt" bytes are read or written beginning at "offset".
3992** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003993**
drh3bcdfd22009-07-12 02:32:21 +00003994** The content being read or written might appear on the main page
3995** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003996**
dan5a500af2014-03-11 20:33:04 +00003997** If the current cursor entry uses one or more overflow pages and the
3998** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00003999** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004000** Subsequent calls use this cache to make seeking to the supplied offset
4001** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004002**
4003** Once an overflow page-list cache has been allocated, it may be
4004** invalidated if some other cursor writes to the same table, or if
4005** the cursor is moved to a different row. Additionally, in auto-vacuum
4006** mode, the following events may invalidate an overflow page-list cache.
4007**
4008** * An incremental vacuum,
4009** * A commit in auto_vacuum="full" mode,
4010** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004011*/
danielk19779f8d6402007-05-02 17:48:45 +00004012static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004013 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004014 u32 offset, /* Begin reading this far into payload */
4015 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004016 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004017 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004018){
4019 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004020 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00004021 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00004022 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004023 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004024 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004025#ifdef SQLITE_DIRECT_OVERFLOW_READ
4026 int bEnd; /* True if reading to end of data */
4027#endif
drh3aac2dd2004-04-26 14:10:20 +00004028
danielk1977da107192007-05-04 08:32:13 +00004029 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004030 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004031 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004032 assert( cursorHoldsMutex(pCur) );
drha38c9512014-04-01 01:24:34 +00004033 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004034
drh86057612007-06-26 01:04:48 +00004035 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00004036 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00004037 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
drh4c417182014-03-31 23:57:41 +00004038#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9bc21b52014-03-20 18:56:35 +00004039 bEnd = (offset+amt==nKey+pCur->info.nData);
drh4c417182014-03-31 23:57:41 +00004040#endif
danielk1977da107192007-05-04 08:32:13 +00004041
drh3bcdfd22009-07-12 02:32:21 +00004042 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00004043 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4044 ){
danielk1977da107192007-05-04 08:32:13 +00004045 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004046 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004047 }
danielk1977da107192007-05-04 08:32:13 +00004048
4049 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004050 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004051 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004052 if( a+offset>pCur->info.nLocal ){
4053 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004054 }
dan5a500af2014-03-11 20:33:04 +00004055 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004056 offset = 0;
drha34b6762004-05-07 13:30:42 +00004057 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004058 amt -= a;
drhdd793422001-06-28 01:54:48 +00004059 }else{
drhfa1a98a2004-05-14 19:08:17 +00004060 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004061 }
danielk1977da107192007-05-04 08:32:13 +00004062
4063 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004064 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004065 Pgno nextPage;
4066
drhfa1a98a2004-05-14 19:08:17 +00004067 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004068
drha38c9512014-04-01 01:24:34 +00004069 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4070 ** Except, do not allocate aOverflow[] for eOp==2.
4071 **
4072 ** The aOverflow[] array is sized at one entry for each overflow page
4073 ** in the overflow chain. The page number of the first overflow page is
4074 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4075 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004076 */
drh036dbec2014-03-11 23:40:44 +00004077 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004078 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004079 if( nOvfl>pCur->nOvflAlloc ){
4080 Pgno *aNew = (Pgno*)sqlite3DbRealloc(
4081 pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4082 );
4083 if( aNew==0 ){
4084 rc = SQLITE_NOMEM;
4085 }else{
4086 pCur->nOvflAlloc = nOvfl*2;
4087 pCur->aOverflow = aNew;
4088 }
4089 }
4090 if( rc==SQLITE_OK ){
4091 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004092 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004093 }
4094 }
danielk1977da107192007-05-04 08:32:13 +00004095
4096 /* If the overflow page-list cache has been allocated and the
4097 ** entry for the first required overflow page is valid, skip
4098 ** directly to it.
4099 */
drh036dbec2014-03-11 23:40:44 +00004100 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 && pCur->aOverflow[offset/ovflSize] ){
danielk19772dec9702007-05-02 16:48:37 +00004101 iIdx = (offset/ovflSize);
4102 nextPage = pCur->aOverflow[iIdx];
4103 offset = (offset%ovflSize);
4104 }
danielk1977da107192007-05-04 08:32:13 +00004105
4106 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4107
danielk1977da107192007-05-04 08:32:13 +00004108 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004109 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004110 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4111 pCur->aOverflow[iIdx] = nextPage;
4112 }
danielk1977da107192007-05-04 08:32:13 +00004113
danielk1977d04417962007-05-02 13:16:30 +00004114 if( offset>=ovflSize ){
4115 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004116 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004117 ** data is not required. So first try to lookup the overflow
4118 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004119 ** function.
drha38c9512014-04-01 01:24:34 +00004120 **
4121 ** Note that the aOverflow[] array must be allocated because eOp!=2
4122 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004123 */
drha38c9512014-04-01 01:24:34 +00004124 assert( eOp!=2 );
4125 assert( pCur->curFlags & BTCF_ValidOvfl );
4126 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004127 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004128 }else{
danielk1977da107192007-05-04 08:32:13 +00004129 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004130 }
danielk1977da107192007-05-04 08:32:13 +00004131 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004132 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004133 /* Need to read this page properly. It contains some of the
4134 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004135 */
danf4ba1092011-10-08 14:57:07 +00004136#ifdef SQLITE_DIRECT_OVERFLOW_READ
4137 sqlite3_file *fd;
4138#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004139 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004140 if( a + offset > ovflSize ){
4141 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004142 }
danf4ba1092011-10-08 14:57:07 +00004143
4144#ifdef SQLITE_DIRECT_OVERFLOW_READ
4145 /* If all the following are true:
4146 **
4147 ** 1) this is a read operation, and
4148 ** 2) data is required from the start of this overflow page, and
4149 ** 3) the database is file-backed, and
4150 ** 4) there is no open write-transaction, and
4151 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004152 ** 6) all data from the page is being read.
danf4ba1092011-10-08 14:57:07 +00004153 **
4154 ** then data can be read directly from the database file into the
4155 ** output buffer, bypassing the page-cache altogether. This speeds
4156 ** up loading large records that span many overflow pages.
4157 */
dan5a500af2014-03-11 20:33:04 +00004158 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004159 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004160 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004161 && pBt->inTransaction==TRANS_READ /* (4) */
4162 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4163 && pBt->pPage1->aData[19]==0x01 /* (5) */
4164 ){
4165 u8 aSave[4];
4166 u8 *aWrite = &pBuf[-4];
4167 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004168 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004169 nextPage = get4byte(aWrite);
4170 memcpy(aWrite, aSave, 4);
4171 }else
4172#endif
4173
4174 {
4175 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004176 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004177 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004178 );
danf4ba1092011-10-08 14:57:07 +00004179 if( rc==SQLITE_OK ){
4180 aPayload = sqlite3PagerGetData(pDbPage);
4181 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004182 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004183 sqlite3PagerUnref(pDbPage);
4184 offset = 0;
4185 }
4186 }
4187 amt -= a;
4188 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004189 }
drh2af926b2001-05-15 00:39:25 +00004190 }
drh2af926b2001-05-15 00:39:25 +00004191 }
danielk1977cfe9a692004-06-16 12:00:29 +00004192
danielk1977da107192007-05-04 08:32:13 +00004193 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004194 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004195 }
danielk1977da107192007-05-04 08:32:13 +00004196 return rc;
drh2af926b2001-05-15 00:39:25 +00004197}
4198
drh72f82862001-05-24 21:06:34 +00004199/*
drh3aac2dd2004-04-26 14:10:20 +00004200** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004201** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004202** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004203**
drh5d1a8722009-07-22 18:07:40 +00004204** The caller must ensure that pCur is pointing to a valid row
4205** in the table.
4206**
drh3aac2dd2004-04-26 14:10:20 +00004207** Return SQLITE_OK on success or an error code if anything goes
4208** wrong. An error is returned if "offset+amt" is larger than
4209** the available payload.
drh72f82862001-05-24 21:06:34 +00004210*/
drha34b6762004-05-07 13:30:42 +00004211int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004212 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004213 assert( pCur->eState==CURSOR_VALID );
4214 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4215 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4216 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004217}
4218
4219/*
drh3aac2dd2004-04-26 14:10:20 +00004220** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004221** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004222** begins at "offset".
4223**
4224** Return SQLITE_OK on success or an error code if anything goes
4225** wrong. An error is returned if "offset+amt" is larger than
4226** the available payload.
drh72f82862001-05-24 21:06:34 +00004227*/
drh3aac2dd2004-04-26 14:10:20 +00004228int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004229 int rc;
4230
danielk19773588ceb2008-06-10 17:30:26 +00004231#ifndef SQLITE_OMIT_INCRBLOB
4232 if ( pCur->eState==CURSOR_INVALID ){
4233 return SQLITE_ABORT;
4234 }
4235#endif
4236
drh1fee73e2007-08-29 04:00:57 +00004237 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004238 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004239 if( rc==SQLITE_OK ){
4240 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004241 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4242 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004243 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004244 }
4245 return rc;
drh2af926b2001-05-15 00:39:25 +00004246}
4247
drh72f82862001-05-24 21:06:34 +00004248/*
drh0e1c19e2004-05-11 00:58:56 +00004249** Return a pointer to payload information from the entry that the
4250** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004251** the key if index btrees (pPage->intKey==0) and is the data for
4252** table btrees (pPage->intKey==1). The number of bytes of available
4253** key/data is written into *pAmt. If *pAmt==0, then the value
4254** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004255**
4256** This routine is an optimization. It is common for the entire key
4257** and data to fit on the local page and for there to be no overflow
4258** pages. When that is so, this routine can be used to access the
4259** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004260** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004261** the key/data and copy it into a preallocated buffer.
4262**
4263** The pointer returned by this routine looks directly into the cached
4264** page of the database. The data might change or move the next time
4265** any btree routine is called.
4266*/
drh2a8d2262013-12-09 20:43:22 +00004267static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004268 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004269 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004270){
danielk197771d5d2c2008-09-29 11:49:47 +00004271 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004272 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004273 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004274 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004275 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004276 assert( pCur->info.nSize>0 );
drh2a8d2262013-12-09 20:43:22 +00004277 *pAmt = pCur->info.nLocal;
4278 return (void*)(pCur->info.pCell + pCur->info.nHeader);
drh0e1c19e2004-05-11 00:58:56 +00004279}
4280
4281
4282/*
drhe51c44f2004-05-30 20:46:09 +00004283** For the entry that cursor pCur is point to, return as
4284** many bytes of the key or data as are available on the local
4285** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004286**
4287** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004288** or be destroyed on the next call to any Btree routine,
4289** including calls from other threads against the same cache.
4290** Hence, a mutex on the BtShared should be held prior to calling
4291** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004292**
4293** These routines is used to get quick access to key and data
4294** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004295*/
drh501932c2013-11-21 21:59:53 +00004296const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004297 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004298}
drh501932c2013-11-21 21:59:53 +00004299const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004300 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004301}
4302
4303
4304/*
drh8178a752003-01-05 21:41:40 +00004305** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004306** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004307**
4308** This function returns SQLITE_CORRUPT if the page-header flags field of
4309** the new child page does not match the flags field of the parent (i.e.
4310** if an intkey page appears to be the parent of a non-intkey page, or
4311** vice-versa).
drh72f82862001-05-24 21:06:34 +00004312*/
drh3aac2dd2004-04-26 14:10:20 +00004313static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004314 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004315 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004316 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004317 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004318
drh1fee73e2007-08-29 04:00:57 +00004319 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004320 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004321 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004322 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004323 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4324 return SQLITE_CORRUPT_BKPT;
4325 }
drhb00fc3b2013-08-21 23:42:32 +00004326 rc = getAndInitPage(pBt, newPgno, &pNewPage,
drh036dbec2014-03-11 23:40:44 +00004327 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004328 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004329 pCur->apPage[i+1] = pNewPage;
4330 pCur->aiIdx[i+1] = 0;
4331 pCur->iPage++;
4332
drh271efa52004-05-30 19:19:05 +00004333 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004334 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk1977bd5969a2009-07-11 17:39:42 +00004335 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004336 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004337 }
drh72f82862001-05-24 21:06:34 +00004338 return SQLITE_OK;
4339}
4340
danbb246c42012-01-12 14:25:55 +00004341#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004342/*
4343** Page pParent is an internal (non-leaf) tree page. This function
4344** asserts that page number iChild is the left-child if the iIdx'th
4345** cell in page pParent. Or, if iIdx is equal to the total number of
4346** cells in pParent, that page number iChild is the right-child of
4347** the page.
4348*/
4349static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4350 assert( iIdx<=pParent->nCell );
4351 if( iIdx==pParent->nCell ){
4352 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4353 }else{
4354 assert( get4byte(findCell(pParent, iIdx))==iChild );
4355 }
4356}
4357#else
4358# define assertParentIndex(x,y,z)
4359#endif
4360
drh72f82862001-05-24 21:06:34 +00004361/*
drh5e2f8b92001-05-28 00:41:15 +00004362** Move the cursor up to the parent page.
4363**
4364** pCur->idx is set to the cell index that contains the pointer
4365** to the page we are coming from. If we are coming from the
4366** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004367** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004368*/
danielk197730548662009-07-09 05:07:37 +00004369static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004370 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004371 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004372 assert( pCur->iPage>0 );
4373 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004374
4375 /* UPDATE: It is actually possible for the condition tested by the assert
4376 ** below to be untrue if the database file is corrupt. This can occur if
4377 ** one cursor has modified page pParent while a reference to it is held
4378 ** by a second cursor. Which can only happen if a single page is linked
4379 ** into more than one b-tree structure in a corrupt database. */
4380#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004381 assertParentIndex(
4382 pCur->apPage[pCur->iPage-1],
4383 pCur->aiIdx[pCur->iPage-1],
4384 pCur->apPage[pCur->iPage]->pgno
4385 );
danbb246c42012-01-12 14:25:55 +00004386#endif
dan6c2688c2012-01-12 15:05:03 +00004387 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004388
danielk197771d5d2c2008-09-29 11:49:47 +00004389 releasePage(pCur->apPage[pCur->iPage]);
4390 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004391 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004392 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh72f82862001-05-24 21:06:34 +00004393}
4394
4395/*
danielk19778f880a82009-07-13 09:41:45 +00004396** Move the cursor to point to the root page of its b-tree structure.
4397**
4398** If the table has a virtual root page, then the cursor is moved to point
4399** to the virtual root page instead of the actual root page. A table has a
4400** virtual root page when the actual root page contains no cells and a
4401** single child page. This can only happen with the table rooted at page 1.
4402**
4403** If the b-tree structure is empty, the cursor state is set to
4404** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4405** cell located on the root (or virtual root) page and the cursor state
4406** is set to CURSOR_VALID.
4407**
4408** If this function returns successfully, it may be assumed that the
4409** page-header flags indicate that the [virtual] root-page is the expected
4410** kind of b-tree page (i.e. if when opening the cursor the caller did not
4411** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4412** indicating a table b-tree, or if the caller did specify a KeyInfo
4413** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4414** b-tree).
drh72f82862001-05-24 21:06:34 +00004415*/
drh5e2f8b92001-05-28 00:41:15 +00004416static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004417 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004418 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004419
drh1fee73e2007-08-29 04:00:57 +00004420 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004421 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4422 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4423 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4424 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4425 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004426 assert( pCur->skipNext!=SQLITE_OK );
4427 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004428 }
danielk1977be51a652008-10-08 17:58:48 +00004429 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004430 }
danielk197771d5d2c2008-09-29 11:49:47 +00004431
4432 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004433 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004434 }else if( pCur->pgnoRoot==0 ){
4435 pCur->eState = CURSOR_INVALID;
4436 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004437 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004438 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh036dbec2014-03-11 23:40:44 +00004439 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004440 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004441 pCur->eState = CURSOR_INVALID;
4442 return rc;
4443 }
danielk1977172114a2009-07-07 15:47:12 +00004444 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004445 }
danielk197771d5d2c2008-09-29 11:49:47 +00004446 pRoot = pCur->apPage[0];
4447 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004448
4449 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4450 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4451 ** NULL, the caller expects a table b-tree. If this is not the case,
4452 ** return an SQLITE_CORRUPT error.
4453 **
4454 ** Earlier versions of SQLite assumed that this test could not fail
4455 ** if the root page was already loaded when this function was called (i.e.
4456 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4457 ** in such a way that page pRoot is linked into a second b-tree table
4458 ** (or the freelist). */
4459 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4460 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4461 return SQLITE_CORRUPT_BKPT;
4462 }
danielk19778f880a82009-07-13 09:41:45 +00004463
danielk197771d5d2c2008-09-29 11:49:47 +00004464 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004465 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004466 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004467
drh4e8fe3f2013-12-06 23:25:27 +00004468 if( pRoot->nCell>0 ){
4469 pCur->eState = CURSOR_VALID;
4470 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004471 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004472 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004473 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004474 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004475 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004476 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004477 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004478 }
4479 return rc;
drh72f82862001-05-24 21:06:34 +00004480}
drh2af926b2001-05-15 00:39:25 +00004481
drh5e2f8b92001-05-28 00:41:15 +00004482/*
4483** Move the cursor down to the left-most leaf entry beneath the
4484** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004485**
4486** The left-most leaf is the one with the smallest key - the first
4487** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004488*/
4489static int moveToLeftmost(BtCursor *pCur){
4490 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004491 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004492 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004493
drh1fee73e2007-08-29 04:00:57 +00004494 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004495 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004496 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4497 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4498 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004499 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004500 }
drhd677b3d2007-08-20 22:48:41 +00004501 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004502}
4503
drh2dcc9aa2002-12-04 13:40:25 +00004504/*
4505** Move the cursor down to the right-most leaf entry beneath the
4506** page to which it is currently pointing. Notice the difference
4507** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4508** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4509** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004510**
4511** The right-most entry is the one with the largest key - the last
4512** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004513*/
4514static int moveToRightmost(BtCursor *pCur){
4515 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004516 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004517 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004518
drh1fee73e2007-08-29 04:00:57 +00004519 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004520 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004521 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004522 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004523 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004524 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004525 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004526 }
drhee6438d2014-09-01 13:29:32 +00004527 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4528 assert( pCur->info.nSize==0 );
4529 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4530 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004531}
4532
drh5e00f6c2001-09-13 13:46:56 +00004533/* Move the cursor to the first entry in the table. Return SQLITE_OK
4534** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004535** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004536*/
drh3aac2dd2004-04-26 14:10:20 +00004537int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004538 int rc;
drhd677b3d2007-08-20 22:48:41 +00004539
drh1fee73e2007-08-29 04:00:57 +00004540 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004541 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004542 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004543 if( rc==SQLITE_OK ){
4544 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004545 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004546 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004547 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004548 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004549 *pRes = 0;
4550 rc = moveToLeftmost(pCur);
4551 }
drh5e00f6c2001-09-13 13:46:56 +00004552 }
drh5e00f6c2001-09-13 13:46:56 +00004553 return rc;
4554}
drh5e2f8b92001-05-28 00:41:15 +00004555
drh9562b552002-02-19 15:00:07 +00004556/* Move the cursor to the last entry in the table. Return SQLITE_OK
4557** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004558** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004559*/
drh3aac2dd2004-04-26 14:10:20 +00004560int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004561 int rc;
drhd677b3d2007-08-20 22:48:41 +00004562
drh1fee73e2007-08-29 04:00:57 +00004563 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004564 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004565
4566 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004567 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004568#ifdef SQLITE_DEBUG
4569 /* This block serves to assert() that the cursor really does point
4570 ** to the last entry in the b-tree. */
4571 int ii;
4572 for(ii=0; ii<pCur->iPage; ii++){
4573 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4574 }
4575 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4576 assert( pCur->apPage[pCur->iPage]->leaf );
4577#endif
4578 return SQLITE_OK;
4579 }
4580
drh9562b552002-02-19 15:00:07 +00004581 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004582 if( rc==SQLITE_OK ){
4583 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004584 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004585 *pRes = 1;
4586 }else{
4587 assert( pCur->eState==CURSOR_VALID );
4588 *pRes = 0;
4589 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004590 if( rc==SQLITE_OK ){
4591 pCur->curFlags |= BTCF_AtLast;
4592 }else{
4593 pCur->curFlags &= ~BTCF_AtLast;
4594 }
4595
drhd677b3d2007-08-20 22:48:41 +00004596 }
drh9562b552002-02-19 15:00:07 +00004597 }
drh9562b552002-02-19 15:00:07 +00004598 return rc;
4599}
4600
drhe14006d2008-03-25 17:23:32 +00004601/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004602** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004603**
drhe63d9992008-08-13 19:11:48 +00004604** For INTKEY tables, the intKey parameter is used. pIdxKey
4605** must be NULL. For index tables, pIdxKey is used and intKey
4606** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004607**
drh5e2f8b92001-05-28 00:41:15 +00004608** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004609** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004610** were present. The cursor might point to an entry that comes
4611** before or after the key.
4612**
drh64022502009-01-09 14:11:04 +00004613** An integer is written into *pRes which is the result of
4614** comparing the key with the entry to which the cursor is
4615** pointing. The meaning of the integer written into
4616** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004617**
4618** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004619** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004620** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004621**
4622** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004623** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004624**
4625** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004626** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004627**
drha059ad02001-04-17 20:09:11 +00004628*/
drhe63d9992008-08-13 19:11:48 +00004629int sqlite3BtreeMovetoUnpacked(
4630 BtCursor *pCur, /* The cursor to be moved */
4631 UnpackedRecord *pIdxKey, /* Unpacked index key */
4632 i64 intKey, /* The table key */
4633 int biasRight, /* If true, bias the search to the high end */
4634 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004635){
drh72f82862001-05-24 21:06:34 +00004636 int rc;
dan3b9330f2014-02-27 20:44:18 +00004637 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004638
drh1fee73e2007-08-29 04:00:57 +00004639 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004640 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004641 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004642 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004643
4644 /* If the cursor is already positioned at the point we are trying
4645 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00004646 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00004647 && pCur->apPage[0]->intKey
4648 ){
drhe63d9992008-08-13 19:11:48 +00004649 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004650 *pRes = 0;
4651 return SQLITE_OK;
4652 }
drh036dbec2014-03-11 23:40:44 +00004653 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004654 *pRes = -1;
4655 return SQLITE_OK;
4656 }
4657 }
4658
dan1fed5da2014-02-25 21:01:25 +00004659 if( pIdxKey ){
4660 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00004661 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00004662 assert( pIdxKey->default_rc==1
4663 || pIdxKey->default_rc==0
4664 || pIdxKey->default_rc==-1
4665 );
drh13a747e2014-03-03 21:46:55 +00004666 }else{
drhb6e8fd12014-03-06 01:56:33 +00004667 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004668 }
4669
drh5e2f8b92001-05-28 00:41:15 +00004670 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004671 if( rc ){
4672 return rc;
4673 }
dana205a482011-08-27 18:48:57 +00004674 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4675 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4676 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004677 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004678 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004679 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004680 return SQLITE_OK;
4681 }
danielk197771d5d2c2008-09-29 11:49:47 +00004682 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004683 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004684 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004685 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004686 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004687 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004688
4689 /* pPage->nCell must be greater than zero. If this is the root-page
4690 ** the cursor would have been INVALID above and this for(;;) loop
4691 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004692 ** would have already detected db corruption. Similarly, pPage must
4693 ** be the right kind (index or table) of b-tree page. Otherwise
4694 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004695 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004696 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004697 lwr = 0;
4698 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00004699 assert( biasRight==0 || biasRight==1 );
4700 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00004701 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00004702 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00004703 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004704 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00004705 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drhd172f862006-01-12 15:01:15 +00004706 if( pPage->hasData ){
drh9b2fc612013-11-25 20:14:13 +00004707 while( 0x80 <= *(pCell++) ){
4708 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4709 }
drhd172f862006-01-12 15:01:15 +00004710 }
drha2c20e42008-03-29 16:01:04 +00004711 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00004712 if( nCellKey<intKey ){
4713 lwr = idx+1;
4714 if( lwr>upr ){ c = -1; break; }
4715 }else if( nCellKey>intKey ){
4716 upr = idx-1;
4717 if( lwr>upr ){ c = +1; break; }
4718 }else{
4719 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00004720 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00004721 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00004722 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004723 if( !pPage->leaf ){
4724 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00004725 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00004726 }else{
4727 *pRes = 0;
4728 rc = SQLITE_OK;
4729 goto moveto_finish;
4730 }
drhd793f442013-11-25 14:10:15 +00004731 }
drhebf10b12013-11-25 17:38:26 +00004732 assert( lwr+upr>=0 );
4733 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00004734 }
4735 }else{
4736 for(;;){
4737 int nCell;
drhec3e6b12013-11-25 02:38:55 +00004738 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4739
drhb2eced52010-08-12 02:41:12 +00004740 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004741 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004742 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004743 ** varint. This information is used to attempt to avoid parsing
4744 ** the entire cell by checking for the cases where the record is
4745 ** stored entirely within the b-tree page by inspecting the first
4746 ** 2 bytes of the cell.
4747 */
drhec3e6b12013-11-25 02:38:55 +00004748 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00004749 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00004750 /* This branch runs if the record-size field of the cell is a
4751 ** single byte varint and the record fits entirely on the main
4752 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004753 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00004754 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00004755 }else if( !(pCell[1] & 0x80)
4756 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4757 ){
4758 /* The record-size field is a 2 byte varint and the record
4759 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004760 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00004761 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004762 }else{
danielk197711c327a2009-05-04 19:01:26 +00004763 /* The record flows over onto one or more overflow pages. In
4764 ** this case the whole cell needs to be parsed, a buffer allocated
4765 ** and accessPayload() used to retrieve the record into the
4766 ** buffer before VdbeRecordCompare() can be called. */
4767 void *pCellKey;
4768 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004769 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004770 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004771 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004772 if( pCellKey==0 ){
4773 rc = SQLITE_NOMEM;
4774 goto moveto_finish;
4775 }
drhd793f442013-11-25 14:10:15 +00004776 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00004777 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00004778 if( rc ){
4779 sqlite3_free(pCellKey);
4780 goto moveto_finish;
4781 }
drh75179de2014-09-16 14:37:35 +00004782 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004783 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004784 }
dan38fdead2014-04-01 10:19:02 +00004785 assert(
4786 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00004787 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00004788 );
drhbb933ef2013-11-25 15:01:38 +00004789 if( c<0 ){
4790 lwr = idx+1;
4791 }else if( c>0 ){
4792 upr = idx-1;
4793 }else{
4794 assert( c==0 );
drh64022502009-01-09 14:11:04 +00004795 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004796 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00004797 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00004798 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00004799 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004800 }
drhebf10b12013-11-25 17:38:26 +00004801 if( lwr>upr ) break;
4802 assert( lwr+upr>=0 );
4803 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00004804 }
drh72f82862001-05-24 21:06:34 +00004805 }
drhb07028f2011-10-14 21:49:18 +00004806 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004807 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004808 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00004809 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00004810 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004811 *pRes = c;
4812 rc = SQLITE_OK;
4813 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00004814 }
4815moveto_next_layer:
4816 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004817 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004818 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004819 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004820 }
drhf49661a2008-12-10 16:45:50 +00004821 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00004822 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00004823 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00004824 }
drh1e968a02008-03-25 00:22:21 +00004825moveto_finish:
drhd2022b02013-11-25 16:23:52 +00004826 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004827 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00004828 return rc;
4829}
4830
drhd677b3d2007-08-20 22:48:41 +00004831
drh72f82862001-05-24 21:06:34 +00004832/*
drhc39e0002004-05-07 23:50:57 +00004833** Return TRUE if the cursor is not pointing at an entry of the table.
4834**
4835** TRUE will be returned after a call to sqlite3BtreeNext() moves
4836** past the last entry in the table or sqlite3BtreePrev() moves past
4837** the first entry. TRUE is also returned if the table is empty.
4838*/
4839int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004840 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4841 ** have been deleted? This API will need to change to return an error code
4842 ** as well as the boolean result value.
4843 */
4844 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004845}
4846
4847/*
drhbd03cae2001-06-02 02:40:57 +00004848** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004849** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004850** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004851** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00004852**
drhee6438d2014-09-01 13:29:32 +00004853** The main entry point is sqlite3BtreeNext(). That routine is optimized
4854** for the common case of merely incrementing the cell counter BtCursor.aiIdx
4855** to the next cell on the current page. The (slower) btreeNext() helper
4856** routine is called when it is necessary to move to a different page or
4857** to restore the cursor.
4858**
drhe39a7322014-02-03 14:04:11 +00004859** The calling function will set *pRes to 0 or 1. The initial *pRes value
4860** will be 1 if the cursor being stepped corresponds to an SQL index and
4861** if this routine could have been skipped if that SQL index had been
4862** a unique index. Otherwise the caller will have set *pRes to zero.
4863** Zero is the common case. The btree implementation is free to use the
4864** initial *pRes value as a hint to improve performance, but the current
4865** SQLite btree implementation does not. (Note that the comdb2 btree
4866** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00004867*/
drhee6438d2014-09-01 13:29:32 +00004868static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004869 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004870 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004871 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004872
drh1fee73e2007-08-29 04:00:57 +00004873 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00004874 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004875 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00004876 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00004877 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00004878 rc = restoreCursorPosition(pCur);
4879 if( rc!=SQLITE_OK ){
4880 return rc;
4881 }
4882 if( CURSOR_INVALID==pCur->eState ){
4883 *pRes = 1;
4884 return SQLITE_OK;
4885 }
drh9b47ee32013-08-20 03:13:51 +00004886 if( pCur->skipNext ){
4887 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4888 pCur->eState = CURSOR_VALID;
4889 if( pCur->skipNext>0 ){
4890 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00004891 return SQLITE_OK;
4892 }
drhf66f26a2013-08-19 20:04:10 +00004893 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004894 }
danielk1977da184232006-01-05 11:34:32 +00004895 }
danielk1977da184232006-01-05 11:34:32 +00004896
danielk197771d5d2c2008-09-29 11:49:47 +00004897 pPage = pCur->apPage[pCur->iPage];
4898 idx = ++pCur->aiIdx[pCur->iPage];
4899 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004900
4901 /* If the database file is corrupt, it is possible for the value of idx
4902 ** to be invalid here. This can only occur if a second cursor modifies
4903 ** the page while cursor pCur is holding a reference to it. Which can
4904 ** only happen if the database is corrupt in such a way as to link the
4905 ** page into more than one b-tree structure. */
4906 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004907
danielk197771d5d2c2008-09-29 11:49:47 +00004908 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004909 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004910 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00004911 if( rc ) return rc;
4912 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00004913 }
drh5e2f8b92001-05-28 00:41:15 +00004914 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004915 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004916 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004917 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004918 return SQLITE_OK;
4919 }
danielk197730548662009-07-09 05:07:37 +00004920 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004921 pPage = pCur->apPage[pCur->iPage];
4922 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00004923 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00004924 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00004925 }else{
drhee6438d2014-09-01 13:29:32 +00004926 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00004927 }
drh8178a752003-01-05 21:41:40 +00004928 }
drh3aac2dd2004-04-26 14:10:20 +00004929 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004930 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00004931 }else{
4932 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00004933 }
drh72f82862001-05-24 21:06:34 +00004934}
drhee6438d2014-09-01 13:29:32 +00004935int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
4936 MemPage *pPage;
4937 assert( cursorHoldsMutex(pCur) );
4938 assert( pRes!=0 );
4939 assert( *pRes==0 || *pRes==1 );
4940 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
4941 pCur->info.nSize = 0;
4942 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4943 *pRes = 0;
4944 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
4945 pPage = pCur->apPage[pCur->iPage];
4946 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
4947 pCur->aiIdx[pCur->iPage]--;
4948 return btreeNext(pCur, pRes);
4949 }
4950 if( pPage->leaf ){
4951 return SQLITE_OK;
4952 }else{
4953 return moveToLeftmost(pCur);
4954 }
4955}
drh72f82862001-05-24 21:06:34 +00004956
drh3b7511c2001-05-26 13:15:44 +00004957/*
drh2dcc9aa2002-12-04 13:40:25 +00004958** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004959** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004960** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004961** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00004962**
drhee6438d2014-09-01 13:29:32 +00004963** The main entry point is sqlite3BtreePrevious(). That routine is optimized
4964** for the common case of merely decrementing the cell counter BtCursor.aiIdx
4965** to the previous cell on the current page. The (slower) btreePrevious() helper
4966** routine is called when it is necessary to move to a different page or
4967** to restore the cursor.
4968**
drhe39a7322014-02-03 14:04:11 +00004969** The calling function will set *pRes to 0 or 1. The initial *pRes value
4970** will be 1 if the cursor being stepped corresponds to an SQL index and
4971** if this routine could have been skipped if that SQL index had been
4972** a unique index. Otherwise the caller will have set *pRes to zero.
4973** Zero is the common case. The btree implementation is free to use the
4974** initial *pRes value as a hint to improve performance, but the current
4975** SQLite btree implementation does not. (Note that the comdb2 btree
4976** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00004977*/
drhee6438d2014-09-01 13:29:32 +00004978static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004979 int rc;
drh8178a752003-01-05 21:41:40 +00004980 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004981
drh1fee73e2007-08-29 04:00:57 +00004982 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00004983 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00004984 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00004985 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004986 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
4987 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00004988 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00004989 assert( pCur->eState>=CURSOR_REQUIRESEEK );
4990 rc = btreeRestoreCursorPosition(pCur);
4991 if( rc!=SQLITE_OK ){
4992 return rc;
drhf66f26a2013-08-19 20:04:10 +00004993 }
4994 if( CURSOR_INVALID==pCur->eState ){
4995 *pRes = 1;
4996 return SQLITE_OK;
4997 }
drh9b47ee32013-08-20 03:13:51 +00004998 if( pCur->skipNext ){
4999 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5000 pCur->eState = CURSOR_VALID;
5001 if( pCur->skipNext<0 ){
5002 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005003 return SQLITE_OK;
5004 }
drhf66f26a2013-08-19 20:04:10 +00005005 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005006 }
danielk1977da184232006-01-05 11:34:32 +00005007 }
danielk1977da184232006-01-05 11:34:32 +00005008
danielk197771d5d2c2008-09-29 11:49:47 +00005009 pPage = pCur->apPage[pCur->iPage];
5010 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005011 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005012 int idx = pCur->aiIdx[pCur->iPage];
5013 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005014 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005015 rc = moveToRightmost(pCur);
5016 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005017 while( pCur->aiIdx[pCur->iPage]==0 ){
5018 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005019 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005020 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005021 return SQLITE_OK;
5022 }
danielk197730548662009-07-09 05:07:37 +00005023 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005024 }
drhee6438d2014-09-01 13:29:32 +00005025 assert( pCur->info.nSize==0 );
5026 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005027
5028 pCur->aiIdx[pCur->iPage]--;
5029 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005030 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005031 rc = sqlite3BtreePrevious(pCur, pRes);
5032 }else{
5033 rc = SQLITE_OK;
5034 }
drh2dcc9aa2002-12-04 13:40:25 +00005035 }
drh2dcc9aa2002-12-04 13:40:25 +00005036 return rc;
5037}
drhee6438d2014-09-01 13:29:32 +00005038int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5039 assert( cursorHoldsMutex(pCur) );
5040 assert( pRes!=0 );
5041 assert( *pRes==0 || *pRes==1 );
5042 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5043 *pRes = 0;
5044 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5045 pCur->info.nSize = 0;
5046 if( pCur->eState!=CURSOR_VALID
5047 || pCur->aiIdx[pCur->iPage]==0
5048 || pCur->apPage[pCur->iPage]->leaf==0
5049 ){
5050 return btreePrevious(pCur, pRes);
5051 }
5052 pCur->aiIdx[pCur->iPage]--;
5053 return SQLITE_OK;
5054}
drh2dcc9aa2002-12-04 13:40:25 +00005055
5056/*
drh3b7511c2001-05-26 13:15:44 +00005057** Allocate a new page from the database file.
5058**
danielk19773b8a05f2007-03-19 17:44:26 +00005059** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005060** has already been called on the new page.) The new page has also
5061** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005062** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005063**
5064** SQLITE_OK is returned on success. Any other return value indicates
5065** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00005066** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00005067**
drh82e647d2013-03-02 03:25:55 +00005068** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005069** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005070** attempt to keep related pages close to each other in the database file,
5071** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005072**
drh82e647d2013-03-02 03:25:55 +00005073** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5074** anywhere on the free-list, then it is guaranteed to be returned. If
5075** eMode is BTALLOC_LT then the page returned will be less than or equal
5076** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5077** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005078*/
drh4f0c5872007-03-26 22:05:01 +00005079static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005080 BtShared *pBt, /* The btree */
5081 MemPage **ppPage, /* Store pointer to the allocated page here */
5082 Pgno *pPgno, /* Store the page number here */
5083 Pgno nearby, /* Search for a page near this one */
5084 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005085){
drh3aac2dd2004-04-26 14:10:20 +00005086 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005087 int rc;
drh35cd6432009-06-05 14:17:21 +00005088 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005089 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005090 MemPage *pTrunk = 0;
5091 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005092 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005093
drh1fee73e2007-08-29 04:00:57 +00005094 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005095 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005096 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005097 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00005098 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005099 testcase( n==mxPage-1 );
5100 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005101 return SQLITE_CORRUPT_BKPT;
5102 }
drh3aac2dd2004-04-26 14:10:20 +00005103 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005104 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005105 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005106 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5107
drh82e647d2013-03-02 03:25:55 +00005108 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005109 ** shows that the page 'nearby' is somewhere on the free-list, then
5110 ** the entire-list will be searched for that page.
5111 */
5112#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005113 if( eMode==BTALLOC_EXACT ){
5114 if( nearby<=mxPage ){
5115 u8 eType;
5116 assert( nearby>0 );
5117 assert( pBt->autoVacuum );
5118 rc = ptrmapGet(pBt, nearby, &eType, 0);
5119 if( rc ) return rc;
5120 if( eType==PTRMAP_FREEPAGE ){
5121 searchList = 1;
5122 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005123 }
dan51f0b6d2013-02-22 20:16:34 +00005124 }else if( eMode==BTALLOC_LE ){
5125 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005126 }
5127#endif
5128
5129 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5130 ** first free-list trunk page. iPrevTrunk is initially 1.
5131 */
danielk19773b8a05f2007-03-19 17:44:26 +00005132 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005133 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005134 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005135
5136 /* The code within this loop is run only once if the 'searchList' variable
5137 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005138 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5139 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005140 */
5141 do {
5142 pPrevTrunk = pTrunk;
5143 if( pPrevTrunk ){
5144 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005145 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00005146 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005147 }
drhdf35a082009-07-09 02:24:35 +00005148 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005149 if( iTrunk>mxPage ){
5150 rc = SQLITE_CORRUPT_BKPT;
5151 }else{
drhb00fc3b2013-08-21 23:42:32 +00005152 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005153 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005154 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005155 pTrunk = 0;
5156 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005157 }
drhb07028f2011-10-14 21:49:18 +00005158 assert( pTrunk!=0 );
5159 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005160
drh93b4fc72011-04-07 14:47:01 +00005161 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005162 if( k==0 && !searchList ){
5163 /* The trunk has no leaves and the list is not being searched.
5164 ** So extract the trunk page itself and use it as the newly
5165 ** allocated page */
5166 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005167 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005168 if( rc ){
5169 goto end_allocate_page;
5170 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005171 *pPgno = iTrunk;
5172 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5173 *ppPage = pTrunk;
5174 pTrunk = 0;
5175 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005176 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005177 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005178 rc = SQLITE_CORRUPT_BKPT;
5179 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005180#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005181 }else if( searchList
5182 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5183 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005184 /* The list is being searched and this trunk page is the page
5185 ** to allocate, regardless of whether it has leaves.
5186 */
dan51f0b6d2013-02-22 20:16:34 +00005187 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005188 *ppPage = pTrunk;
5189 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005190 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005191 if( rc ){
5192 goto end_allocate_page;
5193 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005194 if( k==0 ){
5195 if( !pPrevTrunk ){
5196 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5197 }else{
danf48c3552010-08-23 15:41:24 +00005198 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5199 if( rc!=SQLITE_OK ){
5200 goto end_allocate_page;
5201 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005202 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5203 }
5204 }else{
5205 /* The trunk page is required by the caller but it contains
5206 ** pointers to free-list leaves. The first leaf becomes a trunk
5207 ** page in this case.
5208 */
5209 MemPage *pNewTrunk;
5210 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005211 if( iNewTrunk>mxPage ){
5212 rc = SQLITE_CORRUPT_BKPT;
5213 goto end_allocate_page;
5214 }
drhdf35a082009-07-09 02:24:35 +00005215 testcase( iNewTrunk==mxPage );
drhb00fc3b2013-08-21 23:42:32 +00005216 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005217 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005218 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005219 }
danielk19773b8a05f2007-03-19 17:44:26 +00005220 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005221 if( rc!=SQLITE_OK ){
5222 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005223 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005224 }
5225 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5226 put4byte(&pNewTrunk->aData[4], k-1);
5227 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005228 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005229 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005230 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005231 put4byte(&pPage1->aData[32], iNewTrunk);
5232 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005233 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005234 if( rc ){
5235 goto end_allocate_page;
5236 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005237 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5238 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005239 }
5240 pTrunk = 0;
5241 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5242#endif
danielk1977e5765212009-06-17 11:13:28 +00005243 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005244 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005245 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005246 Pgno iPage;
5247 unsigned char *aData = pTrunk->aData;
5248 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005249 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005250 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005251 if( eMode==BTALLOC_LE ){
5252 for(i=0; i<k; i++){
5253 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005254 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005255 closest = i;
5256 break;
5257 }
5258 }
5259 }else{
5260 int dist;
5261 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5262 for(i=1; i<k; i++){
5263 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5264 if( d2<dist ){
5265 closest = i;
5266 dist = d2;
5267 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005268 }
5269 }
5270 }else{
5271 closest = 0;
5272 }
5273
5274 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005275 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005276 if( iPage>mxPage ){
5277 rc = SQLITE_CORRUPT_BKPT;
5278 goto end_allocate_page;
5279 }
drhdf35a082009-07-09 02:24:35 +00005280 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005281 if( !searchList
5282 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5283 ){
danielk1977bea2a942009-01-20 17:06:27 +00005284 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005285 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005286 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5287 ": %d more free pages\n",
5288 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005289 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5290 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005291 if( closest<k-1 ){
5292 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5293 }
5294 put4byte(&aData[4], k-1);
drhb00fc3b2013-08-21 23:42:32 +00005295 noContent = !btreeGetHasContent(pBt, *pPgno) ? PAGER_GET_NOCONTENT : 0;
5296 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005297 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005298 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005299 if( rc!=SQLITE_OK ){
5300 releasePage(*ppPage);
5301 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005302 }
5303 searchList = 0;
5304 }
drhee696e22004-08-30 16:52:17 +00005305 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005306 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005307 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005308 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005309 }else{
danbc1a3c62013-02-23 16:40:46 +00005310 /* There are no pages on the freelist, so append a new page to the
5311 ** database image.
5312 **
5313 ** Normally, new pages allocated by this block can be requested from the
5314 ** pager layer with the 'no-content' flag set. This prevents the pager
5315 ** from trying to read the pages content from disk. However, if the
5316 ** current transaction has already run one or more incremental-vacuum
5317 ** steps, then the page we are about to allocate may contain content
5318 ** that is required in the event of a rollback. In this case, do
5319 ** not set the no-content flag. This causes the pager to load and journal
5320 ** the current page content before overwriting it.
5321 **
5322 ** Note that the pager will not actually attempt to load or journal
5323 ** content for any page that really does lie past the end of the database
5324 ** file on disk. So the effects of disabling the no-content optimization
5325 ** here are confined to those pages that lie between the end of the
5326 ** database image and the end of the database file.
5327 */
drhb00fc3b2013-08-21 23:42:32 +00005328 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)) ? PAGER_GET_NOCONTENT : 0;
danbc1a3c62013-02-23 16:40:46 +00005329
drhdd3cd972010-03-27 17:12:36 +00005330 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5331 if( rc ) return rc;
5332 pBt->nPage++;
5333 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005334
danielk1977afcdd022004-10-31 16:25:42 +00005335#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005336 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005337 /* If *pPgno refers to a pointer-map page, allocate two new pages
5338 ** at the end of the file instead of one. The first allocated page
5339 ** becomes a new pointer-map page, the second is used by the caller.
5340 */
danielk1977ac861692009-03-28 10:54:22 +00005341 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005342 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5343 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005344 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005345 if( rc==SQLITE_OK ){
5346 rc = sqlite3PagerWrite(pPg->pDbPage);
5347 releasePage(pPg);
5348 }
5349 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005350 pBt->nPage++;
5351 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005352 }
5353#endif
drhdd3cd972010-03-27 17:12:36 +00005354 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5355 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005356
danielk1977599fcba2004-11-08 07:13:13 +00005357 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005358 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005359 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005360 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005361 if( rc!=SQLITE_OK ){
5362 releasePage(*ppPage);
5363 }
drh3a4c1412004-05-09 20:40:11 +00005364 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005365 }
danielk1977599fcba2004-11-08 07:13:13 +00005366
5367 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005368
5369end_allocate_page:
5370 releasePage(pTrunk);
5371 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005372 if( rc==SQLITE_OK ){
5373 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5374 releasePage(*ppPage);
dan7df42ab2014-01-20 18:25:44 +00005375 *ppPage = 0;
danielk1977b247c212008-11-21 09:09:01 +00005376 return SQLITE_CORRUPT_BKPT;
5377 }
5378 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005379 }else{
5380 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005381 }
drh93b4fc72011-04-07 14:47:01 +00005382 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005383 return rc;
5384}
5385
5386/*
danielk1977bea2a942009-01-20 17:06:27 +00005387** This function is used to add page iPage to the database file free-list.
5388** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005389**
danielk1977bea2a942009-01-20 17:06:27 +00005390** The value passed as the second argument to this function is optional.
5391** If the caller happens to have a pointer to the MemPage object
5392** corresponding to page iPage handy, it may pass it as the second value.
5393** Otherwise, it may pass NULL.
5394**
5395** If a pointer to a MemPage object is passed as the second argument,
5396** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005397*/
danielk1977bea2a942009-01-20 17:06:27 +00005398static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5399 MemPage *pTrunk = 0; /* Free-list trunk page */
5400 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5401 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5402 MemPage *pPage; /* Page being freed. May be NULL. */
5403 int rc; /* Return Code */
5404 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005405
danielk1977bea2a942009-01-20 17:06:27 +00005406 assert( sqlite3_mutex_held(pBt->mutex) );
5407 assert( iPage>1 );
5408 assert( !pMemPage || pMemPage->pgno==iPage );
5409
5410 if( pMemPage ){
5411 pPage = pMemPage;
5412 sqlite3PagerRef(pPage->pDbPage);
5413 }else{
5414 pPage = btreePageLookup(pBt, iPage);
5415 }
drh3aac2dd2004-04-26 14:10:20 +00005416
drha34b6762004-05-07 13:30:42 +00005417 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005418 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005419 if( rc ) goto freepage_out;
5420 nFree = get4byte(&pPage1->aData[36]);
5421 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005422
drhc9166342012-01-05 23:32:06 +00005423 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005424 /* If the secure_delete option is enabled, then
5425 ** always fully overwrite deleted information with zeros.
5426 */
drhb00fc3b2013-08-21 23:42:32 +00005427 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005428 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005429 ){
5430 goto freepage_out;
5431 }
5432 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005433 }
drhfcce93f2006-02-22 03:08:32 +00005434
danielk1977687566d2004-11-02 12:56:41 +00005435 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005436 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005437 */
danielk197785d90ca2008-07-19 14:25:15 +00005438 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005439 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005440 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005441 }
danielk1977687566d2004-11-02 12:56:41 +00005442
danielk1977bea2a942009-01-20 17:06:27 +00005443 /* Now manipulate the actual database free-list structure. There are two
5444 ** possibilities. If the free-list is currently empty, or if the first
5445 ** trunk page in the free-list is full, then this page will become a
5446 ** new free-list trunk page. Otherwise, it will become a leaf of the
5447 ** first trunk page in the current free-list. This block tests if it
5448 ** is possible to add the page as a new free-list leaf.
5449 */
5450 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005451 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005452
5453 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005454 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005455 if( rc!=SQLITE_OK ){
5456 goto freepage_out;
5457 }
5458
5459 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005460 assert( pBt->usableSize>32 );
5461 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005462 rc = SQLITE_CORRUPT_BKPT;
5463 goto freepage_out;
5464 }
drheeb844a2009-08-08 18:01:07 +00005465 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005466 /* In this case there is room on the trunk page to insert the page
5467 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005468 **
5469 ** Note that the trunk page is not really full until it contains
5470 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5471 ** coded. But due to a coding error in versions of SQLite prior to
5472 ** 3.6.0, databases with freelist trunk pages holding more than
5473 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5474 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005475 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005476 ** for now. At some point in the future (once everyone has upgraded
5477 ** to 3.6.0 or later) we should consider fixing the conditional above
5478 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5479 */
danielk19773b8a05f2007-03-19 17:44:26 +00005480 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005481 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005482 put4byte(&pTrunk->aData[4], nLeaf+1);
5483 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005484 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005485 sqlite3PagerDontWrite(pPage->pDbPage);
5486 }
danielk1977bea2a942009-01-20 17:06:27 +00005487 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005488 }
drh3a4c1412004-05-09 20:40:11 +00005489 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005490 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005491 }
drh3b7511c2001-05-26 13:15:44 +00005492 }
danielk1977bea2a942009-01-20 17:06:27 +00005493
5494 /* If control flows to this point, then it was not possible to add the
5495 ** the page being freed as a leaf page of the first trunk in the free-list.
5496 ** Possibly because the free-list is empty, or possibly because the
5497 ** first trunk in the free-list is full. Either way, the page being freed
5498 ** will become the new first trunk page in the free-list.
5499 */
drhb00fc3b2013-08-21 23:42:32 +00005500 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005501 goto freepage_out;
5502 }
5503 rc = sqlite3PagerWrite(pPage->pDbPage);
5504 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005505 goto freepage_out;
5506 }
5507 put4byte(pPage->aData, iTrunk);
5508 put4byte(&pPage->aData[4], 0);
5509 put4byte(&pPage1->aData[32], iPage);
5510 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5511
5512freepage_out:
5513 if( pPage ){
5514 pPage->isInit = 0;
5515 }
5516 releasePage(pPage);
5517 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005518 return rc;
5519}
drhc314dc72009-07-21 11:52:34 +00005520static void freePage(MemPage *pPage, int *pRC){
5521 if( (*pRC)==SQLITE_OK ){
5522 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5523 }
danielk1977bea2a942009-01-20 17:06:27 +00005524}
drh3b7511c2001-05-26 13:15:44 +00005525
5526/*
drh3aac2dd2004-04-26 14:10:20 +00005527** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005528*/
drh3aac2dd2004-04-26 14:10:20 +00005529static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005530 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005531 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005532 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005533 int rc;
drh94440812007-03-06 11:42:19 +00005534 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005535 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005536
drh1fee73e2007-08-29 04:00:57 +00005537 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005538 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005539 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005540 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005541 }
drhe42a9b42011-08-31 13:27:19 +00005542 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005543 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005544 }
drh6f11bef2004-05-13 01:12:56 +00005545 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005546 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005547 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005548 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5549 assert( ovflPgno==0 || nOvfl>0 );
5550 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005551 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005552 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005553 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005554 /* 0 is not a legal page number and page 1 cannot be an
5555 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5556 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005557 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005558 }
danielk1977bea2a942009-01-20 17:06:27 +00005559 if( nOvfl ){
5560 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5561 if( rc ) return rc;
5562 }
dan887d4b22010-02-25 12:09:16 +00005563
shaneh1da207e2010-03-09 14:41:12 +00005564 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005565 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5566 ){
5567 /* There is no reason any cursor should have an outstanding reference
5568 ** to an overflow page belonging to a cell that is being deleted/updated.
5569 ** So if there exists more than one reference to this page, then it
5570 ** must not really be an overflow page and the database must be corrupt.
5571 ** It is helpful to detect this before calling freePage2(), as
5572 ** freePage2() may zero the page contents if secure-delete mode is
5573 ** enabled. If this 'overflow' page happens to be a page that the
5574 ** caller is iterating through or using in some other way, this
5575 ** can be problematic.
5576 */
5577 rc = SQLITE_CORRUPT_BKPT;
5578 }else{
5579 rc = freePage2(pBt, pOvfl, ovflPgno);
5580 }
5581
danielk1977bea2a942009-01-20 17:06:27 +00005582 if( pOvfl ){
5583 sqlite3PagerUnref(pOvfl->pDbPage);
5584 }
drh3b7511c2001-05-26 13:15:44 +00005585 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005586 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005587 }
drh5e2f8b92001-05-28 00:41:15 +00005588 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005589}
5590
5591/*
drh91025292004-05-03 19:49:32 +00005592** Create the byte sequence used to represent a cell on page pPage
5593** and write that byte sequence into pCell[]. Overflow pages are
5594** allocated and filled in as necessary. The calling procedure
5595** is responsible for making sure sufficient space has been allocated
5596** for pCell[].
5597**
5598** Note that pCell does not necessary need to point to the pPage->aData
5599** area. pCell might point to some temporary storage. The cell will
5600** be constructed in this temporary area then copied into pPage->aData
5601** later.
drh3b7511c2001-05-26 13:15:44 +00005602*/
5603static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005604 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005605 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005606 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005607 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005608 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005609 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005610){
drh3b7511c2001-05-26 13:15:44 +00005611 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005612 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005613 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005614 int spaceLeft;
5615 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005616 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005617 unsigned char *pPrior;
5618 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005619 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005620 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005621 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005622 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005623
drh1fee73e2007-08-29 04:00:57 +00005624 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005625
drhc5053fb2008-11-27 02:22:10 +00005626 /* pPage is not necessarily writeable since pCell might be auxiliary
5627 ** buffer space that is separate from the pPage buffer area */
5628 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5629 || sqlite3PagerIswriteable(pPage->pDbPage) );
5630
drh91025292004-05-03 19:49:32 +00005631 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005632 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005633 if( !pPage->leaf ){
5634 nHeader += 4;
5635 }
drh8b18dd42004-05-12 19:18:15 +00005636 if( pPage->hasData ){
drh7599d4a2013-12-09 00:47:11 +00005637 nHeader += putVarint32(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005638 }else{
drhb026e052007-05-02 01:34:31 +00005639 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005640 }
drh6f11bef2004-05-13 01:12:56 +00005641 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005642 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005643 assert( info.nHeader==nHeader );
5644 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005645 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005646
5647 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005648 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005649 if( pPage->intKey ){
5650 pSrc = pData;
5651 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005652 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005653 }else{
danielk197731d31b82009-07-13 13:18:07 +00005654 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5655 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005656 }
drhf49661a2008-12-10 16:45:50 +00005657 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005658 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005659 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005660 }
drh6f11bef2004-05-13 01:12:56 +00005661 *pnSize = info.nSize;
5662 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005663 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005664 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005665
drh3b7511c2001-05-26 13:15:44 +00005666 while( nPayload>0 ){
5667 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005668#ifndef SQLITE_OMIT_AUTOVACUUM
5669 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005670 if( pBt->autoVacuum ){
5671 do{
5672 pgnoOvfl++;
5673 } while(
5674 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5675 );
danielk1977b39f70b2007-05-17 18:28:11 +00005676 }
danielk1977afcdd022004-10-31 16:25:42 +00005677#endif
drhf49661a2008-12-10 16:45:50 +00005678 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005679#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005680 /* If the database supports auto-vacuum, and the second or subsequent
5681 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005682 ** for that page now.
5683 **
5684 ** If this is the first overflow page, then write a partial entry
5685 ** to the pointer-map. If we write nothing to this pointer-map slot,
5686 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005687 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005688 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005689 */
danielk19774ef24492007-05-23 09:52:41 +00005690 if( pBt->autoVacuum && rc==SQLITE_OK ){
5691 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005692 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005693 if( rc ){
5694 releasePage(pOvfl);
5695 }
danielk1977afcdd022004-10-31 16:25:42 +00005696 }
5697#endif
drh3b7511c2001-05-26 13:15:44 +00005698 if( rc ){
drh9b171272004-05-08 02:03:22 +00005699 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005700 return rc;
5701 }
drhc5053fb2008-11-27 02:22:10 +00005702
5703 /* If pToRelease is not zero than pPrior points into the data area
5704 ** of pToRelease. Make sure pToRelease is still writeable. */
5705 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5706
5707 /* If pPrior is part of the data area of pPage, then make sure pPage
5708 ** is still writeable */
5709 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5710 || sqlite3PagerIswriteable(pPage->pDbPage) );
5711
drh3aac2dd2004-04-26 14:10:20 +00005712 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005713 releasePage(pToRelease);
5714 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005715 pPrior = pOvfl->aData;
5716 put4byte(pPrior, 0);
5717 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005718 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005719 }
5720 n = nPayload;
5721 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005722
5723 /* If pToRelease is not zero than pPayload points into the data area
5724 ** of pToRelease. Make sure pToRelease is still writeable. */
5725 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5726
5727 /* If pPayload is part of the data area of pPage, then make sure pPage
5728 ** is still writeable */
5729 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5730 || sqlite3PagerIswriteable(pPage->pDbPage) );
5731
drhb026e052007-05-02 01:34:31 +00005732 if( nSrc>0 ){
5733 if( n>nSrc ) n = nSrc;
5734 assert( pSrc );
5735 memcpy(pPayload, pSrc, n);
5736 }else{
5737 memset(pPayload, 0, n);
5738 }
drh3b7511c2001-05-26 13:15:44 +00005739 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005740 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005741 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005742 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005743 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005744 if( nSrc==0 ){
5745 nSrc = nData;
5746 pSrc = pData;
5747 }
drhdd793422001-06-28 01:54:48 +00005748 }
drh9b171272004-05-08 02:03:22 +00005749 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005750 return SQLITE_OK;
5751}
5752
drh14acc042001-06-10 19:56:58 +00005753/*
5754** Remove the i-th cell from pPage. This routine effects pPage only.
5755** The cell content is not freed or deallocated. It is assumed that
5756** the cell content has been copied someplace else. This routine just
5757** removes the reference to the cell from pPage.
5758**
5759** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005760*/
drh98add2e2009-07-20 17:11:49 +00005761static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005762 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005763 u8 *data; /* pPage->aData */
5764 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005765 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005766 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005767
drh98add2e2009-07-20 17:11:49 +00005768 if( *pRC ) return;
5769
drh8c42ca92001-06-22 19:15:00 +00005770 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005771 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005772 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005773 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005774 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005775 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005776 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005777 hdr = pPage->hdrOffset;
5778 testcase( pc==get2byte(&data[hdr+5]) );
5779 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005780 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005781 *pRC = SQLITE_CORRUPT_BKPT;
5782 return;
shane0af3f892008-11-12 04:55:34 +00005783 }
shanedcc50b72008-11-13 18:29:50 +00005784 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005785 if( rc ){
5786 *pRC = rc;
5787 return;
shanedcc50b72008-11-13 18:29:50 +00005788 }
drh14acc042001-06-10 19:56:58 +00005789 pPage->nCell--;
drh9bb7c4f2013-12-09 01:58:11 +00005790 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
drhc314dc72009-07-21 11:52:34 +00005791 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005792 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005793}
5794
5795/*
5796** Insert a new cell on pPage at cell index "i". pCell points to the
5797** content of the cell.
5798**
5799** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005800** will not fit, then make a copy of the cell content into pTemp if
5801** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005802** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005803** in pTemp or the original pCell) and also record its index.
5804** Allocating a new entry in pPage->aCell[] implies that
5805** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005806**
5807** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5808** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005809** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005810** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005811*/
drh98add2e2009-07-20 17:11:49 +00005812static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005813 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005814 int i, /* New cell becomes the i-th cell of the page */
5815 u8 *pCell, /* Content of the new cell */
5816 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005817 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005818 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5819 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005820){
drh383d30f2010-02-26 13:07:37 +00005821 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005822 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005823 int end; /* First byte past the last cell pointer in data[] */
5824 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005825 int cellOffset; /* Address of first cell pointer in data[] */
5826 u8 *data; /* The content of the whole page */
danielk19774dbaa892009-06-16 16:50:22 +00005827 int nSkip = (iChild ? 4 : 0);
5828
drh98add2e2009-07-20 17:11:49 +00005829 if( *pRC ) return;
5830
drh43605152004-05-29 21:46:49 +00005831 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00005832 assert( MX_CELL(pPage->pBt)<=10921 );
5833 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00005834 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5835 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005836 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005837 /* The cell should normally be sized correctly. However, when moving a
5838 ** malformed cell from a leaf page to an interior page, if the cell size
5839 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5840 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5841 ** the term after the || in the following assert(). */
5842 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005843 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005844 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005845 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005846 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005847 }
danielk19774dbaa892009-06-16 16:50:22 +00005848 if( iChild ){
5849 put4byte(pCell, iChild);
5850 }
drh43605152004-05-29 21:46:49 +00005851 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005852 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5853 pPage->apOvfl[j] = pCell;
5854 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005855 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005856 int rc = sqlite3PagerWrite(pPage->pDbPage);
5857 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005858 *pRC = rc;
5859 return;
danielk19776e465eb2007-08-21 13:11:00 +00005860 }
5861 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005862 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005863 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005864 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005865 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005866 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005867 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005868 /* The allocateSpace() routine guarantees the following two properties
5869 ** if it returns success */
5870 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005871 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005872 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005873 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005874 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005875 if( iChild ){
5876 put4byte(&data[idx], iChild);
5877 }
drh8f518832013-12-09 02:32:19 +00005878 memmove(&data[ins+2], &data[ins], end-ins);
drh43605152004-05-29 21:46:49 +00005879 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005880 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005881#ifndef SQLITE_OMIT_AUTOVACUUM
5882 if( pPage->pBt->autoVacuum ){
5883 /* The cell may contain a pointer to an overflow page. If so, write
5884 ** the entry for the overflow page into the pointer map.
5885 */
drh98add2e2009-07-20 17:11:49 +00005886 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005887 }
5888#endif
drh14acc042001-06-10 19:56:58 +00005889 }
5890}
5891
5892/*
drhfa1a98a2004-05-14 19:08:17 +00005893** Add a list of cells to a page. The page should be initially empty.
5894** The cells are guaranteed to fit on the page.
5895*/
5896static void assemblePage(
peter.d.reid60ec9142014-09-06 16:39:46 +00005897 MemPage *pPage, /* The page to be assembled */
drhfa1a98a2004-05-14 19:08:17 +00005898 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005899 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005900 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005901){
5902 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005903 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005904 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005905 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5906 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5907 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005908
drh43605152004-05-29 21:46:49 +00005909 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005910 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005911 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5912 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005913 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005914
5915 /* Check that the page has just been zeroed by zeroPage() */
5916 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005917 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005918
drh3def2352011-11-11 00:27:15 +00005919 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005920 cellbody = nUsable;
5921 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005922 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005923 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005924 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005925 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005926 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005927 }
danielk1977fad91942009-04-29 17:49:59 +00005928 put2byte(&data[hdr+3], nCell);
5929 put2byte(&data[hdr+5], cellbody);
5930 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005931 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005932}
5933
drh14acc042001-06-10 19:56:58 +00005934/*
drhc3b70572003-01-04 19:44:07 +00005935** The following parameters determine how many adjacent pages get involved
5936** in a balancing operation. NN is the number of neighbors on either side
5937** of the page that participate in the balancing operation. NB is the
5938** total number of pages that participate, including the target page and
5939** NN neighbors on either side.
5940**
5941** The minimum value of NN is 1 (of course). Increasing NN above 1
5942** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5943** in exchange for a larger degradation in INSERT and UPDATE performance.
5944** The value of NN appears to give the best results overall.
5945*/
5946#define NN 1 /* Number of neighbors on either side of pPage */
5947#define NB (NN*2+1) /* Total pages involved in the balance */
5948
danielk1977ac245ec2005-01-14 13:50:11 +00005949
drh615ae552005-01-16 23:21:00 +00005950#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005951/*
5952** This version of balance() handles the common special case where
5953** a new entry is being inserted on the extreme right-end of the
5954** tree, in other words, when the new entry will become the largest
5955** entry in the tree.
5956**
drhc314dc72009-07-21 11:52:34 +00005957** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005958** a new page to the right-hand side and put the one new entry in
5959** that page. This leaves the right side of the tree somewhat
5960** unbalanced. But odds are that we will be inserting new entries
5961** at the end soon afterwards so the nearly empty page will quickly
5962** fill up. On average.
5963**
5964** pPage is the leaf page which is the right-most page in the tree.
5965** pParent is its parent. pPage must have a single overflow entry
5966** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005967**
5968** The pSpace buffer is used to store a temporary copy of the divider
5969** cell that will be inserted into pParent. Such a cell consists of a 4
5970** byte page number followed by a variable length integer. In other
5971** words, at most 13 bytes. Hence the pSpace buffer must be at
5972** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005973*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005974static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5975 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005976 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005977 int rc; /* Return Code */
5978 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005979
drh1fee73e2007-08-29 04:00:57 +00005980 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005981 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005982 assert( pPage->nOverflow==1 );
5983
drh5d433ce2010-08-14 16:02:52 +00005984 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00005985 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005986
danielk1977a50d9aa2009-06-08 14:49:45 +00005987 /* Allocate a new page. This page will become the right-sibling of
5988 ** pPage. Make the parent page writable, so that the new divider cell
5989 ** may be inserted. If both these operations are successful, proceed.
5990 */
drh4f0c5872007-03-26 22:05:01 +00005991 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005992
danielk1977eaa06f62008-09-18 17:34:44 +00005993 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005994
5995 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00005996 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00005997 u16 szCell = cellSizePtr(pPage, pCell);
5998 u8 *pStop;
5999
drhc5053fb2008-11-27 02:22:10 +00006000 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006001 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6002 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00006003 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00006004
6005 /* If this is an auto-vacuum database, update the pointer map
6006 ** with entries for the new page, and any pointer from the
6007 ** cell on the page to an overflow page. If either of these
6008 ** operations fails, the return code is set, but the contents
6009 ** of the parent page are still manipulated by thh code below.
6010 ** That is Ok, at this point the parent page is guaranteed to
6011 ** be marked as dirty. Returning an error code will cause a
6012 ** rollback, undoing any changes made to the parent page.
6013 */
6014 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006015 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6016 if( szCell>pNew->minLocal ){
6017 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006018 }
6019 }
danielk1977eaa06f62008-09-18 17:34:44 +00006020
danielk19776f235cc2009-06-04 14:46:08 +00006021 /* Create a divider cell to insert into pParent. The divider cell
6022 ** consists of a 4-byte page number (the page number of pPage) and
6023 ** a variable length key value (which must be the same value as the
6024 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006025 **
danielk19776f235cc2009-06-04 14:46:08 +00006026 ** To find the largest key value on pPage, first find the right-most
6027 ** cell on pPage. The first two fields of this cell are the
6028 ** record-length (a variable length integer at most 32-bits in size)
6029 ** and the key value (a variable length integer, may have any value).
6030 ** The first of the while(...) loops below skips over the record-length
6031 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006032 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006033 */
danielk1977eaa06f62008-09-18 17:34:44 +00006034 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006035 pStop = &pCell[9];
6036 while( (*(pCell++)&0x80) && pCell<pStop );
6037 pStop = &pCell[9];
6038 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6039
danielk19774dbaa892009-06-16 16:50:22 +00006040 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006041 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6042 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006043
6044 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006045 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6046
danielk1977e08a3c42008-09-18 18:17:03 +00006047 /* Release the reference to the new page. */
6048 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006049 }
6050
danielk1977eaa06f62008-09-18 17:34:44 +00006051 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006052}
drh615ae552005-01-16 23:21:00 +00006053#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006054
danielk19774dbaa892009-06-16 16:50:22 +00006055#if 0
drhc3b70572003-01-04 19:44:07 +00006056/*
danielk19774dbaa892009-06-16 16:50:22 +00006057** This function does not contribute anything to the operation of SQLite.
6058** it is sometimes activated temporarily while debugging code responsible
6059** for setting pointer-map entries.
6060*/
6061static int ptrmapCheckPages(MemPage **apPage, int nPage){
6062 int i, j;
6063 for(i=0; i<nPage; i++){
6064 Pgno n;
6065 u8 e;
6066 MemPage *pPage = apPage[i];
6067 BtShared *pBt = pPage->pBt;
6068 assert( pPage->isInit );
6069
6070 for(j=0; j<pPage->nCell; j++){
6071 CellInfo info;
6072 u8 *z;
6073
6074 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00006075 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006076 if( info.iOverflow ){
6077 Pgno ovfl = get4byte(&z[info.iOverflow]);
6078 ptrmapGet(pBt, ovfl, &e, &n);
6079 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6080 }
6081 if( !pPage->leaf ){
6082 Pgno child = get4byte(z);
6083 ptrmapGet(pBt, child, &e, &n);
6084 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6085 }
6086 }
6087 if( !pPage->leaf ){
6088 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6089 ptrmapGet(pBt, child, &e, &n);
6090 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6091 }
6092 }
6093 return 1;
6094}
6095#endif
6096
danielk1977cd581a72009-06-23 15:43:39 +00006097/*
6098** This function is used to copy the contents of the b-tree node stored
6099** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6100** the pointer-map entries for each child page are updated so that the
6101** parent page stored in the pointer map is page pTo. If pFrom contained
6102** any cells with overflow page pointers, then the corresponding pointer
6103** map entries are also updated so that the parent page is page pTo.
6104**
6105** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006106** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006107**
danielk197730548662009-07-09 05:07:37 +00006108** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006109**
6110** The performance of this function is not critical. It is only used by
6111** the balance_shallower() and balance_deeper() procedures, neither of
6112** which are called often under normal circumstances.
6113*/
drhc314dc72009-07-21 11:52:34 +00006114static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6115 if( (*pRC)==SQLITE_OK ){
6116 BtShared * const pBt = pFrom->pBt;
6117 u8 * const aFrom = pFrom->aData;
6118 u8 * const aTo = pTo->aData;
6119 int const iFromHdr = pFrom->hdrOffset;
6120 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006121 int rc;
drhc314dc72009-07-21 11:52:34 +00006122 int iData;
6123
6124
6125 assert( pFrom->isInit );
6126 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006127 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006128
6129 /* Copy the b-tree node content from page pFrom to page pTo. */
6130 iData = get2byte(&aFrom[iFromHdr+5]);
6131 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6132 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6133
6134 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006135 ** match the new data. The initialization of pTo can actually fail under
6136 ** fairly obscure circumstances, even though it is a copy of initialized
6137 ** page pFrom.
6138 */
drhc314dc72009-07-21 11:52:34 +00006139 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006140 rc = btreeInitPage(pTo);
6141 if( rc!=SQLITE_OK ){
6142 *pRC = rc;
6143 return;
6144 }
drhc314dc72009-07-21 11:52:34 +00006145
6146 /* If this is an auto-vacuum database, update the pointer-map entries
6147 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6148 */
6149 if( ISAUTOVACUUM ){
6150 *pRC = setChildPtrmaps(pTo);
6151 }
danielk1977cd581a72009-06-23 15:43:39 +00006152 }
danielk1977cd581a72009-06-23 15:43:39 +00006153}
6154
6155/*
danielk19774dbaa892009-06-16 16:50:22 +00006156** This routine redistributes cells on the iParentIdx'th child of pParent
6157** (hereafter "the page") and up to 2 siblings so that all pages have about the
6158** same amount of free space. Usually a single sibling on either side of the
6159** page are used in the balancing, though both siblings might come from one
6160** side if the page is the first or last child of its parent. If the page
6161** has fewer than 2 siblings (something which can only happen if the page
6162** is a root page or a child of a root page) then all available siblings
6163** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006164**
danielk19774dbaa892009-06-16 16:50:22 +00006165** The number of siblings of the page might be increased or decreased by
6166** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006167**
danielk19774dbaa892009-06-16 16:50:22 +00006168** Note that when this routine is called, some of the cells on the page
6169** might not actually be stored in MemPage.aData[]. This can happen
6170** if the page is overfull. This routine ensures that all cells allocated
6171** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006172**
danielk19774dbaa892009-06-16 16:50:22 +00006173** In the course of balancing the page and its siblings, cells may be
6174** inserted into or removed from the parent page (pParent). Doing so
6175** may cause the parent page to become overfull or underfull. If this
6176** happens, it is the responsibility of the caller to invoke the correct
6177** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006178**
drh5e00f6c2001-09-13 13:46:56 +00006179** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006180** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006181** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006182**
6183** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006184** buffer big enough to hold one page. If while inserting cells into the parent
6185** page (pParent) the parent page becomes overfull, this buffer is
6186** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006187** a maximum of four divider cells into the parent page, and the maximum
6188** size of a cell stored within an internal node is always less than 1/4
6189** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6190** enough for all overflow cells.
6191**
6192** If aOvflSpace is set to a null pointer, this function returns
6193** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006194*/
mistachkine7c54162012-10-02 22:54:27 +00006195#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6196#pragma optimize("", off)
6197#endif
danielk19774dbaa892009-06-16 16:50:22 +00006198static int balance_nonroot(
6199 MemPage *pParent, /* Parent page of siblings being balanced */
6200 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006201 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006202 int isRoot, /* True if pParent is a root-page */
6203 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006204){
drh16a9b832007-05-05 18:39:25 +00006205 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006206 int nCell = 0; /* Number of cells in apCell[] */
6207 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006208 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006209 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006210 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006211 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006212 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006213 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006214 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006215 int usableSpace; /* Bytes in pPage beyond the header */
6216 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006217 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006218 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006219 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006220 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006221 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00006222 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00006223 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006224 u8 *pRight; /* Location in parent of right-sibling pointer */
6225 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006226 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6227 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006228 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006229 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006230 u8 *aSpace1; /* Space for copies of dividers cells */
6231 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00006232
danielk1977a50d9aa2009-06-08 14:49:45 +00006233 pBt = pParent->pBt;
6234 assert( sqlite3_mutex_held(pBt->mutex) );
6235 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006236
danielk1977e5765212009-06-17 11:13:28 +00006237#if 0
drh43605152004-05-29 21:46:49 +00006238 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006239#endif
drh2e38c322004-09-03 18:38:44 +00006240
danielk19774dbaa892009-06-16 16:50:22 +00006241 /* At this point pParent may have at most one overflow cell. And if
6242 ** this overflow cell is present, it must be the cell with
6243 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006244 ** is called (indirectly) from sqlite3BtreeDelete().
6245 */
danielk19774dbaa892009-06-16 16:50:22 +00006246 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006247 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006248
danielk197711a8a862009-06-17 11:49:52 +00006249 if( !aOvflSpace ){
6250 return SQLITE_NOMEM;
6251 }
6252
danielk1977a50d9aa2009-06-08 14:49:45 +00006253 /* Find the sibling pages to balance. Also locate the cells in pParent
6254 ** that divide the siblings. An attempt is made to find NN siblings on
6255 ** either side of pPage. More siblings are taken from one side, however,
6256 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006257 ** has NB or fewer children then all children of pParent are taken.
6258 **
6259 ** This loop also drops the divider cells from the parent page. This
6260 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006261 ** overflow cells in the parent page, since if any existed they will
6262 ** have already been removed.
6263 */
danielk19774dbaa892009-06-16 16:50:22 +00006264 i = pParent->nOverflow + pParent->nCell;
6265 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006266 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006267 }else{
dan7d6885a2012-08-08 14:04:56 +00006268 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006269 if( iParentIdx==0 ){
6270 nxDiv = 0;
6271 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006272 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006273 }else{
dan7d6885a2012-08-08 14:04:56 +00006274 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006275 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006276 }
dan7d6885a2012-08-08 14:04:56 +00006277 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006278 }
dan7d6885a2012-08-08 14:04:56 +00006279 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006280 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6281 pRight = &pParent->aData[pParent->hdrOffset+8];
6282 }else{
6283 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6284 }
6285 pgno = get4byte(pRight);
6286 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006287 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006288 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006289 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006290 goto balance_cleanup;
6291 }
danielk1977634f2982005-03-28 08:44:07 +00006292 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006293 if( (i--)==0 ) break;
6294
drh2cbd78b2012-02-02 19:37:18 +00006295 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6296 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006297 pgno = get4byte(apDiv[i]);
6298 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6299 pParent->nOverflow = 0;
6300 }else{
6301 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6302 pgno = get4byte(apDiv[i]);
6303 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6304
6305 /* Drop the cell from the parent page. apDiv[i] still points to
6306 ** the cell within the parent, even though it has been dropped.
6307 ** This is safe because dropping a cell only overwrites the first
6308 ** four bytes of it, and this function does not need the first
6309 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006310 ** later on.
6311 **
drh8a575d92011-10-12 17:00:28 +00006312 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006313 ** the dropCell() routine will overwrite the entire cell with zeroes.
6314 ** In this case, temporarily copy the cell into the aOvflSpace[]
6315 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6316 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006317 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006318 int iOff;
6319
6320 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006321 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006322 rc = SQLITE_CORRUPT_BKPT;
6323 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6324 goto balance_cleanup;
6325 }else{
6326 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6327 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6328 }
drh5b47efa2010-02-12 18:18:39 +00006329 }
drh98add2e2009-07-20 17:11:49 +00006330 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006331 }
drh8b2f49b2001-06-08 00:21:52 +00006332 }
6333
drha9121e42008-02-19 14:59:35 +00006334 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006335 ** alignment */
drha9121e42008-02-19 14:59:35 +00006336 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006337
drh8b2f49b2001-06-08 00:21:52 +00006338 /*
danielk1977634f2982005-03-28 08:44:07 +00006339 ** Allocate space for memory structures
6340 */
danielk19774dbaa892009-06-16 16:50:22 +00006341 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006342 szScratch =
drha9121e42008-02-19 14:59:35 +00006343 nMaxCells*sizeof(u8*) /* apCell */
6344 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006345 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006346 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006347 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006348 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006349 rc = SQLITE_NOMEM;
6350 goto balance_cleanup;
6351 }
drha9121e42008-02-19 14:59:35 +00006352 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006353 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006354 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006355
6356 /*
6357 ** Load pointers to all cells on sibling pages and the divider cells
6358 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006359 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006360 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006361 **
6362 ** If the siblings are on leaf pages, then the child pointers of the
6363 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006364 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006365 ** child pointers. If siblings are not leaves, then all cell in
6366 ** apCell[] include child pointers. Either way, all cells in apCell[]
6367 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006368 **
6369 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6370 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006371 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006372 leafCorrection = apOld[0]->leaf*4;
6373 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006374 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006375 int limit;
6376
6377 /* Before doing anything else, take a copy of the i'th original sibling
6378 ** The rest of this function will use data from the copies rather
6379 ** that the original pages since the original pages will be in the
6380 ** process of being overwritten. */
6381 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6382 memcpy(pOld, apOld[i], sizeof(MemPage));
6383 pOld->aData = (void*)&pOld[1];
6384 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6385
6386 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006387 if( pOld->nOverflow>0 ){
6388 for(j=0; j<limit; j++){
6389 assert( nCell<nMaxCells );
6390 apCell[nCell] = findOverflowCell(pOld, j);
6391 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6392 nCell++;
6393 }
6394 }else{
6395 u8 *aData = pOld->aData;
6396 u16 maskPage = pOld->maskPage;
6397 u16 cellOffset = pOld->cellOffset;
6398 for(j=0; j<limit; j++){
6399 assert( nCell<nMaxCells );
6400 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6401 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6402 nCell++;
6403 }
6404 }
danielk19774dbaa892009-06-16 16:50:22 +00006405 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006406 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006407 u8 *pTemp;
6408 assert( nCell<nMaxCells );
6409 szCell[nCell] = sz;
6410 pTemp = &aSpace1[iSpace1];
6411 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006412 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006413 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006414 memcpy(pTemp, apDiv[i], sz);
6415 apCell[nCell] = pTemp+leafCorrection;
6416 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006417 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006418 if( !pOld->leaf ){
6419 assert( leafCorrection==0 );
6420 assert( pOld->hdrOffset==0 );
6421 /* The right pointer of the child page pOld becomes the left
6422 ** pointer of the divider cell */
6423 memcpy(apCell[nCell], &pOld->aData[8], 4);
6424 }else{
6425 assert( leafCorrection==4 );
6426 if( szCell[nCell]<4 ){
6427 /* Do not allow any cells smaller than 4 bytes. */
6428 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006429 }
6430 }
drh14acc042001-06-10 19:56:58 +00006431 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006432 }
drh8b2f49b2001-06-08 00:21:52 +00006433 }
6434
6435 /*
drh6019e162001-07-02 17:51:45 +00006436 ** Figure out the number of pages needed to hold all nCell cells.
6437 ** Store this number in "k". Also compute szNew[] which is the total
6438 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006439 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006440 ** cntNew[k] should equal nCell.
6441 **
drh96f5b762004-05-16 16:24:36 +00006442 ** Values computed by this block:
6443 **
6444 ** k: The total number of sibling pages
6445 ** szNew[i]: Spaced used on the i-th sibling page.
6446 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6447 ** the right of the i-th sibling page.
6448 ** usableSpace: Number of bytes of space available on each sibling.
6449 **
drh8b2f49b2001-06-08 00:21:52 +00006450 */
drh43605152004-05-29 21:46:49 +00006451 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006452 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006453 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006454 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006455 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006456 szNew[k] = subtotal - szCell[i];
6457 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006458 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006459 subtotal = 0;
6460 k++;
drh9978c972010-02-23 17:36:32 +00006461 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006462 }
6463 }
6464 szNew[k] = subtotal;
6465 cntNew[k] = nCell;
6466 k++;
drh96f5b762004-05-16 16:24:36 +00006467
6468 /*
6469 ** The packing computed by the previous block is biased toward the siblings
6470 ** on the left side. The left siblings are always nearly full, while the
6471 ** right-most sibling might be nearly empty. This block of code attempts
6472 ** to adjust the packing of siblings to get a better balance.
6473 **
6474 ** This adjustment is more than an optimization. The packing above might
6475 ** be so out of balance as to be illegal. For example, the right-most
6476 ** sibling might be completely empty. This adjustment is not optional.
6477 */
drh6019e162001-07-02 17:51:45 +00006478 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006479 int szRight = szNew[i]; /* Size of sibling on the right */
6480 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6481 int r; /* Index of right-most cell in left sibling */
6482 int d; /* Index of first cell to the left of right sibling */
6483
6484 r = cntNew[i-1] - 1;
6485 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006486 assert( d<nMaxCells );
6487 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006488 while( szRight==0
6489 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6490 ){
drh43605152004-05-29 21:46:49 +00006491 szRight += szCell[d] + 2;
6492 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006493 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006494 r = cntNew[i-1] - 1;
6495 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006496 }
drh96f5b762004-05-16 16:24:36 +00006497 szNew[i] = szRight;
6498 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006499 }
drh09d0deb2005-08-02 17:13:09 +00006500
danielk19776f235cc2009-06-04 14:46:08 +00006501 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006502 ** a virtual root page. A virtual root page is when the real root
6503 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006504 **
6505 ** UPDATE: The assert() below is not necessarily true if the database
6506 ** file is corrupt. The corruption will be detected and reported later
6507 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006508 */
drh2f32fba2012-01-02 16:38:57 +00006509#if 0
drh09d0deb2005-08-02 17:13:09 +00006510 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006511#endif
drh8b2f49b2001-06-08 00:21:52 +00006512
danielk1977e5765212009-06-17 11:13:28 +00006513 TRACE(("BALANCE: old: %d %d %d ",
6514 apOld[0]->pgno,
6515 nOld>=2 ? apOld[1]->pgno : 0,
6516 nOld>=3 ? apOld[2]->pgno : 0
6517 ));
6518
drh8b2f49b2001-06-08 00:21:52 +00006519 /*
drh6b308672002-07-08 02:16:37 +00006520 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006521 */
drheac74422009-06-14 12:47:11 +00006522 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006523 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006524 goto balance_cleanup;
6525 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006526 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006527 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006528 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006529 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006530 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006531 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006532 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006533 nNew++;
danielk197728129562005-01-11 10:25:06 +00006534 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006535 }else{
drh7aa8f852006-03-28 00:24:44 +00006536 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006537 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006538 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006539 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006540 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006541
6542 /* Set the pointer-map entry for the new sibling page. */
6543 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006544 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006545 if( rc!=SQLITE_OK ){
6546 goto balance_cleanup;
6547 }
6548 }
drh6b308672002-07-08 02:16:37 +00006549 }
drh8b2f49b2001-06-08 00:21:52 +00006550 }
6551
danielk1977299b1872004-11-22 10:02:10 +00006552 /* Free any old pages that were not reused as new pages.
6553 */
6554 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006555 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006556 if( rc ) goto balance_cleanup;
6557 releasePage(apOld[i]);
6558 apOld[i] = 0;
6559 i++;
6560 }
6561
drh8b2f49b2001-06-08 00:21:52 +00006562 /*
peter.d.reid60ec9142014-09-06 16:39:46 +00006563 ** Put the new pages in ascending order. This helps to
drhf9ffac92002-03-02 19:00:31 +00006564 ** keep entries in the disk file in order so that a scan
6565 ** of the table is a linear scan through the file. That
6566 ** in turn helps the operating system to deliver pages
6567 ** from the disk more rapidly.
6568 **
6569 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006570 ** n is never more than NB (a small constant), that should
6571 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006572 **
drhc3b70572003-01-04 19:44:07 +00006573 ** When NB==3, this one optimization makes the database
6574 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006575 */
6576 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006577 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006578 int minI = i;
6579 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006580 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006581 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006582 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006583 }
6584 }
6585 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006586 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006587 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006588 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006589 apNew[minI] = pT;
6590 }
6591 }
danielk1977e5765212009-06-17 11:13:28 +00006592 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006593 apNew[0]->pgno, szNew[0],
6594 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6595 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6596 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6597 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6598
6599 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6600 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006601
drhf9ffac92002-03-02 19:00:31 +00006602 /*
drh14acc042001-06-10 19:56:58 +00006603 ** Evenly distribute the data in apCell[] across the new pages.
6604 ** Insert divider cells into pParent as necessary.
6605 */
6606 j = 0;
6607 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006608 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006609 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006610 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006611 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006612 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006613 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006614 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006615
danielk1977ac11ee62005-01-15 12:45:51 +00006616 j = cntNew[i];
6617
6618 /* If the sibling page assembled above was not the right-most sibling,
6619 ** insert a divider cell into the parent page.
6620 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006621 assert( i<nNew-1 || j==nCell );
6622 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006623 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006624 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006625 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006626
6627 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006628 pCell = apCell[j];
6629 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006630 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006631 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006632 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006633 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006634 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006635 ** then there is no divider cell in apCell[]. Instead, the divider
6636 ** cell consists of the integer key for the right-most cell of
6637 ** the sibling-page assembled above only.
6638 */
drh6f11bef2004-05-13 01:12:56 +00006639 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006640 j--;
danielk197730548662009-07-09 05:07:37 +00006641 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006642 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006643 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006644 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006645 }else{
6646 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006647 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006648 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006649 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006650 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006651 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006652 ** insertCell(), so reparse the cell now.
6653 **
6654 ** Note that this can never happen in an SQLite data file, as all
6655 ** cells are at least 4 bytes. It only happens in b-trees used
6656 ** to evaluate "IN (SELECT ...)" and similar clauses.
6657 */
6658 if( szCell[j]==4 ){
6659 assert(leafCorrection==4);
6660 sz = cellSizePtr(pParent, pCell);
6661 }
drh4b70f112004-05-02 21:12:19 +00006662 }
danielk19776067a9b2009-06-09 09:41:00 +00006663 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006664 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006665 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006666 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006667 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006668 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006669
drh14acc042001-06-10 19:56:58 +00006670 j++;
6671 nxDiv++;
6672 }
6673 }
drh6019e162001-07-02 17:51:45 +00006674 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006675 assert( nOld>0 );
6676 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006677 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006678 u8 *zChild = &apCopy[nOld-1]->aData[8];
6679 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006680 }
6681
danielk197713bd99f2009-06-24 05:40:34 +00006682 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6683 /* The root page of the b-tree now contains no cells. The only sibling
6684 ** page is the right-child of the parent. Copy the contents of the
6685 ** child page into the parent, decreasing the overall height of the
6686 ** b-tree structure by one. This is described as the "balance-shallower"
6687 ** sub-algorithm in some documentation.
6688 **
6689 ** If this is an auto-vacuum database, the call to copyNodeContent()
6690 ** sets all pointer-map entries corresponding to database image pages
6691 ** for which the pointer is stored within the content being copied.
6692 **
6693 ** The second assert below verifies that the child page is defragmented
6694 ** (it must be, as it was just reconstructed using assemblePage()). This
6695 ** is important if the parent page happens to be page 1 of the database
6696 ** image. */
6697 assert( nNew==1 );
6698 assert( apNew[0]->nFree ==
6699 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6700 );
drhc314dc72009-07-21 11:52:34 +00006701 copyNodeContent(apNew[0], pParent, &rc);
6702 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006703 }else if( ISAUTOVACUUM ){
6704 /* Fix the pointer-map entries for all the cells that were shifted around.
6705 ** There are several different types of pointer-map entries that need to
6706 ** be dealt with by this routine. Some of these have been set already, but
6707 ** many have not. The following is a summary:
6708 **
6709 ** 1) The entries associated with new sibling pages that were not
6710 ** siblings when this function was called. These have already
6711 ** been set. We don't need to worry about old siblings that were
6712 ** moved to the free-list - the freePage() code has taken care
6713 ** of those.
6714 **
6715 ** 2) The pointer-map entries associated with the first overflow
6716 ** page in any overflow chains used by new divider cells. These
6717 ** have also already been taken care of by the insertCell() code.
6718 **
6719 ** 3) If the sibling pages are not leaves, then the child pages of
6720 ** cells stored on the sibling pages may need to be updated.
6721 **
6722 ** 4) If the sibling pages are not internal intkey nodes, then any
6723 ** overflow pages used by these cells may need to be updated
6724 ** (internal intkey nodes never contain pointers to overflow pages).
6725 **
6726 ** 5) If the sibling pages are not leaves, then the pointer-map
6727 ** entries for the right-child pages of each sibling may need
6728 ** to be updated.
6729 **
6730 ** Cases 1 and 2 are dealt with above by other code. The next
6731 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6732 ** setting a pointer map entry is a relatively expensive operation, this
6733 ** code only sets pointer map entries for child or overflow pages that have
6734 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006735 MemPage *pNew = apNew[0];
6736 MemPage *pOld = apCopy[0];
6737 int nOverflow = pOld->nOverflow;
6738 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006739 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006740 j = 0; /* Current 'old' sibling page */
6741 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006742 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006743 int isDivider = 0;
6744 while( i==iNextOld ){
6745 /* Cell i is the cell immediately following the last cell on old
6746 ** sibling page j. If the siblings are not leaf pages of an
6747 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006748 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006749 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006750 pOld = apCopy[++j];
6751 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6752 if( pOld->nOverflow ){
6753 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006754 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006755 }
6756 isDivider = !leafData;
6757 }
6758
6759 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006760 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6761 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006762 if( i==iOverflow ){
6763 isDivider = 1;
6764 if( (--nOverflow)>0 ){
6765 iOverflow++;
6766 }
6767 }
6768
6769 if( i==cntNew[k] ){
6770 /* Cell i is the cell immediately following the last cell on new
6771 ** sibling page k. If the siblings are not leaf pages of an
6772 ** intkey b-tree, then cell i is a divider cell. */
6773 pNew = apNew[++k];
6774 if( !leafData ) continue;
6775 }
danielk19774dbaa892009-06-16 16:50:22 +00006776 assert( j<nOld );
6777 assert( k<nNew );
6778
6779 /* If the cell was originally divider cell (and is not now) or
6780 ** an overflow cell, or if the cell was located on a different sibling
6781 ** page before the balancing, then the pointer map entries associated
6782 ** with any child or overflow pages need to be updated. */
6783 if( isDivider || pOld->pgno!=pNew->pgno ){
6784 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006785 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006786 }
drh98add2e2009-07-20 17:11:49 +00006787 if( szCell[i]>pNew->minLocal ){
6788 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006789 }
6790 }
6791 }
6792
6793 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006794 for(i=0; i<nNew; i++){
6795 u32 key = get4byte(&apNew[i]->aData[8]);
6796 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006797 }
6798 }
6799
6800#if 0
6801 /* The ptrmapCheckPages() contains assert() statements that verify that
6802 ** all pointer map pages are set correctly. This is helpful while
6803 ** debugging. This is usually disabled because a corrupt database may
6804 ** cause an assert() statement to fail. */
6805 ptrmapCheckPages(apNew, nNew);
6806 ptrmapCheckPages(&pParent, 1);
6807#endif
6808 }
6809
danielk197771d5d2c2008-09-29 11:49:47 +00006810 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006811 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6812 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006813
drh8b2f49b2001-06-08 00:21:52 +00006814 /*
drh14acc042001-06-10 19:56:58 +00006815 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006816 */
drh14acc042001-06-10 19:56:58 +00006817balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006818 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006819 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006820 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006821 }
drh14acc042001-06-10 19:56:58 +00006822 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006823 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006824 }
danielk1977eaa06f62008-09-18 17:34:44 +00006825
drh8b2f49b2001-06-08 00:21:52 +00006826 return rc;
6827}
mistachkine7c54162012-10-02 22:54:27 +00006828#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6829#pragma optimize("", on)
6830#endif
drh8b2f49b2001-06-08 00:21:52 +00006831
drh43605152004-05-29 21:46:49 +00006832
6833/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006834** This function is called when the root page of a b-tree structure is
6835** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006836**
danielk1977a50d9aa2009-06-08 14:49:45 +00006837** A new child page is allocated and the contents of the current root
6838** page, including overflow cells, are copied into the child. The root
6839** page is then overwritten to make it an empty page with the right-child
6840** pointer pointing to the new page.
6841**
6842** Before returning, all pointer-map entries corresponding to pages
6843** that the new child-page now contains pointers to are updated. The
6844** entry corresponding to the new right-child pointer of the root
6845** page is also updated.
6846**
6847** If successful, *ppChild is set to contain a reference to the child
6848** page and SQLITE_OK is returned. In this case the caller is required
6849** to call releasePage() on *ppChild exactly once. If an error occurs,
6850** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006851*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006852static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6853 int rc; /* Return value from subprocedures */
6854 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006855 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006856 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006857
danielk1977a50d9aa2009-06-08 14:49:45 +00006858 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006859 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006860
danielk1977a50d9aa2009-06-08 14:49:45 +00006861 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6862 ** page that will become the new right-child of pPage. Copy the contents
6863 ** of the node stored on pRoot into the new child page.
6864 */
drh98add2e2009-07-20 17:11:49 +00006865 rc = sqlite3PagerWrite(pRoot->pDbPage);
6866 if( rc==SQLITE_OK ){
6867 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006868 copyNodeContent(pRoot, pChild, &rc);
6869 if( ISAUTOVACUUM ){
6870 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006871 }
6872 }
6873 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006874 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006875 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006876 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006877 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006878 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6879 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6880 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006881
danielk1977a50d9aa2009-06-08 14:49:45 +00006882 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6883
6884 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006885 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6886 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6887 memcpy(pChild->apOvfl, pRoot->apOvfl,
6888 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006889 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006890
6891 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6892 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6893 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6894
6895 *ppChild = pChild;
6896 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006897}
6898
6899/*
danielk197771d5d2c2008-09-29 11:49:47 +00006900** The page that pCur currently points to has just been modified in
6901** some way. This function figures out if this modification means the
6902** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006903** routine. Balancing routines are:
6904**
6905** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006906** balance_deeper()
6907** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006908*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006909static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006910 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006911 const int nMin = pCur->pBt->usableSize * 2 / 3;
6912 u8 aBalanceQuickSpace[13];
6913 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006914
shane75ac1de2009-06-09 18:58:52 +00006915 TESTONLY( int balance_quick_called = 0 );
6916 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006917
6918 do {
6919 int iPage = pCur->iPage;
6920 MemPage *pPage = pCur->apPage[iPage];
6921
6922 if( iPage==0 ){
6923 if( pPage->nOverflow ){
6924 /* The root page of the b-tree is overfull. In this case call the
6925 ** balance_deeper() function to create a new child for the root-page
6926 ** and copy the current contents of the root-page to it. The
6927 ** next iteration of the do-loop will balance the child page.
6928 */
6929 assert( (balance_deeper_called++)==0 );
6930 rc = balance_deeper(pPage, &pCur->apPage[1]);
6931 if( rc==SQLITE_OK ){
6932 pCur->iPage = 1;
6933 pCur->aiIdx[0] = 0;
6934 pCur->aiIdx[1] = 0;
6935 assert( pCur->apPage[1]->nOverflow );
6936 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006937 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006938 break;
6939 }
6940 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6941 break;
6942 }else{
6943 MemPage * const pParent = pCur->apPage[iPage-1];
6944 int const iIdx = pCur->aiIdx[iPage-1];
6945
6946 rc = sqlite3PagerWrite(pParent->pDbPage);
6947 if( rc==SQLITE_OK ){
6948#ifndef SQLITE_OMIT_QUICKBALANCE
6949 if( pPage->hasData
6950 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006951 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006952 && pParent->pgno!=1
6953 && pParent->nCell==iIdx
6954 ){
6955 /* Call balance_quick() to create a new sibling of pPage on which
6956 ** to store the overflow cell. balance_quick() inserts a new cell
6957 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00006958 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00006959 ** use either balance_nonroot() or balance_deeper(). Until this
6960 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6961 ** buffer.
6962 **
6963 ** The purpose of the following assert() is to check that only a
6964 ** single call to balance_quick() is made for each call to this
6965 ** function. If this were not verified, a subtle bug involving reuse
6966 ** of the aBalanceQuickSpace[] might sneak in.
6967 */
6968 assert( (balance_quick_called++)==0 );
6969 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6970 }else
6971#endif
6972 {
6973 /* In this case, call balance_nonroot() to redistribute cells
6974 ** between pPage and up to 2 of its sibling pages. This involves
6975 ** modifying the contents of pParent, which may cause pParent to
6976 ** become overfull or underfull. The next iteration of the do-loop
6977 ** will balance the parent page to correct this.
6978 **
6979 ** If the parent page becomes overfull, the overflow cell or cells
6980 ** are stored in the pSpace buffer allocated immediately below.
6981 ** A subsequent iteration of the do-loop will deal with this by
6982 ** calling balance_nonroot() (balance_deeper() may be called first,
6983 ** but it doesn't deal with overflow cells - just moves them to a
6984 ** different page). Once this subsequent call to balance_nonroot()
6985 ** has completed, it is safe to release the pSpace buffer used by
6986 ** the previous call, as the overflow cell data will have been
6987 ** copied either into the body of a database page or into the new
6988 ** pSpace buffer passed to the latter call to balance_nonroot().
6989 */
6990 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00006991 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00006992 if( pFree ){
6993 /* If pFree is not NULL, it points to the pSpace buffer used
6994 ** by a previous call to balance_nonroot(). Its contents are
6995 ** now stored either on real database pages or within the
6996 ** new pSpace buffer, so it may be safely freed here. */
6997 sqlite3PageFree(pFree);
6998 }
6999
danielk19774dbaa892009-06-16 16:50:22 +00007000 /* The pSpace buffer will be freed after the next call to
7001 ** balance_nonroot(), or just before this function returns, whichever
7002 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007003 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007004 }
7005 }
7006
7007 pPage->nOverflow = 0;
7008
7009 /* The next iteration of the do-loop balances the parent page. */
7010 releasePage(pPage);
7011 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00007012 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007013 }while( rc==SQLITE_OK );
7014
7015 if( pFree ){
7016 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007017 }
7018 return rc;
7019}
7020
drhf74b8d92002-09-01 23:20:45 +00007021
7022/*
drh3b7511c2001-05-26 13:15:44 +00007023** Insert a new record into the BTree. The key is given by (pKey,nKey)
7024** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007025** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007026** is left pointing at a random location.
7027**
7028** For an INTKEY table, only the nKey value of the key is used. pKey is
7029** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007030**
7031** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007032** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007033** been performed. seekResult is the search result returned (a negative
7034** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007035** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007036** (pKey, nKey)).
7037**
drh3e9ca092009-09-08 01:14:48 +00007038** If the seekResult parameter is non-zero, then the caller guarantees that
7039** cursor pCur is pointing at the existing copy of a row that is to be
7040** overwritten. If the seekResult parameter is 0, then cursor pCur may
7041** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007042** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007043*/
drh3aac2dd2004-04-26 14:10:20 +00007044int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007045 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007046 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007047 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007048 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007049 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007050 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007051){
drh3b7511c2001-05-26 13:15:44 +00007052 int rc;
drh3e9ca092009-09-08 01:14:48 +00007053 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007054 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007055 int idx;
drh3b7511c2001-05-26 13:15:44 +00007056 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007057 Btree *p = pCur->pBtree;
7058 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007059 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007060 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007061
drh98add2e2009-07-20 17:11:49 +00007062 if( pCur->eState==CURSOR_FAULT ){
7063 assert( pCur->skipNext!=SQLITE_OK );
7064 return pCur->skipNext;
7065 }
7066
drh1fee73e2007-08-29 04:00:57 +00007067 assert( cursorHoldsMutex(pCur) );
drh036dbec2014-03-11 23:40:44 +00007068 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007069 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007070 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7071
danielk197731d31b82009-07-13 13:18:07 +00007072 /* Assert that the caller has been consistent. If this cursor was opened
7073 ** expecting an index b-tree, then the caller should be inserting blob
7074 ** keys with no associated data. If the cursor was opened expecting an
7075 ** intkey table, the caller should be inserting integer keys with a
7076 ** blob of associated data. */
7077 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7078
danielk19779c3acf32009-05-02 07:36:49 +00007079 /* Save the positions of any other cursors open on this table.
7080 **
danielk19773509a652009-07-06 18:56:13 +00007081 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007082 ** example, when inserting data into a table with auto-generated integer
7083 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7084 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007085 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007086 ** that the cursor is already where it needs to be and returns without
7087 ** doing any work. To avoid thwarting these optimizations, it is important
7088 ** not to clear the cursor here.
7089 */
drh4c301aa2009-07-15 17:25:45 +00007090 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7091 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007092
drhd60f4f42012-03-23 14:23:52 +00007093 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00007094 /* If this is an insert into a table b-tree, invalidate any incrblob
7095 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007096 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007097
7098 /* If the cursor is currently on the last row and we are appending a
7099 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7100 ** call */
drh036dbec2014-03-11 23:40:44 +00007101 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 && pCur->info.nKey==nKey-1 ){
drhe0670b62014-02-12 21:31:12 +00007102 loc = -1;
7103 }
drhd60f4f42012-03-23 14:23:52 +00007104 }
7105
drh4c301aa2009-07-15 17:25:45 +00007106 if( !loc ){
7107 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7108 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007109 }
danielk1977b980d2212009-06-22 18:03:51 +00007110 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007111
danielk197771d5d2c2008-09-29 11:49:47 +00007112 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007113 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007114 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007115
drh3a4c1412004-05-09 20:40:11 +00007116 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7117 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7118 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007119 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007120 allocateTempSpace(pBt);
7121 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00007122 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00007123 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007124 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00007125 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007126 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007127 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007128 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007129 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007130 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007131 rc = sqlite3PagerWrite(pPage->pDbPage);
7132 if( rc ){
7133 goto end_insert;
7134 }
danielk197771d5d2c2008-09-29 11:49:47 +00007135 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007136 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007137 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007138 }
drh43605152004-05-29 21:46:49 +00007139 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00007140 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00007141 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007142 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007143 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007144 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007145 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007146 }else{
drh4b70f112004-05-02 21:12:19 +00007147 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007148 }
drh98add2e2009-07-20 17:11:49 +00007149 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007150 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007151
mistachkin48864df2013-03-21 21:20:32 +00007152 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007153 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007154 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007155 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007156 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007157 ** Previous versions of SQLite called moveToRoot() to move the cursor
7158 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007159 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7160 ** set the cursor state to "invalid". This makes common insert operations
7161 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007162 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007163 ** There is a subtle but important optimization here too. When inserting
7164 ** multiple records into an intkey b-tree using a single cursor (as can
7165 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7166 ** is advantageous to leave the cursor pointing to the last entry in
7167 ** the b-tree if possible. If the cursor is left pointing to the last
7168 ** entry in the table, and the next row inserted has an integer key
7169 ** larger than the largest existing key, it is possible to insert the
7170 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007171 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007172 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007173 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00007174 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00007175 rc = balance(pCur);
7176
7177 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007178 ** fails. Internal data structure corruption will result otherwise.
7179 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7180 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007181 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007182 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007183 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007184 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007185
drh2e38c322004-09-03 18:38:44 +00007186end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007187 return rc;
7188}
7189
7190/*
drh4b70f112004-05-02 21:12:19 +00007191** Delete the entry that the cursor is pointing to. The cursor
peter.d.reid60ec9142014-09-06 16:39:46 +00007192** is left pointing at an arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007193*/
drh3aac2dd2004-04-26 14:10:20 +00007194int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007195 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007196 BtShared *pBt = p->pBt;
7197 int rc; /* Return code */
7198 MemPage *pPage; /* Page to delete cell from */
7199 unsigned char *pCell; /* Pointer to cell to delete */
7200 int iCellIdx; /* Index of cell to delete */
7201 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00007202
drh1fee73e2007-08-29 04:00:57 +00007203 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007204 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007205 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00007206 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00007207 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7208 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7209
danielk19774dbaa892009-06-16 16:50:22 +00007210 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7211 || NEVER(pCur->eState!=CURSOR_VALID)
7212 ){
7213 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007214 }
danielk1977da184232006-01-05 11:34:32 +00007215
danielk19774dbaa892009-06-16 16:50:22 +00007216 iCellDepth = pCur->iPage;
7217 iCellIdx = pCur->aiIdx[iCellDepth];
7218 pPage = pCur->apPage[iCellDepth];
7219 pCell = findCell(pPage, iCellIdx);
7220
7221 /* If the page containing the entry to delete is not a leaf page, move
7222 ** the cursor to the largest entry in the tree that is smaller than
7223 ** the entry being deleted. This cell will replace the cell being deleted
7224 ** from the internal node. The 'previous' entry is used for this instead
7225 ** of the 'next' entry, as the previous entry is always a part of the
7226 ** sub-tree headed by the child page of the cell being deleted. This makes
7227 ** balancing the tree following the delete operation easier. */
7228 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00007229 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00007230 rc = sqlite3BtreePrevious(pCur, &notUsed);
7231 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007232 }
7233
7234 /* Save the positions of any other cursors open on this table before
7235 ** making any modifications. Make the page containing the entry to be
7236 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007237 ** entry and finally remove the cell itself from within the page.
7238 */
7239 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7240 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007241
7242 /* If this is a delete operation to remove a row from a table b-tree,
7243 ** invalidate any incrblob cursors open on the row being deleted. */
7244 if( pCur->pKeyInfo==0 ){
7245 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7246 }
7247
drha4ec1d42009-07-11 13:13:11 +00007248 rc = sqlite3PagerWrite(pPage->pDbPage);
7249 if( rc ) return rc;
7250 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00007251 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00007252 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007253
danielk19774dbaa892009-06-16 16:50:22 +00007254 /* If the cell deleted was not located on a leaf page, then the cursor
7255 ** is currently pointing to the largest entry in the sub-tree headed
7256 ** by the child-page of the cell that was just deleted from an internal
7257 ** node. The cell from the leaf node needs to be moved to the internal
7258 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007259 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007260 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7261 int nCell;
7262 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7263 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007264
danielk19774dbaa892009-06-16 16:50:22 +00007265 pCell = findCell(pLeaf, pLeaf->nCell-1);
7266 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007267 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007268
danielk19774dbaa892009-06-16 16:50:22 +00007269 allocateTempSpace(pBt);
7270 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00007271
drha4ec1d42009-07-11 13:13:11 +00007272 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007273 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7274 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007275 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007276 }
danielk19774dbaa892009-06-16 16:50:22 +00007277
7278 /* Balance the tree. If the entry deleted was located on a leaf page,
7279 ** then the cursor still points to that page. In this case the first
7280 ** call to balance() repairs the tree, and the if(...) condition is
7281 ** never true.
7282 **
7283 ** Otherwise, if the entry deleted was on an internal node page, then
7284 ** pCur is pointing to the leaf page from which a cell was removed to
7285 ** replace the cell deleted from the internal node. This is slightly
7286 ** tricky as the leaf node may be underfull, and the internal node may
7287 ** be either under or overfull. In this case run the balancing algorithm
7288 ** on the leaf node first. If the balance proceeds far enough up the
7289 ** tree that we can be sure that any problem in the internal node has
7290 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7291 ** walk the cursor up the tree to the internal node and balance it as
7292 ** well. */
7293 rc = balance(pCur);
7294 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7295 while( pCur->iPage>iCellDepth ){
7296 releasePage(pCur->apPage[pCur->iPage--]);
7297 }
7298 rc = balance(pCur);
7299 }
7300
danielk19776b456a22005-03-21 04:04:02 +00007301 if( rc==SQLITE_OK ){
7302 moveToRoot(pCur);
7303 }
drh5e2f8b92001-05-28 00:41:15 +00007304 return rc;
drh3b7511c2001-05-26 13:15:44 +00007305}
drh8b2f49b2001-06-08 00:21:52 +00007306
7307/*
drhc6b52df2002-01-04 03:09:29 +00007308** Create a new BTree table. Write into *piTable the page
7309** number for the root page of the new table.
7310**
drhab01f612004-05-22 02:55:23 +00007311** The type of type is determined by the flags parameter. Only the
7312** following values of flags are currently in use. Other values for
7313** flags might not work:
7314**
7315** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7316** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007317*/
drhd4187c72010-08-30 22:15:45 +00007318static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007319 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007320 MemPage *pRoot;
7321 Pgno pgnoRoot;
7322 int rc;
drhd4187c72010-08-30 22:15:45 +00007323 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007324
drh1fee73e2007-08-29 04:00:57 +00007325 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007326 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007327 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007328
danielk1977003ba062004-11-04 02:57:33 +00007329#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007330 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007331 if( rc ){
7332 return rc;
7333 }
danielk1977003ba062004-11-04 02:57:33 +00007334#else
danielk1977687566d2004-11-02 12:56:41 +00007335 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007336 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7337 MemPage *pPageMove; /* The page to move to. */
7338
danielk197720713f32007-05-03 11:43:33 +00007339 /* Creating a new table may probably require moving an existing database
7340 ** to make room for the new tables root page. In case this page turns
7341 ** out to be an overflow page, delete all overflow page-map caches
7342 ** held by open cursors.
7343 */
danielk197792d4d7a2007-05-04 12:05:56 +00007344 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007345
danielk1977003ba062004-11-04 02:57:33 +00007346 /* Read the value of meta[3] from the database to determine where the
7347 ** root page of the new table should go. meta[3] is the largest root-page
7348 ** created so far, so the new root-page is (meta[3]+1).
7349 */
danielk1977602b4662009-07-02 07:47:33 +00007350 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007351 pgnoRoot++;
7352
danielk1977599fcba2004-11-08 07:13:13 +00007353 /* The new root-page may not be allocated on a pointer-map page, or the
7354 ** PENDING_BYTE page.
7355 */
drh72190432008-01-31 14:54:43 +00007356 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007357 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007358 pgnoRoot++;
7359 }
7360 assert( pgnoRoot>=3 );
7361
7362 /* Allocate a page. The page that currently resides at pgnoRoot will
7363 ** be moved to the allocated page (unless the allocated page happens
7364 ** to reside at pgnoRoot).
7365 */
dan51f0b6d2013-02-22 20:16:34 +00007366 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007367 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007368 return rc;
7369 }
danielk1977003ba062004-11-04 02:57:33 +00007370
7371 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007372 /* pgnoRoot is the page that will be used for the root-page of
7373 ** the new table (assuming an error did not occur). But we were
7374 ** allocated pgnoMove. If required (i.e. if it was not allocated
7375 ** by extending the file), the current page at position pgnoMove
7376 ** is already journaled.
7377 */
drheeb844a2009-08-08 18:01:07 +00007378 u8 eType = 0;
7379 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007380
danf7679ad2013-04-03 11:38:36 +00007381 /* Save the positions of any open cursors. This is required in
7382 ** case they are holding a reference to an xFetch reference
7383 ** corresponding to page pgnoRoot. */
7384 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007385 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007386 if( rc!=SQLITE_OK ){
7387 return rc;
7388 }
danielk1977f35843b2007-04-07 15:03:17 +00007389
7390 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00007391 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007392 if( rc!=SQLITE_OK ){
7393 return rc;
7394 }
7395 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007396 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7397 rc = SQLITE_CORRUPT_BKPT;
7398 }
7399 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007400 releasePage(pRoot);
7401 return rc;
7402 }
drhccae6022005-02-26 17:31:26 +00007403 assert( eType!=PTRMAP_ROOTPAGE );
7404 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007405 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007406 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007407
7408 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007409 if( rc!=SQLITE_OK ){
7410 return rc;
7411 }
drhb00fc3b2013-08-21 23:42:32 +00007412 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007413 if( rc!=SQLITE_OK ){
7414 return rc;
7415 }
danielk19773b8a05f2007-03-19 17:44:26 +00007416 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007417 if( rc!=SQLITE_OK ){
7418 releasePage(pRoot);
7419 return rc;
7420 }
7421 }else{
7422 pRoot = pPageMove;
7423 }
7424
danielk197742741be2005-01-08 12:42:39 +00007425 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007426 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007427 if( rc ){
7428 releasePage(pRoot);
7429 return rc;
7430 }
drhbf592832010-03-30 15:51:12 +00007431
7432 /* When the new root page was allocated, page 1 was made writable in
7433 ** order either to increase the database filesize, or to decrement the
7434 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7435 */
7436 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007437 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007438 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007439 releasePage(pRoot);
7440 return rc;
7441 }
danielk197742741be2005-01-08 12:42:39 +00007442
danielk1977003ba062004-11-04 02:57:33 +00007443 }else{
drh4f0c5872007-03-26 22:05:01 +00007444 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007445 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007446 }
7447#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007448 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007449 if( createTabFlags & BTREE_INTKEY ){
7450 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7451 }else{
7452 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7453 }
7454 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007455 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007456 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007457 *piTable = (int)pgnoRoot;
7458 return SQLITE_OK;
7459}
drhd677b3d2007-08-20 22:48:41 +00007460int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7461 int rc;
7462 sqlite3BtreeEnter(p);
7463 rc = btreeCreateTable(p, piTable, flags);
7464 sqlite3BtreeLeave(p);
7465 return rc;
7466}
drh8b2f49b2001-06-08 00:21:52 +00007467
7468/*
7469** Erase the given database page and all its children. Return
7470** the page to the freelist.
7471*/
drh4b70f112004-05-02 21:12:19 +00007472static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007473 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007474 Pgno pgno, /* Page number to clear */
7475 int freePageFlag, /* Deallocate page if true */
7476 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007477){
danielk1977146ba992009-07-22 14:08:13 +00007478 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007479 int rc;
drh4b70f112004-05-02 21:12:19 +00007480 unsigned char *pCell;
7481 int i;
dan8ce71842014-01-14 20:14:09 +00007482 int hdr;
drh8b2f49b2001-06-08 00:21:52 +00007483
drh1fee73e2007-08-29 04:00:57 +00007484 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007485 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007486 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007487 }
7488
dan11dcd112013-03-15 18:29:18 +00007489 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00007490 if( rc ) return rc;
dan8ce71842014-01-14 20:14:09 +00007491 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00007492 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007493 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007494 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007495 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007496 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007497 }
drh4b70f112004-05-02 21:12:19 +00007498 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007499 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007500 }
drha34b6762004-05-07 13:30:42 +00007501 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00007502 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007503 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007504 }else if( pnChange ){
7505 assert( pPage->intKey );
7506 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007507 }
7508 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007509 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007510 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00007511 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007512 }
danielk19776b456a22005-03-21 04:04:02 +00007513
7514cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007515 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007516 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007517}
7518
7519/*
drhab01f612004-05-22 02:55:23 +00007520** Delete all information from a single table in the database. iTable is
7521** the page number of the root of the table. After this routine returns,
7522** the root page is empty, but still exists.
7523**
7524** This routine will fail with SQLITE_LOCKED if there are any open
7525** read cursors on the table. Open write cursors are moved to the
7526** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007527**
7528** If pnChange is not NULL, then table iTable must be an intkey table. The
7529** integer value pointed to by pnChange is incremented by the number of
7530** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007531*/
danielk1977c7af4842008-10-27 13:59:33 +00007532int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007533 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007534 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007535 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007536 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007537
drhc046e3e2009-07-15 11:26:44 +00007538 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007539
drhc046e3e2009-07-15 11:26:44 +00007540 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007541 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7542 ** is the root of a table b-tree - if it is not, the following call is
7543 ** a no-op). */
7544 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007545 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007546 }
drhd677b3d2007-08-20 22:48:41 +00007547 sqlite3BtreeLeave(p);
7548 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007549}
7550
7551/*
drh079a3072014-03-19 14:10:55 +00007552** Delete all information from the single table that pCur is open on.
7553**
7554** This routine only work for pCur on an ephemeral table.
7555*/
7556int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
7557 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
7558}
7559
7560/*
drh8b2f49b2001-06-08 00:21:52 +00007561** Erase all information in a table and add the root of the table to
7562** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007563** page 1) is never added to the freelist.
7564**
7565** This routine will fail with SQLITE_LOCKED if there are any open
7566** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007567**
7568** If AUTOVACUUM is enabled and the page at iTable is not the last
7569** root page in the database file, then the last root page
7570** in the database file is moved into the slot formerly occupied by
7571** iTable and that last slot formerly occupied by the last root page
7572** is added to the freelist instead of iTable. In this say, all
7573** root pages are kept at the beginning of the database file, which
7574** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7575** page number that used to be the last root page in the file before
7576** the move. If no page gets moved, *piMoved is set to 0.
7577** The last root page is recorded in meta[3] and the value of
7578** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007579*/
danielk197789d40042008-11-17 14:20:56 +00007580static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007581 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007582 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007583 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007584
drh1fee73e2007-08-29 04:00:57 +00007585 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007586 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007587
danielk1977e6efa742004-11-10 11:55:10 +00007588 /* It is illegal to drop a table if any cursors are open on the
7589 ** database. This is because in auto-vacuum mode the backend may
7590 ** need to move another root-page to fill a gap left by the deleted
7591 ** root page. If an open cursor was using this page a problem would
7592 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007593 **
7594 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007595 */
drhc046e3e2009-07-15 11:26:44 +00007596 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007597 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7598 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007599 }
danielk1977a0bf2652004-11-04 14:30:04 +00007600
drhb00fc3b2013-08-21 23:42:32 +00007601 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007602 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007603 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007604 if( rc ){
7605 releasePage(pPage);
7606 return rc;
7607 }
danielk1977a0bf2652004-11-04 14:30:04 +00007608
drh205f48e2004-11-05 00:43:11 +00007609 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007610
drh4b70f112004-05-02 21:12:19 +00007611 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007612#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007613 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007614 releasePage(pPage);
7615#else
7616 if( pBt->autoVacuum ){
7617 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007618 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007619
7620 if( iTable==maxRootPgno ){
7621 /* If the table being dropped is the table with the largest root-page
7622 ** number in the database, put the root page on the free list.
7623 */
drhc314dc72009-07-21 11:52:34 +00007624 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007625 releasePage(pPage);
7626 if( rc!=SQLITE_OK ){
7627 return rc;
7628 }
7629 }else{
7630 /* The table being dropped does not have the largest root-page
7631 ** number in the database. So move the page that does into the
7632 ** gap left by the deleted root-page.
7633 */
7634 MemPage *pMove;
7635 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00007636 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007637 if( rc!=SQLITE_OK ){
7638 return rc;
7639 }
danielk19774c999992008-07-16 18:17:55 +00007640 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007641 releasePage(pMove);
7642 if( rc!=SQLITE_OK ){
7643 return rc;
7644 }
drhfe3313f2009-07-21 19:02:20 +00007645 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00007646 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007647 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007648 releasePage(pMove);
7649 if( rc!=SQLITE_OK ){
7650 return rc;
7651 }
7652 *piMoved = maxRootPgno;
7653 }
7654
danielk1977599fcba2004-11-08 07:13:13 +00007655 /* Set the new 'max-root-page' value in the database header. This
7656 ** is the old value less one, less one more if that happens to
7657 ** be a root-page number, less one again if that is the
7658 ** PENDING_BYTE_PAGE.
7659 */
danielk197787a6e732004-11-05 12:58:25 +00007660 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007661 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7662 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007663 maxRootPgno--;
7664 }
danielk1977599fcba2004-11-08 07:13:13 +00007665 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7666
danielk1977aef0bf62005-12-30 16:28:01 +00007667 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007668 }else{
drhc314dc72009-07-21 11:52:34 +00007669 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007670 releasePage(pPage);
7671 }
7672#endif
drh2aa679f2001-06-25 02:11:07 +00007673 }else{
drhc046e3e2009-07-15 11:26:44 +00007674 /* If sqlite3BtreeDropTable was called on page 1.
7675 ** This really never should happen except in a corrupt
7676 ** database.
7677 */
drha34b6762004-05-07 13:30:42 +00007678 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007679 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007680 }
drh8b2f49b2001-06-08 00:21:52 +00007681 return rc;
7682}
drhd677b3d2007-08-20 22:48:41 +00007683int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7684 int rc;
7685 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007686 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007687 sqlite3BtreeLeave(p);
7688 return rc;
7689}
drh8b2f49b2001-06-08 00:21:52 +00007690
drh001bbcb2003-03-19 03:14:00 +00007691
drh8b2f49b2001-06-08 00:21:52 +00007692/*
danielk1977602b4662009-07-02 07:47:33 +00007693** This function may only be called if the b-tree connection already
7694** has a read or write transaction open on the database.
7695**
drh23e11ca2004-05-04 17:27:28 +00007696** Read the meta-information out of a database file. Meta[0]
7697** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007698** through meta[15] are available for use by higher layers. Meta[0]
7699** is read-only, the others are read/write.
7700**
7701** The schema layer numbers meta values differently. At the schema
7702** layer (and the SetCookie and ReadCookie opcodes) the number of
7703** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007704*/
danielk1977602b4662009-07-02 07:47:33 +00007705void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007706 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007707
drhd677b3d2007-08-20 22:48:41 +00007708 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007709 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007710 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007711 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007712 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007713
danielk1977602b4662009-07-02 07:47:33 +00007714 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007715
danielk1977602b4662009-07-02 07:47:33 +00007716 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7717 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007718#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007719 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7720 pBt->btsFlags |= BTS_READ_ONLY;
7721 }
danielk1977003ba062004-11-04 02:57:33 +00007722#endif
drhae157872004-08-14 19:20:09 +00007723
drhd677b3d2007-08-20 22:48:41 +00007724 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007725}
7726
7727/*
drh23e11ca2004-05-04 17:27:28 +00007728** Write meta-information back into the database. Meta[0] is
7729** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007730*/
danielk1977aef0bf62005-12-30 16:28:01 +00007731int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7732 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007733 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007734 int rc;
drh23e11ca2004-05-04 17:27:28 +00007735 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007736 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007737 assert( p->inTrans==TRANS_WRITE );
7738 assert( pBt->pPage1!=0 );
7739 pP1 = pBt->pPage1->aData;
7740 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7741 if( rc==SQLITE_OK ){
7742 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007743#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007744 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007745 assert( pBt->autoVacuum || iMeta==0 );
7746 assert( iMeta==0 || iMeta==1 );
7747 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007748 }
drh64022502009-01-09 14:11:04 +00007749#endif
drh5df72a52002-06-06 23:16:05 +00007750 }
drhd677b3d2007-08-20 22:48:41 +00007751 sqlite3BtreeLeave(p);
7752 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007753}
drh8c42ca92001-06-22 19:15:00 +00007754
danielk1977a5533162009-02-24 10:01:51 +00007755#ifndef SQLITE_OMIT_BTREECOUNT
7756/*
7757** The first argument, pCur, is a cursor opened on some b-tree. Count the
7758** number of entries in the b-tree and write the result to *pnEntry.
7759**
7760** SQLITE_OK is returned if the operation is successfully executed.
7761** Otherwise, if an error is encountered (i.e. an IO error or database
7762** corruption) an SQLite error code is returned.
7763*/
7764int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7765 i64 nEntry = 0; /* Value to return in *pnEntry */
7766 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007767
7768 if( pCur->pgnoRoot==0 ){
7769 *pnEntry = 0;
7770 return SQLITE_OK;
7771 }
danielk1977a5533162009-02-24 10:01:51 +00007772 rc = moveToRoot(pCur);
7773
7774 /* Unless an error occurs, the following loop runs one iteration for each
7775 ** page in the B-Tree structure (not including overflow pages).
7776 */
7777 while( rc==SQLITE_OK ){
7778 int iIdx; /* Index of child node in parent */
7779 MemPage *pPage; /* Current page of the b-tree */
7780
7781 /* If this is a leaf page or the tree is not an int-key tree, then
7782 ** this page contains countable entries. Increment the entry counter
7783 ** accordingly.
7784 */
7785 pPage = pCur->apPage[pCur->iPage];
7786 if( pPage->leaf || !pPage->intKey ){
7787 nEntry += pPage->nCell;
7788 }
7789
7790 /* pPage is a leaf node. This loop navigates the cursor so that it
7791 ** points to the first interior cell that it points to the parent of
7792 ** the next page in the tree that has not yet been visited. The
7793 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7794 ** of the page, or to the number of cells in the page if the next page
7795 ** to visit is the right-child of its parent.
7796 **
7797 ** If all pages in the tree have been visited, return SQLITE_OK to the
7798 ** caller.
7799 */
7800 if( pPage->leaf ){
7801 do {
7802 if( pCur->iPage==0 ){
7803 /* All pages of the b-tree have been visited. Return successfully. */
7804 *pnEntry = nEntry;
7805 return SQLITE_OK;
7806 }
danielk197730548662009-07-09 05:07:37 +00007807 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007808 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7809
7810 pCur->aiIdx[pCur->iPage]++;
7811 pPage = pCur->apPage[pCur->iPage];
7812 }
7813
7814 /* Descend to the child node of the cell that the cursor currently
7815 ** points at. This is the right-child if (iIdx==pPage->nCell).
7816 */
7817 iIdx = pCur->aiIdx[pCur->iPage];
7818 if( iIdx==pPage->nCell ){
7819 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7820 }else{
7821 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7822 }
7823 }
7824
shanebe217792009-03-05 04:20:31 +00007825 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007826 return rc;
7827}
7828#endif
drhdd793422001-06-28 01:54:48 +00007829
drhdd793422001-06-28 01:54:48 +00007830/*
drh5eddca62001-06-30 21:53:53 +00007831** Return the pager associated with a BTree. This routine is used for
7832** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007833*/
danielk1977aef0bf62005-12-30 16:28:01 +00007834Pager *sqlite3BtreePager(Btree *p){
7835 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007836}
drh5eddca62001-06-30 21:53:53 +00007837
drhb7f91642004-10-31 02:22:47 +00007838#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007839/*
7840** Append a message to the error message string.
7841*/
drh2e38c322004-09-03 18:38:44 +00007842static void checkAppendMsg(
7843 IntegrityCk *pCheck,
7844 char *zMsg1,
7845 const char *zFormat,
7846 ...
7847){
7848 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007849 if( !pCheck->mxErr ) return;
7850 pCheck->mxErr--;
7851 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007852 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007853 if( pCheck->errMsg.nChar ){
7854 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007855 }
drhf089aa42008-07-08 19:34:06 +00007856 if( zMsg1 ){
drha6353a32013-12-09 19:03:26 +00007857 sqlite3StrAccumAppendAll(&pCheck->errMsg, zMsg1);
drhf089aa42008-07-08 19:34:06 +00007858 }
7859 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7860 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00007861 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00007862 pCheck->mallocFailed = 1;
7863 }
drh5eddca62001-06-30 21:53:53 +00007864}
drhb7f91642004-10-31 02:22:47 +00007865#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007866
drhb7f91642004-10-31 02:22:47 +00007867#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007868
7869/*
7870** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7871** corresponds to page iPg is already set.
7872*/
7873static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7874 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7875 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7876}
7877
7878/*
7879** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7880*/
7881static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7882 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7883 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7884}
7885
7886
drh5eddca62001-06-30 21:53:53 +00007887/*
7888** Add 1 to the reference count for page iPage. If this is the second
7889** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00007890** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00007891** if this is the first reference to the page.
7892**
7893** Also check that the page number is in bounds.
7894*/
danielk197789d40042008-11-17 14:20:56 +00007895static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007896 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007897 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007898 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007899 return 1;
7900 }
dan1235bb12012-04-03 17:43:28 +00007901 if( getPageReferenced(pCheck, iPage) ){
drh2e38c322004-09-03 18:38:44 +00007902 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007903 return 1;
7904 }
dan1235bb12012-04-03 17:43:28 +00007905 setPageReferenced(pCheck, iPage);
7906 return 0;
drh5eddca62001-06-30 21:53:53 +00007907}
7908
danielk1977afcdd022004-10-31 16:25:42 +00007909#ifndef SQLITE_OMIT_AUTOVACUUM
7910/*
7911** Check that the entry in the pointer-map for page iChild maps to
7912** page iParent, pointer type ptrType. If not, append an error message
7913** to pCheck.
7914*/
7915static void checkPtrmap(
7916 IntegrityCk *pCheck, /* Integrity check context */
7917 Pgno iChild, /* Child page number */
7918 u8 eType, /* Expected pointer map type */
7919 Pgno iParent, /* Expected pointer map parent page number */
7920 char *zContext /* Context description (used for error msg) */
7921){
7922 int rc;
7923 u8 ePtrmapType;
7924 Pgno iPtrmapParent;
7925
7926 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7927 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007928 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007929 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7930 return;
7931 }
7932
7933 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7934 checkAppendMsg(pCheck, zContext,
7935 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7936 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7937 }
7938}
7939#endif
7940
drh5eddca62001-06-30 21:53:53 +00007941/*
7942** Check the integrity of the freelist or of an overflow page list.
7943** Verify that the number of pages on the list is N.
7944*/
drh30e58752002-03-02 20:41:57 +00007945static void checkList(
7946 IntegrityCk *pCheck, /* Integrity checking context */
7947 int isFreeList, /* True for a freelist. False for overflow page list */
7948 int iPage, /* Page number for first page in the list */
7949 int N, /* Expected number of pages in the list */
7950 char *zContext /* Context for error messages */
7951){
7952 int i;
drh3a4c1412004-05-09 20:40:11 +00007953 int expected = N;
7954 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007955 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007956 DbPage *pOvflPage;
7957 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007958 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007959 checkAppendMsg(pCheck, zContext,
7960 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007961 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007962 break;
7963 }
7964 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007965 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007966 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007967 break;
7968 }
danielk19773b8a05f2007-03-19 17:44:26 +00007969 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007970 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007971 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007972#ifndef SQLITE_OMIT_AUTOVACUUM
7973 if( pCheck->pBt->autoVacuum ){
7974 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7975 }
7976#endif
drh43b18e12010-08-17 19:40:08 +00007977 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007978 checkAppendMsg(pCheck, zContext,
7979 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007980 N--;
7981 }else{
7982 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007983 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007984#ifndef SQLITE_OMIT_AUTOVACUUM
7985 if( pCheck->pBt->autoVacuum ){
7986 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7987 }
7988#endif
7989 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007990 }
7991 N -= n;
drh30e58752002-03-02 20:41:57 +00007992 }
drh30e58752002-03-02 20:41:57 +00007993 }
danielk1977afcdd022004-10-31 16:25:42 +00007994#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007995 else{
7996 /* If this database supports auto-vacuum and iPage is not the last
7997 ** page in this overflow list, check that the pointer-map entry for
7998 ** the following page matches iPage.
7999 */
8000 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008001 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00008002 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
8003 }
danielk1977afcdd022004-10-31 16:25:42 +00008004 }
8005#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008006 iPage = get4byte(pOvflData);
8007 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00008008 }
8009}
drhb7f91642004-10-31 02:22:47 +00008010#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008011
drhb7f91642004-10-31 02:22:47 +00008012#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008013/*
8014** Do various sanity checks on a single page of a tree. Return
8015** the tree depth. Root pages return 0. Parents of root pages
8016** return 1, and so forth.
8017**
8018** These checks are done:
8019**
8020** 1. Make sure that cells and freeblocks do not overlap
8021** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00008022** NO 2. Make sure cell keys are in order.
8023** NO 3. Make sure no key is less than or equal to zLowerBound.
8024** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00008025** 5. Check the integrity of overflow pages.
8026** 6. Recursively call checkTreePage on all children.
8027** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00008028** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00008029** the root of the tree.
8030*/
8031static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00008032 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00008033 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00008034 char *zParentContext, /* Parent context */
8035 i64 *pnParentMinKey,
8036 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00008037){
8038 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00008039 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00008040 int hdr, cellStart;
8041 int nCell;
drhda200cc2004-05-09 11:51:38 +00008042 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00008043 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00008044 int usableSize;
drh5eddca62001-06-30 21:53:53 +00008045 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00008046 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00008047 i64 nMinKey = 0;
8048 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00008049
drh5bb3eb92007-05-04 13:15:55 +00008050 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00008051
drh5eddca62001-06-30 21:53:53 +00008052 /* Check that the page exists
8053 */
drhd9cb6ac2005-10-20 07:28:17 +00008054 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00008055 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00008056 if( iPage==0 ) return 0;
8057 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drhb00fc3b2013-08-21 23:42:32 +00008058 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00008059 checkAppendMsg(pCheck, zContext,
8060 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00008061 return 0;
8062 }
danielk197793caf5a2009-07-11 06:55:33 +00008063
8064 /* Clear MemPage.isInit to make sure the corruption detection code in
8065 ** btreeInitPage() is executed. */
8066 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00008067 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00008068 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00008069 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00008070 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00008071 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00008072 return 0;
8073 }
8074
8075 /* Check out all the cells.
8076 */
8077 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00008078 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00008079 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00008080 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00008081 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00008082
8083 /* Check payload overflow pages
8084 */
drh5bb3eb92007-05-04 13:15:55 +00008085 sqlite3_snprintf(sizeof(zContext), zContext,
8086 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00008087 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00008088 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00008089 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00008090 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00008091 /* For intKey pages, check that the keys are in order.
8092 */
8093 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
8094 else{
8095 if( info.nKey <= nMaxKey ){
8096 checkAppendMsg(pCheck, zContext,
8097 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
8098 }
8099 nMaxKey = info.nKey;
8100 }
drh72365832007-03-06 15:53:44 +00008101 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00008102 if( (sz>info.nLocal)
8103 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8104 ){
drhb6f41482004-05-14 01:58:11 +00008105 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008106 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8107#ifndef SQLITE_OMIT_AUTOVACUUM
8108 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00008109 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008110 }
8111#endif
8112 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00008113 }
8114
8115 /* Check sanity of left child page.
8116 */
drhda200cc2004-05-09 11:51:38 +00008117 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008118 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008119#ifndef SQLITE_OMIT_AUTOVACUUM
8120 if( pBt->autoVacuum ){
8121 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
8122 }
8123#endif
shaneh195475d2010-02-19 04:28:08 +00008124 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008125 if( i>0 && d2!=depth ){
8126 checkAppendMsg(pCheck, zContext, "Child page depth differs");
8127 }
8128 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008129 }
drh5eddca62001-06-30 21:53:53 +00008130 }
shaneh195475d2010-02-19 04:28:08 +00008131
drhda200cc2004-05-09 11:51:38 +00008132 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008133 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00008134 sqlite3_snprintf(sizeof(zContext), zContext,
8135 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008136#ifndef SQLITE_OMIT_AUTOVACUUM
8137 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00008138 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008139 }
8140#endif
shaneh195475d2010-02-19 04:28:08 +00008141 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008142 }
drh5eddca62001-06-30 21:53:53 +00008143
shaneh195475d2010-02-19 04:28:08 +00008144 /* For intKey leaf pages, check that the min/max keys are in order
8145 ** with any left/parent/right pages.
8146 */
8147 if( pPage->leaf && pPage->intKey ){
8148 /* if we are a left child page */
8149 if( pnParentMinKey ){
8150 /* if we are the left most child page */
8151 if( !pnParentMaxKey ){
8152 if( nMaxKey > *pnParentMinKey ){
8153 checkAppendMsg(pCheck, zContext,
8154 "Rowid %lld out of order (max larger than parent min of %lld)",
8155 nMaxKey, *pnParentMinKey);
8156 }
8157 }else{
8158 if( nMinKey <= *pnParentMinKey ){
8159 checkAppendMsg(pCheck, zContext,
8160 "Rowid %lld out of order (min less than parent min of %lld)",
8161 nMinKey, *pnParentMinKey);
8162 }
8163 if( nMaxKey > *pnParentMaxKey ){
8164 checkAppendMsg(pCheck, zContext,
8165 "Rowid %lld out of order (max larger than parent max of %lld)",
8166 nMaxKey, *pnParentMaxKey);
8167 }
8168 *pnParentMinKey = nMaxKey;
8169 }
8170 /* else if we're a right child page */
8171 } else if( pnParentMaxKey ){
8172 if( nMinKey <= *pnParentMaxKey ){
8173 checkAppendMsg(pCheck, zContext,
8174 "Rowid %lld out of order (min less than parent max of %lld)",
8175 nMinKey, *pnParentMaxKey);
8176 }
8177 }
8178 }
8179
drh5eddca62001-06-30 21:53:53 +00008180 /* Check for complete coverage of the page
8181 */
drhda200cc2004-05-09 11:51:38 +00008182 data = pPage->aData;
8183 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008184 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00008185 if( hit==0 ){
8186 pCheck->mallocFailed = 1;
8187 }else{
drh5d433ce2010-08-14 16:02:52 +00008188 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008189 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008190 memset(hit+contentOffset, 0, usableSize-contentOffset);
8191 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00008192 nCell = get2byte(&data[hdr+3]);
8193 cellStart = hdr + 12 - 4*pPage->leaf;
8194 for(i=0; i<nCell; i++){
8195 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008196 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008197 int j;
drh8c2bbb62009-07-10 02:52:20 +00008198 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008199 size = cellSizePtr(pPage, &data[pc]);
8200 }
drh43b18e12010-08-17 19:40:08 +00008201 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00008202 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00008203 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008204 }else{
8205 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8206 }
drh2e38c322004-09-03 18:38:44 +00008207 }
drh8c2bbb62009-07-10 02:52:20 +00008208 i = get2byte(&data[hdr+1]);
8209 while( i>0 ){
8210 int size, j;
8211 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8212 size = get2byte(&data[i+2]);
8213 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8214 for(j=i+size-1; j>=i; j--) hit[j]++;
8215 j = get2byte(&data[i]);
8216 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8217 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8218 i = j;
drh2e38c322004-09-03 18:38:44 +00008219 }
8220 for(i=cnt=0; i<usableSize; i++){
8221 if( hit[i]==0 ){
8222 cnt++;
8223 }else if( hit[i]>1 ){
8224 checkAppendMsg(pCheck, 0,
8225 "Multiple uses for byte %d of page %d", i, iPage);
8226 break;
8227 }
8228 }
8229 if( cnt!=data[hdr+7] ){
8230 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00008231 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008232 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008233 }
8234 }
drh8c2bbb62009-07-10 02:52:20 +00008235 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008236 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00008237 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008238}
drhb7f91642004-10-31 02:22:47 +00008239#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008240
drhb7f91642004-10-31 02:22:47 +00008241#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008242/*
8243** This routine does a complete check of the given BTree file. aRoot[] is
8244** an array of pages numbers were each page number is the root page of
8245** a table. nRoot is the number of entries in aRoot.
8246**
danielk19773509a652009-07-06 18:56:13 +00008247** A read-only or read-write transaction must be opened before calling
8248** this function.
8249**
drhc890fec2008-08-01 20:10:08 +00008250** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008251** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008252** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008253** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008254*/
drh1dcdbc02007-01-27 02:24:54 +00008255char *sqlite3BtreeIntegrityCheck(
8256 Btree *p, /* The btree to be checked */
8257 int *aRoot, /* An array of root pages numbers for individual trees */
8258 int nRoot, /* Number of entries in aRoot[] */
8259 int mxErr, /* Stop reporting errors after this many */
8260 int *pnErr /* Write number of errors seen to this variable */
8261){
danielk197789d40042008-11-17 14:20:56 +00008262 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008263 int nRef;
drhaaab5722002-02-19 13:39:21 +00008264 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008265 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008266 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008267
drhd677b3d2007-08-20 22:48:41 +00008268 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008269 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008270 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008271 sCheck.pBt = pBt;
8272 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008273 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008274 sCheck.mxErr = mxErr;
8275 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008276 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00008277 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008278 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008279 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008280 return 0;
8281 }
dan1235bb12012-04-03 17:43:28 +00008282
8283 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8284 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008285 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008286 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008287 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008288 }
drh42cac6d2004-11-20 20:31:11 +00008289 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008290 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008291 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008292 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008293
8294 /* Check the integrity of the freelist
8295 */
drha34b6762004-05-07 13:30:42 +00008296 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8297 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00008298
8299 /* Check all the tables.
8300 */
danielk197789d40042008-11-17 14:20:56 +00008301 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008302 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008303#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008304 if( pBt->autoVacuum && aRoot[i]>1 ){
8305 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8306 }
8307#endif
shaneh195475d2010-02-19 04:28:08 +00008308 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00008309 }
8310
8311 /* Make sure every page in the file is referenced
8312 */
drh1dcdbc02007-01-27 02:24:54 +00008313 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008314#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008315 if( getPageReferenced(&sCheck, i)==0 ){
drh2e38c322004-09-03 18:38:44 +00008316 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008317 }
danielk1977afcdd022004-10-31 16:25:42 +00008318#else
8319 /* If the database supports auto-vacuum, make sure no tables contain
8320 ** references to pointer-map pages.
8321 */
dan1235bb12012-04-03 17:43:28 +00008322 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008323 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008324 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8325 }
dan1235bb12012-04-03 17:43:28 +00008326 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008327 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008328 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8329 }
8330#endif
drh5eddca62001-06-30 21:53:53 +00008331 }
8332
drh64022502009-01-09 14:11:04 +00008333 /* Make sure this analysis did not leave any unref() pages.
8334 ** This is an internal consistency check; an integrity check
8335 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008336 */
drh64022502009-01-09 14:11:04 +00008337 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008338 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008339 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008340 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008341 );
drh5eddca62001-06-30 21:53:53 +00008342 }
8343
8344 /* Clean up and report errors.
8345 */
drhd677b3d2007-08-20 22:48:41 +00008346 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008347 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008348 if( sCheck.mallocFailed ){
8349 sqlite3StrAccumReset(&sCheck.errMsg);
8350 *pnErr = sCheck.nErr+1;
8351 return 0;
8352 }
drh1dcdbc02007-01-27 02:24:54 +00008353 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008354 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8355 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008356}
drhb7f91642004-10-31 02:22:47 +00008357#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008358
drh73509ee2003-04-06 20:44:45 +00008359/*
drhd4e0bb02012-05-27 01:19:04 +00008360** Return the full pathname of the underlying database file. Return
8361** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008362**
8363** The pager filename is invariant as long as the pager is
8364** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008365*/
danielk1977aef0bf62005-12-30 16:28:01 +00008366const char *sqlite3BtreeGetFilename(Btree *p){
8367 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008368 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008369}
8370
8371/*
danielk19775865e3d2004-06-14 06:03:57 +00008372** Return the pathname of the journal file for this database. The return
8373** value of this routine is the same regardless of whether the journal file
8374** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008375**
8376** The pager journal filename is invariant as long as the pager is
8377** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008378*/
danielk1977aef0bf62005-12-30 16:28:01 +00008379const char *sqlite3BtreeGetJournalname(Btree *p){
8380 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008381 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008382}
8383
danielk19771d850a72004-05-31 08:26:49 +00008384/*
8385** Return non-zero if a transaction is active.
8386*/
danielk1977aef0bf62005-12-30 16:28:01 +00008387int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008388 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008389 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008390}
8391
dana550f2d2010-08-02 10:47:05 +00008392#ifndef SQLITE_OMIT_WAL
8393/*
8394** Run a checkpoint on the Btree passed as the first argument.
8395**
8396** Return SQLITE_LOCKED if this or any other connection has an open
8397** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008398**
dancdc1f042010-11-18 12:11:05 +00008399** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008400*/
dancdc1f042010-11-18 12:11:05 +00008401int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008402 int rc = SQLITE_OK;
8403 if( p ){
8404 BtShared *pBt = p->pBt;
8405 sqlite3BtreeEnter(p);
8406 if( pBt->inTransaction!=TRANS_NONE ){
8407 rc = SQLITE_LOCKED;
8408 }else{
dancdc1f042010-11-18 12:11:05 +00008409 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008410 }
8411 sqlite3BtreeLeave(p);
8412 }
8413 return rc;
8414}
8415#endif
8416
danielk19771d850a72004-05-31 08:26:49 +00008417/*
danielk19772372c2b2006-06-27 16:34:56 +00008418** Return non-zero if a read (or write) transaction is active.
8419*/
8420int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008421 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008422 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008423 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008424}
8425
danielk197704103022009-02-03 16:51:24 +00008426int sqlite3BtreeIsInBackup(Btree *p){
8427 assert( p );
8428 assert( sqlite3_mutex_held(p->db->mutex) );
8429 return p->nBackup!=0;
8430}
8431
danielk19772372c2b2006-06-27 16:34:56 +00008432/*
danielk1977da184232006-01-05 11:34:32 +00008433** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008434** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008435** purposes (for example, to store a high-level schema associated with
8436** the shared-btree). The btree layer manages reference counting issues.
8437**
8438** The first time this is called on a shared-btree, nBytes bytes of memory
8439** are allocated, zeroed, and returned to the caller. For each subsequent
8440** call the nBytes parameter is ignored and a pointer to the same blob
8441** of memory returned.
8442**
danielk1977171bfed2008-06-23 09:50:50 +00008443** If the nBytes parameter is 0 and the blob of memory has not yet been
8444** allocated, a null pointer is returned. If the blob has already been
8445** allocated, it is returned as normal.
8446**
danielk1977da184232006-01-05 11:34:32 +00008447** Just before the shared-btree is closed, the function passed as the
8448** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008449** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008450** on the memory, the btree layer does that.
8451*/
8452void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8453 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008454 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008455 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008456 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008457 pBt->xFreeSchema = xFree;
8458 }
drh27641702007-08-22 02:56:42 +00008459 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008460 return pBt->pSchema;
8461}
8462
danielk1977c87d34d2006-01-06 13:00:28 +00008463/*
danielk1977404ca072009-03-16 13:19:36 +00008464** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8465** btree as the argument handle holds an exclusive lock on the
8466** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008467*/
8468int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008469 int rc;
drhe5fe6902007-12-07 18:55:28 +00008470 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008471 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008472 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8473 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008474 sqlite3BtreeLeave(p);
8475 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008476}
8477
drha154dcd2006-03-22 22:10:07 +00008478
8479#ifndef SQLITE_OMIT_SHARED_CACHE
8480/*
8481** Obtain a lock on the table whose root page is iTab. The
8482** lock is a write lock if isWritelock is true or a read lock
8483** if it is false.
8484*/
danielk1977c00da102006-01-07 13:21:04 +00008485int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008486 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008487 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008488 if( p->sharable ){
8489 u8 lockType = READ_LOCK + isWriteLock;
8490 assert( READ_LOCK+1==WRITE_LOCK );
8491 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008492
drh6a9ad3d2008-04-02 16:29:30 +00008493 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008494 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008495 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008496 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008497 }
8498 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008499 }
8500 return rc;
8501}
drha154dcd2006-03-22 22:10:07 +00008502#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008503
danielk1977b4e9af92007-05-01 17:49:49 +00008504#ifndef SQLITE_OMIT_INCRBLOB
8505/*
8506** Argument pCsr must be a cursor opened for writing on an
8507** INTKEY table currently pointing at a valid table entry.
8508** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008509**
8510** Only the data content may only be modified, it is not possible to
8511** change the length of the data stored. If this function is called with
8512** parameters that attempt to write past the end of the existing data,
8513** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008514*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008515int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008516 int rc;
drh1fee73e2007-08-29 04:00:57 +00008517 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008518 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00008519 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00008520
danielk1977c9000e62009-07-08 13:55:28 +00008521 rc = restoreCursorPosition(pCsr);
8522 if( rc!=SQLITE_OK ){
8523 return rc;
8524 }
danielk19773588ceb2008-06-10 17:30:26 +00008525 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8526 if( pCsr->eState!=CURSOR_VALID ){
8527 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008528 }
8529
dan227a1c42013-04-03 11:17:39 +00008530 /* Save the positions of all other cursors open on this table. This is
8531 ** required in case any of them are holding references to an xFetch
8532 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00008533 **
8534 ** Note that pCsr must be open on a BTREE_INTKEY table and saveCursorPosition()
8535 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8536 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00008537 */
drh370c9f42013-04-03 20:04:04 +00008538 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8539 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00008540
danielk1977c9000e62009-07-08 13:55:28 +00008541 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008542 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008543 ** (b) there is a read/write transaction open,
8544 ** (c) the connection holds a write-lock on the table (if required),
8545 ** (d) there are no conflicting read-locks, and
8546 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008547 */
drh036dbec2014-03-11 23:40:44 +00008548 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00008549 return SQLITE_READONLY;
8550 }
drhc9166342012-01-05 23:32:06 +00008551 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8552 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008553 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8554 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008555 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008556
drhfb192682009-07-11 18:26:28 +00008557 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008558}
danielk19772dec9702007-05-02 16:48:37 +00008559
8560/*
dan5a500af2014-03-11 20:33:04 +00008561** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00008562*/
dan5a500af2014-03-11 20:33:04 +00008563void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00008564 pCur->curFlags |= BTCF_Incrblob;
danielk19772dec9702007-05-02 16:48:37 +00008565}
danielk1977b4e9af92007-05-01 17:49:49 +00008566#endif
dane04dc882010-04-20 18:53:15 +00008567
8568/*
8569** Set both the "read version" (single byte at byte offset 18) and
8570** "write version" (single byte at byte offset 19) fields in the database
8571** header to iVersion.
8572*/
8573int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8574 BtShared *pBt = pBtree->pBt;
8575 int rc; /* Return code */
8576
dane04dc882010-04-20 18:53:15 +00008577 assert( iVersion==1 || iVersion==2 );
8578
danb9780022010-04-21 18:37:57 +00008579 /* If setting the version fields to 1, do not automatically open the
8580 ** WAL connection, even if the version fields are currently set to 2.
8581 */
drhc9166342012-01-05 23:32:06 +00008582 pBt->btsFlags &= ~BTS_NO_WAL;
8583 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008584
8585 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008586 if( rc==SQLITE_OK ){
8587 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008588 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008589 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008590 if( rc==SQLITE_OK ){
8591 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8592 if( rc==SQLITE_OK ){
8593 aData[18] = (u8)iVersion;
8594 aData[19] = (u8)iVersion;
8595 }
8596 }
8597 }
dane04dc882010-04-20 18:53:15 +00008598 }
8599
drhc9166342012-01-05 23:32:06 +00008600 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008601 return rc;
8602}
dan428c2182012-08-06 18:50:11 +00008603
8604/*
8605** set the mask of hint flags for cursor pCsr. Currently the only valid
8606** values are 0 and BTREE_BULKLOAD.
8607*/
8608void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8609 assert( mask==BTREE_BULKLOAD || mask==0 );
8610 pCsr->hints = mask;
8611}
drh781597f2014-05-21 08:21:07 +00008612
8613/*
8614** Return true if the given Btree is read-only.
8615*/
8616int sqlite3BtreeIsReadonly(Btree *p){
8617 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
8618}