blob: 04748e1b370a6ee91954d57de7adc4c449083478 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
dan7a2347e2016-01-07 16:43:54 +0000453static int cursorOwnsBtShared(BtCursor *p){
454 assert( cursorHoldsMutex(p) );
455 return (p->pBtree->db==p->pBt->db);
456}
drh1fee73e2007-08-29 04:00:57 +0000457#endif
458
danielk197792d4d7a2007-05-04 12:05:56 +0000459/*
dan5a500af2014-03-11 20:33:04 +0000460** Invalidate the overflow cache of the cursor passed as the first argument.
461** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000462*/
drh036dbec2014-03-11 23:40:44 +0000463#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000464
465/*
466** Invalidate the overflow page-list cache for all cursors opened
467** on the shared btree structure pBt.
468*/
469static void invalidateAllOverflowCache(BtShared *pBt){
470 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000471 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000472 for(p=pBt->pCursor; p; p=p->pNext){
473 invalidateOverflowCache(p);
474 }
475}
danielk197796d48e92009-06-29 06:00:37 +0000476
dan5a500af2014-03-11 20:33:04 +0000477#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000478/*
479** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000480** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000481** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000482**
483** If argument isClearTable is true, then the entire contents of the
484** table is about to be deleted. In this case invalidate all incrblob
485** cursors open on any row within the table with root-page pgnoRoot.
486**
487** Otherwise, if argument isClearTable is false, then the row with
488** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000489** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000490*/
491static void invalidateIncrblobCursors(
492 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000493 i64 iRow, /* The rowid that might be changing */
494 int isClearTable /* True if all rows are being deleted */
495){
496 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000497 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000498 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000499 pBtree->hasIncrblobCur = 0;
500 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
501 if( (p->curFlags & BTCF_Incrblob)!=0 ){
502 pBtree->hasIncrblobCur = 1;
503 if( isClearTable || p->info.nKey==iRow ){
504 p->eState = CURSOR_INVALID;
505 }
danielk197796d48e92009-06-29 06:00:37 +0000506 }
507 }
508}
509
danielk197792d4d7a2007-05-04 12:05:56 +0000510#else
dan5a500af2014-03-11 20:33:04 +0000511 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000512 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000513#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000514
drh980b1a72006-08-16 16:42:48 +0000515/*
danielk1977bea2a942009-01-20 17:06:27 +0000516** Set bit pgno of the BtShared.pHasContent bitvec. This is called
517** when a page that previously contained data becomes a free-list leaf
518** page.
519**
520** The BtShared.pHasContent bitvec exists to work around an obscure
521** bug caused by the interaction of two useful IO optimizations surrounding
522** free-list leaf pages:
523**
524** 1) When all data is deleted from a page and the page becomes
525** a free-list leaf page, the page is not written to the database
526** (as free-list leaf pages contain no meaningful data). Sometimes
527** such a page is not even journalled (as it will not be modified,
528** why bother journalling it?).
529**
530** 2) When a free-list leaf page is reused, its content is not read
531** from the database or written to the journal file (why should it
532** be, if it is not at all meaningful?).
533**
534** By themselves, these optimizations work fine and provide a handy
535** performance boost to bulk delete or insert operations. However, if
536** a page is moved to the free-list and then reused within the same
537** transaction, a problem comes up. If the page is not journalled when
538** it is moved to the free-list and it is also not journalled when it
539** is extracted from the free-list and reused, then the original data
540** may be lost. In the event of a rollback, it may not be possible
541** to restore the database to its original configuration.
542**
543** The solution is the BtShared.pHasContent bitvec. Whenever a page is
544** moved to become a free-list leaf page, the corresponding bit is
545** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000546** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000547** set in BtShared.pHasContent. The contents of the bitvec are cleared
548** at the end of every transaction.
549*/
550static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
551 int rc = SQLITE_OK;
552 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000553 assert( pgno<=pBt->nPage );
554 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000555 if( !pBt->pHasContent ){
556 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000557 }
558 }
559 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
560 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
561 }
562 return rc;
563}
564
565/*
566** Query the BtShared.pHasContent vector.
567**
568** This function is called when a free-list leaf page is removed from the
569** free-list for reuse. It returns false if it is safe to retrieve the
570** page from the pager layer with the 'no-content' flag set. True otherwise.
571*/
572static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
573 Bitvec *p = pBt->pHasContent;
574 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
575}
576
577/*
578** Clear (destroy) the BtShared.pHasContent bitvec. This should be
579** invoked at the conclusion of each write-transaction.
580*/
581static void btreeClearHasContent(BtShared *pBt){
582 sqlite3BitvecDestroy(pBt->pHasContent);
583 pBt->pHasContent = 0;
584}
585
586/*
drh138eeeb2013-03-27 03:15:23 +0000587** Release all of the apPage[] pages for a cursor.
588*/
589static void btreeReleaseAllCursorPages(BtCursor *pCur){
590 int i;
591 for(i=0; i<=pCur->iPage; i++){
592 releasePage(pCur->apPage[i]);
593 pCur->apPage[i] = 0;
594 }
595 pCur->iPage = -1;
596}
597
danf0ee1d32015-09-12 19:26:11 +0000598/*
599** The cursor passed as the only argument must point to a valid entry
600** when this function is called (i.e. have eState==CURSOR_VALID). This
601** function saves the current cursor key in variables pCur->nKey and
602** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
603** code otherwise.
604**
605** If the cursor is open on an intkey table, then the integer key
606** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
607** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
608** set to point to a malloced buffer pCur->nKey bytes in size containing
609** the key.
610*/
611static int saveCursorKey(BtCursor *pCur){
612 int rc;
613 assert( CURSOR_VALID==pCur->eState );
614 assert( 0==pCur->pKey );
615 assert( cursorHoldsMutex(pCur) );
616
617 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
618 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
619
620 /* If this is an intKey table, then the above call to BtreeKeySize()
621 ** stores the integer key in pCur->nKey. In this case this value is
622 ** all that is required. Otherwise, if pCur is not open on an intKey
623 ** table, then malloc space for and store the pCur->nKey bytes of key
624 ** data. */
625 if( 0==pCur->curIntKey ){
626 void *pKey = sqlite3Malloc( pCur->nKey );
627 if( pKey ){
628 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
629 if( rc==SQLITE_OK ){
630 pCur->pKey = pKey;
631 }else{
632 sqlite3_free(pKey);
633 }
634 }else{
635 rc = SQLITE_NOMEM;
636 }
637 }
638 assert( !pCur->curIntKey || !pCur->pKey );
639 return rc;
640}
drh138eeeb2013-03-27 03:15:23 +0000641
642/*
drh980b1a72006-08-16 16:42:48 +0000643** Save the current cursor position in the variables BtCursor.nKey
644** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000645**
646** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
647** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000648*/
649static int saveCursorPosition(BtCursor *pCur){
650 int rc;
651
drhd2f83132015-03-25 17:35:01 +0000652 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000653 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000654 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000655
drhd2f83132015-03-25 17:35:01 +0000656 if( pCur->eState==CURSOR_SKIPNEXT ){
657 pCur->eState = CURSOR_VALID;
658 }else{
659 pCur->skipNext = 0;
660 }
drh980b1a72006-08-16 16:42:48 +0000661
danf0ee1d32015-09-12 19:26:11 +0000662 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000663 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000664 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000665 pCur->eState = CURSOR_REQUIRESEEK;
666 }
667
dane755e102015-09-30 12:59:12 +0000668 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000669 return rc;
670}
671
drh637f3d82014-08-22 22:26:07 +0000672/* Forward reference */
673static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
674
drh980b1a72006-08-16 16:42:48 +0000675/*
drh0ee3dbe2009-10-16 15:05:18 +0000676** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000677** the table with root-page iRoot. "Saving the cursor position" means that
678** the location in the btree is remembered in such a way that it can be
679** moved back to the same spot after the btree has been modified. This
680** routine is called just before cursor pExcept is used to modify the
681** table, for example in BtreeDelete() or BtreeInsert().
682**
drh27fb7462015-06-30 02:47:36 +0000683** If there are two or more cursors on the same btree, then all such
684** cursors should have their BTCF_Multiple flag set. The btreeCursor()
685** routine enforces that rule. This routine only needs to be called in
686** the uncommon case when pExpect has the BTCF_Multiple flag set.
687**
688** If pExpect!=NULL and if no other cursors are found on the same root-page,
689** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
690** pointless call to this routine.
691**
drh637f3d82014-08-22 22:26:07 +0000692** Implementation note: This routine merely checks to see if any cursors
693** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
694** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000695*/
696static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
697 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000698 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000699 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000700 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000701 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
702 }
drh27fb7462015-06-30 02:47:36 +0000703 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
704 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
705 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000706}
707
708/* This helper routine to saveAllCursors does the actual work of saving
709** the cursors if and when a cursor is found that actually requires saving.
710** The common case is that no cursors need to be saved, so this routine is
711** broken out from its caller to avoid unnecessary stack pointer movement.
712*/
713static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000714 BtCursor *p, /* The first cursor that needs saving */
715 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
716 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000717){
718 do{
drh138eeeb2013-03-27 03:15:23 +0000719 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000720 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000721 int rc = saveCursorPosition(p);
722 if( SQLITE_OK!=rc ){
723 return rc;
724 }
725 }else{
726 testcase( p->iPage>0 );
727 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000728 }
729 }
drh637f3d82014-08-22 22:26:07 +0000730 p = p->pNext;
731 }while( p );
drh980b1a72006-08-16 16:42:48 +0000732 return SQLITE_OK;
733}
734
735/*
drhbf700f32007-03-31 02:36:44 +0000736** Clear the current cursor position.
737*/
danielk1977be51a652008-10-08 17:58:48 +0000738void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000739 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000740 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000741 pCur->pKey = 0;
742 pCur->eState = CURSOR_INVALID;
743}
744
745/*
danielk19773509a652009-07-06 18:56:13 +0000746** In this version of BtreeMoveto, pKey is a packed index record
747** such as is generated by the OP_MakeRecord opcode. Unpack the
748** record and then call BtreeMovetoUnpacked() to do the work.
749*/
750static int btreeMoveto(
751 BtCursor *pCur, /* Cursor open on the btree to be searched */
752 const void *pKey, /* Packed key if the btree is an index */
753 i64 nKey, /* Integer key for tables. Size of pKey for indices */
754 int bias, /* Bias search to the high end */
755 int *pRes /* Write search results here */
756){
757 int rc; /* Status code */
758 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000759 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000760 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000761
762 if( pKey ){
763 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000764 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
765 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
766 );
danielk19773509a652009-07-06 18:56:13 +0000767 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000768 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000769 if( pIdxKey->nField==0 ){
770 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
771 return SQLITE_CORRUPT_BKPT;
772 }
danielk19773509a652009-07-06 18:56:13 +0000773 }else{
774 pIdxKey = 0;
775 }
776 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000777 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000778 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000779 }
780 return rc;
781}
782
783/*
drh980b1a72006-08-16 16:42:48 +0000784** Restore the cursor to the position it was in (or as close to as possible)
785** when saveCursorPosition() was called. Note that this call deletes the
786** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000787** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000788** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000789*/
danielk197730548662009-07-09 05:07:37 +0000790static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000791 int rc;
drhd2f83132015-03-25 17:35:01 +0000792 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000793 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000794 assert( pCur->eState>=CURSOR_REQUIRESEEK );
795 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000796 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000797 }
drh980b1a72006-08-16 16:42:48 +0000798 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000799 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000800 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000801 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000802 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000803 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000804 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000805 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
806 pCur->eState = CURSOR_SKIPNEXT;
807 }
drh980b1a72006-08-16 16:42:48 +0000808 }
809 return rc;
810}
811
drha3460582008-07-11 21:02:53 +0000812#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000813 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000814 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000815 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000816
drha3460582008-07-11 21:02:53 +0000817/*
drh6848dad2014-08-22 23:33:03 +0000818** Determine whether or not a cursor has moved from the position where
819** it was last placed, or has been invalidated for any other reason.
820** Cursors can move when the row they are pointing at is deleted out
821** from under them, for example. Cursor might also move if a btree
822** is rebalanced.
drha3460582008-07-11 21:02:53 +0000823**
drh6848dad2014-08-22 23:33:03 +0000824** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000825**
drh6848dad2014-08-22 23:33:03 +0000826** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
827** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000828*/
drh6848dad2014-08-22 23:33:03 +0000829int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000830 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000831}
832
833/*
834** This routine restores a cursor back to its original position after it
835** has been moved by some outside activity (such as a btree rebalance or
836** a row having been deleted out from under the cursor).
837**
838** On success, the *pDifferentRow parameter is false if the cursor is left
839** pointing at exactly the same row. *pDifferntRow is the row the cursor
840** was pointing to has been deleted, forcing the cursor to point to some
841** nearby row.
842**
843** This routine should only be called for a cursor that just returned
844** TRUE from sqlite3BtreeCursorHasMoved().
845*/
846int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000847 int rc;
848
drh6848dad2014-08-22 23:33:03 +0000849 assert( pCur!=0 );
850 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000851 rc = restoreCursorPosition(pCur);
852 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000853 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000854 return rc;
855 }
drh606a3572015-03-25 18:29:10 +0000856 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000857 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000858 }else{
drh606a3572015-03-25 18:29:10 +0000859 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000860 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000861 }
862 return SQLITE_OK;
863}
864
drhf7854c72015-10-27 13:24:37 +0000865#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000866/*
drh0df57012015-08-14 15:05:55 +0000867** Provide hints to the cursor. The particular hint given (and the type
868** and number of the varargs parameters) is determined by the eHintType
869** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000870*/
drh0df57012015-08-14 15:05:55 +0000871void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000872 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000873}
drhf7854c72015-10-27 13:24:37 +0000874#endif
875
876/*
877** Provide flag hints to the cursor.
878*/
879void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
880 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
881 pCur->hints = x;
882}
883
drh28935362013-12-07 20:39:19 +0000884
danielk1977599fcba2004-11-08 07:13:13 +0000885#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000886/*
drha3152892007-05-05 11:48:52 +0000887** Given a page number of a regular database page, return the page
888** number for the pointer-map page that contains the entry for the
889** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000890**
891** Return 0 (not a valid page) for pgno==1 since there is
892** no pointer map associated with page 1. The integrity_check logic
893** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000894*/
danielk1977266664d2006-02-10 08:24:21 +0000895static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000896 int nPagesPerMapPage;
897 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000898 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000899 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000900 nPagesPerMapPage = (pBt->usableSize/5)+1;
901 iPtrMap = (pgno-2)/nPagesPerMapPage;
902 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000903 if( ret==PENDING_BYTE_PAGE(pBt) ){
904 ret++;
905 }
906 return ret;
907}
danielk1977a19df672004-11-03 11:37:07 +0000908
danielk1977afcdd022004-10-31 16:25:42 +0000909/*
danielk1977afcdd022004-10-31 16:25:42 +0000910** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000911**
912** This routine updates the pointer map entry for page number 'key'
913** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000914**
915** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
916** a no-op. If an error occurs, the appropriate error code is written
917** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000918*/
drh98add2e2009-07-20 17:11:49 +0000919static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000920 DbPage *pDbPage; /* The pointer map page */
921 u8 *pPtrmap; /* The pointer map data */
922 Pgno iPtrmap; /* The pointer map page number */
923 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000924 int rc; /* Return code from subfunctions */
925
926 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000927
drh1fee73e2007-08-29 04:00:57 +0000928 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000929 /* The master-journal page number must never be used as a pointer map page */
930 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
931
danielk1977ac11ee62005-01-15 12:45:51 +0000932 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000933 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000934 *pRC = SQLITE_CORRUPT_BKPT;
935 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000936 }
danielk1977266664d2006-02-10 08:24:21 +0000937 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000938 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000939 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000940 *pRC = rc;
941 return;
danielk1977afcdd022004-10-31 16:25:42 +0000942 }
danielk19778c666b12008-07-18 09:34:57 +0000943 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000944 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000945 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000946 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000947 }
drhfc243732011-05-17 15:21:56 +0000948 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000949 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000950
drh615ae552005-01-16 23:21:00 +0000951 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
952 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000953 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000954 if( rc==SQLITE_OK ){
955 pPtrmap[offset] = eType;
956 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000957 }
danielk1977afcdd022004-10-31 16:25:42 +0000958 }
959
drh4925a552009-07-07 11:39:58 +0000960ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000961 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000962}
963
964/*
965** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000966**
967** This routine retrieves the pointer map entry for page 'key', writing
968** the type and parent page number to *pEType and *pPgno respectively.
969** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000970*/
danielk1977aef0bf62005-12-30 16:28:01 +0000971static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000972 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000973 int iPtrmap; /* Pointer map page index */
974 u8 *pPtrmap; /* Pointer map page data */
975 int offset; /* Offset of entry in pointer map */
976 int rc;
977
drh1fee73e2007-08-29 04:00:57 +0000978 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000979
danielk1977266664d2006-02-10 08:24:21 +0000980 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000981 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +0000982 if( rc!=0 ){
983 return rc;
984 }
danielk19773b8a05f2007-03-19 17:44:26 +0000985 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000986
danielk19778c666b12008-07-18 09:34:57 +0000987 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000988 if( offset<0 ){
989 sqlite3PagerUnref(pDbPage);
990 return SQLITE_CORRUPT_BKPT;
991 }
992 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000993 assert( pEType!=0 );
994 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000995 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000996
danielk19773b8a05f2007-03-19 17:44:26 +0000997 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000998 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000999 return SQLITE_OK;
1000}
1001
danielk197785d90ca2008-07-19 14:25:15 +00001002#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001003 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001004 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001005 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001006#endif
danielk1977afcdd022004-10-31 16:25:42 +00001007
drh0d316a42002-08-11 20:10:47 +00001008/*
drh271efa52004-05-30 19:19:05 +00001009** Given a btree page and a cell index (0 means the first cell on
1010** the page, 1 means the second cell, and so forth) return a pointer
1011** to the cell content.
1012**
drhf44890a2015-06-27 03:58:15 +00001013** findCellPastPtr() does the same except it skips past the initial
1014** 4-byte child pointer found on interior pages, if there is one.
1015**
drh271efa52004-05-30 19:19:05 +00001016** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001017*/
drh1688c862008-07-18 02:44:17 +00001018#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001019 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001020#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001021 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001022
drh43605152004-05-29 21:46:49 +00001023
1024/*
drh5fa60512015-06-19 17:19:34 +00001025** This is common tail processing for btreeParseCellPtr() and
1026** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1027** on a single B-tree page. Make necessary adjustments to the CellInfo
1028** structure.
drh43605152004-05-29 21:46:49 +00001029*/
drh5fa60512015-06-19 17:19:34 +00001030static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1031 MemPage *pPage, /* Page containing the cell */
1032 u8 *pCell, /* Pointer to the cell text. */
1033 CellInfo *pInfo /* Fill in this structure */
1034){
1035 /* If the payload will not fit completely on the local page, we have
1036 ** to decide how much to store locally and how much to spill onto
1037 ** overflow pages. The strategy is to minimize the amount of unused
1038 ** space on overflow pages while keeping the amount of local storage
1039 ** in between minLocal and maxLocal.
1040 **
1041 ** Warning: changing the way overflow payload is distributed in any
1042 ** way will result in an incompatible file format.
1043 */
1044 int minLocal; /* Minimum amount of payload held locally */
1045 int maxLocal; /* Maximum amount of payload held locally */
1046 int surplus; /* Overflow payload available for local storage */
1047
1048 minLocal = pPage->minLocal;
1049 maxLocal = pPage->maxLocal;
1050 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1051 testcase( surplus==maxLocal );
1052 testcase( surplus==maxLocal+1 );
1053 if( surplus <= maxLocal ){
1054 pInfo->nLocal = (u16)surplus;
1055 }else{
1056 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001057 }
drh45ac1c72015-12-18 03:59:16 +00001058 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001059}
1060
1061/*
drh5fa60512015-06-19 17:19:34 +00001062** The following routines are implementations of the MemPage.xParseCell()
1063** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001064**
drh5fa60512015-06-19 17:19:34 +00001065** Parse a cell content block and fill in the CellInfo structure.
1066**
1067** btreeParseCellPtr() => table btree leaf nodes
1068** btreeParseCellNoPayload() => table btree internal nodes
1069** btreeParseCellPtrIndex() => index btree nodes
1070**
1071** There is also a wrapper function btreeParseCell() that works for
1072** all MemPage types and that references the cell by index rather than
1073** by pointer.
drh43605152004-05-29 21:46:49 +00001074*/
drh5fa60512015-06-19 17:19:34 +00001075static void btreeParseCellPtrNoPayload(
1076 MemPage *pPage, /* Page containing the cell */
1077 u8 *pCell, /* Pointer to the cell text. */
1078 CellInfo *pInfo /* Fill in this structure */
1079){
1080 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1081 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001082 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001083#ifndef SQLITE_DEBUG
1084 UNUSED_PARAMETER(pPage);
1085#endif
drh5fa60512015-06-19 17:19:34 +00001086 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1087 pInfo->nPayload = 0;
1088 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001089 pInfo->pPayload = 0;
1090 return;
1091}
danielk197730548662009-07-09 05:07:37 +00001092static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001093 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001094 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001095 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001096){
drh3e28ff52014-09-24 00:59:08 +00001097 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001098 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001099 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001100
drh1fee73e2007-08-29 04:00:57 +00001101 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001102 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001103 assert( pPage->intKeyLeaf );
1104 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001105 pIter = pCell;
1106
1107 /* The next block of code is equivalent to:
1108 **
1109 ** pIter += getVarint32(pIter, nPayload);
1110 **
1111 ** The code is inlined to avoid a function call.
1112 */
1113 nPayload = *pIter;
1114 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001115 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001116 nPayload &= 0x7f;
1117 do{
1118 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1119 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001120 }
drh56cb04e2015-06-19 18:24:37 +00001121 pIter++;
1122
1123 /* The next block of code is equivalent to:
1124 **
1125 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1126 **
1127 ** The code is inlined to avoid a function call.
1128 */
1129 iKey = *pIter;
1130 if( iKey>=0x80 ){
1131 u8 *pEnd = &pIter[7];
1132 iKey &= 0x7f;
1133 while(1){
1134 iKey = (iKey<<7) | (*++pIter & 0x7f);
1135 if( (*pIter)<0x80 ) break;
1136 if( pIter>=pEnd ){
1137 iKey = (iKey<<8) | *++pIter;
1138 break;
1139 }
1140 }
1141 }
1142 pIter++;
1143
1144 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001145 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001146 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001147 testcase( nPayload==pPage->maxLocal );
1148 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001149 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001150 /* This is the (easy) common case where the entire payload fits
1151 ** on the local page. No overflow is required.
1152 */
drhab1cc582014-09-23 21:25:19 +00001153 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1154 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001155 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001156 }else{
drh5fa60512015-06-19 17:19:34 +00001157 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001158 }
drh3aac2dd2004-04-26 14:10:20 +00001159}
drh5fa60512015-06-19 17:19:34 +00001160static void btreeParseCellPtrIndex(
1161 MemPage *pPage, /* Page containing the cell */
1162 u8 *pCell, /* Pointer to the cell text. */
1163 CellInfo *pInfo /* Fill in this structure */
1164){
1165 u8 *pIter; /* For scanning through pCell */
1166 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001167
drh5fa60512015-06-19 17:19:34 +00001168 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1169 assert( pPage->leaf==0 || pPage->leaf==1 );
1170 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001171 pIter = pCell + pPage->childPtrSize;
1172 nPayload = *pIter;
1173 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001174 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001175 nPayload &= 0x7f;
1176 do{
1177 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1178 }while( *(pIter)>=0x80 && pIter<pEnd );
1179 }
1180 pIter++;
1181 pInfo->nKey = nPayload;
1182 pInfo->nPayload = nPayload;
1183 pInfo->pPayload = pIter;
1184 testcase( nPayload==pPage->maxLocal );
1185 testcase( nPayload==pPage->maxLocal+1 );
1186 if( nPayload<=pPage->maxLocal ){
1187 /* This is the (easy) common case where the entire payload fits
1188 ** on the local page. No overflow is required.
1189 */
1190 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1191 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1192 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001193 }else{
1194 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001195 }
1196}
danielk197730548662009-07-09 05:07:37 +00001197static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001198 MemPage *pPage, /* Page containing the cell */
1199 int iCell, /* The cell index. First cell is 0 */
1200 CellInfo *pInfo /* Fill in this structure */
1201){
drh5fa60512015-06-19 17:19:34 +00001202 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001203}
drh3aac2dd2004-04-26 14:10:20 +00001204
1205/*
drh5fa60512015-06-19 17:19:34 +00001206** The following routines are implementations of the MemPage.xCellSize
1207** method.
1208**
drh43605152004-05-29 21:46:49 +00001209** Compute the total number of bytes that a Cell needs in the cell
1210** data area of the btree-page. The return number includes the cell
1211** data header and the local payload, but not any overflow page or
1212** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001213**
drh5fa60512015-06-19 17:19:34 +00001214** cellSizePtrNoPayload() => table internal nodes
1215** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001216*/
danielk1977ae5558b2009-04-29 11:31:47 +00001217static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001218 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1219 u8 *pEnd; /* End mark for a varint */
1220 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001221
1222#ifdef SQLITE_DEBUG
1223 /* The value returned by this function should always be the same as
1224 ** the (CellInfo.nSize) value found by doing a full parse of the
1225 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1226 ** this function verifies that this invariant is not violated. */
1227 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001228 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001229#endif
1230
drh3e28ff52014-09-24 00:59:08 +00001231 nSize = *pIter;
1232 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001233 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001234 nSize &= 0x7f;
1235 do{
1236 nSize = (nSize<<7) | (*++pIter & 0x7f);
1237 }while( *(pIter)>=0x80 && pIter<pEnd );
1238 }
1239 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001240 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001241 /* pIter now points at the 64-bit integer key value, a variable length
1242 ** integer. The following block moves pIter to point at the first byte
1243 ** past the end of the key value. */
1244 pEnd = &pIter[9];
1245 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001246 }
drh0a45c272009-07-08 01:49:11 +00001247 testcase( nSize==pPage->maxLocal );
1248 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001249 if( nSize<=pPage->maxLocal ){
1250 nSize += (u32)(pIter - pCell);
1251 if( nSize<4 ) nSize = 4;
1252 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001253 int minLocal = pPage->minLocal;
1254 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001255 testcase( nSize==pPage->maxLocal );
1256 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001257 if( nSize>pPage->maxLocal ){
1258 nSize = minLocal;
1259 }
drh3e28ff52014-09-24 00:59:08 +00001260 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001261 }
drhdc41d602014-09-22 19:51:35 +00001262 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001263 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001264}
drh25ada072015-06-19 15:07:14 +00001265static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1266 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1267 u8 *pEnd; /* End mark for a varint */
1268
1269#ifdef SQLITE_DEBUG
1270 /* The value returned by this function should always be the same as
1271 ** the (CellInfo.nSize) value found by doing a full parse of the
1272 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1273 ** this function verifies that this invariant is not violated. */
1274 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001275 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001276#else
1277 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001278#endif
1279
1280 assert( pPage->childPtrSize==4 );
1281 pEnd = pIter + 9;
1282 while( (*pIter++)&0x80 && pIter<pEnd );
1283 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1284 return (u16)(pIter - pCell);
1285}
1286
drh0ee3dbe2009-10-16 15:05:18 +00001287
1288#ifdef SQLITE_DEBUG
1289/* This variation on cellSizePtr() is used inside of assert() statements
1290** only. */
drha9121e42008-02-19 14:59:35 +00001291static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001292 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001293}
danielk1977bc6ada42004-06-30 08:20:16 +00001294#endif
drh3b7511c2001-05-26 13:15:44 +00001295
danielk197779a40da2005-01-16 08:00:01 +00001296#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001297/*
danielk197726836652005-01-17 01:33:13 +00001298** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001299** to an overflow page, insert an entry into the pointer-map
1300** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001301*/
drh98add2e2009-07-20 17:11:49 +00001302static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001303 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001304 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001305 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001306 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001307 if( info.nLocal<info.nPayload ){
1308 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001309 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001310 }
danielk1977ac11ee62005-01-15 12:45:51 +00001311}
danielk197779a40da2005-01-16 08:00:01 +00001312#endif
1313
danielk1977ac11ee62005-01-15 12:45:51 +00001314
drhda200cc2004-05-09 11:51:38 +00001315/*
drh72f82862001-05-24 21:06:34 +00001316** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001317** end of the page and all free space is collected into one
1318** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001319** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001320**
1321** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1322** b-tree page so that there are no freeblocks or fragment bytes, all
1323** unused bytes are contained in the unallocated space region, and all
1324** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001325*/
shane0af3f892008-11-12 04:55:34 +00001326static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001327 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001328 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001329 int hdr; /* Offset to the page header */
1330 int size; /* Size of a cell */
1331 int usableSize; /* Number of usable bytes on a page */
1332 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001333 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001334 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001335 unsigned char *data; /* The page data */
1336 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001337 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001338 int iCellFirst; /* First allowable cell index */
1339 int iCellLast; /* Last possible cell index */
1340
drh2af926b2001-05-15 00:39:25 +00001341
danielk19773b8a05f2007-03-19 17:44:26 +00001342 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001343 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001344 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001345 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001346 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001347 temp = 0;
1348 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001349 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001350 cellOffset = pPage->cellOffset;
1351 nCell = pPage->nCell;
1352 assert( nCell==get2byte(&data[hdr+3]) );
1353 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001354 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001355 iCellFirst = cellOffset + 2*nCell;
1356 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001357 for(i=0; i<nCell; i++){
1358 u8 *pAddr; /* The i-th cell pointer */
1359 pAddr = &data[cellOffset + i*2];
1360 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001361 testcase( pc==iCellFirst );
1362 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001363 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001364 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001365 */
1366 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001367 return SQLITE_CORRUPT_BKPT;
1368 }
drh17146622009-07-07 17:38:38 +00001369 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001370 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001371 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001372 if( cbrk<iCellFirst || pc+size>usableSize ){
1373 return SQLITE_CORRUPT_BKPT;
1374 }
drh7157e1d2009-07-09 13:25:32 +00001375 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001376 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001377 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001378 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001379 if( temp==0 ){
1380 int x;
1381 if( cbrk==pc ) continue;
1382 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1383 x = get2byte(&data[hdr+5]);
1384 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1385 src = temp;
1386 }
1387 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001388 }
drh17146622009-07-07 17:38:38 +00001389 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001390 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001391 data[hdr+1] = 0;
1392 data[hdr+2] = 0;
1393 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001394 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001395 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001396 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001397 return SQLITE_CORRUPT_BKPT;
1398 }
shane0af3f892008-11-12 04:55:34 +00001399 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001400}
1401
drha059ad02001-04-17 20:09:11 +00001402/*
dan8e9ba0c2014-10-14 17:27:04 +00001403** Search the free-list on page pPg for space to store a cell nByte bytes in
1404** size. If one can be found, return a pointer to the space and remove it
1405** from the free-list.
1406**
1407** If no suitable space can be found on the free-list, return NULL.
1408**
drhba0f9992014-10-30 20:48:44 +00001409** This function may detect corruption within pPg. If corruption is
1410** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001411**
drhb7580e82015-06-25 18:36:13 +00001412** Slots on the free list that are between 1 and 3 bytes larger than nByte
1413** will be ignored if adding the extra space to the fragmentation count
1414** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001415*/
drhb7580e82015-06-25 18:36:13 +00001416static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001417 const int hdr = pPg->hdrOffset;
1418 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001419 int iAddr = hdr + 1;
1420 int pc = get2byte(&aData[iAddr]);
1421 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001422 int usableSize = pPg->pBt->usableSize;
1423
drhb7580e82015-06-25 18:36:13 +00001424 assert( pc>0 );
1425 do{
dan8e9ba0c2014-10-14 17:27:04 +00001426 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001427 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1428 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001429 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001430 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001431 return 0;
1432 }
drh113762a2014-11-19 16:36:25 +00001433 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1434 ** freeblock form a big-endian integer which is the size of the freeblock
1435 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001436 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001437 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001438 testcase( x==4 );
1439 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001440 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1441 *pRc = SQLITE_CORRUPT_BKPT;
1442 return 0;
1443 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001444 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1445 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001446 if( aData[hdr+7]>57 ) return 0;
1447
dan8e9ba0c2014-10-14 17:27:04 +00001448 /* Remove the slot from the free-list. Update the number of
1449 ** fragmented bytes within the page. */
1450 memcpy(&aData[iAddr], &aData[pc], 2);
1451 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001452 }else{
1453 /* The slot remains on the free-list. Reduce its size to account
1454 ** for the portion used by the new allocation. */
1455 put2byte(&aData[pc+2], x);
1456 }
1457 return &aData[pc + x];
1458 }
drhb7580e82015-06-25 18:36:13 +00001459 iAddr = pc;
1460 pc = get2byte(&aData[pc]);
1461 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001462
1463 return 0;
1464}
1465
1466/*
danielk19776011a752009-04-01 16:25:32 +00001467** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001468** as the first argument. Write into *pIdx the index into pPage->aData[]
1469** of the first byte of allocated space. Return either SQLITE_OK or
1470** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001471**
drh0a45c272009-07-08 01:49:11 +00001472** The caller guarantees that there is sufficient space to make the
1473** allocation. This routine might need to defragment in order to bring
1474** all the space together, however. This routine will avoid using
1475** the first two bytes past the cell pointer area since presumably this
1476** allocation is being made in order to insert a new cell, so we will
1477** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001478*/
drh0a45c272009-07-08 01:49:11 +00001479static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001480 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1481 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001482 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001483 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001484 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001485
danielk19773b8a05f2007-03-19 17:44:26 +00001486 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001487 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001488 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001489 assert( nByte>=0 ); /* Minimum cell size is 4 */
1490 assert( pPage->nFree>=nByte );
1491 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001492 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001493
drh0a45c272009-07-08 01:49:11 +00001494 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1495 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001496 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001497 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1498 ** and the reserved space is zero (the usual value for reserved space)
1499 ** then the cell content offset of an empty page wants to be 65536.
1500 ** However, that integer is too large to be stored in a 2-byte unsigned
1501 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001502 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001503 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001504 if( gap>top ){
1505 if( top==0 && pPage->pBt->usableSize==65536 ){
1506 top = 65536;
1507 }else{
1508 return SQLITE_CORRUPT_BKPT;
drh9e572e62004-04-23 23:43:10 +00001509 }
1510 }
drh43605152004-05-29 21:46:49 +00001511
drh4c04f3c2014-08-20 11:56:14 +00001512 /* If there is enough space between gap and top for one more cell pointer
1513 ** array entry offset, and if the freelist is not empty, then search the
1514 ** freelist looking for a free slot big enough to satisfy the request.
1515 */
drh5e2f8b92001-05-28 00:41:15 +00001516 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001517 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001518 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001519 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001520 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001521 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001522 assert( pSpace>=data && (pSpace - data)<65536 );
1523 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001524 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001525 }else if( rc ){
1526 return rc;
drh9e572e62004-04-23 23:43:10 +00001527 }
1528 }
drh43605152004-05-29 21:46:49 +00001529
drh4c04f3c2014-08-20 11:56:14 +00001530 /* The request could not be fulfilled using a freelist slot. Check
1531 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001532 */
1533 testcase( gap+2+nByte==top );
1534 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001535 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001536 rc = defragmentPage(pPage);
1537 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001538 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001539 assert( gap+nByte<=top );
1540 }
1541
1542
drh43605152004-05-29 21:46:49 +00001543 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001544 ** and the cell content area. The btreeInitPage() call has already
1545 ** validated the freelist. Given that the freelist is valid, there
1546 ** is no way that the allocation can extend off the end of the page.
1547 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001548 */
drh0a45c272009-07-08 01:49:11 +00001549 top -= nByte;
drh43605152004-05-29 21:46:49 +00001550 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001551 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001552 *pIdx = top;
1553 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001554}
1555
1556/*
drh9e572e62004-04-23 23:43:10 +00001557** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001558** The first byte of the new free block is pPage->aData[iStart]
1559** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001560**
drh5f5c7532014-08-20 17:56:27 +00001561** Adjacent freeblocks are coalesced.
1562**
1563** Note that even though the freeblock list was checked by btreeInitPage(),
1564** that routine will not detect overlap between cells or freeblocks. Nor
1565** does it detect cells or freeblocks that encrouch into the reserved bytes
1566** at the end of the page. So do additional corruption checks inside this
1567** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001568*/
drh5f5c7532014-08-20 17:56:27 +00001569static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001570 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001571 u16 iFreeBlk; /* Address of the next freeblock */
1572 u8 hdr; /* Page header size. 0 or 100 */
1573 u8 nFrag = 0; /* Reduction in fragmentation */
1574 u16 iOrigSize = iSize; /* Original value of iSize */
1575 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1576 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001577 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001578
drh9e572e62004-04-23 23:43:10 +00001579 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001580 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001581 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001582 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001583 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001584 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001585 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001586
drh5f5c7532014-08-20 17:56:27 +00001587 /* Overwrite deleted information with zeros when the secure_delete
1588 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001589 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001590 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001591 }
drhfcce93f2006-02-22 03:08:32 +00001592
drh5f5c7532014-08-20 17:56:27 +00001593 /* The list of freeblocks must be in ascending order. Find the
1594 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001595 */
drh43605152004-05-29 21:46:49 +00001596 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001597 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001598 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1599 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1600 }else{
1601 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1602 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1603 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001604 }
drh7bc4c452014-08-20 18:43:44 +00001605 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1606 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1607
1608 /* At this point:
1609 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001610 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001611 **
1612 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1613 */
1614 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1615 nFrag = iFreeBlk - iEnd;
1616 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1617 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001618 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001619 iSize = iEnd - iStart;
1620 iFreeBlk = get2byte(&data[iFreeBlk]);
1621 }
1622
drh3f387402014-09-24 01:23:00 +00001623 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1624 ** pointer in the page header) then check to see if iStart should be
1625 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001626 */
1627 if( iPtr>hdr+1 ){
1628 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1629 if( iPtrEnd+3>=iStart ){
1630 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1631 nFrag += iStart - iPtrEnd;
1632 iSize = iEnd - iPtr;
1633 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001634 }
drh9e572e62004-04-23 23:43:10 +00001635 }
drh7bc4c452014-08-20 18:43:44 +00001636 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1637 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001638 }
drh7bc4c452014-08-20 18:43:44 +00001639 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001640 /* The new freeblock is at the beginning of the cell content area,
1641 ** so just extend the cell content area rather than create another
1642 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001643 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001644 put2byte(&data[hdr+1], iFreeBlk);
1645 put2byte(&data[hdr+5], iEnd);
1646 }else{
1647 /* Insert the new freeblock into the freelist */
1648 put2byte(&data[iPtr], iStart);
1649 put2byte(&data[iStart], iFreeBlk);
1650 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001651 }
drh5f5c7532014-08-20 17:56:27 +00001652 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001653 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001654}
1655
1656/*
drh271efa52004-05-30 19:19:05 +00001657** Decode the flags byte (the first byte of the header) for a page
1658** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001659**
1660** Only the following combinations are supported. Anything different
1661** indicates a corrupt database files:
1662**
1663** PTF_ZERODATA
1664** PTF_ZERODATA | PTF_LEAF
1665** PTF_LEAFDATA | PTF_INTKEY
1666** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001667*/
drh44845222008-07-17 18:39:57 +00001668static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001669 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001670
1671 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001672 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001673 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001674 flagByte &= ~PTF_LEAF;
1675 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001676 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001677 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001678 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001679 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1680 ** table b-tree page. */
1681 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1682 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1683 ** table b-tree page. */
1684 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001685 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001686 if( pPage->leaf ){
1687 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001688 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001689 }else{
1690 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001691 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001692 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001693 }
drh271efa52004-05-30 19:19:05 +00001694 pPage->maxLocal = pBt->maxLeaf;
1695 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001696 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001697 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1698 ** index b-tree page. */
1699 assert( (PTF_ZERODATA)==2 );
1700 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1701 ** index b-tree page. */
1702 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001703 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001704 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001705 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001706 pPage->maxLocal = pBt->maxLocal;
1707 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001708 }else{
drhfdab0262014-11-20 15:30:50 +00001709 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1710 ** an error. */
drh44845222008-07-17 18:39:57 +00001711 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001712 }
drhc9166342012-01-05 23:32:06 +00001713 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001714 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001715}
1716
1717/*
drh7e3b0a02001-04-28 16:52:40 +00001718** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001719**
1720** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001721** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001722** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1723** guarantee that the page is well-formed. It only shows that
1724** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001725*/
danielk197730548662009-07-09 05:07:37 +00001726static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001727
danielk197771d5d2c2008-09-29 11:49:47 +00001728 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001729 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001730 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001731 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001732 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1733 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001734
1735 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001736 u16 pc; /* Address of a freeblock within pPage->aData[] */
1737 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001738 u8 *data; /* Equal to pPage->aData */
1739 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001740 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001741 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001742 int nFree; /* Number of unused bytes on the page */
1743 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001744 int iCellFirst; /* First allowable cell or freeblock offset */
1745 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001746
1747 pBt = pPage->pBt;
1748
danielk1977eaa06f62008-09-18 17:34:44 +00001749 hdr = pPage->hdrOffset;
1750 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001751 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1752 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001753 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001754 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1755 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001756 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001757 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001758 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001759 pPage->aDataEnd = &data[usableSize];
1760 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001761 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001762 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1763 ** the start of the cell content area. A zero value for this integer is
1764 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001765 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001766 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1767 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001768 pPage->nCell = get2byte(&data[hdr+3]);
1769 if( pPage->nCell>MX_CELL(pBt) ){
1770 /* To many cells for a single page. The page must be corrupt */
1771 return SQLITE_CORRUPT_BKPT;
1772 }
drhb908d762009-07-08 16:54:40 +00001773 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001774 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1775 ** possible for a root page of a table that contains no rows) then the
1776 ** offset to the cell content area will equal the page size minus the
1777 ** bytes of reserved space. */
1778 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001779
shane5eff7cf2009-08-10 03:57:58 +00001780 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001781 ** of page when parsing a cell.
1782 **
1783 ** The following block of code checks early to see if a cell extends
1784 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1785 ** returned if it does.
1786 */
drh0a45c272009-07-08 01:49:11 +00001787 iCellFirst = cellOffset + 2*pPage->nCell;
1788 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001789 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001790 int i; /* Index into the cell pointer array */
1791 int sz; /* Size of a cell */
1792
drh69e931e2009-06-03 21:04:35 +00001793 if( !pPage->leaf ) iCellLast--;
1794 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001795 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001796 testcase( pc==iCellFirst );
1797 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001798 if( pc<iCellFirst || pc>iCellLast ){
1799 return SQLITE_CORRUPT_BKPT;
1800 }
drh25ada072015-06-19 15:07:14 +00001801 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001802 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001803 if( pc+sz>usableSize ){
1804 return SQLITE_CORRUPT_BKPT;
1805 }
1806 }
drh0a45c272009-07-08 01:49:11 +00001807 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001808 }
drh69e931e2009-06-03 21:04:35 +00001809
drhfdab0262014-11-20 15:30:50 +00001810 /* Compute the total free space on the page
1811 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1812 ** start of the first freeblock on the page, or is zero if there are no
1813 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001814 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001815 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001816 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001817 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001818 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001819 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1820 ** always be at least one cell before the first freeblock.
1821 **
1822 ** Or, the freeblock is off the end of the page
1823 */
danielk1977eaa06f62008-09-18 17:34:44 +00001824 return SQLITE_CORRUPT_BKPT;
1825 }
1826 next = get2byte(&data[pc]);
1827 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001828 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1829 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001830 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001831 return SQLITE_CORRUPT_BKPT;
1832 }
shane85095702009-06-15 16:27:08 +00001833 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001834 pc = next;
1835 }
danielk197793c829c2009-06-03 17:26:17 +00001836
1837 /* At this point, nFree contains the sum of the offset to the start
1838 ** of the cell-content area plus the number of free bytes within
1839 ** the cell-content area. If this is greater than the usable-size
1840 ** of the page, then the page must be corrupted. This check also
1841 ** serves to verify that the offset to the start of the cell-content
1842 ** area, according to the page header, lies within the page.
1843 */
1844 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001845 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001846 }
shane5eff7cf2009-08-10 03:57:58 +00001847 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001848 pPage->isInit = 1;
1849 }
drh9e572e62004-04-23 23:43:10 +00001850 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001851}
1852
1853/*
drh8b2f49b2001-06-08 00:21:52 +00001854** Set up a raw page so that it looks like a database page holding
1855** no entries.
drhbd03cae2001-06-02 02:40:57 +00001856*/
drh9e572e62004-04-23 23:43:10 +00001857static void zeroPage(MemPage *pPage, int flags){
1858 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001859 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001860 u8 hdr = pPage->hdrOffset;
1861 u16 first;
drh9e572e62004-04-23 23:43:10 +00001862
danielk19773b8a05f2007-03-19 17:44:26 +00001863 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001864 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1865 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001866 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001867 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001868 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001869 memset(&data[hdr], 0, pBt->usableSize - hdr);
1870 }
drh1bd10f82008-12-10 21:19:56 +00001871 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001872 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001873 memset(&data[hdr+1], 0, 4);
1874 data[hdr+7] = 0;
1875 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001876 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001877 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001878 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001879 pPage->aDataEnd = &data[pBt->usableSize];
1880 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001881 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001882 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001883 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1884 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001885 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001886 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001887}
1888
drh897a8202008-09-18 01:08:15 +00001889
1890/*
1891** Convert a DbPage obtained from the pager into a MemPage used by
1892** the btree layer.
1893*/
1894static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1895 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001896 if( pgno!=pPage->pgno ){
1897 pPage->aData = sqlite3PagerGetData(pDbPage);
1898 pPage->pDbPage = pDbPage;
1899 pPage->pBt = pBt;
1900 pPage->pgno = pgno;
1901 pPage->hdrOffset = pgno==1 ? 100 : 0;
1902 }
1903 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001904 return pPage;
1905}
1906
drhbd03cae2001-06-02 02:40:57 +00001907/*
drh3aac2dd2004-04-26 14:10:20 +00001908** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001909** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001910**
drh7e8c6f12015-05-28 03:28:27 +00001911** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1912** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001913** to fetch the content. Just fill in the content with zeros for now.
1914** If in the future we call sqlite3PagerWrite() on this page, that
1915** means we have started to be concerned about content and the disk
1916** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001917*/
danielk197730548662009-07-09 05:07:37 +00001918static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001919 BtShared *pBt, /* The btree */
1920 Pgno pgno, /* Number of the page to fetch */
1921 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001922 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001923){
drh3aac2dd2004-04-26 14:10:20 +00001924 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001925 DbPage *pDbPage;
1926
drhb00fc3b2013-08-21 23:42:32 +00001927 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001928 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00001929 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001930 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001931 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001932 return SQLITE_OK;
1933}
1934
1935/*
danielk1977bea2a942009-01-20 17:06:27 +00001936** Retrieve a page from the pager cache. If the requested page is not
1937** already in the pager cache return NULL. Initialize the MemPage.pBt and
1938** MemPage.aData elements if needed.
1939*/
1940static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1941 DbPage *pDbPage;
1942 assert( sqlite3_mutex_held(pBt->mutex) );
1943 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1944 if( pDbPage ){
1945 return btreePageFromDbPage(pDbPage, pgno, pBt);
1946 }
1947 return 0;
1948}
1949
1950/*
danielk197789d40042008-11-17 14:20:56 +00001951** Return the size of the database file in pages. If there is any kind of
1952** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001953*/
drhb1299152010-03-30 22:58:33 +00001954static Pgno btreePagecount(BtShared *pBt){
1955 return pBt->nPage;
1956}
1957u32 sqlite3BtreeLastPage(Btree *p){
1958 assert( sqlite3BtreeHoldsMutex(p) );
1959 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001960 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001961}
1962
1963/*
drh28f58dd2015-06-27 19:45:03 +00001964** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00001965**
drh15a00212015-06-27 20:55:00 +00001966** If pCur!=0 then the page is being fetched as part of a moveToChild()
1967** call. Do additional sanity checking on the page in this case.
1968** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00001969**
1970** The page is fetched as read-write unless pCur is not NULL and is
1971** a read-only cursor.
1972**
1973** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00001974** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001975*/
1976static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001977 BtShared *pBt, /* The database file */
1978 Pgno pgno, /* Number of the page to get */
1979 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00001980 BtCursor *pCur, /* Cursor to receive the page, or NULL */
1981 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00001982){
1983 int rc;
drh28f58dd2015-06-27 19:45:03 +00001984 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00001985 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00001986 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1987 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00001988 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001989
danba3cbf32010-06-30 04:29:03 +00001990 if( pgno>btreePagecount(pBt) ){
1991 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00001992 goto getAndInitPage_error;
1993 }
drh9584f582015-11-04 20:22:37 +00001994 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00001995 if( rc ){
1996 goto getAndInitPage_error;
1997 }
drh8dd1c252015-11-04 22:31:02 +00001998 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00001999 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002000 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002001 rc = btreeInitPage(*ppPage);
2002 if( rc!=SQLITE_OK ){
2003 releasePage(*ppPage);
2004 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002005 }
drhee696e22004-08-30 16:52:17 +00002006 }
drh8dd1c252015-11-04 22:31:02 +00002007 assert( (*ppPage)->pgno==pgno );
2008 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002009
drh15a00212015-06-27 20:55:00 +00002010 /* If obtaining a child page for a cursor, we must verify that the page is
2011 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002012 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drh28f58dd2015-06-27 19:45:03 +00002013 rc = SQLITE_CORRUPT_BKPT;
2014 releasePage(*ppPage);
2015 goto getAndInitPage_error;
2016 }
drh28f58dd2015-06-27 19:45:03 +00002017 return SQLITE_OK;
2018
2019getAndInitPage_error:
2020 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002021 testcase( pgno==0 );
2022 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002023 return rc;
2024}
2025
2026/*
drh3aac2dd2004-04-26 14:10:20 +00002027** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002028** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002029*/
drhbbf0f862015-06-27 14:59:26 +00002030static void releasePageNotNull(MemPage *pPage){
2031 assert( pPage->aData );
2032 assert( pPage->pBt );
2033 assert( pPage->pDbPage!=0 );
2034 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2035 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2036 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2037 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002038}
drh3aac2dd2004-04-26 14:10:20 +00002039static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002040 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002041}
2042
2043/*
drh7e8c6f12015-05-28 03:28:27 +00002044** Get an unused page.
2045**
2046** This works just like btreeGetPage() with the addition:
2047**
2048** * If the page is already in use for some other purpose, immediately
2049** release it and return an SQLITE_CURRUPT error.
2050** * Make sure the isInit flag is clear
2051*/
2052static int btreeGetUnusedPage(
2053 BtShared *pBt, /* The btree */
2054 Pgno pgno, /* Number of the page to fetch */
2055 MemPage **ppPage, /* Return the page in this parameter */
2056 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2057){
2058 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2059 if( rc==SQLITE_OK ){
2060 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2061 releasePage(*ppPage);
2062 *ppPage = 0;
2063 return SQLITE_CORRUPT_BKPT;
2064 }
2065 (*ppPage)->isInit = 0;
2066 }else{
2067 *ppPage = 0;
2068 }
2069 return rc;
2070}
2071
drha059ad02001-04-17 20:09:11 +00002072
2073/*
drha6abd042004-06-09 17:37:22 +00002074** During a rollback, when the pager reloads information into the cache
2075** so that the cache is restored to its original state at the start of
2076** the transaction, for each page restored this routine is called.
2077**
2078** This routine needs to reset the extra data section at the end of the
2079** page to agree with the restored data.
2080*/
danielk1977eaa06f62008-09-18 17:34:44 +00002081static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002082 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002083 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002084 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002085 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002086 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002087 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002088 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002089 /* pPage might not be a btree page; it might be an overflow page
2090 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002091 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002092 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002093 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002094 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002095 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002096 }
drha6abd042004-06-09 17:37:22 +00002097 }
2098}
2099
2100/*
drhe5fe6902007-12-07 18:55:28 +00002101** Invoke the busy handler for a btree.
2102*/
danielk19771ceedd32008-11-19 10:22:33 +00002103static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002104 BtShared *pBt = (BtShared*)pArg;
2105 assert( pBt->db );
2106 assert( sqlite3_mutex_held(pBt->db->mutex) );
2107 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2108}
2109
2110/*
drhad3e0102004-09-03 23:32:18 +00002111** Open a database file.
2112**
drh382c0242001-10-06 16:33:02 +00002113** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002114** then an ephemeral database is created. The ephemeral database might
2115** be exclusively in memory, or it might use a disk-based memory cache.
2116** Either way, the ephemeral database will be automatically deleted
2117** when sqlite3BtreeClose() is called.
2118**
drhe53831d2007-08-17 01:14:38 +00002119** If zFilename is ":memory:" then an in-memory database is created
2120** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002121**
drh33f111d2012-01-17 15:29:14 +00002122** The "flags" parameter is a bitmask that might contain bits like
2123** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002124**
drhc47fd8e2009-04-30 13:30:32 +00002125** If the database is already opened in the same database connection
2126** and we are in shared cache mode, then the open will fail with an
2127** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2128** objects in the same database connection since doing so will lead
2129** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002130*/
drh23e11ca2004-05-04 17:27:28 +00002131int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002132 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002133 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002134 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002135 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002136 int flags, /* Options */
2137 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002138){
drh7555d8e2009-03-20 13:15:30 +00002139 BtShared *pBt = 0; /* Shared part of btree structure */
2140 Btree *p; /* Handle to return */
2141 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2142 int rc = SQLITE_OK; /* Result code from this function */
2143 u8 nReserve; /* Byte of unused space on each page */
2144 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002145
drh75c014c2010-08-30 15:02:28 +00002146 /* True if opening an ephemeral, temporary database */
2147 const int isTempDb = zFilename==0 || zFilename[0]==0;
2148
danielk1977aef0bf62005-12-30 16:28:01 +00002149 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002150 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002151 */
drhb0a7c9c2010-12-06 21:09:59 +00002152#ifdef SQLITE_OMIT_MEMORYDB
2153 const int isMemdb = 0;
2154#else
2155 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002156 || (isTempDb && sqlite3TempInMemory(db))
2157 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002158#endif
2159
drhe5fe6902007-12-07 18:55:28 +00002160 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002161 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002162 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002163 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2164
2165 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2166 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2167
2168 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2169 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002170
drh75c014c2010-08-30 15:02:28 +00002171 if( isMemdb ){
2172 flags |= BTREE_MEMORY;
2173 }
2174 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2175 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2176 }
drh17435752007-08-16 04:30:38 +00002177 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002178 if( !p ){
2179 return SQLITE_NOMEM;
2180 }
2181 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002182 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002183#ifndef SQLITE_OMIT_SHARED_CACHE
2184 p->lock.pBtree = p;
2185 p->lock.iTable = 1;
2186#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002187
drh198bf392006-01-06 21:52:49 +00002188#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002189 /*
2190 ** If this Btree is a candidate for shared cache, try to find an
2191 ** existing BtShared object that we can share with
2192 */
drh4ab9d252012-05-26 20:08:49 +00002193 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002194 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002195 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002196 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002197 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002198 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002199
drhff0587c2007-08-29 17:43:19 +00002200 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002201 if( !zFullPathname ){
2202 sqlite3_free(p);
2203 return SQLITE_NOMEM;
2204 }
drhafc8b7f2012-05-26 18:06:38 +00002205 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002206 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002207 }else{
2208 rc = sqlite3OsFullPathname(pVfs, zFilename,
2209 nFullPathname, zFullPathname);
2210 if( rc ){
2211 sqlite3_free(zFullPathname);
2212 sqlite3_free(p);
2213 return rc;
2214 }
drh070ad6b2011-11-17 11:43:19 +00002215 }
drh30ddce62011-10-15 00:16:30 +00002216#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002217 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2218 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002219 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002220 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002221#endif
drh78f82d12008-09-02 00:52:52 +00002222 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002223 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002224 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002225 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002226 int iDb;
2227 for(iDb=db->nDb-1; iDb>=0; iDb--){
2228 Btree *pExisting = db->aDb[iDb].pBt;
2229 if( pExisting && pExisting->pBt==pBt ){
2230 sqlite3_mutex_leave(mutexShared);
2231 sqlite3_mutex_leave(mutexOpen);
2232 sqlite3_free(zFullPathname);
2233 sqlite3_free(p);
2234 return SQLITE_CONSTRAINT;
2235 }
2236 }
drhff0587c2007-08-29 17:43:19 +00002237 p->pBt = pBt;
2238 pBt->nRef++;
2239 break;
2240 }
2241 }
2242 sqlite3_mutex_leave(mutexShared);
2243 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002244 }
drhff0587c2007-08-29 17:43:19 +00002245#ifdef SQLITE_DEBUG
2246 else{
2247 /* In debug mode, we mark all persistent databases as sharable
2248 ** even when they are not. This exercises the locking code and
2249 ** gives more opportunity for asserts(sqlite3_mutex_held())
2250 ** statements to find locking problems.
2251 */
2252 p->sharable = 1;
2253 }
2254#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002255 }
2256#endif
drha059ad02001-04-17 20:09:11 +00002257 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002258 /*
2259 ** The following asserts make sure that structures used by the btree are
2260 ** the right size. This is to guard against size changes that result
2261 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002262 */
drh062cf272015-03-23 19:03:51 +00002263 assert( sizeof(i64)==8 );
2264 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002265 assert( sizeof(u32)==4 );
2266 assert( sizeof(u16)==2 );
2267 assert( sizeof(Pgno)==4 );
2268
2269 pBt = sqlite3MallocZero( sizeof(*pBt) );
2270 if( pBt==0 ){
2271 rc = SQLITE_NOMEM;
2272 goto btree_open_out;
2273 }
danielk197771d5d2c2008-09-29 11:49:47 +00002274 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002275 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002276 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002277 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002278 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2279 }
2280 if( rc!=SQLITE_OK ){
2281 goto btree_open_out;
2282 }
shanehbd2aaf92010-09-01 02:38:21 +00002283 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002284 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002285 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002286 p->pBt = pBt;
2287
drhe53831d2007-08-17 01:14:38 +00002288 pBt->pCursor = 0;
2289 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002290 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002291#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002292 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002293#endif
drh113762a2014-11-19 16:36:25 +00002294 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2295 ** determined by the 2-byte integer located at an offset of 16 bytes from
2296 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002297 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002298 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2299 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002300 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002301#ifndef SQLITE_OMIT_AUTOVACUUM
2302 /* If the magic name ":memory:" will create an in-memory database, then
2303 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2304 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2305 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2306 ** regular file-name. In this case the auto-vacuum applies as per normal.
2307 */
2308 if( zFilename && !isMemdb ){
2309 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2310 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2311 }
2312#endif
2313 nReserve = 0;
2314 }else{
drh113762a2014-11-19 16:36:25 +00002315 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2316 ** determined by the one-byte unsigned integer found at an offset of 20
2317 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002318 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002319 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002320#ifndef SQLITE_OMIT_AUTOVACUUM
2321 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2322 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2323#endif
2324 }
drhfa9601a2009-06-18 17:22:39 +00002325 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002326 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002327 pBt->usableSize = pBt->pageSize - nReserve;
2328 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002329
2330#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2331 /* Add the new BtShared object to the linked list sharable BtShareds.
2332 */
2333 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002334 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002335 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002336 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002337 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002338 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002339 if( pBt->mutex==0 ){
2340 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002341 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002342 goto btree_open_out;
2343 }
drhff0587c2007-08-29 17:43:19 +00002344 }
drhe53831d2007-08-17 01:14:38 +00002345 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002346 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2347 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002348 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002349 }
drheee46cf2004-11-06 00:02:48 +00002350#endif
drh90f5ecb2004-07-22 01:19:35 +00002351 }
danielk1977aef0bf62005-12-30 16:28:01 +00002352
drhcfed7bc2006-03-13 14:28:05 +00002353#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002354 /* If the new Btree uses a sharable pBtShared, then link the new
2355 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002356 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002357 */
drhe53831d2007-08-17 01:14:38 +00002358 if( p->sharable ){
2359 int i;
2360 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002361 for(i=0; i<db->nDb; i++){
2362 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002363 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2364 if( p->pBt<pSib->pBt ){
2365 p->pNext = pSib;
2366 p->pPrev = 0;
2367 pSib->pPrev = p;
2368 }else{
drhabddb0c2007-08-20 13:14:28 +00002369 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002370 pSib = pSib->pNext;
2371 }
2372 p->pNext = pSib->pNext;
2373 p->pPrev = pSib;
2374 if( p->pNext ){
2375 p->pNext->pPrev = p;
2376 }
2377 pSib->pNext = p;
2378 }
2379 break;
2380 }
2381 }
danielk1977aef0bf62005-12-30 16:28:01 +00002382 }
danielk1977aef0bf62005-12-30 16:28:01 +00002383#endif
2384 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002385
2386btree_open_out:
2387 if( rc!=SQLITE_OK ){
2388 if( pBt && pBt->pPager ){
2389 sqlite3PagerClose(pBt->pPager);
2390 }
drh17435752007-08-16 04:30:38 +00002391 sqlite3_free(pBt);
2392 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002393 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002394 }else{
2395 /* If the B-Tree was successfully opened, set the pager-cache size to the
2396 ** default value. Except, when opening on an existing shared pager-cache,
2397 ** do not change the pager-cache size.
2398 */
2399 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2400 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2401 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002402 }
drh7555d8e2009-03-20 13:15:30 +00002403 if( mutexOpen ){
2404 assert( sqlite3_mutex_held(mutexOpen) );
2405 sqlite3_mutex_leave(mutexOpen);
2406 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002407 return rc;
drha059ad02001-04-17 20:09:11 +00002408}
2409
2410/*
drhe53831d2007-08-17 01:14:38 +00002411** Decrement the BtShared.nRef counter. When it reaches zero,
2412** remove the BtShared structure from the sharing list. Return
2413** true if the BtShared.nRef counter reaches zero and return
2414** false if it is still positive.
2415*/
2416static int removeFromSharingList(BtShared *pBt){
2417#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002418 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002419 BtShared *pList;
2420 int removed = 0;
2421
drhd677b3d2007-08-20 22:48:41 +00002422 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002423 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002424 sqlite3_mutex_enter(pMaster);
2425 pBt->nRef--;
2426 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002427 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2428 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002429 }else{
drh78f82d12008-09-02 00:52:52 +00002430 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002431 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002432 pList=pList->pNext;
2433 }
drh34004ce2008-07-11 16:15:17 +00002434 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002435 pList->pNext = pBt->pNext;
2436 }
2437 }
drh3285db22007-09-03 22:00:39 +00002438 if( SQLITE_THREADSAFE ){
2439 sqlite3_mutex_free(pBt->mutex);
2440 }
drhe53831d2007-08-17 01:14:38 +00002441 removed = 1;
2442 }
2443 sqlite3_mutex_leave(pMaster);
2444 return removed;
2445#else
2446 return 1;
2447#endif
2448}
2449
2450/*
drhf7141992008-06-19 00:16:08 +00002451** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002452** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2453** pointer.
drhf7141992008-06-19 00:16:08 +00002454*/
2455static void allocateTempSpace(BtShared *pBt){
2456 if( !pBt->pTmpSpace ){
2457 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002458
2459 /* One of the uses of pBt->pTmpSpace is to format cells before
2460 ** inserting them into a leaf page (function fillInCell()). If
2461 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2462 ** by the various routines that manipulate binary cells. Which
2463 ** can mean that fillInCell() only initializes the first 2 or 3
2464 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2465 ** it into a database page. This is not actually a problem, but it
2466 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2467 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002468 ** zero the first 4 bytes of temp space here.
2469 **
2470 ** Also: Provide four bytes of initialized space before the
2471 ** beginning of pTmpSpace as an area available to prepend the
2472 ** left-child pointer to the beginning of a cell.
2473 */
2474 if( pBt->pTmpSpace ){
2475 memset(pBt->pTmpSpace, 0, 8);
2476 pBt->pTmpSpace += 4;
2477 }
drhf7141992008-06-19 00:16:08 +00002478 }
2479}
2480
2481/*
2482** Free the pBt->pTmpSpace allocation
2483*/
2484static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002485 if( pBt->pTmpSpace ){
2486 pBt->pTmpSpace -= 4;
2487 sqlite3PageFree(pBt->pTmpSpace);
2488 pBt->pTmpSpace = 0;
2489 }
drhf7141992008-06-19 00:16:08 +00002490}
2491
2492/*
drha059ad02001-04-17 20:09:11 +00002493** Close an open database and invalidate all cursors.
2494*/
danielk1977aef0bf62005-12-30 16:28:01 +00002495int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002496 BtShared *pBt = p->pBt;
2497 BtCursor *pCur;
2498
danielk1977aef0bf62005-12-30 16:28:01 +00002499 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002500 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002501 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002502 pCur = pBt->pCursor;
2503 while( pCur ){
2504 BtCursor *pTmp = pCur;
2505 pCur = pCur->pNext;
2506 if( pTmp->pBtree==p ){
2507 sqlite3BtreeCloseCursor(pTmp);
2508 }
drha059ad02001-04-17 20:09:11 +00002509 }
danielk1977aef0bf62005-12-30 16:28:01 +00002510
danielk19778d34dfd2006-01-24 16:37:57 +00002511 /* Rollback any active transaction and free the handle structure.
2512 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2513 ** this handle.
2514 */
drh47b7fc72014-11-11 01:33:57 +00002515 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002516 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002517
danielk1977aef0bf62005-12-30 16:28:01 +00002518 /* If there are still other outstanding references to the shared-btree
2519 ** structure, return now. The remainder of this procedure cleans
2520 ** up the shared-btree.
2521 */
drhe53831d2007-08-17 01:14:38 +00002522 assert( p->wantToLock==0 && p->locked==0 );
2523 if( !p->sharable || removeFromSharingList(pBt) ){
2524 /* The pBt is no longer on the sharing list, so we can access
2525 ** it without having to hold the mutex.
2526 **
2527 ** Clean out and delete the BtShared object.
2528 */
2529 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002530 sqlite3PagerClose(pBt->pPager);
2531 if( pBt->xFreeSchema && pBt->pSchema ){
2532 pBt->xFreeSchema(pBt->pSchema);
2533 }
drhb9755982010-07-24 16:34:37 +00002534 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002535 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002536 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002537 }
2538
drhe53831d2007-08-17 01:14:38 +00002539#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002540 assert( p->wantToLock==0 );
2541 assert( p->locked==0 );
2542 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2543 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002544#endif
2545
drhe53831d2007-08-17 01:14:38 +00002546 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002547 return SQLITE_OK;
2548}
2549
2550/*
drh9b0cf342015-11-12 14:57:19 +00002551** Change the "soft" limit on the number of pages in the cache.
2552** Unused and unmodified pages will be recycled when the number of
2553** pages in the cache exceeds this soft limit. But the size of the
2554** cache is allowed to grow larger than this limit if it contains
2555** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002556*/
danielk1977aef0bf62005-12-30 16:28:01 +00002557int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2558 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002559 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002560 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002561 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002562 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002563 return SQLITE_OK;
2564}
2565
drh9b0cf342015-11-12 14:57:19 +00002566/*
2567** Change the "spill" limit on the number of pages in the cache.
2568** If the number of pages exceeds this limit during a write transaction,
2569** the pager might attempt to "spill" pages to the journal early in
2570** order to free up memory.
2571**
2572** The value returned is the current spill size. If zero is passed
2573** as an argument, no changes are made to the spill size setting, so
2574** using mxPage of 0 is a way to query the current spill size.
2575*/
2576int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2577 BtShared *pBt = p->pBt;
2578 int res;
2579 assert( sqlite3_mutex_held(p->db->mutex) );
2580 sqlite3BtreeEnter(p);
2581 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2582 sqlite3BtreeLeave(p);
2583 return res;
2584}
2585
drh18c7e402014-03-14 11:46:10 +00002586#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002587/*
dan5d8a1372013-03-19 19:28:06 +00002588** Change the limit on the amount of the database file that may be
2589** memory mapped.
2590*/
drh9b4c59f2013-04-15 17:03:42 +00002591int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002592 BtShared *pBt = p->pBt;
2593 assert( sqlite3_mutex_held(p->db->mutex) );
2594 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002595 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002596 sqlite3BtreeLeave(p);
2597 return SQLITE_OK;
2598}
drh18c7e402014-03-14 11:46:10 +00002599#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002600
2601/*
drh973b6e32003-02-12 14:09:42 +00002602** Change the way data is synced to disk in order to increase or decrease
2603** how well the database resists damage due to OS crashes and power
2604** failures. Level 1 is the same as asynchronous (no syncs() occur and
2605** there is a high probability of damage) Level 2 is the default. There
2606** is a very low but non-zero probability of damage. Level 3 reduces the
2607** probability of damage to near zero but with a write performance reduction.
2608*/
danielk197793758c82005-01-21 08:13:14 +00002609#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002610int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002611 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002612 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002613){
danielk1977aef0bf62005-12-30 16:28:01 +00002614 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002615 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002616 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002617 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002618 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002619 return SQLITE_OK;
2620}
danielk197793758c82005-01-21 08:13:14 +00002621#endif
drh973b6e32003-02-12 14:09:42 +00002622
drh2c8997b2005-08-27 16:36:48 +00002623/*
2624** Return TRUE if the given btree is set to safety level 1. In other
2625** words, return TRUE if no sync() occurs on the disk files.
2626*/
danielk1977aef0bf62005-12-30 16:28:01 +00002627int sqlite3BtreeSyncDisabled(Btree *p){
2628 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002629 int rc;
drhe5fe6902007-12-07 18:55:28 +00002630 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002631 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002632 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002633 rc = sqlite3PagerNosync(pBt->pPager);
2634 sqlite3BtreeLeave(p);
2635 return rc;
drh2c8997b2005-08-27 16:36:48 +00002636}
2637
drh973b6e32003-02-12 14:09:42 +00002638/*
drh90f5ecb2004-07-22 01:19:35 +00002639** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002640** Or, if the page size has already been fixed, return SQLITE_READONLY
2641** without changing anything.
drh06f50212004-11-02 14:24:33 +00002642**
2643** The page size must be a power of 2 between 512 and 65536. If the page
2644** size supplied does not meet this constraint then the page size is not
2645** changed.
2646**
2647** Page sizes are constrained to be a power of two so that the region
2648** of the database file used for locking (beginning at PENDING_BYTE,
2649** the first byte past the 1GB boundary, 0x40000000) needs to occur
2650** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002651**
2652** If parameter nReserve is less than zero, then the number of reserved
2653** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002654**
drhc9166342012-01-05 23:32:06 +00002655** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002656** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002657*/
drhce4869f2009-04-02 20:16:58 +00002658int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002659 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002660 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002661 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002662 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002663#if SQLITE_HAS_CODEC
2664 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2665#endif
drhc9166342012-01-05 23:32:06 +00002666 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002667 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002668 return SQLITE_READONLY;
2669 }
2670 if( nReserve<0 ){
2671 nReserve = pBt->pageSize - pBt->usableSize;
2672 }
drhf49661a2008-12-10 16:45:50 +00002673 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002674 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2675 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002676 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002677 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002678 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002679 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002680 }
drhfa9601a2009-06-18 17:22:39 +00002681 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002682 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002683 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002684 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002685 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002686}
2687
2688/*
2689** Return the currently defined page size
2690*/
danielk1977aef0bf62005-12-30 16:28:01 +00002691int sqlite3BtreeGetPageSize(Btree *p){
2692 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002693}
drh7f751222009-03-17 22:33:00 +00002694
dan0094f372012-09-28 20:23:42 +00002695/*
2696** This function is similar to sqlite3BtreeGetReserve(), except that it
2697** may only be called if it is guaranteed that the b-tree mutex is already
2698** held.
2699**
2700** This is useful in one special case in the backup API code where it is
2701** known that the shared b-tree mutex is held, but the mutex on the
2702** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2703** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002704** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002705*/
2706int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002707 int n;
dan0094f372012-09-28 20:23:42 +00002708 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002709 n = p->pBt->pageSize - p->pBt->usableSize;
2710 return n;
dan0094f372012-09-28 20:23:42 +00002711}
2712
drh7f751222009-03-17 22:33:00 +00002713/*
2714** Return the number of bytes of space at the end of every page that
2715** are intentually left unused. This is the "reserved" space that is
2716** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002717**
2718** If SQLITE_HAS_MUTEX is defined then the number returned is the
2719** greater of the current reserved space and the maximum requested
2720** reserve space.
drh7f751222009-03-17 22:33:00 +00002721*/
drhad0961b2015-02-21 00:19:25 +00002722int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002723 int n;
2724 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002725 n = sqlite3BtreeGetReserveNoMutex(p);
2726#ifdef SQLITE_HAS_CODEC
2727 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2728#endif
drhd677b3d2007-08-20 22:48:41 +00002729 sqlite3BtreeLeave(p);
2730 return n;
drh2011d5f2004-07-22 02:40:37 +00002731}
drhf8e632b2007-05-08 14:51:36 +00002732
drhad0961b2015-02-21 00:19:25 +00002733
drhf8e632b2007-05-08 14:51:36 +00002734/*
2735** Set the maximum page count for a database if mxPage is positive.
2736** No changes are made if mxPage is 0 or negative.
2737** Regardless of the value of mxPage, return the maximum page count.
2738*/
2739int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002740 int n;
2741 sqlite3BtreeEnter(p);
2742 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2743 sqlite3BtreeLeave(p);
2744 return n;
drhf8e632b2007-05-08 14:51:36 +00002745}
drh5b47efa2010-02-12 18:18:39 +00002746
2747/*
drhc9166342012-01-05 23:32:06 +00002748** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2749** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002750** setting after the change.
2751*/
2752int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2753 int b;
drhaf034ed2010-02-12 19:46:26 +00002754 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002755 sqlite3BtreeEnter(p);
2756 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002757 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2758 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002759 }
drhc9166342012-01-05 23:32:06 +00002760 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002761 sqlite3BtreeLeave(p);
2762 return b;
2763}
drh90f5ecb2004-07-22 01:19:35 +00002764
2765/*
danielk1977951af802004-11-05 15:45:09 +00002766** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2767** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2768** is disabled. The default value for the auto-vacuum property is
2769** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2770*/
danielk1977aef0bf62005-12-30 16:28:01 +00002771int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002772#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002773 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002774#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002775 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002776 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002777 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002778
2779 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002780 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002781 rc = SQLITE_READONLY;
2782 }else{
drh076d4662009-02-18 20:31:18 +00002783 pBt->autoVacuum = av ?1:0;
2784 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002785 }
drhd677b3d2007-08-20 22:48:41 +00002786 sqlite3BtreeLeave(p);
2787 return rc;
danielk1977951af802004-11-05 15:45:09 +00002788#endif
2789}
2790
2791/*
2792** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2793** enabled 1 is returned. Otherwise 0.
2794*/
danielk1977aef0bf62005-12-30 16:28:01 +00002795int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002796#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002797 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002798#else
drhd677b3d2007-08-20 22:48:41 +00002799 int rc;
2800 sqlite3BtreeEnter(p);
2801 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002802 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2803 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2804 BTREE_AUTOVACUUM_INCR
2805 );
drhd677b3d2007-08-20 22:48:41 +00002806 sqlite3BtreeLeave(p);
2807 return rc;
danielk1977951af802004-11-05 15:45:09 +00002808#endif
2809}
2810
2811
2812/*
drha34b6762004-05-07 13:30:42 +00002813** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002814** also acquire a readlock on that file.
2815**
2816** SQLITE_OK is returned on success. If the file is not a
2817** well-formed database file, then SQLITE_CORRUPT is returned.
2818** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002819** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002820*/
danielk1977aef0bf62005-12-30 16:28:01 +00002821static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002822 int rc; /* Result code from subfunctions */
2823 MemPage *pPage1; /* Page 1 of the database file */
2824 int nPage; /* Number of pages in the database */
2825 int nPageFile = 0; /* Number of pages in the database file */
2826 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002827
drh1fee73e2007-08-29 04:00:57 +00002828 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002829 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002830 rc = sqlite3PagerSharedLock(pBt->pPager);
2831 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002832 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002833 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002834
2835 /* Do some checking to help insure the file we opened really is
2836 ** a valid database file.
2837 */
drhc2a4bab2010-04-02 12:46:45 +00002838 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002839 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002840 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002841 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002842 }
2843 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002844 u32 pageSize;
2845 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002846 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002847 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002848 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2849 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2850 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002851 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002852 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002853 }
dan5cf53532010-05-01 16:40:20 +00002854
2855#ifdef SQLITE_OMIT_WAL
2856 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002857 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002858 }
2859 if( page1[19]>1 ){
2860 goto page1_init_failed;
2861 }
2862#else
dane04dc882010-04-20 18:53:15 +00002863 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002864 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002865 }
dane04dc882010-04-20 18:53:15 +00002866 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002867 goto page1_init_failed;
2868 }
drhe5ae5732008-06-15 02:51:47 +00002869
dana470aeb2010-04-21 11:43:38 +00002870 /* If the write version is set to 2, this database should be accessed
2871 ** in WAL mode. If the log is not already open, open it now. Then
2872 ** return SQLITE_OK and return without populating BtShared.pPage1.
2873 ** The caller detects this and calls this function again. This is
2874 ** required as the version of page 1 currently in the page1 buffer
2875 ** may not be the latest version - there may be a newer one in the log
2876 ** file.
2877 */
drhc9166342012-01-05 23:32:06 +00002878 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002879 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002880 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002881 if( rc!=SQLITE_OK ){
2882 goto page1_init_failed;
2883 }else if( isOpen==0 ){
2884 releasePage(pPage1);
2885 return SQLITE_OK;
2886 }
dan8b5444b2010-04-27 14:37:47 +00002887 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002888 }
dan5cf53532010-05-01 16:40:20 +00002889#endif
dane04dc882010-04-20 18:53:15 +00002890
drh113762a2014-11-19 16:36:25 +00002891 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2892 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2893 **
drhe5ae5732008-06-15 02:51:47 +00002894 ** The original design allowed these amounts to vary, but as of
2895 ** version 3.6.0, we require them to be fixed.
2896 */
2897 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2898 goto page1_init_failed;
2899 }
drh113762a2014-11-19 16:36:25 +00002900 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2901 ** determined by the 2-byte integer located at an offset of 16 bytes from
2902 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002903 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002904 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2905 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002906 if( ((pageSize-1)&pageSize)!=0
2907 || pageSize>SQLITE_MAX_PAGE_SIZE
2908 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002909 ){
drh07d183d2005-05-01 22:52:42 +00002910 goto page1_init_failed;
2911 }
2912 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002913 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2914 ** integer at offset 20 is the number of bytes of space at the end of
2915 ** each page to reserve for extensions.
2916 **
2917 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2918 ** determined by the one-byte unsigned integer found at an offset of 20
2919 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002920 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002921 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002922 /* After reading the first page of the database assuming a page size
2923 ** of BtShared.pageSize, we have discovered that the page-size is
2924 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2925 ** zero and return SQLITE_OK. The caller will call this function
2926 ** again with the correct page-size.
2927 */
2928 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002929 pBt->usableSize = usableSize;
2930 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002931 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002932 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2933 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002934 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002935 }
danecac6702011-02-09 18:19:20 +00002936 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002937 rc = SQLITE_CORRUPT_BKPT;
2938 goto page1_init_failed;
2939 }
drh113762a2014-11-19 16:36:25 +00002940 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2941 ** be less than 480. In other words, if the page size is 512, then the
2942 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002943 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002944 goto page1_init_failed;
2945 }
drh43b18e12010-08-17 19:40:08 +00002946 pBt->pageSize = pageSize;
2947 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002948#ifndef SQLITE_OMIT_AUTOVACUUM
2949 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002950 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002951#endif
drh306dc212001-05-21 13:45:10 +00002952 }
drhb6f41482004-05-14 01:58:11 +00002953
2954 /* maxLocal is the maximum amount of payload to store locally for
2955 ** a cell. Make sure it is small enough so that at least minFanout
2956 ** cells can will fit on one page. We assume a 10-byte page header.
2957 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002958 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002959 ** 4-byte child pointer
2960 ** 9-byte nKey value
2961 ** 4-byte nData value
2962 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002963 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002964 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2965 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002966 */
shaneh1df2db72010-08-18 02:28:48 +00002967 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2968 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2969 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2970 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002971 if( pBt->maxLocal>127 ){
2972 pBt->max1bytePayload = 127;
2973 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002974 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002975 }
drh2e38c322004-09-03 18:38:44 +00002976 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002977 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002978 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002979 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002980
drh72f82862001-05-24 21:06:34 +00002981page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002982 releasePage(pPage1);
2983 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002984 return rc;
drh306dc212001-05-21 13:45:10 +00002985}
2986
drh85ec3b62013-05-14 23:12:06 +00002987#ifndef NDEBUG
2988/*
2989** Return the number of cursors open on pBt. This is for use
2990** in assert() expressions, so it is only compiled if NDEBUG is not
2991** defined.
2992**
2993** Only write cursors are counted if wrOnly is true. If wrOnly is
2994** false then all cursors are counted.
2995**
2996** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002997** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002998** have been tripped into the CURSOR_FAULT state are not counted.
2999*/
3000static int countValidCursors(BtShared *pBt, int wrOnly){
3001 BtCursor *pCur;
3002 int r = 0;
3003 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003004 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3005 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003006 }
3007 return r;
3008}
3009#endif
3010
drh306dc212001-05-21 13:45:10 +00003011/*
drhb8ca3072001-12-05 00:21:20 +00003012** If there are no outstanding cursors and we are not in the middle
3013** of a transaction but there is a read lock on the database, then
3014** this routine unrefs the first page of the database file which
3015** has the effect of releasing the read lock.
3016**
drhb8ca3072001-12-05 00:21:20 +00003017** If there is a transaction in progress, this routine is a no-op.
3018*/
danielk1977aef0bf62005-12-30 16:28:01 +00003019static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003020 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003021 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003022 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003023 MemPage *pPage1 = pBt->pPage1;
3024 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003025 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003026 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003027 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003028 }
3029}
3030
3031/*
drhe39f2f92009-07-23 01:43:59 +00003032** If pBt points to an empty file then convert that empty file
3033** into a new empty database by initializing the first page of
3034** the database.
drh8b2f49b2001-06-08 00:21:52 +00003035*/
danielk1977aef0bf62005-12-30 16:28:01 +00003036static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003037 MemPage *pP1;
3038 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003039 int rc;
drhd677b3d2007-08-20 22:48:41 +00003040
drh1fee73e2007-08-29 04:00:57 +00003041 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003042 if( pBt->nPage>0 ){
3043 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003044 }
drh3aac2dd2004-04-26 14:10:20 +00003045 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003046 assert( pP1!=0 );
3047 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003048 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003049 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003050 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3051 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003052 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3053 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003054 data[18] = 1;
3055 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003056 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3057 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003058 data[21] = 64;
3059 data[22] = 32;
3060 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003061 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003062 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003063 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003064#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003065 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003066 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003067 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003068 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003069#endif
drhdd3cd972010-03-27 17:12:36 +00003070 pBt->nPage = 1;
3071 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003072 return SQLITE_OK;
3073}
3074
3075/*
danb483eba2012-10-13 19:58:11 +00003076** Initialize the first page of the database file (creating a database
3077** consisting of a single page and no schema objects). Return SQLITE_OK
3078** if successful, or an SQLite error code otherwise.
3079*/
3080int sqlite3BtreeNewDb(Btree *p){
3081 int rc;
3082 sqlite3BtreeEnter(p);
3083 p->pBt->nPage = 0;
3084 rc = newDatabase(p->pBt);
3085 sqlite3BtreeLeave(p);
3086 return rc;
3087}
3088
3089/*
danielk1977ee5741e2004-05-31 10:01:34 +00003090** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003091** is started if the second argument is nonzero, otherwise a read-
3092** transaction. If the second argument is 2 or more and exclusive
3093** transaction is started, meaning that no other process is allowed
3094** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003095** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003096** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003097**
danielk1977ee5741e2004-05-31 10:01:34 +00003098** A write-transaction must be started before attempting any
3099** changes to the database. None of the following routines
3100** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003101**
drh23e11ca2004-05-04 17:27:28 +00003102** sqlite3BtreeCreateTable()
3103** sqlite3BtreeCreateIndex()
3104** sqlite3BtreeClearTable()
3105** sqlite3BtreeDropTable()
3106** sqlite3BtreeInsert()
3107** sqlite3BtreeDelete()
3108** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003109**
drhb8ef32c2005-03-14 02:01:49 +00003110** If an initial attempt to acquire the lock fails because of lock contention
3111** and the database was previously unlocked, then invoke the busy handler
3112** if there is one. But if there was previously a read-lock, do not
3113** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3114** returned when there is already a read-lock in order to avoid a deadlock.
3115**
3116** Suppose there are two processes A and B. A has a read lock and B has
3117** a reserved lock. B tries to promote to exclusive but is blocked because
3118** of A's read lock. A tries to promote to reserved but is blocked by B.
3119** One or the other of the two processes must give way or there can be
3120** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3121** when A already has a read lock, we encourage A to give up and let B
3122** proceed.
drha059ad02001-04-17 20:09:11 +00003123*/
danielk1977aef0bf62005-12-30 16:28:01 +00003124int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3125 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003126 int rc = SQLITE_OK;
3127
drhd677b3d2007-08-20 22:48:41 +00003128 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003129 btreeIntegrity(p);
3130
danielk1977ee5741e2004-05-31 10:01:34 +00003131 /* If the btree is already in a write-transaction, or it
3132 ** is already in a read-transaction and a read-transaction
3133 ** is requested, this is a no-op.
3134 */
danielk1977aef0bf62005-12-30 16:28:01 +00003135 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003136 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003137 }
dan56c517a2013-09-26 11:04:33 +00003138 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003139
3140 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003141 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003142 rc = SQLITE_READONLY;
3143 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003144 }
3145
danielk1977404ca072009-03-16 13:19:36 +00003146#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003147 {
3148 sqlite3 *pBlock = 0;
3149 /* If another database handle has already opened a write transaction
3150 ** on this shared-btree structure and a second write transaction is
3151 ** requested, return SQLITE_LOCKED.
3152 */
3153 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3154 || (pBt->btsFlags & BTS_PENDING)!=0
3155 ){
3156 pBlock = pBt->pWriter->db;
3157 }else if( wrflag>1 ){
3158 BtLock *pIter;
3159 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3160 if( pIter->pBtree!=p ){
3161 pBlock = pIter->pBtree->db;
3162 break;
3163 }
danielk1977641b0f42007-12-21 04:47:25 +00003164 }
3165 }
drh5a1fb182016-01-08 19:34:39 +00003166 if( pBlock ){
3167 sqlite3ConnectionBlocked(p->db, pBlock);
3168 rc = SQLITE_LOCKED_SHAREDCACHE;
3169 goto trans_begun;
3170 }
danielk1977404ca072009-03-16 13:19:36 +00003171 }
danielk1977641b0f42007-12-21 04:47:25 +00003172#endif
3173
danielk1977602b4662009-07-02 07:47:33 +00003174 /* Any read-only or read-write transaction implies a read-lock on
3175 ** page 1. So if some other shared-cache client already has a write-lock
3176 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003177 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3178 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003179
drhc9166342012-01-05 23:32:06 +00003180 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3181 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003182 do {
danielk1977295dc102009-04-01 19:07:03 +00003183 /* Call lockBtree() until either pBt->pPage1 is populated or
3184 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3185 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3186 ** reading page 1 it discovers that the page-size of the database
3187 ** file is not pBt->pageSize. In this case lockBtree() will update
3188 ** pBt->pageSize to the page-size of the file on disk.
3189 */
3190 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003191
drhb8ef32c2005-03-14 02:01:49 +00003192 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003193 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003194 rc = SQLITE_READONLY;
3195 }else{
danielk1977d8293352009-04-30 09:10:37 +00003196 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003197 if( rc==SQLITE_OK ){
3198 rc = newDatabase(pBt);
3199 }
drhb8ef32c2005-03-14 02:01:49 +00003200 }
3201 }
3202
danielk1977bd434552009-03-18 10:33:00 +00003203 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003204 unlockBtreeIfUnused(pBt);
3205 }
danf9b76712010-06-01 14:12:45 +00003206 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003207 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003208
3209 if( rc==SQLITE_OK ){
3210 if( p->inTrans==TRANS_NONE ){
3211 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003212#ifndef SQLITE_OMIT_SHARED_CACHE
3213 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003214 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003215 p->lock.eLock = READ_LOCK;
3216 p->lock.pNext = pBt->pLock;
3217 pBt->pLock = &p->lock;
3218 }
3219#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003220 }
3221 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3222 if( p->inTrans>pBt->inTransaction ){
3223 pBt->inTransaction = p->inTrans;
3224 }
danielk1977404ca072009-03-16 13:19:36 +00003225 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003226 MemPage *pPage1 = pBt->pPage1;
3227#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003228 assert( !pBt->pWriter );
3229 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003230 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3231 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003232#endif
dan59257dc2010-08-04 11:34:31 +00003233
3234 /* If the db-size header field is incorrect (as it may be if an old
3235 ** client has been writing the database file), update it now. Doing
3236 ** this sooner rather than later means the database size can safely
3237 ** re-read the database size from page 1 if a savepoint or transaction
3238 ** rollback occurs within the transaction.
3239 */
3240 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3241 rc = sqlite3PagerWrite(pPage1->pDbPage);
3242 if( rc==SQLITE_OK ){
3243 put4byte(&pPage1->aData[28], pBt->nPage);
3244 }
3245 }
3246 }
danielk1977aef0bf62005-12-30 16:28:01 +00003247 }
3248
drhd677b3d2007-08-20 22:48:41 +00003249
3250trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003251 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003252 /* This call makes sure that the pager has the correct number of
3253 ** open savepoints. If the second parameter is greater than 0 and
3254 ** the sub-journal is not already open, then it will be opened here.
3255 */
danielk1977fd7f0452008-12-17 17:30:26 +00003256 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3257 }
danielk197712dd5492008-12-18 15:45:07 +00003258
danielk1977aef0bf62005-12-30 16:28:01 +00003259 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003260 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003261 return rc;
drha059ad02001-04-17 20:09:11 +00003262}
3263
danielk1977687566d2004-11-02 12:56:41 +00003264#ifndef SQLITE_OMIT_AUTOVACUUM
3265
3266/*
3267** Set the pointer-map entries for all children of page pPage. Also, if
3268** pPage contains cells that point to overflow pages, set the pointer
3269** map entries for the overflow pages as well.
3270*/
3271static int setChildPtrmaps(MemPage *pPage){
3272 int i; /* Counter variable */
3273 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003274 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003275 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003276 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003277 Pgno pgno = pPage->pgno;
3278
drh1fee73e2007-08-29 04:00:57 +00003279 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003280 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003281 if( rc!=SQLITE_OK ){
3282 goto set_child_ptrmaps_out;
3283 }
danielk1977687566d2004-11-02 12:56:41 +00003284 nCell = pPage->nCell;
3285
3286 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003287 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003288
drh98add2e2009-07-20 17:11:49 +00003289 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003290
danielk1977687566d2004-11-02 12:56:41 +00003291 if( !pPage->leaf ){
3292 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003293 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003294 }
3295 }
3296
3297 if( !pPage->leaf ){
3298 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003299 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003300 }
3301
3302set_child_ptrmaps_out:
3303 pPage->isInit = isInitOrig;
3304 return rc;
3305}
3306
3307/*
drhf3aed592009-07-08 18:12:49 +00003308** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3309** that it points to iTo. Parameter eType describes the type of pointer to
3310** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003311**
3312** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3313** page of pPage.
3314**
3315** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3316** page pointed to by one of the cells on pPage.
3317**
3318** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3319** overflow page in the list.
3320*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003321static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003322 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003323 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003324 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003325 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003326 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003327 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003328 }
danielk1977f78fc082004-11-02 14:40:32 +00003329 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003330 }else{
drhf49661a2008-12-10 16:45:50 +00003331 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003332 int i;
3333 int nCell;
drha1f75d92015-05-24 10:18:12 +00003334 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003335
drha1f75d92015-05-24 10:18:12 +00003336 rc = btreeInitPage(pPage);
3337 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003338 nCell = pPage->nCell;
3339
danielk1977687566d2004-11-02 12:56:41 +00003340 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003341 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003342 if( eType==PTRMAP_OVERFLOW1 ){
3343 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003344 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00003345 if( info.nLocal<info.nPayload
3346 && pCell+info.nSize-1<=pPage->aData+pPage->maskPage
3347 && iFrom==get4byte(pCell+info.nSize-4)
drhe42a9b42011-08-31 13:27:19 +00003348 ){
drh45ac1c72015-12-18 03:59:16 +00003349 put4byte(pCell+info.nSize-4, iTo);
drhe42a9b42011-08-31 13:27:19 +00003350 break;
danielk1977687566d2004-11-02 12:56:41 +00003351 }
3352 }else{
3353 if( get4byte(pCell)==iFrom ){
3354 put4byte(pCell, iTo);
3355 break;
3356 }
3357 }
3358 }
3359
3360 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003361 if( eType!=PTRMAP_BTREE ||
3362 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003363 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003364 }
danielk1977687566d2004-11-02 12:56:41 +00003365 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3366 }
3367
3368 pPage->isInit = isInitOrig;
3369 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003370 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003371}
3372
danielk1977003ba062004-11-04 02:57:33 +00003373
danielk19777701e812005-01-10 12:59:51 +00003374/*
3375** Move the open database page pDbPage to location iFreePage in the
3376** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003377**
3378** The isCommit flag indicates that there is no need to remember that
3379** the journal needs to be sync()ed before database page pDbPage->pgno
3380** can be written to. The caller has already promised not to write to that
3381** page.
danielk19777701e812005-01-10 12:59:51 +00003382*/
danielk1977003ba062004-11-04 02:57:33 +00003383static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003384 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003385 MemPage *pDbPage, /* Open page to move */
3386 u8 eType, /* Pointer map 'type' entry for pDbPage */
3387 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003388 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003389 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003390){
3391 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3392 Pgno iDbPage = pDbPage->pgno;
3393 Pager *pPager = pBt->pPager;
3394 int rc;
3395
danielk1977a0bf2652004-11-04 14:30:04 +00003396 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3397 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003398 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003399 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003400
drh85b623f2007-12-13 21:54:09 +00003401 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003402 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3403 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003404 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003405 if( rc!=SQLITE_OK ){
3406 return rc;
3407 }
3408 pDbPage->pgno = iFreePage;
3409
3410 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3411 ** that point to overflow pages. The pointer map entries for all these
3412 ** pages need to be changed.
3413 **
3414 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3415 ** pointer to a subsequent overflow page. If this is the case, then
3416 ** the pointer map needs to be updated for the subsequent overflow page.
3417 */
danielk1977a0bf2652004-11-04 14:30:04 +00003418 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003419 rc = setChildPtrmaps(pDbPage);
3420 if( rc!=SQLITE_OK ){
3421 return rc;
3422 }
3423 }else{
3424 Pgno nextOvfl = get4byte(pDbPage->aData);
3425 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003426 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003427 if( rc!=SQLITE_OK ){
3428 return rc;
3429 }
3430 }
3431 }
3432
3433 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3434 ** that it points at iFreePage. Also fix the pointer map entry for
3435 ** iPtrPage.
3436 */
danielk1977a0bf2652004-11-04 14:30:04 +00003437 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003438 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003439 if( rc!=SQLITE_OK ){
3440 return rc;
3441 }
danielk19773b8a05f2007-03-19 17:44:26 +00003442 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003443 if( rc!=SQLITE_OK ){
3444 releasePage(pPtrPage);
3445 return rc;
3446 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003447 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003448 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003449 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003450 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003451 }
danielk1977003ba062004-11-04 02:57:33 +00003452 }
danielk1977003ba062004-11-04 02:57:33 +00003453 return rc;
3454}
3455
danielk1977dddbcdc2007-04-26 14:42:34 +00003456/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003457static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003458
3459/*
dan51f0b6d2013-02-22 20:16:34 +00003460** Perform a single step of an incremental-vacuum. If successful, return
3461** SQLITE_OK. If there is no work to do (and therefore no point in
3462** calling this function again), return SQLITE_DONE. Or, if an error
3463** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003464**
peter.d.reid60ec9142014-09-06 16:39:46 +00003465** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003466** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003467**
dan51f0b6d2013-02-22 20:16:34 +00003468** Parameter nFin is the number of pages that this database would contain
3469** were this function called until it returns SQLITE_DONE.
3470**
3471** If the bCommit parameter is non-zero, this function assumes that the
3472** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003473** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003474** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003475*/
dan51f0b6d2013-02-22 20:16:34 +00003476static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003477 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003478 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003479
drh1fee73e2007-08-29 04:00:57 +00003480 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003481 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003482
3483 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003484 u8 eType;
3485 Pgno iPtrPage;
3486
3487 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003488 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003489 return SQLITE_DONE;
3490 }
3491
3492 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3493 if( rc!=SQLITE_OK ){
3494 return rc;
3495 }
3496 if( eType==PTRMAP_ROOTPAGE ){
3497 return SQLITE_CORRUPT_BKPT;
3498 }
3499
3500 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003501 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003502 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003503 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003504 ** truncated to zero after this function returns, so it doesn't
3505 ** matter if it still contains some garbage entries.
3506 */
3507 Pgno iFreePg;
3508 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003509 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003510 if( rc!=SQLITE_OK ){
3511 return rc;
3512 }
3513 assert( iFreePg==iLastPg );
3514 releasePage(pFreePg);
3515 }
3516 } else {
3517 Pgno iFreePg; /* Index of free page to move pLastPg to */
3518 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003519 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3520 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003521
drhb00fc3b2013-08-21 23:42:32 +00003522 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003523 if( rc!=SQLITE_OK ){
3524 return rc;
3525 }
3526
dan51f0b6d2013-02-22 20:16:34 +00003527 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003528 ** is swapped with the first free page pulled off the free list.
3529 **
dan51f0b6d2013-02-22 20:16:34 +00003530 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003531 ** looping until a free-page located within the first nFin pages
3532 ** of the file is found.
3533 */
dan51f0b6d2013-02-22 20:16:34 +00003534 if( bCommit==0 ){
3535 eMode = BTALLOC_LE;
3536 iNear = nFin;
3537 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003538 do {
3539 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003540 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003541 if( rc!=SQLITE_OK ){
3542 releasePage(pLastPg);
3543 return rc;
3544 }
3545 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003546 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003547 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003548
dane1df4e32013-03-05 11:27:04 +00003549 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003550 releasePage(pLastPg);
3551 if( rc!=SQLITE_OK ){
3552 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003553 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003554 }
3555 }
3556
dan51f0b6d2013-02-22 20:16:34 +00003557 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003558 do {
danielk19773460d192008-12-27 15:23:13 +00003559 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003560 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3561 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003562 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003563 }
3564 return SQLITE_OK;
3565}
3566
3567/*
dan51f0b6d2013-02-22 20:16:34 +00003568** The database opened by the first argument is an auto-vacuum database
3569** nOrig pages in size containing nFree free pages. Return the expected
3570** size of the database in pages following an auto-vacuum operation.
3571*/
3572static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3573 int nEntry; /* Number of entries on one ptrmap page */
3574 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3575 Pgno nFin; /* Return value */
3576
3577 nEntry = pBt->usableSize/5;
3578 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3579 nFin = nOrig - nFree - nPtrmap;
3580 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3581 nFin--;
3582 }
3583 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3584 nFin--;
3585 }
dan51f0b6d2013-02-22 20:16:34 +00003586
3587 return nFin;
3588}
3589
3590/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003591** A write-transaction must be opened before calling this function.
3592** It performs a single unit of work towards an incremental vacuum.
3593**
3594** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003595** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003596** SQLITE_OK is returned. Otherwise an SQLite error code.
3597*/
3598int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003599 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003600 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003601
3602 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003603 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3604 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003605 rc = SQLITE_DONE;
3606 }else{
dan51f0b6d2013-02-22 20:16:34 +00003607 Pgno nOrig = btreePagecount(pBt);
3608 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3609 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3610
dan91384712013-02-24 11:50:43 +00003611 if( nOrig<nFin ){
3612 rc = SQLITE_CORRUPT_BKPT;
3613 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003614 rc = saveAllCursors(pBt, 0, 0);
3615 if( rc==SQLITE_OK ){
3616 invalidateAllOverflowCache(pBt);
3617 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3618 }
dan51f0b6d2013-02-22 20:16:34 +00003619 if( rc==SQLITE_OK ){
3620 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3621 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3622 }
3623 }else{
3624 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003625 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003626 }
drhd677b3d2007-08-20 22:48:41 +00003627 sqlite3BtreeLeave(p);
3628 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003629}
3630
3631/*
danielk19773b8a05f2007-03-19 17:44:26 +00003632** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003633** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003634**
3635** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3636** the database file should be truncated to during the commit process.
3637** i.e. the database has been reorganized so that only the first *pnTrunc
3638** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003639*/
danielk19773460d192008-12-27 15:23:13 +00003640static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003641 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003642 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003643 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003644
drh1fee73e2007-08-29 04:00:57 +00003645 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003646 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003647 assert(pBt->autoVacuum);
3648 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003649 Pgno nFin; /* Number of pages in database after autovacuuming */
3650 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003651 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003652 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003653
drhb1299152010-03-30 22:58:33 +00003654 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003655 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3656 /* It is not possible to create a database for which the final page
3657 ** is either a pointer-map page or the pending-byte page. If one
3658 ** is encountered, this indicates corruption.
3659 */
danielk19773460d192008-12-27 15:23:13 +00003660 return SQLITE_CORRUPT_BKPT;
3661 }
danielk1977ef165ce2009-04-06 17:50:03 +00003662
danielk19773460d192008-12-27 15:23:13 +00003663 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003664 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003665 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003666 if( nFin<nOrig ){
3667 rc = saveAllCursors(pBt, 0, 0);
3668 }
danielk19773460d192008-12-27 15:23:13 +00003669 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003670 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003671 }
danielk19773460d192008-12-27 15:23:13 +00003672 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003673 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3674 put4byte(&pBt->pPage1->aData[32], 0);
3675 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003676 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003677 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003678 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003679 }
3680 if( rc!=SQLITE_OK ){
3681 sqlite3PagerRollback(pPager);
3682 }
danielk1977687566d2004-11-02 12:56:41 +00003683 }
3684
dan0aed84d2013-03-26 14:16:20 +00003685 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003686 return rc;
3687}
danielk1977dddbcdc2007-04-26 14:42:34 +00003688
danielk1977a50d9aa2009-06-08 14:49:45 +00003689#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3690# define setChildPtrmaps(x) SQLITE_OK
3691#endif
danielk1977687566d2004-11-02 12:56:41 +00003692
3693/*
drh80e35f42007-03-30 14:06:34 +00003694** This routine does the first phase of a two-phase commit. This routine
3695** causes a rollback journal to be created (if it does not already exist)
3696** and populated with enough information so that if a power loss occurs
3697** the database can be restored to its original state by playing back
3698** the journal. Then the contents of the journal are flushed out to
3699** the disk. After the journal is safely on oxide, the changes to the
3700** database are written into the database file and flushed to oxide.
3701** At the end of this call, the rollback journal still exists on the
3702** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003703** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003704** commit process.
3705**
3706** This call is a no-op if no write-transaction is currently active on pBt.
3707**
3708** Otherwise, sync the database file for the btree pBt. zMaster points to
3709** the name of a master journal file that should be written into the
3710** individual journal file, or is NULL, indicating no master journal file
3711** (single database transaction).
3712**
3713** When this is called, the master journal should already have been
3714** created, populated with this journal pointer and synced to disk.
3715**
3716** Once this is routine has returned, the only thing required to commit
3717** the write-transaction for this database file is to delete the journal.
3718*/
3719int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3720 int rc = SQLITE_OK;
3721 if( p->inTrans==TRANS_WRITE ){
3722 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003723 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003724#ifndef SQLITE_OMIT_AUTOVACUUM
3725 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003726 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003727 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003728 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003729 return rc;
3730 }
3731 }
danbc1a3c62013-02-23 16:40:46 +00003732 if( pBt->bDoTruncate ){
3733 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3734 }
drh80e35f42007-03-30 14:06:34 +00003735#endif
drh49b9d332009-01-02 18:10:42 +00003736 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003737 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003738 }
3739 return rc;
3740}
3741
3742/*
danielk197794b30732009-07-02 17:21:57 +00003743** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3744** at the conclusion of a transaction.
3745*/
3746static void btreeEndTransaction(Btree *p){
3747 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003748 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003749 assert( sqlite3BtreeHoldsMutex(p) );
3750
danbc1a3c62013-02-23 16:40:46 +00003751#ifndef SQLITE_OMIT_AUTOVACUUM
3752 pBt->bDoTruncate = 0;
3753#endif
danc0537fe2013-06-28 19:41:43 +00003754 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003755 /* If there are other active statements that belong to this database
3756 ** handle, downgrade to a read-only transaction. The other statements
3757 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003758 downgradeAllSharedCacheTableLocks(p);
3759 p->inTrans = TRANS_READ;
3760 }else{
3761 /* If the handle had any kind of transaction open, decrement the
3762 ** transaction count of the shared btree. If the transaction count
3763 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3764 ** call below will unlock the pager. */
3765 if( p->inTrans!=TRANS_NONE ){
3766 clearAllSharedCacheTableLocks(p);
3767 pBt->nTransaction--;
3768 if( 0==pBt->nTransaction ){
3769 pBt->inTransaction = TRANS_NONE;
3770 }
3771 }
3772
3773 /* Set the current transaction state to TRANS_NONE and unlock the
3774 ** pager if this call closed the only read or write transaction. */
3775 p->inTrans = TRANS_NONE;
3776 unlockBtreeIfUnused(pBt);
3777 }
3778
3779 btreeIntegrity(p);
3780}
3781
3782/*
drh2aa679f2001-06-25 02:11:07 +00003783** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003784**
drh6e345992007-03-30 11:12:08 +00003785** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003786** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3787** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3788** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003789** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003790** routine has to do is delete or truncate or zero the header in the
3791** the rollback journal (which causes the transaction to commit) and
3792** drop locks.
drh6e345992007-03-30 11:12:08 +00003793**
dan60939d02011-03-29 15:40:55 +00003794** Normally, if an error occurs while the pager layer is attempting to
3795** finalize the underlying journal file, this function returns an error and
3796** the upper layer will attempt a rollback. However, if the second argument
3797** is non-zero then this b-tree transaction is part of a multi-file
3798** transaction. In this case, the transaction has already been committed
3799** (by deleting a master journal file) and the caller will ignore this
3800** functions return code. So, even if an error occurs in the pager layer,
3801** reset the b-tree objects internal state to indicate that the write
3802** transaction has been closed. This is quite safe, as the pager will have
3803** transitioned to the error state.
3804**
drh5e00f6c2001-09-13 13:46:56 +00003805** This will release the write lock on the database file. If there
3806** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003807*/
dan60939d02011-03-29 15:40:55 +00003808int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003809
drh075ed302010-10-14 01:17:30 +00003810 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003811 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003812 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003813
3814 /* If the handle has a write-transaction open, commit the shared-btrees
3815 ** transaction and set the shared state to TRANS_READ.
3816 */
3817 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003818 int rc;
drh075ed302010-10-14 01:17:30 +00003819 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003820 assert( pBt->inTransaction==TRANS_WRITE );
3821 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003822 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003823 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003824 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003825 return rc;
3826 }
drh3da9c042014-12-22 18:41:21 +00003827 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003828 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003829 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003830 }
danielk1977aef0bf62005-12-30 16:28:01 +00003831
danielk197794b30732009-07-02 17:21:57 +00003832 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003833 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003834 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003835}
3836
drh80e35f42007-03-30 14:06:34 +00003837/*
3838** Do both phases of a commit.
3839*/
3840int sqlite3BtreeCommit(Btree *p){
3841 int rc;
drhd677b3d2007-08-20 22:48:41 +00003842 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003843 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3844 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003845 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003846 }
drhd677b3d2007-08-20 22:48:41 +00003847 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003848 return rc;
3849}
3850
drhc39e0002004-05-07 23:50:57 +00003851/*
drhfb982642007-08-30 01:19:59 +00003852** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003853** code to errCode for every cursor on any BtShared that pBtree
3854** references. Or if the writeOnly flag is set to 1, then only
3855** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003856**
drh47b7fc72014-11-11 01:33:57 +00003857** Every cursor is a candidate to be tripped, including cursors
3858** that belong to other database connections that happen to be
3859** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003860**
dan80231042014-11-12 14:56:02 +00003861** This routine gets called when a rollback occurs. If the writeOnly
3862** flag is true, then only write-cursors need be tripped - read-only
3863** cursors save their current positions so that they may continue
3864** following the rollback. Or, if writeOnly is false, all cursors are
3865** tripped. In general, writeOnly is false if the transaction being
3866** rolled back modified the database schema. In this case b-tree root
3867** pages may be moved or deleted from the database altogether, making
3868** it unsafe for read cursors to continue.
3869**
3870** If the writeOnly flag is true and an error is encountered while
3871** saving the current position of a read-only cursor, all cursors,
3872** including all read-cursors are tripped.
3873**
3874** SQLITE_OK is returned if successful, or if an error occurs while
3875** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003876*/
dan80231042014-11-12 14:56:02 +00003877int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003878 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003879 int rc = SQLITE_OK;
3880
drh47b7fc72014-11-11 01:33:57 +00003881 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003882 if( pBtree ){
3883 sqlite3BtreeEnter(pBtree);
3884 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3885 int i;
3886 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003887 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003888 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003889 if( rc!=SQLITE_OK ){
3890 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3891 break;
3892 }
3893 }
3894 }else{
3895 sqlite3BtreeClearCursor(p);
3896 p->eState = CURSOR_FAULT;
3897 p->skipNext = errCode;
3898 }
3899 for(i=0; i<=p->iPage; i++){
3900 releasePage(p->apPage[i]);
3901 p->apPage[i] = 0;
3902 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003903 }
dan80231042014-11-12 14:56:02 +00003904 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003905 }
dan80231042014-11-12 14:56:02 +00003906 return rc;
drhfb982642007-08-30 01:19:59 +00003907}
3908
3909/*
drh47b7fc72014-11-11 01:33:57 +00003910** Rollback the transaction in progress.
3911**
3912** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3913** Only write cursors are tripped if writeOnly is true but all cursors are
3914** tripped if writeOnly is false. Any attempt to use
3915** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003916**
3917** This will release the write lock on the database file. If there
3918** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003919*/
drh47b7fc72014-11-11 01:33:57 +00003920int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003921 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003922 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003923 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003924
drh47b7fc72014-11-11 01:33:57 +00003925 assert( writeOnly==1 || writeOnly==0 );
3926 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003927 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003928 if( tripCode==SQLITE_OK ){
3929 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003930 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003931 }else{
3932 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003933 }
drh0f198a72012-02-13 16:43:16 +00003934 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003935 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3936 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3937 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003938 }
danielk1977aef0bf62005-12-30 16:28:01 +00003939 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003940
3941 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003942 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003943
danielk19778d34dfd2006-01-24 16:37:57 +00003944 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003945 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003946 if( rc2!=SQLITE_OK ){
3947 rc = rc2;
3948 }
3949
drh24cd67e2004-05-10 16:18:47 +00003950 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003951 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003952 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003953 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003954 int nPage = get4byte(28+(u8*)pPage1->aData);
3955 testcase( nPage==0 );
3956 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3957 testcase( pBt->nPage!=nPage );
3958 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003959 releasePage(pPage1);
3960 }
drh85ec3b62013-05-14 23:12:06 +00003961 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003962 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003963 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003964 }
danielk1977aef0bf62005-12-30 16:28:01 +00003965
danielk197794b30732009-07-02 17:21:57 +00003966 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003967 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003968 return rc;
3969}
3970
3971/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003972** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003973** back independently of the main transaction. You must start a transaction
3974** before starting a subtransaction. The subtransaction is ended automatically
3975** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003976**
3977** Statement subtransactions are used around individual SQL statements
3978** that are contained within a BEGIN...COMMIT block. If a constraint
3979** error occurs within the statement, the effect of that one statement
3980** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003981**
3982** A statement sub-transaction is implemented as an anonymous savepoint. The
3983** value passed as the second parameter is the total number of savepoints,
3984** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3985** are no active savepoints and no other statement-transactions open,
3986** iStatement is 1. This anonymous savepoint can be released or rolled back
3987** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003988*/
danielk1977bd434552009-03-18 10:33:00 +00003989int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003990 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003991 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003992 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003993 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003994 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003995 assert( iStatement>0 );
3996 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003997 assert( pBt->inTransaction==TRANS_WRITE );
3998 /* At the pager level, a statement transaction is a savepoint with
3999 ** an index greater than all savepoints created explicitly using
4000 ** SQL statements. It is illegal to open, release or rollback any
4001 ** such savepoints while the statement transaction savepoint is active.
4002 */
4003 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004004 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004005 return rc;
4006}
4007
4008/*
danielk1977fd7f0452008-12-17 17:30:26 +00004009** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4010** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004011** savepoint identified by parameter iSavepoint, depending on the value
4012** of op.
4013**
4014** Normally, iSavepoint is greater than or equal to zero. However, if op is
4015** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4016** contents of the entire transaction are rolled back. This is different
4017** from a normal transaction rollback, as no locks are released and the
4018** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004019*/
4020int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4021 int rc = SQLITE_OK;
4022 if( p && p->inTrans==TRANS_WRITE ){
4023 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004024 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4025 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4026 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00004027 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00004028 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004029 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4030 pBt->nPage = 0;
4031 }
drh9f0bbf92009-01-02 21:08:09 +00004032 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004033 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004034
4035 /* The database size was written into the offset 28 of the header
4036 ** when the transaction started, so we know that the value at offset
4037 ** 28 is nonzero. */
4038 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004039 }
danielk1977fd7f0452008-12-17 17:30:26 +00004040 sqlite3BtreeLeave(p);
4041 }
4042 return rc;
4043}
4044
4045/*
drh8b2f49b2001-06-08 00:21:52 +00004046** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004047** iTable. If a read-only cursor is requested, it is assumed that
4048** the caller already has at least a read-only transaction open
4049** on the database already. If a write-cursor is requested, then
4050** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004051**
drhe807bdb2016-01-21 17:06:33 +00004052** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4053** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4054** can be used for reading or for writing if other conditions for writing
4055** are also met. These are the conditions that must be met in order
4056** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004057**
drhe807bdb2016-01-21 17:06:33 +00004058** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004059**
drhfe5d71d2007-03-19 11:54:10 +00004060** 2: Other database connections that share the same pager cache
4061** but which are not in the READ_UNCOMMITTED state may not have
4062** cursors open with wrFlag==0 on the same table. Otherwise
4063** the changes made by this write cursor would be visible to
4064** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004065**
4066** 3: The database must be writable (not on read-only media)
4067**
4068** 4: There must be an active transaction.
4069**
drhe807bdb2016-01-21 17:06:33 +00004070** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4071** is set. If FORDELETE is set, that is a hint to the implementation that
4072** this cursor will only be used to seek to and delete entries of an index
4073** as part of a larger DELETE statement. The FORDELETE hint is not used by
4074** this implementation. But in a hypothetical alternative storage engine
4075** in which index entries are automatically deleted when corresponding table
4076** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4077** operations on this cursor can be no-ops and all READ operations can
4078** return a null row (2-bytes: 0x01 0x00).
4079**
drh6446c4d2001-12-15 14:22:18 +00004080** No checking is done to make sure that page iTable really is the
4081** root page of a b-tree. If it is not, then the cursor acquired
4082** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004083**
drhf25a5072009-11-18 23:01:25 +00004084** It is assumed that the sqlite3BtreeCursorZero() has been called
4085** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004086*/
drhd677b3d2007-08-20 22:48:41 +00004087static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004088 Btree *p, /* The btree */
4089 int iTable, /* Root page of table to open */
4090 int wrFlag, /* 1 to write. 0 read-only */
4091 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4092 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004093){
danielk19773e8add92009-07-04 17:16:00 +00004094 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004095 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004096
drh1fee73e2007-08-29 04:00:57 +00004097 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004098 assert( wrFlag==0
4099 || wrFlag==BTREE_WRCSR
4100 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4101 );
danielk197796d48e92009-06-29 06:00:37 +00004102
danielk1977602b4662009-07-02 07:47:33 +00004103 /* The following assert statements verify that if this is a sharable
4104 ** b-tree database, the connection is holding the required table locks,
4105 ** and that no other connection has any open cursor that conflicts with
4106 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004107 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004108 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4109
danielk19773e8add92009-07-04 17:16:00 +00004110 /* Assert that the caller has opened the required transaction. */
4111 assert( p->inTrans>TRANS_NONE );
4112 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4113 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004114 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004115
drh3fbb0222014-09-24 19:47:27 +00004116 if( wrFlag ){
4117 allocateTempSpace(pBt);
4118 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
drha0c9a112004-03-10 13:42:37 +00004119 }
drhb1299152010-03-30 22:58:33 +00004120 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004121 assert( wrFlag==0 );
4122 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004123 }
danielk1977aef0bf62005-12-30 16:28:01 +00004124
danielk1977aef0bf62005-12-30 16:28:01 +00004125 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004126 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004127 pCur->pgnoRoot = (Pgno)iTable;
4128 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004129 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004130 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004131 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004132 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004133 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004134 /* If there are two or more cursors on the same btree, then all such
4135 ** cursors *must* have the BTCF_Multiple flag set. */
4136 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4137 if( pX->pgnoRoot==(Pgno)iTable ){
4138 pX->curFlags |= BTCF_Multiple;
4139 pCur->curFlags |= BTCF_Multiple;
4140 }
drha059ad02001-04-17 20:09:11 +00004141 }
drh27fb7462015-06-30 02:47:36 +00004142 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004143 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004144 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004145 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004146}
drhd677b3d2007-08-20 22:48:41 +00004147int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004148 Btree *p, /* The btree */
4149 int iTable, /* Root page of table to open */
4150 int wrFlag, /* 1 to write. 0 read-only */
4151 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4152 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004153){
4154 int rc;
dan08f901b2015-05-25 19:24:36 +00004155 if( iTable<1 ){
4156 rc = SQLITE_CORRUPT_BKPT;
4157 }else{
4158 sqlite3BtreeEnter(p);
4159 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4160 sqlite3BtreeLeave(p);
4161 }
drhd677b3d2007-08-20 22:48:41 +00004162 return rc;
4163}
drh7f751222009-03-17 22:33:00 +00004164
4165/*
4166** Return the size of a BtCursor object in bytes.
4167**
4168** This interfaces is needed so that users of cursors can preallocate
4169** sufficient storage to hold a cursor. The BtCursor object is opaque
4170** to users so they cannot do the sizeof() themselves - they must call
4171** this routine.
4172*/
4173int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004174 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004175}
4176
drh7f751222009-03-17 22:33:00 +00004177/*
drhf25a5072009-11-18 23:01:25 +00004178** Initialize memory that will be converted into a BtCursor object.
4179**
4180** The simple approach here would be to memset() the entire object
4181** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4182** do not need to be zeroed and they are large, so we can save a lot
4183** of run-time by skipping the initialization of those elements.
4184*/
4185void sqlite3BtreeCursorZero(BtCursor *p){
4186 memset(p, 0, offsetof(BtCursor, iPage));
4187}
4188
4189/*
drh5e00f6c2001-09-13 13:46:56 +00004190** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004191** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004192*/
drh3aac2dd2004-04-26 14:10:20 +00004193int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004194 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004195 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004196 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004197 BtShared *pBt = pCur->pBt;
4198 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004199 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004200 assert( pBt->pCursor!=0 );
4201 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004202 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004203 }else{
4204 BtCursor *pPrev = pBt->pCursor;
4205 do{
4206 if( pPrev->pNext==pCur ){
4207 pPrev->pNext = pCur->pNext;
4208 break;
4209 }
4210 pPrev = pPrev->pNext;
4211 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004212 }
danielk197771d5d2c2008-09-29 11:49:47 +00004213 for(i=0; i<=pCur->iPage; i++){
4214 releasePage(pCur->apPage[i]);
4215 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004216 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004217 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004218 /* sqlite3_free(pCur); */
4219 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004220 }
drh8c42ca92001-06-22 19:15:00 +00004221 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004222}
4223
drh5e2f8b92001-05-28 00:41:15 +00004224/*
drh86057612007-06-26 01:04:48 +00004225** Make sure the BtCursor* given in the argument has a valid
4226** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004227** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004228**
4229** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004230** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004231*/
drh9188b382004-05-14 21:12:22 +00004232#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004233 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004234 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004235 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004236 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004237 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004238 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004239 }
danielk19771cc5ed82007-05-16 17:28:43 +00004240#else
4241 #define assertCellInfo(x)
4242#endif
drhc5b41ac2015-06-17 02:11:46 +00004243static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4244 if( pCur->info.nSize==0 ){
4245 int iPage = pCur->iPage;
4246 pCur->curFlags |= BTCF_ValidNKey;
4247 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4248 }else{
4249 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004250 }
drhc5b41ac2015-06-17 02:11:46 +00004251}
drh9188b382004-05-14 21:12:22 +00004252
drhea8ffdf2009-07-22 00:35:23 +00004253#ifndef NDEBUG /* The next routine used only within assert() statements */
4254/*
4255** Return true if the given BtCursor is valid. A valid cursor is one
4256** that is currently pointing to a row in a (non-empty) table.
4257** This is a verification routine is used only within assert() statements.
4258*/
4259int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4260 return pCur && pCur->eState==CURSOR_VALID;
4261}
4262#endif /* NDEBUG */
4263
drh9188b382004-05-14 21:12:22 +00004264/*
drh3aac2dd2004-04-26 14:10:20 +00004265** Set *pSize to the size of the buffer needed to hold the value of
4266** the key for the current entry. If the cursor is not pointing
4267** to a valid entry, *pSize is set to 0.
4268**
drh4b70f112004-05-02 21:12:19 +00004269** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004270** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004271**
4272** The caller must position the cursor prior to invoking this routine.
4273**
4274** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004275*/
drh4a1c3802004-05-12 15:15:47 +00004276int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004277 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004278 assert( pCur->eState==CURSOR_VALID );
4279 getCellInfo(pCur);
4280 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004281 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004282}
drh2af926b2001-05-15 00:39:25 +00004283
drh72f82862001-05-24 21:06:34 +00004284/*
drh0e1c19e2004-05-11 00:58:56 +00004285** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004286** cursor currently points to.
4287**
4288** The caller must guarantee that the cursor is pointing to a non-NULL
4289** valid entry. In other words, the calling procedure must guarantee
4290** that the cursor has Cursor.eState==CURSOR_VALID.
4291**
4292** Failure is not possible. This function always returns SQLITE_OK.
4293** It might just as well be a procedure (returning void) but we continue
4294** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004295*/
4296int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
dan7a2347e2016-01-07 16:43:54 +00004297 assert( cursorOwnsBtShared(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004298 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004299 assert( pCur->iPage>=0 );
4300 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004301 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004302 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004303 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004304 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004305}
4306
4307/*
danielk1977d04417962007-05-02 13:16:30 +00004308** Given the page number of an overflow page in the database (parameter
4309** ovfl), this function finds the page number of the next page in the
4310** linked list of overflow pages. If possible, it uses the auto-vacuum
4311** pointer-map data instead of reading the content of page ovfl to do so.
4312**
4313** If an error occurs an SQLite error code is returned. Otherwise:
4314**
danielk1977bea2a942009-01-20 17:06:27 +00004315** The page number of the next overflow page in the linked list is
4316** written to *pPgnoNext. If page ovfl is the last page in its linked
4317** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004318**
danielk1977bea2a942009-01-20 17:06:27 +00004319** If ppPage is not NULL, and a reference to the MemPage object corresponding
4320** to page number pOvfl was obtained, then *ppPage is set to point to that
4321** reference. It is the responsibility of the caller to call releasePage()
4322** on *ppPage to free the reference. In no reference was obtained (because
4323** the pointer-map was used to obtain the value for *pPgnoNext), then
4324** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004325*/
4326static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004327 BtShared *pBt, /* The database file */
4328 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004329 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004330 Pgno *pPgnoNext /* OUT: Next overflow page number */
4331){
4332 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004333 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004334 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004335
drh1fee73e2007-08-29 04:00:57 +00004336 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004337 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004338
4339#ifndef SQLITE_OMIT_AUTOVACUUM
4340 /* Try to find the next page in the overflow list using the
4341 ** autovacuum pointer-map pages. Guess that the next page in
4342 ** the overflow list is page number (ovfl+1). If that guess turns
4343 ** out to be wrong, fall back to loading the data of page
4344 ** number ovfl to determine the next page number.
4345 */
4346 if( pBt->autoVacuum ){
4347 Pgno pgno;
4348 Pgno iGuess = ovfl+1;
4349 u8 eType;
4350
4351 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4352 iGuess++;
4353 }
4354
drhb1299152010-03-30 22:58:33 +00004355 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004356 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004357 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004358 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004359 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004360 }
4361 }
4362 }
4363#endif
4364
danielk1977d8a3f3d2009-07-11 11:45:23 +00004365 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004366 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004367 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004368 assert( rc==SQLITE_OK || pPage==0 );
4369 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004370 next = get4byte(pPage->aData);
4371 }
danielk1977443c0592009-01-16 15:21:05 +00004372 }
danielk197745d68822009-01-16 16:23:38 +00004373
danielk1977bea2a942009-01-20 17:06:27 +00004374 *pPgnoNext = next;
4375 if( ppPage ){
4376 *ppPage = pPage;
4377 }else{
4378 releasePage(pPage);
4379 }
4380 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004381}
4382
danielk1977da107192007-05-04 08:32:13 +00004383/*
4384** Copy data from a buffer to a page, or from a page to a buffer.
4385**
4386** pPayload is a pointer to data stored on database page pDbPage.
4387** If argument eOp is false, then nByte bytes of data are copied
4388** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4389** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4390** of data are copied from the buffer pBuf to pPayload.
4391**
4392** SQLITE_OK is returned on success, otherwise an error code.
4393*/
4394static int copyPayload(
4395 void *pPayload, /* Pointer to page data */
4396 void *pBuf, /* Pointer to buffer */
4397 int nByte, /* Number of bytes to copy */
4398 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4399 DbPage *pDbPage /* Page containing pPayload */
4400){
4401 if( eOp ){
4402 /* Copy data from buffer to page (a write operation) */
4403 int rc = sqlite3PagerWrite(pDbPage);
4404 if( rc!=SQLITE_OK ){
4405 return rc;
4406 }
4407 memcpy(pPayload, pBuf, nByte);
4408 }else{
4409 /* Copy data from page to buffer (a read operation) */
4410 memcpy(pBuf, pPayload, nByte);
4411 }
4412 return SQLITE_OK;
4413}
danielk1977d04417962007-05-02 13:16:30 +00004414
4415/*
danielk19779f8d6402007-05-02 17:48:45 +00004416** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004417** for the entry that the pCur cursor is pointing to. The eOp
4418** argument is interpreted as follows:
4419**
4420** 0: The operation is a read. Populate the overflow cache.
4421** 1: The operation is a write. Populate the overflow cache.
4422** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004423**
4424** A total of "amt" bytes are read or written beginning at "offset".
4425** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004426**
drh3bcdfd22009-07-12 02:32:21 +00004427** The content being read or written might appear on the main page
4428** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004429**
dan5a500af2014-03-11 20:33:04 +00004430** If the current cursor entry uses one or more overflow pages and the
4431** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004432** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004433** Subsequent calls use this cache to make seeking to the supplied offset
4434** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004435**
4436** Once an overflow page-list cache has been allocated, it may be
4437** invalidated if some other cursor writes to the same table, or if
4438** the cursor is moved to a different row. Additionally, in auto-vacuum
4439** mode, the following events may invalidate an overflow page-list cache.
4440**
4441** * An incremental vacuum,
4442** * A commit in auto_vacuum="full" mode,
4443** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004444*/
danielk19779f8d6402007-05-02 17:48:45 +00004445static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004446 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004447 u32 offset, /* Begin reading this far into payload */
4448 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004449 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004450 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004451){
4452 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004453 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004454 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004455 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004456 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004457#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004458 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004459 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004460#endif
drh3aac2dd2004-04-26 14:10:20 +00004461
danielk1977da107192007-05-04 08:32:13 +00004462 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004463 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004464 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004465 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004466 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004467
drh86057612007-06-26 01:04:48 +00004468 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004469 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004470#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004471 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004472#endif
drhab1cc582014-09-23 21:25:19 +00004473 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004474
drhab1cc582014-09-23 21:25:19 +00004475 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004476 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004477 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004478 }
danielk1977da107192007-05-04 08:32:13 +00004479
4480 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004481 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004482 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004483 if( a+offset>pCur->info.nLocal ){
4484 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004485 }
dan5a500af2014-03-11 20:33:04 +00004486 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004487 offset = 0;
drha34b6762004-05-07 13:30:42 +00004488 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004489 amt -= a;
drhdd793422001-06-28 01:54:48 +00004490 }else{
drhfa1a98a2004-05-14 19:08:17 +00004491 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004492 }
danielk1977da107192007-05-04 08:32:13 +00004493
dan85753662014-12-11 16:38:18 +00004494
danielk1977da107192007-05-04 08:32:13 +00004495 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004496 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004497 Pgno nextPage;
4498
drhfa1a98a2004-05-14 19:08:17 +00004499 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004500
drha38c9512014-04-01 01:24:34 +00004501 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4502 ** Except, do not allocate aOverflow[] for eOp==2.
4503 **
4504 ** The aOverflow[] array is sized at one entry for each overflow page
4505 ** in the overflow chain. The page number of the first overflow page is
4506 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4507 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004508 */
drh036dbec2014-03-11 23:40:44 +00004509 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004510 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004511 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004512 Pgno *aNew = (Pgno*)sqlite3Realloc(
4513 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004514 );
4515 if( aNew==0 ){
4516 rc = SQLITE_NOMEM;
4517 }else{
4518 pCur->nOvflAlloc = nOvfl*2;
4519 pCur->aOverflow = aNew;
4520 }
4521 }
4522 if( rc==SQLITE_OK ){
4523 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004524 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004525 }
4526 }
danielk1977da107192007-05-04 08:32:13 +00004527
4528 /* If the overflow page-list cache has been allocated and the
4529 ** entry for the first required overflow page is valid, skip
4530 ** directly to it.
4531 */
drh3f387402014-09-24 01:23:00 +00004532 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4533 && pCur->aOverflow[offset/ovflSize]
4534 ){
danielk19772dec9702007-05-02 16:48:37 +00004535 iIdx = (offset/ovflSize);
4536 nextPage = pCur->aOverflow[iIdx];
4537 offset = (offset%ovflSize);
4538 }
danielk1977da107192007-05-04 08:32:13 +00004539
4540 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4541
danielk1977da107192007-05-04 08:32:13 +00004542 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004543 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
drhb0df9632015-10-16 23:55:08 +00004544 assert( pCur->aOverflow[iIdx]==0
4545 || pCur->aOverflow[iIdx]==nextPage
4546 || CORRUPT_DB );
danielk1977da107192007-05-04 08:32:13 +00004547 pCur->aOverflow[iIdx] = nextPage;
4548 }
danielk1977da107192007-05-04 08:32:13 +00004549
danielk1977d04417962007-05-02 13:16:30 +00004550 if( offset>=ovflSize ){
4551 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004552 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004553 ** data is not required. So first try to lookup the overflow
4554 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004555 ** function.
drha38c9512014-04-01 01:24:34 +00004556 **
4557 ** Note that the aOverflow[] array must be allocated because eOp!=2
4558 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004559 */
drha38c9512014-04-01 01:24:34 +00004560 assert( eOp!=2 );
4561 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004562 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004563 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004564 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004565 }else{
danielk1977da107192007-05-04 08:32:13 +00004566 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004567 }
danielk1977da107192007-05-04 08:32:13 +00004568 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004569 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004570 /* Need to read this page properly. It contains some of the
4571 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004572 */
danf4ba1092011-10-08 14:57:07 +00004573#ifdef SQLITE_DIRECT_OVERFLOW_READ
4574 sqlite3_file *fd;
4575#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004576 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004577 if( a + offset > ovflSize ){
4578 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004579 }
danf4ba1092011-10-08 14:57:07 +00004580
4581#ifdef SQLITE_DIRECT_OVERFLOW_READ
4582 /* If all the following are true:
4583 **
4584 ** 1) this is a read operation, and
4585 ** 2) data is required from the start of this overflow page, and
4586 ** 3) the database is file-backed, and
4587 ** 4) there is no open write-transaction, and
4588 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004589 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004590 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004591 **
4592 ** then data can be read directly from the database file into the
4593 ** output buffer, bypassing the page-cache altogether. This speeds
4594 ** up loading large records that span many overflow pages.
4595 */
dan5a500af2014-03-11 20:33:04 +00004596 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004597 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004598 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004599 && pBt->inTransaction==TRANS_READ /* (4) */
4600 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4601 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004602 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004603 ){
4604 u8 aSave[4];
4605 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004606 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004607 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004608 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004609 nextPage = get4byte(aWrite);
4610 memcpy(aWrite, aSave, 4);
4611 }else
4612#endif
4613
4614 {
4615 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004616 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004617 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004618 );
danf4ba1092011-10-08 14:57:07 +00004619 if( rc==SQLITE_OK ){
4620 aPayload = sqlite3PagerGetData(pDbPage);
4621 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004622 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004623 sqlite3PagerUnref(pDbPage);
4624 offset = 0;
4625 }
4626 }
4627 amt -= a;
4628 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004629 }
drh2af926b2001-05-15 00:39:25 +00004630 }
drh2af926b2001-05-15 00:39:25 +00004631 }
danielk1977cfe9a692004-06-16 12:00:29 +00004632
danielk1977da107192007-05-04 08:32:13 +00004633 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004634 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004635 }
danielk1977da107192007-05-04 08:32:13 +00004636 return rc;
drh2af926b2001-05-15 00:39:25 +00004637}
4638
drh72f82862001-05-24 21:06:34 +00004639/*
drh3aac2dd2004-04-26 14:10:20 +00004640** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004641** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004642** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004643**
drh5d1a8722009-07-22 18:07:40 +00004644** The caller must ensure that pCur is pointing to a valid row
4645** in the table.
4646**
drh3aac2dd2004-04-26 14:10:20 +00004647** Return SQLITE_OK on success or an error code if anything goes
4648** wrong. An error is returned if "offset+amt" is larger than
4649** the available payload.
drh72f82862001-05-24 21:06:34 +00004650*/
drha34b6762004-05-07 13:30:42 +00004651int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004652 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004653 assert( pCur->eState==CURSOR_VALID );
4654 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4655 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4656 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004657}
4658
4659/*
drh3aac2dd2004-04-26 14:10:20 +00004660** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004661** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004662** begins at "offset".
4663**
4664** Return SQLITE_OK on success or an error code if anything goes
4665** wrong. An error is returned if "offset+amt" is larger than
4666** the available payload.
drh72f82862001-05-24 21:06:34 +00004667*/
drh3aac2dd2004-04-26 14:10:20 +00004668int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004669 int rc;
4670
danielk19773588ceb2008-06-10 17:30:26 +00004671#ifndef SQLITE_OMIT_INCRBLOB
4672 if ( pCur->eState==CURSOR_INVALID ){
4673 return SQLITE_ABORT;
4674 }
4675#endif
4676
dan7a2347e2016-01-07 16:43:54 +00004677 assert( cursorOwnsBtShared(pCur) );
drha3460582008-07-11 21:02:53 +00004678 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004679 if( rc==SQLITE_OK ){
4680 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004681 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4682 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004683 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004684 }
4685 return rc;
drh2af926b2001-05-15 00:39:25 +00004686}
4687
drh72f82862001-05-24 21:06:34 +00004688/*
drh0e1c19e2004-05-11 00:58:56 +00004689** Return a pointer to payload information from the entry that the
4690** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004691** the key if index btrees (pPage->intKey==0) and is the data for
4692** table btrees (pPage->intKey==1). The number of bytes of available
4693** key/data is written into *pAmt. If *pAmt==0, then the value
4694** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004695**
4696** This routine is an optimization. It is common for the entire key
4697** and data to fit on the local page and for there to be no overflow
4698** pages. When that is so, this routine can be used to access the
4699** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004700** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004701** the key/data and copy it into a preallocated buffer.
4702**
4703** The pointer returned by this routine looks directly into the cached
4704** page of the database. The data might change or move the next time
4705** any btree routine is called.
4706*/
drh2a8d2262013-12-09 20:43:22 +00004707static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004708 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004709 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004710){
drhf3392e32015-04-15 17:26:55 +00004711 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004712 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004713 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004714 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004715 assert( cursorOwnsBtShared(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004716 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004717 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004718 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4719 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4720 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4721 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4722 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004723 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004724}
4725
4726
4727/*
drhe51c44f2004-05-30 20:46:09 +00004728** For the entry that cursor pCur is point to, return as
4729** many bytes of the key or data as are available on the local
4730** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004731**
4732** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004733** or be destroyed on the next call to any Btree routine,
4734** including calls from other threads against the same cache.
4735** Hence, a mutex on the BtShared should be held prior to calling
4736** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004737**
4738** These routines is used to get quick access to key and data
4739** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004740*/
drh501932c2013-11-21 21:59:53 +00004741const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004742 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004743}
drh501932c2013-11-21 21:59:53 +00004744const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004745 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004746}
4747
4748
4749/*
drh8178a752003-01-05 21:41:40 +00004750** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004751** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004752**
4753** This function returns SQLITE_CORRUPT if the page-header flags field of
4754** the new child page does not match the flags field of the parent (i.e.
4755** if an intkey page appears to be the parent of a non-intkey page, or
4756** vice-versa).
drh72f82862001-05-24 21:06:34 +00004757*/
drh3aac2dd2004-04-26 14:10:20 +00004758static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004759 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004760
dan7a2347e2016-01-07 16:43:54 +00004761 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004762 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004763 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004764 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004765 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4766 return SQLITE_CORRUPT_BKPT;
4767 }
drh271efa52004-05-30 19:19:05 +00004768 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004769 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00004770 pCur->iPage++;
4771 pCur->aiIdx[pCur->iPage] = 0;
4772 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4773 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004774}
4775
drhcbd33492015-03-25 13:06:54 +00004776#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004777/*
4778** Page pParent is an internal (non-leaf) tree page. This function
4779** asserts that page number iChild is the left-child if the iIdx'th
4780** cell in page pParent. Or, if iIdx is equal to the total number of
4781** cells in pParent, that page number iChild is the right-child of
4782** the page.
4783*/
4784static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004785 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4786 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004787 assert( iIdx<=pParent->nCell );
4788 if( iIdx==pParent->nCell ){
4789 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4790 }else{
4791 assert( get4byte(findCell(pParent, iIdx))==iChild );
4792 }
4793}
4794#else
4795# define assertParentIndex(x,y,z)
4796#endif
4797
drh72f82862001-05-24 21:06:34 +00004798/*
drh5e2f8b92001-05-28 00:41:15 +00004799** Move the cursor up to the parent page.
4800**
4801** pCur->idx is set to the cell index that contains the pointer
4802** to the page we are coming from. If we are coming from the
4803** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004804** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004805*/
danielk197730548662009-07-09 05:07:37 +00004806static void moveToParent(BtCursor *pCur){
dan7a2347e2016-01-07 16:43:54 +00004807 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004808 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004809 assert( pCur->iPage>0 );
4810 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004811 assertParentIndex(
4812 pCur->apPage[pCur->iPage-1],
4813 pCur->aiIdx[pCur->iPage-1],
4814 pCur->apPage[pCur->iPage]->pgno
4815 );
dan6c2688c2012-01-12 15:05:03 +00004816 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004817 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004818 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00004819 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004820}
4821
4822/*
danielk19778f880a82009-07-13 09:41:45 +00004823** Move the cursor to point to the root page of its b-tree structure.
4824**
4825** If the table has a virtual root page, then the cursor is moved to point
4826** to the virtual root page instead of the actual root page. A table has a
4827** virtual root page when the actual root page contains no cells and a
4828** single child page. This can only happen with the table rooted at page 1.
4829**
4830** If the b-tree structure is empty, the cursor state is set to
4831** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4832** cell located on the root (or virtual root) page and the cursor state
4833** is set to CURSOR_VALID.
4834**
4835** If this function returns successfully, it may be assumed that the
4836** page-header flags indicate that the [virtual] root-page is the expected
4837** kind of b-tree page (i.e. if when opening the cursor the caller did not
4838** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4839** indicating a table b-tree, or if the caller did specify a KeyInfo
4840** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4841** b-tree).
drh72f82862001-05-24 21:06:34 +00004842*/
drh5e2f8b92001-05-28 00:41:15 +00004843static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004844 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004845 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004846
dan7a2347e2016-01-07 16:43:54 +00004847 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00004848 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4849 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4850 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4851 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4852 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004853 assert( pCur->skipNext!=SQLITE_OK );
4854 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004855 }
danielk1977be51a652008-10-08 17:58:48 +00004856 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004857 }
danielk197771d5d2c2008-09-29 11:49:47 +00004858
4859 if( pCur->iPage>=0 ){
drhbbf0f862015-06-27 14:59:26 +00004860 while( pCur->iPage ){
4861 assert( pCur->apPage[pCur->iPage]!=0 );
4862 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4863 }
dana205a482011-08-27 18:48:57 +00004864 }else if( pCur->pgnoRoot==0 ){
4865 pCur->eState = CURSOR_INVALID;
4866 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004867 }else{
drh28f58dd2015-06-27 19:45:03 +00004868 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004869 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004870 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004871 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004872 pCur->eState = CURSOR_INVALID;
4873 return rc;
4874 }
danielk1977172114a2009-07-07 15:47:12 +00004875 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004876 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004877 }
danielk197771d5d2c2008-09-29 11:49:47 +00004878 pRoot = pCur->apPage[0];
4879 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004880
4881 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4882 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4883 ** NULL, the caller expects a table b-tree. If this is not the case,
4884 ** return an SQLITE_CORRUPT error.
4885 **
4886 ** Earlier versions of SQLite assumed that this test could not fail
4887 ** if the root page was already loaded when this function was called (i.e.
4888 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4889 ** in such a way that page pRoot is linked into a second b-tree table
4890 ** (or the freelist). */
4891 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4892 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4893 return SQLITE_CORRUPT_BKPT;
4894 }
danielk19778f880a82009-07-13 09:41:45 +00004895
danielk197771d5d2c2008-09-29 11:49:47 +00004896 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004897 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004898 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004899
drh4e8fe3f2013-12-06 23:25:27 +00004900 if( pRoot->nCell>0 ){
4901 pCur->eState = CURSOR_VALID;
4902 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004903 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004904 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004905 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004906 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004907 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004908 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004909 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004910 }
4911 return rc;
drh72f82862001-05-24 21:06:34 +00004912}
drh2af926b2001-05-15 00:39:25 +00004913
drh5e2f8b92001-05-28 00:41:15 +00004914/*
4915** Move the cursor down to the left-most leaf entry beneath the
4916** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004917**
4918** The left-most leaf is the one with the smallest key - the first
4919** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004920*/
4921static int moveToLeftmost(BtCursor *pCur){
4922 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004923 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004924 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004925
dan7a2347e2016-01-07 16:43:54 +00004926 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004927 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004928 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4929 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4930 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004931 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004932 }
drhd677b3d2007-08-20 22:48:41 +00004933 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004934}
4935
drh2dcc9aa2002-12-04 13:40:25 +00004936/*
4937** Move the cursor down to the right-most leaf entry beneath the
4938** page to which it is currently pointing. Notice the difference
4939** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4940** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4941** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004942**
4943** The right-most entry is the one with the largest key - the last
4944** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004945*/
4946static int moveToRightmost(BtCursor *pCur){
4947 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004948 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004949 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004950
dan7a2347e2016-01-07 16:43:54 +00004951 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004952 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004953 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004954 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004955 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004956 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004957 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004958 }
drhee6438d2014-09-01 13:29:32 +00004959 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4960 assert( pCur->info.nSize==0 );
4961 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4962 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004963}
4964
drh5e00f6c2001-09-13 13:46:56 +00004965/* Move the cursor to the first entry in the table. Return SQLITE_OK
4966** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004967** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004968*/
drh3aac2dd2004-04-26 14:10:20 +00004969int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004970 int rc;
drhd677b3d2007-08-20 22:48:41 +00004971
dan7a2347e2016-01-07 16:43:54 +00004972 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004973 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004974 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004975 if( rc==SQLITE_OK ){
4976 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004977 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004978 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004979 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004980 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004981 *pRes = 0;
4982 rc = moveToLeftmost(pCur);
4983 }
drh5e00f6c2001-09-13 13:46:56 +00004984 }
drh5e00f6c2001-09-13 13:46:56 +00004985 return rc;
4986}
drh5e2f8b92001-05-28 00:41:15 +00004987
drh9562b552002-02-19 15:00:07 +00004988/* Move the cursor to the last entry in the table. Return SQLITE_OK
4989** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004990** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004991*/
drh3aac2dd2004-04-26 14:10:20 +00004992int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004993 int rc;
drhd677b3d2007-08-20 22:48:41 +00004994
dan7a2347e2016-01-07 16:43:54 +00004995 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004996 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004997
4998 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004999 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005000#ifdef SQLITE_DEBUG
5001 /* This block serves to assert() that the cursor really does point
5002 ** to the last entry in the b-tree. */
5003 int ii;
5004 for(ii=0; ii<pCur->iPage; ii++){
5005 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5006 }
5007 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
5008 assert( pCur->apPage[pCur->iPage]->leaf );
5009#endif
5010 return SQLITE_OK;
5011 }
5012
drh9562b552002-02-19 15:00:07 +00005013 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005014 if( rc==SQLITE_OK ){
5015 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005016 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005017 *pRes = 1;
5018 }else{
5019 assert( pCur->eState==CURSOR_VALID );
5020 *pRes = 0;
5021 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005022 if( rc==SQLITE_OK ){
5023 pCur->curFlags |= BTCF_AtLast;
5024 }else{
5025 pCur->curFlags &= ~BTCF_AtLast;
5026 }
5027
drhd677b3d2007-08-20 22:48:41 +00005028 }
drh9562b552002-02-19 15:00:07 +00005029 }
drh9562b552002-02-19 15:00:07 +00005030 return rc;
5031}
5032
drhe14006d2008-03-25 17:23:32 +00005033/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005034** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005035**
drhe63d9992008-08-13 19:11:48 +00005036** For INTKEY tables, the intKey parameter is used. pIdxKey
5037** must be NULL. For index tables, pIdxKey is used and intKey
5038** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005039**
drh5e2f8b92001-05-28 00:41:15 +00005040** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005041** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005042** were present. The cursor might point to an entry that comes
5043** before or after the key.
5044**
drh64022502009-01-09 14:11:04 +00005045** An integer is written into *pRes which is the result of
5046** comparing the key with the entry to which the cursor is
5047** pointing. The meaning of the integer written into
5048** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005049**
5050** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005051** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005052** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005053**
5054** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005055** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005056**
5057** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005058** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005059**
drhb1d607d2015-11-05 22:30:54 +00005060** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5061** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005062*/
drhe63d9992008-08-13 19:11:48 +00005063int sqlite3BtreeMovetoUnpacked(
5064 BtCursor *pCur, /* The cursor to be moved */
5065 UnpackedRecord *pIdxKey, /* Unpacked index key */
5066 i64 intKey, /* The table key */
5067 int biasRight, /* If true, bias the search to the high end */
5068 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005069){
drh72f82862001-05-24 21:06:34 +00005070 int rc;
dan3b9330f2014-02-27 20:44:18 +00005071 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005072
dan7a2347e2016-01-07 16:43:54 +00005073 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005074 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005075 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005076 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00005077
5078 /* If the cursor is already positioned at the point we are trying
5079 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00005080 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
drhc75d8862015-06-27 23:55:20 +00005081 && pCur->curIntKey
danielk197771d5d2c2008-09-29 11:49:47 +00005082 ){
drhe63d9992008-08-13 19:11:48 +00005083 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005084 *pRes = 0;
5085 return SQLITE_OK;
5086 }
drh036dbec2014-03-11 23:40:44 +00005087 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00005088 *pRes = -1;
5089 return SQLITE_OK;
5090 }
5091 }
5092
dan1fed5da2014-02-25 21:01:25 +00005093 if( pIdxKey ){
5094 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005095 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005096 assert( pIdxKey->default_rc==1
5097 || pIdxKey->default_rc==0
5098 || pIdxKey->default_rc==-1
5099 );
drh13a747e2014-03-03 21:46:55 +00005100 }else{
drhb6e8fd12014-03-06 01:56:33 +00005101 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005102 }
5103
drh5e2f8b92001-05-28 00:41:15 +00005104 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005105 if( rc ){
5106 return rc;
5107 }
dana205a482011-08-27 18:48:57 +00005108 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5109 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5110 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005111 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005112 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005113 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005114 return SQLITE_OK;
5115 }
drhc75d8862015-06-27 23:55:20 +00005116 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5117 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005118 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005119 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005120 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005121 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005122 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005123
5124 /* pPage->nCell must be greater than zero. If this is the root-page
5125 ** the cursor would have been INVALID above and this for(;;) loop
5126 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005127 ** would have already detected db corruption. Similarly, pPage must
5128 ** be the right kind (index or table) of b-tree page. Otherwise
5129 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005130 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005131 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005132 lwr = 0;
5133 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005134 assert( biasRight==0 || biasRight==1 );
5135 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005136 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005137 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005138 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005139 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005140 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005141 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005142 while( 0x80 <= *(pCell++) ){
5143 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5144 }
drhd172f862006-01-12 15:01:15 +00005145 }
drha2c20e42008-03-29 16:01:04 +00005146 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005147 if( nCellKey<intKey ){
5148 lwr = idx+1;
5149 if( lwr>upr ){ c = -1; break; }
5150 }else if( nCellKey>intKey ){
5151 upr = idx-1;
5152 if( lwr>upr ){ c = +1; break; }
5153 }else{
5154 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005155 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005156 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005157 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005158 if( !pPage->leaf ){
5159 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005160 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005161 }else{
5162 *pRes = 0;
5163 rc = SQLITE_OK;
5164 goto moveto_finish;
5165 }
drhd793f442013-11-25 14:10:15 +00005166 }
drhebf10b12013-11-25 17:38:26 +00005167 assert( lwr+upr>=0 );
5168 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005169 }
5170 }else{
5171 for(;;){
drhc6827502015-05-28 15:14:32 +00005172 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005173 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005174
drhb2eced52010-08-12 02:41:12 +00005175 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005176 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005177 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005178 ** varint. This information is used to attempt to avoid parsing
5179 ** the entire cell by checking for the cases where the record is
5180 ** stored entirely within the b-tree page by inspecting the first
5181 ** 2 bytes of the cell.
5182 */
drhec3e6b12013-11-25 02:38:55 +00005183 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005184 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005185 /* This branch runs if the record-size field of the cell is a
5186 ** single byte varint and the record fits entirely on the main
5187 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005188 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005189 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005190 }else if( !(pCell[1] & 0x80)
5191 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5192 ){
5193 /* The record-size field is a 2 byte varint and the record
5194 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005195 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005196 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005197 }else{
danielk197711c327a2009-05-04 19:01:26 +00005198 /* The record flows over onto one or more overflow pages. In
5199 ** this case the whole cell needs to be parsed, a buffer allocated
5200 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005201 ** buffer before VdbeRecordCompare() can be called.
5202 **
5203 ** If the record is corrupt, the xRecordCompare routine may read
5204 ** up to two varints past the end of the buffer. An extra 18
5205 ** bytes of padding is allocated at the end of the buffer in
5206 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005207 void *pCellKey;
5208 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005209 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005210 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005211 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5212 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5213 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5214 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005215 if( nCell<2 ){
5216 rc = SQLITE_CORRUPT_BKPT;
5217 goto moveto_finish;
5218 }
5219 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005220 if( pCellKey==0 ){
5221 rc = SQLITE_NOMEM;
5222 goto moveto_finish;
5223 }
drhd793f442013-11-25 14:10:15 +00005224 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005225 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005226 if( rc ){
5227 sqlite3_free(pCellKey);
5228 goto moveto_finish;
5229 }
drh75179de2014-09-16 14:37:35 +00005230 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005231 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005232 }
dan38fdead2014-04-01 10:19:02 +00005233 assert(
5234 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005235 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005236 );
drhbb933ef2013-11-25 15:01:38 +00005237 if( c<0 ){
5238 lwr = idx+1;
5239 }else if( c>0 ){
5240 upr = idx-1;
5241 }else{
5242 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005243 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005244 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005245 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005246 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005247 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005248 }
drhebf10b12013-11-25 17:38:26 +00005249 if( lwr>upr ) break;
5250 assert( lwr+upr>=0 );
5251 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005252 }
drh72f82862001-05-24 21:06:34 +00005253 }
drhb07028f2011-10-14 21:49:18 +00005254 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005255 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005256 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005257 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005258 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005259 *pRes = c;
5260 rc = SQLITE_OK;
5261 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005262 }
5263moveto_next_layer:
5264 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005265 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005266 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005267 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005268 }
drhf49661a2008-12-10 16:45:50 +00005269 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005270 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005271 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005272 }
drh1e968a02008-03-25 00:22:21 +00005273moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005274 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005275 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005276 return rc;
5277}
5278
drhd677b3d2007-08-20 22:48:41 +00005279
drh72f82862001-05-24 21:06:34 +00005280/*
drhc39e0002004-05-07 23:50:57 +00005281** Return TRUE if the cursor is not pointing at an entry of the table.
5282**
5283** TRUE will be returned after a call to sqlite3BtreeNext() moves
5284** past the last entry in the table or sqlite3BtreePrev() moves past
5285** the first entry. TRUE is also returned if the table is empty.
5286*/
5287int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005288 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5289 ** have been deleted? This API will need to change to return an error code
5290 ** as well as the boolean result value.
5291 */
5292 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005293}
5294
5295/*
drhbd03cae2001-06-02 02:40:57 +00005296** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005297** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005298** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005299** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005300**
drhee6438d2014-09-01 13:29:32 +00005301** The main entry point is sqlite3BtreeNext(). That routine is optimized
5302** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5303** to the next cell on the current page. The (slower) btreeNext() helper
5304** routine is called when it is necessary to move to a different page or
5305** to restore the cursor.
5306**
drhe39a7322014-02-03 14:04:11 +00005307** The calling function will set *pRes to 0 or 1. The initial *pRes value
5308** will be 1 if the cursor being stepped corresponds to an SQL index and
5309** if this routine could have been skipped if that SQL index had been
5310** a unique index. Otherwise the caller will have set *pRes to zero.
5311** Zero is the common case. The btree implementation is free to use the
5312** initial *pRes value as a hint to improve performance, but the current
5313** SQLite btree implementation does not. (Note that the comdb2 btree
5314** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005315*/
drhee6438d2014-09-01 13:29:32 +00005316static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005317 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005318 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005319 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005320
dan7a2347e2016-01-07 16:43:54 +00005321 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005322 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005323 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005324 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005325 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005326 rc = restoreCursorPosition(pCur);
5327 if( rc!=SQLITE_OK ){
5328 return rc;
5329 }
5330 if( CURSOR_INVALID==pCur->eState ){
5331 *pRes = 1;
5332 return SQLITE_OK;
5333 }
drh9b47ee32013-08-20 03:13:51 +00005334 if( pCur->skipNext ){
5335 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5336 pCur->eState = CURSOR_VALID;
5337 if( pCur->skipNext>0 ){
5338 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005339 return SQLITE_OK;
5340 }
drhf66f26a2013-08-19 20:04:10 +00005341 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005342 }
danielk1977da184232006-01-05 11:34:32 +00005343 }
danielk1977da184232006-01-05 11:34:32 +00005344
danielk197771d5d2c2008-09-29 11:49:47 +00005345 pPage = pCur->apPage[pCur->iPage];
5346 idx = ++pCur->aiIdx[pCur->iPage];
5347 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005348
5349 /* If the database file is corrupt, it is possible for the value of idx
5350 ** to be invalid here. This can only occur if a second cursor modifies
5351 ** the page while cursor pCur is holding a reference to it. Which can
5352 ** only happen if the database is corrupt in such a way as to link the
5353 ** page into more than one b-tree structure. */
5354 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005355
danielk197771d5d2c2008-09-29 11:49:47 +00005356 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005357 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005358 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005359 if( rc ) return rc;
5360 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005361 }
drh5e2f8b92001-05-28 00:41:15 +00005362 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005363 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005364 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005365 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005366 return SQLITE_OK;
5367 }
danielk197730548662009-07-09 05:07:37 +00005368 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005369 pPage = pCur->apPage[pCur->iPage];
5370 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005371 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005372 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005373 }else{
drhee6438d2014-09-01 13:29:32 +00005374 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005375 }
drh8178a752003-01-05 21:41:40 +00005376 }
drh3aac2dd2004-04-26 14:10:20 +00005377 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005378 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005379 }else{
5380 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005381 }
drh72f82862001-05-24 21:06:34 +00005382}
drhee6438d2014-09-01 13:29:32 +00005383int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5384 MemPage *pPage;
dan7a2347e2016-01-07 16:43:54 +00005385 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005386 assert( pRes!=0 );
5387 assert( *pRes==0 || *pRes==1 );
5388 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5389 pCur->info.nSize = 0;
5390 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5391 *pRes = 0;
5392 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5393 pPage = pCur->apPage[pCur->iPage];
5394 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5395 pCur->aiIdx[pCur->iPage]--;
5396 return btreeNext(pCur, pRes);
5397 }
5398 if( pPage->leaf ){
5399 return SQLITE_OK;
5400 }else{
5401 return moveToLeftmost(pCur);
5402 }
5403}
drh72f82862001-05-24 21:06:34 +00005404
drh3b7511c2001-05-26 13:15:44 +00005405/*
drh2dcc9aa2002-12-04 13:40:25 +00005406** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005407** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005408** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005409** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005410**
drhee6438d2014-09-01 13:29:32 +00005411** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5412** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005413** to the previous cell on the current page. The (slower) btreePrevious()
5414** helper routine is called when it is necessary to move to a different page
5415** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005416**
drhe39a7322014-02-03 14:04:11 +00005417** The calling function will set *pRes to 0 or 1. The initial *pRes value
5418** will be 1 if the cursor being stepped corresponds to an SQL index and
5419** if this routine could have been skipped if that SQL index had been
5420** a unique index. Otherwise the caller will have set *pRes to zero.
5421** Zero is the common case. The btree implementation is free to use the
5422** initial *pRes value as a hint to improve performance, but the current
5423** SQLite btree implementation does not. (Note that the comdb2 btree
5424** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005425*/
drhee6438d2014-09-01 13:29:32 +00005426static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005427 int rc;
drh8178a752003-01-05 21:41:40 +00005428 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005429
dan7a2347e2016-01-07 16:43:54 +00005430 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005431 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005432 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005433 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005434 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5435 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005436 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005437 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005438 if( rc!=SQLITE_OK ){
5439 return rc;
drhf66f26a2013-08-19 20:04:10 +00005440 }
5441 if( CURSOR_INVALID==pCur->eState ){
5442 *pRes = 1;
5443 return SQLITE_OK;
5444 }
drh9b47ee32013-08-20 03:13:51 +00005445 if( pCur->skipNext ){
5446 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5447 pCur->eState = CURSOR_VALID;
5448 if( pCur->skipNext<0 ){
5449 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005450 return SQLITE_OK;
5451 }
drhf66f26a2013-08-19 20:04:10 +00005452 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005453 }
danielk1977da184232006-01-05 11:34:32 +00005454 }
danielk1977da184232006-01-05 11:34:32 +00005455
danielk197771d5d2c2008-09-29 11:49:47 +00005456 pPage = pCur->apPage[pCur->iPage];
5457 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005458 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005459 int idx = pCur->aiIdx[pCur->iPage];
5460 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005461 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005462 rc = moveToRightmost(pCur);
5463 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005464 while( pCur->aiIdx[pCur->iPage]==0 ){
5465 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005466 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005467 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005468 return SQLITE_OK;
5469 }
danielk197730548662009-07-09 05:07:37 +00005470 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005471 }
drhee6438d2014-09-01 13:29:32 +00005472 assert( pCur->info.nSize==0 );
5473 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005474
5475 pCur->aiIdx[pCur->iPage]--;
5476 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005477 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005478 rc = sqlite3BtreePrevious(pCur, pRes);
5479 }else{
5480 rc = SQLITE_OK;
5481 }
drh2dcc9aa2002-12-04 13:40:25 +00005482 }
drh2dcc9aa2002-12-04 13:40:25 +00005483 return rc;
5484}
drhee6438d2014-09-01 13:29:32 +00005485int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
dan7a2347e2016-01-07 16:43:54 +00005486 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005487 assert( pRes!=0 );
5488 assert( *pRes==0 || *pRes==1 );
5489 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5490 *pRes = 0;
5491 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5492 pCur->info.nSize = 0;
5493 if( pCur->eState!=CURSOR_VALID
5494 || pCur->aiIdx[pCur->iPage]==0
5495 || pCur->apPage[pCur->iPage]->leaf==0
5496 ){
5497 return btreePrevious(pCur, pRes);
5498 }
5499 pCur->aiIdx[pCur->iPage]--;
5500 return SQLITE_OK;
5501}
drh2dcc9aa2002-12-04 13:40:25 +00005502
5503/*
drh3b7511c2001-05-26 13:15:44 +00005504** Allocate a new page from the database file.
5505**
danielk19773b8a05f2007-03-19 17:44:26 +00005506** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005507** has already been called on the new page.) The new page has also
5508** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005509** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005510**
5511** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005512** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005513**
drh82e647d2013-03-02 03:25:55 +00005514** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005515** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005516** attempt to keep related pages close to each other in the database file,
5517** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005518**
drh82e647d2013-03-02 03:25:55 +00005519** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5520** anywhere on the free-list, then it is guaranteed to be returned. If
5521** eMode is BTALLOC_LT then the page returned will be less than or equal
5522** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5523** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005524*/
drh4f0c5872007-03-26 22:05:01 +00005525static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005526 BtShared *pBt, /* The btree */
5527 MemPage **ppPage, /* Store pointer to the allocated page here */
5528 Pgno *pPgno, /* Store the page number here */
5529 Pgno nearby, /* Search for a page near this one */
5530 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005531){
drh3aac2dd2004-04-26 14:10:20 +00005532 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005533 int rc;
drh35cd6432009-06-05 14:17:21 +00005534 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005535 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005536 MemPage *pTrunk = 0;
5537 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005538 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005539
drh1fee73e2007-08-29 04:00:57 +00005540 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005541 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005542 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005543 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005544 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5545 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005546 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005547 testcase( n==mxPage-1 );
5548 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005549 return SQLITE_CORRUPT_BKPT;
5550 }
drh3aac2dd2004-04-26 14:10:20 +00005551 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005552 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005553 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005554 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005555 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005556
drh82e647d2013-03-02 03:25:55 +00005557 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005558 ** shows that the page 'nearby' is somewhere on the free-list, then
5559 ** the entire-list will be searched for that page.
5560 */
5561#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005562 if( eMode==BTALLOC_EXACT ){
5563 if( nearby<=mxPage ){
5564 u8 eType;
5565 assert( nearby>0 );
5566 assert( pBt->autoVacuum );
5567 rc = ptrmapGet(pBt, nearby, &eType, 0);
5568 if( rc ) return rc;
5569 if( eType==PTRMAP_FREEPAGE ){
5570 searchList = 1;
5571 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005572 }
dan51f0b6d2013-02-22 20:16:34 +00005573 }else if( eMode==BTALLOC_LE ){
5574 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005575 }
5576#endif
5577
5578 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5579 ** first free-list trunk page. iPrevTrunk is initially 1.
5580 */
danielk19773b8a05f2007-03-19 17:44:26 +00005581 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005582 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005583 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005584
5585 /* The code within this loop is run only once if the 'searchList' variable
5586 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005587 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5588 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005589 */
5590 do {
5591 pPrevTrunk = pTrunk;
5592 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005593 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5594 ** is the page number of the next freelist trunk page in the list or
5595 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005596 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005597 }else{
drh113762a2014-11-19 16:36:25 +00005598 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5599 ** stores the page number of the first page of the freelist, or zero if
5600 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005601 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005602 }
drhdf35a082009-07-09 02:24:35 +00005603 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005604 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005605 rc = SQLITE_CORRUPT_BKPT;
5606 }else{
drh7e8c6f12015-05-28 03:28:27 +00005607 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005608 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005609 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005610 pTrunk = 0;
5611 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005612 }
drhb07028f2011-10-14 21:49:18 +00005613 assert( pTrunk!=0 );
5614 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005615 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5616 ** is the number of leaf page pointers to follow. */
5617 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005618 if( k==0 && !searchList ){
5619 /* The trunk has no leaves and the list is not being searched.
5620 ** So extract the trunk page itself and use it as the newly
5621 ** allocated page */
5622 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005623 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005624 if( rc ){
5625 goto end_allocate_page;
5626 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005627 *pPgno = iTrunk;
5628 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5629 *ppPage = pTrunk;
5630 pTrunk = 0;
5631 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005632 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005633 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005634 rc = SQLITE_CORRUPT_BKPT;
5635 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005636#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005637 }else if( searchList
5638 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5639 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005640 /* The list is being searched and this trunk page is the page
5641 ** to allocate, regardless of whether it has leaves.
5642 */
dan51f0b6d2013-02-22 20:16:34 +00005643 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005644 *ppPage = pTrunk;
5645 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005646 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005647 if( rc ){
5648 goto end_allocate_page;
5649 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005650 if( k==0 ){
5651 if( !pPrevTrunk ){
5652 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5653 }else{
danf48c3552010-08-23 15:41:24 +00005654 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5655 if( rc!=SQLITE_OK ){
5656 goto end_allocate_page;
5657 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005658 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5659 }
5660 }else{
5661 /* The trunk page is required by the caller but it contains
5662 ** pointers to free-list leaves. The first leaf becomes a trunk
5663 ** page in this case.
5664 */
5665 MemPage *pNewTrunk;
5666 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005667 if( iNewTrunk>mxPage ){
5668 rc = SQLITE_CORRUPT_BKPT;
5669 goto end_allocate_page;
5670 }
drhdf35a082009-07-09 02:24:35 +00005671 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005672 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005673 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005674 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005675 }
danielk19773b8a05f2007-03-19 17:44:26 +00005676 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005677 if( rc!=SQLITE_OK ){
5678 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005679 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005680 }
5681 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5682 put4byte(&pNewTrunk->aData[4], k-1);
5683 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005684 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005685 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005686 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005687 put4byte(&pPage1->aData[32], iNewTrunk);
5688 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005689 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005690 if( rc ){
5691 goto end_allocate_page;
5692 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005693 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5694 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005695 }
5696 pTrunk = 0;
5697 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5698#endif
danielk1977e5765212009-06-17 11:13:28 +00005699 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005700 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005701 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005702 Pgno iPage;
5703 unsigned char *aData = pTrunk->aData;
5704 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005705 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005706 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005707 if( eMode==BTALLOC_LE ){
5708 for(i=0; i<k; i++){
5709 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005710 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005711 closest = i;
5712 break;
5713 }
5714 }
5715 }else{
5716 int dist;
5717 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5718 for(i=1; i<k; i++){
5719 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5720 if( d2<dist ){
5721 closest = i;
5722 dist = d2;
5723 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005724 }
5725 }
5726 }else{
5727 closest = 0;
5728 }
5729
5730 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005731 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005732 if( iPage>mxPage ){
5733 rc = SQLITE_CORRUPT_BKPT;
5734 goto end_allocate_page;
5735 }
drhdf35a082009-07-09 02:24:35 +00005736 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005737 if( !searchList
5738 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5739 ){
danielk1977bea2a942009-01-20 17:06:27 +00005740 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005741 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005742 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5743 ": %d more free pages\n",
5744 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005745 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5746 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005747 if( closest<k-1 ){
5748 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5749 }
5750 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005751 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005752 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005753 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005754 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005755 if( rc!=SQLITE_OK ){
5756 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005757 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005758 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005759 }
5760 searchList = 0;
5761 }
drhee696e22004-08-30 16:52:17 +00005762 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005763 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005764 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005765 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005766 }else{
danbc1a3c62013-02-23 16:40:46 +00005767 /* There are no pages on the freelist, so append a new page to the
5768 ** database image.
5769 **
5770 ** Normally, new pages allocated by this block can be requested from the
5771 ** pager layer with the 'no-content' flag set. This prevents the pager
5772 ** from trying to read the pages content from disk. However, if the
5773 ** current transaction has already run one or more incremental-vacuum
5774 ** steps, then the page we are about to allocate may contain content
5775 ** that is required in the event of a rollback. In this case, do
5776 ** not set the no-content flag. This causes the pager to load and journal
5777 ** the current page content before overwriting it.
5778 **
5779 ** Note that the pager will not actually attempt to load or journal
5780 ** content for any page that really does lie past the end of the database
5781 ** file on disk. So the effects of disabling the no-content optimization
5782 ** here are confined to those pages that lie between the end of the
5783 ** database image and the end of the database file.
5784 */
drh3f387402014-09-24 01:23:00 +00005785 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005786
drhdd3cd972010-03-27 17:12:36 +00005787 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5788 if( rc ) return rc;
5789 pBt->nPage++;
5790 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005791
danielk1977afcdd022004-10-31 16:25:42 +00005792#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005793 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005794 /* If *pPgno refers to a pointer-map page, allocate two new pages
5795 ** at the end of the file instead of one. The first allocated page
5796 ** becomes a new pointer-map page, the second is used by the caller.
5797 */
danielk1977ac861692009-03-28 10:54:22 +00005798 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005799 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5800 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005801 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005802 if( rc==SQLITE_OK ){
5803 rc = sqlite3PagerWrite(pPg->pDbPage);
5804 releasePage(pPg);
5805 }
5806 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005807 pBt->nPage++;
5808 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005809 }
5810#endif
drhdd3cd972010-03-27 17:12:36 +00005811 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5812 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005813
danielk1977599fcba2004-11-08 07:13:13 +00005814 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005815 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005816 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005817 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005818 if( rc!=SQLITE_OK ){
5819 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005820 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005821 }
drh3a4c1412004-05-09 20:40:11 +00005822 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005823 }
danielk1977599fcba2004-11-08 07:13:13 +00005824
5825 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005826
5827end_allocate_page:
5828 releasePage(pTrunk);
5829 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005830 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5831 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005832 return rc;
5833}
5834
5835/*
danielk1977bea2a942009-01-20 17:06:27 +00005836** This function is used to add page iPage to the database file free-list.
5837** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005838**
danielk1977bea2a942009-01-20 17:06:27 +00005839** The value passed as the second argument to this function is optional.
5840** If the caller happens to have a pointer to the MemPage object
5841** corresponding to page iPage handy, it may pass it as the second value.
5842** Otherwise, it may pass NULL.
5843**
5844** If a pointer to a MemPage object is passed as the second argument,
5845** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005846*/
danielk1977bea2a942009-01-20 17:06:27 +00005847static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5848 MemPage *pTrunk = 0; /* Free-list trunk page */
5849 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5850 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5851 MemPage *pPage; /* Page being freed. May be NULL. */
5852 int rc; /* Return Code */
5853 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005854
danielk1977bea2a942009-01-20 17:06:27 +00005855 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005856 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005857 assert( !pMemPage || pMemPage->pgno==iPage );
5858
danfb0246b2015-05-26 12:18:17 +00005859 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005860 if( pMemPage ){
5861 pPage = pMemPage;
5862 sqlite3PagerRef(pPage->pDbPage);
5863 }else{
5864 pPage = btreePageLookup(pBt, iPage);
5865 }
drh3aac2dd2004-04-26 14:10:20 +00005866
drha34b6762004-05-07 13:30:42 +00005867 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005868 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005869 if( rc ) goto freepage_out;
5870 nFree = get4byte(&pPage1->aData[36]);
5871 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005872
drhc9166342012-01-05 23:32:06 +00005873 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005874 /* If the secure_delete option is enabled, then
5875 ** always fully overwrite deleted information with zeros.
5876 */
drhb00fc3b2013-08-21 23:42:32 +00005877 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005878 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005879 ){
5880 goto freepage_out;
5881 }
5882 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005883 }
drhfcce93f2006-02-22 03:08:32 +00005884
danielk1977687566d2004-11-02 12:56:41 +00005885 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005886 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005887 */
danielk197785d90ca2008-07-19 14:25:15 +00005888 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005889 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005890 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005891 }
danielk1977687566d2004-11-02 12:56:41 +00005892
danielk1977bea2a942009-01-20 17:06:27 +00005893 /* Now manipulate the actual database free-list structure. There are two
5894 ** possibilities. If the free-list is currently empty, or if the first
5895 ** trunk page in the free-list is full, then this page will become a
5896 ** new free-list trunk page. Otherwise, it will become a leaf of the
5897 ** first trunk page in the current free-list. This block tests if it
5898 ** is possible to add the page as a new free-list leaf.
5899 */
5900 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005901 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005902
5903 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005904 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005905 if( rc!=SQLITE_OK ){
5906 goto freepage_out;
5907 }
5908
5909 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005910 assert( pBt->usableSize>32 );
5911 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005912 rc = SQLITE_CORRUPT_BKPT;
5913 goto freepage_out;
5914 }
drheeb844a2009-08-08 18:01:07 +00005915 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005916 /* In this case there is room on the trunk page to insert the page
5917 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005918 **
5919 ** Note that the trunk page is not really full until it contains
5920 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5921 ** coded. But due to a coding error in versions of SQLite prior to
5922 ** 3.6.0, databases with freelist trunk pages holding more than
5923 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5924 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005925 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005926 ** for now. At some point in the future (once everyone has upgraded
5927 ** to 3.6.0 or later) we should consider fixing the conditional above
5928 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005929 **
5930 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5931 ** avoid using the last six entries in the freelist trunk page array in
5932 ** order that database files created by newer versions of SQLite can be
5933 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005934 */
danielk19773b8a05f2007-03-19 17:44:26 +00005935 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005936 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005937 put4byte(&pTrunk->aData[4], nLeaf+1);
5938 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005939 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005940 sqlite3PagerDontWrite(pPage->pDbPage);
5941 }
danielk1977bea2a942009-01-20 17:06:27 +00005942 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005943 }
drh3a4c1412004-05-09 20:40:11 +00005944 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005945 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005946 }
drh3b7511c2001-05-26 13:15:44 +00005947 }
danielk1977bea2a942009-01-20 17:06:27 +00005948
5949 /* If control flows to this point, then it was not possible to add the
5950 ** the page being freed as a leaf page of the first trunk in the free-list.
5951 ** Possibly because the free-list is empty, or possibly because the
5952 ** first trunk in the free-list is full. Either way, the page being freed
5953 ** will become the new first trunk page in the free-list.
5954 */
drhb00fc3b2013-08-21 23:42:32 +00005955 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005956 goto freepage_out;
5957 }
5958 rc = sqlite3PagerWrite(pPage->pDbPage);
5959 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005960 goto freepage_out;
5961 }
5962 put4byte(pPage->aData, iTrunk);
5963 put4byte(&pPage->aData[4], 0);
5964 put4byte(&pPage1->aData[32], iPage);
5965 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5966
5967freepage_out:
5968 if( pPage ){
5969 pPage->isInit = 0;
5970 }
5971 releasePage(pPage);
5972 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005973 return rc;
5974}
drhc314dc72009-07-21 11:52:34 +00005975static void freePage(MemPage *pPage, int *pRC){
5976 if( (*pRC)==SQLITE_OK ){
5977 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5978 }
danielk1977bea2a942009-01-20 17:06:27 +00005979}
drh3b7511c2001-05-26 13:15:44 +00005980
5981/*
drh9bfdc252014-09-24 02:05:41 +00005982** Free any overflow pages associated with the given Cell. Write the
5983** local Cell size (the number of bytes on the original page, omitting
5984** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005985*/
drh9bfdc252014-09-24 02:05:41 +00005986static int clearCell(
5987 MemPage *pPage, /* The page that contains the Cell */
5988 unsigned char *pCell, /* First byte of the Cell */
5989 u16 *pnSize /* Write the size of the Cell here */
5990){
danielk1977aef0bf62005-12-30 16:28:01 +00005991 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005992 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005993 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005994 int rc;
drh94440812007-03-06 11:42:19 +00005995 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005996 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005997
drh1fee73e2007-08-29 04:00:57 +00005998 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00005999 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00006000 *pnSize = info.nSize;
drh45ac1c72015-12-18 03:59:16 +00006001 if( info.nLocal==info.nPayload ){
drha34b6762004-05-07 13:30:42 +00006002 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006003 }
drh45ac1c72015-12-18 03:59:16 +00006004 if( pCell+info.nSize-1 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00006005 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00006006 }
drh45ac1c72015-12-18 03:59:16 +00006007 ovflPgno = get4byte(pCell + info.nSize - 4);
shane63207ab2009-02-04 01:49:30 +00006008 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006009 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00006010 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006011 assert( nOvfl>0 ||
6012 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
6013 );
drh72365832007-03-06 15:53:44 +00006014 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006015 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006016 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006017 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006018 /* 0 is not a legal page number and page 1 cannot be an
6019 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6020 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006021 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006022 }
danielk1977bea2a942009-01-20 17:06:27 +00006023 if( nOvfl ){
6024 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6025 if( rc ) return rc;
6026 }
dan887d4b22010-02-25 12:09:16 +00006027
shaneh1da207e2010-03-09 14:41:12 +00006028 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006029 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6030 ){
6031 /* There is no reason any cursor should have an outstanding reference
6032 ** to an overflow page belonging to a cell that is being deleted/updated.
6033 ** So if there exists more than one reference to this page, then it
6034 ** must not really be an overflow page and the database must be corrupt.
6035 ** It is helpful to detect this before calling freePage2(), as
6036 ** freePage2() may zero the page contents if secure-delete mode is
6037 ** enabled. If this 'overflow' page happens to be a page that the
6038 ** caller is iterating through or using in some other way, this
6039 ** can be problematic.
6040 */
6041 rc = SQLITE_CORRUPT_BKPT;
6042 }else{
6043 rc = freePage2(pBt, pOvfl, ovflPgno);
6044 }
6045
danielk1977bea2a942009-01-20 17:06:27 +00006046 if( pOvfl ){
6047 sqlite3PagerUnref(pOvfl->pDbPage);
6048 }
drh3b7511c2001-05-26 13:15:44 +00006049 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006050 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006051 }
drh5e2f8b92001-05-28 00:41:15 +00006052 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006053}
6054
6055/*
drh91025292004-05-03 19:49:32 +00006056** Create the byte sequence used to represent a cell on page pPage
6057** and write that byte sequence into pCell[]. Overflow pages are
6058** allocated and filled in as necessary. The calling procedure
6059** is responsible for making sure sufficient space has been allocated
6060** for pCell[].
6061**
6062** Note that pCell does not necessary need to point to the pPage->aData
6063** area. pCell might point to some temporary storage. The cell will
6064** be constructed in this temporary area then copied into pPage->aData
6065** later.
drh3b7511c2001-05-26 13:15:44 +00006066*/
6067static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006068 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006069 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00006070 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00006071 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00006072 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00006073 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006074){
drh3b7511c2001-05-26 13:15:44 +00006075 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006076 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006077 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006078 int spaceLeft;
6079 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006080 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006081 unsigned char *pPrior;
6082 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006083 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006084 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006085 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006086
drh1fee73e2007-08-29 04:00:57 +00006087 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006088
drhc5053fb2008-11-27 02:22:10 +00006089 /* pPage is not necessarily writeable since pCell might be auxiliary
6090 ** buffer space that is separate from the pPage buffer area */
6091 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6092 || sqlite3PagerIswriteable(pPage->pDbPage) );
6093
drh91025292004-05-03 19:49:32 +00006094 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006095 nHeader = pPage->childPtrSize;
6096 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00006097 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00006098 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00006099 }else{
drh6200c882014-09-23 22:36:25 +00006100 assert( nData==0 );
6101 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00006102 }
drh6f11bef2004-05-13 01:12:56 +00006103 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00006104
drh6200c882014-09-23 22:36:25 +00006105 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00006106 if( pPage->intKey ){
6107 pSrc = pData;
6108 nSrc = nData;
drh91025292004-05-03 19:49:32 +00006109 nData = 0;
drhf49661a2008-12-10 16:45:50 +00006110 }else{
drh98ef0f62015-06-30 01:25:52 +00006111 assert( nKey<=0x7fffffff && pKey!=0 );
drh6200c882014-09-23 22:36:25 +00006112 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006113 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00006114 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006115 }
drh6200c882014-09-23 22:36:25 +00006116 if( nPayload<=pPage->maxLocal ){
6117 n = nHeader + nPayload;
6118 testcase( n==3 );
6119 testcase( n==4 );
6120 if( n<4 ) n = 4;
6121 *pnSize = n;
6122 spaceLeft = nPayload;
6123 pPrior = pCell;
6124 }else{
6125 int mn = pPage->minLocal;
6126 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6127 testcase( n==pPage->maxLocal );
6128 testcase( n==pPage->maxLocal+1 );
6129 if( n > pPage->maxLocal ) n = mn;
6130 spaceLeft = n;
6131 *pnSize = n + nHeader + 4;
6132 pPrior = &pCell[nHeader+n];
6133 }
drh3aac2dd2004-04-26 14:10:20 +00006134 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006135
drh6200c882014-09-23 22:36:25 +00006136 /* At this point variables should be set as follows:
6137 **
6138 ** nPayload Total payload size in bytes
6139 ** pPayload Begin writing payload here
6140 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6141 ** that means content must spill into overflow pages.
6142 ** *pnSize Size of the local cell (not counting overflow pages)
6143 ** pPrior Where to write the pgno of the first overflow page
6144 **
6145 ** Use a call to btreeParseCellPtr() to verify that the values above
6146 ** were computed correctly.
6147 */
6148#if SQLITE_DEBUG
6149 {
6150 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006151 pPage->xParseCell(pPage, pCell, &info);
drh6200c882014-09-23 22:36:25 +00006152 assert( nHeader=(int)(info.pPayload - pCell) );
6153 assert( info.nKey==nKey );
6154 assert( *pnSize == info.nSize );
6155 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006156 }
6157#endif
6158
6159 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006160 while( nPayload>0 ){
6161 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006162#ifndef SQLITE_OMIT_AUTOVACUUM
6163 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006164 if( pBt->autoVacuum ){
6165 do{
6166 pgnoOvfl++;
6167 } while(
6168 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6169 );
danielk1977b39f70b2007-05-17 18:28:11 +00006170 }
danielk1977afcdd022004-10-31 16:25:42 +00006171#endif
drhf49661a2008-12-10 16:45:50 +00006172 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006173#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006174 /* If the database supports auto-vacuum, and the second or subsequent
6175 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006176 ** for that page now.
6177 **
6178 ** If this is the first overflow page, then write a partial entry
6179 ** to the pointer-map. If we write nothing to this pointer-map slot,
6180 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006181 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006182 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006183 */
danielk19774ef24492007-05-23 09:52:41 +00006184 if( pBt->autoVacuum && rc==SQLITE_OK ){
6185 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006186 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006187 if( rc ){
6188 releasePage(pOvfl);
6189 }
danielk1977afcdd022004-10-31 16:25:42 +00006190 }
6191#endif
drh3b7511c2001-05-26 13:15:44 +00006192 if( rc ){
drh9b171272004-05-08 02:03:22 +00006193 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006194 return rc;
6195 }
drhc5053fb2008-11-27 02:22:10 +00006196
6197 /* If pToRelease is not zero than pPrior points into the data area
6198 ** of pToRelease. Make sure pToRelease is still writeable. */
6199 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6200
6201 /* If pPrior is part of the data area of pPage, then make sure pPage
6202 ** is still writeable */
6203 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6204 || sqlite3PagerIswriteable(pPage->pDbPage) );
6205
drh3aac2dd2004-04-26 14:10:20 +00006206 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006207 releasePage(pToRelease);
6208 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006209 pPrior = pOvfl->aData;
6210 put4byte(pPrior, 0);
6211 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006212 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006213 }
6214 n = nPayload;
6215 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006216
6217 /* If pToRelease is not zero than pPayload points into the data area
6218 ** of pToRelease. Make sure pToRelease is still writeable. */
6219 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6220
6221 /* If pPayload is part of the data area of pPage, then make sure pPage
6222 ** is still writeable */
6223 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6224 || sqlite3PagerIswriteable(pPage->pDbPage) );
6225
drhb026e052007-05-02 01:34:31 +00006226 if( nSrc>0 ){
6227 if( n>nSrc ) n = nSrc;
6228 assert( pSrc );
6229 memcpy(pPayload, pSrc, n);
6230 }else{
6231 memset(pPayload, 0, n);
6232 }
drh3b7511c2001-05-26 13:15:44 +00006233 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006234 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006235 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006236 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006237 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00006238 if( nSrc==0 ){
6239 nSrc = nData;
6240 pSrc = pData;
6241 }
drhdd793422001-06-28 01:54:48 +00006242 }
drh9b171272004-05-08 02:03:22 +00006243 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006244 return SQLITE_OK;
6245}
6246
drh14acc042001-06-10 19:56:58 +00006247/*
6248** Remove the i-th cell from pPage. This routine effects pPage only.
6249** The cell content is not freed or deallocated. It is assumed that
6250** the cell content has been copied someplace else. This routine just
6251** removes the reference to the cell from pPage.
6252**
6253** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006254*/
drh98add2e2009-07-20 17:11:49 +00006255static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006256 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006257 u8 *data; /* pPage->aData */
6258 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006259 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006260 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006261
drh98add2e2009-07-20 17:11:49 +00006262 if( *pRC ) return;
6263
drh8c42ca92001-06-22 19:15:00 +00006264 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006265 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006266 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006267 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006268 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006269 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006270 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006271 hdr = pPage->hdrOffset;
6272 testcase( pc==get2byte(&data[hdr+5]) );
6273 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006274 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006275 *pRC = SQLITE_CORRUPT_BKPT;
6276 return;
shane0af3f892008-11-12 04:55:34 +00006277 }
shanedcc50b72008-11-13 18:29:50 +00006278 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006279 if( rc ){
6280 *pRC = rc;
6281 return;
shanedcc50b72008-11-13 18:29:50 +00006282 }
drh14acc042001-06-10 19:56:58 +00006283 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006284 if( pPage->nCell==0 ){
6285 memset(&data[hdr+1], 0, 4);
6286 data[hdr+7] = 0;
6287 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6288 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6289 - pPage->childPtrSize - 8;
6290 }else{
6291 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6292 put2byte(&data[hdr+3], pPage->nCell);
6293 pPage->nFree += 2;
6294 }
drh14acc042001-06-10 19:56:58 +00006295}
6296
6297/*
6298** Insert a new cell on pPage at cell index "i". pCell points to the
6299** content of the cell.
6300**
6301** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006302** will not fit, then make a copy of the cell content into pTemp if
6303** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006304** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006305** in pTemp or the original pCell) and also record its index.
6306** Allocating a new entry in pPage->aCell[] implies that
6307** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006308*/
drh98add2e2009-07-20 17:11:49 +00006309static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006310 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006311 int i, /* New cell becomes the i-th cell of the page */
6312 u8 *pCell, /* Content of the new cell */
6313 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006314 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006315 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6316 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006317){
drh383d30f2010-02-26 13:07:37 +00006318 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006319 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006320 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006321 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006322
drh98add2e2009-07-20 17:11:49 +00006323 if( *pRC ) return;
6324
drh43605152004-05-29 21:46:49 +00006325 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006326 assert( MX_CELL(pPage->pBt)<=10921 );
6327 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006328 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6329 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006330 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006331 /* The cell should normally be sized correctly. However, when moving a
6332 ** malformed cell from a leaf page to an interior page, if the cell size
6333 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6334 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6335 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006336 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006337 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006338 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006339 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006340 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006341 }
danielk19774dbaa892009-06-16 16:50:22 +00006342 if( iChild ){
6343 put4byte(pCell, iChild);
6344 }
drh43605152004-05-29 21:46:49 +00006345 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006346 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6347 pPage->apOvfl[j] = pCell;
6348 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006349
6350 /* When multiple overflows occur, they are always sequential and in
6351 ** sorted order. This invariants arise because multiple overflows can
6352 ** only occur when inserting divider cells into the parent page during
6353 ** balancing, and the dividers are adjacent and sorted.
6354 */
6355 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6356 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006357 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006358 int rc = sqlite3PagerWrite(pPage->pDbPage);
6359 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006360 *pRC = rc;
6361 return;
danielk19776e465eb2007-08-21 13:11:00 +00006362 }
6363 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006364 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006365 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006366 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006367 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006368 /* The allocateSpace() routine guarantees the following properties
6369 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006370 assert( idx >= 0 );
6371 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006372 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006373 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006374 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006375 if( iChild ){
6376 put4byte(&data[idx], iChild);
6377 }
drh2c8fb922015-06-25 19:53:48 +00006378 pIns = pPage->aCellIdx + i*2;
6379 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6380 put2byte(pIns, idx);
6381 pPage->nCell++;
6382 /* increment the cell count */
6383 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6384 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006385#ifndef SQLITE_OMIT_AUTOVACUUM
6386 if( pPage->pBt->autoVacuum ){
6387 /* The cell may contain a pointer to an overflow page. If so, write
6388 ** the entry for the overflow page into the pointer map.
6389 */
drh98add2e2009-07-20 17:11:49 +00006390 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006391 }
6392#endif
drh14acc042001-06-10 19:56:58 +00006393 }
6394}
6395
6396/*
drh1ffd2472015-06-23 02:37:30 +00006397** A CellArray object contains a cache of pointers and sizes for a
6398** consecutive sequence of cells that might be held multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006399*/
drh1ffd2472015-06-23 02:37:30 +00006400typedef struct CellArray CellArray;
6401struct CellArray {
6402 int nCell; /* Number of cells in apCell[] */
6403 MemPage *pRef; /* Reference page */
6404 u8 **apCell; /* All cells begin balanced */
6405 u16 *szCell; /* Local size of all cells in apCell[] */
6406};
drhfa1a98a2004-05-14 19:08:17 +00006407
drh1ffd2472015-06-23 02:37:30 +00006408/*
6409** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6410** computed.
6411*/
6412static void populateCellCache(CellArray *p, int idx, int N){
6413 assert( idx>=0 && idx+N<=p->nCell );
6414 while( N>0 ){
6415 assert( p->apCell[idx]!=0 );
6416 if( p->szCell[idx]==0 ){
6417 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6418 }else{
6419 assert( CORRUPT_DB ||
6420 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6421 }
6422 idx++;
6423 N--;
drhfa1a98a2004-05-14 19:08:17 +00006424 }
drh1ffd2472015-06-23 02:37:30 +00006425}
6426
6427/*
6428** Return the size of the Nth element of the cell array
6429*/
6430static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6431 assert( N>=0 && N<p->nCell );
6432 assert( p->szCell[N]==0 );
6433 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6434 return p->szCell[N];
6435}
6436static u16 cachedCellSize(CellArray *p, int N){
6437 assert( N>=0 && N<p->nCell );
6438 if( p->szCell[N] ) return p->szCell[N];
6439 return computeCellSize(p, N);
6440}
6441
6442/*
dan8e9ba0c2014-10-14 17:27:04 +00006443** Array apCell[] contains pointers to nCell b-tree page cells. The
6444** szCell[] array contains the size in bytes of each cell. This function
6445** replaces the current contents of page pPg with the contents of the cell
6446** array.
6447**
6448** Some of the cells in apCell[] may currently be stored in pPg. This
6449** function works around problems caused by this by making a copy of any
6450** such cells before overwriting the page data.
6451**
6452** The MemPage.nFree field is invalidated by this function. It is the
6453** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006454*/
drh658873b2015-06-22 20:02:04 +00006455static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006456 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006457 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006458 u8 **apCell, /* Array of cells */
6459 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006460){
6461 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6462 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6463 const int usableSize = pPg->pBt->usableSize;
6464 u8 * const pEnd = &aData[usableSize];
6465 int i;
6466 u8 *pCellptr = pPg->aCellIdx;
6467 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6468 u8 *pData;
6469
6470 i = get2byte(&aData[hdr+5]);
6471 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006472
dan8e9ba0c2014-10-14 17:27:04 +00006473 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006474 for(i=0; i<nCell; i++){
6475 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006476 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006477 pCell = &pTmp[pCell - aData];
6478 }
6479 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006480 put2byte(pCellptr, (pData - aData));
6481 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006482 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6483 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006484 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006485 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006486 }
6487
dand7b545b2014-10-13 18:03:27 +00006488 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006489 pPg->nCell = nCell;
6490 pPg->nOverflow = 0;
6491
6492 put2byte(&aData[hdr+1], 0);
6493 put2byte(&aData[hdr+3], pPg->nCell);
6494 put2byte(&aData[hdr+5], pData - aData);
6495 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006496 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006497}
6498
dan8e9ba0c2014-10-14 17:27:04 +00006499/*
6500** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6501** contains the size in bytes of each such cell. This function attempts to
6502** add the cells stored in the array to page pPg. If it cannot (because
6503** the page needs to be defragmented before the cells will fit), non-zero
6504** is returned. Otherwise, if the cells are added successfully, zero is
6505** returned.
6506**
6507** Argument pCellptr points to the first entry in the cell-pointer array
6508** (part of page pPg) to populate. After cell apCell[0] is written to the
6509** page body, a 16-bit offset is written to pCellptr. And so on, for each
6510** cell in the array. It is the responsibility of the caller to ensure
6511** that it is safe to overwrite this part of the cell-pointer array.
6512**
6513** When this function is called, *ppData points to the start of the
6514** content area on page pPg. If the size of the content area is extended,
6515** *ppData is updated to point to the new start of the content area
6516** before returning.
6517**
6518** Finally, argument pBegin points to the byte immediately following the
6519** end of the space required by this page for the cell-pointer area (for
6520** all cells - not just those inserted by the current call). If the content
6521** area must be extended to before this point in order to accomodate all
6522** cells in apCell[], then the cells do not fit and non-zero is returned.
6523*/
dand7b545b2014-10-13 18:03:27 +00006524static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006525 MemPage *pPg, /* Page to add cells to */
6526 u8 *pBegin, /* End of cell-pointer array */
6527 u8 **ppData, /* IN/OUT: Page content -area pointer */
6528 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006529 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006530 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006531 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006532){
6533 int i;
6534 u8 *aData = pPg->aData;
6535 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006536 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006537 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006538 for(i=iFirst; i<iEnd; i++){
6539 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006540 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006541 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006542 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
dand7b545b2014-10-13 18:03:27 +00006543 pData -= sz;
6544 if( pData<pBegin ) return 1;
6545 pSlot = pData;
6546 }
drh48310f82015-10-10 16:41:28 +00006547 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6548 ** database. But they might for a corrupt database. Hence use memmove()
6549 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6550 assert( (pSlot+sz)<=pCArray->apCell[i]
6551 || pSlot>=(pCArray->apCell[i]+sz)
6552 || CORRUPT_DB );
6553 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006554 put2byte(pCellptr, (pSlot - aData));
6555 pCellptr += 2;
6556 }
6557 *ppData = pData;
6558 return 0;
6559}
6560
dan8e9ba0c2014-10-14 17:27:04 +00006561/*
6562** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6563** contains the size in bytes of each such cell. This function adds the
6564** space associated with each cell in the array that is currently stored
6565** within the body of pPg to the pPg free-list. The cell-pointers and other
6566** fields of the page are not updated.
6567**
6568** This function returns the total number of cells added to the free-list.
6569*/
dand7b545b2014-10-13 18:03:27 +00006570static int pageFreeArray(
6571 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006572 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006573 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006574 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006575){
6576 u8 * const aData = pPg->aData;
6577 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006578 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006579 int nRet = 0;
6580 int i;
drhf7838932015-06-23 15:36:34 +00006581 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006582 u8 *pFree = 0;
6583 int szFree = 0;
6584
drhf7838932015-06-23 15:36:34 +00006585 for(i=iFirst; i<iEnd; i++){
6586 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006587 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006588 int sz;
6589 /* No need to use cachedCellSize() here. The sizes of all cells that
6590 ** are to be freed have already been computing while deciding which
6591 ** cells need freeing */
6592 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006593 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006594 if( pFree ){
6595 assert( pFree>aData && (pFree - aData)<65536 );
6596 freeSpace(pPg, (u16)(pFree - aData), szFree);
6597 }
dand7b545b2014-10-13 18:03:27 +00006598 pFree = pCell;
6599 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006600 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006601 }else{
6602 pFree = pCell;
6603 szFree += sz;
6604 }
6605 nRet++;
6606 }
6607 }
drhfefa0942014-11-05 21:21:08 +00006608 if( pFree ){
6609 assert( pFree>aData && (pFree - aData)<65536 );
6610 freeSpace(pPg, (u16)(pFree - aData), szFree);
6611 }
dand7b545b2014-10-13 18:03:27 +00006612 return nRet;
6613}
6614
dand7b545b2014-10-13 18:03:27 +00006615/*
drh5ab63772014-11-27 03:46:04 +00006616** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6617** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6618** with apCell[iOld]. After balancing, this page should hold nNew cells
6619** starting at apCell[iNew].
6620**
6621** This routine makes the necessary adjustments to pPg so that it contains
6622** the correct cells after being balanced.
6623**
dand7b545b2014-10-13 18:03:27 +00006624** The pPg->nFree field is invalid when this function returns. It is the
6625** responsibility of the caller to set it correctly.
6626*/
drh658873b2015-06-22 20:02:04 +00006627static int editPage(
dan09c68402014-10-11 20:00:24 +00006628 MemPage *pPg, /* Edit this page */
6629 int iOld, /* Index of first cell currently on page */
6630 int iNew, /* Index of new first cell on page */
6631 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006632 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006633){
dand7b545b2014-10-13 18:03:27 +00006634 u8 * const aData = pPg->aData;
6635 const int hdr = pPg->hdrOffset;
6636 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6637 int nCell = pPg->nCell; /* Cells stored on pPg */
6638 u8 *pData;
6639 u8 *pCellptr;
6640 int i;
6641 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6642 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006643
6644#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006645 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6646 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006647#endif
6648
dand7b545b2014-10-13 18:03:27 +00006649 /* Remove cells from the start and end of the page */
6650 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006651 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006652 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6653 nCell -= nShift;
6654 }
6655 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006656 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006657 }
dan09c68402014-10-11 20:00:24 +00006658
drh5ab63772014-11-27 03:46:04 +00006659 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006660 if( pData<pBegin ) goto editpage_fail;
6661
6662 /* Add cells to the start of the page */
6663 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006664 int nAdd = MIN(nNew,iOld-iNew);
6665 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006666 pCellptr = pPg->aCellIdx;
6667 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6668 if( pageInsertArray(
6669 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006670 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006671 ) ) goto editpage_fail;
6672 nCell += nAdd;
6673 }
6674
6675 /* Add any overflow cells */
6676 for(i=0; i<pPg->nOverflow; i++){
6677 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6678 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006679 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006680 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6681 nCell++;
6682 if( pageInsertArray(
6683 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006684 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006685 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006686 }
dand7b545b2014-10-13 18:03:27 +00006687 }
dan09c68402014-10-11 20:00:24 +00006688
dand7b545b2014-10-13 18:03:27 +00006689 /* Append cells to the end of the page */
6690 pCellptr = &pPg->aCellIdx[nCell*2];
6691 if( pageInsertArray(
6692 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006693 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006694 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006695
dand7b545b2014-10-13 18:03:27 +00006696 pPg->nCell = nNew;
6697 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006698
dand7b545b2014-10-13 18:03:27 +00006699 put2byte(&aData[hdr+3], pPg->nCell);
6700 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006701
6702#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006703 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006704 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006705 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
dand7b545b2014-10-13 18:03:27 +00006706 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6707 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006708 }
drh1ffd2472015-06-23 02:37:30 +00006709 assert( 0==memcmp(pCell, &aData[iOff],
6710 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006711 }
dan09c68402014-10-11 20:00:24 +00006712#endif
6713
drh658873b2015-06-22 20:02:04 +00006714 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006715 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006716 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006717 populateCellCache(pCArray, iNew, nNew);
6718 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006719}
6720
drh14acc042001-06-10 19:56:58 +00006721/*
drhc3b70572003-01-04 19:44:07 +00006722** The following parameters determine how many adjacent pages get involved
6723** in a balancing operation. NN is the number of neighbors on either side
6724** of the page that participate in the balancing operation. NB is the
6725** total number of pages that participate, including the target page and
6726** NN neighbors on either side.
6727**
6728** The minimum value of NN is 1 (of course). Increasing NN above 1
6729** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6730** in exchange for a larger degradation in INSERT and UPDATE performance.
6731** The value of NN appears to give the best results overall.
6732*/
6733#define NN 1 /* Number of neighbors on either side of pPage */
6734#define NB (NN*2+1) /* Total pages involved in the balance */
6735
danielk1977ac245ec2005-01-14 13:50:11 +00006736
drh615ae552005-01-16 23:21:00 +00006737#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006738/*
6739** This version of balance() handles the common special case where
6740** a new entry is being inserted on the extreme right-end of the
6741** tree, in other words, when the new entry will become the largest
6742** entry in the tree.
6743**
drhc314dc72009-07-21 11:52:34 +00006744** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006745** a new page to the right-hand side and put the one new entry in
6746** that page. This leaves the right side of the tree somewhat
6747** unbalanced. But odds are that we will be inserting new entries
6748** at the end soon afterwards so the nearly empty page will quickly
6749** fill up. On average.
6750**
6751** pPage is the leaf page which is the right-most page in the tree.
6752** pParent is its parent. pPage must have a single overflow entry
6753** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006754**
6755** The pSpace buffer is used to store a temporary copy of the divider
6756** cell that will be inserted into pParent. Such a cell consists of a 4
6757** byte page number followed by a variable length integer. In other
6758** words, at most 13 bytes. Hence the pSpace buffer must be at
6759** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006760*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006761static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6762 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006763 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006764 int rc; /* Return Code */
6765 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006766
drh1fee73e2007-08-29 04:00:57 +00006767 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006768 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006769 assert( pPage->nOverflow==1 );
6770
drh5d433ce2010-08-14 16:02:52 +00006771 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006772 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006773
danielk1977a50d9aa2009-06-08 14:49:45 +00006774 /* Allocate a new page. This page will become the right-sibling of
6775 ** pPage. Make the parent page writable, so that the new divider cell
6776 ** may be inserted. If both these operations are successful, proceed.
6777 */
drh4f0c5872007-03-26 22:05:01 +00006778 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006779
danielk1977eaa06f62008-09-18 17:34:44 +00006780 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006781
6782 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006783 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006784 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006785 u8 *pStop;
6786
drhc5053fb2008-11-27 02:22:10 +00006787 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006788 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6789 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006790 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006791 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006792 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006793
6794 /* If this is an auto-vacuum database, update the pointer map
6795 ** with entries for the new page, and any pointer from the
6796 ** cell on the page to an overflow page. If either of these
6797 ** operations fails, the return code is set, but the contents
6798 ** of the parent page are still manipulated by thh code below.
6799 ** That is Ok, at this point the parent page is guaranteed to
6800 ** be marked as dirty. Returning an error code will cause a
6801 ** rollback, undoing any changes made to the parent page.
6802 */
6803 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006804 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6805 if( szCell>pNew->minLocal ){
6806 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006807 }
6808 }
danielk1977eaa06f62008-09-18 17:34:44 +00006809
danielk19776f235cc2009-06-04 14:46:08 +00006810 /* Create a divider cell to insert into pParent. The divider cell
6811 ** consists of a 4-byte page number (the page number of pPage) and
6812 ** a variable length key value (which must be the same value as the
6813 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006814 **
danielk19776f235cc2009-06-04 14:46:08 +00006815 ** To find the largest key value on pPage, first find the right-most
6816 ** cell on pPage. The first two fields of this cell are the
6817 ** record-length (a variable length integer at most 32-bits in size)
6818 ** and the key value (a variable length integer, may have any value).
6819 ** The first of the while(...) loops below skips over the record-length
6820 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006821 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006822 */
danielk1977eaa06f62008-09-18 17:34:44 +00006823 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006824 pStop = &pCell[9];
6825 while( (*(pCell++)&0x80) && pCell<pStop );
6826 pStop = &pCell[9];
6827 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6828
danielk19774dbaa892009-06-16 16:50:22 +00006829 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006830 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6831 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006832
6833 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006834 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6835
danielk1977e08a3c42008-09-18 18:17:03 +00006836 /* Release the reference to the new page. */
6837 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006838 }
6839
danielk1977eaa06f62008-09-18 17:34:44 +00006840 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006841}
drh615ae552005-01-16 23:21:00 +00006842#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006843
danielk19774dbaa892009-06-16 16:50:22 +00006844#if 0
drhc3b70572003-01-04 19:44:07 +00006845/*
danielk19774dbaa892009-06-16 16:50:22 +00006846** This function does not contribute anything to the operation of SQLite.
6847** it is sometimes activated temporarily while debugging code responsible
6848** for setting pointer-map entries.
6849*/
6850static int ptrmapCheckPages(MemPage **apPage, int nPage){
6851 int i, j;
6852 for(i=0; i<nPage; i++){
6853 Pgno n;
6854 u8 e;
6855 MemPage *pPage = apPage[i];
6856 BtShared *pBt = pPage->pBt;
6857 assert( pPage->isInit );
6858
6859 for(j=0; j<pPage->nCell; j++){
6860 CellInfo info;
6861 u8 *z;
6862
6863 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006864 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00006865 if( info.nLocal<info.nPayload ){
6866 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00006867 ptrmapGet(pBt, ovfl, &e, &n);
6868 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6869 }
6870 if( !pPage->leaf ){
6871 Pgno child = get4byte(z);
6872 ptrmapGet(pBt, child, &e, &n);
6873 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6874 }
6875 }
6876 if( !pPage->leaf ){
6877 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6878 ptrmapGet(pBt, child, &e, &n);
6879 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6880 }
6881 }
6882 return 1;
6883}
6884#endif
6885
danielk1977cd581a72009-06-23 15:43:39 +00006886/*
6887** This function is used to copy the contents of the b-tree node stored
6888** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6889** the pointer-map entries for each child page are updated so that the
6890** parent page stored in the pointer map is page pTo. If pFrom contained
6891** any cells with overflow page pointers, then the corresponding pointer
6892** map entries are also updated so that the parent page is page pTo.
6893**
6894** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006895** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006896**
danielk197730548662009-07-09 05:07:37 +00006897** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006898**
6899** The performance of this function is not critical. It is only used by
6900** the balance_shallower() and balance_deeper() procedures, neither of
6901** which are called often under normal circumstances.
6902*/
drhc314dc72009-07-21 11:52:34 +00006903static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6904 if( (*pRC)==SQLITE_OK ){
6905 BtShared * const pBt = pFrom->pBt;
6906 u8 * const aFrom = pFrom->aData;
6907 u8 * const aTo = pTo->aData;
6908 int const iFromHdr = pFrom->hdrOffset;
6909 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006910 int rc;
drhc314dc72009-07-21 11:52:34 +00006911 int iData;
6912
6913
6914 assert( pFrom->isInit );
6915 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006916 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006917
6918 /* Copy the b-tree node content from page pFrom to page pTo. */
6919 iData = get2byte(&aFrom[iFromHdr+5]);
6920 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6921 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6922
6923 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006924 ** match the new data. The initialization of pTo can actually fail under
6925 ** fairly obscure circumstances, even though it is a copy of initialized
6926 ** page pFrom.
6927 */
drhc314dc72009-07-21 11:52:34 +00006928 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006929 rc = btreeInitPage(pTo);
6930 if( rc!=SQLITE_OK ){
6931 *pRC = rc;
6932 return;
6933 }
drhc314dc72009-07-21 11:52:34 +00006934
6935 /* If this is an auto-vacuum database, update the pointer-map entries
6936 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6937 */
6938 if( ISAUTOVACUUM ){
6939 *pRC = setChildPtrmaps(pTo);
6940 }
danielk1977cd581a72009-06-23 15:43:39 +00006941 }
danielk1977cd581a72009-06-23 15:43:39 +00006942}
6943
6944/*
danielk19774dbaa892009-06-16 16:50:22 +00006945** This routine redistributes cells on the iParentIdx'th child of pParent
6946** (hereafter "the page") and up to 2 siblings so that all pages have about the
6947** same amount of free space. Usually a single sibling on either side of the
6948** page are used in the balancing, though both siblings might come from one
6949** side if the page is the first or last child of its parent. If the page
6950** has fewer than 2 siblings (something which can only happen if the page
6951** is a root page or a child of a root page) then all available siblings
6952** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006953**
danielk19774dbaa892009-06-16 16:50:22 +00006954** The number of siblings of the page might be increased or decreased by
6955** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006956**
danielk19774dbaa892009-06-16 16:50:22 +00006957** Note that when this routine is called, some of the cells on the page
6958** might not actually be stored in MemPage.aData[]. This can happen
6959** if the page is overfull. This routine ensures that all cells allocated
6960** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006961**
danielk19774dbaa892009-06-16 16:50:22 +00006962** In the course of balancing the page and its siblings, cells may be
6963** inserted into or removed from the parent page (pParent). Doing so
6964** may cause the parent page to become overfull or underfull. If this
6965** happens, it is the responsibility of the caller to invoke the correct
6966** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006967**
drh5e00f6c2001-09-13 13:46:56 +00006968** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006969** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006970** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006971**
6972** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006973** buffer big enough to hold one page. If while inserting cells into the parent
6974** page (pParent) the parent page becomes overfull, this buffer is
6975** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006976** a maximum of four divider cells into the parent page, and the maximum
6977** size of a cell stored within an internal node is always less than 1/4
6978** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6979** enough for all overflow cells.
6980**
6981** If aOvflSpace is set to a null pointer, this function returns
6982** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006983*/
danielk19774dbaa892009-06-16 16:50:22 +00006984static int balance_nonroot(
6985 MemPage *pParent, /* Parent page of siblings being balanced */
6986 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006987 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006988 int isRoot, /* True if pParent is a root-page */
6989 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006990){
drh16a9b832007-05-05 18:39:25 +00006991 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006992 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006993 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006994 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006995 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006996 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006997 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006998 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006999 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007000 int usableSpace; /* Bytes in pPage beyond the header */
7001 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007002 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007003 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007004 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007005 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007006 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007007 u8 *pRight; /* Location in parent of right-sibling pointer */
7008 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007009 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7010 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007011 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007012 u8 *aSpace1; /* Space for copies of dividers cells */
7013 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007014 u8 abDone[NB+2]; /* True after i'th new page is populated */
7015 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007016 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007017 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007018 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007019
dan33ea4862014-10-09 19:35:37 +00007020 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007021 b.nCell = 0;
7022 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007023 pBt = pParent->pBt;
7024 assert( sqlite3_mutex_held(pBt->mutex) );
7025 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007026
danielk1977e5765212009-06-17 11:13:28 +00007027#if 0
drh43605152004-05-29 21:46:49 +00007028 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007029#endif
drh2e38c322004-09-03 18:38:44 +00007030
danielk19774dbaa892009-06-16 16:50:22 +00007031 /* At this point pParent may have at most one overflow cell. And if
7032 ** this overflow cell is present, it must be the cell with
7033 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007034 ** is called (indirectly) from sqlite3BtreeDelete().
7035 */
danielk19774dbaa892009-06-16 16:50:22 +00007036 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007037 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007038
danielk197711a8a862009-06-17 11:49:52 +00007039 if( !aOvflSpace ){
7040 return SQLITE_NOMEM;
7041 }
7042
danielk1977a50d9aa2009-06-08 14:49:45 +00007043 /* Find the sibling pages to balance. Also locate the cells in pParent
7044 ** that divide the siblings. An attempt is made to find NN siblings on
7045 ** either side of pPage. More siblings are taken from one side, however,
7046 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007047 ** has NB or fewer children then all children of pParent are taken.
7048 **
7049 ** This loop also drops the divider cells from the parent page. This
7050 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007051 ** overflow cells in the parent page, since if any existed they will
7052 ** have already been removed.
7053 */
danielk19774dbaa892009-06-16 16:50:22 +00007054 i = pParent->nOverflow + pParent->nCell;
7055 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007056 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007057 }else{
dan7d6885a2012-08-08 14:04:56 +00007058 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007059 if( iParentIdx==0 ){
7060 nxDiv = 0;
7061 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007062 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007063 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007064 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007065 }
dan7d6885a2012-08-08 14:04:56 +00007066 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007067 }
dan7d6885a2012-08-08 14:04:56 +00007068 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007069 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7070 pRight = &pParent->aData[pParent->hdrOffset+8];
7071 }else{
7072 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7073 }
7074 pgno = get4byte(pRight);
7075 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007076 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007077 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007078 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007079 goto balance_cleanup;
7080 }
danielk1977634f2982005-03-28 08:44:07 +00007081 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007082 if( (i--)==0 ) break;
7083
drh2cbd78b2012-02-02 19:37:18 +00007084 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7085 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007086 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007087 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007088 pParent->nOverflow = 0;
7089 }else{
7090 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7091 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007092 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007093
7094 /* Drop the cell from the parent page. apDiv[i] still points to
7095 ** the cell within the parent, even though it has been dropped.
7096 ** This is safe because dropping a cell only overwrites the first
7097 ** four bytes of it, and this function does not need the first
7098 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007099 ** later on.
7100 **
drh8a575d92011-10-12 17:00:28 +00007101 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007102 ** the dropCell() routine will overwrite the entire cell with zeroes.
7103 ** In this case, temporarily copy the cell into the aOvflSpace[]
7104 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7105 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007106 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007107 int iOff;
7108
7109 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007110 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007111 rc = SQLITE_CORRUPT_BKPT;
7112 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7113 goto balance_cleanup;
7114 }else{
7115 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7116 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7117 }
drh5b47efa2010-02-12 18:18:39 +00007118 }
drh98add2e2009-07-20 17:11:49 +00007119 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007120 }
drh8b2f49b2001-06-08 00:21:52 +00007121 }
7122
drha9121e42008-02-19 14:59:35 +00007123 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007124 ** alignment */
drha9121e42008-02-19 14:59:35 +00007125 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007126
drh8b2f49b2001-06-08 00:21:52 +00007127 /*
danielk1977634f2982005-03-28 08:44:07 +00007128 ** Allocate space for memory structures
7129 */
drhfacf0302008-06-17 15:12:00 +00007130 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007131 nMaxCells*sizeof(u8*) /* b.apCell */
7132 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007133 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007134
drhcbd55b02014-11-04 14:22:27 +00007135 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7136 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007137 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007138 b.apCell = sqlite3ScratchMalloc( szScratch );
7139 if( b.apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00007140 rc = SQLITE_NOMEM;
7141 goto balance_cleanup;
7142 }
drh1ffd2472015-06-23 02:37:30 +00007143 b.szCell = (u16*)&b.apCell[nMaxCells];
7144 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007145 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007146
7147 /*
7148 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007149 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007150 ** into space obtained from aSpace1[]. The divider cells have already
7151 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007152 **
7153 ** If the siblings are on leaf pages, then the child pointers of the
7154 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007155 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007156 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007157 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007158 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007159 **
7160 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7161 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007162 */
drh1ffd2472015-06-23 02:37:30 +00007163 b.pRef = apOld[0];
7164 leafCorrection = b.pRef->leaf*4;
7165 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007166 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007167 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007168 int limit = pOld->nCell;
7169 u8 *aData = pOld->aData;
7170 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007171 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007172 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007173
drh73d340a2015-05-28 11:23:11 +00007174 /* Verify that all sibling pages are of the same "type" (table-leaf,
7175 ** table-interior, index-leaf, or index-interior).
7176 */
7177 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7178 rc = SQLITE_CORRUPT_BKPT;
7179 goto balance_cleanup;
7180 }
7181
drhfe647dc2015-06-23 18:24:25 +00007182 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7183 ** constains overflow cells, include them in the b.apCell[] array
7184 ** in the correct spot.
7185 **
7186 ** Note that when there are multiple overflow cells, it is always the
7187 ** case that they are sequential and adjacent. This invariant arises
7188 ** because multiple overflows can only occurs when inserting divider
7189 ** cells into a parent on a prior balance, and divider cells are always
7190 ** adjacent and are inserted in order. There is an assert() tagged
7191 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7192 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007193 **
7194 ** This must be done in advance. Once the balance starts, the cell
7195 ** offset section of the btree page will be overwritten and we will no
7196 ** long be able to find the cells if a pointer to each cell is not saved
7197 ** first.
7198 */
drh36b78ee2016-01-20 01:32:00 +00007199 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007200 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007201 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007202 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007203 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007204 piCell += 2;
7205 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007206 }
drhfe647dc2015-06-23 18:24:25 +00007207 for(k=0; k<pOld->nOverflow; k++){
7208 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007209 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007210 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007211 }
drh1ffd2472015-06-23 02:37:30 +00007212 }
drhfe647dc2015-06-23 18:24:25 +00007213 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7214 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007215 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007216 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007217 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007218 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007219 }
7220
drh1ffd2472015-06-23 02:37:30 +00007221 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007222 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007223 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007224 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007225 assert( b.nCell<nMaxCells );
7226 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007227 pTemp = &aSpace1[iSpace1];
7228 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007229 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007230 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007231 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007232 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007233 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007234 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007235 if( !pOld->leaf ){
7236 assert( leafCorrection==0 );
7237 assert( pOld->hdrOffset==0 );
7238 /* The right pointer of the child page pOld becomes the left
7239 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007240 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007241 }else{
7242 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007243 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007244 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7245 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007246 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7247 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007248 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007249 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007250 }
7251 }
drh1ffd2472015-06-23 02:37:30 +00007252 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007253 }
drh8b2f49b2001-06-08 00:21:52 +00007254 }
7255
7256 /*
drh1ffd2472015-06-23 02:37:30 +00007257 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007258 ** Store this number in "k". Also compute szNew[] which is the total
7259 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007260 ** in b.apCell[] of the cell that divides page i from page i+1.
7261 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007262 **
drh96f5b762004-05-16 16:24:36 +00007263 ** Values computed by this block:
7264 **
7265 ** k: The total number of sibling pages
7266 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007267 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007268 ** the right of the i-th sibling page.
7269 ** usableSpace: Number of bytes of space available on each sibling.
7270 **
drh8b2f49b2001-06-08 00:21:52 +00007271 */
drh43605152004-05-29 21:46:49 +00007272 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007273 for(i=0; i<nOld; i++){
7274 MemPage *p = apOld[i];
7275 szNew[i] = usableSpace - p->nFree;
7276 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7277 for(j=0; j<p->nOverflow; j++){
7278 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7279 }
7280 cntNew[i] = cntOld[i];
7281 }
7282 k = nOld;
7283 for(i=0; i<k; i++){
7284 int sz;
7285 while( szNew[i]>usableSpace ){
7286 if( i+1>=k ){
7287 k = i+2;
7288 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7289 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007290 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007291 }
drh1ffd2472015-06-23 02:37:30 +00007292 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007293 szNew[i] -= sz;
7294 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007295 if( cntNew[i]<b.nCell ){
7296 sz = 2 + cachedCellSize(&b, cntNew[i]);
7297 }else{
7298 sz = 0;
7299 }
drh658873b2015-06-22 20:02:04 +00007300 }
7301 szNew[i+1] += sz;
7302 cntNew[i]--;
7303 }
drh1ffd2472015-06-23 02:37:30 +00007304 while( cntNew[i]<b.nCell ){
7305 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007306 if( szNew[i]+sz>usableSpace ) break;
7307 szNew[i] += sz;
7308 cntNew[i]++;
7309 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007310 if( cntNew[i]<b.nCell ){
7311 sz = 2 + cachedCellSize(&b, cntNew[i]);
7312 }else{
7313 sz = 0;
7314 }
drh658873b2015-06-22 20:02:04 +00007315 }
7316 szNew[i+1] -= sz;
7317 }
drh1ffd2472015-06-23 02:37:30 +00007318 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007319 k = i+1;
drh672073a2015-06-24 12:07:40 +00007320 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007321 rc = SQLITE_CORRUPT_BKPT;
7322 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007323 }
7324 }
drh96f5b762004-05-16 16:24:36 +00007325
7326 /*
7327 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007328 ** on the left side (siblings with smaller keys). The left siblings are
7329 ** always nearly full, while the right-most sibling might be nearly empty.
7330 ** The next block of code attempts to adjust the packing of siblings to
7331 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007332 **
7333 ** This adjustment is more than an optimization. The packing above might
7334 ** be so out of balance as to be illegal. For example, the right-most
7335 ** sibling might be completely empty. This adjustment is not optional.
7336 */
drh6019e162001-07-02 17:51:45 +00007337 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007338 int szRight = szNew[i]; /* Size of sibling on the right */
7339 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7340 int r; /* Index of right-most cell in left sibling */
7341 int d; /* Index of first cell to the left of right sibling */
7342
7343 r = cntNew[i-1] - 1;
7344 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007345 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007346 do{
drh1ffd2472015-06-23 02:37:30 +00007347 assert( d<nMaxCells );
7348 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007349 (void)cachedCellSize(&b, r);
7350 if( szRight!=0
7351 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7352 break;
7353 }
7354 szRight += b.szCell[d] + 2;
7355 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007356 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007357 r--;
7358 d--;
drh672073a2015-06-24 12:07:40 +00007359 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007360 szNew[i] = szRight;
7361 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007362 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7363 rc = SQLITE_CORRUPT_BKPT;
7364 goto balance_cleanup;
7365 }
drh6019e162001-07-02 17:51:45 +00007366 }
drh09d0deb2005-08-02 17:13:09 +00007367
drh2a0df922014-10-30 23:14:56 +00007368 /* Sanity check: For a non-corrupt database file one of the follwing
7369 ** must be true:
7370 ** (1) We found one or more cells (cntNew[0])>0), or
7371 ** (2) pPage is a virtual root page. A virtual root page is when
7372 ** the real root page is page 1 and we are the only child of
7373 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007374 */
drh2a0df922014-10-30 23:14:56 +00007375 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007376 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7377 apOld[0]->pgno, apOld[0]->nCell,
7378 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7379 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007380 ));
7381
drh8b2f49b2001-06-08 00:21:52 +00007382 /*
drh6b308672002-07-08 02:16:37 +00007383 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007384 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007385 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007386 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007387 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007388 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007389 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007390 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007391 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007392 nNew++;
danielk197728129562005-01-11 10:25:06 +00007393 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007394 }else{
drh7aa8f852006-03-28 00:24:44 +00007395 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007396 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007397 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007398 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007399 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007400 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007401 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007402
7403 /* Set the pointer-map entry for the new sibling page. */
7404 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007405 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007406 if( rc!=SQLITE_OK ){
7407 goto balance_cleanup;
7408 }
7409 }
drh6b308672002-07-08 02:16:37 +00007410 }
drh8b2f49b2001-06-08 00:21:52 +00007411 }
7412
7413 /*
dan33ea4862014-10-09 19:35:37 +00007414 ** Reassign page numbers so that the new pages are in ascending order.
7415 ** This helps to keep entries in the disk file in order so that a scan
7416 ** of the table is closer to a linear scan through the file. That in turn
7417 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007418 **
dan33ea4862014-10-09 19:35:37 +00007419 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7420 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007421 **
dan33ea4862014-10-09 19:35:37 +00007422 ** When NB==3, this one optimization makes the database about 25% faster
7423 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007424 */
dan33ea4862014-10-09 19:35:37 +00007425 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007426 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007427 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007428 for(j=0; j<i; j++){
7429 if( aPgno[j]==aPgno[i] ){
7430 /* This branch is taken if the set of sibling pages somehow contains
7431 ** duplicate entries. This can happen if the database is corrupt.
7432 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007433 ** we do the detection here in order to avoid populating the pager
7434 ** cache with two separate objects associated with the same
7435 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007436 assert( CORRUPT_DB );
7437 rc = SQLITE_CORRUPT_BKPT;
7438 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007439 }
7440 }
dan33ea4862014-10-09 19:35:37 +00007441 }
7442 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007443 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007444 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007445 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007446 }
drh00fe08a2014-10-31 00:05:23 +00007447 pgno = aPgOrder[iBest];
7448 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007449 if( iBest!=i ){
7450 if( iBest>i ){
7451 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7452 }
7453 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7454 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007455 }
7456 }
dan33ea4862014-10-09 19:35:37 +00007457
7458 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7459 "%d(%d nc=%d) %d(%d nc=%d)\n",
7460 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007461 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007462 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007463 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007464 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007465 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007466 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7467 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7468 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7469 ));
danielk19774dbaa892009-06-16 16:50:22 +00007470
7471 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7472 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007473
dan33ea4862014-10-09 19:35:37 +00007474 /* If the sibling pages are not leaves, ensure that the right-child pointer
7475 ** of the right-most new sibling page is set to the value that was
7476 ** originally in the same field of the right-most old sibling page. */
7477 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7478 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7479 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7480 }
danielk1977ac11ee62005-01-15 12:45:51 +00007481
dan33ea4862014-10-09 19:35:37 +00007482 /* Make any required updates to pointer map entries associated with
7483 ** cells stored on sibling pages following the balance operation. Pointer
7484 ** map entries associated with divider cells are set by the insertCell()
7485 ** routine. The associated pointer map entries are:
7486 **
7487 ** a) if the cell contains a reference to an overflow chain, the
7488 ** entry associated with the first page in the overflow chain, and
7489 **
7490 ** b) if the sibling pages are not leaves, the child page associated
7491 ** with the cell.
7492 **
7493 ** If the sibling pages are not leaves, then the pointer map entry
7494 ** associated with the right-child of each sibling may also need to be
7495 ** updated. This happens below, after the sibling pages have been
7496 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007497 */
dan33ea4862014-10-09 19:35:37 +00007498 if( ISAUTOVACUUM ){
7499 MemPage *pNew = apNew[0];
7500 u8 *aOld = pNew->aData;
7501 int cntOldNext = pNew->nCell + pNew->nOverflow;
7502 int usableSize = pBt->usableSize;
7503 int iNew = 0;
7504 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007505
drh1ffd2472015-06-23 02:37:30 +00007506 for(i=0; i<b.nCell; i++){
7507 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007508 if( i==cntOldNext ){
7509 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7510 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7511 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007512 }
dan33ea4862014-10-09 19:35:37 +00007513 if( i==cntNew[iNew] ){
7514 pNew = apNew[++iNew];
7515 if( !leafData ) continue;
7516 }
danielk197785d90ca2008-07-19 14:25:15 +00007517
dan33ea4862014-10-09 19:35:37 +00007518 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007519 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007520 ** or else the divider cell to the left of sibling page iOld. So,
7521 ** if sibling page iOld had the same page number as pNew, and if
7522 ** pCell really was a part of sibling page iOld (not a divider or
7523 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007524 if( iOld>=nNew
7525 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007526 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007527 ){
dan33ea4862014-10-09 19:35:37 +00007528 if( !leafCorrection ){
7529 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7530 }
drh1ffd2472015-06-23 02:37:30 +00007531 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007532 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007533 }
drhea82b372015-06-23 21:35:28 +00007534 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007535 }
drh14acc042001-06-10 19:56:58 +00007536 }
7537 }
dan33ea4862014-10-09 19:35:37 +00007538
7539 /* Insert new divider cells into pParent. */
7540 for(i=0; i<nNew-1; i++){
7541 u8 *pCell;
7542 u8 *pTemp;
7543 int sz;
7544 MemPage *pNew = apNew[i];
7545 j = cntNew[i];
7546
7547 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007548 assert( b.apCell[j]!=0 );
7549 pCell = b.apCell[j];
7550 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007551 pTemp = &aOvflSpace[iOvflSpace];
7552 if( !pNew->leaf ){
7553 memcpy(&pNew->aData[8], pCell, 4);
7554 }else if( leafData ){
7555 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007556 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007557 ** cell consists of the integer key for the right-most cell of
7558 ** the sibling-page assembled above only.
7559 */
7560 CellInfo info;
7561 j--;
drh1ffd2472015-06-23 02:37:30 +00007562 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007563 pCell = pTemp;
7564 sz = 4 + putVarint(&pCell[4], info.nKey);
7565 pTemp = 0;
7566 }else{
7567 pCell -= 4;
7568 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7569 ** previously stored on a leaf node, and its reported size was 4
7570 ** bytes, then it may actually be smaller than this
7571 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7572 ** any cell). But it is important to pass the correct size to
7573 ** insertCell(), so reparse the cell now.
7574 **
7575 ** Note that this can never happen in an SQLite data file, as all
7576 ** cells are at least 4 bytes. It only happens in b-trees used
7577 ** to evaluate "IN (SELECT ...)" and similar clauses.
7578 */
drh1ffd2472015-06-23 02:37:30 +00007579 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007580 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007581 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007582 }
7583 }
7584 iOvflSpace += sz;
7585 assert( sz<=pBt->maxLocal+23 );
7586 assert( iOvflSpace <= (int)pBt->pageSize );
7587 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7588 if( rc!=SQLITE_OK ) goto balance_cleanup;
7589 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7590 }
7591
7592 /* Now update the actual sibling pages. The order in which they are updated
7593 ** is important, as this code needs to avoid disrupting any page from which
7594 ** cells may still to be read. In practice, this means:
7595 **
drhd836d422014-10-31 14:26:36 +00007596 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7597 ** then it is not safe to update page apNew[iPg] until after
7598 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007599 **
drhd836d422014-10-31 14:26:36 +00007600 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7601 ** then it is not safe to update page apNew[iPg] until after
7602 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007603 **
7604 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007605 **
7606 ** The iPg value in the following loop starts at nNew-1 goes down
7607 ** to 0, then back up to nNew-1 again, thus making two passes over
7608 ** the pages. On the initial downward pass, only condition (1) above
7609 ** needs to be tested because (2) will always be true from the previous
7610 ** step. On the upward pass, both conditions are always true, so the
7611 ** upwards pass simply processes pages that were missed on the downward
7612 ** pass.
dan33ea4862014-10-09 19:35:37 +00007613 */
drhbec021b2014-10-31 12:22:00 +00007614 for(i=1-nNew; i<nNew; i++){
7615 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007616 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007617 if( abDone[iPg] ) continue; /* Skip pages already processed */
7618 if( i>=0 /* On the upwards pass, or... */
7619 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007620 ){
dan09c68402014-10-11 20:00:24 +00007621 int iNew;
7622 int iOld;
7623 int nNewCell;
7624
drhd836d422014-10-31 14:26:36 +00007625 /* Verify condition (1): If cells are moving left, update iPg
7626 ** only after iPg-1 has already been updated. */
7627 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7628
7629 /* Verify condition (2): If cells are moving right, update iPg
7630 ** only after iPg+1 has already been updated. */
7631 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7632
dan09c68402014-10-11 20:00:24 +00007633 if( iPg==0 ){
7634 iNew = iOld = 0;
7635 nNewCell = cntNew[0];
7636 }else{
drh1ffd2472015-06-23 02:37:30 +00007637 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007638 iNew = cntNew[iPg-1] + !leafData;
7639 nNewCell = cntNew[iPg] - iNew;
7640 }
7641
drh1ffd2472015-06-23 02:37:30 +00007642 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007643 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007644 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007645 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007646 assert( apNew[iPg]->nOverflow==0 );
7647 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007648 }
7649 }
drhd836d422014-10-31 14:26:36 +00007650
7651 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007652 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7653
drh7aa8f852006-03-28 00:24:44 +00007654 assert( nOld>0 );
7655 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007656
danielk197713bd99f2009-06-24 05:40:34 +00007657 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7658 /* The root page of the b-tree now contains no cells. The only sibling
7659 ** page is the right-child of the parent. Copy the contents of the
7660 ** child page into the parent, decreasing the overall height of the
7661 ** b-tree structure by one. This is described as the "balance-shallower"
7662 ** sub-algorithm in some documentation.
7663 **
7664 ** If this is an auto-vacuum database, the call to copyNodeContent()
7665 ** sets all pointer-map entries corresponding to database image pages
7666 ** for which the pointer is stored within the content being copied.
7667 **
drh768f2902014-10-31 02:51:41 +00007668 ** It is critical that the child page be defragmented before being
7669 ** copied into the parent, because if the parent is page 1 then it will
7670 ** by smaller than the child due to the database header, and so all the
7671 ** free space needs to be up front.
7672 */
drh9b5351d2015-09-30 14:19:08 +00007673 assert( nNew==1 || CORRUPT_DB );
dan89ca0b32014-10-25 20:36:28 +00007674 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007675 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007676 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007677 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7678 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007679 );
drhc314dc72009-07-21 11:52:34 +00007680 copyNodeContent(apNew[0], pParent, &rc);
7681 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007682 }else if( ISAUTOVACUUM && !leafCorrection ){
7683 /* Fix the pointer map entries associated with the right-child of each
7684 ** sibling page. All other pointer map entries have already been taken
7685 ** care of. */
7686 for(i=0; i<nNew; i++){
7687 u32 key = get4byte(&apNew[i]->aData[8]);
7688 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007689 }
dan33ea4862014-10-09 19:35:37 +00007690 }
danielk19774dbaa892009-06-16 16:50:22 +00007691
dan33ea4862014-10-09 19:35:37 +00007692 assert( pParent->isInit );
7693 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007694 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007695
dan33ea4862014-10-09 19:35:37 +00007696 /* Free any old pages that were not reused as new pages.
7697 */
7698 for(i=nNew; i<nOld; i++){
7699 freePage(apOld[i], &rc);
7700 }
danielk19774dbaa892009-06-16 16:50:22 +00007701
7702#if 0
dan33ea4862014-10-09 19:35:37 +00007703 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007704 /* The ptrmapCheckPages() contains assert() statements that verify that
7705 ** all pointer map pages are set correctly. This is helpful while
7706 ** debugging. This is usually disabled because a corrupt database may
7707 ** cause an assert() statement to fail. */
7708 ptrmapCheckPages(apNew, nNew);
7709 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007710 }
dan33ea4862014-10-09 19:35:37 +00007711#endif
danielk1977cd581a72009-06-23 15:43:39 +00007712
drh8b2f49b2001-06-08 00:21:52 +00007713 /*
drh14acc042001-06-10 19:56:58 +00007714 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007715 */
drh14acc042001-06-10 19:56:58 +00007716balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007717 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007718 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007719 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007720 }
drh14acc042001-06-10 19:56:58 +00007721 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007722 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007723 }
danielk1977eaa06f62008-09-18 17:34:44 +00007724
drh8b2f49b2001-06-08 00:21:52 +00007725 return rc;
7726}
7727
drh43605152004-05-29 21:46:49 +00007728
7729/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007730** This function is called when the root page of a b-tree structure is
7731** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007732**
danielk1977a50d9aa2009-06-08 14:49:45 +00007733** A new child page is allocated and the contents of the current root
7734** page, including overflow cells, are copied into the child. The root
7735** page is then overwritten to make it an empty page with the right-child
7736** pointer pointing to the new page.
7737**
7738** Before returning, all pointer-map entries corresponding to pages
7739** that the new child-page now contains pointers to are updated. The
7740** entry corresponding to the new right-child pointer of the root
7741** page is also updated.
7742**
7743** If successful, *ppChild is set to contain a reference to the child
7744** page and SQLITE_OK is returned. In this case the caller is required
7745** to call releasePage() on *ppChild exactly once. If an error occurs,
7746** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007747*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007748static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7749 int rc; /* Return value from subprocedures */
7750 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007751 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007752 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007753
danielk1977a50d9aa2009-06-08 14:49:45 +00007754 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007755 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007756
danielk1977a50d9aa2009-06-08 14:49:45 +00007757 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7758 ** page that will become the new right-child of pPage. Copy the contents
7759 ** of the node stored on pRoot into the new child page.
7760 */
drh98add2e2009-07-20 17:11:49 +00007761 rc = sqlite3PagerWrite(pRoot->pDbPage);
7762 if( rc==SQLITE_OK ){
7763 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007764 copyNodeContent(pRoot, pChild, &rc);
7765 if( ISAUTOVACUUM ){
7766 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007767 }
7768 }
7769 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007770 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007771 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007772 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007773 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007774 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7775 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7776 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007777
danielk1977a50d9aa2009-06-08 14:49:45 +00007778 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7779
7780 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007781 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7782 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7783 memcpy(pChild->apOvfl, pRoot->apOvfl,
7784 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007785 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007786
7787 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7788 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7789 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7790
7791 *ppChild = pChild;
7792 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007793}
7794
7795/*
danielk197771d5d2c2008-09-29 11:49:47 +00007796** The page that pCur currently points to has just been modified in
7797** some way. This function figures out if this modification means the
7798** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007799** routine. Balancing routines are:
7800**
7801** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007802** balance_deeper()
7803** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007804*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007805static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007806 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007807 const int nMin = pCur->pBt->usableSize * 2 / 3;
7808 u8 aBalanceQuickSpace[13];
7809 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007810
shane75ac1de2009-06-09 18:58:52 +00007811 TESTONLY( int balance_quick_called = 0 );
7812 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007813
7814 do {
7815 int iPage = pCur->iPage;
7816 MemPage *pPage = pCur->apPage[iPage];
7817
7818 if( iPage==0 ){
7819 if( pPage->nOverflow ){
7820 /* The root page of the b-tree is overfull. In this case call the
7821 ** balance_deeper() function to create a new child for the root-page
7822 ** and copy the current contents of the root-page to it. The
7823 ** next iteration of the do-loop will balance the child page.
7824 */
7825 assert( (balance_deeper_called++)==0 );
7826 rc = balance_deeper(pPage, &pCur->apPage[1]);
7827 if( rc==SQLITE_OK ){
7828 pCur->iPage = 1;
7829 pCur->aiIdx[0] = 0;
7830 pCur->aiIdx[1] = 0;
7831 assert( pCur->apPage[1]->nOverflow );
7832 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007833 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007834 break;
7835 }
7836 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7837 break;
7838 }else{
7839 MemPage * const pParent = pCur->apPage[iPage-1];
7840 int const iIdx = pCur->aiIdx[iPage-1];
7841
7842 rc = sqlite3PagerWrite(pParent->pDbPage);
7843 if( rc==SQLITE_OK ){
7844#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007845 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007846 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007847 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007848 && pParent->pgno!=1
7849 && pParent->nCell==iIdx
7850 ){
7851 /* Call balance_quick() to create a new sibling of pPage on which
7852 ** to store the overflow cell. balance_quick() inserts a new cell
7853 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007854 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007855 ** use either balance_nonroot() or balance_deeper(). Until this
7856 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7857 ** buffer.
7858 **
7859 ** The purpose of the following assert() is to check that only a
7860 ** single call to balance_quick() is made for each call to this
7861 ** function. If this were not verified, a subtle bug involving reuse
7862 ** of the aBalanceQuickSpace[] might sneak in.
7863 */
7864 assert( (balance_quick_called++)==0 );
7865 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7866 }else
7867#endif
7868 {
7869 /* In this case, call balance_nonroot() to redistribute cells
7870 ** between pPage and up to 2 of its sibling pages. This involves
7871 ** modifying the contents of pParent, which may cause pParent to
7872 ** become overfull or underfull. The next iteration of the do-loop
7873 ** will balance the parent page to correct this.
7874 **
7875 ** If the parent page becomes overfull, the overflow cell or cells
7876 ** are stored in the pSpace buffer allocated immediately below.
7877 ** A subsequent iteration of the do-loop will deal with this by
7878 ** calling balance_nonroot() (balance_deeper() may be called first,
7879 ** but it doesn't deal with overflow cells - just moves them to a
7880 ** different page). Once this subsequent call to balance_nonroot()
7881 ** has completed, it is safe to release the pSpace buffer used by
7882 ** the previous call, as the overflow cell data will have been
7883 ** copied either into the body of a database page or into the new
7884 ** pSpace buffer passed to the latter call to balance_nonroot().
7885 */
7886 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007887 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7888 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007889 if( pFree ){
7890 /* If pFree is not NULL, it points to the pSpace buffer used
7891 ** by a previous call to balance_nonroot(). Its contents are
7892 ** now stored either on real database pages or within the
7893 ** new pSpace buffer, so it may be safely freed here. */
7894 sqlite3PageFree(pFree);
7895 }
7896
danielk19774dbaa892009-06-16 16:50:22 +00007897 /* The pSpace buffer will be freed after the next call to
7898 ** balance_nonroot(), or just before this function returns, whichever
7899 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007900 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007901 }
7902 }
7903
7904 pPage->nOverflow = 0;
7905
7906 /* The next iteration of the do-loop balances the parent page. */
7907 releasePage(pPage);
7908 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007909 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007910 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007911 }while( rc==SQLITE_OK );
7912
7913 if( pFree ){
7914 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007915 }
7916 return rc;
7917}
7918
drhf74b8d92002-09-01 23:20:45 +00007919
7920/*
drh3b7511c2001-05-26 13:15:44 +00007921** Insert a new record into the BTree. The key is given by (pKey,nKey)
7922** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007923** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007924** is left pointing at a random location.
7925**
7926** For an INTKEY table, only the nKey value of the key is used. pKey is
7927** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007928**
7929** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007930** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007931** been performed. seekResult is the search result returned (a negative
7932** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007933** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007934** (pKey, nKey)).
7935**
drh3e9ca092009-09-08 01:14:48 +00007936** If the seekResult parameter is non-zero, then the caller guarantees that
7937** cursor pCur is pointing at the existing copy of a row that is to be
7938** overwritten. If the seekResult parameter is 0, then cursor pCur may
7939** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007940** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007941*/
drh3aac2dd2004-04-26 14:10:20 +00007942int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007943 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007944 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007945 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007946 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007947 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007948 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007949){
drh3b7511c2001-05-26 13:15:44 +00007950 int rc;
drh3e9ca092009-09-08 01:14:48 +00007951 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007952 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007953 int idx;
drh3b7511c2001-05-26 13:15:44 +00007954 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007955 Btree *p = pCur->pBtree;
7956 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007957 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007958 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007959
drh98add2e2009-07-20 17:11:49 +00007960 if( pCur->eState==CURSOR_FAULT ){
7961 assert( pCur->skipNext!=SQLITE_OK );
7962 return pCur->skipNext;
7963 }
7964
dan7a2347e2016-01-07 16:43:54 +00007965 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00007966 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7967 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007968 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007969 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7970
danielk197731d31b82009-07-13 13:18:07 +00007971 /* Assert that the caller has been consistent. If this cursor was opened
7972 ** expecting an index b-tree, then the caller should be inserting blob
7973 ** keys with no associated data. If the cursor was opened expecting an
7974 ** intkey table, the caller should be inserting integer keys with a
7975 ** blob of associated data. */
7976 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7977
danielk19779c3acf32009-05-02 07:36:49 +00007978 /* Save the positions of any other cursors open on this table.
7979 **
danielk19773509a652009-07-06 18:56:13 +00007980 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007981 ** example, when inserting data into a table with auto-generated integer
7982 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7983 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007984 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007985 ** that the cursor is already where it needs to be and returns without
7986 ** doing any work. To avoid thwarting these optimizations, it is important
7987 ** not to clear the cursor here.
7988 */
drh27fb7462015-06-30 02:47:36 +00007989 if( pCur->curFlags & BTCF_Multiple ){
7990 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7991 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007992 }
7993
danielk197771d5d2c2008-09-29 11:49:47 +00007994 if( pCur->pKeyInfo==0 ){
drh207c8172015-06-29 23:01:32 +00007995 assert( pKey==0 );
drhe0670b62014-02-12 21:31:12 +00007996 /* If this is an insert into a table b-tree, invalidate any incrblob
7997 ** cursors open on the row being replaced */
drh4a1c3802004-05-12 15:15:47 +00007998 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007999
8000 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00008001 ** new row onto the end, set the "loc" to avoid an unnecessary
8002 ** btreeMoveto() call */
drh3f387402014-09-24 01:23:00 +00008003 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
8004 && pCur->info.nKey==nKey-1 ){
drh207c8172015-06-29 23:01:32 +00008005 loc = -1;
8006 }else if( loc==0 ){
8007 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc);
8008 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008009 }
drh207c8172015-06-29 23:01:32 +00008010 }else if( loc==0 ){
drh4c301aa2009-07-15 17:25:45 +00008011 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
8012 if( rc ) return rc;
drhf74b8d92002-09-01 23:20:45 +00008013 }
danielk1977b980d2212009-06-22 18:03:51 +00008014 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
drh3aac2dd2004-04-26 14:10:20 +00008015
drh3b7511c2001-05-26 13:15:44 +00008016 pPage = pCur->apPage[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008017 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00008018 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008019
drh3a4c1412004-05-09 20:40:11 +00008020 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8021 pCur->pgnoRoot, nKey, nData, pPage->pgno,
8022 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008023 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008024 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008025 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00008026 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00008027 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008028 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008029 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00008030 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00008031 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00008032 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00008033 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008034 rc = sqlite3PagerWrite(pPage->pDbPage);
8035 if( rc ){
8036 goto end_insert;
8037 }
danielk197771d5d2c2008-09-29 11:49:47 +00008038 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008039 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008040 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008041 }
drh9bfdc252014-09-24 02:05:41 +00008042 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00008043 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00008044 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008045 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008046 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00008047 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008048 }else{
drh4b70f112004-05-02 21:12:19 +00008049 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008050 }
drh98add2e2009-07-20 17:11:49 +00008051 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00008052 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008053
mistachkin48864df2013-03-21 21:20:32 +00008054 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008055 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008056 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008057 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008058 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008059 ** Previous versions of SQLite called moveToRoot() to move the cursor
8060 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008061 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8062 ** set the cursor state to "invalid". This makes common insert operations
8063 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008064 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008065 ** There is a subtle but important optimization here too. When inserting
8066 ** multiple records into an intkey b-tree using a single cursor (as can
8067 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8068 ** is advantageous to leave the cursor pointing to the last entry in
8069 ** the b-tree if possible. If the cursor is left pointing to the last
8070 ** entry in the table, and the next row inserted has an integer key
8071 ** larger than the largest existing key, it is possible to insert the
8072 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008073 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008074 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008075 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00008076 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008077 rc = balance(pCur);
8078
8079 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008080 ** fails. Internal data structure corruption will result otherwise.
8081 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8082 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008083 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008084 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00008085 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008086 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008087
drh2e38c322004-09-03 18:38:44 +00008088end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008089 return rc;
8090}
8091
8092/*
danf0ee1d32015-09-12 19:26:11 +00008093** Delete the entry that the cursor is pointing to.
8094**
drhe807bdb2016-01-21 17:06:33 +00008095** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8096** the cursor is left pointing at an arbitrary location after the delete.
8097** But if that bit is set, then the cursor is left in a state such that
8098** the next call to BtreeNext() or BtreePrev() moves it to the same row
8099** as it would have been on if the call to BtreeDelete() had been omitted.
8100**
drhdef19e32016-01-27 16:26:25 +00008101** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8102** associated with a single table entry and its indexes. Only one of those
8103** deletes is considered the "primary" delete. The primary delete occurs
8104** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8105** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8106** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008107** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008108*/
drhe807bdb2016-01-21 17:06:33 +00008109int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008110 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008111 BtShared *pBt = p->pBt;
8112 int rc; /* Return code */
8113 MemPage *pPage; /* Page to delete cell from */
8114 unsigned char *pCell; /* Pointer to cell to delete */
8115 int iCellIdx; /* Index of cell to delete */
8116 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00008117 u16 szCell; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008118 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008119 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008120
dan7a2347e2016-01-07 16:43:54 +00008121 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008122 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008123 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008124 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008125 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8126 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008127 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8128 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008129 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008130
danielk19774dbaa892009-06-16 16:50:22 +00008131 iCellDepth = pCur->iPage;
8132 iCellIdx = pCur->aiIdx[iCellDepth];
8133 pPage = pCur->apPage[iCellDepth];
8134 pCell = findCell(pPage, iCellIdx);
8135
8136 /* If the page containing the entry to delete is not a leaf page, move
8137 ** the cursor to the largest entry in the tree that is smaller than
8138 ** the entry being deleted. This cell will replace the cell being deleted
8139 ** from the internal node. The 'previous' entry is used for this instead
8140 ** of the 'next' entry, as the previous entry is always a part of the
8141 ** sub-tree headed by the child page of the cell being deleted. This makes
8142 ** balancing the tree following the delete operation easier. */
8143 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008144 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008145 rc = sqlite3BtreePrevious(pCur, &notUsed);
8146 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008147 }
8148
8149 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008150 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008151 if( pCur->curFlags & BTCF_Multiple ){
8152 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8153 if( rc ) return rc;
8154 }
drhd60f4f42012-03-23 14:23:52 +00008155
8156 /* If this is a delete operation to remove a row from a table b-tree,
8157 ** invalidate any incrblob cursors open on the row being deleted. */
8158 if( pCur->pKeyInfo==0 ){
8159 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8160 }
8161
danf0ee1d32015-09-12 19:26:11 +00008162 /* If the bPreserve flag is set to true, then the cursor position must
8163 ** be preserved following this delete operation. If the current delete
8164 ** will cause a b-tree rebalance, then this is done by saving the cursor
8165 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8166 ** returning.
8167 **
8168 ** Or, if the current delete will not cause a rebalance, then the cursor
8169 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8170 ** before or after the deleted entry. In this case set bSkipnext to true. */
8171 if( bPreserve ){
8172 if( !pPage->leaf
drh66336f32015-09-14 14:08:25 +00008173 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
danf0ee1d32015-09-12 19:26:11 +00008174 ){
8175 /* A b-tree rebalance will be required after deleting this entry.
8176 ** Save the cursor key. */
8177 rc = saveCursorKey(pCur);
8178 if( rc ) return rc;
8179 }else{
8180 bSkipnext = 1;
8181 }
8182 }
8183
8184 /* Make the page containing the entry to be deleted writable. Then free any
8185 ** overflow pages associated with the entry and finally remove the cell
8186 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008187 rc = sqlite3PagerWrite(pPage->pDbPage);
8188 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008189 rc = clearCell(pPage, pCell, &szCell);
8190 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008191 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008192
danielk19774dbaa892009-06-16 16:50:22 +00008193 /* If the cell deleted was not located on a leaf page, then the cursor
8194 ** is currently pointing to the largest entry in the sub-tree headed
8195 ** by the child-page of the cell that was just deleted from an internal
8196 ** node. The cell from the leaf node needs to be moved to the internal
8197 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008198 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008199 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8200 int nCell;
8201 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8202 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008203
danielk19774dbaa892009-06-16 16:50:22 +00008204 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008205 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008206 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008207 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008208 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008209 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008210 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00008211 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8212 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008213 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008214 }
danielk19774dbaa892009-06-16 16:50:22 +00008215
8216 /* Balance the tree. If the entry deleted was located on a leaf page,
8217 ** then the cursor still points to that page. In this case the first
8218 ** call to balance() repairs the tree, and the if(...) condition is
8219 ** never true.
8220 **
8221 ** Otherwise, if the entry deleted was on an internal node page, then
8222 ** pCur is pointing to the leaf page from which a cell was removed to
8223 ** replace the cell deleted from the internal node. This is slightly
8224 ** tricky as the leaf node may be underfull, and the internal node may
8225 ** be either under or overfull. In this case run the balancing algorithm
8226 ** on the leaf node first. If the balance proceeds far enough up the
8227 ** tree that we can be sure that any problem in the internal node has
8228 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8229 ** walk the cursor up the tree to the internal node and balance it as
8230 ** well. */
8231 rc = balance(pCur);
8232 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8233 while( pCur->iPage>iCellDepth ){
8234 releasePage(pCur->apPage[pCur->iPage--]);
8235 }
8236 rc = balance(pCur);
8237 }
8238
danielk19776b456a22005-03-21 04:04:02 +00008239 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008240 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008241 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh78ac1092015-09-20 22:57:47 +00008242 assert( pPage==pCur->apPage[pCur->iPage] );
8243 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008244 pCur->eState = CURSOR_SKIPNEXT;
8245 if( iCellIdx>=pPage->nCell ){
8246 pCur->skipNext = -1;
8247 pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8248 }else{
8249 pCur->skipNext = 1;
8250 }
8251 }else{
8252 rc = moveToRoot(pCur);
8253 if( bPreserve ){
8254 pCur->eState = CURSOR_REQUIRESEEK;
8255 }
8256 }
danielk19776b456a22005-03-21 04:04:02 +00008257 }
drh5e2f8b92001-05-28 00:41:15 +00008258 return rc;
drh3b7511c2001-05-26 13:15:44 +00008259}
drh8b2f49b2001-06-08 00:21:52 +00008260
8261/*
drhc6b52df2002-01-04 03:09:29 +00008262** Create a new BTree table. Write into *piTable the page
8263** number for the root page of the new table.
8264**
drhab01f612004-05-22 02:55:23 +00008265** The type of type is determined by the flags parameter. Only the
8266** following values of flags are currently in use. Other values for
8267** flags might not work:
8268**
8269** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8270** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008271*/
drhd4187c72010-08-30 22:15:45 +00008272static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008273 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008274 MemPage *pRoot;
8275 Pgno pgnoRoot;
8276 int rc;
drhd4187c72010-08-30 22:15:45 +00008277 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008278
drh1fee73e2007-08-29 04:00:57 +00008279 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008280 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008281 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008282
danielk1977003ba062004-11-04 02:57:33 +00008283#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008284 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008285 if( rc ){
8286 return rc;
8287 }
danielk1977003ba062004-11-04 02:57:33 +00008288#else
danielk1977687566d2004-11-02 12:56:41 +00008289 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008290 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8291 MemPage *pPageMove; /* The page to move to. */
8292
danielk197720713f32007-05-03 11:43:33 +00008293 /* Creating a new table may probably require moving an existing database
8294 ** to make room for the new tables root page. In case this page turns
8295 ** out to be an overflow page, delete all overflow page-map caches
8296 ** held by open cursors.
8297 */
danielk197792d4d7a2007-05-04 12:05:56 +00008298 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008299
danielk1977003ba062004-11-04 02:57:33 +00008300 /* Read the value of meta[3] from the database to determine where the
8301 ** root page of the new table should go. meta[3] is the largest root-page
8302 ** created so far, so the new root-page is (meta[3]+1).
8303 */
danielk1977602b4662009-07-02 07:47:33 +00008304 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008305 pgnoRoot++;
8306
danielk1977599fcba2004-11-08 07:13:13 +00008307 /* The new root-page may not be allocated on a pointer-map page, or the
8308 ** PENDING_BYTE page.
8309 */
drh72190432008-01-31 14:54:43 +00008310 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008311 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008312 pgnoRoot++;
8313 }
drh499e15b2015-05-22 12:37:37 +00008314 assert( pgnoRoot>=3 || CORRUPT_DB );
8315 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008316
8317 /* Allocate a page. The page that currently resides at pgnoRoot will
8318 ** be moved to the allocated page (unless the allocated page happens
8319 ** to reside at pgnoRoot).
8320 */
dan51f0b6d2013-02-22 20:16:34 +00008321 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008322 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008323 return rc;
8324 }
danielk1977003ba062004-11-04 02:57:33 +00008325
8326 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008327 /* pgnoRoot is the page that will be used for the root-page of
8328 ** the new table (assuming an error did not occur). But we were
8329 ** allocated pgnoMove. If required (i.e. if it was not allocated
8330 ** by extending the file), the current page at position pgnoMove
8331 ** is already journaled.
8332 */
drheeb844a2009-08-08 18:01:07 +00008333 u8 eType = 0;
8334 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008335
danf7679ad2013-04-03 11:38:36 +00008336 /* Save the positions of any open cursors. This is required in
8337 ** case they are holding a reference to an xFetch reference
8338 ** corresponding to page pgnoRoot. */
8339 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008340 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008341 if( rc!=SQLITE_OK ){
8342 return rc;
8343 }
danielk1977f35843b2007-04-07 15:03:17 +00008344
8345 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008346 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008347 if( rc!=SQLITE_OK ){
8348 return rc;
8349 }
8350 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008351 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8352 rc = SQLITE_CORRUPT_BKPT;
8353 }
8354 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008355 releasePage(pRoot);
8356 return rc;
8357 }
drhccae6022005-02-26 17:31:26 +00008358 assert( eType!=PTRMAP_ROOTPAGE );
8359 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008360 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008361 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008362
8363 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008364 if( rc!=SQLITE_OK ){
8365 return rc;
8366 }
drhb00fc3b2013-08-21 23:42:32 +00008367 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008368 if( rc!=SQLITE_OK ){
8369 return rc;
8370 }
danielk19773b8a05f2007-03-19 17:44:26 +00008371 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008372 if( rc!=SQLITE_OK ){
8373 releasePage(pRoot);
8374 return rc;
8375 }
8376 }else{
8377 pRoot = pPageMove;
8378 }
8379
danielk197742741be2005-01-08 12:42:39 +00008380 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008381 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008382 if( rc ){
8383 releasePage(pRoot);
8384 return rc;
8385 }
drhbf592832010-03-30 15:51:12 +00008386
8387 /* When the new root page was allocated, page 1 was made writable in
8388 ** order either to increase the database filesize, or to decrement the
8389 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8390 */
8391 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008392 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008393 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008394 releasePage(pRoot);
8395 return rc;
8396 }
danielk197742741be2005-01-08 12:42:39 +00008397
danielk1977003ba062004-11-04 02:57:33 +00008398 }else{
drh4f0c5872007-03-26 22:05:01 +00008399 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008400 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008401 }
8402#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008403 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008404 if( createTabFlags & BTREE_INTKEY ){
8405 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8406 }else{
8407 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8408 }
8409 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008410 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008411 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008412 *piTable = (int)pgnoRoot;
8413 return SQLITE_OK;
8414}
drhd677b3d2007-08-20 22:48:41 +00008415int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8416 int rc;
8417 sqlite3BtreeEnter(p);
8418 rc = btreeCreateTable(p, piTable, flags);
8419 sqlite3BtreeLeave(p);
8420 return rc;
8421}
drh8b2f49b2001-06-08 00:21:52 +00008422
8423/*
8424** Erase the given database page and all its children. Return
8425** the page to the freelist.
8426*/
drh4b70f112004-05-02 21:12:19 +00008427static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008428 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008429 Pgno pgno, /* Page number to clear */
8430 int freePageFlag, /* Deallocate page if true */
8431 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008432){
danielk1977146ba992009-07-22 14:08:13 +00008433 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008434 int rc;
drh4b70f112004-05-02 21:12:19 +00008435 unsigned char *pCell;
8436 int i;
dan8ce71842014-01-14 20:14:09 +00008437 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008438 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008439
drh1fee73e2007-08-29 04:00:57 +00008440 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008441 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008442 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008443 }
drh28f58dd2015-06-27 19:45:03 +00008444 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008445 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008446 if( pPage->bBusy ){
8447 rc = SQLITE_CORRUPT_BKPT;
8448 goto cleardatabasepage_out;
8449 }
8450 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008451 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008452 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008453 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008454 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008455 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008456 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008457 }
drh9bfdc252014-09-24 02:05:41 +00008458 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008459 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008460 }
drha34b6762004-05-07 13:30:42 +00008461 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008462 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008463 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008464 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008465 assert( pPage->intKey || CORRUPT_DB );
8466 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008467 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008468 }
8469 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008470 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008471 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008472 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008473 }
danielk19776b456a22005-03-21 04:04:02 +00008474
8475cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008476 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008477 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008478 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008479}
8480
8481/*
drhab01f612004-05-22 02:55:23 +00008482** Delete all information from a single table in the database. iTable is
8483** the page number of the root of the table. After this routine returns,
8484** the root page is empty, but still exists.
8485**
8486** This routine will fail with SQLITE_LOCKED if there are any open
8487** read cursors on the table. Open write cursors are moved to the
8488** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008489**
8490** If pnChange is not NULL, then table iTable must be an intkey table. The
8491** integer value pointed to by pnChange is incremented by the number of
8492** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008493*/
danielk1977c7af4842008-10-27 13:59:33 +00008494int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008495 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008496 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008497 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008498 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008499
drhc046e3e2009-07-15 11:26:44 +00008500 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008501
drhc046e3e2009-07-15 11:26:44 +00008502 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008503 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8504 ** is the root of a table b-tree - if it is not, the following call is
8505 ** a no-op). */
8506 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008507 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008508 }
drhd677b3d2007-08-20 22:48:41 +00008509 sqlite3BtreeLeave(p);
8510 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008511}
8512
8513/*
drh079a3072014-03-19 14:10:55 +00008514** Delete all information from the single table that pCur is open on.
8515**
8516** This routine only work for pCur on an ephemeral table.
8517*/
8518int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8519 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8520}
8521
8522/*
drh8b2f49b2001-06-08 00:21:52 +00008523** Erase all information in a table and add the root of the table to
8524** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008525** page 1) is never added to the freelist.
8526**
8527** This routine will fail with SQLITE_LOCKED if there are any open
8528** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008529**
8530** If AUTOVACUUM is enabled and the page at iTable is not the last
8531** root page in the database file, then the last root page
8532** in the database file is moved into the slot formerly occupied by
8533** iTable and that last slot formerly occupied by the last root page
8534** is added to the freelist instead of iTable. In this say, all
8535** root pages are kept at the beginning of the database file, which
8536** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8537** page number that used to be the last root page in the file before
8538** the move. If no page gets moved, *piMoved is set to 0.
8539** The last root page is recorded in meta[3] and the value of
8540** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008541*/
danielk197789d40042008-11-17 14:20:56 +00008542static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008543 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008544 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008545 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008546
drh1fee73e2007-08-29 04:00:57 +00008547 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008548 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008549
danielk1977e6efa742004-11-10 11:55:10 +00008550 /* It is illegal to drop a table if any cursors are open on the
8551 ** database. This is because in auto-vacuum mode the backend may
8552 ** need to move another root-page to fill a gap left by the deleted
8553 ** root page. If an open cursor was using this page a problem would
8554 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008555 **
8556 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008557 */
drhc046e3e2009-07-15 11:26:44 +00008558 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008559 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8560 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008561 }
danielk1977a0bf2652004-11-04 14:30:04 +00008562
drh055f2982016-01-15 15:06:41 +00008563 /*
8564 ** It is illegal to drop the sqlite_master table on page 1. But again,
8565 ** this error is caught long before reaching this point.
8566 */
8567 if( NEVER(iTable<2) ){
8568 return SQLITE_CORRUPT_BKPT;
8569 }
8570
drhb00fc3b2013-08-21 23:42:32 +00008571 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008572 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008573 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008574 if( rc ){
8575 releasePage(pPage);
8576 return rc;
8577 }
danielk1977a0bf2652004-11-04 14:30:04 +00008578
drh205f48e2004-11-05 00:43:11 +00008579 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008580
danielk1977a0bf2652004-11-04 14:30:04 +00008581#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00008582 freePage(pPage, &rc);
8583 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00008584#else
drh055f2982016-01-15 15:06:41 +00008585 if( pBt->autoVacuum ){
8586 Pgno maxRootPgno;
8587 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008588
drh055f2982016-01-15 15:06:41 +00008589 if( iTable==maxRootPgno ){
8590 /* If the table being dropped is the table with the largest root-page
8591 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00008592 */
drhc314dc72009-07-21 11:52:34 +00008593 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008594 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00008595 if( rc!=SQLITE_OK ){
8596 return rc;
8597 }
8598 }else{
8599 /* The table being dropped does not have the largest root-page
8600 ** number in the database. So move the page that does into the
8601 ** gap left by the deleted root-page.
8602 */
8603 MemPage *pMove;
8604 releasePage(pPage);
8605 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8606 if( rc!=SQLITE_OK ){
8607 return rc;
8608 }
8609 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8610 releasePage(pMove);
8611 if( rc!=SQLITE_OK ){
8612 return rc;
8613 }
8614 pMove = 0;
8615 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8616 freePage(pMove, &rc);
8617 releasePage(pMove);
8618 if( rc!=SQLITE_OK ){
8619 return rc;
8620 }
8621 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00008622 }
drh055f2982016-01-15 15:06:41 +00008623
8624 /* Set the new 'max-root-page' value in the database header. This
8625 ** is the old value less one, less one more if that happens to
8626 ** be a root-page number, less one again if that is the
8627 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00008628 */
drh055f2982016-01-15 15:06:41 +00008629 maxRootPgno--;
8630 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8631 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8632 maxRootPgno--;
8633 }
8634 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8635
8636 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8637 }else{
8638 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008639 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008640 }
drh055f2982016-01-15 15:06:41 +00008641#endif
drh8b2f49b2001-06-08 00:21:52 +00008642 return rc;
8643}
drhd677b3d2007-08-20 22:48:41 +00008644int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8645 int rc;
8646 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008647 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008648 sqlite3BtreeLeave(p);
8649 return rc;
8650}
drh8b2f49b2001-06-08 00:21:52 +00008651
drh001bbcb2003-03-19 03:14:00 +00008652
drh8b2f49b2001-06-08 00:21:52 +00008653/*
danielk1977602b4662009-07-02 07:47:33 +00008654** This function may only be called if the b-tree connection already
8655** has a read or write transaction open on the database.
8656**
drh23e11ca2004-05-04 17:27:28 +00008657** Read the meta-information out of a database file. Meta[0]
8658** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008659** through meta[15] are available for use by higher layers. Meta[0]
8660** is read-only, the others are read/write.
8661**
8662** The schema layer numbers meta values differently. At the schema
8663** layer (and the SetCookie and ReadCookie opcodes) the number of
8664** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008665**
8666** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8667** of reading the value out of the header, it instead loads the "DataVersion"
8668** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8669** database file. It is a number computed by the pager. But its access
8670** pattern is the same as header meta values, and so it is convenient to
8671** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008672*/
danielk1977602b4662009-07-02 07:47:33 +00008673void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008674 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008675
drhd677b3d2007-08-20 22:48:41 +00008676 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008677 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008678 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008679 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008680 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008681
drh91618562014-12-19 19:28:02 +00008682 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008683 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008684 }else{
8685 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8686 }
drhae157872004-08-14 19:20:09 +00008687
danielk1977602b4662009-07-02 07:47:33 +00008688 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8689 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008690#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008691 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8692 pBt->btsFlags |= BTS_READ_ONLY;
8693 }
danielk1977003ba062004-11-04 02:57:33 +00008694#endif
drhae157872004-08-14 19:20:09 +00008695
drhd677b3d2007-08-20 22:48:41 +00008696 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008697}
8698
8699/*
drh23e11ca2004-05-04 17:27:28 +00008700** Write meta-information back into the database. Meta[0] is
8701** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008702*/
danielk1977aef0bf62005-12-30 16:28:01 +00008703int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8704 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008705 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008706 int rc;
drh23e11ca2004-05-04 17:27:28 +00008707 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008708 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008709 assert( p->inTrans==TRANS_WRITE );
8710 assert( pBt->pPage1!=0 );
8711 pP1 = pBt->pPage1->aData;
8712 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8713 if( rc==SQLITE_OK ){
8714 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008715#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008716 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008717 assert( pBt->autoVacuum || iMeta==0 );
8718 assert( iMeta==0 || iMeta==1 );
8719 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008720 }
drh64022502009-01-09 14:11:04 +00008721#endif
drh5df72a52002-06-06 23:16:05 +00008722 }
drhd677b3d2007-08-20 22:48:41 +00008723 sqlite3BtreeLeave(p);
8724 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008725}
drh8c42ca92001-06-22 19:15:00 +00008726
danielk1977a5533162009-02-24 10:01:51 +00008727#ifndef SQLITE_OMIT_BTREECOUNT
8728/*
8729** The first argument, pCur, is a cursor opened on some b-tree. Count the
8730** number of entries in the b-tree and write the result to *pnEntry.
8731**
8732** SQLITE_OK is returned if the operation is successfully executed.
8733** Otherwise, if an error is encountered (i.e. an IO error or database
8734** corruption) an SQLite error code is returned.
8735*/
8736int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8737 i64 nEntry = 0; /* Value to return in *pnEntry */
8738 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008739
8740 if( pCur->pgnoRoot==0 ){
8741 *pnEntry = 0;
8742 return SQLITE_OK;
8743 }
danielk1977a5533162009-02-24 10:01:51 +00008744 rc = moveToRoot(pCur);
8745
8746 /* Unless an error occurs, the following loop runs one iteration for each
8747 ** page in the B-Tree structure (not including overflow pages).
8748 */
8749 while( rc==SQLITE_OK ){
8750 int iIdx; /* Index of child node in parent */
8751 MemPage *pPage; /* Current page of the b-tree */
8752
8753 /* If this is a leaf page or the tree is not an int-key tree, then
8754 ** this page contains countable entries. Increment the entry counter
8755 ** accordingly.
8756 */
8757 pPage = pCur->apPage[pCur->iPage];
8758 if( pPage->leaf || !pPage->intKey ){
8759 nEntry += pPage->nCell;
8760 }
8761
8762 /* pPage is a leaf node. This loop navigates the cursor so that it
8763 ** points to the first interior cell that it points to the parent of
8764 ** the next page in the tree that has not yet been visited. The
8765 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8766 ** of the page, or to the number of cells in the page if the next page
8767 ** to visit is the right-child of its parent.
8768 **
8769 ** If all pages in the tree have been visited, return SQLITE_OK to the
8770 ** caller.
8771 */
8772 if( pPage->leaf ){
8773 do {
8774 if( pCur->iPage==0 ){
8775 /* All pages of the b-tree have been visited. Return successfully. */
8776 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008777 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008778 }
danielk197730548662009-07-09 05:07:37 +00008779 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008780 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8781
8782 pCur->aiIdx[pCur->iPage]++;
8783 pPage = pCur->apPage[pCur->iPage];
8784 }
8785
8786 /* Descend to the child node of the cell that the cursor currently
8787 ** points at. This is the right-child if (iIdx==pPage->nCell).
8788 */
8789 iIdx = pCur->aiIdx[pCur->iPage];
8790 if( iIdx==pPage->nCell ){
8791 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8792 }else{
8793 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8794 }
8795 }
8796
shanebe217792009-03-05 04:20:31 +00008797 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008798 return rc;
8799}
8800#endif
drhdd793422001-06-28 01:54:48 +00008801
drhdd793422001-06-28 01:54:48 +00008802/*
drh5eddca62001-06-30 21:53:53 +00008803** Return the pager associated with a BTree. This routine is used for
8804** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008805*/
danielk1977aef0bf62005-12-30 16:28:01 +00008806Pager *sqlite3BtreePager(Btree *p){
8807 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008808}
drh5eddca62001-06-30 21:53:53 +00008809
drhb7f91642004-10-31 02:22:47 +00008810#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008811/*
8812** Append a message to the error message string.
8813*/
drh2e38c322004-09-03 18:38:44 +00008814static void checkAppendMsg(
8815 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008816 const char *zFormat,
8817 ...
8818){
8819 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008820 if( !pCheck->mxErr ) return;
8821 pCheck->mxErr--;
8822 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008823 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008824 if( pCheck->errMsg.nChar ){
8825 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008826 }
drh867db832014-09-26 02:41:05 +00008827 if( pCheck->zPfx ){
drhd37bea52015-09-02 15:37:50 +00008828 sqlite3XPrintf(&pCheck->errMsg, 0, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008829 }
8830 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8831 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008832 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008833 pCheck->mallocFailed = 1;
8834 }
drh5eddca62001-06-30 21:53:53 +00008835}
drhb7f91642004-10-31 02:22:47 +00008836#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008837
drhb7f91642004-10-31 02:22:47 +00008838#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008839
8840/*
8841** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8842** corresponds to page iPg is already set.
8843*/
8844static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8845 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8846 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8847}
8848
8849/*
8850** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8851*/
8852static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8853 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8854 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8855}
8856
8857
drh5eddca62001-06-30 21:53:53 +00008858/*
8859** Add 1 to the reference count for page iPage. If this is the second
8860** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008861** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008862** if this is the first reference to the page.
8863**
8864** Also check that the page number is in bounds.
8865*/
drh867db832014-09-26 02:41:05 +00008866static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008867 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008868 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008869 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008870 return 1;
8871 }
dan1235bb12012-04-03 17:43:28 +00008872 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008873 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008874 return 1;
8875 }
dan1235bb12012-04-03 17:43:28 +00008876 setPageReferenced(pCheck, iPage);
8877 return 0;
drh5eddca62001-06-30 21:53:53 +00008878}
8879
danielk1977afcdd022004-10-31 16:25:42 +00008880#ifndef SQLITE_OMIT_AUTOVACUUM
8881/*
8882** Check that the entry in the pointer-map for page iChild maps to
8883** page iParent, pointer type ptrType. If not, append an error message
8884** to pCheck.
8885*/
8886static void checkPtrmap(
8887 IntegrityCk *pCheck, /* Integrity check context */
8888 Pgno iChild, /* Child page number */
8889 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008890 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008891){
8892 int rc;
8893 u8 ePtrmapType;
8894 Pgno iPtrmapParent;
8895
8896 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8897 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008898 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008899 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008900 return;
8901 }
8902
8903 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008904 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008905 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8906 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8907 }
8908}
8909#endif
8910
drh5eddca62001-06-30 21:53:53 +00008911/*
8912** Check the integrity of the freelist or of an overflow page list.
8913** Verify that the number of pages on the list is N.
8914*/
drh30e58752002-03-02 20:41:57 +00008915static void checkList(
8916 IntegrityCk *pCheck, /* Integrity checking context */
8917 int isFreeList, /* True for a freelist. False for overflow page list */
8918 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008919 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008920){
8921 int i;
drh3a4c1412004-05-09 20:40:11 +00008922 int expected = N;
8923 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008924 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008925 DbPage *pOvflPage;
8926 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008927 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008928 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008929 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008930 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008931 break;
8932 }
drh867db832014-09-26 02:41:05 +00008933 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00008934 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00008935 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008936 break;
8937 }
danielk19773b8a05f2007-03-19 17:44:26 +00008938 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008939 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008940 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008941#ifndef SQLITE_OMIT_AUTOVACUUM
8942 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008943 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008944 }
8945#endif
drh43b18e12010-08-17 19:40:08 +00008946 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008947 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008948 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008949 N--;
8950 }else{
8951 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008952 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008953#ifndef SQLITE_OMIT_AUTOVACUUM
8954 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008955 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008956 }
8957#endif
drh867db832014-09-26 02:41:05 +00008958 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008959 }
8960 N -= n;
drh30e58752002-03-02 20:41:57 +00008961 }
drh30e58752002-03-02 20:41:57 +00008962 }
danielk1977afcdd022004-10-31 16:25:42 +00008963#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008964 else{
8965 /* If this database supports auto-vacuum and iPage is not the last
8966 ** page in this overflow list, check that the pointer-map entry for
8967 ** the following page matches iPage.
8968 */
8969 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008970 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008971 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008972 }
danielk1977afcdd022004-10-31 16:25:42 +00008973 }
8974#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008975 iPage = get4byte(pOvflData);
8976 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00008977
8978 if( isFreeList && N<(iPage!=0) ){
8979 checkAppendMsg(pCheck, "free-page count in header is too small");
8980 }
drh5eddca62001-06-30 21:53:53 +00008981 }
8982}
drhb7f91642004-10-31 02:22:47 +00008983#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008984
drh67731a92015-04-16 11:56:03 +00008985/*
8986** An implementation of a min-heap.
8987**
8988** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008989** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008990** and aHeap[N*2+1].
8991**
8992** The heap property is this: Every node is less than or equal to both
8993** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008994** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008995**
8996** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8997** the heap, preserving the heap property. The btreeHeapPull() routine
8998** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00008999** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009000** property.
9001**
9002** This heap is used for cell overlap and coverage testing. Each u32
9003** entry represents the span of a cell or freeblock on a btree page.
9004** The upper 16 bits are the index of the first byte of a range and the
9005** lower 16 bits are the index of the last byte of that range.
9006*/
9007static void btreeHeapInsert(u32 *aHeap, u32 x){
9008 u32 j, i = ++aHeap[0];
9009 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009010 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009011 x = aHeap[j];
9012 aHeap[j] = aHeap[i];
9013 aHeap[i] = x;
9014 i = j;
9015 }
9016}
9017static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9018 u32 j, i, x;
9019 if( (x = aHeap[0])==0 ) return 0;
9020 *pOut = aHeap[1];
9021 aHeap[1] = aHeap[x];
9022 aHeap[x] = 0xffffffff;
9023 aHeap[0]--;
9024 i = 1;
9025 while( (j = i*2)<=aHeap[0] ){
9026 if( aHeap[j]>aHeap[j+1] ) j++;
9027 if( aHeap[i]<aHeap[j] ) break;
9028 x = aHeap[i];
9029 aHeap[i] = aHeap[j];
9030 aHeap[j] = x;
9031 i = j;
9032 }
9033 return 1;
9034}
9035
drhb7f91642004-10-31 02:22:47 +00009036#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009037/*
9038** Do various sanity checks on a single page of a tree. Return
9039** the tree depth. Root pages return 0. Parents of root pages
9040** return 1, and so forth.
9041**
9042** These checks are done:
9043**
9044** 1. Make sure that cells and freeblocks do not overlap
9045** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009046** 2. Make sure integer cell keys are in order.
9047** 3. Check the integrity of overflow pages.
9048** 4. Recursively call checkTreePage on all children.
9049** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009050*/
9051static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009052 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009053 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009054 i64 *piMinKey, /* Write minimum integer primary key here */
9055 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009056){
drhcbc6b712015-07-02 16:17:30 +00009057 MemPage *pPage = 0; /* The page being analyzed */
9058 int i; /* Loop counter */
9059 int rc; /* Result code from subroutine call */
9060 int depth = -1, d2; /* Depth of a subtree */
9061 int pgno; /* Page number */
9062 int nFrag; /* Number of fragmented bytes on the page */
9063 int hdr; /* Offset to the page header */
9064 int cellStart; /* Offset to the start of the cell pointer array */
9065 int nCell; /* Number of cells */
9066 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9067 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9068 ** False if IPK must be strictly less than maxKey */
9069 u8 *data; /* Page content */
9070 u8 *pCell; /* Cell content */
9071 u8 *pCellIdx; /* Next element of the cell pointer array */
9072 BtShared *pBt; /* The BtShared object that owns pPage */
9073 u32 pc; /* Address of a cell */
9074 u32 usableSize; /* Usable size of the page */
9075 u32 contentOffset; /* Offset to the start of the cell content area */
9076 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009077 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009078 const char *saved_zPfx = pCheck->zPfx;
9079 int saved_v1 = pCheck->v1;
9080 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009081 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009082
drh5eddca62001-06-30 21:53:53 +00009083 /* Check that the page exists
9084 */
drhd9cb6ac2005-10-20 07:28:17 +00009085 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009086 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009087 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009088 if( checkRef(pCheck, iPage) ) return 0;
9089 pCheck->zPfx = "Page %d: ";
9090 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009091 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009092 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009093 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009094 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009095 }
danielk197793caf5a2009-07-11 06:55:33 +00009096
9097 /* Clear MemPage.isInit to make sure the corruption detection code in
9098 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009099 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009100 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009101 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009102 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009103 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009104 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009105 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009106 }
drhcbc6b712015-07-02 16:17:30 +00009107 data = pPage->aData;
9108 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009109
drhcbc6b712015-07-02 16:17:30 +00009110 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009111 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009112 contentOffset = get2byteNotZero(&data[hdr+5]);
9113 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9114
9115 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9116 ** number of cells on the page. */
9117 nCell = get2byte(&data[hdr+3]);
9118 assert( pPage->nCell==nCell );
9119
9120 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9121 ** immediately follows the b-tree page header. */
9122 cellStart = hdr + 12 - 4*pPage->leaf;
9123 assert( pPage->aCellIdx==&data[cellStart] );
9124 pCellIdx = &data[cellStart + 2*(nCell-1)];
9125
9126 if( !pPage->leaf ){
9127 /* Analyze the right-child page of internal pages */
9128 pgno = get4byte(&data[hdr+8]);
9129#ifndef SQLITE_OMIT_AUTOVACUUM
9130 if( pBt->autoVacuum ){
9131 pCheck->zPfx = "On page %d at right child: ";
9132 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9133 }
9134#endif
9135 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9136 keyCanBeEqual = 0;
9137 }else{
9138 /* For leaf pages, the coverage check will occur in the same loop
9139 ** as the other cell checks, so initialize the heap. */
9140 heap = pCheck->heap;
9141 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009142 }
9143
drhcbc6b712015-07-02 16:17:30 +00009144 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9145 ** integer offsets to the cell contents. */
9146 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009147 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009148
drhcbc6b712015-07-02 16:17:30 +00009149 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009150 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009151 assert( pCellIdx==&data[cellStart + i*2] );
9152 pc = get2byteAligned(pCellIdx);
9153 pCellIdx -= 2;
9154 if( pc<contentOffset || pc>usableSize-4 ){
9155 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9156 pc, contentOffset, usableSize-4);
9157 doCoverageCheck = 0;
9158 continue;
shaneh195475d2010-02-19 04:28:08 +00009159 }
drhcbc6b712015-07-02 16:17:30 +00009160 pCell = &data[pc];
9161 pPage->xParseCell(pPage, pCell, &info);
9162 if( pc+info.nSize>usableSize ){
9163 checkAppendMsg(pCheck, "Extends off end of page");
9164 doCoverageCheck = 0;
9165 continue;
drh5eddca62001-06-30 21:53:53 +00009166 }
9167
drhcbc6b712015-07-02 16:17:30 +00009168 /* Check for integer primary key out of range */
9169 if( pPage->intKey ){
9170 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9171 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9172 }
9173 maxKey = info.nKey;
9174 }
9175
9176 /* Check the content overflow list */
9177 if( info.nPayload>info.nLocal ){
9178 int nPage; /* Number of pages on the overflow chain */
9179 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009180 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009181 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009182 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009183#ifndef SQLITE_OMIT_AUTOVACUUM
9184 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009185 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009186 }
9187#endif
drh867db832014-09-26 02:41:05 +00009188 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009189 }
9190
drh5eddca62001-06-30 21:53:53 +00009191 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009192 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009193 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009194#ifndef SQLITE_OMIT_AUTOVACUUM
9195 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009196 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009197 }
9198#endif
drhcbc6b712015-07-02 16:17:30 +00009199 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9200 keyCanBeEqual = 0;
9201 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009202 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009203 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009204 }
drhcbc6b712015-07-02 16:17:30 +00009205 }else{
9206 /* Populate the coverage-checking heap for leaf pages */
9207 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009208 }
9209 }
drhcbc6b712015-07-02 16:17:30 +00009210 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009211
drh5eddca62001-06-30 21:53:53 +00009212 /* Check for complete coverage of the page
9213 */
drh867db832014-09-26 02:41:05 +00009214 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009215 if( doCoverageCheck && pCheck->mxErr>0 ){
9216 /* For leaf pages, the min-heap has already been initialized and the
9217 ** cells have already been inserted. But for internal pages, that has
9218 ** not yet been done, so do it now */
9219 if( !pPage->leaf ){
9220 heap = pCheck->heap;
9221 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009222 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009223 u32 size;
9224 pc = get2byteAligned(&data[cellStart+i*2]);
9225 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009226 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009227 }
drh2e38c322004-09-03 18:38:44 +00009228 }
drhcbc6b712015-07-02 16:17:30 +00009229 /* Add the freeblocks to the min-heap
9230 **
9231 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009232 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009233 ** freeblocks on the page.
9234 */
drh8c2bbb62009-07-10 02:52:20 +00009235 i = get2byte(&data[hdr+1]);
9236 while( i>0 ){
9237 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009238 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009239 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009240 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009241 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009242 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9243 ** big-endian integer which is the offset in the b-tree page of the next
9244 ** freeblock in the chain, or zero if the freeblock is the last on the
9245 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009246 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009247 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9248 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009249 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009250 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009251 i = j;
drh2e38c322004-09-03 18:38:44 +00009252 }
drhcbc6b712015-07-02 16:17:30 +00009253 /* Analyze the min-heap looking for overlap between cells and/or
9254 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009255 **
9256 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9257 ** There is an implied first entry the covers the page header, the cell
9258 ** pointer index, and the gap between the cell pointer index and the start
9259 ** of cell content.
9260 **
9261 ** The loop below pulls entries from the min-heap in order and compares
9262 ** the start_address against the previous end_address. If there is an
9263 ** overlap, that means bytes are used multiple times. If there is a gap,
9264 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009265 */
9266 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009267 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009268 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009269 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009270 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009271 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009272 break;
drh67731a92015-04-16 11:56:03 +00009273 }else{
drhcbc6b712015-07-02 16:17:30 +00009274 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009275 prev = x;
drh2e38c322004-09-03 18:38:44 +00009276 }
9277 }
drhcbc6b712015-07-02 16:17:30 +00009278 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009279 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9280 ** is stored in the fifth field of the b-tree page header.
9281 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9282 ** number of fragmented free bytes within the cell content area.
9283 */
drhcbc6b712015-07-02 16:17:30 +00009284 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009285 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009286 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009287 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009288 }
9289 }
drh867db832014-09-26 02:41:05 +00009290
9291end_of_check:
drh72e191e2015-07-04 11:14:20 +00009292 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009293 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009294 pCheck->zPfx = saved_zPfx;
9295 pCheck->v1 = saved_v1;
9296 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009297 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009298}
drhb7f91642004-10-31 02:22:47 +00009299#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009300
drhb7f91642004-10-31 02:22:47 +00009301#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009302/*
9303** This routine does a complete check of the given BTree file. aRoot[] is
9304** an array of pages numbers were each page number is the root page of
9305** a table. nRoot is the number of entries in aRoot.
9306**
danielk19773509a652009-07-06 18:56:13 +00009307** A read-only or read-write transaction must be opened before calling
9308** this function.
9309**
drhc890fec2008-08-01 20:10:08 +00009310** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009311** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009312** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009313** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009314*/
drh1dcdbc02007-01-27 02:24:54 +00009315char *sqlite3BtreeIntegrityCheck(
9316 Btree *p, /* The btree to be checked */
9317 int *aRoot, /* An array of root pages numbers for individual trees */
9318 int nRoot, /* Number of entries in aRoot[] */
9319 int mxErr, /* Stop reporting errors after this many */
9320 int *pnErr /* Write number of errors seen to this variable */
9321){
danielk197789d40042008-11-17 14:20:56 +00009322 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009323 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009324 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009325 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009326 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009327 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009328
drhd677b3d2007-08-20 22:48:41 +00009329 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009330 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhe05b3f82015-07-01 17:53:49 +00009331 assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 );
drh5eddca62001-06-30 21:53:53 +00009332 sCheck.pBt = pBt;
9333 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009334 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009335 sCheck.mxErr = mxErr;
9336 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009337 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009338 sCheck.zPfx = 0;
9339 sCheck.v1 = 0;
9340 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009341 sCheck.aPgRef = 0;
9342 sCheck.heap = 0;
9343 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh0de8c112002-07-06 16:32:14 +00009344 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009345 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009346 }
dan1235bb12012-04-03 17:43:28 +00009347
9348 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9349 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009350 sCheck.mallocFailed = 1;
9351 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009352 }
drhe05b3f82015-07-01 17:53:49 +00009353 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9354 if( sCheck.heap==0 ){
9355 sCheck.mallocFailed = 1;
9356 goto integrity_ck_cleanup;
9357 }
9358
drh42cac6d2004-11-20 20:31:11 +00009359 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009360 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009361
9362 /* Check the integrity of the freelist
9363 */
drh867db832014-09-26 02:41:05 +00009364 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009365 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009366 get4byte(&pBt->pPage1->aData[36]));
9367 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009368
9369 /* Check all the tables.
9370 */
drhcbc6b712015-07-02 16:17:30 +00009371 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9372 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009373 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009374 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009375 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009376#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009377 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009378 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009379 }
9380#endif
drhcbc6b712015-07-02 16:17:30 +00009381 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009382 }
drhcbc6b712015-07-02 16:17:30 +00009383 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009384
9385 /* Make sure every page in the file is referenced
9386 */
drh1dcdbc02007-01-27 02:24:54 +00009387 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009388#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009389 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009390 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009391 }
danielk1977afcdd022004-10-31 16:25:42 +00009392#else
9393 /* If the database supports auto-vacuum, make sure no tables contain
9394 ** references to pointer-map pages.
9395 */
dan1235bb12012-04-03 17:43:28 +00009396 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009397 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009398 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009399 }
dan1235bb12012-04-03 17:43:28 +00009400 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009401 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009402 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009403 }
9404#endif
drh5eddca62001-06-30 21:53:53 +00009405 }
9406
drh5eddca62001-06-30 21:53:53 +00009407 /* Clean up and report errors.
9408 */
drhe05b3f82015-07-01 17:53:49 +00009409integrity_ck_cleanup:
9410 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009411 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009412 if( sCheck.mallocFailed ){
9413 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009414 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009415 }
drh1dcdbc02007-01-27 02:24:54 +00009416 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009417 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009418 /* Make sure this analysis did not leave any unref() pages. */
9419 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9420 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009421 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009422}
drhb7f91642004-10-31 02:22:47 +00009423#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009424
drh73509ee2003-04-06 20:44:45 +00009425/*
drhd4e0bb02012-05-27 01:19:04 +00009426** Return the full pathname of the underlying database file. Return
9427** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009428**
9429** The pager filename is invariant as long as the pager is
9430** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009431*/
danielk1977aef0bf62005-12-30 16:28:01 +00009432const char *sqlite3BtreeGetFilename(Btree *p){
9433 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009434 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009435}
9436
9437/*
danielk19775865e3d2004-06-14 06:03:57 +00009438** Return the pathname of the journal file for this database. The return
9439** value of this routine is the same regardless of whether the journal file
9440** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009441**
9442** The pager journal filename is invariant as long as the pager is
9443** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009444*/
danielk1977aef0bf62005-12-30 16:28:01 +00009445const char *sqlite3BtreeGetJournalname(Btree *p){
9446 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009447 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009448}
9449
danielk19771d850a72004-05-31 08:26:49 +00009450/*
9451** Return non-zero if a transaction is active.
9452*/
danielk1977aef0bf62005-12-30 16:28:01 +00009453int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009454 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009455 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009456}
9457
dana550f2d2010-08-02 10:47:05 +00009458#ifndef SQLITE_OMIT_WAL
9459/*
9460** Run a checkpoint on the Btree passed as the first argument.
9461**
9462** Return SQLITE_LOCKED if this or any other connection has an open
9463** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009464**
dancdc1f042010-11-18 12:11:05 +00009465** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009466*/
dancdc1f042010-11-18 12:11:05 +00009467int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009468 int rc = SQLITE_OK;
9469 if( p ){
9470 BtShared *pBt = p->pBt;
9471 sqlite3BtreeEnter(p);
9472 if( pBt->inTransaction!=TRANS_NONE ){
9473 rc = SQLITE_LOCKED;
9474 }else{
dancdc1f042010-11-18 12:11:05 +00009475 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009476 }
9477 sqlite3BtreeLeave(p);
9478 }
9479 return rc;
9480}
9481#endif
9482
danielk19771d850a72004-05-31 08:26:49 +00009483/*
danielk19772372c2b2006-06-27 16:34:56 +00009484** Return non-zero if a read (or write) transaction is active.
9485*/
9486int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009487 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009488 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009489 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009490}
9491
danielk197704103022009-02-03 16:51:24 +00009492int sqlite3BtreeIsInBackup(Btree *p){
9493 assert( p );
9494 assert( sqlite3_mutex_held(p->db->mutex) );
9495 return p->nBackup!=0;
9496}
9497
danielk19772372c2b2006-06-27 16:34:56 +00009498/*
danielk1977da184232006-01-05 11:34:32 +00009499** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009500** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009501** purposes (for example, to store a high-level schema associated with
9502** the shared-btree). The btree layer manages reference counting issues.
9503**
9504** The first time this is called on a shared-btree, nBytes bytes of memory
9505** are allocated, zeroed, and returned to the caller. For each subsequent
9506** call the nBytes parameter is ignored and a pointer to the same blob
9507** of memory returned.
9508**
danielk1977171bfed2008-06-23 09:50:50 +00009509** If the nBytes parameter is 0 and the blob of memory has not yet been
9510** allocated, a null pointer is returned. If the blob has already been
9511** allocated, it is returned as normal.
9512**
danielk1977da184232006-01-05 11:34:32 +00009513** Just before the shared-btree is closed, the function passed as the
9514** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009515** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009516** on the memory, the btree layer does that.
9517*/
9518void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9519 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009520 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009521 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009522 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009523 pBt->xFreeSchema = xFree;
9524 }
drh27641702007-08-22 02:56:42 +00009525 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009526 return pBt->pSchema;
9527}
9528
danielk1977c87d34d2006-01-06 13:00:28 +00009529/*
danielk1977404ca072009-03-16 13:19:36 +00009530** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9531** btree as the argument handle holds an exclusive lock on the
9532** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009533*/
9534int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009535 int rc;
drhe5fe6902007-12-07 18:55:28 +00009536 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009537 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009538 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9539 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009540 sqlite3BtreeLeave(p);
9541 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009542}
9543
drha154dcd2006-03-22 22:10:07 +00009544
9545#ifndef SQLITE_OMIT_SHARED_CACHE
9546/*
9547** Obtain a lock on the table whose root page is iTab. The
9548** lock is a write lock if isWritelock is true or a read lock
9549** if it is false.
9550*/
danielk1977c00da102006-01-07 13:21:04 +00009551int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009552 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009553 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009554 if( p->sharable ){
9555 u8 lockType = READ_LOCK + isWriteLock;
9556 assert( READ_LOCK+1==WRITE_LOCK );
9557 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009558
drh6a9ad3d2008-04-02 16:29:30 +00009559 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009560 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009561 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009562 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009563 }
9564 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009565 }
9566 return rc;
9567}
drha154dcd2006-03-22 22:10:07 +00009568#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009569
danielk1977b4e9af92007-05-01 17:49:49 +00009570#ifndef SQLITE_OMIT_INCRBLOB
9571/*
9572** Argument pCsr must be a cursor opened for writing on an
9573** INTKEY table currently pointing at a valid table entry.
9574** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009575**
9576** Only the data content may only be modified, it is not possible to
9577** change the length of the data stored. If this function is called with
9578** parameters that attempt to write past the end of the existing data,
9579** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009580*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009581int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009582 int rc;
dan7a2347e2016-01-07 16:43:54 +00009583 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009584 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009585 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009586
danielk1977c9000e62009-07-08 13:55:28 +00009587 rc = restoreCursorPosition(pCsr);
9588 if( rc!=SQLITE_OK ){
9589 return rc;
9590 }
danielk19773588ceb2008-06-10 17:30:26 +00009591 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9592 if( pCsr->eState!=CURSOR_VALID ){
9593 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009594 }
9595
dan227a1c42013-04-03 11:17:39 +00009596 /* Save the positions of all other cursors open on this table. This is
9597 ** required in case any of them are holding references to an xFetch
9598 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009599 **
drh3f387402014-09-24 01:23:00 +00009600 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009601 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9602 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009603 */
drh370c9f42013-04-03 20:04:04 +00009604 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9605 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009606
danielk1977c9000e62009-07-08 13:55:28 +00009607 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009608 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009609 ** (b) there is a read/write transaction open,
9610 ** (c) the connection holds a write-lock on the table (if required),
9611 ** (d) there are no conflicting read-locks, and
9612 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009613 */
drh036dbec2014-03-11 23:40:44 +00009614 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009615 return SQLITE_READONLY;
9616 }
drhc9166342012-01-05 23:32:06 +00009617 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9618 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009619 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9620 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009621 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009622
drhfb192682009-07-11 18:26:28 +00009623 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009624}
danielk19772dec9702007-05-02 16:48:37 +00009625
9626/*
dan5a500af2014-03-11 20:33:04 +00009627** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009628*/
dan5a500af2014-03-11 20:33:04 +00009629void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009630 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009631 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009632}
danielk1977b4e9af92007-05-01 17:49:49 +00009633#endif
dane04dc882010-04-20 18:53:15 +00009634
9635/*
9636** Set both the "read version" (single byte at byte offset 18) and
9637** "write version" (single byte at byte offset 19) fields in the database
9638** header to iVersion.
9639*/
9640int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9641 BtShared *pBt = pBtree->pBt;
9642 int rc; /* Return code */
9643
dane04dc882010-04-20 18:53:15 +00009644 assert( iVersion==1 || iVersion==2 );
9645
danb9780022010-04-21 18:37:57 +00009646 /* If setting the version fields to 1, do not automatically open the
9647 ** WAL connection, even if the version fields are currently set to 2.
9648 */
drhc9166342012-01-05 23:32:06 +00009649 pBt->btsFlags &= ~BTS_NO_WAL;
9650 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009651
9652 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009653 if( rc==SQLITE_OK ){
9654 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009655 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009656 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009657 if( rc==SQLITE_OK ){
9658 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9659 if( rc==SQLITE_OK ){
9660 aData[18] = (u8)iVersion;
9661 aData[19] = (u8)iVersion;
9662 }
9663 }
9664 }
dane04dc882010-04-20 18:53:15 +00009665 }
9666
drhc9166342012-01-05 23:32:06 +00009667 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009668 return rc;
9669}
dan428c2182012-08-06 18:50:11 +00009670
drhe0997b32015-03-20 14:57:50 +00009671/*
9672** Return true if the cursor has a hint specified. This routine is
9673** only used from within assert() statements
9674*/
9675int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9676 return (pCsr->hints & mask)!=0;
9677}
drhe0997b32015-03-20 14:57:50 +00009678
drh781597f2014-05-21 08:21:07 +00009679/*
9680** Return true if the given Btree is read-only.
9681*/
9682int sqlite3BtreeIsReadonly(Btree *p){
9683 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9684}
drhdef68892014-11-04 12:11:23 +00009685
9686/*
9687** Return the size of the header added to each page by this module.
9688*/
drh37c057b2014-12-30 00:57:29 +00009689int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +00009690
drh5a1fb182016-01-08 19:34:39 +00009691#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +00009692/*
9693** Return true if the Btree passed as the only argument is sharable.
9694*/
9695int sqlite3BtreeSharable(Btree *p){
9696 return p->sharable;
9697}
drh5a1fb182016-01-08 19:34:39 +00009698#endif