blob: 7ea66e0d3be94e88c344f06b969bffafc69ecd0c [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000179 }
180 }
181 }else{
182 iTab = iRoot;
183 }
184
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
192 ){
193 return 1;
194 }
195 }
196
197 /* Failed to find the required lock. */
198 return 0;
199}
drh0ee3dbe2009-10-16 15:05:18 +0000200#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000201
drh0ee3dbe2009-10-16 15:05:18 +0000202#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000203/*
drh0ee3dbe2009-10-16 15:05:18 +0000204**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000205**
drh0ee3dbe2009-10-16 15:05:18 +0000206** Return true if it would be illegal for pBtree to write into the
207** table or index rooted at iRoot because other shared connections are
208** simultaneously reading that same table or index.
209**
210** It is illegal for pBtree to write if some other Btree object that
211** shares the same BtShared object is currently reading or writing
212** the iRoot table. Except, if the other Btree object has the
213** read-uncommitted flag set, then it is OK for the other object to
214** have a read cursor.
215**
216** For example, before writing to any part of the table or index
217** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000218**
219** assert( !hasReadConflicts(pBtree, iRoot) );
220*/
221static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227 ){
228 return 1;
229 }
230 }
231 return 0;
232}
233#endif /* #ifdef SQLITE_DEBUG */
234
danielk1977da184232006-01-05 11:34:32 +0000235/*
drh0ee3dbe2009-10-16 15:05:18 +0000236** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000237** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000238** SQLITE_OK if the lock may be obtained (by calling
239** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000240*/
drhc25eabe2009-02-24 18:57:31 +0000241static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
244
drh1fee73e2007-08-29 04:00:57 +0000245 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000249
danielk19775b413d72009-04-01 09:41:54 +0000250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
253 */
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256
drh0ee3dbe2009-10-16 15:05:18 +0000257 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000258 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000259 return SQLITE_OK;
260 }
261
danielk1977641b0f42007-12-21 04:47:25 +0000262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
264 */
drhc9166342012-01-05 23:32:06 +0000265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000268 }
269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
273 **
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275 **
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
279 */
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000286 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000287 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000288 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000289 }
290 }
291 return SQLITE_OK;
292}
drhe53831d2007-08-17 01:14:38 +0000293#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000294
drhe53831d2007-08-17 01:14:38 +0000295#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000296/*
297** Add a lock on the table with root-page iTable to the shared-btree used
298** by Btree handle p. Parameter eLock must be either READ_LOCK or
299** WRITE_LOCK.
300**
danielk19779d104862009-07-09 08:27:14 +0000301** This function assumes the following:
302**
drh0ee3dbe2009-10-16 15:05:18 +0000303** (a) The specified Btree object p is connected to a sharable
304** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000305**
drh0ee3dbe2009-10-16 15:05:18 +0000306** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000307** with the requested lock (i.e. querySharedCacheTableLock() has
308** already been called and returned SQLITE_OK).
309**
310** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000312*/
drhc25eabe2009-02-24 18:57:31 +0000313static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
317
drh1fee73e2007-08-29 04:00:57 +0000318 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000321
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327
danielk19779d104862009-07-09 08:27:14 +0000328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000332
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
338 }
339 }
340
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
343 */
344 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( !pLock ){
347 return SQLITE_NOMEM;
348 }
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
353 }
354
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
358 */
359 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
362 }
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 return SQLITE_OK;
365}
drhe53831d2007-08-17 01:14:38 +0000366#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000367
drhe53831d2007-08-17 01:14:38 +0000368#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000369/*
drhc25eabe2009-02-24 18:57:31 +0000370** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000371** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000372**
drh0ee3dbe2009-10-16 15:05:18 +0000373** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000374** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000375** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000376*/
drhc25eabe2009-02-24 18:57:31 +0000377static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000380
drh1fee73e2007-08-29 04:00:57 +0000381 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000382 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000383 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000384
danielk1977aef0bf62005-12-30 16:28:01 +0000385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000388 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
394 }
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }else{
396 ppIter = &pLock->pNext;
397 }
398 }
danielk1977641b0f42007-12-21 04:47:25 +0000399
drhc9166342012-01-05 23:32:06 +0000400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000404 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000405 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000409 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000410 **
drhc9166342012-01-05 23:32:06 +0000411 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000412 ** be zero already. So this next line is harmless in that case.
413 */
drhc9166342012-01-05 23:32:06 +0000414 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000415 }
danielk1977aef0bf62005-12-30 16:28:01 +0000416}
danielk197794b30732009-07-02 17:21:57 +0000417
danielk1977e0d9e6f2009-07-03 16:25:06 +0000418/*
drh0ee3dbe2009-10-16 15:05:18 +0000419** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000420*/
danielk197794b30732009-07-02 17:21:57 +0000421static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
430 }
431 }
432}
433
danielk1977aef0bf62005-12-30 16:28:01 +0000434#endif /* SQLITE_OMIT_SHARED_CACHE */
435
drh980b1a72006-08-16 16:42:48 +0000436static void releasePage(MemPage *pPage); /* Forward reference */
437
drh1fee73e2007-08-29 04:00:57 +0000438/*
drh0ee3dbe2009-10-16 15:05:18 +0000439***** This routine is used inside of assert() only ****
440**
441** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000442*/
drh0ee3dbe2009-10-16 15:05:18 +0000443#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000444static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000445 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000446}
447#endif
448
danielk197792d4d7a2007-05-04 12:05:56 +0000449/*
dan5a500af2014-03-11 20:33:04 +0000450** Invalidate the overflow cache of the cursor passed as the first argument.
451** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000452*/
drh036dbec2014-03-11 23:40:44 +0000453#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000454
455/*
456** Invalidate the overflow page-list cache for all cursors opened
457** on the shared btree structure pBt.
458*/
459static void invalidateAllOverflowCache(BtShared *pBt){
460 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000461 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000462 for(p=pBt->pCursor; p; p=p->pNext){
463 invalidateOverflowCache(p);
464 }
465}
danielk197796d48e92009-06-29 06:00:37 +0000466
dan5a500af2014-03-11 20:33:04 +0000467#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000468/*
469** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000470** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000471** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000472**
473** If argument isClearTable is true, then the entire contents of the
474** table is about to be deleted. In this case invalidate all incrblob
475** cursors open on any row within the table with root-page pgnoRoot.
476**
477** Otherwise, if argument isClearTable is false, then the row with
478** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000479** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000480*/
481static void invalidateIncrblobCursors(
482 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000483 i64 iRow, /* The rowid that might be changing */
484 int isClearTable /* True if all rows are being deleted */
485){
486 BtCursor *p;
487 BtShared *pBt = pBtree->pBt;
488 assert( sqlite3BtreeHoldsMutex(pBtree) );
489 for(p=pBt->pCursor; p; p=p->pNext){
drh3f387402014-09-24 01:23:00 +0000490 if( (p->curFlags & BTCF_Incrblob)!=0
491 && (isClearTable || p->info.nKey==iRow)
492 ){
danielk197796d48e92009-06-29 06:00:37 +0000493 p->eState = CURSOR_INVALID;
494 }
495 }
496}
497
danielk197792d4d7a2007-05-04 12:05:56 +0000498#else
dan5a500af2014-03-11 20:33:04 +0000499 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000500 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000501#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000502
drh980b1a72006-08-16 16:42:48 +0000503/*
danielk1977bea2a942009-01-20 17:06:27 +0000504** Set bit pgno of the BtShared.pHasContent bitvec. This is called
505** when a page that previously contained data becomes a free-list leaf
506** page.
507**
508** The BtShared.pHasContent bitvec exists to work around an obscure
509** bug caused by the interaction of two useful IO optimizations surrounding
510** free-list leaf pages:
511**
512** 1) When all data is deleted from a page and the page becomes
513** a free-list leaf page, the page is not written to the database
514** (as free-list leaf pages contain no meaningful data). Sometimes
515** such a page is not even journalled (as it will not be modified,
516** why bother journalling it?).
517**
518** 2) When a free-list leaf page is reused, its content is not read
519** from the database or written to the journal file (why should it
520** be, if it is not at all meaningful?).
521**
522** By themselves, these optimizations work fine and provide a handy
523** performance boost to bulk delete or insert operations. However, if
524** a page is moved to the free-list and then reused within the same
525** transaction, a problem comes up. If the page is not journalled when
526** it is moved to the free-list and it is also not journalled when it
527** is extracted from the free-list and reused, then the original data
528** may be lost. In the event of a rollback, it may not be possible
529** to restore the database to its original configuration.
530**
531** The solution is the BtShared.pHasContent bitvec. Whenever a page is
532** moved to become a free-list leaf page, the corresponding bit is
533** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000534** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000535** set in BtShared.pHasContent. The contents of the bitvec are cleared
536** at the end of every transaction.
537*/
538static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
539 int rc = SQLITE_OK;
540 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000541 assert( pgno<=pBt->nPage );
542 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000543 if( !pBt->pHasContent ){
544 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000545 }
546 }
547 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
548 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
549 }
550 return rc;
551}
552
553/*
554** Query the BtShared.pHasContent vector.
555**
556** This function is called when a free-list leaf page is removed from the
557** free-list for reuse. It returns false if it is safe to retrieve the
558** page from the pager layer with the 'no-content' flag set. True otherwise.
559*/
560static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
561 Bitvec *p = pBt->pHasContent;
562 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
563}
564
565/*
566** Clear (destroy) the BtShared.pHasContent bitvec. This should be
567** invoked at the conclusion of each write-transaction.
568*/
569static void btreeClearHasContent(BtShared *pBt){
570 sqlite3BitvecDestroy(pBt->pHasContent);
571 pBt->pHasContent = 0;
572}
573
574/*
drh138eeeb2013-03-27 03:15:23 +0000575** Release all of the apPage[] pages for a cursor.
576*/
577static void btreeReleaseAllCursorPages(BtCursor *pCur){
578 int i;
579 for(i=0; i<=pCur->iPage; i++){
580 releasePage(pCur->apPage[i]);
581 pCur->apPage[i] = 0;
582 }
583 pCur->iPage = -1;
584}
585
586
587/*
drh980b1a72006-08-16 16:42:48 +0000588** Save the current cursor position in the variables BtCursor.nKey
589** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000590**
591** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
592** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000593*/
594static int saveCursorPosition(BtCursor *pCur){
595 int rc;
596
597 assert( CURSOR_VALID==pCur->eState );
598 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000599 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000600
601 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000602 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000603
604 /* If this is an intKey table, then the above call to BtreeKeySize()
605 ** stores the integer key in pCur->nKey. In this case this value is
606 ** all that is required. Otherwise, if pCur is not open on an intKey
607 ** table, then malloc space for and store the pCur->nKey bytes of key
608 ** data.
609 */
drh4c301aa2009-07-15 17:25:45 +0000610 if( 0==pCur->apPage[0]->intKey ){
drhda4ca9d2014-09-09 17:27:35 +0000611 void *pKey = sqlite3Malloc( pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000612 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000613 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000614 if( rc==SQLITE_OK ){
615 pCur->pKey = pKey;
616 }else{
drh17435752007-08-16 04:30:38 +0000617 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000618 }
619 }else{
620 rc = SQLITE_NOMEM;
621 }
622 }
danielk197771d5d2c2008-09-29 11:49:47 +0000623 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000624
625 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000626 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000627 pCur->eState = CURSOR_REQUIRESEEK;
628 }
629
danielk197792d4d7a2007-05-04 12:05:56 +0000630 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000631 return rc;
632}
633
drh637f3d82014-08-22 22:26:07 +0000634/* Forward reference */
635static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
636
drh980b1a72006-08-16 16:42:48 +0000637/*
drh0ee3dbe2009-10-16 15:05:18 +0000638** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000639** the table with root-page iRoot. "Saving the cursor position" means that
640** the location in the btree is remembered in such a way that it can be
641** moved back to the same spot after the btree has been modified. This
642** routine is called just before cursor pExcept is used to modify the
643** table, for example in BtreeDelete() or BtreeInsert().
644**
645** Implementation note: This routine merely checks to see if any cursors
646** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
647** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000648*/
649static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000650 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000651 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000652 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000653 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000654 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
655 }
656 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;
657}
658
659/* This helper routine to saveAllCursors does the actual work of saving
660** the cursors if and when a cursor is found that actually requires saving.
661** The common case is that no cursors need to be saved, so this routine is
662** broken out from its caller to avoid unnecessary stack pointer movement.
663*/
664static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000665 BtCursor *p, /* The first cursor that needs saving */
666 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
667 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000668){
669 do{
drh138eeeb2013-03-27 03:15:23 +0000670 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
671 if( p->eState==CURSOR_VALID ){
672 int rc = saveCursorPosition(p);
673 if( SQLITE_OK!=rc ){
674 return rc;
675 }
676 }else{
677 testcase( p->iPage>0 );
678 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000679 }
680 }
drh637f3d82014-08-22 22:26:07 +0000681 p = p->pNext;
682 }while( p );
drh980b1a72006-08-16 16:42:48 +0000683 return SQLITE_OK;
684}
685
686/*
drhbf700f32007-03-31 02:36:44 +0000687** Clear the current cursor position.
688*/
danielk1977be51a652008-10-08 17:58:48 +0000689void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000690 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000691 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000692 pCur->pKey = 0;
693 pCur->eState = CURSOR_INVALID;
694}
695
696/*
danielk19773509a652009-07-06 18:56:13 +0000697** In this version of BtreeMoveto, pKey is a packed index record
698** such as is generated by the OP_MakeRecord opcode. Unpack the
699** record and then call BtreeMovetoUnpacked() to do the work.
700*/
701static int btreeMoveto(
702 BtCursor *pCur, /* Cursor open on the btree to be searched */
703 const void *pKey, /* Packed key if the btree is an index */
704 i64 nKey, /* Integer key for tables. Size of pKey for indices */
705 int bias, /* Bias search to the high end */
706 int *pRes /* Write search results here */
707){
708 int rc; /* Status code */
709 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000710 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000711 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000712
713 if( pKey ){
714 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000715 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
716 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
717 );
danielk19773509a652009-07-06 18:56:13 +0000718 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000719 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000720 if( pIdxKey->nField==0 ){
721 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
722 return SQLITE_CORRUPT_BKPT;
723 }
danielk19773509a652009-07-06 18:56:13 +0000724 }else{
725 pIdxKey = 0;
726 }
727 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000728 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000729 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000730 }
731 return rc;
732}
733
734/*
drh980b1a72006-08-16 16:42:48 +0000735** Restore the cursor to the position it was in (or as close to as possible)
736** when saveCursorPosition() was called. Note that this call deletes the
737** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000738** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000739** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000740*/
danielk197730548662009-07-09 05:07:37 +0000741static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000742 int rc;
drh1fee73e2007-08-29 04:00:57 +0000743 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000744 assert( pCur->eState>=CURSOR_REQUIRESEEK );
745 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000746 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000747 }
drh980b1a72006-08-16 16:42:48 +0000748 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000749 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000750 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000751 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000752 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000753 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh9b47ee32013-08-20 03:13:51 +0000754 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
755 pCur->eState = CURSOR_SKIPNEXT;
756 }
drh980b1a72006-08-16 16:42:48 +0000757 }
758 return rc;
759}
760
drha3460582008-07-11 21:02:53 +0000761#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000762 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000763 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000764 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000765
drha3460582008-07-11 21:02:53 +0000766/*
drh6848dad2014-08-22 23:33:03 +0000767** Determine whether or not a cursor has moved from the position where
768** it was last placed, or has been invalidated for any other reason.
769** Cursors can move when the row they are pointing at is deleted out
770** from under them, for example. Cursor might also move if a btree
771** is rebalanced.
drha3460582008-07-11 21:02:53 +0000772**
drh6848dad2014-08-22 23:33:03 +0000773** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000774**
drh6848dad2014-08-22 23:33:03 +0000775** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
776** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000777*/
drh6848dad2014-08-22 23:33:03 +0000778int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000779 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000780}
781
782/*
783** This routine restores a cursor back to its original position after it
784** has been moved by some outside activity (such as a btree rebalance or
785** a row having been deleted out from under the cursor).
786**
787** On success, the *pDifferentRow parameter is false if the cursor is left
788** pointing at exactly the same row. *pDifferntRow is the row the cursor
789** was pointing to has been deleted, forcing the cursor to point to some
790** nearby row.
791**
792** This routine should only be called for a cursor that just returned
793** TRUE from sqlite3BtreeCursorHasMoved().
794*/
795int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000796 int rc;
797
drh6848dad2014-08-22 23:33:03 +0000798 assert( pCur!=0 );
799 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000800 rc = restoreCursorPosition(pCur);
801 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000802 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000803 return rc;
804 }
drh9b47ee32013-08-20 03:13:51 +0000805 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
drh6848dad2014-08-22 23:33:03 +0000806 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000807 }else{
drh6848dad2014-08-22 23:33:03 +0000808 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000809 }
810 return SQLITE_OK;
811}
812
danielk1977599fcba2004-11-08 07:13:13 +0000813#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000814/*
drha3152892007-05-05 11:48:52 +0000815** Given a page number of a regular database page, return the page
816** number for the pointer-map page that contains the entry for the
817** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000818**
819** Return 0 (not a valid page) for pgno==1 since there is
820** no pointer map associated with page 1. The integrity_check logic
821** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000822*/
danielk1977266664d2006-02-10 08:24:21 +0000823static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000824 int nPagesPerMapPage;
825 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000826 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000827 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000828 nPagesPerMapPage = (pBt->usableSize/5)+1;
829 iPtrMap = (pgno-2)/nPagesPerMapPage;
830 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000831 if( ret==PENDING_BYTE_PAGE(pBt) ){
832 ret++;
833 }
834 return ret;
835}
danielk1977a19df672004-11-03 11:37:07 +0000836
danielk1977afcdd022004-10-31 16:25:42 +0000837/*
danielk1977afcdd022004-10-31 16:25:42 +0000838** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000839**
840** This routine updates the pointer map entry for page number 'key'
841** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000842**
843** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
844** a no-op. If an error occurs, the appropriate error code is written
845** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000846*/
drh98add2e2009-07-20 17:11:49 +0000847static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000848 DbPage *pDbPage; /* The pointer map page */
849 u8 *pPtrmap; /* The pointer map data */
850 Pgno iPtrmap; /* The pointer map page number */
851 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000852 int rc; /* Return code from subfunctions */
853
854 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000855
drh1fee73e2007-08-29 04:00:57 +0000856 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000857 /* The master-journal page number must never be used as a pointer map page */
858 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
859
danielk1977ac11ee62005-01-15 12:45:51 +0000860 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000861 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000862 *pRC = SQLITE_CORRUPT_BKPT;
863 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000864 }
danielk1977266664d2006-02-10 08:24:21 +0000865 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000866 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000867 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000868 *pRC = rc;
869 return;
danielk1977afcdd022004-10-31 16:25:42 +0000870 }
danielk19778c666b12008-07-18 09:34:57 +0000871 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000872 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000873 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000874 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000875 }
drhfc243732011-05-17 15:21:56 +0000876 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000877 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000878
drh615ae552005-01-16 23:21:00 +0000879 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
880 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000881 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000882 if( rc==SQLITE_OK ){
883 pPtrmap[offset] = eType;
884 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000885 }
danielk1977afcdd022004-10-31 16:25:42 +0000886 }
887
drh4925a552009-07-07 11:39:58 +0000888ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000889 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000890}
891
892/*
893** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000894**
895** This routine retrieves the pointer map entry for page 'key', writing
896** the type and parent page number to *pEType and *pPgno respectively.
897** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000898*/
danielk1977aef0bf62005-12-30 16:28:01 +0000899static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000900 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000901 int iPtrmap; /* Pointer map page index */
902 u8 *pPtrmap; /* Pointer map page data */
903 int offset; /* Offset of entry in pointer map */
904 int rc;
905
drh1fee73e2007-08-29 04:00:57 +0000906 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000907
danielk1977266664d2006-02-10 08:24:21 +0000908 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000909 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000910 if( rc!=0 ){
911 return rc;
912 }
danielk19773b8a05f2007-03-19 17:44:26 +0000913 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000914
danielk19778c666b12008-07-18 09:34:57 +0000915 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000916 if( offset<0 ){
917 sqlite3PagerUnref(pDbPage);
918 return SQLITE_CORRUPT_BKPT;
919 }
920 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000921 assert( pEType!=0 );
922 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000923 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000924
danielk19773b8a05f2007-03-19 17:44:26 +0000925 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000926 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000927 return SQLITE_OK;
928}
929
danielk197785d90ca2008-07-19 14:25:15 +0000930#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000931 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000932 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000933 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000934#endif
danielk1977afcdd022004-10-31 16:25:42 +0000935
drh0d316a42002-08-11 20:10:47 +0000936/*
drh271efa52004-05-30 19:19:05 +0000937** Given a btree page and a cell index (0 means the first cell on
938** the page, 1 means the second cell, and so forth) return a pointer
939** to the cell content.
940**
941** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000942*/
drh1688c862008-07-18 02:44:17 +0000943#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000944 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000945#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
946
drh43605152004-05-29 21:46:49 +0000947
948/*
drh93a960a2008-07-10 00:32:42 +0000949** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000950** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000951*/
952static u8 *findOverflowCell(MemPage *pPage, int iCell){
953 int i;
drh1fee73e2007-08-29 04:00:57 +0000954 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000955 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000956 int k;
drh2cbd78b2012-02-02 19:37:18 +0000957 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000958 if( k<=iCell ){
959 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000960 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000961 }
962 iCell--;
963 }
964 }
danielk19771cc5ed82007-05-16 17:28:43 +0000965 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000966}
967
968/*
969** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000970** are two versions of this function. btreeParseCell() takes a
971** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000972** takes a pointer to the body of the cell as its second argument.
drh43605152004-05-29 21:46:49 +0000973*/
danielk197730548662009-07-09 05:07:37 +0000974static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000975 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000976 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000977 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000978){
drh3e28ff52014-09-24 00:59:08 +0000979 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +0000980 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000981
drh1fee73e2007-08-29 04:00:57 +0000982 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +0000983 assert( pPage->leaf==0 || pPage->leaf==1 );
drh3e28ff52014-09-24 00:59:08 +0000984 if( pPage->intKeyLeaf ){
985 assert( pPage->childPtrSize==0 );
986 pIter = pCell + getVarint32(pCell, nPayload);
drhab1cc582014-09-23 21:25:19 +0000987 pIter += getVarint(pIter, (u64*)&pInfo->nKey);
drh3e28ff52014-09-24 00:59:08 +0000988 }else if( pPage->noPayload ){
989 assert( pPage->childPtrSize==4 );
990 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
991 pInfo->nPayload = 0;
992 pInfo->nLocal = 0;
993 pInfo->iOverflow = 0;
994 pInfo->pPayload = 0;
995 return;
drh504b6982006-01-22 21:52:56 +0000996 }else{
drh3e28ff52014-09-24 00:59:08 +0000997 pIter = pCell + pPage->childPtrSize;
drhab1cc582014-09-23 21:25:19 +0000998 pIter += getVarint32(pIter, nPayload);
drh79df1f42008-07-18 00:57:33 +0000999 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +00001000 }
drh72365832007-03-06 15:53:44 +00001001 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001002 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001003 testcase( nPayload==pPage->maxLocal );
1004 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001005 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001006 /* This is the (easy) common case where the entire payload fits
1007 ** on the local page. No overflow is required.
1008 */
drhab1cc582014-09-23 21:25:19 +00001009 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1010 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001011 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001012 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001013 }else{
drh271efa52004-05-30 19:19:05 +00001014 /* If the payload will not fit completely on the local page, we have
1015 ** to decide how much to store locally and how much to spill onto
1016 ** overflow pages. The strategy is to minimize the amount of unused
1017 ** space on overflow pages while keeping the amount of local storage
1018 ** in between minLocal and maxLocal.
1019 **
1020 ** Warning: changing the way overflow payload is distributed in any
1021 ** way will result in an incompatible file format.
1022 */
1023 int minLocal; /* Minimum amount of payload held locally */
1024 int maxLocal; /* Maximum amount of payload held locally */
1025 int surplus; /* Overflow payload available for local storage */
1026
1027 minLocal = pPage->minLocal;
1028 maxLocal = pPage->maxLocal;
1029 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001030 testcase( surplus==maxLocal );
1031 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +00001032 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +00001033 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +00001034 }else{
drhf49661a2008-12-10 16:45:50 +00001035 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +00001036 }
drhab1cc582014-09-23 21:25:19 +00001037 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
drh6f11bef2004-05-13 01:12:56 +00001038 pInfo->nSize = pInfo->iOverflow + 4;
1039 }
drh3aac2dd2004-04-26 14:10:20 +00001040}
danielk197730548662009-07-09 05:07:37 +00001041static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001042 MemPage *pPage, /* Page containing the cell */
1043 int iCell, /* The cell index. First cell is 0 */
1044 CellInfo *pInfo /* Fill in this structure */
1045){
drhc4683832014-09-23 23:12:53 +00001046 btreeParseCellPtr(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001047}
drh3aac2dd2004-04-26 14:10:20 +00001048
1049/*
drh43605152004-05-29 21:46:49 +00001050** Compute the total number of bytes that a Cell needs in the cell
1051** data area of the btree-page. The return number includes the cell
1052** data header and the local payload, but not any overflow page or
1053** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001054*/
danielk1977ae5558b2009-04-29 11:31:47 +00001055static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001056 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1057 u8 *pEnd; /* End mark for a varint */
1058 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001059
1060#ifdef SQLITE_DEBUG
1061 /* The value returned by this function should always be the same as
1062 ** the (CellInfo.nSize) value found by doing a full parse of the
1063 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1064 ** this function verifies that this invariant is not violated. */
1065 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001066 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001067#endif
1068
drh3e28ff52014-09-24 00:59:08 +00001069 if( pPage->noPayload ){
1070 pEnd = &pIter[9];
1071 while( (*pIter++)&0x80 && pIter<pEnd );
1072 assert( pPage->childPtrSize==4 );
1073 return (u16)(pIter - pCell);
drhdc41d602014-09-22 19:51:35 +00001074 }
drh3e28ff52014-09-24 00:59:08 +00001075 nSize = *pIter;
1076 if( nSize>=0x80 ){
1077 pEnd = &pIter[9];
1078 nSize &= 0x7f;
1079 do{
1080 nSize = (nSize<<7) | (*++pIter & 0x7f);
1081 }while( *(pIter)>=0x80 && pIter<pEnd );
1082 }
1083 pIter++;
drhdc41d602014-09-22 19:51:35 +00001084 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001085 /* pIter now points at the 64-bit integer key value, a variable length
1086 ** integer. The following block moves pIter to point at the first byte
1087 ** past the end of the key value. */
1088 pEnd = &pIter[9];
1089 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001090 }
drh0a45c272009-07-08 01:49:11 +00001091 testcase( nSize==pPage->maxLocal );
1092 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001093 if( nSize<=pPage->maxLocal ){
1094 nSize += (u32)(pIter - pCell);
1095 if( nSize<4 ) nSize = 4;
1096 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001097 int minLocal = pPage->minLocal;
1098 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001099 testcase( nSize==pPage->maxLocal );
1100 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001101 if( nSize>pPage->maxLocal ){
1102 nSize = minLocal;
1103 }
drh3e28ff52014-09-24 00:59:08 +00001104 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001105 }
drhdc41d602014-09-22 19:51:35 +00001106 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001107 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001108}
drh0ee3dbe2009-10-16 15:05:18 +00001109
1110#ifdef SQLITE_DEBUG
1111/* This variation on cellSizePtr() is used inside of assert() statements
1112** only. */
drha9121e42008-02-19 14:59:35 +00001113static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001114 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001115}
danielk1977bc6ada42004-06-30 08:20:16 +00001116#endif
drh3b7511c2001-05-26 13:15:44 +00001117
danielk197779a40da2005-01-16 08:00:01 +00001118#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001119/*
danielk197726836652005-01-17 01:33:13 +00001120** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001121** to an overflow page, insert an entry into the pointer-map
1122** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001123*/
drh98add2e2009-07-20 17:11:49 +00001124static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001125 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001126 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001127 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001128 btreeParseCellPtr(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001129 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001130 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001131 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001132 }
danielk1977ac11ee62005-01-15 12:45:51 +00001133}
danielk197779a40da2005-01-16 08:00:01 +00001134#endif
1135
danielk1977ac11ee62005-01-15 12:45:51 +00001136
drhda200cc2004-05-09 11:51:38 +00001137/*
drh72f82862001-05-24 21:06:34 +00001138** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001139** end of the page and all free space is collected into one
1140** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001141** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001142*/
shane0af3f892008-11-12 04:55:34 +00001143static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001144 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001145 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001146 int hdr; /* Offset to the page header */
1147 int size; /* Size of a cell */
1148 int usableSize; /* Number of usable bytes on a page */
1149 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001150 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001151 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001152 unsigned char *data; /* The page data */
1153 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001154 int iCellFirst; /* First allowable cell index */
1155 int iCellLast; /* Last possible cell index */
1156
drh2af926b2001-05-15 00:39:25 +00001157
danielk19773b8a05f2007-03-19 17:44:26 +00001158 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001159 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001160 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001161 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001162 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001163 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001164 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001165 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001166 cellOffset = pPage->cellOffset;
1167 nCell = pPage->nCell;
1168 assert( nCell==get2byte(&data[hdr+3]) );
1169 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001170 cbrk = get2byte(&data[hdr+5]);
1171 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1172 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001173 iCellFirst = cellOffset + 2*nCell;
1174 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001175 for(i=0; i<nCell; i++){
1176 u8 *pAddr; /* The i-th cell pointer */
1177 pAddr = &data[cellOffset + i*2];
1178 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001179 testcase( pc==iCellFirst );
1180 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001181#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001182 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001183 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1184 */
1185 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001186 return SQLITE_CORRUPT_BKPT;
1187 }
drh17146622009-07-07 17:38:38 +00001188#endif
1189 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001190 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001191 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001192#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1193 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001194 return SQLITE_CORRUPT_BKPT;
1195 }
drh17146622009-07-07 17:38:38 +00001196#else
1197 if( cbrk<iCellFirst || pc+size>usableSize ){
1198 return SQLITE_CORRUPT_BKPT;
1199 }
1200#endif
drh7157e1d2009-07-09 13:25:32 +00001201 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001202 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001203 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001204 memcpy(&data[cbrk], &temp[pc], size);
1205 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001206 }
drh17146622009-07-07 17:38:38 +00001207 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001208 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001209 data[hdr+1] = 0;
1210 data[hdr+2] = 0;
1211 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001212 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001213 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001214 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001215 return SQLITE_CORRUPT_BKPT;
1216 }
shane0af3f892008-11-12 04:55:34 +00001217 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001218}
1219
drha059ad02001-04-17 20:09:11 +00001220/*
danielk19776011a752009-04-01 16:25:32 +00001221** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001222** as the first argument. Write into *pIdx the index into pPage->aData[]
1223** of the first byte of allocated space. Return either SQLITE_OK or
1224** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001225**
drh0a45c272009-07-08 01:49:11 +00001226** The caller guarantees that there is sufficient space to make the
1227** allocation. This routine might need to defragment in order to bring
1228** all the space together, however. This routine will avoid using
1229** the first two bytes past the cell pointer area since presumably this
1230** allocation is being made in order to insert a new cell, so we will
1231** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001232*/
drh0a45c272009-07-08 01:49:11 +00001233static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001234 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1235 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001236 int top; /* First byte of cell content area */
1237 int gap; /* First byte of gap between cell pointers and cell content */
1238 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001239 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001240
danielk19773b8a05f2007-03-19 17:44:26 +00001241 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001242 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001243 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001244 assert( nByte>=0 ); /* Minimum cell size is 4 */
1245 assert( pPage->nFree>=nByte );
1246 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001247 usableSize = pPage->pBt->usableSize;
1248 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001249
drh0a45c272009-07-08 01:49:11 +00001250 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1251 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001252 assert( gap<=65536 );
1253 top = get2byte(&data[hdr+5]);
1254 if( gap>top ){
1255 if( top==0 ){
1256 top = 65536;
1257 }else{
1258 return SQLITE_CORRUPT_BKPT;
1259 }
1260 }
drh4c04f3c2014-08-20 11:56:14 +00001261
1262 /* If there is enough space between gap and top for one more cell pointer
1263 ** array entry offset, and if the freelist is not empty, then search the
1264 ** freelist looking for a free slot big enough to satisfy the request.
1265 */
drh0a45c272009-07-08 01:49:11 +00001266 testcase( gap+2==top );
1267 testcase( gap+1==top );
1268 testcase( gap==top );
drh4c04f3c2014-08-20 11:56:14 +00001269 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
danielk19776011a752009-04-01 16:25:32 +00001270 int pc, addr;
1271 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001272 int size; /* Size of the free slot */
1273 if( pc>usableSize-4 || pc<addr+4 ){
1274 return SQLITE_CORRUPT_BKPT;
1275 }
1276 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001277 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001278 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001279 testcase( x==4 );
1280 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001281 if( x<4 ){
drh4c04f3c2014-08-20 11:56:14 +00001282 if( data[hdr+7]>=60 ) goto defragment_page;
danielk1977fad91942009-04-29 17:49:59 +00001283 /* Remove the slot from the free-list. Update the number of
1284 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001285 memcpy(&data[addr], &data[pc], 2);
drh75b31dc2014-08-20 00:54:46 +00001286 data[hdr+7] += (u8)x;
drh00ce3942009-12-06 03:35:51 +00001287 }else if( size+pc > usableSize ){
1288 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001289 }else{
danielk1977fad91942009-04-29 17:49:59 +00001290 /* The slot remains on the free-list. Reduce its size to account
1291 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001292 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001293 }
drh0a45c272009-07-08 01:49:11 +00001294 *pIdx = pc + x;
1295 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001296 }
drh9e572e62004-04-23 23:43:10 +00001297 }
1298 }
drh43605152004-05-29 21:46:49 +00001299
drh4c04f3c2014-08-20 11:56:14 +00001300 /* The request could not be fulfilled using a freelist slot. Check
1301 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001302 */
1303 testcase( gap+2+nByte==top );
1304 if( gap+2+nByte>top ){
drh4c04f3c2014-08-20 11:56:14 +00001305defragment_page:
drh90555262014-08-20 13:17:43 +00001306 testcase( pPage->nCell==0 );
drh0a45c272009-07-08 01:49:11 +00001307 rc = defragmentPage(pPage);
1308 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001309 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001310 assert( gap+nByte<=top );
1311 }
1312
1313
drh43605152004-05-29 21:46:49 +00001314 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001315 ** and the cell content area. The btreeInitPage() call has already
1316 ** validated the freelist. Given that the freelist is valid, there
1317 ** is no way that the allocation can extend off the end of the page.
1318 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001319 */
drh0a45c272009-07-08 01:49:11 +00001320 top -= nByte;
drh43605152004-05-29 21:46:49 +00001321 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001322 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001323 *pIdx = top;
1324 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001325}
1326
1327/*
drh9e572e62004-04-23 23:43:10 +00001328** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001329** The first byte of the new free block is pPage->aData[iStart]
1330** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001331**
drh5f5c7532014-08-20 17:56:27 +00001332** Adjacent freeblocks are coalesced.
1333**
1334** Note that even though the freeblock list was checked by btreeInitPage(),
1335** that routine will not detect overlap between cells or freeblocks. Nor
1336** does it detect cells or freeblocks that encrouch into the reserved bytes
1337** at the end of the page. So do additional corruption checks inside this
1338** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001339*/
drh5f5c7532014-08-20 17:56:27 +00001340static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001341 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001342 u16 iFreeBlk; /* Address of the next freeblock */
1343 u8 hdr; /* Page header size. 0 or 100 */
1344 u8 nFrag = 0; /* Reduction in fragmentation */
1345 u16 iOrigSize = iSize; /* Original value of iSize */
1346 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1347 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001348 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001349
drh9e572e62004-04-23 23:43:10 +00001350 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001351 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh7fb91642014-08-20 14:37:09 +00001352 assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
drh5f5c7532014-08-20 17:56:27 +00001353 assert( iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001354 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001355 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001356 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001357
drh5f5c7532014-08-20 17:56:27 +00001358 /* Overwrite deleted information with zeros when the secure_delete
1359 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001360 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001361 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001362 }
drhfcce93f2006-02-22 03:08:32 +00001363
drh5f5c7532014-08-20 17:56:27 +00001364 /* The list of freeblocks must be in ascending order. Find the
1365 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001366 */
drh43605152004-05-29 21:46:49 +00001367 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001368 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001369 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1370 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1371 }else{
1372 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1373 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1374 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001375 }
drh7bc4c452014-08-20 18:43:44 +00001376 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1377 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1378
1379 /* At this point:
1380 ** iFreeBlk: First freeblock after iStart, or zero if none
1381 ** iPtr: The address of a pointer iFreeBlk
1382 **
1383 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1384 */
1385 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1386 nFrag = iFreeBlk - iEnd;
1387 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1388 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1389 iSize = iEnd - iStart;
1390 iFreeBlk = get2byte(&data[iFreeBlk]);
1391 }
1392
drh3f387402014-09-24 01:23:00 +00001393 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1394 ** pointer in the page header) then check to see if iStart should be
1395 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001396 */
1397 if( iPtr>hdr+1 ){
1398 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1399 if( iPtrEnd+3>=iStart ){
1400 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1401 nFrag += iStart - iPtrEnd;
1402 iSize = iEnd - iPtr;
1403 iStart = iPtr;
1404 }
1405 }
1406 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1407 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001408 }
drh7bc4c452014-08-20 18:43:44 +00001409 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001410 /* The new freeblock is at the beginning of the cell content area,
1411 ** so just extend the cell content area rather than create another
1412 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001413 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001414 put2byte(&data[hdr+1], iFreeBlk);
1415 put2byte(&data[hdr+5], iEnd);
1416 }else{
1417 /* Insert the new freeblock into the freelist */
1418 put2byte(&data[iPtr], iStart);
1419 put2byte(&data[iStart], iFreeBlk);
1420 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001421 }
drh5f5c7532014-08-20 17:56:27 +00001422 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001423 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001424}
1425
1426/*
drh271efa52004-05-30 19:19:05 +00001427** Decode the flags byte (the first byte of the header) for a page
1428** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001429**
1430** Only the following combinations are supported. Anything different
1431** indicates a corrupt database files:
1432**
1433** PTF_ZERODATA
1434** PTF_ZERODATA | PTF_LEAF
1435** PTF_LEAFDATA | PTF_INTKEY
1436** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001437*/
drh44845222008-07-17 18:39:57 +00001438static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001439 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001440
1441 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001442 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001443 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001444 flagByte &= ~PTF_LEAF;
1445 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001446 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001447 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1448 pPage->intKey = 1;
drh3e28ff52014-09-24 00:59:08 +00001449 pPage->intKeyLeaf = pPage->leaf;
1450 pPage->noPayload = !pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001451 pPage->maxLocal = pBt->maxLeaf;
1452 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001453 }else if( flagByte==PTF_ZERODATA ){
1454 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001455 pPage->intKeyLeaf = 0;
1456 pPage->noPayload = 0;
drh271efa52004-05-30 19:19:05 +00001457 pPage->maxLocal = pBt->maxLocal;
1458 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001459 }else{
1460 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001461 }
drhc9166342012-01-05 23:32:06 +00001462 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001463 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001464}
1465
1466/*
drh7e3b0a02001-04-28 16:52:40 +00001467** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001468**
1469** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001470** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001471** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1472** guarantee that the page is well-formed. It only shows that
1473** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001474*/
danielk197730548662009-07-09 05:07:37 +00001475static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001476
danielk197771d5d2c2008-09-29 11:49:47 +00001477 assert( pPage->pBt!=0 );
1478 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001479 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001480 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1481 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001482
1483 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001484 u16 pc; /* Address of a freeblock within pPage->aData[] */
1485 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001486 u8 *data; /* Equal to pPage->aData */
1487 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001488 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001489 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001490 int nFree; /* Number of unused bytes on the page */
1491 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001492 int iCellFirst; /* First allowable cell or freeblock offset */
1493 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001494
1495 pBt = pPage->pBt;
1496
danielk1977eaa06f62008-09-18 17:34:44 +00001497 hdr = pPage->hdrOffset;
1498 data = pPage->aData;
1499 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001500 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1501 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001502 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001503 usableSize = pBt->usableSize;
1504 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001505 pPage->aDataEnd = &data[usableSize];
1506 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001507 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001508 pPage->nCell = get2byte(&data[hdr+3]);
1509 if( pPage->nCell>MX_CELL(pBt) ){
1510 /* To many cells for a single page. The page must be corrupt */
1511 return SQLITE_CORRUPT_BKPT;
1512 }
drhb908d762009-07-08 16:54:40 +00001513 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001514
shane5eff7cf2009-08-10 03:57:58 +00001515 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001516 ** of page when parsing a cell.
1517 **
1518 ** The following block of code checks early to see if a cell extends
1519 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1520 ** returned if it does.
1521 */
drh0a45c272009-07-08 01:49:11 +00001522 iCellFirst = cellOffset + 2*pPage->nCell;
1523 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001524#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001525 {
drh69e931e2009-06-03 21:04:35 +00001526 int i; /* Index into the cell pointer array */
1527 int sz; /* Size of a cell */
1528
drh69e931e2009-06-03 21:04:35 +00001529 if( !pPage->leaf ) iCellLast--;
1530 for(i=0; i<pPage->nCell; i++){
1531 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001532 testcase( pc==iCellFirst );
1533 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001534 if( pc<iCellFirst || pc>iCellLast ){
1535 return SQLITE_CORRUPT_BKPT;
1536 }
1537 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001538 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001539 if( pc+sz>usableSize ){
1540 return SQLITE_CORRUPT_BKPT;
1541 }
1542 }
drh0a45c272009-07-08 01:49:11 +00001543 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001544 }
1545#endif
1546
danielk1977eaa06f62008-09-18 17:34:44 +00001547 /* Compute the total free space on the page */
1548 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001549 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001550 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001551 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001552 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001553 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001554 return SQLITE_CORRUPT_BKPT;
1555 }
1556 next = get2byte(&data[pc]);
1557 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001558 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1559 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001560 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001561 return SQLITE_CORRUPT_BKPT;
1562 }
shane85095702009-06-15 16:27:08 +00001563 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001564 pc = next;
1565 }
danielk197793c829c2009-06-03 17:26:17 +00001566
1567 /* At this point, nFree contains the sum of the offset to the start
1568 ** of the cell-content area plus the number of free bytes within
1569 ** the cell-content area. If this is greater than the usable-size
1570 ** of the page, then the page must be corrupted. This check also
1571 ** serves to verify that the offset to the start of the cell-content
1572 ** area, according to the page header, lies within the page.
1573 */
1574 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001575 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001576 }
shane5eff7cf2009-08-10 03:57:58 +00001577 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001578 pPage->isInit = 1;
1579 }
drh9e572e62004-04-23 23:43:10 +00001580 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001581}
1582
1583/*
drh8b2f49b2001-06-08 00:21:52 +00001584** Set up a raw page so that it looks like a database page holding
1585** no entries.
drhbd03cae2001-06-02 02:40:57 +00001586*/
drh9e572e62004-04-23 23:43:10 +00001587static void zeroPage(MemPage *pPage, int flags){
1588 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001589 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001590 u8 hdr = pPage->hdrOffset;
1591 u16 first;
drh9e572e62004-04-23 23:43:10 +00001592
danielk19773b8a05f2007-03-19 17:44:26 +00001593 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001594 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1595 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001596 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001597 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001598 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001599 memset(&data[hdr], 0, pBt->usableSize - hdr);
1600 }
drh1bd10f82008-12-10 21:19:56 +00001601 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001602 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001603 memset(&data[hdr+1], 0, 4);
1604 data[hdr+7] = 0;
1605 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001606 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001607 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001608 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001609 pPage->aDataEnd = &data[pBt->usableSize];
1610 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001611 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001612 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1613 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001614 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001615 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001616}
1617
drh897a8202008-09-18 01:08:15 +00001618
1619/*
1620** Convert a DbPage obtained from the pager into a MemPage used by
1621** the btree layer.
1622*/
1623static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1624 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1625 pPage->aData = sqlite3PagerGetData(pDbPage);
1626 pPage->pDbPage = pDbPage;
1627 pPage->pBt = pBt;
1628 pPage->pgno = pgno;
1629 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1630 return pPage;
1631}
1632
drhbd03cae2001-06-02 02:40:57 +00001633/*
drh3aac2dd2004-04-26 14:10:20 +00001634** Get a page from the pager. Initialize the MemPage.pBt and
1635** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001636**
1637** If the noContent flag is set, it means that we do not care about
1638** the content of the page at this time. So do not go to the disk
1639** to fetch the content. Just fill in the content with zeros for now.
1640** If in the future we call sqlite3PagerWrite() on this page, that
1641** means we have started to be concerned about content and the disk
1642** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001643*/
danielk197730548662009-07-09 05:07:37 +00001644static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001645 BtShared *pBt, /* The btree */
1646 Pgno pgno, /* Number of the page to fetch */
1647 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001648 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001649){
drh3aac2dd2004-04-26 14:10:20 +00001650 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001651 DbPage *pDbPage;
1652
drhb00fc3b2013-08-21 23:42:32 +00001653 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001654 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001655 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001656 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001657 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001658 return SQLITE_OK;
1659}
1660
1661/*
danielk1977bea2a942009-01-20 17:06:27 +00001662** Retrieve a page from the pager cache. If the requested page is not
1663** already in the pager cache return NULL. Initialize the MemPage.pBt and
1664** MemPage.aData elements if needed.
1665*/
1666static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1667 DbPage *pDbPage;
1668 assert( sqlite3_mutex_held(pBt->mutex) );
1669 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1670 if( pDbPage ){
1671 return btreePageFromDbPage(pDbPage, pgno, pBt);
1672 }
1673 return 0;
1674}
1675
1676/*
danielk197789d40042008-11-17 14:20:56 +00001677** Return the size of the database file in pages. If there is any kind of
1678** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001679*/
drhb1299152010-03-30 22:58:33 +00001680static Pgno btreePagecount(BtShared *pBt){
1681 return pBt->nPage;
1682}
1683u32 sqlite3BtreeLastPage(Btree *p){
1684 assert( sqlite3BtreeHoldsMutex(p) );
1685 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001686 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001687}
1688
1689/*
danielk197789bc4bc2009-07-21 19:25:24 +00001690** Get a page from the pager and initialize it. This routine is just a
1691** convenience wrapper around separate calls to btreeGetPage() and
1692** btreeInitPage().
1693**
1694** If an error occurs, then the value *ppPage is set to is undefined. It
1695** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001696*/
1697static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001698 BtShared *pBt, /* The database file */
1699 Pgno pgno, /* Number of the page to get */
1700 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001701 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001702){
1703 int rc;
drh1fee73e2007-08-29 04:00:57 +00001704 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001705 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001706
danba3cbf32010-06-30 04:29:03 +00001707 if( pgno>btreePagecount(pBt) ){
1708 rc = SQLITE_CORRUPT_BKPT;
1709 }else{
drhb00fc3b2013-08-21 23:42:32 +00001710 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001711 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001712 rc = btreeInitPage(*ppPage);
1713 if( rc!=SQLITE_OK ){
1714 releasePage(*ppPage);
1715 }
danielk197789bc4bc2009-07-21 19:25:24 +00001716 }
drhee696e22004-08-30 16:52:17 +00001717 }
danba3cbf32010-06-30 04:29:03 +00001718
1719 testcase( pgno==0 );
1720 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001721 return rc;
1722}
1723
1724/*
drh3aac2dd2004-04-26 14:10:20 +00001725** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001726** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001727*/
drh4b70f112004-05-02 21:12:19 +00001728static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001729 if( pPage ){
1730 assert( pPage->aData );
1731 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001732 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001733 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1734 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001735 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001736 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001737 }
1738}
1739
1740/*
drha6abd042004-06-09 17:37:22 +00001741** During a rollback, when the pager reloads information into the cache
1742** so that the cache is restored to its original state at the start of
1743** the transaction, for each page restored this routine is called.
1744**
1745** This routine needs to reset the extra data section at the end of the
1746** page to agree with the restored data.
1747*/
danielk1977eaa06f62008-09-18 17:34:44 +00001748static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001749 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001750 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001751 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001752 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001753 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001754 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001755 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001756 /* pPage might not be a btree page; it might be an overflow page
1757 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001758 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001759 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001760 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001761 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001762 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001763 }
drha6abd042004-06-09 17:37:22 +00001764 }
1765}
1766
1767/*
drhe5fe6902007-12-07 18:55:28 +00001768** Invoke the busy handler for a btree.
1769*/
danielk19771ceedd32008-11-19 10:22:33 +00001770static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001771 BtShared *pBt = (BtShared*)pArg;
1772 assert( pBt->db );
1773 assert( sqlite3_mutex_held(pBt->db->mutex) );
1774 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1775}
1776
1777/*
drhad3e0102004-09-03 23:32:18 +00001778** Open a database file.
1779**
drh382c0242001-10-06 16:33:02 +00001780** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001781** then an ephemeral database is created. The ephemeral database might
1782** be exclusively in memory, or it might use a disk-based memory cache.
1783** Either way, the ephemeral database will be automatically deleted
1784** when sqlite3BtreeClose() is called.
1785**
drhe53831d2007-08-17 01:14:38 +00001786** If zFilename is ":memory:" then an in-memory database is created
1787** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001788**
drh33f111d2012-01-17 15:29:14 +00001789** The "flags" parameter is a bitmask that might contain bits like
1790** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001791**
drhc47fd8e2009-04-30 13:30:32 +00001792** If the database is already opened in the same database connection
1793** and we are in shared cache mode, then the open will fail with an
1794** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1795** objects in the same database connection since doing so will lead
1796** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001797*/
drh23e11ca2004-05-04 17:27:28 +00001798int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001799 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001800 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001801 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001802 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001803 int flags, /* Options */
1804 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001805){
drh7555d8e2009-03-20 13:15:30 +00001806 BtShared *pBt = 0; /* Shared part of btree structure */
1807 Btree *p; /* Handle to return */
1808 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1809 int rc = SQLITE_OK; /* Result code from this function */
1810 u8 nReserve; /* Byte of unused space on each page */
1811 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001812
drh75c014c2010-08-30 15:02:28 +00001813 /* True if opening an ephemeral, temporary database */
1814 const int isTempDb = zFilename==0 || zFilename[0]==0;
1815
danielk1977aef0bf62005-12-30 16:28:01 +00001816 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001817 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001818 */
drhb0a7c9c2010-12-06 21:09:59 +00001819#ifdef SQLITE_OMIT_MEMORYDB
1820 const int isMemdb = 0;
1821#else
1822 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001823 || (isTempDb && sqlite3TempInMemory(db))
1824 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001825#endif
1826
drhe5fe6902007-12-07 18:55:28 +00001827 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001828 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001829 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001830 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1831
1832 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1833 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1834
1835 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1836 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001837
drh75c014c2010-08-30 15:02:28 +00001838 if( isMemdb ){
1839 flags |= BTREE_MEMORY;
1840 }
1841 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1842 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1843 }
drh17435752007-08-16 04:30:38 +00001844 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001845 if( !p ){
1846 return SQLITE_NOMEM;
1847 }
1848 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001849 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001850#ifndef SQLITE_OMIT_SHARED_CACHE
1851 p->lock.pBtree = p;
1852 p->lock.iTable = 1;
1853#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001854
drh198bf392006-01-06 21:52:49 +00001855#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001856 /*
1857 ** If this Btree is a candidate for shared cache, try to find an
1858 ** existing BtShared object that we can share with
1859 */
drh4ab9d252012-05-26 20:08:49 +00001860 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001861 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001862 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001863 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001864 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001865 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001866 if( !zFullPathname ){
1867 sqlite3_free(p);
1868 return SQLITE_NOMEM;
1869 }
drhafc8b7f2012-05-26 18:06:38 +00001870 if( isMemdb ){
1871 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1872 }else{
1873 rc = sqlite3OsFullPathname(pVfs, zFilename,
1874 nFullPathname, zFullPathname);
1875 if( rc ){
1876 sqlite3_free(zFullPathname);
1877 sqlite3_free(p);
1878 return rc;
1879 }
drh070ad6b2011-11-17 11:43:19 +00001880 }
drh30ddce62011-10-15 00:16:30 +00001881#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001882 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1883 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001884 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001885 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001886#endif
drh78f82d12008-09-02 00:52:52 +00001887 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001888 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001889 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001890 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001891 int iDb;
1892 for(iDb=db->nDb-1; iDb>=0; iDb--){
1893 Btree *pExisting = db->aDb[iDb].pBt;
1894 if( pExisting && pExisting->pBt==pBt ){
1895 sqlite3_mutex_leave(mutexShared);
1896 sqlite3_mutex_leave(mutexOpen);
1897 sqlite3_free(zFullPathname);
1898 sqlite3_free(p);
1899 return SQLITE_CONSTRAINT;
1900 }
1901 }
drhff0587c2007-08-29 17:43:19 +00001902 p->pBt = pBt;
1903 pBt->nRef++;
1904 break;
1905 }
1906 }
1907 sqlite3_mutex_leave(mutexShared);
1908 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001909 }
drhff0587c2007-08-29 17:43:19 +00001910#ifdef SQLITE_DEBUG
1911 else{
1912 /* In debug mode, we mark all persistent databases as sharable
1913 ** even when they are not. This exercises the locking code and
1914 ** gives more opportunity for asserts(sqlite3_mutex_held())
1915 ** statements to find locking problems.
1916 */
1917 p->sharable = 1;
1918 }
1919#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001920 }
1921#endif
drha059ad02001-04-17 20:09:11 +00001922 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001923 /*
1924 ** The following asserts make sure that structures used by the btree are
1925 ** the right size. This is to guard against size changes that result
1926 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001927 */
drhe53831d2007-08-17 01:14:38 +00001928 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1929 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1930 assert( sizeof(u32)==4 );
1931 assert( sizeof(u16)==2 );
1932 assert( sizeof(Pgno)==4 );
1933
1934 pBt = sqlite3MallocZero( sizeof(*pBt) );
1935 if( pBt==0 ){
1936 rc = SQLITE_NOMEM;
1937 goto btree_open_out;
1938 }
danielk197771d5d2c2008-09-29 11:49:47 +00001939 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001940 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001941 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00001942 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00001943 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1944 }
1945 if( rc!=SQLITE_OK ){
1946 goto btree_open_out;
1947 }
shanehbd2aaf92010-09-01 02:38:21 +00001948 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001949 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001950 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001951 p->pBt = pBt;
1952
drhe53831d2007-08-17 01:14:38 +00001953 pBt->pCursor = 0;
1954 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001955 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001956#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001957 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001958#endif
drhb2eced52010-08-12 02:41:12 +00001959 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001960 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1961 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001962 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001963#ifndef SQLITE_OMIT_AUTOVACUUM
1964 /* If the magic name ":memory:" will create an in-memory database, then
1965 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1966 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1967 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1968 ** regular file-name. In this case the auto-vacuum applies as per normal.
1969 */
1970 if( zFilename && !isMemdb ){
1971 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1972 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1973 }
1974#endif
1975 nReserve = 0;
1976 }else{
1977 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001978 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001979#ifndef SQLITE_OMIT_AUTOVACUUM
1980 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1981 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1982#endif
1983 }
drhfa9601a2009-06-18 17:22:39 +00001984 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001985 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001986 pBt->usableSize = pBt->pageSize - nReserve;
1987 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001988
1989#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1990 /* Add the new BtShared object to the linked list sharable BtShareds.
1991 */
1992 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001993 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001994 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001995 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001996 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001997 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001998 if( pBt->mutex==0 ){
1999 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002000 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002001 goto btree_open_out;
2002 }
drhff0587c2007-08-29 17:43:19 +00002003 }
drhe53831d2007-08-17 01:14:38 +00002004 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002005 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2006 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002007 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002008 }
drheee46cf2004-11-06 00:02:48 +00002009#endif
drh90f5ecb2004-07-22 01:19:35 +00002010 }
danielk1977aef0bf62005-12-30 16:28:01 +00002011
drhcfed7bc2006-03-13 14:28:05 +00002012#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002013 /* If the new Btree uses a sharable pBtShared, then link the new
2014 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002015 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002016 */
drhe53831d2007-08-17 01:14:38 +00002017 if( p->sharable ){
2018 int i;
2019 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002020 for(i=0; i<db->nDb; i++){
2021 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002022 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2023 if( p->pBt<pSib->pBt ){
2024 p->pNext = pSib;
2025 p->pPrev = 0;
2026 pSib->pPrev = p;
2027 }else{
drhabddb0c2007-08-20 13:14:28 +00002028 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002029 pSib = pSib->pNext;
2030 }
2031 p->pNext = pSib->pNext;
2032 p->pPrev = pSib;
2033 if( p->pNext ){
2034 p->pNext->pPrev = p;
2035 }
2036 pSib->pNext = p;
2037 }
2038 break;
2039 }
2040 }
danielk1977aef0bf62005-12-30 16:28:01 +00002041 }
danielk1977aef0bf62005-12-30 16:28:01 +00002042#endif
2043 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002044
2045btree_open_out:
2046 if( rc!=SQLITE_OK ){
2047 if( pBt && pBt->pPager ){
2048 sqlite3PagerClose(pBt->pPager);
2049 }
drh17435752007-08-16 04:30:38 +00002050 sqlite3_free(pBt);
2051 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002052 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002053 }else{
2054 /* If the B-Tree was successfully opened, set the pager-cache size to the
2055 ** default value. Except, when opening on an existing shared pager-cache,
2056 ** do not change the pager-cache size.
2057 */
2058 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2059 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2060 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002061 }
drh7555d8e2009-03-20 13:15:30 +00002062 if( mutexOpen ){
2063 assert( sqlite3_mutex_held(mutexOpen) );
2064 sqlite3_mutex_leave(mutexOpen);
2065 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002066 return rc;
drha059ad02001-04-17 20:09:11 +00002067}
2068
2069/*
drhe53831d2007-08-17 01:14:38 +00002070** Decrement the BtShared.nRef counter. When it reaches zero,
2071** remove the BtShared structure from the sharing list. Return
2072** true if the BtShared.nRef counter reaches zero and return
2073** false if it is still positive.
2074*/
2075static int removeFromSharingList(BtShared *pBt){
2076#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002077 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002078 BtShared *pList;
2079 int removed = 0;
2080
drhd677b3d2007-08-20 22:48:41 +00002081 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002082 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002083 sqlite3_mutex_enter(pMaster);
2084 pBt->nRef--;
2085 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002086 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2087 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002088 }else{
drh78f82d12008-09-02 00:52:52 +00002089 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002090 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002091 pList=pList->pNext;
2092 }
drh34004ce2008-07-11 16:15:17 +00002093 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002094 pList->pNext = pBt->pNext;
2095 }
2096 }
drh3285db22007-09-03 22:00:39 +00002097 if( SQLITE_THREADSAFE ){
2098 sqlite3_mutex_free(pBt->mutex);
2099 }
drhe53831d2007-08-17 01:14:38 +00002100 removed = 1;
2101 }
2102 sqlite3_mutex_leave(pMaster);
2103 return removed;
2104#else
2105 return 1;
2106#endif
2107}
2108
2109/*
drhf7141992008-06-19 00:16:08 +00002110** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002111** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2112** pointer.
drhf7141992008-06-19 00:16:08 +00002113*/
2114static void allocateTempSpace(BtShared *pBt){
2115 if( !pBt->pTmpSpace ){
2116 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002117
2118 /* One of the uses of pBt->pTmpSpace is to format cells before
2119 ** inserting them into a leaf page (function fillInCell()). If
2120 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2121 ** by the various routines that manipulate binary cells. Which
2122 ** can mean that fillInCell() only initializes the first 2 or 3
2123 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2124 ** it into a database page. This is not actually a problem, but it
2125 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2126 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002127 ** zero the first 4 bytes of temp space here.
2128 **
2129 ** Also: Provide four bytes of initialized space before the
2130 ** beginning of pTmpSpace as an area available to prepend the
2131 ** left-child pointer to the beginning of a cell.
2132 */
2133 if( pBt->pTmpSpace ){
2134 memset(pBt->pTmpSpace, 0, 8);
2135 pBt->pTmpSpace += 4;
2136 }
drhf7141992008-06-19 00:16:08 +00002137 }
2138}
2139
2140/*
2141** Free the pBt->pTmpSpace allocation
2142*/
2143static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002144 if( pBt->pTmpSpace ){
2145 pBt->pTmpSpace -= 4;
2146 sqlite3PageFree(pBt->pTmpSpace);
2147 pBt->pTmpSpace = 0;
2148 }
drhf7141992008-06-19 00:16:08 +00002149}
2150
2151/*
drha059ad02001-04-17 20:09:11 +00002152** Close an open database and invalidate all cursors.
2153*/
danielk1977aef0bf62005-12-30 16:28:01 +00002154int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002155 BtShared *pBt = p->pBt;
2156 BtCursor *pCur;
2157
danielk1977aef0bf62005-12-30 16:28:01 +00002158 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002159 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002160 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002161 pCur = pBt->pCursor;
2162 while( pCur ){
2163 BtCursor *pTmp = pCur;
2164 pCur = pCur->pNext;
2165 if( pTmp->pBtree==p ){
2166 sqlite3BtreeCloseCursor(pTmp);
2167 }
drha059ad02001-04-17 20:09:11 +00002168 }
danielk1977aef0bf62005-12-30 16:28:01 +00002169
danielk19778d34dfd2006-01-24 16:37:57 +00002170 /* Rollback any active transaction and free the handle structure.
2171 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2172 ** this handle.
2173 */
drh85fabf12014-11-11 22:55:26 +00002174 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002175 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002176
danielk1977aef0bf62005-12-30 16:28:01 +00002177 /* If there are still other outstanding references to the shared-btree
2178 ** structure, return now. The remainder of this procedure cleans
2179 ** up the shared-btree.
2180 */
drhe53831d2007-08-17 01:14:38 +00002181 assert( p->wantToLock==0 && p->locked==0 );
2182 if( !p->sharable || removeFromSharingList(pBt) ){
2183 /* The pBt is no longer on the sharing list, so we can access
2184 ** it without having to hold the mutex.
2185 **
2186 ** Clean out and delete the BtShared object.
2187 */
2188 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002189 sqlite3PagerClose(pBt->pPager);
2190 if( pBt->xFreeSchema && pBt->pSchema ){
2191 pBt->xFreeSchema(pBt->pSchema);
2192 }
drhb9755982010-07-24 16:34:37 +00002193 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002194 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002195 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002196 }
2197
drhe53831d2007-08-17 01:14:38 +00002198#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002199 assert( p->wantToLock==0 );
2200 assert( p->locked==0 );
2201 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2202 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002203#endif
2204
drhe53831d2007-08-17 01:14:38 +00002205 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002206 return SQLITE_OK;
2207}
2208
2209/*
drhda47d772002-12-02 04:25:19 +00002210** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002211**
2212** The maximum number of cache pages is set to the absolute
2213** value of mxPage. If mxPage is negative, the pager will
2214** operate asynchronously - it will not stop to do fsync()s
2215** to insure data is written to the disk surface before
2216** continuing. Transactions still work if synchronous is off,
2217** and the database cannot be corrupted if this program
2218** crashes. But if the operating system crashes or there is
2219** an abrupt power failure when synchronous is off, the database
2220** could be left in an inconsistent and unrecoverable state.
2221** Synchronous is on by default so database corruption is not
2222** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002223*/
danielk1977aef0bf62005-12-30 16:28:01 +00002224int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2225 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002226 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002227 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002228 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002229 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002230 return SQLITE_OK;
2231}
2232
drh18c7e402014-03-14 11:46:10 +00002233#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002234/*
dan5d8a1372013-03-19 19:28:06 +00002235** Change the limit on the amount of the database file that may be
2236** memory mapped.
2237*/
drh9b4c59f2013-04-15 17:03:42 +00002238int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002239 BtShared *pBt = p->pBt;
2240 assert( sqlite3_mutex_held(p->db->mutex) );
2241 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002242 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002243 sqlite3BtreeLeave(p);
2244 return SQLITE_OK;
2245}
drh18c7e402014-03-14 11:46:10 +00002246#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002247
2248/*
drh973b6e32003-02-12 14:09:42 +00002249** Change the way data is synced to disk in order to increase or decrease
2250** how well the database resists damage due to OS crashes and power
2251** failures. Level 1 is the same as asynchronous (no syncs() occur and
2252** there is a high probability of damage) Level 2 is the default. There
2253** is a very low but non-zero probability of damage. Level 3 reduces the
2254** probability of damage to near zero but with a write performance reduction.
2255*/
danielk197793758c82005-01-21 08:13:14 +00002256#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002257int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002258 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002259 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002260){
danielk1977aef0bf62005-12-30 16:28:01 +00002261 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002262 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002263 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002264 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002265 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002266 return SQLITE_OK;
2267}
danielk197793758c82005-01-21 08:13:14 +00002268#endif
drh973b6e32003-02-12 14:09:42 +00002269
drh2c8997b2005-08-27 16:36:48 +00002270/*
2271** Return TRUE if the given btree is set to safety level 1. In other
2272** words, return TRUE if no sync() occurs on the disk files.
2273*/
danielk1977aef0bf62005-12-30 16:28:01 +00002274int sqlite3BtreeSyncDisabled(Btree *p){
2275 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002276 int rc;
drhe5fe6902007-12-07 18:55:28 +00002277 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002278 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002279 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002280 rc = sqlite3PagerNosync(pBt->pPager);
2281 sqlite3BtreeLeave(p);
2282 return rc;
drh2c8997b2005-08-27 16:36:48 +00002283}
2284
drh973b6e32003-02-12 14:09:42 +00002285/*
drh90f5ecb2004-07-22 01:19:35 +00002286** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002287** Or, if the page size has already been fixed, return SQLITE_READONLY
2288** without changing anything.
drh06f50212004-11-02 14:24:33 +00002289**
2290** The page size must be a power of 2 between 512 and 65536. If the page
2291** size supplied does not meet this constraint then the page size is not
2292** changed.
2293**
2294** Page sizes are constrained to be a power of two so that the region
2295** of the database file used for locking (beginning at PENDING_BYTE,
2296** the first byte past the 1GB boundary, 0x40000000) needs to occur
2297** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002298**
2299** If parameter nReserve is less than zero, then the number of reserved
2300** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002301**
drhc9166342012-01-05 23:32:06 +00002302** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002303** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002304*/
drhce4869f2009-04-02 20:16:58 +00002305int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002306 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002307 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002308 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002309 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002310 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002311 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002312 return SQLITE_READONLY;
2313 }
2314 if( nReserve<0 ){
2315 nReserve = pBt->pageSize - pBt->usableSize;
2316 }
drhf49661a2008-12-10 16:45:50 +00002317 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002318 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2319 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002320 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002321 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002322 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002323 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002324 }
drhfa9601a2009-06-18 17:22:39 +00002325 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002326 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002327 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002328 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002329 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002330}
2331
2332/*
2333** Return the currently defined page size
2334*/
danielk1977aef0bf62005-12-30 16:28:01 +00002335int sqlite3BtreeGetPageSize(Btree *p){
2336 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002337}
drh7f751222009-03-17 22:33:00 +00002338
drha1f38532012-10-01 12:44:26 +00002339#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002340/*
2341** This function is similar to sqlite3BtreeGetReserve(), except that it
2342** may only be called if it is guaranteed that the b-tree mutex is already
2343** held.
2344**
2345** This is useful in one special case in the backup API code where it is
2346** known that the shared b-tree mutex is held, but the mutex on the
2347** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2348** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002349** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002350*/
2351int sqlite3BtreeGetReserveNoMutex(Btree *p){
2352 assert( sqlite3_mutex_held(p->pBt->mutex) );
2353 return p->pBt->pageSize - p->pBt->usableSize;
2354}
drha1f38532012-10-01 12:44:26 +00002355#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002356
danbb2b4412011-04-06 17:54:31 +00002357#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002358/*
2359** Return the number of bytes of space at the end of every page that
2360** are intentually left unused. This is the "reserved" space that is
2361** sometimes used by extensions.
2362*/
danielk1977aef0bf62005-12-30 16:28:01 +00002363int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002364 int n;
2365 sqlite3BtreeEnter(p);
2366 n = p->pBt->pageSize - p->pBt->usableSize;
2367 sqlite3BtreeLeave(p);
2368 return n;
drh2011d5f2004-07-22 02:40:37 +00002369}
drhf8e632b2007-05-08 14:51:36 +00002370
2371/*
2372** Set the maximum page count for a database if mxPage is positive.
2373** No changes are made if mxPage is 0 or negative.
2374** Regardless of the value of mxPage, return the maximum page count.
2375*/
2376int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002377 int n;
2378 sqlite3BtreeEnter(p);
2379 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2380 sqlite3BtreeLeave(p);
2381 return n;
drhf8e632b2007-05-08 14:51:36 +00002382}
drh5b47efa2010-02-12 18:18:39 +00002383
2384/*
drhc9166342012-01-05 23:32:06 +00002385** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2386** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002387** setting after the change.
2388*/
2389int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2390 int b;
drhaf034ed2010-02-12 19:46:26 +00002391 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002392 sqlite3BtreeEnter(p);
2393 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002394 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2395 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002396 }
drhc9166342012-01-05 23:32:06 +00002397 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002398 sqlite3BtreeLeave(p);
2399 return b;
2400}
danielk1977576ec6b2005-01-21 11:55:25 +00002401#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002402
2403/*
danielk1977951af802004-11-05 15:45:09 +00002404** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2405** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2406** is disabled. The default value for the auto-vacuum property is
2407** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2408*/
danielk1977aef0bf62005-12-30 16:28:01 +00002409int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002410#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002411 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002412#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002413 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002414 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002415 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002416
2417 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002418 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002419 rc = SQLITE_READONLY;
2420 }else{
drh076d4662009-02-18 20:31:18 +00002421 pBt->autoVacuum = av ?1:0;
2422 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002423 }
drhd677b3d2007-08-20 22:48:41 +00002424 sqlite3BtreeLeave(p);
2425 return rc;
danielk1977951af802004-11-05 15:45:09 +00002426#endif
2427}
2428
2429/*
2430** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2431** enabled 1 is returned. Otherwise 0.
2432*/
danielk1977aef0bf62005-12-30 16:28:01 +00002433int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002434#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002435 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002436#else
drhd677b3d2007-08-20 22:48:41 +00002437 int rc;
2438 sqlite3BtreeEnter(p);
2439 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002440 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2441 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2442 BTREE_AUTOVACUUM_INCR
2443 );
drhd677b3d2007-08-20 22:48:41 +00002444 sqlite3BtreeLeave(p);
2445 return rc;
danielk1977951af802004-11-05 15:45:09 +00002446#endif
2447}
2448
2449
2450/*
drha34b6762004-05-07 13:30:42 +00002451** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002452** also acquire a readlock on that file.
2453**
2454** SQLITE_OK is returned on success. If the file is not a
2455** well-formed database file, then SQLITE_CORRUPT is returned.
2456** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002457** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002458*/
danielk1977aef0bf62005-12-30 16:28:01 +00002459static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002460 int rc; /* Result code from subfunctions */
2461 MemPage *pPage1; /* Page 1 of the database file */
2462 int nPage; /* Number of pages in the database */
2463 int nPageFile = 0; /* Number of pages in the database file */
2464 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002465
drh1fee73e2007-08-29 04:00:57 +00002466 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002467 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002468 rc = sqlite3PagerSharedLock(pBt->pPager);
2469 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002470 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002471 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002472
2473 /* Do some checking to help insure the file we opened really is
2474 ** a valid database file.
2475 */
drhc2a4bab2010-04-02 12:46:45 +00002476 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002477 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002478 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002479 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002480 }
2481 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002482 u32 pageSize;
2483 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002484 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002485 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002486 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002487 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002488 }
dan5cf53532010-05-01 16:40:20 +00002489
2490#ifdef SQLITE_OMIT_WAL
2491 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002492 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002493 }
2494 if( page1[19]>1 ){
2495 goto page1_init_failed;
2496 }
2497#else
dane04dc882010-04-20 18:53:15 +00002498 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002499 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002500 }
dane04dc882010-04-20 18:53:15 +00002501 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002502 goto page1_init_failed;
2503 }
drhe5ae5732008-06-15 02:51:47 +00002504
dana470aeb2010-04-21 11:43:38 +00002505 /* If the write version is set to 2, this database should be accessed
2506 ** in WAL mode. If the log is not already open, open it now. Then
2507 ** return SQLITE_OK and return without populating BtShared.pPage1.
2508 ** The caller detects this and calls this function again. This is
2509 ** required as the version of page 1 currently in the page1 buffer
2510 ** may not be the latest version - there may be a newer one in the log
2511 ** file.
2512 */
drhc9166342012-01-05 23:32:06 +00002513 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002514 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002515 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002516 if( rc!=SQLITE_OK ){
2517 goto page1_init_failed;
2518 }else if( isOpen==0 ){
2519 releasePage(pPage1);
2520 return SQLITE_OK;
2521 }
dan8b5444b2010-04-27 14:37:47 +00002522 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002523 }
dan5cf53532010-05-01 16:40:20 +00002524#endif
dane04dc882010-04-20 18:53:15 +00002525
drhe5ae5732008-06-15 02:51:47 +00002526 /* The maximum embedded fraction must be exactly 25%. And the minimum
2527 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2528 ** The original design allowed these amounts to vary, but as of
2529 ** version 3.6.0, we require them to be fixed.
2530 */
2531 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2532 goto page1_init_failed;
2533 }
drhb2eced52010-08-12 02:41:12 +00002534 pageSize = (page1[16]<<8) | (page1[17]<<16);
2535 if( ((pageSize-1)&pageSize)!=0
2536 || pageSize>SQLITE_MAX_PAGE_SIZE
2537 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002538 ){
drh07d183d2005-05-01 22:52:42 +00002539 goto page1_init_failed;
2540 }
2541 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002542 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002543 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002544 /* After reading the first page of the database assuming a page size
2545 ** of BtShared.pageSize, we have discovered that the page-size is
2546 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2547 ** zero and return SQLITE_OK. The caller will call this function
2548 ** again with the correct page-size.
2549 */
2550 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002551 pBt->usableSize = usableSize;
2552 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002553 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002554 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2555 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002556 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002557 }
danecac6702011-02-09 18:19:20 +00002558 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002559 rc = SQLITE_CORRUPT_BKPT;
2560 goto page1_init_failed;
2561 }
drhb33e1b92009-06-18 11:29:20 +00002562 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002563 goto page1_init_failed;
2564 }
drh43b18e12010-08-17 19:40:08 +00002565 pBt->pageSize = pageSize;
2566 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002567#ifndef SQLITE_OMIT_AUTOVACUUM
2568 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002569 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002570#endif
drh306dc212001-05-21 13:45:10 +00002571 }
drhb6f41482004-05-14 01:58:11 +00002572
2573 /* maxLocal is the maximum amount of payload to store locally for
2574 ** a cell. Make sure it is small enough so that at least minFanout
2575 ** cells can will fit on one page. We assume a 10-byte page header.
2576 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002577 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002578 ** 4-byte child pointer
2579 ** 9-byte nKey value
2580 ** 4-byte nData value
2581 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002582 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002583 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2584 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002585 */
shaneh1df2db72010-08-18 02:28:48 +00002586 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2587 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2588 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2589 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002590 if( pBt->maxLocal>127 ){
2591 pBt->max1bytePayload = 127;
2592 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002593 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002594 }
drh2e38c322004-09-03 18:38:44 +00002595 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002596 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002597 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002598 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002599
drh72f82862001-05-24 21:06:34 +00002600page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002601 releasePage(pPage1);
2602 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002603 return rc;
drh306dc212001-05-21 13:45:10 +00002604}
2605
drh85ec3b62013-05-14 23:12:06 +00002606#ifndef NDEBUG
2607/*
2608** Return the number of cursors open on pBt. This is for use
2609** in assert() expressions, so it is only compiled if NDEBUG is not
2610** defined.
2611**
2612** Only write cursors are counted if wrOnly is true. If wrOnly is
2613** false then all cursors are counted.
2614**
2615** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002616** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002617** have been tripped into the CURSOR_FAULT state are not counted.
2618*/
2619static int countValidCursors(BtShared *pBt, int wrOnly){
2620 BtCursor *pCur;
2621 int r = 0;
2622 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002623 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2624 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002625 }
2626 return r;
2627}
2628#endif
2629
drh306dc212001-05-21 13:45:10 +00002630/*
drhb8ca3072001-12-05 00:21:20 +00002631** If there are no outstanding cursors and we are not in the middle
2632** of a transaction but there is a read lock on the database, then
2633** this routine unrefs the first page of the database file which
2634** has the effect of releasing the read lock.
2635**
drhb8ca3072001-12-05 00:21:20 +00002636** If there is a transaction in progress, this routine is a no-op.
2637*/
danielk1977aef0bf62005-12-30 16:28:01 +00002638static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002639 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002640 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002641 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00002642 MemPage *pPage1 = pBt->pPage1;
2643 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00002644 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00002645 pBt->pPage1 = 0;
drhb2325b72014-09-24 18:31:07 +00002646 releasePage(pPage1);
drhb8ca3072001-12-05 00:21:20 +00002647 }
2648}
2649
2650/*
drhe39f2f92009-07-23 01:43:59 +00002651** If pBt points to an empty file then convert that empty file
2652** into a new empty database by initializing the first page of
2653** the database.
drh8b2f49b2001-06-08 00:21:52 +00002654*/
danielk1977aef0bf62005-12-30 16:28:01 +00002655static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002656 MemPage *pP1;
2657 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002658 int rc;
drhd677b3d2007-08-20 22:48:41 +00002659
drh1fee73e2007-08-29 04:00:57 +00002660 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002661 if( pBt->nPage>0 ){
2662 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002663 }
drh3aac2dd2004-04-26 14:10:20 +00002664 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002665 assert( pP1!=0 );
2666 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002667 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002668 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002669 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2670 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002671 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2672 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002673 data[18] = 1;
2674 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002675 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2676 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002677 data[21] = 64;
2678 data[22] = 32;
2679 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002680 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002681 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002682 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002683#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002684 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002685 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002686 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002687 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002688#endif
drhdd3cd972010-03-27 17:12:36 +00002689 pBt->nPage = 1;
2690 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002691 return SQLITE_OK;
2692}
2693
2694/*
danb483eba2012-10-13 19:58:11 +00002695** Initialize the first page of the database file (creating a database
2696** consisting of a single page and no schema objects). Return SQLITE_OK
2697** if successful, or an SQLite error code otherwise.
2698*/
2699int sqlite3BtreeNewDb(Btree *p){
2700 int rc;
2701 sqlite3BtreeEnter(p);
2702 p->pBt->nPage = 0;
2703 rc = newDatabase(p->pBt);
2704 sqlite3BtreeLeave(p);
2705 return rc;
2706}
2707
2708/*
danielk1977ee5741e2004-05-31 10:01:34 +00002709** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002710** is started if the second argument is nonzero, otherwise a read-
2711** transaction. If the second argument is 2 or more and exclusive
2712** transaction is started, meaning that no other process is allowed
2713** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002714** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002715** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002716**
danielk1977ee5741e2004-05-31 10:01:34 +00002717** A write-transaction must be started before attempting any
2718** changes to the database. None of the following routines
2719** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002720**
drh23e11ca2004-05-04 17:27:28 +00002721** sqlite3BtreeCreateTable()
2722** sqlite3BtreeCreateIndex()
2723** sqlite3BtreeClearTable()
2724** sqlite3BtreeDropTable()
2725** sqlite3BtreeInsert()
2726** sqlite3BtreeDelete()
2727** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002728**
drhb8ef32c2005-03-14 02:01:49 +00002729** If an initial attempt to acquire the lock fails because of lock contention
2730** and the database was previously unlocked, then invoke the busy handler
2731** if there is one. But if there was previously a read-lock, do not
2732** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2733** returned when there is already a read-lock in order to avoid a deadlock.
2734**
2735** Suppose there are two processes A and B. A has a read lock and B has
2736** a reserved lock. B tries to promote to exclusive but is blocked because
2737** of A's read lock. A tries to promote to reserved but is blocked by B.
2738** One or the other of the two processes must give way or there can be
2739** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2740** when A already has a read lock, we encourage A to give up and let B
2741** proceed.
drha059ad02001-04-17 20:09:11 +00002742*/
danielk1977aef0bf62005-12-30 16:28:01 +00002743int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002744 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002745 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002746 int rc = SQLITE_OK;
2747
drhd677b3d2007-08-20 22:48:41 +00002748 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002749 btreeIntegrity(p);
2750
danielk1977ee5741e2004-05-31 10:01:34 +00002751 /* If the btree is already in a write-transaction, or it
2752 ** is already in a read-transaction and a read-transaction
2753 ** is requested, this is a no-op.
2754 */
danielk1977aef0bf62005-12-30 16:28:01 +00002755 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002756 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002757 }
dan56c517a2013-09-26 11:04:33 +00002758 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002759
2760 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002761 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002762 rc = SQLITE_READONLY;
2763 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002764 }
2765
danielk1977404ca072009-03-16 13:19:36 +00002766#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002767 /* If another database handle has already opened a write transaction
2768 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002769 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002770 */
drhc9166342012-01-05 23:32:06 +00002771 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2772 || (pBt->btsFlags & BTS_PENDING)!=0
2773 ){
danielk1977404ca072009-03-16 13:19:36 +00002774 pBlock = pBt->pWriter->db;
2775 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002776 BtLock *pIter;
2777 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2778 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002779 pBlock = pIter->pBtree->db;
2780 break;
danielk1977641b0f42007-12-21 04:47:25 +00002781 }
2782 }
2783 }
danielk1977404ca072009-03-16 13:19:36 +00002784 if( pBlock ){
2785 sqlite3ConnectionBlocked(p->db, pBlock);
2786 rc = SQLITE_LOCKED_SHAREDCACHE;
2787 goto trans_begun;
2788 }
danielk1977641b0f42007-12-21 04:47:25 +00002789#endif
2790
danielk1977602b4662009-07-02 07:47:33 +00002791 /* Any read-only or read-write transaction implies a read-lock on
2792 ** page 1. So if some other shared-cache client already has a write-lock
2793 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002794 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2795 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002796
drhc9166342012-01-05 23:32:06 +00002797 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2798 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002799 do {
danielk1977295dc102009-04-01 19:07:03 +00002800 /* Call lockBtree() until either pBt->pPage1 is populated or
2801 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2802 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2803 ** reading page 1 it discovers that the page-size of the database
2804 ** file is not pBt->pageSize. In this case lockBtree() will update
2805 ** pBt->pageSize to the page-size of the file on disk.
2806 */
2807 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002808
drhb8ef32c2005-03-14 02:01:49 +00002809 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002810 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002811 rc = SQLITE_READONLY;
2812 }else{
danielk1977d8293352009-04-30 09:10:37 +00002813 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002814 if( rc==SQLITE_OK ){
2815 rc = newDatabase(pBt);
2816 }
drhb8ef32c2005-03-14 02:01:49 +00002817 }
2818 }
2819
danielk1977bd434552009-03-18 10:33:00 +00002820 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002821 unlockBtreeIfUnused(pBt);
2822 }
danf9b76712010-06-01 14:12:45 +00002823 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002824 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002825
2826 if( rc==SQLITE_OK ){
2827 if( p->inTrans==TRANS_NONE ){
2828 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002829#ifndef SQLITE_OMIT_SHARED_CACHE
2830 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002831 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002832 p->lock.eLock = READ_LOCK;
2833 p->lock.pNext = pBt->pLock;
2834 pBt->pLock = &p->lock;
2835 }
2836#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002837 }
2838 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2839 if( p->inTrans>pBt->inTransaction ){
2840 pBt->inTransaction = p->inTrans;
2841 }
danielk1977404ca072009-03-16 13:19:36 +00002842 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002843 MemPage *pPage1 = pBt->pPage1;
2844#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002845 assert( !pBt->pWriter );
2846 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002847 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2848 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002849#endif
dan59257dc2010-08-04 11:34:31 +00002850
2851 /* If the db-size header field is incorrect (as it may be if an old
2852 ** client has been writing the database file), update it now. Doing
2853 ** this sooner rather than later means the database size can safely
2854 ** re-read the database size from page 1 if a savepoint or transaction
2855 ** rollback occurs within the transaction.
2856 */
2857 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2858 rc = sqlite3PagerWrite(pPage1->pDbPage);
2859 if( rc==SQLITE_OK ){
2860 put4byte(&pPage1->aData[28], pBt->nPage);
2861 }
2862 }
2863 }
danielk1977aef0bf62005-12-30 16:28:01 +00002864 }
2865
drhd677b3d2007-08-20 22:48:41 +00002866
2867trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002868 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002869 /* This call makes sure that the pager has the correct number of
2870 ** open savepoints. If the second parameter is greater than 0 and
2871 ** the sub-journal is not already open, then it will be opened here.
2872 */
danielk1977fd7f0452008-12-17 17:30:26 +00002873 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2874 }
danielk197712dd5492008-12-18 15:45:07 +00002875
danielk1977aef0bf62005-12-30 16:28:01 +00002876 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002877 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002878 return rc;
drha059ad02001-04-17 20:09:11 +00002879}
2880
danielk1977687566d2004-11-02 12:56:41 +00002881#ifndef SQLITE_OMIT_AUTOVACUUM
2882
2883/*
2884** Set the pointer-map entries for all children of page pPage. Also, if
2885** pPage contains cells that point to overflow pages, set the pointer
2886** map entries for the overflow pages as well.
2887*/
2888static int setChildPtrmaps(MemPage *pPage){
2889 int i; /* Counter variable */
2890 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002891 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002892 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002893 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002894 Pgno pgno = pPage->pgno;
2895
drh1fee73e2007-08-29 04:00:57 +00002896 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002897 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002898 if( rc!=SQLITE_OK ){
2899 goto set_child_ptrmaps_out;
2900 }
danielk1977687566d2004-11-02 12:56:41 +00002901 nCell = pPage->nCell;
2902
2903 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002904 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002905
drh98add2e2009-07-20 17:11:49 +00002906 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002907
danielk1977687566d2004-11-02 12:56:41 +00002908 if( !pPage->leaf ){
2909 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002910 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002911 }
2912 }
2913
2914 if( !pPage->leaf ){
2915 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002916 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002917 }
2918
2919set_child_ptrmaps_out:
2920 pPage->isInit = isInitOrig;
2921 return rc;
2922}
2923
2924/*
drhf3aed592009-07-08 18:12:49 +00002925** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2926** that it points to iTo. Parameter eType describes the type of pointer to
2927** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002928**
2929** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2930** page of pPage.
2931**
2932** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2933** page pointed to by one of the cells on pPage.
2934**
2935** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2936** overflow page in the list.
2937*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002938static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002939 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002940 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002941 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002942 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002943 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002944 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002945 }
danielk1977f78fc082004-11-02 14:40:32 +00002946 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002947 }else{
drhf49661a2008-12-10 16:45:50 +00002948 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002949 int i;
2950 int nCell;
2951
danielk197730548662009-07-09 05:07:37 +00002952 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002953 nCell = pPage->nCell;
2954
danielk1977687566d2004-11-02 12:56:41 +00002955 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002956 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002957 if( eType==PTRMAP_OVERFLOW1 ){
2958 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002959 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002960 if( info.iOverflow
2961 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2962 && iFrom==get4byte(&pCell[info.iOverflow])
2963 ){
2964 put4byte(&pCell[info.iOverflow], iTo);
2965 break;
danielk1977687566d2004-11-02 12:56:41 +00002966 }
2967 }else{
2968 if( get4byte(pCell)==iFrom ){
2969 put4byte(pCell, iTo);
2970 break;
2971 }
2972 }
2973 }
2974
2975 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002976 if( eType!=PTRMAP_BTREE ||
2977 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002978 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002979 }
danielk1977687566d2004-11-02 12:56:41 +00002980 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2981 }
2982
2983 pPage->isInit = isInitOrig;
2984 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002985 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002986}
2987
danielk1977003ba062004-11-04 02:57:33 +00002988
danielk19777701e812005-01-10 12:59:51 +00002989/*
2990** Move the open database page pDbPage to location iFreePage in the
2991** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002992**
2993** The isCommit flag indicates that there is no need to remember that
2994** the journal needs to be sync()ed before database page pDbPage->pgno
2995** can be written to. The caller has already promised not to write to that
2996** page.
danielk19777701e812005-01-10 12:59:51 +00002997*/
danielk1977003ba062004-11-04 02:57:33 +00002998static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002999 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003000 MemPage *pDbPage, /* Open page to move */
3001 u8 eType, /* Pointer map 'type' entry for pDbPage */
3002 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003003 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003004 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003005){
3006 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3007 Pgno iDbPage = pDbPage->pgno;
3008 Pager *pPager = pBt->pPager;
3009 int rc;
3010
danielk1977a0bf2652004-11-04 14:30:04 +00003011 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3012 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003013 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003014 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003015
drh85b623f2007-12-13 21:54:09 +00003016 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003017 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3018 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003019 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003020 if( rc!=SQLITE_OK ){
3021 return rc;
3022 }
3023 pDbPage->pgno = iFreePage;
3024
3025 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3026 ** that point to overflow pages. The pointer map entries for all these
3027 ** pages need to be changed.
3028 **
3029 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3030 ** pointer to a subsequent overflow page. If this is the case, then
3031 ** the pointer map needs to be updated for the subsequent overflow page.
3032 */
danielk1977a0bf2652004-11-04 14:30:04 +00003033 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003034 rc = setChildPtrmaps(pDbPage);
3035 if( rc!=SQLITE_OK ){
3036 return rc;
3037 }
3038 }else{
3039 Pgno nextOvfl = get4byte(pDbPage->aData);
3040 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003041 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003042 if( rc!=SQLITE_OK ){
3043 return rc;
3044 }
3045 }
3046 }
3047
3048 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3049 ** that it points at iFreePage. Also fix the pointer map entry for
3050 ** iPtrPage.
3051 */
danielk1977a0bf2652004-11-04 14:30:04 +00003052 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003053 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003054 if( rc!=SQLITE_OK ){
3055 return rc;
3056 }
danielk19773b8a05f2007-03-19 17:44:26 +00003057 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003058 if( rc!=SQLITE_OK ){
3059 releasePage(pPtrPage);
3060 return rc;
3061 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003062 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003063 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003064 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003065 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003066 }
danielk1977003ba062004-11-04 02:57:33 +00003067 }
danielk1977003ba062004-11-04 02:57:33 +00003068 return rc;
3069}
3070
danielk1977dddbcdc2007-04-26 14:42:34 +00003071/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003072static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003073
3074/*
dan51f0b6d2013-02-22 20:16:34 +00003075** Perform a single step of an incremental-vacuum. If successful, return
3076** SQLITE_OK. If there is no work to do (and therefore no point in
3077** calling this function again), return SQLITE_DONE. Or, if an error
3078** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003079**
peter.d.reid60ec9142014-09-06 16:39:46 +00003080** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003081** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003082**
dan51f0b6d2013-02-22 20:16:34 +00003083** Parameter nFin is the number of pages that this database would contain
3084** were this function called until it returns SQLITE_DONE.
3085**
3086** If the bCommit parameter is non-zero, this function assumes that the
3087** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003088** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003089** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003090*/
dan51f0b6d2013-02-22 20:16:34 +00003091static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003092 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003093 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003094
drh1fee73e2007-08-29 04:00:57 +00003095 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003096 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003097
3098 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003099 u8 eType;
3100 Pgno iPtrPage;
3101
3102 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003103 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003104 return SQLITE_DONE;
3105 }
3106
3107 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3108 if( rc!=SQLITE_OK ){
3109 return rc;
3110 }
3111 if( eType==PTRMAP_ROOTPAGE ){
3112 return SQLITE_CORRUPT_BKPT;
3113 }
3114
3115 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003116 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003117 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003118 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003119 ** truncated to zero after this function returns, so it doesn't
3120 ** matter if it still contains some garbage entries.
3121 */
3122 Pgno iFreePg;
3123 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003124 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003125 if( rc!=SQLITE_OK ){
3126 return rc;
3127 }
3128 assert( iFreePg==iLastPg );
3129 releasePage(pFreePg);
3130 }
3131 } else {
3132 Pgno iFreePg; /* Index of free page to move pLastPg to */
3133 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003134 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3135 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003136
drhb00fc3b2013-08-21 23:42:32 +00003137 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003138 if( rc!=SQLITE_OK ){
3139 return rc;
3140 }
3141
dan51f0b6d2013-02-22 20:16:34 +00003142 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003143 ** is swapped with the first free page pulled off the free list.
3144 **
dan51f0b6d2013-02-22 20:16:34 +00003145 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003146 ** looping until a free-page located within the first nFin pages
3147 ** of the file is found.
3148 */
dan51f0b6d2013-02-22 20:16:34 +00003149 if( bCommit==0 ){
3150 eMode = BTALLOC_LE;
3151 iNear = nFin;
3152 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003153 do {
3154 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003155 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003156 if( rc!=SQLITE_OK ){
3157 releasePage(pLastPg);
3158 return rc;
3159 }
3160 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003161 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003162 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003163
dane1df4e32013-03-05 11:27:04 +00003164 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003165 releasePage(pLastPg);
3166 if( rc!=SQLITE_OK ){
3167 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003168 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003169 }
3170 }
3171
dan51f0b6d2013-02-22 20:16:34 +00003172 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003173 do {
danielk19773460d192008-12-27 15:23:13 +00003174 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003175 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3176 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003177 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003178 }
3179 return SQLITE_OK;
3180}
3181
3182/*
dan51f0b6d2013-02-22 20:16:34 +00003183** The database opened by the first argument is an auto-vacuum database
3184** nOrig pages in size containing nFree free pages. Return the expected
3185** size of the database in pages following an auto-vacuum operation.
3186*/
3187static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3188 int nEntry; /* Number of entries on one ptrmap page */
3189 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3190 Pgno nFin; /* Return value */
3191
3192 nEntry = pBt->usableSize/5;
3193 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3194 nFin = nOrig - nFree - nPtrmap;
3195 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3196 nFin--;
3197 }
3198 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3199 nFin--;
3200 }
dan51f0b6d2013-02-22 20:16:34 +00003201
3202 return nFin;
3203}
3204
3205/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003206** A write-transaction must be opened before calling this function.
3207** It performs a single unit of work towards an incremental vacuum.
3208**
3209** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003210** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003211** SQLITE_OK is returned. Otherwise an SQLite error code.
3212*/
3213int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003214 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003215 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003216
3217 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003218 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3219 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003220 rc = SQLITE_DONE;
3221 }else{
dan51f0b6d2013-02-22 20:16:34 +00003222 Pgno nOrig = btreePagecount(pBt);
3223 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3224 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3225
dan91384712013-02-24 11:50:43 +00003226 if( nOrig<nFin ){
3227 rc = SQLITE_CORRUPT_BKPT;
3228 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003229 rc = saveAllCursors(pBt, 0, 0);
3230 if( rc==SQLITE_OK ){
3231 invalidateAllOverflowCache(pBt);
3232 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3233 }
dan51f0b6d2013-02-22 20:16:34 +00003234 if( rc==SQLITE_OK ){
3235 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3236 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3237 }
3238 }else{
3239 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003240 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003241 }
drhd677b3d2007-08-20 22:48:41 +00003242 sqlite3BtreeLeave(p);
3243 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003244}
3245
3246/*
danielk19773b8a05f2007-03-19 17:44:26 +00003247** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003248** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003249**
3250** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3251** the database file should be truncated to during the commit process.
3252** i.e. the database has been reorganized so that only the first *pnTrunc
3253** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003254*/
danielk19773460d192008-12-27 15:23:13 +00003255static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003256 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003257 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003258 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003259
drh1fee73e2007-08-29 04:00:57 +00003260 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003261 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003262 assert(pBt->autoVacuum);
3263 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003264 Pgno nFin; /* Number of pages in database after autovacuuming */
3265 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003266 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003267 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003268
drhb1299152010-03-30 22:58:33 +00003269 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003270 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3271 /* It is not possible to create a database for which the final page
3272 ** is either a pointer-map page or the pending-byte page. If one
3273 ** is encountered, this indicates corruption.
3274 */
danielk19773460d192008-12-27 15:23:13 +00003275 return SQLITE_CORRUPT_BKPT;
3276 }
danielk1977ef165ce2009-04-06 17:50:03 +00003277
danielk19773460d192008-12-27 15:23:13 +00003278 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003279 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003280 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003281 if( nFin<nOrig ){
3282 rc = saveAllCursors(pBt, 0, 0);
3283 }
danielk19773460d192008-12-27 15:23:13 +00003284 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003285 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003286 }
danielk19773460d192008-12-27 15:23:13 +00003287 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003288 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3289 put4byte(&pBt->pPage1->aData[32], 0);
3290 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003291 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003292 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003293 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003294 }
3295 if( rc!=SQLITE_OK ){
3296 sqlite3PagerRollback(pPager);
3297 }
danielk1977687566d2004-11-02 12:56:41 +00003298 }
3299
dan0aed84d2013-03-26 14:16:20 +00003300 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003301 return rc;
3302}
danielk1977dddbcdc2007-04-26 14:42:34 +00003303
danielk1977a50d9aa2009-06-08 14:49:45 +00003304#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3305# define setChildPtrmaps(x) SQLITE_OK
3306#endif
danielk1977687566d2004-11-02 12:56:41 +00003307
3308/*
drh80e35f42007-03-30 14:06:34 +00003309** This routine does the first phase of a two-phase commit. This routine
3310** causes a rollback journal to be created (if it does not already exist)
3311** and populated with enough information so that if a power loss occurs
3312** the database can be restored to its original state by playing back
3313** the journal. Then the contents of the journal are flushed out to
3314** the disk. After the journal is safely on oxide, the changes to the
3315** database are written into the database file and flushed to oxide.
3316** At the end of this call, the rollback journal still exists on the
3317** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003318** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003319** commit process.
3320**
3321** This call is a no-op if no write-transaction is currently active on pBt.
3322**
3323** Otherwise, sync the database file for the btree pBt. zMaster points to
3324** the name of a master journal file that should be written into the
3325** individual journal file, or is NULL, indicating no master journal file
3326** (single database transaction).
3327**
3328** When this is called, the master journal should already have been
3329** created, populated with this journal pointer and synced to disk.
3330**
3331** Once this is routine has returned, the only thing required to commit
3332** the write-transaction for this database file is to delete the journal.
3333*/
3334int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3335 int rc = SQLITE_OK;
3336 if( p->inTrans==TRANS_WRITE ){
3337 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003338 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003339#ifndef SQLITE_OMIT_AUTOVACUUM
3340 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003341 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003342 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003343 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003344 return rc;
3345 }
3346 }
danbc1a3c62013-02-23 16:40:46 +00003347 if( pBt->bDoTruncate ){
3348 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3349 }
drh80e35f42007-03-30 14:06:34 +00003350#endif
drh49b9d332009-01-02 18:10:42 +00003351 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003352 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003353 }
3354 return rc;
3355}
3356
3357/*
danielk197794b30732009-07-02 17:21:57 +00003358** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3359** at the conclusion of a transaction.
3360*/
3361static void btreeEndTransaction(Btree *p){
3362 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003363 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003364 assert( sqlite3BtreeHoldsMutex(p) );
3365
danbc1a3c62013-02-23 16:40:46 +00003366#ifndef SQLITE_OMIT_AUTOVACUUM
3367 pBt->bDoTruncate = 0;
3368#endif
danc0537fe2013-06-28 19:41:43 +00003369 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003370 /* If there are other active statements that belong to this database
3371 ** handle, downgrade to a read-only transaction. The other statements
3372 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003373 downgradeAllSharedCacheTableLocks(p);
3374 p->inTrans = TRANS_READ;
3375 }else{
3376 /* If the handle had any kind of transaction open, decrement the
3377 ** transaction count of the shared btree. If the transaction count
3378 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3379 ** call below will unlock the pager. */
3380 if( p->inTrans!=TRANS_NONE ){
3381 clearAllSharedCacheTableLocks(p);
3382 pBt->nTransaction--;
3383 if( 0==pBt->nTransaction ){
3384 pBt->inTransaction = TRANS_NONE;
3385 }
3386 }
3387
3388 /* Set the current transaction state to TRANS_NONE and unlock the
3389 ** pager if this call closed the only read or write transaction. */
3390 p->inTrans = TRANS_NONE;
3391 unlockBtreeIfUnused(pBt);
3392 }
3393
3394 btreeIntegrity(p);
3395}
3396
3397/*
drh2aa679f2001-06-25 02:11:07 +00003398** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003399**
drh6e345992007-03-30 11:12:08 +00003400** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003401** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3402** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3403** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003404** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003405** routine has to do is delete or truncate or zero the header in the
3406** the rollback journal (which causes the transaction to commit) and
3407** drop locks.
drh6e345992007-03-30 11:12:08 +00003408**
dan60939d02011-03-29 15:40:55 +00003409** Normally, if an error occurs while the pager layer is attempting to
3410** finalize the underlying journal file, this function returns an error and
3411** the upper layer will attempt a rollback. However, if the second argument
3412** is non-zero then this b-tree transaction is part of a multi-file
3413** transaction. In this case, the transaction has already been committed
3414** (by deleting a master journal file) and the caller will ignore this
3415** functions return code. So, even if an error occurs in the pager layer,
3416** reset the b-tree objects internal state to indicate that the write
3417** transaction has been closed. This is quite safe, as the pager will have
3418** transitioned to the error state.
3419**
drh5e00f6c2001-09-13 13:46:56 +00003420** This will release the write lock on the database file. If there
3421** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003422*/
dan60939d02011-03-29 15:40:55 +00003423int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003424
drh075ed302010-10-14 01:17:30 +00003425 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003426 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003427 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003428
3429 /* If the handle has a write-transaction open, commit the shared-btrees
3430 ** transaction and set the shared state to TRANS_READ.
3431 */
3432 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003433 int rc;
drh075ed302010-10-14 01:17:30 +00003434 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003435 assert( pBt->inTransaction==TRANS_WRITE );
3436 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003437 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003438 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003439 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003440 return rc;
3441 }
danielk1977aef0bf62005-12-30 16:28:01 +00003442 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003443 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003444 }
danielk1977aef0bf62005-12-30 16:28:01 +00003445
danielk197794b30732009-07-02 17:21:57 +00003446 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003447 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003448 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003449}
3450
drh80e35f42007-03-30 14:06:34 +00003451/*
3452** Do both phases of a commit.
3453*/
3454int sqlite3BtreeCommit(Btree *p){
3455 int rc;
drhd677b3d2007-08-20 22:48:41 +00003456 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003457 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3458 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003459 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003460 }
drhd677b3d2007-08-20 22:48:41 +00003461 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003462 return rc;
3463}
3464
drhc39e0002004-05-07 23:50:57 +00003465/*
drhfb982642007-08-30 01:19:59 +00003466** This routine sets the state to CURSOR_FAULT and the error
drh85fabf12014-11-11 22:55:26 +00003467** code to errCode for every cursor on any BtShared that pBtree
3468** references. Or if the writeOnly flag is set to 1, then only
3469** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003470**
drh85fabf12014-11-11 22:55:26 +00003471** Every cursor is a candidate to be tripped, including cursors
3472** that belong to other database connections that happen to be
3473** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003474**
drh6f9c5662014-11-13 13:42:39 +00003475** This routine gets called when a rollback occurs. If the writeOnly
3476** flag is true, then only write-cursors need be tripped - read-only
3477** cursors save their current positions so that they may continue
3478** following the rollback. Or, if writeOnly is false, all cursors are
3479** tripped. In general, writeOnly is false if the transaction being
3480** rolled back modified the database schema. In this case b-tree root
3481** pages may be moved or deleted from the database altogether, making
3482** it unsafe for read cursors to continue.
3483**
3484** If the writeOnly flag is true and an error is encountered while
3485** saving the current position of a read-only cursor, all cursors,
3486** including all read-cursors are tripped.
3487**
3488** SQLITE_OK is returned if successful, or if an error occurs while
3489** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003490*/
drh6f9c5662014-11-13 13:42:39 +00003491int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003492 BtCursor *p;
drh6f9c5662014-11-13 13:42:39 +00003493 int rc = SQLITE_OK;
3494
drh85fabf12014-11-11 22:55:26 +00003495 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
drh6f9c5662014-11-13 13:42:39 +00003496 if( pBtree ){
3497 sqlite3BtreeEnter(pBtree);
3498 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3499 int i;
3500 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
3501 if( p->eState==CURSOR_VALID ){
drh13835c42014-11-17 15:32:47 +00003502 rc = saveCursorPosition(p);
drh6f9c5662014-11-13 13:42:39 +00003503 if( rc!=SQLITE_OK ){
3504 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3505 break;
3506 }
3507 }
3508 }else{
3509 sqlite3BtreeClearCursor(p);
3510 p->eState = CURSOR_FAULT;
3511 p->skipNext = errCode;
3512 }
3513 for(i=0; i<=p->iPage; i++){
3514 releasePage(p->apPage[i]);
3515 p->apPage[i] = 0;
3516 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003517 }
drh6f9c5662014-11-13 13:42:39 +00003518 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003519 }
drh6f9c5662014-11-13 13:42:39 +00003520 return rc;
drhfb982642007-08-30 01:19:59 +00003521}
3522
3523/*
drh85fabf12014-11-11 22:55:26 +00003524** Rollback the transaction in progress.
3525**
3526** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3527** Only write cursors are tripped if writeOnly is true but all cursors are
3528** tripped if writeOnly is false. Any attempt to use
3529** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003530**
3531** This will release the write lock on the database file. If there
3532** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003533*/
drh85fabf12014-11-11 22:55:26 +00003534int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003535 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003536 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003537 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003538
drh85fabf12014-11-11 22:55:26 +00003539 assert( writeOnly==1 || writeOnly==0 );
3540 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003541 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003542 if( tripCode==SQLITE_OK ){
3543 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh85fabf12014-11-11 22:55:26 +00003544 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003545 }else{
3546 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003547 }
drh0f198a72012-02-13 16:43:16 +00003548 if( tripCode ){
drh6f9c5662014-11-13 13:42:39 +00003549 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3550 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3551 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003552 }
danielk1977aef0bf62005-12-30 16:28:01 +00003553 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003554
3555 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003556 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003557
danielk19778d34dfd2006-01-24 16:37:57 +00003558 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003559 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003560 if( rc2!=SQLITE_OK ){
3561 rc = rc2;
3562 }
3563
drh24cd67e2004-05-10 16:18:47 +00003564 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003565 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003566 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003567 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003568 int nPage = get4byte(28+(u8*)pPage1->aData);
3569 testcase( nPage==0 );
3570 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3571 testcase( pBt->nPage!=nPage );
3572 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003573 releasePage(pPage1);
3574 }
drh85ec3b62013-05-14 23:12:06 +00003575 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003576 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003577 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003578 }
danielk1977aef0bf62005-12-30 16:28:01 +00003579
danielk197794b30732009-07-02 17:21:57 +00003580 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003581 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003582 return rc;
3583}
3584
3585/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003586** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003587** back independently of the main transaction. You must start a transaction
3588** before starting a subtransaction. The subtransaction is ended automatically
3589** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003590**
3591** Statement subtransactions are used around individual SQL statements
3592** that are contained within a BEGIN...COMMIT block. If a constraint
3593** error occurs within the statement, the effect of that one statement
3594** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003595**
3596** A statement sub-transaction is implemented as an anonymous savepoint. The
3597** value passed as the second parameter is the total number of savepoints,
3598** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3599** are no active savepoints and no other statement-transactions open,
3600** iStatement is 1. This anonymous savepoint can be released or rolled back
3601** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003602*/
danielk1977bd434552009-03-18 10:33:00 +00003603int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003604 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003605 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003606 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003607 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003608 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003609 assert( iStatement>0 );
3610 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003611 assert( pBt->inTransaction==TRANS_WRITE );
3612 /* At the pager level, a statement transaction is a savepoint with
3613 ** an index greater than all savepoints created explicitly using
3614 ** SQL statements. It is illegal to open, release or rollback any
3615 ** such savepoints while the statement transaction savepoint is active.
3616 */
3617 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003618 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003619 return rc;
3620}
3621
3622/*
danielk1977fd7f0452008-12-17 17:30:26 +00003623** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3624** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003625** savepoint identified by parameter iSavepoint, depending on the value
3626** of op.
3627**
3628** Normally, iSavepoint is greater than or equal to zero. However, if op is
3629** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3630** contents of the entire transaction are rolled back. This is different
3631** from a normal transaction rollback, as no locks are released and the
3632** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003633*/
3634int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3635 int rc = SQLITE_OK;
3636 if( p && p->inTrans==TRANS_WRITE ){
3637 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003638 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3639 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3640 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003641 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003642 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003643 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3644 pBt->nPage = 0;
3645 }
drh9f0bbf92009-01-02 21:08:09 +00003646 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003647 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003648
3649 /* The database size was written into the offset 28 of the header
3650 ** when the transaction started, so we know that the value at offset
3651 ** 28 is nonzero. */
3652 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003653 }
danielk1977fd7f0452008-12-17 17:30:26 +00003654 sqlite3BtreeLeave(p);
3655 }
3656 return rc;
3657}
3658
3659/*
drh8b2f49b2001-06-08 00:21:52 +00003660** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003661** iTable. If a read-only cursor is requested, it is assumed that
3662** the caller already has at least a read-only transaction open
3663** on the database already. If a write-cursor is requested, then
3664** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003665**
3666** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003667** If wrFlag==1, then the cursor can be used for reading or for
3668** writing if other conditions for writing are also met. These
3669** are the conditions that must be met in order for writing to
3670** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003671**
drhf74b8d92002-09-01 23:20:45 +00003672** 1: The cursor must have been opened with wrFlag==1
3673**
drhfe5d71d2007-03-19 11:54:10 +00003674** 2: Other database connections that share the same pager cache
3675** but which are not in the READ_UNCOMMITTED state may not have
3676** cursors open with wrFlag==0 on the same table. Otherwise
3677** the changes made by this write cursor would be visible to
3678** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003679**
3680** 3: The database must be writable (not on read-only media)
3681**
3682** 4: There must be an active transaction.
3683**
drh6446c4d2001-12-15 14:22:18 +00003684** No checking is done to make sure that page iTable really is the
3685** root page of a b-tree. If it is not, then the cursor acquired
3686** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003687**
drhf25a5072009-11-18 23:01:25 +00003688** It is assumed that the sqlite3BtreeCursorZero() has been called
3689** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003690*/
drhd677b3d2007-08-20 22:48:41 +00003691static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003692 Btree *p, /* The btree */
3693 int iTable, /* Root page of table to open */
3694 int wrFlag, /* 1 to write. 0 read-only */
3695 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3696 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003697){
danielk19773e8add92009-07-04 17:16:00 +00003698 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003699
drh1fee73e2007-08-29 04:00:57 +00003700 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003701 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003702
danielk1977602b4662009-07-02 07:47:33 +00003703 /* The following assert statements verify that if this is a sharable
3704 ** b-tree database, the connection is holding the required table locks,
3705 ** and that no other connection has any open cursor that conflicts with
3706 ** this lock. */
3707 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003708 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3709
danielk19773e8add92009-07-04 17:16:00 +00003710 /* Assert that the caller has opened the required transaction. */
3711 assert( p->inTrans>TRANS_NONE );
3712 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3713 assert( pBt->pPage1 && pBt->pPage1->aData );
3714
drhc9166342012-01-05 23:32:06 +00003715 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003716 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003717 }
drh3fbb0222014-09-24 19:47:27 +00003718 if( wrFlag ){
3719 allocateTempSpace(pBt);
3720 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
3721 }
drhb1299152010-03-30 22:58:33 +00003722 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003723 assert( wrFlag==0 );
3724 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003725 }
danielk1977aef0bf62005-12-30 16:28:01 +00003726
danielk1977aef0bf62005-12-30 16:28:01 +00003727 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003728 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003729 pCur->pgnoRoot = (Pgno)iTable;
3730 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003731 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003732 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003733 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00003734 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
3735 pCur->curFlags = wrFlag;
drha059ad02001-04-17 20:09:11 +00003736 pCur->pNext = pBt->pCursor;
3737 if( pCur->pNext ){
3738 pCur->pNext->pPrev = pCur;
3739 }
3740 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003741 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00003742 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003743}
drhd677b3d2007-08-20 22:48:41 +00003744int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003745 Btree *p, /* The btree */
3746 int iTable, /* Root page of table to open */
3747 int wrFlag, /* 1 to write. 0 read-only */
3748 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3749 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003750){
3751 int rc;
3752 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003753 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003754 sqlite3BtreeLeave(p);
3755 return rc;
3756}
drh7f751222009-03-17 22:33:00 +00003757
3758/*
3759** Return the size of a BtCursor object in bytes.
3760**
3761** This interfaces is needed so that users of cursors can preallocate
3762** sufficient storage to hold a cursor. The BtCursor object is opaque
3763** to users so they cannot do the sizeof() themselves - they must call
3764** this routine.
3765*/
3766int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003767 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003768}
3769
drh7f751222009-03-17 22:33:00 +00003770/*
drhf25a5072009-11-18 23:01:25 +00003771** Initialize memory that will be converted into a BtCursor object.
3772**
3773** The simple approach here would be to memset() the entire object
3774** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3775** do not need to be zeroed and they are large, so we can save a lot
3776** of run-time by skipping the initialization of those elements.
3777*/
3778void sqlite3BtreeCursorZero(BtCursor *p){
3779 memset(p, 0, offsetof(BtCursor, iPage));
3780}
3781
3782/*
drh5e00f6c2001-09-13 13:46:56 +00003783** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003784** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003785*/
drh3aac2dd2004-04-26 14:10:20 +00003786int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003787 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003788 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003789 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003790 BtShared *pBt = pCur->pBt;
3791 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003792 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003793 if( pCur->pPrev ){
3794 pCur->pPrev->pNext = pCur->pNext;
3795 }else{
3796 pBt->pCursor = pCur->pNext;
3797 }
3798 if( pCur->pNext ){
3799 pCur->pNext->pPrev = pCur->pPrev;
3800 }
danielk197771d5d2c2008-09-29 11:49:47 +00003801 for(i=0; i<=pCur->iPage; i++){
3802 releasePage(pCur->apPage[i]);
3803 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003804 unlockBtreeIfUnused(pBt);
dan5a500af2014-03-11 20:33:04 +00003805 sqlite3DbFree(pBtree->db, pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00003806 /* sqlite3_free(pCur); */
3807 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003808 }
drh8c42ca92001-06-22 19:15:00 +00003809 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003810}
3811
drh5e2f8b92001-05-28 00:41:15 +00003812/*
drh86057612007-06-26 01:04:48 +00003813** Make sure the BtCursor* given in the argument has a valid
3814** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003815** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003816**
3817** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003818** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003819**
3820** 2007-06-25: There is a bug in some versions of MSVC that cause the
3821** compiler to crash when getCellInfo() is implemented as a macro.
3822** But there is a measureable speed advantage to using the macro on gcc
3823** (when less compiler optimizations like -Os or -O0 are used and the
peter.d.reid60ec9142014-09-06 16:39:46 +00003824** compiler is not doing aggressive inlining.) So we use a real function
drh86057612007-06-26 01:04:48 +00003825** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003826*/
drh9188b382004-05-14 21:12:22 +00003827#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003828 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003829 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003830 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003831 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003832 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00003833 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003834 }
danielk19771cc5ed82007-05-16 17:28:43 +00003835#else
3836 #define assertCellInfo(x)
3837#endif
drh86057612007-06-26 01:04:48 +00003838#ifdef _MSC_VER
3839 /* Use a real function in MSVC to work around bugs in that compiler. */
3840 static void getCellInfo(BtCursor *pCur){
3841 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003842 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003843 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drh036dbec2014-03-11 23:40:44 +00003844 pCur->curFlags |= BTCF_ValidNKey;
drh86057612007-06-26 01:04:48 +00003845 }else{
3846 assertCellInfo(pCur);
3847 }
3848 }
3849#else /* if not _MSC_VER */
3850 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003851#define getCellInfo(pCur) \
3852 if( pCur->info.nSize==0 ){ \
3853 int iPage = pCur->iPage; \
drh036dbec2014-03-11 23:40:44 +00003854 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3855 pCur->curFlags |= BTCF_ValidNKey; \
danielk197771d5d2c2008-09-29 11:49:47 +00003856 }else{ \
3857 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003858 }
3859#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003860
drhea8ffdf2009-07-22 00:35:23 +00003861#ifndef NDEBUG /* The next routine used only within assert() statements */
3862/*
3863** Return true if the given BtCursor is valid. A valid cursor is one
3864** that is currently pointing to a row in a (non-empty) table.
3865** This is a verification routine is used only within assert() statements.
3866*/
3867int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3868 return pCur && pCur->eState==CURSOR_VALID;
3869}
3870#endif /* NDEBUG */
3871
drh9188b382004-05-14 21:12:22 +00003872/*
drh3aac2dd2004-04-26 14:10:20 +00003873** Set *pSize to the size of the buffer needed to hold the value of
3874** the key for the current entry. If the cursor is not pointing
3875** to a valid entry, *pSize is set to 0.
3876**
drh4b70f112004-05-02 21:12:19 +00003877** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003878** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003879**
3880** The caller must position the cursor prior to invoking this routine.
3881**
3882** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003883*/
drh4a1c3802004-05-12 15:15:47 +00003884int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003885 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00003886 assert( pCur->eState==CURSOR_VALID );
3887 getCellInfo(pCur);
3888 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00003889 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003890}
drh2af926b2001-05-15 00:39:25 +00003891
drh72f82862001-05-24 21:06:34 +00003892/*
drh0e1c19e2004-05-11 00:58:56 +00003893** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003894** cursor currently points to.
3895**
3896** The caller must guarantee that the cursor is pointing to a non-NULL
3897** valid entry. In other words, the calling procedure must guarantee
3898** that the cursor has Cursor.eState==CURSOR_VALID.
3899**
3900** Failure is not possible. This function always returns SQLITE_OK.
3901** It might just as well be a procedure (returning void) but we continue
3902** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003903*/
3904int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003905 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003906 assert( pCur->eState==CURSOR_VALID );
drh3e28ff52014-09-24 00:59:08 +00003907 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00003908 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00003909 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00003910 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003911}
3912
3913/*
danielk1977d04417962007-05-02 13:16:30 +00003914** Given the page number of an overflow page in the database (parameter
3915** ovfl), this function finds the page number of the next page in the
3916** linked list of overflow pages. If possible, it uses the auto-vacuum
3917** pointer-map data instead of reading the content of page ovfl to do so.
3918**
3919** If an error occurs an SQLite error code is returned. Otherwise:
3920**
danielk1977bea2a942009-01-20 17:06:27 +00003921** The page number of the next overflow page in the linked list is
3922** written to *pPgnoNext. If page ovfl is the last page in its linked
3923** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003924**
danielk1977bea2a942009-01-20 17:06:27 +00003925** If ppPage is not NULL, and a reference to the MemPage object corresponding
3926** to page number pOvfl was obtained, then *ppPage is set to point to that
3927** reference. It is the responsibility of the caller to call releasePage()
3928** on *ppPage to free the reference. In no reference was obtained (because
3929** the pointer-map was used to obtain the value for *pPgnoNext), then
3930** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003931*/
3932static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003933 BtShared *pBt, /* The database file */
3934 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003935 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003936 Pgno *pPgnoNext /* OUT: Next overflow page number */
3937){
3938 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003939 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003940 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003941
drh1fee73e2007-08-29 04:00:57 +00003942 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003943 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003944
3945#ifndef SQLITE_OMIT_AUTOVACUUM
3946 /* Try to find the next page in the overflow list using the
3947 ** autovacuum pointer-map pages. Guess that the next page in
3948 ** the overflow list is page number (ovfl+1). If that guess turns
3949 ** out to be wrong, fall back to loading the data of page
3950 ** number ovfl to determine the next page number.
3951 */
3952 if( pBt->autoVacuum ){
3953 Pgno pgno;
3954 Pgno iGuess = ovfl+1;
3955 u8 eType;
3956
3957 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3958 iGuess++;
3959 }
3960
drhb1299152010-03-30 22:58:33 +00003961 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003962 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003963 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003964 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003965 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003966 }
3967 }
3968 }
3969#endif
3970
danielk1977d8a3f3d2009-07-11 11:45:23 +00003971 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003972 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00003973 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003974 assert( rc==SQLITE_OK || pPage==0 );
3975 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003976 next = get4byte(pPage->aData);
3977 }
danielk1977443c0592009-01-16 15:21:05 +00003978 }
danielk197745d68822009-01-16 16:23:38 +00003979
danielk1977bea2a942009-01-20 17:06:27 +00003980 *pPgnoNext = next;
3981 if( ppPage ){
3982 *ppPage = pPage;
3983 }else{
3984 releasePage(pPage);
3985 }
3986 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003987}
3988
danielk1977da107192007-05-04 08:32:13 +00003989/*
3990** Copy data from a buffer to a page, or from a page to a buffer.
3991**
3992** pPayload is a pointer to data stored on database page pDbPage.
3993** If argument eOp is false, then nByte bytes of data are copied
3994** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3995** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3996** of data are copied from the buffer pBuf to pPayload.
3997**
3998** SQLITE_OK is returned on success, otherwise an error code.
3999*/
4000static int copyPayload(
4001 void *pPayload, /* Pointer to page data */
4002 void *pBuf, /* Pointer to buffer */
4003 int nByte, /* Number of bytes to copy */
4004 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4005 DbPage *pDbPage /* Page containing pPayload */
4006){
4007 if( eOp ){
4008 /* Copy data from buffer to page (a write operation) */
4009 int rc = sqlite3PagerWrite(pDbPage);
4010 if( rc!=SQLITE_OK ){
4011 return rc;
4012 }
4013 memcpy(pPayload, pBuf, nByte);
4014 }else{
4015 /* Copy data from page to buffer (a read operation) */
4016 memcpy(pBuf, pPayload, nByte);
4017 }
4018 return SQLITE_OK;
4019}
danielk1977d04417962007-05-02 13:16:30 +00004020
4021/*
danielk19779f8d6402007-05-02 17:48:45 +00004022** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004023** for the entry that the pCur cursor is pointing to. The eOp
4024** argument is interpreted as follows:
4025**
4026** 0: The operation is a read. Populate the overflow cache.
4027** 1: The operation is a write. Populate the overflow cache.
4028** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004029**
4030** A total of "amt" bytes are read or written beginning at "offset".
4031** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004032**
drh3bcdfd22009-07-12 02:32:21 +00004033** The content being read or written might appear on the main page
4034** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004035**
dan5a500af2014-03-11 20:33:04 +00004036** If the current cursor entry uses one or more overflow pages and the
4037** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004038** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004039** Subsequent calls use this cache to make seeking to the supplied offset
4040** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004041**
4042** Once an overflow page-list cache has been allocated, it may be
4043** invalidated if some other cursor writes to the same table, or if
4044** the cursor is moved to a different row. Additionally, in auto-vacuum
4045** mode, the following events may invalidate an overflow page-list cache.
4046**
4047** * An incremental vacuum,
4048** * A commit in auto_vacuum="full" mode,
4049** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004050*/
danielk19779f8d6402007-05-02 17:48:45 +00004051static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004052 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004053 u32 offset, /* Begin reading this far into payload */
4054 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004055 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004056 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004057){
4058 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004059 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004060 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004061 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004062 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004063#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004064 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004065 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004066#endif
drh3aac2dd2004-04-26 14:10:20 +00004067
danielk1977da107192007-05-04 08:32:13 +00004068 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004069 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004070 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004071 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004072 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004073
drh86057612007-06-26 01:04:48 +00004074 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004075 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004076#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004077 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004078#endif
drhab1cc582014-09-23 21:25:19 +00004079 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004080
drhab1cc582014-09-23 21:25:19 +00004081 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004082 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004083 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004084 }
danielk1977da107192007-05-04 08:32:13 +00004085
4086 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004087 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004088 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004089 if( a+offset>pCur->info.nLocal ){
4090 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004091 }
dan5a500af2014-03-11 20:33:04 +00004092 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004093 offset = 0;
drha34b6762004-05-07 13:30:42 +00004094 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004095 amt -= a;
drhdd793422001-06-28 01:54:48 +00004096 }else{
drhfa1a98a2004-05-14 19:08:17 +00004097 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004098 }
danielk1977da107192007-05-04 08:32:13 +00004099
4100 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004101 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004102 Pgno nextPage;
4103
drhfa1a98a2004-05-14 19:08:17 +00004104 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004105
drha38c9512014-04-01 01:24:34 +00004106 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4107 ** Except, do not allocate aOverflow[] for eOp==2.
4108 **
4109 ** The aOverflow[] array is sized at one entry for each overflow page
4110 ** in the overflow chain. The page number of the first overflow page is
4111 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4112 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004113 */
drh036dbec2014-03-11 23:40:44 +00004114 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004115 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004116 if( nOvfl>pCur->nOvflAlloc ){
4117 Pgno *aNew = (Pgno*)sqlite3DbRealloc(
4118 pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4119 );
4120 if( aNew==0 ){
4121 rc = SQLITE_NOMEM;
4122 }else{
4123 pCur->nOvflAlloc = nOvfl*2;
4124 pCur->aOverflow = aNew;
4125 }
4126 }
4127 if( rc==SQLITE_OK ){
4128 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004129 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004130 }
4131 }
danielk1977da107192007-05-04 08:32:13 +00004132
4133 /* If the overflow page-list cache has been allocated and the
4134 ** entry for the first required overflow page is valid, skip
4135 ** directly to it.
4136 */
drh3f387402014-09-24 01:23:00 +00004137 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4138 && pCur->aOverflow[offset/ovflSize]
4139 ){
danielk19772dec9702007-05-02 16:48:37 +00004140 iIdx = (offset/ovflSize);
4141 nextPage = pCur->aOverflow[iIdx];
4142 offset = (offset%ovflSize);
4143 }
danielk1977da107192007-05-04 08:32:13 +00004144
4145 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4146
danielk1977da107192007-05-04 08:32:13 +00004147 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004148 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004149 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4150 pCur->aOverflow[iIdx] = nextPage;
4151 }
danielk1977da107192007-05-04 08:32:13 +00004152
danielk1977d04417962007-05-02 13:16:30 +00004153 if( offset>=ovflSize ){
4154 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004155 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004156 ** data is not required. So first try to lookup the overflow
4157 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004158 ** function.
drha38c9512014-04-01 01:24:34 +00004159 **
4160 ** Note that the aOverflow[] array must be allocated because eOp!=2
4161 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004162 */
drha38c9512014-04-01 01:24:34 +00004163 assert( eOp!=2 );
4164 assert( pCur->curFlags & BTCF_ValidOvfl );
4165 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004166 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004167 }else{
danielk1977da107192007-05-04 08:32:13 +00004168 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004169 }
danielk1977da107192007-05-04 08:32:13 +00004170 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004171 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004172 /* Need to read this page properly. It contains some of the
4173 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004174 */
danf4ba1092011-10-08 14:57:07 +00004175#ifdef SQLITE_DIRECT_OVERFLOW_READ
4176 sqlite3_file *fd;
4177#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004178 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004179 if( a + offset > ovflSize ){
4180 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004181 }
danf4ba1092011-10-08 14:57:07 +00004182
4183#ifdef SQLITE_DIRECT_OVERFLOW_READ
4184 /* If all the following are true:
4185 **
4186 ** 1) this is a read operation, and
4187 ** 2) data is required from the start of this overflow page, and
4188 ** 3) the database is file-backed, and
4189 ** 4) there is no open write-transaction, and
4190 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004191 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004192 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004193 **
4194 ** then data can be read directly from the database file into the
4195 ** output buffer, bypassing the page-cache altogether. This speeds
4196 ** up loading large records that span many overflow pages.
4197 */
dan5a500af2014-03-11 20:33:04 +00004198 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004199 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004200 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004201 && pBt->inTransaction==TRANS_READ /* (4) */
4202 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4203 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004204 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004205 ){
4206 u8 aSave[4];
4207 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004208 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004209 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004210 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004211 nextPage = get4byte(aWrite);
4212 memcpy(aWrite, aSave, 4);
4213 }else
4214#endif
4215
4216 {
4217 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004218 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004219 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004220 );
danf4ba1092011-10-08 14:57:07 +00004221 if( rc==SQLITE_OK ){
4222 aPayload = sqlite3PagerGetData(pDbPage);
4223 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004224 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004225 sqlite3PagerUnref(pDbPage);
4226 offset = 0;
4227 }
4228 }
4229 amt -= a;
4230 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004231 }
drh2af926b2001-05-15 00:39:25 +00004232 }
drh2af926b2001-05-15 00:39:25 +00004233 }
danielk1977cfe9a692004-06-16 12:00:29 +00004234
danielk1977da107192007-05-04 08:32:13 +00004235 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004236 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004237 }
danielk1977da107192007-05-04 08:32:13 +00004238 return rc;
drh2af926b2001-05-15 00:39:25 +00004239}
4240
drh72f82862001-05-24 21:06:34 +00004241/*
drh3aac2dd2004-04-26 14:10:20 +00004242** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004243** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004244** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004245**
drh5d1a8722009-07-22 18:07:40 +00004246** The caller must ensure that pCur is pointing to a valid row
4247** in the table.
4248**
drh3aac2dd2004-04-26 14:10:20 +00004249** Return SQLITE_OK on success or an error code if anything goes
4250** wrong. An error is returned if "offset+amt" is larger than
4251** the available payload.
drh72f82862001-05-24 21:06:34 +00004252*/
drha34b6762004-05-07 13:30:42 +00004253int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004254 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004255 assert( pCur->eState==CURSOR_VALID );
4256 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4257 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4258 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004259}
4260
4261/*
drh3aac2dd2004-04-26 14:10:20 +00004262** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004263** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004264** begins at "offset".
4265**
4266** Return SQLITE_OK on success or an error code if anything goes
4267** wrong. An error is returned if "offset+amt" is larger than
4268** the available payload.
drh72f82862001-05-24 21:06:34 +00004269*/
drh3aac2dd2004-04-26 14:10:20 +00004270int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004271 int rc;
4272
danielk19773588ceb2008-06-10 17:30:26 +00004273#ifndef SQLITE_OMIT_INCRBLOB
4274 if ( pCur->eState==CURSOR_INVALID ){
4275 return SQLITE_ABORT;
4276 }
4277#endif
4278
drh1fee73e2007-08-29 04:00:57 +00004279 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004280 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004281 if( rc==SQLITE_OK ){
4282 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004283 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4284 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004285 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004286 }
4287 return rc;
drh2af926b2001-05-15 00:39:25 +00004288}
4289
drh72f82862001-05-24 21:06:34 +00004290/*
drh0e1c19e2004-05-11 00:58:56 +00004291** Return a pointer to payload information from the entry that the
4292** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004293** the key if index btrees (pPage->intKey==0) and is the data for
4294** table btrees (pPage->intKey==1). The number of bytes of available
4295** key/data is written into *pAmt. If *pAmt==0, then the value
4296** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004297**
4298** This routine is an optimization. It is common for the entire key
4299** and data to fit on the local page and for there to be no overflow
4300** pages. When that is so, this routine can be used to access the
4301** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004302** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004303** the key/data and copy it into a preallocated buffer.
4304**
4305** The pointer returned by this routine looks directly into the cached
4306** page of the database. The data might change or move the next time
4307** any btree routine is called.
4308*/
drh2a8d2262013-12-09 20:43:22 +00004309static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004310 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004311 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004312){
danielk197771d5d2c2008-09-29 11:49:47 +00004313 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004314 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004315 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004316 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004317 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004318 assert( pCur->info.nSize>0 );
drh2a8d2262013-12-09 20:43:22 +00004319 *pAmt = pCur->info.nLocal;
drhab1cc582014-09-23 21:25:19 +00004320 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004321}
4322
4323
4324/*
drhe51c44f2004-05-30 20:46:09 +00004325** For the entry that cursor pCur is point to, return as
4326** many bytes of the key or data as are available on the local
4327** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004328**
4329** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004330** or be destroyed on the next call to any Btree routine,
4331** including calls from other threads against the same cache.
4332** Hence, a mutex on the BtShared should be held prior to calling
4333** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004334**
4335** These routines is used to get quick access to key and data
4336** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004337*/
drh501932c2013-11-21 21:59:53 +00004338const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004339 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004340}
drh501932c2013-11-21 21:59:53 +00004341const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004342 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004343}
4344
4345
4346/*
drh8178a752003-01-05 21:41:40 +00004347** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004348** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004349**
4350** This function returns SQLITE_CORRUPT if the page-header flags field of
4351** the new child page does not match the flags field of the parent (i.e.
4352** if an intkey page appears to be the parent of a non-intkey page, or
4353** vice-versa).
drh72f82862001-05-24 21:06:34 +00004354*/
drh3aac2dd2004-04-26 14:10:20 +00004355static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004356 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004357 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004358 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004359 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004360
drh1fee73e2007-08-29 04:00:57 +00004361 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004362 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004363 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004364 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004365 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4366 return SQLITE_CORRUPT_BKPT;
4367 }
drhb00fc3b2013-08-21 23:42:32 +00004368 rc = getAndInitPage(pBt, newPgno, &pNewPage,
drh036dbec2014-03-11 23:40:44 +00004369 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004370 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004371 pCur->apPage[i+1] = pNewPage;
4372 pCur->aiIdx[i+1] = 0;
4373 pCur->iPage++;
4374
drh271efa52004-05-30 19:19:05 +00004375 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004376 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk1977bd5969a2009-07-11 17:39:42 +00004377 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004378 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004379 }
drh72f82862001-05-24 21:06:34 +00004380 return SQLITE_OK;
4381}
4382
danbb246c42012-01-12 14:25:55 +00004383#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004384/*
4385** Page pParent is an internal (non-leaf) tree page. This function
4386** asserts that page number iChild is the left-child if the iIdx'th
4387** cell in page pParent. Or, if iIdx is equal to the total number of
4388** cells in pParent, that page number iChild is the right-child of
4389** the page.
4390*/
4391static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4392 assert( iIdx<=pParent->nCell );
4393 if( iIdx==pParent->nCell ){
4394 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4395 }else{
4396 assert( get4byte(findCell(pParent, iIdx))==iChild );
4397 }
4398}
4399#else
4400# define assertParentIndex(x,y,z)
4401#endif
4402
drh72f82862001-05-24 21:06:34 +00004403/*
drh5e2f8b92001-05-28 00:41:15 +00004404** Move the cursor up to the parent page.
4405**
4406** pCur->idx is set to the cell index that contains the pointer
4407** to the page we are coming from. If we are coming from the
4408** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004409** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004410*/
danielk197730548662009-07-09 05:07:37 +00004411static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004412 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004413 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004414 assert( pCur->iPage>0 );
4415 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004416
4417 /* UPDATE: It is actually possible for the condition tested by the assert
4418 ** below to be untrue if the database file is corrupt. This can occur if
4419 ** one cursor has modified page pParent while a reference to it is held
4420 ** by a second cursor. Which can only happen if a single page is linked
4421 ** into more than one b-tree structure in a corrupt database. */
4422#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004423 assertParentIndex(
4424 pCur->apPage[pCur->iPage-1],
4425 pCur->aiIdx[pCur->iPage-1],
4426 pCur->apPage[pCur->iPage]->pgno
4427 );
danbb246c42012-01-12 14:25:55 +00004428#endif
dan6c2688c2012-01-12 15:05:03 +00004429 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004430
danielk197771d5d2c2008-09-29 11:49:47 +00004431 releasePage(pCur->apPage[pCur->iPage]);
4432 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004433 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004434 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh72f82862001-05-24 21:06:34 +00004435}
4436
4437/*
danielk19778f880a82009-07-13 09:41:45 +00004438** Move the cursor to point to the root page of its b-tree structure.
4439**
4440** If the table has a virtual root page, then the cursor is moved to point
4441** to the virtual root page instead of the actual root page. A table has a
4442** virtual root page when the actual root page contains no cells and a
4443** single child page. This can only happen with the table rooted at page 1.
4444**
4445** If the b-tree structure is empty, the cursor state is set to
4446** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4447** cell located on the root (or virtual root) page and the cursor state
4448** is set to CURSOR_VALID.
4449**
4450** If this function returns successfully, it may be assumed that the
4451** page-header flags indicate that the [virtual] root-page is the expected
4452** kind of b-tree page (i.e. if when opening the cursor the caller did not
4453** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4454** indicating a table b-tree, or if the caller did specify a KeyInfo
4455** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4456** b-tree).
drh72f82862001-05-24 21:06:34 +00004457*/
drh5e2f8b92001-05-28 00:41:15 +00004458static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004459 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004460 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004461
drh1fee73e2007-08-29 04:00:57 +00004462 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004463 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4464 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4465 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4466 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4467 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004468 assert( pCur->skipNext!=SQLITE_OK );
4469 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004470 }
danielk1977be51a652008-10-08 17:58:48 +00004471 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004472 }
danielk197771d5d2c2008-09-29 11:49:47 +00004473
4474 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004475 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004476 }else if( pCur->pgnoRoot==0 ){
4477 pCur->eState = CURSOR_INVALID;
4478 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004479 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004480 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh036dbec2014-03-11 23:40:44 +00004481 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004482 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004483 pCur->eState = CURSOR_INVALID;
4484 return rc;
4485 }
danielk1977172114a2009-07-07 15:47:12 +00004486 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004487 }
danielk197771d5d2c2008-09-29 11:49:47 +00004488 pRoot = pCur->apPage[0];
4489 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004490
4491 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4492 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4493 ** NULL, the caller expects a table b-tree. If this is not the case,
4494 ** return an SQLITE_CORRUPT error.
4495 **
4496 ** Earlier versions of SQLite assumed that this test could not fail
4497 ** if the root page was already loaded when this function was called (i.e.
4498 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4499 ** in such a way that page pRoot is linked into a second b-tree table
4500 ** (or the freelist). */
4501 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4502 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4503 return SQLITE_CORRUPT_BKPT;
4504 }
danielk19778f880a82009-07-13 09:41:45 +00004505
danielk197771d5d2c2008-09-29 11:49:47 +00004506 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004507 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004508 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004509
drh4e8fe3f2013-12-06 23:25:27 +00004510 if( pRoot->nCell>0 ){
4511 pCur->eState = CURSOR_VALID;
4512 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004513 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004514 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004515 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004516 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004517 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004518 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004519 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004520 }
4521 return rc;
drh72f82862001-05-24 21:06:34 +00004522}
drh2af926b2001-05-15 00:39:25 +00004523
drh5e2f8b92001-05-28 00:41:15 +00004524/*
4525** Move the cursor down to the left-most leaf entry beneath the
4526** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004527**
4528** The left-most leaf is the one with the smallest key - the first
4529** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004530*/
4531static int moveToLeftmost(BtCursor *pCur){
4532 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004533 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004534 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004535
drh1fee73e2007-08-29 04:00:57 +00004536 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004537 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004538 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4539 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4540 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004541 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004542 }
drhd677b3d2007-08-20 22:48:41 +00004543 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004544}
4545
drh2dcc9aa2002-12-04 13:40:25 +00004546/*
4547** Move the cursor down to the right-most leaf entry beneath the
4548** page to which it is currently pointing. Notice the difference
4549** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4550** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4551** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004552**
4553** The right-most entry is the one with the largest key - the last
4554** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004555*/
4556static int moveToRightmost(BtCursor *pCur){
4557 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004558 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004559 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004560
drh1fee73e2007-08-29 04:00:57 +00004561 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004562 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004563 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004564 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004565 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004566 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004567 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004568 }
drhee6438d2014-09-01 13:29:32 +00004569 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4570 assert( pCur->info.nSize==0 );
4571 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4572 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004573}
4574
drh5e00f6c2001-09-13 13:46:56 +00004575/* Move the cursor to the first entry in the table. Return SQLITE_OK
4576** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004577** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004578*/
drh3aac2dd2004-04-26 14:10:20 +00004579int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004580 int rc;
drhd677b3d2007-08-20 22:48:41 +00004581
drh1fee73e2007-08-29 04:00:57 +00004582 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004583 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004584 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004585 if( rc==SQLITE_OK ){
4586 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004587 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004588 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004589 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004590 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004591 *pRes = 0;
4592 rc = moveToLeftmost(pCur);
4593 }
drh5e00f6c2001-09-13 13:46:56 +00004594 }
drh5e00f6c2001-09-13 13:46:56 +00004595 return rc;
4596}
drh5e2f8b92001-05-28 00:41:15 +00004597
drh9562b552002-02-19 15:00:07 +00004598/* Move the cursor to the last entry in the table. Return SQLITE_OK
4599** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004600** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004601*/
drh3aac2dd2004-04-26 14:10:20 +00004602int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004603 int rc;
drhd677b3d2007-08-20 22:48:41 +00004604
drh1fee73e2007-08-29 04:00:57 +00004605 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004606 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004607
4608 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004609 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004610#ifdef SQLITE_DEBUG
4611 /* This block serves to assert() that the cursor really does point
4612 ** to the last entry in the b-tree. */
4613 int ii;
4614 for(ii=0; ii<pCur->iPage; ii++){
4615 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4616 }
4617 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4618 assert( pCur->apPage[pCur->iPage]->leaf );
4619#endif
4620 return SQLITE_OK;
4621 }
4622
drh9562b552002-02-19 15:00:07 +00004623 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004624 if( rc==SQLITE_OK ){
4625 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004626 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004627 *pRes = 1;
4628 }else{
4629 assert( pCur->eState==CURSOR_VALID );
4630 *pRes = 0;
4631 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004632 if( rc==SQLITE_OK ){
4633 pCur->curFlags |= BTCF_AtLast;
4634 }else{
4635 pCur->curFlags &= ~BTCF_AtLast;
4636 }
4637
drhd677b3d2007-08-20 22:48:41 +00004638 }
drh9562b552002-02-19 15:00:07 +00004639 }
drh9562b552002-02-19 15:00:07 +00004640 return rc;
4641}
4642
drhe14006d2008-03-25 17:23:32 +00004643/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004644** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004645**
drhe63d9992008-08-13 19:11:48 +00004646** For INTKEY tables, the intKey parameter is used. pIdxKey
4647** must be NULL. For index tables, pIdxKey is used and intKey
4648** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004649**
drh5e2f8b92001-05-28 00:41:15 +00004650** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004651** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004652** were present. The cursor might point to an entry that comes
4653** before or after the key.
4654**
drh64022502009-01-09 14:11:04 +00004655** An integer is written into *pRes which is the result of
4656** comparing the key with the entry to which the cursor is
4657** pointing. The meaning of the integer written into
4658** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004659**
4660** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004661** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004662** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004663**
4664** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004665** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004666**
4667** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004668** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004669**
drha059ad02001-04-17 20:09:11 +00004670*/
drhe63d9992008-08-13 19:11:48 +00004671int sqlite3BtreeMovetoUnpacked(
4672 BtCursor *pCur, /* The cursor to be moved */
4673 UnpackedRecord *pIdxKey, /* Unpacked index key */
4674 i64 intKey, /* The table key */
4675 int biasRight, /* If true, bias the search to the high end */
4676 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004677){
drh72f82862001-05-24 21:06:34 +00004678 int rc;
dan3b9330f2014-02-27 20:44:18 +00004679 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004680
drh1fee73e2007-08-29 04:00:57 +00004681 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004682 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004683 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004684 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004685
4686 /* If the cursor is already positioned at the point we are trying
4687 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00004688 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00004689 && pCur->apPage[0]->intKey
4690 ){
drhe63d9992008-08-13 19:11:48 +00004691 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004692 *pRes = 0;
4693 return SQLITE_OK;
4694 }
drh036dbec2014-03-11 23:40:44 +00004695 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004696 *pRes = -1;
4697 return SQLITE_OK;
4698 }
4699 }
4700
dan1fed5da2014-02-25 21:01:25 +00004701 if( pIdxKey ){
4702 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00004703 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00004704 assert( pIdxKey->default_rc==1
4705 || pIdxKey->default_rc==0
4706 || pIdxKey->default_rc==-1
4707 );
drh13a747e2014-03-03 21:46:55 +00004708 }else{
drhb6e8fd12014-03-06 01:56:33 +00004709 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004710 }
4711
drh5e2f8b92001-05-28 00:41:15 +00004712 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004713 if( rc ){
4714 return rc;
4715 }
dana205a482011-08-27 18:48:57 +00004716 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4717 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4718 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004719 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004720 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004721 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004722 return SQLITE_OK;
4723 }
danielk197771d5d2c2008-09-29 11:49:47 +00004724 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004725 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004726 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004727 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004728 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004729 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004730
4731 /* pPage->nCell must be greater than zero. If this is the root-page
4732 ** the cursor would have been INVALID above and this for(;;) loop
4733 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004734 ** would have already detected db corruption. Similarly, pPage must
4735 ** be the right kind (index or table) of b-tree page. Otherwise
4736 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004737 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004738 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004739 lwr = 0;
4740 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00004741 assert( biasRight==0 || biasRight==1 );
4742 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00004743 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00004744 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00004745 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004746 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00004747 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3e28ff52014-09-24 00:59:08 +00004748 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00004749 while( 0x80 <= *(pCell++) ){
4750 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4751 }
drhd172f862006-01-12 15:01:15 +00004752 }
drha2c20e42008-03-29 16:01:04 +00004753 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00004754 if( nCellKey<intKey ){
4755 lwr = idx+1;
4756 if( lwr>upr ){ c = -1; break; }
4757 }else if( nCellKey>intKey ){
4758 upr = idx-1;
4759 if( lwr>upr ){ c = +1; break; }
4760 }else{
4761 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00004762 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00004763 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00004764 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004765 if( !pPage->leaf ){
4766 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00004767 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00004768 }else{
4769 *pRes = 0;
4770 rc = SQLITE_OK;
4771 goto moveto_finish;
4772 }
drhd793f442013-11-25 14:10:15 +00004773 }
drhebf10b12013-11-25 17:38:26 +00004774 assert( lwr+upr>=0 );
4775 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00004776 }
4777 }else{
4778 for(;;){
4779 int nCell;
drhec3e6b12013-11-25 02:38:55 +00004780 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4781
drhb2eced52010-08-12 02:41:12 +00004782 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004783 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004784 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004785 ** varint. This information is used to attempt to avoid parsing
4786 ** the entire cell by checking for the cases where the record is
4787 ** stored entirely within the b-tree page by inspecting the first
4788 ** 2 bytes of the cell.
4789 */
drhec3e6b12013-11-25 02:38:55 +00004790 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00004791 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00004792 /* This branch runs if the record-size field of the cell is a
4793 ** single byte varint and the record fits entirely on the main
4794 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004795 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00004796 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00004797 }else if( !(pCell[1] & 0x80)
4798 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4799 ){
4800 /* The record-size field is a 2 byte varint and the record
4801 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004802 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00004803 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004804 }else{
danielk197711c327a2009-05-04 19:01:26 +00004805 /* The record flows over onto one or more overflow pages. In
4806 ** this case the whole cell needs to be parsed, a buffer allocated
4807 ** and accessPayload() used to retrieve the record into the
4808 ** buffer before VdbeRecordCompare() can be called. */
4809 void *pCellKey;
4810 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004811 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004812 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004813 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004814 if( pCellKey==0 ){
4815 rc = SQLITE_NOMEM;
4816 goto moveto_finish;
4817 }
drhd793f442013-11-25 14:10:15 +00004818 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00004819 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00004820 if( rc ){
4821 sqlite3_free(pCellKey);
4822 goto moveto_finish;
4823 }
drh75179de2014-09-16 14:37:35 +00004824 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004825 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004826 }
dan38fdead2014-04-01 10:19:02 +00004827 assert(
4828 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00004829 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00004830 );
drhbb933ef2013-11-25 15:01:38 +00004831 if( c<0 ){
4832 lwr = idx+1;
4833 }else if( c>0 ){
4834 upr = idx-1;
4835 }else{
4836 assert( c==0 );
drh64022502009-01-09 14:11:04 +00004837 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004838 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00004839 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00004840 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00004841 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004842 }
drhebf10b12013-11-25 17:38:26 +00004843 if( lwr>upr ) break;
4844 assert( lwr+upr>=0 );
4845 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00004846 }
drh72f82862001-05-24 21:06:34 +00004847 }
drhb07028f2011-10-14 21:49:18 +00004848 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004849 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004850 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00004851 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00004852 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004853 *pRes = c;
4854 rc = SQLITE_OK;
4855 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00004856 }
4857moveto_next_layer:
4858 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004859 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004860 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004861 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004862 }
drhf49661a2008-12-10 16:45:50 +00004863 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00004864 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00004865 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00004866 }
drh1e968a02008-03-25 00:22:21 +00004867moveto_finish:
drhd2022b02013-11-25 16:23:52 +00004868 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004869 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00004870 return rc;
4871}
4872
drhd677b3d2007-08-20 22:48:41 +00004873
drh72f82862001-05-24 21:06:34 +00004874/*
drhc39e0002004-05-07 23:50:57 +00004875** Return TRUE if the cursor is not pointing at an entry of the table.
4876**
4877** TRUE will be returned after a call to sqlite3BtreeNext() moves
4878** past the last entry in the table or sqlite3BtreePrev() moves past
4879** the first entry. TRUE is also returned if the table is empty.
4880*/
4881int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004882 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4883 ** have been deleted? This API will need to change to return an error code
4884 ** as well as the boolean result value.
4885 */
4886 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004887}
4888
4889/*
drhbd03cae2001-06-02 02:40:57 +00004890** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004891** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004892** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004893** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00004894**
drhee6438d2014-09-01 13:29:32 +00004895** The main entry point is sqlite3BtreeNext(). That routine is optimized
4896** for the common case of merely incrementing the cell counter BtCursor.aiIdx
4897** to the next cell on the current page. The (slower) btreeNext() helper
4898** routine is called when it is necessary to move to a different page or
4899** to restore the cursor.
4900**
drhe39a7322014-02-03 14:04:11 +00004901** The calling function will set *pRes to 0 or 1. The initial *pRes value
4902** will be 1 if the cursor being stepped corresponds to an SQL index and
4903** if this routine could have been skipped if that SQL index had been
4904** a unique index. Otherwise the caller will have set *pRes to zero.
4905** Zero is the common case. The btree implementation is free to use the
4906** initial *pRes value as a hint to improve performance, but the current
4907** SQLite btree implementation does not. (Note that the comdb2 btree
4908** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00004909*/
drhee6438d2014-09-01 13:29:32 +00004910static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004911 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004912 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004913 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004914
drh1fee73e2007-08-29 04:00:57 +00004915 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00004916 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004917 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00004918 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00004919 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00004920 rc = restoreCursorPosition(pCur);
4921 if( rc!=SQLITE_OK ){
4922 return rc;
4923 }
4924 if( CURSOR_INVALID==pCur->eState ){
4925 *pRes = 1;
4926 return SQLITE_OK;
4927 }
drh9b47ee32013-08-20 03:13:51 +00004928 if( pCur->skipNext ){
4929 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4930 pCur->eState = CURSOR_VALID;
4931 if( pCur->skipNext>0 ){
4932 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00004933 return SQLITE_OK;
4934 }
drhf66f26a2013-08-19 20:04:10 +00004935 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004936 }
danielk1977da184232006-01-05 11:34:32 +00004937 }
danielk1977da184232006-01-05 11:34:32 +00004938
danielk197771d5d2c2008-09-29 11:49:47 +00004939 pPage = pCur->apPage[pCur->iPage];
4940 idx = ++pCur->aiIdx[pCur->iPage];
4941 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004942
4943 /* If the database file is corrupt, it is possible for the value of idx
4944 ** to be invalid here. This can only occur if a second cursor modifies
4945 ** the page while cursor pCur is holding a reference to it. Which can
4946 ** only happen if the database is corrupt in such a way as to link the
4947 ** page into more than one b-tree structure. */
4948 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004949
danielk197771d5d2c2008-09-29 11:49:47 +00004950 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004951 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004952 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00004953 if( rc ) return rc;
4954 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00004955 }
drh5e2f8b92001-05-28 00:41:15 +00004956 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004957 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004958 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004959 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004960 return SQLITE_OK;
4961 }
danielk197730548662009-07-09 05:07:37 +00004962 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004963 pPage = pCur->apPage[pCur->iPage];
4964 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00004965 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00004966 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00004967 }else{
drhee6438d2014-09-01 13:29:32 +00004968 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00004969 }
drh8178a752003-01-05 21:41:40 +00004970 }
drh3aac2dd2004-04-26 14:10:20 +00004971 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004972 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00004973 }else{
4974 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00004975 }
drh72f82862001-05-24 21:06:34 +00004976}
drhee6438d2014-09-01 13:29:32 +00004977int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
4978 MemPage *pPage;
4979 assert( cursorHoldsMutex(pCur) );
4980 assert( pRes!=0 );
4981 assert( *pRes==0 || *pRes==1 );
4982 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
4983 pCur->info.nSize = 0;
4984 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4985 *pRes = 0;
4986 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
4987 pPage = pCur->apPage[pCur->iPage];
4988 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
4989 pCur->aiIdx[pCur->iPage]--;
4990 return btreeNext(pCur, pRes);
4991 }
4992 if( pPage->leaf ){
4993 return SQLITE_OK;
4994 }else{
4995 return moveToLeftmost(pCur);
4996 }
4997}
drh72f82862001-05-24 21:06:34 +00004998
drh3b7511c2001-05-26 13:15:44 +00004999/*
drh2dcc9aa2002-12-04 13:40:25 +00005000** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005001** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005002** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005003** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005004**
drhee6438d2014-09-01 13:29:32 +00005005** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5006** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005007** to the previous cell on the current page. The (slower) btreePrevious()
5008** helper routine is called when it is necessary to move to a different page
5009** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005010**
drhe39a7322014-02-03 14:04:11 +00005011** The calling function will set *pRes to 0 or 1. The initial *pRes value
5012** will be 1 if the cursor being stepped corresponds to an SQL index and
5013** if this routine could have been skipped if that SQL index had been
5014** a unique index. Otherwise the caller will have set *pRes to zero.
5015** Zero is the common case. The btree implementation is free to use the
5016** initial *pRes value as a hint to improve performance, but the current
5017** SQLite btree implementation does not. (Note that the comdb2 btree
5018** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005019*/
drhee6438d2014-09-01 13:29:32 +00005020static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005021 int rc;
drh8178a752003-01-05 21:41:40 +00005022 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005023
drh1fee73e2007-08-29 04:00:57 +00005024 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005025 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005026 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005027 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005028 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5029 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005030 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005031 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005032 if( rc!=SQLITE_OK ){
5033 return rc;
drhf66f26a2013-08-19 20:04:10 +00005034 }
5035 if( CURSOR_INVALID==pCur->eState ){
5036 *pRes = 1;
5037 return SQLITE_OK;
5038 }
drh9b47ee32013-08-20 03:13:51 +00005039 if( pCur->skipNext ){
5040 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5041 pCur->eState = CURSOR_VALID;
5042 if( pCur->skipNext<0 ){
5043 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005044 return SQLITE_OK;
5045 }
drhf66f26a2013-08-19 20:04:10 +00005046 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005047 }
danielk1977da184232006-01-05 11:34:32 +00005048 }
danielk1977da184232006-01-05 11:34:32 +00005049
danielk197771d5d2c2008-09-29 11:49:47 +00005050 pPage = pCur->apPage[pCur->iPage];
5051 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005052 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005053 int idx = pCur->aiIdx[pCur->iPage];
5054 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005055 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005056 rc = moveToRightmost(pCur);
5057 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005058 while( pCur->aiIdx[pCur->iPage]==0 ){
5059 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005060 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005061 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005062 return SQLITE_OK;
5063 }
danielk197730548662009-07-09 05:07:37 +00005064 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005065 }
drhee6438d2014-09-01 13:29:32 +00005066 assert( pCur->info.nSize==0 );
5067 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005068
5069 pCur->aiIdx[pCur->iPage]--;
5070 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005071 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005072 rc = sqlite3BtreePrevious(pCur, pRes);
5073 }else{
5074 rc = SQLITE_OK;
5075 }
drh2dcc9aa2002-12-04 13:40:25 +00005076 }
drh2dcc9aa2002-12-04 13:40:25 +00005077 return rc;
5078}
drhee6438d2014-09-01 13:29:32 +00005079int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5080 assert( cursorHoldsMutex(pCur) );
5081 assert( pRes!=0 );
5082 assert( *pRes==0 || *pRes==1 );
5083 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5084 *pRes = 0;
5085 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5086 pCur->info.nSize = 0;
5087 if( pCur->eState!=CURSOR_VALID
5088 || pCur->aiIdx[pCur->iPage]==0
5089 || pCur->apPage[pCur->iPage]->leaf==0
5090 ){
5091 return btreePrevious(pCur, pRes);
5092 }
5093 pCur->aiIdx[pCur->iPage]--;
5094 return SQLITE_OK;
5095}
drh2dcc9aa2002-12-04 13:40:25 +00005096
5097/*
drh3b7511c2001-05-26 13:15:44 +00005098** Allocate a new page from the database file.
5099**
danielk19773b8a05f2007-03-19 17:44:26 +00005100** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005101** has already been called on the new page.) The new page has also
5102** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005103** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005104**
5105** SQLITE_OK is returned on success. Any other return value indicates
5106** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00005107** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00005108**
drh82e647d2013-03-02 03:25:55 +00005109** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005110** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005111** attempt to keep related pages close to each other in the database file,
5112** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005113**
drh82e647d2013-03-02 03:25:55 +00005114** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5115** anywhere on the free-list, then it is guaranteed to be returned. If
5116** eMode is BTALLOC_LT then the page returned will be less than or equal
5117** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5118** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005119*/
drh4f0c5872007-03-26 22:05:01 +00005120static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005121 BtShared *pBt, /* The btree */
5122 MemPage **ppPage, /* Store pointer to the allocated page here */
5123 Pgno *pPgno, /* Store the page number here */
5124 Pgno nearby, /* Search for a page near this one */
5125 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005126){
drh3aac2dd2004-04-26 14:10:20 +00005127 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005128 int rc;
drh35cd6432009-06-05 14:17:21 +00005129 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005130 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005131 MemPage *pTrunk = 0;
5132 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005133 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005134
drh1fee73e2007-08-29 04:00:57 +00005135 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005136 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005137 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005138 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00005139 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005140 testcase( n==mxPage-1 );
5141 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005142 return SQLITE_CORRUPT_BKPT;
5143 }
drh3aac2dd2004-04-26 14:10:20 +00005144 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005145 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005146 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005147 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5148
drh82e647d2013-03-02 03:25:55 +00005149 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005150 ** shows that the page 'nearby' is somewhere on the free-list, then
5151 ** the entire-list will be searched for that page.
5152 */
5153#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005154 if( eMode==BTALLOC_EXACT ){
5155 if( nearby<=mxPage ){
5156 u8 eType;
5157 assert( nearby>0 );
5158 assert( pBt->autoVacuum );
5159 rc = ptrmapGet(pBt, nearby, &eType, 0);
5160 if( rc ) return rc;
5161 if( eType==PTRMAP_FREEPAGE ){
5162 searchList = 1;
5163 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005164 }
dan51f0b6d2013-02-22 20:16:34 +00005165 }else if( eMode==BTALLOC_LE ){
5166 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005167 }
5168#endif
5169
5170 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5171 ** first free-list trunk page. iPrevTrunk is initially 1.
5172 */
danielk19773b8a05f2007-03-19 17:44:26 +00005173 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005174 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005175 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005176
5177 /* The code within this loop is run only once if the 'searchList' variable
5178 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005179 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5180 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005181 */
5182 do {
5183 pPrevTrunk = pTrunk;
5184 if( pPrevTrunk ){
5185 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005186 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00005187 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005188 }
drhdf35a082009-07-09 02:24:35 +00005189 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005190 if( iTrunk>mxPage ){
5191 rc = SQLITE_CORRUPT_BKPT;
5192 }else{
drhb00fc3b2013-08-21 23:42:32 +00005193 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005194 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005195 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005196 pTrunk = 0;
5197 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005198 }
drhb07028f2011-10-14 21:49:18 +00005199 assert( pTrunk!=0 );
5200 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005201
drh93b4fc72011-04-07 14:47:01 +00005202 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005203 if( k==0 && !searchList ){
5204 /* The trunk has no leaves and the list is not being searched.
5205 ** So extract the trunk page itself and use it as the newly
5206 ** allocated page */
5207 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005208 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005209 if( rc ){
5210 goto end_allocate_page;
5211 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005212 *pPgno = iTrunk;
5213 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5214 *ppPage = pTrunk;
5215 pTrunk = 0;
5216 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005217 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005218 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005219 rc = SQLITE_CORRUPT_BKPT;
5220 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005221#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005222 }else if( searchList
5223 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5224 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005225 /* The list is being searched and this trunk page is the page
5226 ** to allocate, regardless of whether it has leaves.
5227 */
dan51f0b6d2013-02-22 20:16:34 +00005228 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005229 *ppPage = pTrunk;
5230 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005231 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005232 if( rc ){
5233 goto end_allocate_page;
5234 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005235 if( k==0 ){
5236 if( !pPrevTrunk ){
5237 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5238 }else{
danf48c3552010-08-23 15:41:24 +00005239 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5240 if( rc!=SQLITE_OK ){
5241 goto end_allocate_page;
5242 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005243 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5244 }
5245 }else{
5246 /* The trunk page is required by the caller but it contains
5247 ** pointers to free-list leaves. The first leaf becomes a trunk
5248 ** page in this case.
5249 */
5250 MemPage *pNewTrunk;
5251 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005252 if( iNewTrunk>mxPage ){
5253 rc = SQLITE_CORRUPT_BKPT;
5254 goto end_allocate_page;
5255 }
drhdf35a082009-07-09 02:24:35 +00005256 testcase( iNewTrunk==mxPage );
drhb00fc3b2013-08-21 23:42:32 +00005257 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005258 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005259 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005260 }
danielk19773b8a05f2007-03-19 17:44:26 +00005261 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005262 if( rc!=SQLITE_OK ){
5263 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005264 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005265 }
5266 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5267 put4byte(&pNewTrunk->aData[4], k-1);
5268 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005269 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005270 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005271 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005272 put4byte(&pPage1->aData[32], iNewTrunk);
5273 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005274 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005275 if( rc ){
5276 goto end_allocate_page;
5277 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005278 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5279 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005280 }
5281 pTrunk = 0;
5282 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5283#endif
danielk1977e5765212009-06-17 11:13:28 +00005284 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005285 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005286 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005287 Pgno iPage;
5288 unsigned char *aData = pTrunk->aData;
5289 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005290 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005291 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005292 if( eMode==BTALLOC_LE ){
5293 for(i=0; i<k; i++){
5294 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005295 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005296 closest = i;
5297 break;
5298 }
5299 }
5300 }else{
5301 int dist;
5302 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5303 for(i=1; i<k; i++){
5304 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5305 if( d2<dist ){
5306 closest = i;
5307 dist = d2;
5308 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005309 }
5310 }
5311 }else{
5312 closest = 0;
5313 }
5314
5315 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005316 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005317 if( iPage>mxPage ){
5318 rc = SQLITE_CORRUPT_BKPT;
5319 goto end_allocate_page;
5320 }
drhdf35a082009-07-09 02:24:35 +00005321 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005322 if( !searchList
5323 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5324 ){
danielk1977bea2a942009-01-20 17:06:27 +00005325 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005326 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005327 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5328 ": %d more free pages\n",
5329 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005330 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5331 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005332 if( closest<k-1 ){
5333 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5334 }
5335 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005336 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drhb00fc3b2013-08-21 23:42:32 +00005337 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005338 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005339 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005340 if( rc!=SQLITE_OK ){
5341 releasePage(*ppPage);
5342 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005343 }
5344 searchList = 0;
5345 }
drhee696e22004-08-30 16:52:17 +00005346 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005347 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005348 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005349 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005350 }else{
danbc1a3c62013-02-23 16:40:46 +00005351 /* There are no pages on the freelist, so append a new page to the
5352 ** database image.
5353 **
5354 ** Normally, new pages allocated by this block can be requested from the
5355 ** pager layer with the 'no-content' flag set. This prevents the pager
5356 ** from trying to read the pages content from disk. However, if the
5357 ** current transaction has already run one or more incremental-vacuum
5358 ** steps, then the page we are about to allocate may contain content
5359 ** that is required in the event of a rollback. In this case, do
5360 ** not set the no-content flag. This causes the pager to load and journal
5361 ** the current page content before overwriting it.
5362 **
5363 ** Note that the pager will not actually attempt to load or journal
5364 ** content for any page that really does lie past the end of the database
5365 ** file on disk. So the effects of disabling the no-content optimization
5366 ** here are confined to those pages that lie between the end of the
5367 ** database image and the end of the database file.
5368 */
drh3f387402014-09-24 01:23:00 +00005369 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005370
drhdd3cd972010-03-27 17:12:36 +00005371 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5372 if( rc ) return rc;
5373 pBt->nPage++;
5374 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005375
danielk1977afcdd022004-10-31 16:25:42 +00005376#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005377 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005378 /* If *pPgno refers to a pointer-map page, allocate two new pages
5379 ** at the end of the file instead of one. The first allocated page
5380 ** becomes a new pointer-map page, the second is used by the caller.
5381 */
danielk1977ac861692009-03-28 10:54:22 +00005382 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005383 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5384 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005385 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005386 if( rc==SQLITE_OK ){
5387 rc = sqlite3PagerWrite(pPg->pDbPage);
5388 releasePage(pPg);
5389 }
5390 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005391 pBt->nPage++;
5392 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005393 }
5394#endif
drhdd3cd972010-03-27 17:12:36 +00005395 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5396 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005397
danielk1977599fcba2004-11-08 07:13:13 +00005398 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005399 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005400 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005401 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005402 if( rc!=SQLITE_OK ){
5403 releasePage(*ppPage);
5404 }
drh3a4c1412004-05-09 20:40:11 +00005405 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005406 }
danielk1977599fcba2004-11-08 07:13:13 +00005407
5408 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005409
5410end_allocate_page:
5411 releasePage(pTrunk);
5412 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005413 if( rc==SQLITE_OK ){
5414 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5415 releasePage(*ppPage);
dan7df42ab2014-01-20 18:25:44 +00005416 *ppPage = 0;
danielk1977b247c212008-11-21 09:09:01 +00005417 return SQLITE_CORRUPT_BKPT;
5418 }
5419 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005420 }else{
5421 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005422 }
drh93b4fc72011-04-07 14:47:01 +00005423 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005424 return rc;
5425}
5426
5427/*
danielk1977bea2a942009-01-20 17:06:27 +00005428** This function is used to add page iPage to the database file free-list.
5429** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005430**
danielk1977bea2a942009-01-20 17:06:27 +00005431** The value passed as the second argument to this function is optional.
5432** If the caller happens to have a pointer to the MemPage object
5433** corresponding to page iPage handy, it may pass it as the second value.
5434** Otherwise, it may pass NULL.
5435**
5436** If a pointer to a MemPage object is passed as the second argument,
5437** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005438*/
danielk1977bea2a942009-01-20 17:06:27 +00005439static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5440 MemPage *pTrunk = 0; /* Free-list trunk page */
5441 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5442 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5443 MemPage *pPage; /* Page being freed. May be NULL. */
5444 int rc; /* Return Code */
5445 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005446
danielk1977bea2a942009-01-20 17:06:27 +00005447 assert( sqlite3_mutex_held(pBt->mutex) );
5448 assert( iPage>1 );
5449 assert( !pMemPage || pMemPage->pgno==iPage );
5450
5451 if( pMemPage ){
5452 pPage = pMemPage;
5453 sqlite3PagerRef(pPage->pDbPage);
5454 }else{
5455 pPage = btreePageLookup(pBt, iPage);
5456 }
drh3aac2dd2004-04-26 14:10:20 +00005457
drha34b6762004-05-07 13:30:42 +00005458 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005459 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005460 if( rc ) goto freepage_out;
5461 nFree = get4byte(&pPage1->aData[36]);
5462 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005463
drhc9166342012-01-05 23:32:06 +00005464 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005465 /* If the secure_delete option is enabled, then
5466 ** always fully overwrite deleted information with zeros.
5467 */
drhb00fc3b2013-08-21 23:42:32 +00005468 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005469 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005470 ){
5471 goto freepage_out;
5472 }
5473 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005474 }
drhfcce93f2006-02-22 03:08:32 +00005475
danielk1977687566d2004-11-02 12:56:41 +00005476 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005477 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005478 */
danielk197785d90ca2008-07-19 14:25:15 +00005479 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005480 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005481 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005482 }
danielk1977687566d2004-11-02 12:56:41 +00005483
danielk1977bea2a942009-01-20 17:06:27 +00005484 /* Now manipulate the actual database free-list structure. There are two
5485 ** possibilities. If the free-list is currently empty, or if the first
5486 ** trunk page in the free-list is full, then this page will become a
5487 ** new free-list trunk page. Otherwise, it will become a leaf of the
5488 ** first trunk page in the current free-list. This block tests if it
5489 ** is possible to add the page as a new free-list leaf.
5490 */
5491 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005492 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005493
5494 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005495 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005496 if( rc!=SQLITE_OK ){
5497 goto freepage_out;
5498 }
5499
5500 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005501 assert( pBt->usableSize>32 );
5502 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005503 rc = SQLITE_CORRUPT_BKPT;
5504 goto freepage_out;
5505 }
drheeb844a2009-08-08 18:01:07 +00005506 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005507 /* In this case there is room on the trunk page to insert the page
5508 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005509 **
5510 ** Note that the trunk page is not really full until it contains
5511 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5512 ** coded. But due to a coding error in versions of SQLite prior to
5513 ** 3.6.0, databases with freelist trunk pages holding more than
5514 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5515 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005516 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005517 ** for now. At some point in the future (once everyone has upgraded
5518 ** to 3.6.0 or later) we should consider fixing the conditional above
5519 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5520 */
danielk19773b8a05f2007-03-19 17:44:26 +00005521 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005522 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005523 put4byte(&pTrunk->aData[4], nLeaf+1);
5524 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005525 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005526 sqlite3PagerDontWrite(pPage->pDbPage);
5527 }
danielk1977bea2a942009-01-20 17:06:27 +00005528 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005529 }
drh3a4c1412004-05-09 20:40:11 +00005530 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005531 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005532 }
drh3b7511c2001-05-26 13:15:44 +00005533 }
danielk1977bea2a942009-01-20 17:06:27 +00005534
5535 /* If control flows to this point, then it was not possible to add the
5536 ** the page being freed as a leaf page of the first trunk in the free-list.
5537 ** Possibly because the free-list is empty, or possibly because the
5538 ** first trunk in the free-list is full. Either way, the page being freed
5539 ** will become the new first trunk page in the free-list.
5540 */
drhb00fc3b2013-08-21 23:42:32 +00005541 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005542 goto freepage_out;
5543 }
5544 rc = sqlite3PagerWrite(pPage->pDbPage);
5545 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005546 goto freepage_out;
5547 }
5548 put4byte(pPage->aData, iTrunk);
5549 put4byte(&pPage->aData[4], 0);
5550 put4byte(&pPage1->aData[32], iPage);
5551 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5552
5553freepage_out:
5554 if( pPage ){
5555 pPage->isInit = 0;
5556 }
5557 releasePage(pPage);
5558 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005559 return rc;
5560}
drhc314dc72009-07-21 11:52:34 +00005561static void freePage(MemPage *pPage, int *pRC){
5562 if( (*pRC)==SQLITE_OK ){
5563 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5564 }
danielk1977bea2a942009-01-20 17:06:27 +00005565}
drh3b7511c2001-05-26 13:15:44 +00005566
5567/*
drh9bfdc252014-09-24 02:05:41 +00005568** Free any overflow pages associated with the given Cell. Write the
5569** local Cell size (the number of bytes on the original page, omitting
5570** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005571*/
drh9bfdc252014-09-24 02:05:41 +00005572static int clearCell(
5573 MemPage *pPage, /* The page that contains the Cell */
5574 unsigned char *pCell, /* First byte of the Cell */
5575 u16 *pnSize /* Write the size of the Cell here */
5576){
danielk1977aef0bf62005-12-30 16:28:01 +00005577 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005578 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005579 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005580 int rc;
drh94440812007-03-06 11:42:19 +00005581 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005582 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005583
drh1fee73e2007-08-29 04:00:57 +00005584 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005585 btreeParseCellPtr(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005586 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005587 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005588 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005589 }
drhe42a9b42011-08-31 13:27:19 +00005590 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005591 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005592 }
drh6f11bef2004-05-13 01:12:56 +00005593 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005594 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005595 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005596 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5597 assert( ovflPgno==0 || nOvfl>0 );
5598 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005599 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005600 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005601 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005602 /* 0 is not a legal page number and page 1 cannot be an
5603 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5604 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005605 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005606 }
danielk1977bea2a942009-01-20 17:06:27 +00005607 if( nOvfl ){
5608 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5609 if( rc ) return rc;
5610 }
dan887d4b22010-02-25 12:09:16 +00005611
shaneh1da207e2010-03-09 14:41:12 +00005612 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005613 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5614 ){
5615 /* There is no reason any cursor should have an outstanding reference
5616 ** to an overflow page belonging to a cell that is being deleted/updated.
5617 ** So if there exists more than one reference to this page, then it
5618 ** must not really be an overflow page and the database must be corrupt.
5619 ** It is helpful to detect this before calling freePage2(), as
5620 ** freePage2() may zero the page contents if secure-delete mode is
5621 ** enabled. If this 'overflow' page happens to be a page that the
5622 ** caller is iterating through or using in some other way, this
5623 ** can be problematic.
5624 */
5625 rc = SQLITE_CORRUPT_BKPT;
5626 }else{
5627 rc = freePage2(pBt, pOvfl, ovflPgno);
5628 }
5629
danielk1977bea2a942009-01-20 17:06:27 +00005630 if( pOvfl ){
5631 sqlite3PagerUnref(pOvfl->pDbPage);
5632 }
drh3b7511c2001-05-26 13:15:44 +00005633 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005634 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005635 }
drh5e2f8b92001-05-28 00:41:15 +00005636 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005637}
5638
5639/*
drh91025292004-05-03 19:49:32 +00005640** Create the byte sequence used to represent a cell on page pPage
5641** and write that byte sequence into pCell[]. Overflow pages are
5642** allocated and filled in as necessary. The calling procedure
5643** is responsible for making sure sufficient space has been allocated
5644** for pCell[].
5645**
5646** Note that pCell does not necessary need to point to the pPage->aData
5647** area. pCell might point to some temporary storage. The cell will
5648** be constructed in this temporary area then copied into pPage->aData
5649** later.
drh3b7511c2001-05-26 13:15:44 +00005650*/
5651static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005652 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005653 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005654 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005655 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005656 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005657 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005658){
drh3b7511c2001-05-26 13:15:44 +00005659 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005660 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005661 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005662 int spaceLeft;
5663 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005664 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005665 unsigned char *pPrior;
5666 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005667 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005668 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005669 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00005670
drh1fee73e2007-08-29 04:00:57 +00005671 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005672
drhc5053fb2008-11-27 02:22:10 +00005673 /* pPage is not necessarily writeable since pCell might be auxiliary
5674 ** buffer space that is separate from the pPage buffer area */
5675 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5676 || sqlite3PagerIswriteable(pPage->pDbPage) );
5677
drh91025292004-05-03 19:49:32 +00005678 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00005679 nHeader = pPage->childPtrSize;
5680 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00005681 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00005682 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00005683 }else{
drh6200c882014-09-23 22:36:25 +00005684 assert( nData==0 );
5685 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00005686 }
drh6f11bef2004-05-13 01:12:56 +00005687 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00005688
drh6200c882014-09-23 22:36:25 +00005689 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00005690 if( pPage->intKey ){
5691 pSrc = pData;
5692 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005693 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005694 }else{
danielk197731d31b82009-07-13 13:18:07 +00005695 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5696 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005697 }
drh6200c882014-09-23 22:36:25 +00005698 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005699 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005700 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005701 }
drh6200c882014-09-23 22:36:25 +00005702 if( nPayload<=pPage->maxLocal ){
5703 n = nHeader + nPayload;
5704 testcase( n==3 );
5705 testcase( n==4 );
5706 if( n<4 ) n = 4;
5707 *pnSize = n;
5708 spaceLeft = nPayload;
5709 pPrior = pCell;
5710 }else{
5711 int mn = pPage->minLocal;
5712 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
5713 testcase( n==pPage->maxLocal );
5714 testcase( n==pPage->maxLocal+1 );
5715 if( n > pPage->maxLocal ) n = mn;
5716 spaceLeft = n;
5717 *pnSize = n + nHeader + 4;
5718 pPrior = &pCell[nHeader+n];
5719 }
drh3aac2dd2004-04-26 14:10:20 +00005720 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00005721
drh6200c882014-09-23 22:36:25 +00005722 /* At this point variables should be set as follows:
5723 **
5724 ** nPayload Total payload size in bytes
5725 ** pPayload Begin writing payload here
5726 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
5727 ** that means content must spill into overflow pages.
5728 ** *pnSize Size of the local cell (not counting overflow pages)
5729 ** pPrior Where to write the pgno of the first overflow page
5730 **
5731 ** Use a call to btreeParseCellPtr() to verify that the values above
5732 ** were computed correctly.
5733 */
5734#if SQLITE_DEBUG
5735 {
5736 CellInfo info;
5737 btreeParseCellPtr(pPage, pCell, &info);
5738 assert( nHeader=(int)(info.pPayload - pCell) );
5739 assert( info.nKey==nKey );
5740 assert( *pnSize == info.nSize );
5741 assert( spaceLeft == info.nLocal );
5742 assert( pPrior == &pCell[info.iOverflow] );
5743 }
5744#endif
5745
5746 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00005747 while( nPayload>0 ){
5748 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005749#ifndef SQLITE_OMIT_AUTOVACUUM
5750 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005751 if( pBt->autoVacuum ){
5752 do{
5753 pgnoOvfl++;
5754 } while(
5755 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5756 );
danielk1977b39f70b2007-05-17 18:28:11 +00005757 }
danielk1977afcdd022004-10-31 16:25:42 +00005758#endif
drhf49661a2008-12-10 16:45:50 +00005759 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005760#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005761 /* If the database supports auto-vacuum, and the second or subsequent
5762 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005763 ** for that page now.
5764 **
5765 ** If this is the first overflow page, then write a partial entry
5766 ** to the pointer-map. If we write nothing to this pointer-map slot,
5767 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005768 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005769 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005770 */
danielk19774ef24492007-05-23 09:52:41 +00005771 if( pBt->autoVacuum && rc==SQLITE_OK ){
5772 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005773 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005774 if( rc ){
5775 releasePage(pOvfl);
5776 }
danielk1977afcdd022004-10-31 16:25:42 +00005777 }
5778#endif
drh3b7511c2001-05-26 13:15:44 +00005779 if( rc ){
drh9b171272004-05-08 02:03:22 +00005780 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005781 return rc;
5782 }
drhc5053fb2008-11-27 02:22:10 +00005783
5784 /* If pToRelease is not zero than pPrior points into the data area
5785 ** of pToRelease. Make sure pToRelease is still writeable. */
5786 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5787
5788 /* If pPrior is part of the data area of pPage, then make sure pPage
5789 ** is still writeable */
5790 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5791 || sqlite3PagerIswriteable(pPage->pDbPage) );
5792
drh3aac2dd2004-04-26 14:10:20 +00005793 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005794 releasePage(pToRelease);
5795 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005796 pPrior = pOvfl->aData;
5797 put4byte(pPrior, 0);
5798 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005799 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005800 }
5801 n = nPayload;
5802 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005803
5804 /* If pToRelease is not zero than pPayload points into the data area
5805 ** of pToRelease. Make sure pToRelease is still writeable. */
5806 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5807
5808 /* If pPayload is part of the data area of pPage, then make sure pPage
5809 ** is still writeable */
5810 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5811 || sqlite3PagerIswriteable(pPage->pDbPage) );
5812
drhb026e052007-05-02 01:34:31 +00005813 if( nSrc>0 ){
5814 if( n>nSrc ) n = nSrc;
5815 assert( pSrc );
5816 memcpy(pPayload, pSrc, n);
5817 }else{
5818 memset(pPayload, 0, n);
5819 }
drh3b7511c2001-05-26 13:15:44 +00005820 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005821 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005822 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005823 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005824 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005825 if( nSrc==0 ){
5826 nSrc = nData;
5827 pSrc = pData;
5828 }
drhdd793422001-06-28 01:54:48 +00005829 }
drh9b171272004-05-08 02:03:22 +00005830 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005831 return SQLITE_OK;
5832}
5833
drh14acc042001-06-10 19:56:58 +00005834/*
5835** Remove the i-th cell from pPage. This routine effects pPage only.
5836** The cell content is not freed or deallocated. It is assumed that
5837** the cell content has been copied someplace else. This routine just
5838** removes the reference to the cell from pPage.
5839**
5840** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005841*/
drh98add2e2009-07-20 17:11:49 +00005842static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005843 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005844 u8 *data; /* pPage->aData */
5845 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005846 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005847 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005848
drh98add2e2009-07-20 17:11:49 +00005849 if( *pRC ) return;
5850
drh8c42ca92001-06-22 19:15:00 +00005851 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005852 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005853 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005854 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005855 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005856 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005857 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005858 hdr = pPage->hdrOffset;
5859 testcase( pc==get2byte(&data[hdr+5]) );
5860 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005861 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005862 *pRC = SQLITE_CORRUPT_BKPT;
5863 return;
shane0af3f892008-11-12 04:55:34 +00005864 }
shanedcc50b72008-11-13 18:29:50 +00005865 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005866 if( rc ){
5867 *pRC = rc;
5868 return;
shanedcc50b72008-11-13 18:29:50 +00005869 }
drh14acc042001-06-10 19:56:58 +00005870 pPage->nCell--;
drh9bb7c4f2013-12-09 01:58:11 +00005871 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
drhc314dc72009-07-21 11:52:34 +00005872 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005873 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005874}
5875
5876/*
5877** Insert a new cell on pPage at cell index "i". pCell points to the
5878** content of the cell.
5879**
5880** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005881** will not fit, then make a copy of the cell content into pTemp if
5882** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005883** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005884** in pTemp or the original pCell) and also record its index.
5885** Allocating a new entry in pPage->aCell[] implies that
5886** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00005887*/
drh98add2e2009-07-20 17:11:49 +00005888static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005889 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005890 int i, /* New cell becomes the i-th cell of the page */
5891 u8 *pCell, /* Content of the new cell */
5892 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005893 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005894 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5895 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005896){
drh383d30f2010-02-26 13:07:37 +00005897 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005898 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005899 int end; /* First byte past the last cell pointer in data[] */
5900 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005901 int cellOffset; /* Address of first cell pointer in data[] */
5902 u8 *data; /* The content of the whole page */
danielk19774dbaa892009-06-16 16:50:22 +00005903
drh98add2e2009-07-20 17:11:49 +00005904 if( *pRC ) return;
5905
drh43605152004-05-29 21:46:49 +00005906 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00005907 assert( MX_CELL(pPage->pBt)<=10921 );
5908 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00005909 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5910 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005911 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005912 /* The cell should normally be sized correctly. However, when moving a
5913 ** malformed cell from a leaf page to an interior page, if the cell size
5914 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5915 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5916 ** the term after the || in the following assert(). */
5917 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005918 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005919 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00005920 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00005921 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005922 }
danielk19774dbaa892009-06-16 16:50:22 +00005923 if( iChild ){
5924 put4byte(pCell, iChild);
5925 }
drh43605152004-05-29 21:46:49 +00005926 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005927 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5928 pPage->apOvfl[j] = pCell;
5929 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005930 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005931 int rc = sqlite3PagerWrite(pPage->pDbPage);
5932 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005933 *pRC = rc;
5934 return;
danielk19776e465eb2007-08-21 13:11:00 +00005935 }
5936 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005937 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005938 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005939 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005940 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005941 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005942 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005943 /* The allocateSpace() routine guarantees the following two properties
5944 ** if it returns success */
5945 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005946 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005947 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005948 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00005949 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00005950 if( iChild ){
5951 put4byte(&data[idx], iChild);
5952 }
drh8f518832013-12-09 02:32:19 +00005953 memmove(&data[ins+2], &data[ins], end-ins);
drh43605152004-05-29 21:46:49 +00005954 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005955 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005956#ifndef SQLITE_OMIT_AUTOVACUUM
5957 if( pPage->pBt->autoVacuum ){
5958 /* The cell may contain a pointer to an overflow page. If so, write
5959 ** the entry for the overflow page into the pointer map.
5960 */
drh98add2e2009-07-20 17:11:49 +00005961 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005962 }
5963#endif
drh14acc042001-06-10 19:56:58 +00005964 }
5965}
5966
5967/*
drhfa1a98a2004-05-14 19:08:17 +00005968** Add a list of cells to a page. The page should be initially empty.
5969** The cells are guaranteed to fit on the page.
5970*/
5971static void assemblePage(
peter.d.reid60ec9142014-09-06 16:39:46 +00005972 MemPage *pPage, /* The page to be assembled */
drhfa1a98a2004-05-14 19:08:17 +00005973 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005974 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005975 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005976){
5977 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005978 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005979 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005980 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5981 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5982 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005983
drh43605152004-05-29 21:46:49 +00005984 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005985 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005986 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5987 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005988 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005989
5990 /* Check that the page has just been zeroed by zeroPage() */
5991 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005992 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005993
drh3def2352011-11-11 00:27:15 +00005994 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005995 cellbody = nUsable;
5996 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005997 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005998 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005999 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00006000 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00006001 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00006002 }
danielk1977fad91942009-04-29 17:49:59 +00006003 put2byte(&data[hdr+3], nCell);
6004 put2byte(&data[hdr+5], cellbody);
6005 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00006006 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00006007}
6008
drh14acc042001-06-10 19:56:58 +00006009/*
drhc3b70572003-01-04 19:44:07 +00006010** The following parameters determine how many adjacent pages get involved
6011** in a balancing operation. NN is the number of neighbors on either side
6012** of the page that participate in the balancing operation. NB is the
6013** total number of pages that participate, including the target page and
6014** NN neighbors on either side.
6015**
6016** The minimum value of NN is 1 (of course). Increasing NN above 1
6017** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6018** in exchange for a larger degradation in INSERT and UPDATE performance.
6019** The value of NN appears to give the best results overall.
6020*/
6021#define NN 1 /* Number of neighbors on either side of pPage */
6022#define NB (NN*2+1) /* Total pages involved in the balance */
6023
danielk1977ac245ec2005-01-14 13:50:11 +00006024
drh615ae552005-01-16 23:21:00 +00006025#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006026/*
6027** This version of balance() handles the common special case where
6028** a new entry is being inserted on the extreme right-end of the
6029** tree, in other words, when the new entry will become the largest
6030** entry in the tree.
6031**
drhc314dc72009-07-21 11:52:34 +00006032** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006033** a new page to the right-hand side and put the one new entry in
6034** that page. This leaves the right side of the tree somewhat
6035** unbalanced. But odds are that we will be inserting new entries
6036** at the end soon afterwards so the nearly empty page will quickly
6037** fill up. On average.
6038**
6039** pPage is the leaf page which is the right-most page in the tree.
6040** pParent is its parent. pPage must have a single overflow entry
6041** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006042**
6043** The pSpace buffer is used to store a temporary copy of the divider
6044** cell that will be inserted into pParent. Such a cell consists of a 4
6045** byte page number followed by a variable length integer. In other
6046** words, at most 13 bytes. Hence the pSpace buffer must be at
6047** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006048*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006049static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6050 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006051 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006052 int rc; /* Return Code */
6053 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006054
drh1fee73e2007-08-29 04:00:57 +00006055 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006056 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006057 assert( pPage->nOverflow==1 );
6058
drh5d433ce2010-08-14 16:02:52 +00006059 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00006060 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006061
danielk1977a50d9aa2009-06-08 14:49:45 +00006062 /* Allocate a new page. This page will become the right-sibling of
6063 ** pPage. Make the parent page writable, so that the new divider cell
6064 ** may be inserted. If both these operations are successful, proceed.
6065 */
drh4f0c5872007-03-26 22:05:01 +00006066 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006067
danielk1977eaa06f62008-09-18 17:34:44 +00006068 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006069
6070 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006071 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00006072 u16 szCell = cellSizePtr(pPage, pCell);
6073 u8 *pStop;
6074
drhc5053fb2008-11-27 02:22:10 +00006075 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006076 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6077 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00006078 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00006079
6080 /* If this is an auto-vacuum database, update the pointer map
6081 ** with entries for the new page, and any pointer from the
6082 ** cell on the page to an overflow page. If either of these
6083 ** operations fails, the return code is set, but the contents
6084 ** of the parent page are still manipulated by thh code below.
6085 ** That is Ok, at this point the parent page is guaranteed to
6086 ** be marked as dirty. Returning an error code will cause a
6087 ** rollback, undoing any changes made to the parent page.
6088 */
6089 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006090 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6091 if( szCell>pNew->minLocal ){
6092 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006093 }
6094 }
danielk1977eaa06f62008-09-18 17:34:44 +00006095
danielk19776f235cc2009-06-04 14:46:08 +00006096 /* Create a divider cell to insert into pParent. The divider cell
6097 ** consists of a 4-byte page number (the page number of pPage) and
6098 ** a variable length key value (which must be the same value as the
6099 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006100 **
danielk19776f235cc2009-06-04 14:46:08 +00006101 ** To find the largest key value on pPage, first find the right-most
6102 ** cell on pPage. The first two fields of this cell are the
6103 ** record-length (a variable length integer at most 32-bits in size)
6104 ** and the key value (a variable length integer, may have any value).
6105 ** The first of the while(...) loops below skips over the record-length
6106 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006107 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006108 */
danielk1977eaa06f62008-09-18 17:34:44 +00006109 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006110 pStop = &pCell[9];
6111 while( (*(pCell++)&0x80) && pCell<pStop );
6112 pStop = &pCell[9];
6113 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6114
danielk19774dbaa892009-06-16 16:50:22 +00006115 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006116 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6117 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006118
6119 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006120 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6121
danielk1977e08a3c42008-09-18 18:17:03 +00006122 /* Release the reference to the new page. */
6123 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006124 }
6125
danielk1977eaa06f62008-09-18 17:34:44 +00006126 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006127}
drh615ae552005-01-16 23:21:00 +00006128#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006129
danielk19774dbaa892009-06-16 16:50:22 +00006130#if 0
drhc3b70572003-01-04 19:44:07 +00006131/*
danielk19774dbaa892009-06-16 16:50:22 +00006132** This function does not contribute anything to the operation of SQLite.
6133** it is sometimes activated temporarily while debugging code responsible
6134** for setting pointer-map entries.
6135*/
6136static int ptrmapCheckPages(MemPage **apPage, int nPage){
6137 int i, j;
6138 for(i=0; i<nPage; i++){
6139 Pgno n;
6140 u8 e;
6141 MemPage *pPage = apPage[i];
6142 BtShared *pBt = pPage->pBt;
6143 assert( pPage->isInit );
6144
6145 for(j=0; j<pPage->nCell; j++){
6146 CellInfo info;
6147 u8 *z;
6148
6149 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00006150 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006151 if( info.iOverflow ){
6152 Pgno ovfl = get4byte(&z[info.iOverflow]);
6153 ptrmapGet(pBt, ovfl, &e, &n);
6154 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6155 }
6156 if( !pPage->leaf ){
6157 Pgno child = get4byte(z);
6158 ptrmapGet(pBt, child, &e, &n);
6159 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6160 }
6161 }
6162 if( !pPage->leaf ){
6163 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6164 ptrmapGet(pBt, child, &e, &n);
6165 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6166 }
6167 }
6168 return 1;
6169}
6170#endif
6171
danielk1977cd581a72009-06-23 15:43:39 +00006172/*
6173** This function is used to copy the contents of the b-tree node stored
6174** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6175** the pointer-map entries for each child page are updated so that the
6176** parent page stored in the pointer map is page pTo. If pFrom contained
6177** any cells with overflow page pointers, then the corresponding pointer
6178** map entries are also updated so that the parent page is page pTo.
6179**
6180** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006181** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006182**
danielk197730548662009-07-09 05:07:37 +00006183** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006184**
6185** The performance of this function is not critical. It is only used by
6186** the balance_shallower() and balance_deeper() procedures, neither of
6187** which are called often under normal circumstances.
6188*/
drhc314dc72009-07-21 11:52:34 +00006189static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6190 if( (*pRC)==SQLITE_OK ){
6191 BtShared * const pBt = pFrom->pBt;
6192 u8 * const aFrom = pFrom->aData;
6193 u8 * const aTo = pTo->aData;
6194 int const iFromHdr = pFrom->hdrOffset;
6195 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006196 int rc;
drhc314dc72009-07-21 11:52:34 +00006197 int iData;
6198
6199
6200 assert( pFrom->isInit );
6201 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006202 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006203
6204 /* Copy the b-tree node content from page pFrom to page pTo. */
6205 iData = get2byte(&aFrom[iFromHdr+5]);
6206 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6207 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6208
6209 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006210 ** match the new data. The initialization of pTo can actually fail under
6211 ** fairly obscure circumstances, even though it is a copy of initialized
6212 ** page pFrom.
6213 */
drhc314dc72009-07-21 11:52:34 +00006214 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006215 rc = btreeInitPage(pTo);
6216 if( rc!=SQLITE_OK ){
6217 *pRC = rc;
6218 return;
6219 }
drhc314dc72009-07-21 11:52:34 +00006220
6221 /* If this is an auto-vacuum database, update the pointer-map entries
6222 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6223 */
6224 if( ISAUTOVACUUM ){
6225 *pRC = setChildPtrmaps(pTo);
6226 }
danielk1977cd581a72009-06-23 15:43:39 +00006227 }
danielk1977cd581a72009-06-23 15:43:39 +00006228}
6229
6230/*
danielk19774dbaa892009-06-16 16:50:22 +00006231** This routine redistributes cells on the iParentIdx'th child of pParent
6232** (hereafter "the page") and up to 2 siblings so that all pages have about the
6233** same amount of free space. Usually a single sibling on either side of the
6234** page are used in the balancing, though both siblings might come from one
6235** side if the page is the first or last child of its parent. If the page
6236** has fewer than 2 siblings (something which can only happen if the page
6237** is a root page or a child of a root page) then all available siblings
6238** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006239**
danielk19774dbaa892009-06-16 16:50:22 +00006240** The number of siblings of the page might be increased or decreased by
6241** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006242**
danielk19774dbaa892009-06-16 16:50:22 +00006243** Note that when this routine is called, some of the cells on the page
6244** might not actually be stored in MemPage.aData[]. This can happen
6245** if the page is overfull. This routine ensures that all cells allocated
6246** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006247**
danielk19774dbaa892009-06-16 16:50:22 +00006248** In the course of balancing the page and its siblings, cells may be
6249** inserted into or removed from the parent page (pParent). Doing so
6250** may cause the parent page to become overfull or underfull. If this
6251** happens, it is the responsibility of the caller to invoke the correct
6252** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006253**
drh5e00f6c2001-09-13 13:46:56 +00006254** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006255** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006256** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006257**
6258** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006259** buffer big enough to hold one page. If while inserting cells into the parent
6260** page (pParent) the parent page becomes overfull, this buffer is
6261** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006262** a maximum of four divider cells into the parent page, and the maximum
6263** size of a cell stored within an internal node is always less than 1/4
6264** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6265** enough for all overflow cells.
6266**
6267** If aOvflSpace is set to a null pointer, this function returns
6268** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006269*/
mistachkine7c54162012-10-02 22:54:27 +00006270#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6271#pragma optimize("", off)
6272#endif
danielk19774dbaa892009-06-16 16:50:22 +00006273static int balance_nonroot(
6274 MemPage *pParent, /* Parent page of siblings being balanced */
6275 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006276 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006277 int isRoot, /* True if pParent is a root-page */
6278 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006279){
drh16a9b832007-05-05 18:39:25 +00006280 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006281 int nCell = 0; /* Number of cells in apCell[] */
6282 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006283 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006284 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006285 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006286 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006287 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006288 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006289 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006290 int usableSpace; /* Bytes in pPage beyond the header */
6291 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006292 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006293 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006294 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006295 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006296 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00006297 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00006298 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006299 u8 *pRight; /* Location in parent of right-sibling pointer */
6300 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006301 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6302 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006303 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006304 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006305 u8 *aSpace1; /* Space for copies of dividers cells */
6306 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00006307
danielk1977a50d9aa2009-06-08 14:49:45 +00006308 pBt = pParent->pBt;
6309 assert( sqlite3_mutex_held(pBt->mutex) );
6310 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006311
danielk1977e5765212009-06-17 11:13:28 +00006312#if 0
drh43605152004-05-29 21:46:49 +00006313 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006314#endif
drh2e38c322004-09-03 18:38:44 +00006315
danielk19774dbaa892009-06-16 16:50:22 +00006316 /* At this point pParent may have at most one overflow cell. And if
6317 ** this overflow cell is present, it must be the cell with
6318 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006319 ** is called (indirectly) from sqlite3BtreeDelete().
6320 */
danielk19774dbaa892009-06-16 16:50:22 +00006321 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006322 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006323
danielk197711a8a862009-06-17 11:49:52 +00006324 if( !aOvflSpace ){
6325 return SQLITE_NOMEM;
6326 }
6327
danielk1977a50d9aa2009-06-08 14:49:45 +00006328 /* Find the sibling pages to balance. Also locate the cells in pParent
6329 ** that divide the siblings. An attempt is made to find NN siblings on
6330 ** either side of pPage. More siblings are taken from one side, however,
6331 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006332 ** has NB or fewer children then all children of pParent are taken.
6333 **
6334 ** This loop also drops the divider cells from the parent page. This
6335 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006336 ** overflow cells in the parent page, since if any existed they will
6337 ** have already been removed.
6338 */
danielk19774dbaa892009-06-16 16:50:22 +00006339 i = pParent->nOverflow + pParent->nCell;
6340 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006341 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006342 }else{
dan7d6885a2012-08-08 14:04:56 +00006343 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006344 if( iParentIdx==0 ){
6345 nxDiv = 0;
6346 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006347 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006348 }else{
dan7d6885a2012-08-08 14:04:56 +00006349 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006350 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006351 }
dan7d6885a2012-08-08 14:04:56 +00006352 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006353 }
dan7d6885a2012-08-08 14:04:56 +00006354 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006355 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6356 pRight = &pParent->aData[pParent->hdrOffset+8];
6357 }else{
6358 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6359 }
6360 pgno = get4byte(pRight);
6361 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006362 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006363 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006364 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006365 goto balance_cleanup;
6366 }
danielk1977634f2982005-03-28 08:44:07 +00006367 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006368 if( (i--)==0 ) break;
6369
drh2cbd78b2012-02-02 19:37:18 +00006370 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6371 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006372 pgno = get4byte(apDiv[i]);
6373 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6374 pParent->nOverflow = 0;
6375 }else{
6376 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6377 pgno = get4byte(apDiv[i]);
6378 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6379
6380 /* Drop the cell from the parent page. apDiv[i] still points to
6381 ** the cell within the parent, even though it has been dropped.
6382 ** This is safe because dropping a cell only overwrites the first
6383 ** four bytes of it, and this function does not need the first
6384 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006385 ** later on.
6386 **
drh8a575d92011-10-12 17:00:28 +00006387 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006388 ** the dropCell() routine will overwrite the entire cell with zeroes.
6389 ** In this case, temporarily copy the cell into the aOvflSpace[]
6390 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6391 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006392 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006393 int iOff;
6394
6395 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006396 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006397 rc = SQLITE_CORRUPT_BKPT;
6398 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6399 goto balance_cleanup;
6400 }else{
6401 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6402 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6403 }
drh5b47efa2010-02-12 18:18:39 +00006404 }
drh98add2e2009-07-20 17:11:49 +00006405 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006406 }
drh8b2f49b2001-06-08 00:21:52 +00006407 }
6408
drha9121e42008-02-19 14:59:35 +00006409 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006410 ** alignment */
drha9121e42008-02-19 14:59:35 +00006411 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006412
drh8b2f49b2001-06-08 00:21:52 +00006413 /*
danielk1977634f2982005-03-28 08:44:07 +00006414 ** Allocate space for memory structures
6415 */
danielk19774dbaa892009-06-16 16:50:22 +00006416 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006417 szScratch =
drha9121e42008-02-19 14:59:35 +00006418 nMaxCells*sizeof(u8*) /* apCell */
6419 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006420 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006421 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006422 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006423 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006424 rc = SQLITE_NOMEM;
6425 goto balance_cleanup;
6426 }
drha9121e42008-02-19 14:59:35 +00006427 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006428 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006429 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006430
6431 /*
6432 ** Load pointers to all cells on sibling pages and the divider cells
6433 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006434 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006435 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006436 **
6437 ** If the siblings are on leaf pages, then the child pointers of the
6438 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006439 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006440 ** child pointers. If siblings are not leaves, then all cell in
6441 ** apCell[] include child pointers. Either way, all cells in apCell[]
6442 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006443 **
6444 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6445 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006446 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006447 leafCorrection = apOld[0]->leaf*4;
drh3e28ff52014-09-24 00:59:08 +00006448 leafData = apOld[0]->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00006449 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006450 int limit;
6451
6452 /* Before doing anything else, take a copy of the i'th original sibling
6453 ** The rest of this function will use data from the copies rather
6454 ** that the original pages since the original pages will be in the
6455 ** process of being overwritten. */
6456 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6457 memcpy(pOld, apOld[i], sizeof(MemPage));
6458 pOld->aData = (void*)&pOld[1];
6459 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6460
6461 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006462 if( pOld->nOverflow>0 ){
6463 for(j=0; j<limit; j++){
6464 assert( nCell<nMaxCells );
6465 apCell[nCell] = findOverflowCell(pOld, j);
6466 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6467 nCell++;
6468 }
6469 }else{
6470 u8 *aData = pOld->aData;
6471 u16 maskPage = pOld->maskPage;
6472 u16 cellOffset = pOld->cellOffset;
6473 for(j=0; j<limit; j++){
6474 assert( nCell<nMaxCells );
6475 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6476 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6477 nCell++;
6478 }
6479 }
danielk19774dbaa892009-06-16 16:50:22 +00006480 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006481 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006482 u8 *pTemp;
6483 assert( nCell<nMaxCells );
6484 szCell[nCell] = sz;
6485 pTemp = &aSpace1[iSpace1];
6486 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006487 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006488 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006489 memcpy(pTemp, apDiv[i], sz);
6490 apCell[nCell] = pTemp+leafCorrection;
6491 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006492 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006493 if( !pOld->leaf ){
6494 assert( leafCorrection==0 );
6495 assert( pOld->hdrOffset==0 );
6496 /* The right pointer of the child page pOld becomes the left
6497 ** pointer of the divider cell */
6498 memcpy(apCell[nCell], &pOld->aData[8], 4);
6499 }else{
6500 assert( leafCorrection==4 );
6501 if( szCell[nCell]<4 ){
6502 /* Do not allow any cells smaller than 4 bytes. */
6503 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006504 }
6505 }
drh14acc042001-06-10 19:56:58 +00006506 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006507 }
drh8b2f49b2001-06-08 00:21:52 +00006508 }
6509
6510 /*
drh6019e162001-07-02 17:51:45 +00006511 ** Figure out the number of pages needed to hold all nCell cells.
6512 ** Store this number in "k". Also compute szNew[] which is the total
6513 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006514 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006515 ** cntNew[k] should equal nCell.
6516 **
drh96f5b762004-05-16 16:24:36 +00006517 ** Values computed by this block:
6518 **
6519 ** k: The total number of sibling pages
6520 ** szNew[i]: Spaced used on the i-th sibling page.
6521 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6522 ** the right of the i-th sibling page.
6523 ** usableSpace: Number of bytes of space available on each sibling.
6524 **
drh8b2f49b2001-06-08 00:21:52 +00006525 */
drh43605152004-05-29 21:46:49 +00006526 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006527 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006528 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006529 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006530 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006531 szNew[k] = subtotal - szCell[i];
6532 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006533 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006534 subtotal = 0;
6535 k++;
drh9978c972010-02-23 17:36:32 +00006536 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006537 }
6538 }
6539 szNew[k] = subtotal;
6540 cntNew[k] = nCell;
6541 k++;
drh96f5b762004-05-16 16:24:36 +00006542
6543 /*
6544 ** The packing computed by the previous block is biased toward the siblings
6545 ** on the left side. The left siblings are always nearly full, while the
6546 ** right-most sibling might be nearly empty. This block of code attempts
6547 ** to adjust the packing of siblings to get a better balance.
6548 **
6549 ** This adjustment is more than an optimization. The packing above might
6550 ** be so out of balance as to be illegal. For example, the right-most
6551 ** sibling might be completely empty. This adjustment is not optional.
6552 */
drh6019e162001-07-02 17:51:45 +00006553 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006554 int szRight = szNew[i]; /* Size of sibling on the right */
6555 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6556 int r; /* Index of right-most cell in left sibling */
6557 int d; /* Index of first cell to the left of right sibling */
6558
6559 r = cntNew[i-1] - 1;
6560 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006561 assert( d<nMaxCells );
6562 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006563 while( szRight==0
6564 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6565 ){
drh43605152004-05-29 21:46:49 +00006566 szRight += szCell[d] + 2;
6567 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006568 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006569 r = cntNew[i-1] - 1;
6570 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006571 }
drh96f5b762004-05-16 16:24:36 +00006572 szNew[i] = szRight;
6573 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006574 }
drh09d0deb2005-08-02 17:13:09 +00006575
danielk19776f235cc2009-06-04 14:46:08 +00006576 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006577 ** a virtual root page. A virtual root page is when the real root
6578 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006579 **
6580 ** UPDATE: The assert() below is not necessarily true if the database
6581 ** file is corrupt. The corruption will be detected and reported later
6582 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006583 */
drh2f32fba2012-01-02 16:38:57 +00006584#if 0
drh09d0deb2005-08-02 17:13:09 +00006585 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006586#endif
drh8b2f49b2001-06-08 00:21:52 +00006587
danielk1977e5765212009-06-17 11:13:28 +00006588 TRACE(("BALANCE: old: %d %d %d ",
6589 apOld[0]->pgno,
6590 nOld>=2 ? apOld[1]->pgno : 0,
6591 nOld>=3 ? apOld[2]->pgno : 0
6592 ));
6593
drh8b2f49b2001-06-08 00:21:52 +00006594 /*
drh6b308672002-07-08 02:16:37 +00006595 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006596 */
drheac74422009-06-14 12:47:11 +00006597 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006598 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006599 goto balance_cleanup;
6600 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006601 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006602 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006603 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006604 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006605 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006606 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006607 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006608 nNew++;
danielk197728129562005-01-11 10:25:06 +00006609 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006610 }else{
drh7aa8f852006-03-28 00:24:44 +00006611 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006612 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006613 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006614 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006615 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006616
6617 /* Set the pointer-map entry for the new sibling page. */
6618 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006619 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006620 if( rc!=SQLITE_OK ){
6621 goto balance_cleanup;
6622 }
6623 }
drh6b308672002-07-08 02:16:37 +00006624 }
drh8b2f49b2001-06-08 00:21:52 +00006625 }
6626
danielk1977299b1872004-11-22 10:02:10 +00006627 /* Free any old pages that were not reused as new pages.
6628 */
6629 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006630 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006631 if( rc ) goto balance_cleanup;
6632 releasePage(apOld[i]);
6633 apOld[i] = 0;
6634 i++;
6635 }
6636
drh8b2f49b2001-06-08 00:21:52 +00006637 /*
peter.d.reid60ec9142014-09-06 16:39:46 +00006638 ** Put the new pages in ascending order. This helps to
drhf9ffac92002-03-02 19:00:31 +00006639 ** keep entries in the disk file in order so that a scan
6640 ** of the table is a linear scan through the file. That
6641 ** in turn helps the operating system to deliver pages
6642 ** from the disk more rapidly.
6643 **
6644 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006645 ** n is never more than NB (a small constant), that should
6646 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006647 **
drhc3b70572003-01-04 19:44:07 +00006648 ** When NB==3, this one optimization makes the database
6649 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006650 */
6651 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006652 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006653 int minI = i;
6654 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006655 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006656 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006657 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006658 }
6659 }
6660 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006661 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006662 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006663 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006664 apNew[minI] = pT;
6665 }
6666 }
danielk1977e5765212009-06-17 11:13:28 +00006667 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006668 apNew[0]->pgno, szNew[0],
6669 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6670 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6671 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6672 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6673
6674 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6675 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006676
drhf9ffac92002-03-02 19:00:31 +00006677 /*
drh14acc042001-06-10 19:56:58 +00006678 ** Evenly distribute the data in apCell[] across the new pages.
6679 ** Insert divider cells into pParent as necessary.
6680 */
6681 j = 0;
6682 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006683 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006684 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006685 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006686 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006687 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006688 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006689 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006690
danielk1977ac11ee62005-01-15 12:45:51 +00006691 j = cntNew[i];
6692
6693 /* If the sibling page assembled above was not the right-most sibling,
6694 ** insert a divider cell into the parent page.
6695 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006696 assert( i<nNew-1 || j==nCell );
6697 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006698 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006699 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006700 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006701
6702 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006703 pCell = apCell[j];
6704 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006705 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006706 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006707 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006708 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006709 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006710 ** then there is no divider cell in apCell[]. Instead, the divider
6711 ** cell consists of the integer key for the right-most cell of
6712 ** the sibling-page assembled above only.
6713 */
drh6f11bef2004-05-13 01:12:56 +00006714 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006715 j--;
danielk197730548662009-07-09 05:07:37 +00006716 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006717 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006718 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006719 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006720 }else{
6721 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006722 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006723 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006724 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006725 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006726 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006727 ** insertCell(), so reparse the cell now.
6728 **
6729 ** Note that this can never happen in an SQLite data file, as all
6730 ** cells are at least 4 bytes. It only happens in b-trees used
6731 ** to evaluate "IN (SELECT ...)" and similar clauses.
6732 */
6733 if( szCell[j]==4 ){
6734 assert(leafCorrection==4);
6735 sz = cellSizePtr(pParent, pCell);
6736 }
drh4b70f112004-05-02 21:12:19 +00006737 }
danielk19776067a9b2009-06-09 09:41:00 +00006738 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006739 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006740 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006741 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006742 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006743 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006744
drh14acc042001-06-10 19:56:58 +00006745 j++;
6746 nxDiv++;
6747 }
6748 }
drh6019e162001-07-02 17:51:45 +00006749 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006750 assert( nOld>0 );
6751 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006752 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006753 u8 *zChild = &apCopy[nOld-1]->aData[8];
6754 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006755 }
6756
danielk197713bd99f2009-06-24 05:40:34 +00006757 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6758 /* The root page of the b-tree now contains no cells. The only sibling
6759 ** page is the right-child of the parent. Copy the contents of the
6760 ** child page into the parent, decreasing the overall height of the
6761 ** b-tree structure by one. This is described as the "balance-shallower"
6762 ** sub-algorithm in some documentation.
6763 **
6764 ** If this is an auto-vacuum database, the call to copyNodeContent()
6765 ** sets all pointer-map entries corresponding to database image pages
6766 ** for which the pointer is stored within the content being copied.
6767 **
6768 ** The second assert below verifies that the child page is defragmented
6769 ** (it must be, as it was just reconstructed using assemblePage()). This
6770 ** is important if the parent page happens to be page 1 of the database
6771 ** image. */
6772 assert( nNew==1 );
6773 assert( apNew[0]->nFree ==
6774 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6775 );
drhc314dc72009-07-21 11:52:34 +00006776 copyNodeContent(apNew[0], pParent, &rc);
6777 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006778 }else if( ISAUTOVACUUM ){
6779 /* Fix the pointer-map entries for all the cells that were shifted around.
6780 ** There are several different types of pointer-map entries that need to
6781 ** be dealt with by this routine. Some of these have been set already, but
6782 ** many have not. The following is a summary:
6783 **
6784 ** 1) The entries associated with new sibling pages that were not
6785 ** siblings when this function was called. These have already
6786 ** been set. We don't need to worry about old siblings that were
6787 ** moved to the free-list - the freePage() code has taken care
6788 ** of those.
6789 **
6790 ** 2) The pointer-map entries associated with the first overflow
6791 ** page in any overflow chains used by new divider cells. These
6792 ** have also already been taken care of by the insertCell() code.
6793 **
6794 ** 3) If the sibling pages are not leaves, then the child pages of
6795 ** cells stored on the sibling pages may need to be updated.
6796 **
6797 ** 4) If the sibling pages are not internal intkey nodes, then any
6798 ** overflow pages used by these cells may need to be updated
6799 ** (internal intkey nodes never contain pointers to overflow pages).
6800 **
6801 ** 5) If the sibling pages are not leaves, then the pointer-map
6802 ** entries for the right-child pages of each sibling may need
6803 ** to be updated.
6804 **
6805 ** Cases 1 and 2 are dealt with above by other code. The next
6806 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6807 ** setting a pointer map entry is a relatively expensive operation, this
6808 ** code only sets pointer map entries for child or overflow pages that have
6809 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006810 MemPage *pNew = apNew[0];
6811 MemPage *pOld = apCopy[0];
6812 int nOverflow = pOld->nOverflow;
6813 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006814 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006815 j = 0; /* Current 'old' sibling page */
6816 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006817 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006818 int isDivider = 0;
6819 while( i==iNextOld ){
6820 /* Cell i is the cell immediately following the last cell on old
6821 ** sibling page j. If the siblings are not leaf pages of an
6822 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006823 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006824 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006825 pOld = apCopy[++j];
6826 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6827 if( pOld->nOverflow ){
6828 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006829 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006830 }
6831 isDivider = !leafData;
6832 }
6833
6834 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006835 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6836 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006837 if( i==iOverflow ){
6838 isDivider = 1;
6839 if( (--nOverflow)>0 ){
6840 iOverflow++;
6841 }
6842 }
6843
6844 if( i==cntNew[k] ){
6845 /* Cell i is the cell immediately following the last cell on new
6846 ** sibling page k. If the siblings are not leaf pages of an
6847 ** intkey b-tree, then cell i is a divider cell. */
6848 pNew = apNew[++k];
6849 if( !leafData ) continue;
6850 }
danielk19774dbaa892009-06-16 16:50:22 +00006851 assert( j<nOld );
6852 assert( k<nNew );
6853
6854 /* If the cell was originally divider cell (and is not now) or
6855 ** an overflow cell, or if the cell was located on a different sibling
6856 ** page before the balancing, then the pointer map entries associated
6857 ** with any child or overflow pages need to be updated. */
6858 if( isDivider || pOld->pgno!=pNew->pgno ){
6859 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006860 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006861 }
drh98add2e2009-07-20 17:11:49 +00006862 if( szCell[i]>pNew->minLocal ){
6863 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006864 }
6865 }
6866 }
6867
6868 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006869 for(i=0; i<nNew; i++){
6870 u32 key = get4byte(&apNew[i]->aData[8]);
6871 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006872 }
6873 }
6874
6875#if 0
6876 /* The ptrmapCheckPages() contains assert() statements that verify that
6877 ** all pointer map pages are set correctly. This is helpful while
6878 ** debugging. This is usually disabled because a corrupt database may
6879 ** cause an assert() statement to fail. */
6880 ptrmapCheckPages(apNew, nNew);
6881 ptrmapCheckPages(&pParent, 1);
6882#endif
6883 }
6884
danielk197771d5d2c2008-09-29 11:49:47 +00006885 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006886 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6887 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006888
drh8b2f49b2001-06-08 00:21:52 +00006889 /*
drh14acc042001-06-10 19:56:58 +00006890 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006891 */
drh14acc042001-06-10 19:56:58 +00006892balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006893 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006894 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006895 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006896 }
drh14acc042001-06-10 19:56:58 +00006897 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006898 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006899 }
danielk1977eaa06f62008-09-18 17:34:44 +00006900
drh8b2f49b2001-06-08 00:21:52 +00006901 return rc;
6902}
mistachkine7c54162012-10-02 22:54:27 +00006903#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6904#pragma optimize("", on)
6905#endif
drh8b2f49b2001-06-08 00:21:52 +00006906
drh43605152004-05-29 21:46:49 +00006907
6908/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006909** This function is called when the root page of a b-tree structure is
6910** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006911**
danielk1977a50d9aa2009-06-08 14:49:45 +00006912** A new child page is allocated and the contents of the current root
6913** page, including overflow cells, are copied into the child. The root
6914** page is then overwritten to make it an empty page with the right-child
6915** pointer pointing to the new page.
6916**
6917** Before returning, all pointer-map entries corresponding to pages
6918** that the new child-page now contains pointers to are updated. The
6919** entry corresponding to the new right-child pointer of the root
6920** page is also updated.
6921**
6922** If successful, *ppChild is set to contain a reference to the child
6923** page and SQLITE_OK is returned. In this case the caller is required
6924** to call releasePage() on *ppChild exactly once. If an error occurs,
6925** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006926*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006927static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6928 int rc; /* Return value from subprocedures */
6929 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006930 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006931 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006932
danielk1977a50d9aa2009-06-08 14:49:45 +00006933 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006934 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006935
danielk1977a50d9aa2009-06-08 14:49:45 +00006936 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6937 ** page that will become the new right-child of pPage. Copy the contents
6938 ** of the node stored on pRoot into the new child page.
6939 */
drh98add2e2009-07-20 17:11:49 +00006940 rc = sqlite3PagerWrite(pRoot->pDbPage);
6941 if( rc==SQLITE_OK ){
6942 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006943 copyNodeContent(pRoot, pChild, &rc);
6944 if( ISAUTOVACUUM ){
6945 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006946 }
6947 }
6948 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006949 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006950 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006951 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006952 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006953 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6954 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6955 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006956
danielk1977a50d9aa2009-06-08 14:49:45 +00006957 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6958
6959 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006960 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6961 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6962 memcpy(pChild->apOvfl, pRoot->apOvfl,
6963 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006964 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006965
6966 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6967 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6968 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6969
6970 *ppChild = pChild;
6971 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006972}
6973
6974/*
danielk197771d5d2c2008-09-29 11:49:47 +00006975** The page that pCur currently points to has just been modified in
6976** some way. This function figures out if this modification means the
6977** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006978** routine. Balancing routines are:
6979**
6980** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006981** balance_deeper()
6982** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006983*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006984static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006985 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006986 const int nMin = pCur->pBt->usableSize * 2 / 3;
6987 u8 aBalanceQuickSpace[13];
6988 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006989
shane75ac1de2009-06-09 18:58:52 +00006990 TESTONLY( int balance_quick_called = 0 );
6991 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006992
6993 do {
6994 int iPage = pCur->iPage;
6995 MemPage *pPage = pCur->apPage[iPage];
6996
6997 if( iPage==0 ){
6998 if( pPage->nOverflow ){
6999 /* The root page of the b-tree is overfull. In this case call the
7000 ** balance_deeper() function to create a new child for the root-page
7001 ** and copy the current contents of the root-page to it. The
7002 ** next iteration of the do-loop will balance the child page.
7003 */
7004 assert( (balance_deeper_called++)==0 );
7005 rc = balance_deeper(pPage, &pCur->apPage[1]);
7006 if( rc==SQLITE_OK ){
7007 pCur->iPage = 1;
7008 pCur->aiIdx[0] = 0;
7009 pCur->aiIdx[1] = 0;
7010 assert( pCur->apPage[1]->nOverflow );
7011 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007012 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007013 break;
7014 }
7015 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7016 break;
7017 }else{
7018 MemPage * const pParent = pCur->apPage[iPage-1];
7019 int const iIdx = pCur->aiIdx[iPage-1];
7020
7021 rc = sqlite3PagerWrite(pParent->pDbPage);
7022 if( rc==SQLITE_OK ){
7023#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007024 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007025 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007026 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007027 && pParent->pgno!=1
7028 && pParent->nCell==iIdx
7029 ){
7030 /* Call balance_quick() to create a new sibling of pPage on which
7031 ** to store the overflow cell. balance_quick() inserts a new cell
7032 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007033 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007034 ** use either balance_nonroot() or balance_deeper(). Until this
7035 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7036 ** buffer.
7037 **
7038 ** The purpose of the following assert() is to check that only a
7039 ** single call to balance_quick() is made for each call to this
7040 ** function. If this were not verified, a subtle bug involving reuse
7041 ** of the aBalanceQuickSpace[] might sneak in.
7042 */
7043 assert( (balance_quick_called++)==0 );
7044 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7045 }else
7046#endif
7047 {
7048 /* In this case, call balance_nonroot() to redistribute cells
7049 ** between pPage and up to 2 of its sibling pages. This involves
7050 ** modifying the contents of pParent, which may cause pParent to
7051 ** become overfull or underfull. The next iteration of the do-loop
7052 ** will balance the parent page to correct this.
7053 **
7054 ** If the parent page becomes overfull, the overflow cell or cells
7055 ** are stored in the pSpace buffer allocated immediately below.
7056 ** A subsequent iteration of the do-loop will deal with this by
7057 ** calling balance_nonroot() (balance_deeper() may be called first,
7058 ** but it doesn't deal with overflow cells - just moves them to a
7059 ** different page). Once this subsequent call to balance_nonroot()
7060 ** has completed, it is safe to release the pSpace buffer used by
7061 ** the previous call, as the overflow cell data will have been
7062 ** copied either into the body of a database page or into the new
7063 ** pSpace buffer passed to the latter call to balance_nonroot().
7064 */
7065 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00007066 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00007067 if( pFree ){
7068 /* If pFree is not NULL, it points to the pSpace buffer used
7069 ** by a previous call to balance_nonroot(). Its contents are
7070 ** now stored either on real database pages or within the
7071 ** new pSpace buffer, so it may be safely freed here. */
7072 sqlite3PageFree(pFree);
7073 }
7074
danielk19774dbaa892009-06-16 16:50:22 +00007075 /* The pSpace buffer will be freed after the next call to
7076 ** balance_nonroot(), or just before this function returns, whichever
7077 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007078 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007079 }
7080 }
7081
7082 pPage->nOverflow = 0;
7083
7084 /* The next iteration of the do-loop balances the parent page. */
7085 releasePage(pPage);
7086 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00007087 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007088 }while( rc==SQLITE_OK );
7089
7090 if( pFree ){
7091 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007092 }
7093 return rc;
7094}
7095
drhf74b8d92002-09-01 23:20:45 +00007096
7097/*
drh3b7511c2001-05-26 13:15:44 +00007098** Insert a new record into the BTree. The key is given by (pKey,nKey)
7099** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007100** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007101** is left pointing at a random location.
7102**
7103** For an INTKEY table, only the nKey value of the key is used. pKey is
7104** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007105**
7106** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007107** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007108** been performed. seekResult is the search result returned (a negative
7109** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007110** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007111** (pKey, nKey)).
7112**
drh3e9ca092009-09-08 01:14:48 +00007113** If the seekResult parameter is non-zero, then the caller guarantees that
7114** cursor pCur is pointing at the existing copy of a row that is to be
7115** overwritten. If the seekResult parameter is 0, then cursor pCur may
7116** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007117** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007118*/
drh3aac2dd2004-04-26 14:10:20 +00007119int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007120 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007121 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007122 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007123 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007124 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007125 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007126){
drh3b7511c2001-05-26 13:15:44 +00007127 int rc;
drh3e9ca092009-09-08 01:14:48 +00007128 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007129 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007130 int idx;
drh3b7511c2001-05-26 13:15:44 +00007131 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007132 Btree *p = pCur->pBtree;
7133 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007134 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007135 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007136
drh98add2e2009-07-20 17:11:49 +00007137 if( pCur->eState==CURSOR_FAULT ){
7138 assert( pCur->skipNext!=SQLITE_OK );
7139 return pCur->skipNext;
7140 }
7141
drh1fee73e2007-08-29 04:00:57 +00007142 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007143 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7144 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007145 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007146 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7147
danielk197731d31b82009-07-13 13:18:07 +00007148 /* Assert that the caller has been consistent. If this cursor was opened
7149 ** expecting an index b-tree, then the caller should be inserting blob
7150 ** keys with no associated data. If the cursor was opened expecting an
7151 ** intkey table, the caller should be inserting integer keys with a
7152 ** blob of associated data. */
7153 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7154
danielk19779c3acf32009-05-02 07:36:49 +00007155 /* Save the positions of any other cursors open on this table.
7156 **
danielk19773509a652009-07-06 18:56:13 +00007157 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007158 ** example, when inserting data into a table with auto-generated integer
7159 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7160 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007161 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007162 ** that the cursor is already where it needs to be and returns without
7163 ** doing any work. To avoid thwarting these optimizations, it is important
7164 ** not to clear the cursor here.
7165 */
drh4c301aa2009-07-15 17:25:45 +00007166 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7167 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007168
drhd60f4f42012-03-23 14:23:52 +00007169 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00007170 /* If this is an insert into a table b-tree, invalidate any incrblob
7171 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007172 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007173
7174 /* If the cursor is currently on the last row and we are appending a
7175 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7176 ** call */
drh3f387402014-09-24 01:23:00 +00007177 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7178 && pCur->info.nKey==nKey-1 ){
drhe0670b62014-02-12 21:31:12 +00007179 loc = -1;
7180 }
drhd60f4f42012-03-23 14:23:52 +00007181 }
7182
drh4c301aa2009-07-15 17:25:45 +00007183 if( !loc ){
7184 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7185 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007186 }
danielk1977b980d2212009-06-22 18:03:51 +00007187 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007188
danielk197771d5d2c2008-09-29 11:49:47 +00007189 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007190 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007191 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007192
drh3a4c1412004-05-09 20:40:11 +00007193 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7194 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7195 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007196 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007197 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007198 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00007199 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007200 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00007201 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007202 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007203 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007204 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007205 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007206 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007207 rc = sqlite3PagerWrite(pPage->pDbPage);
7208 if( rc ){
7209 goto end_insert;
7210 }
danielk197771d5d2c2008-09-29 11:49:47 +00007211 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007212 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007213 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007214 }
drh9bfdc252014-09-24 02:05:41 +00007215 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00007216 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007217 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007218 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007219 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007220 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007221 }else{
drh4b70f112004-05-02 21:12:19 +00007222 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007223 }
drh98add2e2009-07-20 17:11:49 +00007224 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007225 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007226
mistachkin48864df2013-03-21 21:20:32 +00007227 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007228 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007229 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007230 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007231 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007232 ** Previous versions of SQLite called moveToRoot() to move the cursor
7233 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007234 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7235 ** set the cursor state to "invalid". This makes common insert operations
7236 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007237 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007238 ** There is a subtle but important optimization here too. When inserting
7239 ** multiple records into an intkey b-tree using a single cursor (as can
7240 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7241 ** is advantageous to leave the cursor pointing to the last entry in
7242 ** the b-tree if possible. If the cursor is left pointing to the last
7243 ** entry in the table, and the next row inserted has an integer key
7244 ** larger than the largest existing key, it is possible to insert the
7245 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007246 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007247 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007248 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00007249 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00007250 rc = balance(pCur);
7251
7252 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007253 ** fails. Internal data structure corruption will result otherwise.
7254 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7255 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007256 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007257 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007258 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007259 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007260
drh2e38c322004-09-03 18:38:44 +00007261end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007262 return rc;
7263}
7264
7265/*
drh4b70f112004-05-02 21:12:19 +00007266** Delete the entry that the cursor is pointing to. The cursor
peter.d.reid60ec9142014-09-06 16:39:46 +00007267** is left pointing at an arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007268*/
drh3aac2dd2004-04-26 14:10:20 +00007269int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007270 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007271 BtShared *pBt = p->pBt;
7272 int rc; /* Return code */
7273 MemPage *pPage; /* Page to delete cell from */
7274 unsigned char *pCell; /* Pointer to cell to delete */
7275 int iCellIdx; /* Index of cell to delete */
7276 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00007277 u16 szCell; /* Size of the cell being deleted */
drh8b2f49b2001-06-08 00:21:52 +00007278
drh1fee73e2007-08-29 04:00:57 +00007279 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007280 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007281 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00007282 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00007283 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7284 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7285
danielk19774dbaa892009-06-16 16:50:22 +00007286 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7287 || NEVER(pCur->eState!=CURSOR_VALID)
7288 ){
7289 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007290 }
danielk1977da184232006-01-05 11:34:32 +00007291
danielk19774dbaa892009-06-16 16:50:22 +00007292 iCellDepth = pCur->iPage;
7293 iCellIdx = pCur->aiIdx[iCellDepth];
7294 pPage = pCur->apPage[iCellDepth];
7295 pCell = findCell(pPage, iCellIdx);
7296
7297 /* If the page containing the entry to delete is not a leaf page, move
7298 ** the cursor to the largest entry in the tree that is smaller than
7299 ** the entry being deleted. This cell will replace the cell being deleted
7300 ** from the internal node. The 'previous' entry is used for this instead
7301 ** of the 'next' entry, as the previous entry is always a part of the
7302 ** sub-tree headed by the child page of the cell being deleted. This makes
7303 ** balancing the tree following the delete operation easier. */
7304 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00007305 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00007306 rc = sqlite3BtreePrevious(pCur, &notUsed);
7307 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007308 }
7309
7310 /* Save the positions of any other cursors open on this table before
7311 ** making any modifications. Make the page containing the entry to be
7312 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007313 ** entry and finally remove the cell itself from within the page.
7314 */
7315 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7316 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007317
7318 /* If this is a delete operation to remove a row from a table b-tree,
7319 ** invalidate any incrblob cursors open on the row being deleted. */
7320 if( pCur->pKeyInfo==0 ){
7321 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7322 }
7323
drha4ec1d42009-07-11 13:13:11 +00007324 rc = sqlite3PagerWrite(pPage->pDbPage);
7325 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00007326 rc = clearCell(pPage, pCell, &szCell);
7327 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007328 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007329
danielk19774dbaa892009-06-16 16:50:22 +00007330 /* If the cell deleted was not located on a leaf page, then the cursor
7331 ** is currently pointing to the largest entry in the sub-tree headed
7332 ** by the child-page of the cell that was just deleted from an internal
7333 ** node. The cell from the leaf node needs to be moved to the internal
7334 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007335 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007336 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7337 int nCell;
7338 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7339 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007340
danielk19774dbaa892009-06-16 16:50:22 +00007341 pCell = findCell(pLeaf, pLeaf->nCell-1);
7342 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007343 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00007344 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007345 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00007346 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007347 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7348 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007349 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007350 }
danielk19774dbaa892009-06-16 16:50:22 +00007351
7352 /* Balance the tree. If the entry deleted was located on a leaf page,
7353 ** then the cursor still points to that page. In this case the first
7354 ** call to balance() repairs the tree, and the if(...) condition is
7355 ** never true.
7356 **
7357 ** Otherwise, if the entry deleted was on an internal node page, then
7358 ** pCur is pointing to the leaf page from which a cell was removed to
7359 ** replace the cell deleted from the internal node. This is slightly
7360 ** tricky as the leaf node may be underfull, and the internal node may
7361 ** be either under or overfull. In this case run the balancing algorithm
7362 ** on the leaf node first. If the balance proceeds far enough up the
7363 ** tree that we can be sure that any problem in the internal node has
7364 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7365 ** walk the cursor up the tree to the internal node and balance it as
7366 ** well. */
7367 rc = balance(pCur);
7368 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7369 while( pCur->iPage>iCellDepth ){
7370 releasePage(pCur->apPage[pCur->iPage--]);
7371 }
7372 rc = balance(pCur);
7373 }
7374
danielk19776b456a22005-03-21 04:04:02 +00007375 if( rc==SQLITE_OK ){
7376 moveToRoot(pCur);
7377 }
drh5e2f8b92001-05-28 00:41:15 +00007378 return rc;
drh3b7511c2001-05-26 13:15:44 +00007379}
drh8b2f49b2001-06-08 00:21:52 +00007380
7381/*
drhc6b52df2002-01-04 03:09:29 +00007382** Create a new BTree table. Write into *piTable the page
7383** number for the root page of the new table.
7384**
drhab01f612004-05-22 02:55:23 +00007385** The type of type is determined by the flags parameter. Only the
7386** following values of flags are currently in use. Other values for
7387** flags might not work:
7388**
7389** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7390** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007391*/
drhd4187c72010-08-30 22:15:45 +00007392static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007393 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007394 MemPage *pRoot;
7395 Pgno pgnoRoot;
7396 int rc;
drhd4187c72010-08-30 22:15:45 +00007397 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007398
drh1fee73e2007-08-29 04:00:57 +00007399 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007400 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007401 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007402
danielk1977003ba062004-11-04 02:57:33 +00007403#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007404 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007405 if( rc ){
7406 return rc;
7407 }
danielk1977003ba062004-11-04 02:57:33 +00007408#else
danielk1977687566d2004-11-02 12:56:41 +00007409 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007410 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7411 MemPage *pPageMove; /* The page to move to. */
7412
danielk197720713f32007-05-03 11:43:33 +00007413 /* Creating a new table may probably require moving an existing database
7414 ** to make room for the new tables root page. In case this page turns
7415 ** out to be an overflow page, delete all overflow page-map caches
7416 ** held by open cursors.
7417 */
danielk197792d4d7a2007-05-04 12:05:56 +00007418 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007419
danielk1977003ba062004-11-04 02:57:33 +00007420 /* Read the value of meta[3] from the database to determine where the
7421 ** root page of the new table should go. meta[3] is the largest root-page
7422 ** created so far, so the new root-page is (meta[3]+1).
7423 */
danielk1977602b4662009-07-02 07:47:33 +00007424 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007425 pgnoRoot++;
7426
danielk1977599fcba2004-11-08 07:13:13 +00007427 /* The new root-page may not be allocated on a pointer-map page, or the
7428 ** PENDING_BYTE page.
7429 */
drh72190432008-01-31 14:54:43 +00007430 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007431 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007432 pgnoRoot++;
7433 }
7434 assert( pgnoRoot>=3 );
7435
7436 /* Allocate a page. The page that currently resides at pgnoRoot will
7437 ** be moved to the allocated page (unless the allocated page happens
7438 ** to reside at pgnoRoot).
7439 */
dan51f0b6d2013-02-22 20:16:34 +00007440 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007441 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007442 return rc;
7443 }
danielk1977003ba062004-11-04 02:57:33 +00007444
7445 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007446 /* pgnoRoot is the page that will be used for the root-page of
7447 ** the new table (assuming an error did not occur). But we were
7448 ** allocated pgnoMove. If required (i.e. if it was not allocated
7449 ** by extending the file), the current page at position pgnoMove
7450 ** is already journaled.
7451 */
drheeb844a2009-08-08 18:01:07 +00007452 u8 eType = 0;
7453 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007454
danf7679ad2013-04-03 11:38:36 +00007455 /* Save the positions of any open cursors. This is required in
7456 ** case they are holding a reference to an xFetch reference
7457 ** corresponding to page pgnoRoot. */
7458 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007459 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007460 if( rc!=SQLITE_OK ){
7461 return rc;
7462 }
danielk1977f35843b2007-04-07 15:03:17 +00007463
7464 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00007465 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007466 if( rc!=SQLITE_OK ){
7467 return rc;
7468 }
7469 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007470 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7471 rc = SQLITE_CORRUPT_BKPT;
7472 }
7473 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007474 releasePage(pRoot);
7475 return rc;
7476 }
drhccae6022005-02-26 17:31:26 +00007477 assert( eType!=PTRMAP_ROOTPAGE );
7478 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007479 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007480 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007481
7482 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007483 if( rc!=SQLITE_OK ){
7484 return rc;
7485 }
drhb00fc3b2013-08-21 23:42:32 +00007486 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007487 if( rc!=SQLITE_OK ){
7488 return rc;
7489 }
danielk19773b8a05f2007-03-19 17:44:26 +00007490 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007491 if( rc!=SQLITE_OK ){
7492 releasePage(pRoot);
7493 return rc;
7494 }
7495 }else{
7496 pRoot = pPageMove;
7497 }
7498
danielk197742741be2005-01-08 12:42:39 +00007499 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007500 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007501 if( rc ){
7502 releasePage(pRoot);
7503 return rc;
7504 }
drhbf592832010-03-30 15:51:12 +00007505
7506 /* When the new root page was allocated, page 1 was made writable in
7507 ** order either to increase the database filesize, or to decrement the
7508 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7509 */
7510 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007511 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007512 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007513 releasePage(pRoot);
7514 return rc;
7515 }
danielk197742741be2005-01-08 12:42:39 +00007516
danielk1977003ba062004-11-04 02:57:33 +00007517 }else{
drh4f0c5872007-03-26 22:05:01 +00007518 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007519 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007520 }
7521#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007522 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007523 if( createTabFlags & BTREE_INTKEY ){
7524 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7525 }else{
7526 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7527 }
7528 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007529 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007530 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007531 *piTable = (int)pgnoRoot;
7532 return SQLITE_OK;
7533}
drhd677b3d2007-08-20 22:48:41 +00007534int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7535 int rc;
7536 sqlite3BtreeEnter(p);
7537 rc = btreeCreateTable(p, piTable, flags);
7538 sqlite3BtreeLeave(p);
7539 return rc;
7540}
drh8b2f49b2001-06-08 00:21:52 +00007541
7542/*
7543** Erase the given database page and all its children. Return
7544** the page to the freelist.
7545*/
drh4b70f112004-05-02 21:12:19 +00007546static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007547 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007548 Pgno pgno, /* Page number to clear */
7549 int freePageFlag, /* Deallocate page if true */
7550 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007551){
danielk1977146ba992009-07-22 14:08:13 +00007552 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007553 int rc;
drh4b70f112004-05-02 21:12:19 +00007554 unsigned char *pCell;
7555 int i;
dan8ce71842014-01-14 20:14:09 +00007556 int hdr;
drh9bfdc252014-09-24 02:05:41 +00007557 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00007558
drh1fee73e2007-08-29 04:00:57 +00007559 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007560 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007561 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007562 }
7563
dan11dcd112013-03-15 18:29:18 +00007564 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00007565 if( rc ) return rc;
dan8ce71842014-01-14 20:14:09 +00007566 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00007567 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007568 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007569 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007570 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007571 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007572 }
drh9bfdc252014-09-24 02:05:41 +00007573 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00007574 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007575 }
drha34b6762004-05-07 13:30:42 +00007576 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00007577 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007578 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007579 }else if( pnChange ){
7580 assert( pPage->intKey );
7581 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007582 }
7583 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007584 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007585 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00007586 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007587 }
danielk19776b456a22005-03-21 04:04:02 +00007588
7589cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007590 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007591 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007592}
7593
7594/*
drhab01f612004-05-22 02:55:23 +00007595** Delete all information from a single table in the database. iTable is
7596** the page number of the root of the table. After this routine returns,
7597** the root page is empty, but still exists.
7598**
7599** This routine will fail with SQLITE_LOCKED if there are any open
7600** read cursors on the table. Open write cursors are moved to the
7601** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007602**
7603** If pnChange is not NULL, then table iTable must be an intkey table. The
7604** integer value pointed to by pnChange is incremented by the number of
7605** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007606*/
danielk1977c7af4842008-10-27 13:59:33 +00007607int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007608 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007609 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007610 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007611 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007612
drhc046e3e2009-07-15 11:26:44 +00007613 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007614
drhc046e3e2009-07-15 11:26:44 +00007615 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007616 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7617 ** is the root of a table b-tree - if it is not, the following call is
7618 ** a no-op). */
7619 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007620 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007621 }
drhd677b3d2007-08-20 22:48:41 +00007622 sqlite3BtreeLeave(p);
7623 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007624}
7625
7626/*
drh079a3072014-03-19 14:10:55 +00007627** Delete all information from the single table that pCur is open on.
7628**
7629** This routine only work for pCur on an ephemeral table.
7630*/
7631int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
7632 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
7633}
7634
7635/*
drh8b2f49b2001-06-08 00:21:52 +00007636** Erase all information in a table and add the root of the table to
7637** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007638** page 1) is never added to the freelist.
7639**
7640** This routine will fail with SQLITE_LOCKED if there are any open
7641** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007642**
7643** If AUTOVACUUM is enabled and the page at iTable is not the last
7644** root page in the database file, then the last root page
7645** in the database file is moved into the slot formerly occupied by
7646** iTable and that last slot formerly occupied by the last root page
7647** is added to the freelist instead of iTable. In this say, all
7648** root pages are kept at the beginning of the database file, which
7649** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7650** page number that used to be the last root page in the file before
7651** the move. If no page gets moved, *piMoved is set to 0.
7652** The last root page is recorded in meta[3] and the value of
7653** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007654*/
danielk197789d40042008-11-17 14:20:56 +00007655static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007656 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007657 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007658 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007659
drh1fee73e2007-08-29 04:00:57 +00007660 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007661 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007662
danielk1977e6efa742004-11-10 11:55:10 +00007663 /* It is illegal to drop a table if any cursors are open on the
7664 ** database. This is because in auto-vacuum mode the backend may
7665 ** need to move another root-page to fill a gap left by the deleted
7666 ** root page. If an open cursor was using this page a problem would
7667 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007668 **
7669 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007670 */
drhc046e3e2009-07-15 11:26:44 +00007671 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007672 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7673 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007674 }
danielk1977a0bf2652004-11-04 14:30:04 +00007675
drhb00fc3b2013-08-21 23:42:32 +00007676 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007677 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007678 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007679 if( rc ){
7680 releasePage(pPage);
7681 return rc;
7682 }
danielk1977a0bf2652004-11-04 14:30:04 +00007683
drh205f48e2004-11-05 00:43:11 +00007684 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007685
drh4b70f112004-05-02 21:12:19 +00007686 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007687#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007688 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007689 releasePage(pPage);
7690#else
7691 if( pBt->autoVacuum ){
7692 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007693 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007694
7695 if( iTable==maxRootPgno ){
7696 /* If the table being dropped is the table with the largest root-page
7697 ** number in the database, put the root page on the free list.
7698 */
drhc314dc72009-07-21 11:52:34 +00007699 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007700 releasePage(pPage);
7701 if( rc!=SQLITE_OK ){
7702 return rc;
7703 }
7704 }else{
7705 /* The table being dropped does not have the largest root-page
7706 ** number in the database. So move the page that does into the
7707 ** gap left by the deleted root-page.
7708 */
7709 MemPage *pMove;
7710 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00007711 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007712 if( rc!=SQLITE_OK ){
7713 return rc;
7714 }
danielk19774c999992008-07-16 18:17:55 +00007715 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007716 releasePage(pMove);
7717 if( rc!=SQLITE_OK ){
7718 return rc;
7719 }
drhfe3313f2009-07-21 19:02:20 +00007720 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00007721 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007722 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007723 releasePage(pMove);
7724 if( rc!=SQLITE_OK ){
7725 return rc;
7726 }
7727 *piMoved = maxRootPgno;
7728 }
7729
danielk1977599fcba2004-11-08 07:13:13 +00007730 /* Set the new 'max-root-page' value in the database header. This
7731 ** is the old value less one, less one more if that happens to
7732 ** be a root-page number, less one again if that is the
7733 ** PENDING_BYTE_PAGE.
7734 */
danielk197787a6e732004-11-05 12:58:25 +00007735 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007736 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7737 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007738 maxRootPgno--;
7739 }
danielk1977599fcba2004-11-08 07:13:13 +00007740 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7741
danielk1977aef0bf62005-12-30 16:28:01 +00007742 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007743 }else{
drhc314dc72009-07-21 11:52:34 +00007744 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007745 releasePage(pPage);
7746 }
7747#endif
drh2aa679f2001-06-25 02:11:07 +00007748 }else{
drhc046e3e2009-07-15 11:26:44 +00007749 /* If sqlite3BtreeDropTable was called on page 1.
7750 ** This really never should happen except in a corrupt
7751 ** database.
7752 */
drha34b6762004-05-07 13:30:42 +00007753 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007754 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007755 }
drh8b2f49b2001-06-08 00:21:52 +00007756 return rc;
7757}
drhd677b3d2007-08-20 22:48:41 +00007758int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7759 int rc;
7760 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007761 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007762 sqlite3BtreeLeave(p);
7763 return rc;
7764}
drh8b2f49b2001-06-08 00:21:52 +00007765
drh001bbcb2003-03-19 03:14:00 +00007766
drh8b2f49b2001-06-08 00:21:52 +00007767/*
danielk1977602b4662009-07-02 07:47:33 +00007768** This function may only be called if the b-tree connection already
7769** has a read or write transaction open on the database.
7770**
drh23e11ca2004-05-04 17:27:28 +00007771** Read the meta-information out of a database file. Meta[0]
7772** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007773** through meta[15] are available for use by higher layers. Meta[0]
7774** is read-only, the others are read/write.
7775**
7776** The schema layer numbers meta values differently. At the schema
7777** layer (and the SetCookie and ReadCookie opcodes) the number of
7778** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007779*/
danielk1977602b4662009-07-02 07:47:33 +00007780void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007781 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007782
drhd677b3d2007-08-20 22:48:41 +00007783 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007784 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007785 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007786 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007787 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007788
danielk1977602b4662009-07-02 07:47:33 +00007789 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007790
danielk1977602b4662009-07-02 07:47:33 +00007791 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7792 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007793#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007794 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7795 pBt->btsFlags |= BTS_READ_ONLY;
7796 }
danielk1977003ba062004-11-04 02:57:33 +00007797#endif
drhae157872004-08-14 19:20:09 +00007798
drhd677b3d2007-08-20 22:48:41 +00007799 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007800}
7801
7802/*
drh23e11ca2004-05-04 17:27:28 +00007803** Write meta-information back into the database. Meta[0] is
7804** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007805*/
danielk1977aef0bf62005-12-30 16:28:01 +00007806int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7807 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007808 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007809 int rc;
drh23e11ca2004-05-04 17:27:28 +00007810 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007811 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007812 assert( p->inTrans==TRANS_WRITE );
7813 assert( pBt->pPage1!=0 );
7814 pP1 = pBt->pPage1->aData;
7815 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7816 if( rc==SQLITE_OK ){
7817 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007818#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007819 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007820 assert( pBt->autoVacuum || iMeta==0 );
7821 assert( iMeta==0 || iMeta==1 );
7822 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007823 }
drh64022502009-01-09 14:11:04 +00007824#endif
drh5df72a52002-06-06 23:16:05 +00007825 }
drhd677b3d2007-08-20 22:48:41 +00007826 sqlite3BtreeLeave(p);
7827 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007828}
drh8c42ca92001-06-22 19:15:00 +00007829
danielk1977a5533162009-02-24 10:01:51 +00007830#ifndef SQLITE_OMIT_BTREECOUNT
7831/*
7832** The first argument, pCur, is a cursor opened on some b-tree. Count the
7833** number of entries in the b-tree and write the result to *pnEntry.
7834**
7835** SQLITE_OK is returned if the operation is successfully executed.
7836** Otherwise, if an error is encountered (i.e. an IO error or database
7837** corruption) an SQLite error code is returned.
7838*/
7839int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7840 i64 nEntry = 0; /* Value to return in *pnEntry */
7841 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007842
7843 if( pCur->pgnoRoot==0 ){
7844 *pnEntry = 0;
7845 return SQLITE_OK;
7846 }
danielk1977a5533162009-02-24 10:01:51 +00007847 rc = moveToRoot(pCur);
7848
7849 /* Unless an error occurs, the following loop runs one iteration for each
7850 ** page in the B-Tree structure (not including overflow pages).
7851 */
7852 while( rc==SQLITE_OK ){
7853 int iIdx; /* Index of child node in parent */
7854 MemPage *pPage; /* Current page of the b-tree */
7855
7856 /* If this is a leaf page or the tree is not an int-key tree, then
7857 ** this page contains countable entries. Increment the entry counter
7858 ** accordingly.
7859 */
7860 pPage = pCur->apPage[pCur->iPage];
7861 if( pPage->leaf || !pPage->intKey ){
7862 nEntry += pPage->nCell;
7863 }
7864
7865 /* pPage is a leaf node. This loop navigates the cursor so that it
7866 ** points to the first interior cell that it points to the parent of
7867 ** the next page in the tree that has not yet been visited. The
7868 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7869 ** of the page, or to the number of cells in the page if the next page
7870 ** to visit is the right-child of its parent.
7871 **
7872 ** If all pages in the tree have been visited, return SQLITE_OK to the
7873 ** caller.
7874 */
7875 if( pPage->leaf ){
7876 do {
7877 if( pCur->iPage==0 ){
7878 /* All pages of the b-tree have been visited. Return successfully. */
7879 *pnEntry = nEntry;
7880 return SQLITE_OK;
7881 }
danielk197730548662009-07-09 05:07:37 +00007882 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007883 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7884
7885 pCur->aiIdx[pCur->iPage]++;
7886 pPage = pCur->apPage[pCur->iPage];
7887 }
7888
7889 /* Descend to the child node of the cell that the cursor currently
7890 ** points at. This is the right-child if (iIdx==pPage->nCell).
7891 */
7892 iIdx = pCur->aiIdx[pCur->iPage];
7893 if( iIdx==pPage->nCell ){
7894 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7895 }else{
7896 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7897 }
7898 }
7899
shanebe217792009-03-05 04:20:31 +00007900 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007901 return rc;
7902}
7903#endif
drhdd793422001-06-28 01:54:48 +00007904
drhdd793422001-06-28 01:54:48 +00007905/*
drh5eddca62001-06-30 21:53:53 +00007906** Return the pager associated with a BTree. This routine is used for
7907** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007908*/
danielk1977aef0bf62005-12-30 16:28:01 +00007909Pager *sqlite3BtreePager(Btree *p){
7910 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007911}
drh5eddca62001-06-30 21:53:53 +00007912
drhb7f91642004-10-31 02:22:47 +00007913#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007914/*
7915** Append a message to the error message string.
7916*/
drh2e38c322004-09-03 18:38:44 +00007917static void checkAppendMsg(
7918 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00007919 const char *zFormat,
7920 ...
7921){
7922 va_list ap;
drh867db832014-09-26 02:41:05 +00007923 char zBuf[200];
drh1dcdbc02007-01-27 02:24:54 +00007924 if( !pCheck->mxErr ) return;
7925 pCheck->mxErr--;
7926 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007927 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007928 if( pCheck->errMsg.nChar ){
7929 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007930 }
drh867db832014-09-26 02:41:05 +00007931 if( pCheck->zPfx ){
7932 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
7933 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
drhf089aa42008-07-08 19:34:06 +00007934 }
7935 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7936 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00007937 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00007938 pCheck->mallocFailed = 1;
7939 }
drh5eddca62001-06-30 21:53:53 +00007940}
drhb7f91642004-10-31 02:22:47 +00007941#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007942
drhb7f91642004-10-31 02:22:47 +00007943#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007944
7945/*
7946** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7947** corresponds to page iPg is already set.
7948*/
7949static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7950 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7951 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7952}
7953
7954/*
7955** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7956*/
7957static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7958 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7959 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7960}
7961
7962
drh5eddca62001-06-30 21:53:53 +00007963/*
7964** Add 1 to the reference count for page iPage. If this is the second
7965** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00007966** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00007967** if this is the first reference to the page.
7968**
7969** Also check that the page number is in bounds.
7970*/
drh867db832014-09-26 02:41:05 +00007971static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00007972 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007973 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00007974 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007975 return 1;
7976 }
dan1235bb12012-04-03 17:43:28 +00007977 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00007978 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007979 return 1;
7980 }
dan1235bb12012-04-03 17:43:28 +00007981 setPageReferenced(pCheck, iPage);
7982 return 0;
drh5eddca62001-06-30 21:53:53 +00007983}
7984
danielk1977afcdd022004-10-31 16:25:42 +00007985#ifndef SQLITE_OMIT_AUTOVACUUM
7986/*
7987** Check that the entry in the pointer-map for page iChild maps to
7988** page iParent, pointer type ptrType. If not, append an error message
7989** to pCheck.
7990*/
7991static void checkPtrmap(
7992 IntegrityCk *pCheck, /* Integrity check context */
7993 Pgno iChild, /* Child page number */
7994 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00007995 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00007996){
7997 int rc;
7998 u8 ePtrmapType;
7999 Pgno iPtrmapParent;
8000
8001 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8002 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008003 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008004 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008005 return;
8006 }
8007
8008 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008009 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008010 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8011 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8012 }
8013}
8014#endif
8015
drh5eddca62001-06-30 21:53:53 +00008016/*
8017** Check the integrity of the freelist or of an overflow page list.
8018** Verify that the number of pages on the list is N.
8019*/
drh30e58752002-03-02 20:41:57 +00008020static void checkList(
8021 IntegrityCk *pCheck, /* Integrity checking context */
8022 int isFreeList, /* True for a freelist. False for overflow page list */
8023 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008024 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008025){
8026 int i;
drh3a4c1412004-05-09 20:40:11 +00008027 int expected = N;
8028 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008029 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008030 DbPage *pOvflPage;
8031 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008032 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008033 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008034 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008035 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008036 break;
8037 }
drh867db832014-09-26 02:41:05 +00008038 if( checkRef(pCheck, iPage) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00008039 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh867db832014-09-26 02:41:05 +00008040 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008041 break;
8042 }
danielk19773b8a05f2007-03-19 17:44:26 +00008043 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008044 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008045 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008046#ifndef SQLITE_OMIT_AUTOVACUUM
8047 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008048 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008049 }
8050#endif
drh43b18e12010-08-17 19:40:08 +00008051 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008052 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008053 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008054 N--;
8055 }else{
8056 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008057 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008058#ifndef SQLITE_OMIT_AUTOVACUUM
8059 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008060 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008061 }
8062#endif
drh867db832014-09-26 02:41:05 +00008063 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008064 }
8065 N -= n;
drh30e58752002-03-02 20:41:57 +00008066 }
drh30e58752002-03-02 20:41:57 +00008067 }
danielk1977afcdd022004-10-31 16:25:42 +00008068#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008069 else{
8070 /* If this database supports auto-vacuum and iPage is not the last
8071 ** page in this overflow list, check that the pointer-map entry for
8072 ** the following page matches iPage.
8073 */
8074 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008075 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008076 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008077 }
danielk1977afcdd022004-10-31 16:25:42 +00008078 }
8079#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008080 iPage = get4byte(pOvflData);
8081 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00008082 }
8083}
drhb7f91642004-10-31 02:22:47 +00008084#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008085
drhb7f91642004-10-31 02:22:47 +00008086#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008087/*
8088** Do various sanity checks on a single page of a tree. Return
8089** the tree depth. Root pages return 0. Parents of root pages
8090** return 1, and so forth.
8091**
8092** These checks are done:
8093**
8094** 1. Make sure that cells and freeblocks do not overlap
8095** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00008096** NO 2. Make sure cell keys are in order.
8097** NO 3. Make sure no key is less than or equal to zLowerBound.
8098** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00008099** 5. Check the integrity of overflow pages.
8100** 6. Recursively call checkTreePage on all children.
8101** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00008102** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00008103** the root of the tree.
8104*/
8105static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00008106 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00008107 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00008108 i64 *pnParentMinKey,
8109 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00008110){
8111 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00008112 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00008113 int hdr, cellStart;
8114 int nCell;
drhda200cc2004-05-09 11:51:38 +00008115 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00008116 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00008117 int usableSize;
shane0af3f892008-11-12 04:55:34 +00008118 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00008119 i64 nMinKey = 0;
8120 i64 nMaxKey = 0;
drh867db832014-09-26 02:41:05 +00008121 const char *saved_zPfx = pCheck->zPfx;
8122 int saved_v1 = pCheck->v1;
8123 int saved_v2 = pCheck->v2;
danielk1977ef73ee92004-11-06 12:26:07 +00008124
drh5eddca62001-06-30 21:53:53 +00008125 /* Check that the page exists
8126 */
drhd9cb6ac2005-10-20 07:28:17 +00008127 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00008128 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00008129 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00008130 if( checkRef(pCheck, iPage) ) return 0;
8131 pCheck->zPfx = "Page %d: ";
8132 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00008133 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00008134 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008135 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00008136 depth = -1;
8137 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008138 }
danielk197793caf5a2009-07-11 06:55:33 +00008139
8140 /* Clear MemPage.isInit to make sure the corruption detection code in
8141 ** btreeInitPage() is executed. */
8142 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00008143 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00008144 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00008145 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00008146 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00008147 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008148 depth = -1;
8149 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008150 }
8151
8152 /* Check out all the cells.
8153 */
8154 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00008155 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00008156 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00008157 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00008158 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00008159
8160 /* Check payload overflow pages
8161 */
drh867db832014-09-26 02:41:05 +00008162 pCheck->zPfx = "On tree page %d cell %d: ";
8163 pCheck->v1 = iPage;
8164 pCheck->v2 = i;
danielk19771cc5ed82007-05-16 17:28:43 +00008165 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00008166 btreeParseCellPtr(pPage, pCell, &info);
drhab1cc582014-09-23 21:25:19 +00008167 sz = info.nPayload;
shaneh195475d2010-02-19 04:28:08 +00008168 /* For intKey pages, check that the keys are in order.
8169 */
drhab1cc582014-09-23 21:25:19 +00008170 if( pPage->intKey ){
8171 if( i==0 ){
8172 nMinKey = nMaxKey = info.nKey;
8173 }else if( info.nKey <= nMaxKey ){
drh867db832014-09-26 02:41:05 +00008174 checkAppendMsg(pCheck,
drhab1cc582014-09-23 21:25:19 +00008175 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
shaneh195475d2010-02-19 04:28:08 +00008176 }
8177 nMaxKey = info.nKey;
8178 }
danielk19775be31f52009-03-30 13:53:43 +00008179 if( (sz>info.nLocal)
8180 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8181 ){
drhb6f41482004-05-14 01:58:11 +00008182 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008183 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8184#ifndef SQLITE_OMIT_AUTOVACUUM
8185 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008186 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008187 }
8188#endif
drh867db832014-09-26 02:41:05 +00008189 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00008190 }
8191
8192 /* Check sanity of left child page.
8193 */
drhda200cc2004-05-09 11:51:38 +00008194 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008195 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008196#ifndef SQLITE_OMIT_AUTOVACUUM
8197 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008198 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008199 }
8200#endif
drh867db832014-09-26 02:41:05 +00008201 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008202 if( i>0 && d2!=depth ){
drh867db832014-09-26 02:41:05 +00008203 checkAppendMsg(pCheck, "Child page depth differs");
drhda200cc2004-05-09 11:51:38 +00008204 }
8205 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008206 }
drh5eddca62001-06-30 21:53:53 +00008207 }
shaneh195475d2010-02-19 04:28:08 +00008208
drhda200cc2004-05-09 11:51:38 +00008209 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008210 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh867db832014-09-26 02:41:05 +00008211 pCheck->zPfx = "On page %d at right child: ";
8212 pCheck->v1 = iPage;
danielk1977afcdd022004-10-31 16:25:42 +00008213#ifndef SQLITE_OMIT_AUTOVACUUM
8214 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008215 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008216 }
8217#endif
drh867db832014-09-26 02:41:05 +00008218 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008219 }
drh5eddca62001-06-30 21:53:53 +00008220
shaneh195475d2010-02-19 04:28:08 +00008221 /* For intKey leaf pages, check that the min/max keys are in order
8222 ** with any left/parent/right pages.
8223 */
drh867db832014-09-26 02:41:05 +00008224 pCheck->zPfx = "Page %d: ";
8225 pCheck->v1 = iPage;
shaneh195475d2010-02-19 04:28:08 +00008226 if( pPage->leaf && pPage->intKey ){
8227 /* if we are a left child page */
8228 if( pnParentMinKey ){
8229 /* if we are the left most child page */
8230 if( !pnParentMaxKey ){
8231 if( nMaxKey > *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00008232 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008233 "Rowid %lld out of order (max larger than parent min of %lld)",
8234 nMaxKey, *pnParentMinKey);
8235 }
8236 }else{
8237 if( nMinKey <= *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00008238 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008239 "Rowid %lld out of order (min less than parent min of %lld)",
8240 nMinKey, *pnParentMinKey);
8241 }
8242 if( nMaxKey > *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00008243 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008244 "Rowid %lld out of order (max larger than parent max of %lld)",
8245 nMaxKey, *pnParentMaxKey);
8246 }
8247 *pnParentMinKey = nMaxKey;
8248 }
8249 /* else if we're a right child page */
8250 } else if( pnParentMaxKey ){
8251 if( nMinKey <= *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00008252 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008253 "Rowid %lld out of order (min less than parent max of %lld)",
8254 nMinKey, *pnParentMaxKey);
8255 }
8256 }
8257 }
8258
drh5eddca62001-06-30 21:53:53 +00008259 /* Check for complete coverage of the page
8260 */
drhda200cc2004-05-09 11:51:38 +00008261 data = pPage->aData;
8262 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008263 hit = sqlite3PageMalloc( pBt->pageSize );
drh867db832014-09-26 02:41:05 +00008264 pCheck->zPfx = 0;
drhc890fec2008-08-01 20:10:08 +00008265 if( hit==0 ){
8266 pCheck->mallocFailed = 1;
8267 }else{
drh5d433ce2010-08-14 16:02:52 +00008268 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008269 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008270 memset(hit+contentOffset, 0, usableSize-contentOffset);
8271 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00008272 nCell = get2byte(&data[hdr+3]);
8273 cellStart = hdr + 12 - 4*pPage->leaf;
8274 for(i=0; i<nCell; i++){
8275 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008276 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008277 int j;
drh8c2bbb62009-07-10 02:52:20 +00008278 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008279 size = cellSizePtr(pPage, &data[pc]);
8280 }
drh43b18e12010-08-17 19:40:08 +00008281 if( (int)(pc+size-1)>=usableSize ){
drh867db832014-09-26 02:41:05 +00008282 pCheck->zPfx = 0;
8283 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008284 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008285 }else{
8286 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8287 }
drh2e38c322004-09-03 18:38:44 +00008288 }
drh8c2bbb62009-07-10 02:52:20 +00008289 i = get2byte(&data[hdr+1]);
8290 while( i>0 ){
8291 int size, j;
8292 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8293 size = get2byte(&data[i+2]);
8294 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8295 for(j=i+size-1; j>=i; j--) hit[j]++;
8296 j = get2byte(&data[i]);
8297 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8298 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8299 i = j;
drh2e38c322004-09-03 18:38:44 +00008300 }
8301 for(i=cnt=0; i<usableSize; i++){
8302 if( hit[i]==0 ){
8303 cnt++;
8304 }else if( hit[i]>1 ){
drh867db832014-09-26 02:41:05 +00008305 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008306 "Multiple uses for byte %d of page %d", i, iPage);
8307 break;
8308 }
8309 }
8310 if( cnt!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00008311 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00008312 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008313 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008314 }
8315 }
drh8c2bbb62009-07-10 02:52:20 +00008316 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008317 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008318
8319end_of_check:
8320 pCheck->zPfx = saved_zPfx;
8321 pCheck->v1 = saved_v1;
8322 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00008323 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008324}
drhb7f91642004-10-31 02:22:47 +00008325#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008326
drhb7f91642004-10-31 02:22:47 +00008327#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008328/*
8329** This routine does a complete check of the given BTree file. aRoot[] is
8330** an array of pages numbers were each page number is the root page of
8331** a table. nRoot is the number of entries in aRoot.
8332**
danielk19773509a652009-07-06 18:56:13 +00008333** A read-only or read-write transaction must be opened before calling
8334** this function.
8335**
drhc890fec2008-08-01 20:10:08 +00008336** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008337** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008338** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008339** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008340*/
drh1dcdbc02007-01-27 02:24:54 +00008341char *sqlite3BtreeIntegrityCheck(
8342 Btree *p, /* The btree to be checked */
8343 int *aRoot, /* An array of root pages numbers for individual trees */
8344 int nRoot, /* Number of entries in aRoot[] */
8345 int mxErr, /* Stop reporting errors after this many */
8346 int *pnErr /* Write number of errors seen to this variable */
8347){
danielk197789d40042008-11-17 14:20:56 +00008348 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008349 int nRef;
drhaaab5722002-02-19 13:39:21 +00008350 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008351 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008352 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008353
drhd677b3d2007-08-20 22:48:41 +00008354 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008355 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008356 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008357 sCheck.pBt = pBt;
8358 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008359 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008360 sCheck.mxErr = mxErr;
8361 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008362 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00008363 sCheck.zPfx = 0;
8364 sCheck.v1 = 0;
8365 sCheck.v2 = 0;
drh1dcdbc02007-01-27 02:24:54 +00008366 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008367 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008368 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008369 return 0;
8370 }
dan1235bb12012-04-03 17:43:28 +00008371
8372 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8373 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008374 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008375 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008376 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008377 }
drh42cac6d2004-11-20 20:31:11 +00008378 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008379 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008380 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008381 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008382
8383 /* Check the integrity of the freelist
8384 */
drh867db832014-09-26 02:41:05 +00008385 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00008386 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00008387 get4byte(&pBt->pPage1->aData[36]));
8388 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00008389
8390 /* Check all the tables.
8391 */
danielk197789d40042008-11-17 14:20:56 +00008392 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008393 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008394#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008395 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00008396 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008397 }
8398#endif
drh867db832014-09-26 02:41:05 +00008399 sCheck.zPfx = "List of tree roots: ";
8400 checkTreePage(&sCheck, aRoot[i], NULL, NULL);
8401 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00008402 }
8403
8404 /* Make sure every page in the file is referenced
8405 */
drh1dcdbc02007-01-27 02:24:54 +00008406 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008407#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008408 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00008409 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008410 }
danielk1977afcdd022004-10-31 16:25:42 +00008411#else
8412 /* If the database supports auto-vacuum, make sure no tables contain
8413 ** references to pointer-map pages.
8414 */
dan1235bb12012-04-03 17:43:28 +00008415 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008416 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00008417 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00008418 }
dan1235bb12012-04-03 17:43:28 +00008419 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008420 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00008421 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00008422 }
8423#endif
drh5eddca62001-06-30 21:53:53 +00008424 }
8425
drh64022502009-01-09 14:11:04 +00008426 /* Make sure this analysis did not leave any unref() pages.
8427 ** This is an internal consistency check; an integrity check
8428 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008429 */
drh64022502009-01-09 14:11:04 +00008430 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh867db832014-09-26 02:41:05 +00008431 checkAppendMsg(&sCheck,
drh5eddca62001-06-30 21:53:53 +00008432 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008433 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008434 );
drh5eddca62001-06-30 21:53:53 +00008435 }
8436
8437 /* Clean up and report errors.
8438 */
drhd677b3d2007-08-20 22:48:41 +00008439 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008440 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008441 if( sCheck.mallocFailed ){
8442 sqlite3StrAccumReset(&sCheck.errMsg);
8443 *pnErr = sCheck.nErr+1;
8444 return 0;
8445 }
drh1dcdbc02007-01-27 02:24:54 +00008446 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008447 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8448 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008449}
drhb7f91642004-10-31 02:22:47 +00008450#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008451
drh73509ee2003-04-06 20:44:45 +00008452/*
drhd4e0bb02012-05-27 01:19:04 +00008453** Return the full pathname of the underlying database file. Return
8454** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008455**
8456** The pager filename is invariant as long as the pager is
8457** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008458*/
danielk1977aef0bf62005-12-30 16:28:01 +00008459const char *sqlite3BtreeGetFilename(Btree *p){
8460 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008461 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008462}
8463
8464/*
danielk19775865e3d2004-06-14 06:03:57 +00008465** Return the pathname of the journal file for this database. The return
8466** value of this routine is the same regardless of whether the journal file
8467** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008468**
8469** The pager journal filename is invariant as long as the pager is
8470** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008471*/
danielk1977aef0bf62005-12-30 16:28:01 +00008472const char *sqlite3BtreeGetJournalname(Btree *p){
8473 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008474 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008475}
8476
danielk19771d850a72004-05-31 08:26:49 +00008477/*
8478** Return non-zero if a transaction is active.
8479*/
danielk1977aef0bf62005-12-30 16:28:01 +00008480int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008481 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008482 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008483}
8484
dana550f2d2010-08-02 10:47:05 +00008485#ifndef SQLITE_OMIT_WAL
8486/*
8487** Run a checkpoint on the Btree passed as the first argument.
8488**
8489** Return SQLITE_LOCKED if this or any other connection has an open
8490** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008491**
dancdc1f042010-11-18 12:11:05 +00008492** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008493*/
dancdc1f042010-11-18 12:11:05 +00008494int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008495 int rc = SQLITE_OK;
8496 if( p ){
8497 BtShared *pBt = p->pBt;
8498 sqlite3BtreeEnter(p);
8499 if( pBt->inTransaction!=TRANS_NONE ){
8500 rc = SQLITE_LOCKED;
8501 }else{
dancdc1f042010-11-18 12:11:05 +00008502 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008503 }
8504 sqlite3BtreeLeave(p);
8505 }
8506 return rc;
8507}
8508#endif
8509
danielk19771d850a72004-05-31 08:26:49 +00008510/*
danielk19772372c2b2006-06-27 16:34:56 +00008511** Return non-zero if a read (or write) transaction is active.
8512*/
8513int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008514 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008515 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008516 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008517}
8518
danielk197704103022009-02-03 16:51:24 +00008519int sqlite3BtreeIsInBackup(Btree *p){
8520 assert( p );
8521 assert( sqlite3_mutex_held(p->db->mutex) );
8522 return p->nBackup!=0;
8523}
8524
danielk19772372c2b2006-06-27 16:34:56 +00008525/*
danielk1977da184232006-01-05 11:34:32 +00008526** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008527** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008528** purposes (for example, to store a high-level schema associated with
8529** the shared-btree). The btree layer manages reference counting issues.
8530**
8531** The first time this is called on a shared-btree, nBytes bytes of memory
8532** are allocated, zeroed, and returned to the caller. For each subsequent
8533** call the nBytes parameter is ignored and a pointer to the same blob
8534** of memory returned.
8535**
danielk1977171bfed2008-06-23 09:50:50 +00008536** If the nBytes parameter is 0 and the blob of memory has not yet been
8537** allocated, a null pointer is returned. If the blob has already been
8538** allocated, it is returned as normal.
8539**
danielk1977da184232006-01-05 11:34:32 +00008540** Just before the shared-btree is closed, the function passed as the
8541** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008542** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008543** on the memory, the btree layer does that.
8544*/
8545void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8546 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008547 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008548 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008549 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008550 pBt->xFreeSchema = xFree;
8551 }
drh27641702007-08-22 02:56:42 +00008552 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008553 return pBt->pSchema;
8554}
8555
danielk1977c87d34d2006-01-06 13:00:28 +00008556/*
danielk1977404ca072009-03-16 13:19:36 +00008557** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8558** btree as the argument handle holds an exclusive lock on the
8559** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008560*/
8561int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008562 int rc;
drhe5fe6902007-12-07 18:55:28 +00008563 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008564 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008565 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8566 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008567 sqlite3BtreeLeave(p);
8568 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008569}
8570
drha154dcd2006-03-22 22:10:07 +00008571
8572#ifndef SQLITE_OMIT_SHARED_CACHE
8573/*
8574** Obtain a lock on the table whose root page is iTab. The
8575** lock is a write lock if isWritelock is true or a read lock
8576** if it is false.
8577*/
danielk1977c00da102006-01-07 13:21:04 +00008578int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008579 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008580 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008581 if( p->sharable ){
8582 u8 lockType = READ_LOCK + isWriteLock;
8583 assert( READ_LOCK+1==WRITE_LOCK );
8584 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008585
drh6a9ad3d2008-04-02 16:29:30 +00008586 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008587 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008588 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008589 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008590 }
8591 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008592 }
8593 return rc;
8594}
drha154dcd2006-03-22 22:10:07 +00008595#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008596
danielk1977b4e9af92007-05-01 17:49:49 +00008597#ifndef SQLITE_OMIT_INCRBLOB
8598/*
8599** Argument pCsr must be a cursor opened for writing on an
8600** INTKEY table currently pointing at a valid table entry.
8601** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008602**
8603** Only the data content may only be modified, it is not possible to
8604** change the length of the data stored. If this function is called with
8605** parameters that attempt to write past the end of the existing data,
8606** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008607*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008608int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008609 int rc;
drh1fee73e2007-08-29 04:00:57 +00008610 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008611 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00008612 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00008613
danielk1977c9000e62009-07-08 13:55:28 +00008614 rc = restoreCursorPosition(pCsr);
8615 if( rc!=SQLITE_OK ){
8616 return rc;
8617 }
danielk19773588ceb2008-06-10 17:30:26 +00008618 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8619 if( pCsr->eState!=CURSOR_VALID ){
8620 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008621 }
8622
dan227a1c42013-04-03 11:17:39 +00008623 /* Save the positions of all other cursors open on this table. This is
8624 ** required in case any of them are holding references to an xFetch
8625 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00008626 **
drh3f387402014-09-24 01:23:00 +00008627 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00008628 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8629 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00008630 */
drh370c9f42013-04-03 20:04:04 +00008631 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8632 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00008633
danielk1977c9000e62009-07-08 13:55:28 +00008634 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008635 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008636 ** (b) there is a read/write transaction open,
8637 ** (c) the connection holds a write-lock on the table (if required),
8638 ** (d) there are no conflicting read-locks, and
8639 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008640 */
drh036dbec2014-03-11 23:40:44 +00008641 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00008642 return SQLITE_READONLY;
8643 }
drhc9166342012-01-05 23:32:06 +00008644 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8645 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008646 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8647 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008648 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008649
drhfb192682009-07-11 18:26:28 +00008650 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008651}
danielk19772dec9702007-05-02 16:48:37 +00008652
8653/*
dan5a500af2014-03-11 20:33:04 +00008654** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00008655*/
dan5a500af2014-03-11 20:33:04 +00008656void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00008657 pCur->curFlags |= BTCF_Incrblob;
danielk19772dec9702007-05-02 16:48:37 +00008658}
danielk1977b4e9af92007-05-01 17:49:49 +00008659#endif
dane04dc882010-04-20 18:53:15 +00008660
8661/*
8662** Set both the "read version" (single byte at byte offset 18) and
8663** "write version" (single byte at byte offset 19) fields in the database
8664** header to iVersion.
8665*/
8666int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8667 BtShared *pBt = pBtree->pBt;
8668 int rc; /* Return code */
8669
dane04dc882010-04-20 18:53:15 +00008670 assert( iVersion==1 || iVersion==2 );
8671
danb9780022010-04-21 18:37:57 +00008672 /* If setting the version fields to 1, do not automatically open the
8673 ** WAL connection, even if the version fields are currently set to 2.
8674 */
drhc9166342012-01-05 23:32:06 +00008675 pBt->btsFlags &= ~BTS_NO_WAL;
8676 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008677
8678 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008679 if( rc==SQLITE_OK ){
8680 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008681 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008682 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008683 if( rc==SQLITE_OK ){
8684 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8685 if( rc==SQLITE_OK ){
8686 aData[18] = (u8)iVersion;
8687 aData[19] = (u8)iVersion;
8688 }
8689 }
8690 }
dane04dc882010-04-20 18:53:15 +00008691 }
8692
drhc9166342012-01-05 23:32:06 +00008693 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008694 return rc;
8695}
dan428c2182012-08-06 18:50:11 +00008696
8697/*
8698** set the mask of hint flags for cursor pCsr. Currently the only valid
8699** values are 0 and BTREE_BULKLOAD.
8700*/
8701void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8702 assert( mask==BTREE_BULKLOAD || mask==0 );
8703 pCsr->hints = mask;
8704}
drh781597f2014-05-21 08:21:07 +00008705
8706/*
8707** Return true if the given Btree is read-only.
8708*/
8709int sqlite3BtreeIsReadonly(Btree *p){
8710 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
8711}