blob: ac13b0f3daee22690d2fdb9622498c49f5741d6c [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000179 }
180 }
181 }else{
182 iTab = iRoot;
183 }
184
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
192 ){
193 return 1;
194 }
195 }
196
197 /* Failed to find the required lock. */
198 return 0;
199}
drh0ee3dbe2009-10-16 15:05:18 +0000200#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000201
drh0ee3dbe2009-10-16 15:05:18 +0000202#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000203/*
drh0ee3dbe2009-10-16 15:05:18 +0000204**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000205**
drh0ee3dbe2009-10-16 15:05:18 +0000206** Return true if it would be illegal for pBtree to write into the
207** table or index rooted at iRoot because other shared connections are
208** simultaneously reading that same table or index.
209**
210** It is illegal for pBtree to write if some other Btree object that
211** shares the same BtShared object is currently reading or writing
212** the iRoot table. Except, if the other Btree object has the
213** read-uncommitted flag set, then it is OK for the other object to
214** have a read cursor.
215**
216** For example, before writing to any part of the table or index
217** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000218**
219** assert( !hasReadConflicts(pBtree, iRoot) );
220*/
221static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227 ){
228 return 1;
229 }
230 }
231 return 0;
232}
233#endif /* #ifdef SQLITE_DEBUG */
234
danielk1977da184232006-01-05 11:34:32 +0000235/*
drh0ee3dbe2009-10-16 15:05:18 +0000236** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000237** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000238** SQLITE_OK if the lock may be obtained (by calling
239** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000240*/
drhc25eabe2009-02-24 18:57:31 +0000241static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
244
drh1fee73e2007-08-29 04:00:57 +0000245 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000249
danielk19775b413d72009-04-01 09:41:54 +0000250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
253 */
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256
drh0ee3dbe2009-10-16 15:05:18 +0000257 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000258 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000259 return SQLITE_OK;
260 }
261
danielk1977641b0f42007-12-21 04:47:25 +0000262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
264 */
drhc9166342012-01-05 23:32:06 +0000265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000268 }
269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
273 **
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275 **
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
279 */
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000286 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000287 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000288 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000289 }
290 }
291 return SQLITE_OK;
292}
drhe53831d2007-08-17 01:14:38 +0000293#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000294
drhe53831d2007-08-17 01:14:38 +0000295#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000296/*
297** Add a lock on the table with root-page iTable to the shared-btree used
298** by Btree handle p. Parameter eLock must be either READ_LOCK or
299** WRITE_LOCK.
300**
danielk19779d104862009-07-09 08:27:14 +0000301** This function assumes the following:
302**
drh0ee3dbe2009-10-16 15:05:18 +0000303** (a) The specified Btree object p is connected to a sharable
304** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000305**
drh0ee3dbe2009-10-16 15:05:18 +0000306** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000307** with the requested lock (i.e. querySharedCacheTableLock() has
308** already been called and returned SQLITE_OK).
309**
310** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000312*/
drhc25eabe2009-02-24 18:57:31 +0000313static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
317
drh1fee73e2007-08-29 04:00:57 +0000318 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000321
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327
danielk19779d104862009-07-09 08:27:14 +0000328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000332
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
338 }
339 }
340
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
343 */
344 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( !pLock ){
347 return SQLITE_NOMEM;
348 }
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
353 }
354
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
358 */
359 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
362 }
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 return SQLITE_OK;
365}
drhe53831d2007-08-17 01:14:38 +0000366#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000367
drhe53831d2007-08-17 01:14:38 +0000368#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000369/*
drhc25eabe2009-02-24 18:57:31 +0000370** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000371** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000372**
drh0ee3dbe2009-10-16 15:05:18 +0000373** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000374** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000375** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000376*/
drhc25eabe2009-02-24 18:57:31 +0000377static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000380
drh1fee73e2007-08-29 04:00:57 +0000381 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000382 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000383 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000384
danielk1977aef0bf62005-12-30 16:28:01 +0000385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000388 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
394 }
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }else{
396 ppIter = &pLock->pNext;
397 }
398 }
danielk1977641b0f42007-12-21 04:47:25 +0000399
drhc9166342012-01-05 23:32:06 +0000400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000404 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000405 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000409 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000410 **
drhc9166342012-01-05 23:32:06 +0000411 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000412 ** be zero already. So this next line is harmless in that case.
413 */
drhc9166342012-01-05 23:32:06 +0000414 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000415 }
danielk1977aef0bf62005-12-30 16:28:01 +0000416}
danielk197794b30732009-07-02 17:21:57 +0000417
danielk1977e0d9e6f2009-07-03 16:25:06 +0000418/*
drh0ee3dbe2009-10-16 15:05:18 +0000419** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000420*/
danielk197794b30732009-07-02 17:21:57 +0000421static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
430 }
431 }
432}
433
danielk1977aef0bf62005-12-30 16:28:01 +0000434#endif /* SQLITE_OMIT_SHARED_CACHE */
435
drh980b1a72006-08-16 16:42:48 +0000436static void releasePage(MemPage *pPage); /* Forward reference */
437
drh1fee73e2007-08-29 04:00:57 +0000438/*
drh0ee3dbe2009-10-16 15:05:18 +0000439***** This routine is used inside of assert() only ****
440**
441** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000442*/
drh0ee3dbe2009-10-16 15:05:18 +0000443#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000444static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000445 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000446}
447#endif
448
danielk197792d4d7a2007-05-04 12:05:56 +0000449/*
dan5a500af2014-03-11 20:33:04 +0000450** Invalidate the overflow cache of the cursor passed as the first argument.
451** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000452*/
drh036dbec2014-03-11 23:40:44 +0000453#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000454
455/*
456** Invalidate the overflow page-list cache for all cursors opened
457** on the shared btree structure pBt.
458*/
459static void invalidateAllOverflowCache(BtShared *pBt){
460 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000461 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000462 for(p=pBt->pCursor; p; p=p->pNext){
463 invalidateOverflowCache(p);
464 }
465}
danielk197796d48e92009-06-29 06:00:37 +0000466
dan5a500af2014-03-11 20:33:04 +0000467#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000468/*
469** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000470** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000471** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000472**
473** If argument isClearTable is true, then the entire contents of the
474** table is about to be deleted. In this case invalidate all incrblob
475** cursors open on any row within the table with root-page pgnoRoot.
476**
477** Otherwise, if argument isClearTable is false, then the row with
478** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000479** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000480*/
481static void invalidateIncrblobCursors(
482 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000483 i64 iRow, /* The rowid that might be changing */
484 int isClearTable /* True if all rows are being deleted */
485){
486 BtCursor *p;
487 BtShared *pBt = pBtree->pBt;
488 assert( sqlite3BtreeHoldsMutex(pBtree) );
489 for(p=pBt->pCursor; p; p=p->pNext){
drh036dbec2014-03-11 23:40:44 +0000490 if( (p->curFlags & BTCF_Incrblob)!=0 && (isClearTable || p->info.nKey==iRow) ){
danielk197796d48e92009-06-29 06:00:37 +0000491 p->eState = CURSOR_INVALID;
492 }
493 }
494}
495
danielk197792d4d7a2007-05-04 12:05:56 +0000496#else
dan5a500af2014-03-11 20:33:04 +0000497 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000498 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000499#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000500
drh980b1a72006-08-16 16:42:48 +0000501/*
danielk1977bea2a942009-01-20 17:06:27 +0000502** Set bit pgno of the BtShared.pHasContent bitvec. This is called
503** when a page that previously contained data becomes a free-list leaf
504** page.
505**
506** The BtShared.pHasContent bitvec exists to work around an obscure
507** bug caused by the interaction of two useful IO optimizations surrounding
508** free-list leaf pages:
509**
510** 1) When all data is deleted from a page and the page becomes
511** a free-list leaf page, the page is not written to the database
512** (as free-list leaf pages contain no meaningful data). Sometimes
513** such a page is not even journalled (as it will not be modified,
514** why bother journalling it?).
515**
516** 2) When a free-list leaf page is reused, its content is not read
517** from the database or written to the journal file (why should it
518** be, if it is not at all meaningful?).
519**
520** By themselves, these optimizations work fine and provide a handy
521** performance boost to bulk delete or insert operations. However, if
522** a page is moved to the free-list and then reused within the same
523** transaction, a problem comes up. If the page is not journalled when
524** it is moved to the free-list and it is also not journalled when it
525** is extracted from the free-list and reused, then the original data
526** may be lost. In the event of a rollback, it may not be possible
527** to restore the database to its original configuration.
528**
529** The solution is the BtShared.pHasContent bitvec. Whenever a page is
530** moved to become a free-list leaf page, the corresponding bit is
531** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000532** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000533** set in BtShared.pHasContent. The contents of the bitvec are cleared
534** at the end of every transaction.
535*/
536static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
537 int rc = SQLITE_OK;
538 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000539 assert( pgno<=pBt->nPage );
540 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000541 if( !pBt->pHasContent ){
542 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000543 }
544 }
545 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
546 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
547 }
548 return rc;
549}
550
551/*
552** Query the BtShared.pHasContent vector.
553**
554** This function is called when a free-list leaf page is removed from the
555** free-list for reuse. It returns false if it is safe to retrieve the
556** page from the pager layer with the 'no-content' flag set. True otherwise.
557*/
558static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
559 Bitvec *p = pBt->pHasContent;
560 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
561}
562
563/*
564** Clear (destroy) the BtShared.pHasContent bitvec. This should be
565** invoked at the conclusion of each write-transaction.
566*/
567static void btreeClearHasContent(BtShared *pBt){
568 sqlite3BitvecDestroy(pBt->pHasContent);
569 pBt->pHasContent = 0;
570}
571
572/*
drh138eeeb2013-03-27 03:15:23 +0000573** Release all of the apPage[] pages for a cursor.
574*/
575static void btreeReleaseAllCursorPages(BtCursor *pCur){
576 int i;
577 for(i=0; i<=pCur->iPage; i++){
578 releasePage(pCur->apPage[i]);
579 pCur->apPage[i] = 0;
580 }
581 pCur->iPage = -1;
582}
583
584
585/*
drh980b1a72006-08-16 16:42:48 +0000586** Save the current cursor position in the variables BtCursor.nKey
587** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000588**
589** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
590** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000591*/
592static int saveCursorPosition(BtCursor *pCur){
593 int rc;
594
595 assert( CURSOR_VALID==pCur->eState );
596 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000597 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000598
599 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000600 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000601
602 /* If this is an intKey table, then the above call to BtreeKeySize()
603 ** stores the integer key in pCur->nKey. In this case this value is
604 ** all that is required. Otherwise, if pCur is not open on an intKey
605 ** table, then malloc space for and store the pCur->nKey bytes of key
606 ** data.
607 */
drh4c301aa2009-07-15 17:25:45 +0000608 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000609 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000610 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000611 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000612 if( rc==SQLITE_OK ){
613 pCur->pKey = pKey;
614 }else{
drh17435752007-08-16 04:30:38 +0000615 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000616 }
617 }else{
618 rc = SQLITE_NOMEM;
619 }
620 }
danielk197771d5d2c2008-09-29 11:49:47 +0000621 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000622
623 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000624 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000625 pCur->eState = CURSOR_REQUIRESEEK;
626 }
627
danielk197792d4d7a2007-05-04 12:05:56 +0000628 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000629 return rc;
630}
631
632/*
drh0ee3dbe2009-10-16 15:05:18 +0000633** Save the positions of all cursors (except pExcept) that are open on
634** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000635** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
636*/
637static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
638 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000639 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000640 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000641 for(p=pBt->pCursor; p; p=p->pNext){
drh138eeeb2013-03-27 03:15:23 +0000642 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
643 if( p->eState==CURSOR_VALID ){
644 int rc = saveCursorPosition(p);
645 if( SQLITE_OK!=rc ){
646 return rc;
647 }
648 }else{
649 testcase( p->iPage>0 );
650 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000651 }
652 }
653 }
654 return SQLITE_OK;
655}
656
657/*
drhbf700f32007-03-31 02:36:44 +0000658** Clear the current cursor position.
659*/
danielk1977be51a652008-10-08 17:58:48 +0000660void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000661 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000662 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000663 pCur->pKey = 0;
664 pCur->eState = CURSOR_INVALID;
665}
666
667/*
danielk19773509a652009-07-06 18:56:13 +0000668** In this version of BtreeMoveto, pKey is a packed index record
669** such as is generated by the OP_MakeRecord opcode. Unpack the
670** record and then call BtreeMovetoUnpacked() to do the work.
671*/
672static int btreeMoveto(
673 BtCursor *pCur, /* Cursor open on the btree to be searched */
674 const void *pKey, /* Packed key if the btree is an index */
675 i64 nKey, /* Integer key for tables. Size of pKey for indices */
676 int bias, /* Bias search to the high end */
677 int *pRes /* Write search results here */
678){
679 int rc; /* Status code */
680 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000681 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000682 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000683
684 if( pKey ){
685 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000686 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
687 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
688 );
danielk19773509a652009-07-06 18:56:13 +0000689 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000690 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000691 if( pIdxKey->nField==0 ){
692 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
693 return SQLITE_CORRUPT_BKPT;
694 }
danielk19773509a652009-07-06 18:56:13 +0000695 }else{
696 pIdxKey = 0;
697 }
698 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000699 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000700 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000701 }
702 return rc;
703}
704
705/*
drh980b1a72006-08-16 16:42:48 +0000706** Restore the cursor to the position it was in (or as close to as possible)
707** when saveCursorPosition() was called. Note that this call deletes the
708** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000709** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000710** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000711*/
danielk197730548662009-07-09 05:07:37 +0000712static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000713 int rc;
drh1fee73e2007-08-29 04:00:57 +0000714 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000715 assert( pCur->eState>=CURSOR_REQUIRESEEK );
716 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000717 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000718 }
drh980b1a72006-08-16 16:42:48 +0000719 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000720 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000721 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000722 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000723 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000724 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh9b47ee32013-08-20 03:13:51 +0000725 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
726 pCur->eState = CURSOR_SKIPNEXT;
727 }
drh980b1a72006-08-16 16:42:48 +0000728 }
729 return rc;
730}
731
drha3460582008-07-11 21:02:53 +0000732#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000733 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000734 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000735 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000736
drha3460582008-07-11 21:02:53 +0000737/*
738** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000739** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000740** at is deleted out from under them.
741**
742** This routine returns an error code if something goes wrong. The
drh86dd3712014-03-25 11:00:21 +0000743** integer *pHasMoved is set as follows:
744**
745** 0: The cursor is unchanged
746** 1: The cursor is still pointing at the same row, but the pointers
747** returned by sqlite3BtreeKeyFetch() or sqlite3BtreeDataFetch()
748** might now be invalid because of a balance() or other change to the
749** b-tree.
750** 2: The cursor is no longer pointing to the row. The row might have
751** been deleted out from under the cursor.
drha3460582008-07-11 21:02:53 +0000752*/
753int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
754 int rc;
755
drh86dd3712014-03-25 11:00:21 +0000756 if( pCur->eState==CURSOR_VALID ){
757 *pHasMoved = 0;
758 return SQLITE_OK;
759 }
drha3460582008-07-11 21:02:53 +0000760 rc = restoreCursorPosition(pCur);
761 if( rc ){
drh86dd3712014-03-25 11:00:21 +0000762 *pHasMoved = 2;
drha3460582008-07-11 21:02:53 +0000763 return rc;
764 }
drh9b47ee32013-08-20 03:13:51 +0000765 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
drh86dd3712014-03-25 11:00:21 +0000766 *pHasMoved = 2;
drha3460582008-07-11 21:02:53 +0000767 }else{
drh86dd3712014-03-25 11:00:21 +0000768 *pHasMoved = 1;
drha3460582008-07-11 21:02:53 +0000769 }
770 return SQLITE_OK;
771}
772
danielk1977599fcba2004-11-08 07:13:13 +0000773#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000774/*
drha3152892007-05-05 11:48:52 +0000775** Given a page number of a regular database page, return the page
776** number for the pointer-map page that contains the entry for the
777** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000778**
779** Return 0 (not a valid page) for pgno==1 since there is
780** no pointer map associated with page 1. The integrity_check logic
781** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000782*/
danielk1977266664d2006-02-10 08:24:21 +0000783static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000784 int nPagesPerMapPage;
785 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000786 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000787 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000788 nPagesPerMapPage = (pBt->usableSize/5)+1;
789 iPtrMap = (pgno-2)/nPagesPerMapPage;
790 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000791 if( ret==PENDING_BYTE_PAGE(pBt) ){
792 ret++;
793 }
794 return ret;
795}
danielk1977a19df672004-11-03 11:37:07 +0000796
danielk1977afcdd022004-10-31 16:25:42 +0000797/*
danielk1977afcdd022004-10-31 16:25:42 +0000798** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000799**
800** This routine updates the pointer map entry for page number 'key'
801** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000802**
803** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
804** a no-op. If an error occurs, the appropriate error code is written
805** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000806*/
drh98add2e2009-07-20 17:11:49 +0000807static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000808 DbPage *pDbPage; /* The pointer map page */
809 u8 *pPtrmap; /* The pointer map data */
810 Pgno iPtrmap; /* The pointer map page number */
811 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000812 int rc; /* Return code from subfunctions */
813
814 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000815
drh1fee73e2007-08-29 04:00:57 +0000816 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000817 /* The master-journal page number must never be used as a pointer map page */
818 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
819
danielk1977ac11ee62005-01-15 12:45:51 +0000820 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000821 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000822 *pRC = SQLITE_CORRUPT_BKPT;
823 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000824 }
danielk1977266664d2006-02-10 08:24:21 +0000825 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000826 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000827 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000828 *pRC = rc;
829 return;
danielk1977afcdd022004-10-31 16:25:42 +0000830 }
danielk19778c666b12008-07-18 09:34:57 +0000831 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000832 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000833 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000834 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000835 }
drhfc243732011-05-17 15:21:56 +0000836 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000837 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000838
drh615ae552005-01-16 23:21:00 +0000839 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
840 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000841 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000842 if( rc==SQLITE_OK ){
843 pPtrmap[offset] = eType;
844 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000845 }
danielk1977afcdd022004-10-31 16:25:42 +0000846 }
847
drh4925a552009-07-07 11:39:58 +0000848ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000849 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000850}
851
852/*
853** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000854**
855** This routine retrieves the pointer map entry for page 'key', writing
856** the type and parent page number to *pEType and *pPgno respectively.
857** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000858*/
danielk1977aef0bf62005-12-30 16:28:01 +0000859static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000860 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000861 int iPtrmap; /* Pointer map page index */
862 u8 *pPtrmap; /* Pointer map page data */
863 int offset; /* Offset of entry in pointer map */
864 int rc;
865
drh1fee73e2007-08-29 04:00:57 +0000866 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000867
danielk1977266664d2006-02-10 08:24:21 +0000868 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000869 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000870 if( rc!=0 ){
871 return rc;
872 }
danielk19773b8a05f2007-03-19 17:44:26 +0000873 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000874
danielk19778c666b12008-07-18 09:34:57 +0000875 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000876 if( offset<0 ){
877 sqlite3PagerUnref(pDbPage);
878 return SQLITE_CORRUPT_BKPT;
879 }
880 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000881 assert( pEType!=0 );
882 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000883 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000884
danielk19773b8a05f2007-03-19 17:44:26 +0000885 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000886 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000887 return SQLITE_OK;
888}
889
danielk197785d90ca2008-07-19 14:25:15 +0000890#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000891 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000892 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000893 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000894#endif
danielk1977afcdd022004-10-31 16:25:42 +0000895
drh0d316a42002-08-11 20:10:47 +0000896/*
drh271efa52004-05-30 19:19:05 +0000897** Given a btree page and a cell index (0 means the first cell on
898** the page, 1 means the second cell, and so forth) return a pointer
899** to the cell content.
900**
901** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000902*/
drh1688c862008-07-18 02:44:17 +0000903#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000904 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000905#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
906
drh43605152004-05-29 21:46:49 +0000907
908/*
drh93a960a2008-07-10 00:32:42 +0000909** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000910** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000911*/
912static u8 *findOverflowCell(MemPage *pPage, int iCell){
913 int i;
drh1fee73e2007-08-29 04:00:57 +0000914 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000915 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000916 int k;
drh2cbd78b2012-02-02 19:37:18 +0000917 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000918 if( k<=iCell ){
919 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000920 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000921 }
922 iCell--;
923 }
924 }
danielk19771cc5ed82007-05-16 17:28:43 +0000925 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000926}
927
928/*
929** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000930** are two versions of this function. btreeParseCell() takes a
931** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000932** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000933**
934** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000935** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000936*/
danielk197730548662009-07-09 05:07:37 +0000937static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000938 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000939 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000940 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000941){
drhf49661a2008-12-10 16:45:50 +0000942 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000943 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000944
drh1fee73e2007-08-29 04:00:57 +0000945 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000946
drh43605152004-05-29 21:46:49 +0000947 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000948 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000949 n = pPage->childPtrSize;
950 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000951 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000952 if( pPage->hasData ){
drh13c77bf2013-08-21 15:52:22 +0000953 assert( n==0 );
954 n = getVarint32(pCell, nPayload);
drh79df1f42008-07-18 00:57:33 +0000955 }else{
956 nPayload = 0;
957 }
drh1bd10f82008-12-10 21:19:56 +0000958 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000959 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000960 }else{
drh79df1f42008-07-18 00:57:33 +0000961 pInfo->nData = 0;
962 n += getVarint32(&pCell[n], nPayload);
963 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000964 }
drh72365832007-03-06 15:53:44 +0000965 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000966 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000967 testcase( nPayload==pPage->maxLocal );
968 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000969 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000970 /* This is the (easy) common case where the entire payload fits
971 ** on the local page. No overflow is required.
972 */
drh41692e92011-01-25 04:34:51 +0000973 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000974 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000975 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000976 }else{
drh271efa52004-05-30 19:19:05 +0000977 /* If the payload will not fit completely on the local page, we have
978 ** to decide how much to store locally and how much to spill onto
979 ** overflow pages. The strategy is to minimize the amount of unused
980 ** space on overflow pages while keeping the amount of local storage
981 ** in between minLocal and maxLocal.
982 **
983 ** Warning: changing the way overflow payload is distributed in any
984 ** way will result in an incompatible file format.
985 */
986 int minLocal; /* Minimum amount of payload held locally */
987 int maxLocal; /* Maximum amount of payload held locally */
988 int surplus; /* Overflow payload available for local storage */
989
990 minLocal = pPage->minLocal;
991 maxLocal = pPage->maxLocal;
992 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000993 testcase( surplus==maxLocal );
994 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000995 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000996 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000997 }else{
drhf49661a2008-12-10 16:45:50 +0000998 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000999 }
drhf49661a2008-12-10 16:45:50 +00001000 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +00001001 pInfo->nSize = pInfo->iOverflow + 4;
1002 }
drh3aac2dd2004-04-26 14:10:20 +00001003}
danielk19771cc5ed82007-05-16 17:28:43 +00001004#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +00001005 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
1006static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001007 MemPage *pPage, /* Page containing the cell */
1008 int iCell, /* The cell index. First cell is 0 */
1009 CellInfo *pInfo /* Fill in this structure */
1010){
danielk19771cc5ed82007-05-16 17:28:43 +00001011 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +00001012}
drh3aac2dd2004-04-26 14:10:20 +00001013
1014/*
drh43605152004-05-29 21:46:49 +00001015** Compute the total number of bytes that a Cell needs in the cell
1016** data area of the btree-page. The return number includes the cell
1017** data header and the local payload, but not any overflow page or
1018** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001019*/
danielk1977ae5558b2009-04-29 11:31:47 +00001020static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1021 u8 *pIter = &pCell[pPage->childPtrSize];
1022 u32 nSize;
1023
1024#ifdef SQLITE_DEBUG
1025 /* The value returned by this function should always be the same as
1026 ** the (CellInfo.nSize) value found by doing a full parse of the
1027 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1028 ** this function verifies that this invariant is not violated. */
1029 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001030 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001031#endif
1032
1033 if( pPage->intKey ){
1034 u8 *pEnd;
1035 if( pPage->hasData ){
1036 pIter += getVarint32(pIter, nSize);
1037 }else{
1038 nSize = 0;
1039 }
1040
1041 /* pIter now points at the 64-bit integer key value, a variable length
1042 ** integer. The following block moves pIter to point at the first byte
1043 ** past the end of the key value. */
1044 pEnd = &pIter[9];
1045 while( (*pIter++)&0x80 && pIter<pEnd );
1046 }else{
1047 pIter += getVarint32(pIter, nSize);
1048 }
1049
drh0a45c272009-07-08 01:49:11 +00001050 testcase( nSize==pPage->maxLocal );
1051 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001052 if( nSize>pPage->maxLocal ){
1053 int minLocal = pPage->minLocal;
1054 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001055 testcase( nSize==pPage->maxLocal );
1056 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001057 if( nSize>pPage->maxLocal ){
1058 nSize = minLocal;
1059 }
1060 nSize += 4;
1061 }
shane75ac1de2009-06-09 18:58:52 +00001062 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001063
1064 /* The minimum size of any cell is 4 bytes. */
1065 if( nSize<4 ){
1066 nSize = 4;
1067 }
1068
1069 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001070 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001071}
drh0ee3dbe2009-10-16 15:05:18 +00001072
1073#ifdef SQLITE_DEBUG
1074/* This variation on cellSizePtr() is used inside of assert() statements
1075** only. */
drha9121e42008-02-19 14:59:35 +00001076static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001077 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001078}
danielk1977bc6ada42004-06-30 08:20:16 +00001079#endif
drh3b7511c2001-05-26 13:15:44 +00001080
danielk197779a40da2005-01-16 08:00:01 +00001081#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001082/*
danielk197726836652005-01-17 01:33:13 +00001083** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001084** to an overflow page, insert an entry into the pointer-map
1085** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001086*/
drh98add2e2009-07-20 17:11:49 +00001087static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001088 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001089 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001090 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001091 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001092 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001093 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001094 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001095 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001096 }
danielk1977ac11ee62005-01-15 12:45:51 +00001097}
danielk197779a40da2005-01-16 08:00:01 +00001098#endif
1099
danielk1977ac11ee62005-01-15 12:45:51 +00001100
drhda200cc2004-05-09 11:51:38 +00001101/*
drh72f82862001-05-24 21:06:34 +00001102** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001103** end of the page and all free space is collected into one
1104** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001105** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001106*/
shane0af3f892008-11-12 04:55:34 +00001107static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001108 int i; /* Loop counter */
1109 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001110 int hdr; /* Offset to the page header */
1111 int size; /* Size of a cell */
1112 int usableSize; /* Number of usable bytes on a page */
1113 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001114 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001115 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001116 unsigned char *data; /* The page data */
1117 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001118 int iCellFirst; /* First allowable cell index */
1119 int iCellLast; /* Last possible cell index */
1120
drh2af926b2001-05-15 00:39:25 +00001121
danielk19773b8a05f2007-03-19 17:44:26 +00001122 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001123 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001124 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001125 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001126 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001127 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001128 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001129 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001130 cellOffset = pPage->cellOffset;
1131 nCell = pPage->nCell;
1132 assert( nCell==get2byte(&data[hdr+3]) );
1133 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001134 cbrk = get2byte(&data[hdr+5]);
1135 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1136 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001137 iCellFirst = cellOffset + 2*nCell;
1138 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001139 for(i=0; i<nCell; i++){
1140 u8 *pAddr; /* The i-th cell pointer */
1141 pAddr = &data[cellOffset + i*2];
1142 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001143 testcase( pc==iCellFirst );
1144 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001145#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001146 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001147 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1148 */
1149 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001150 return SQLITE_CORRUPT_BKPT;
1151 }
drh17146622009-07-07 17:38:38 +00001152#endif
1153 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001154 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001155 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001156#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1157 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001158 return SQLITE_CORRUPT_BKPT;
1159 }
drh17146622009-07-07 17:38:38 +00001160#else
1161 if( cbrk<iCellFirst || pc+size>usableSize ){
1162 return SQLITE_CORRUPT_BKPT;
1163 }
1164#endif
drh7157e1d2009-07-09 13:25:32 +00001165 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001166 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001167 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001168 memcpy(&data[cbrk], &temp[pc], size);
1169 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001170 }
drh17146622009-07-07 17:38:38 +00001171 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001172 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001173 data[hdr+1] = 0;
1174 data[hdr+2] = 0;
1175 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001176 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001177 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001178 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001179 return SQLITE_CORRUPT_BKPT;
1180 }
shane0af3f892008-11-12 04:55:34 +00001181 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001182}
1183
drha059ad02001-04-17 20:09:11 +00001184/*
danielk19776011a752009-04-01 16:25:32 +00001185** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001186** as the first argument. Write into *pIdx the index into pPage->aData[]
1187** of the first byte of allocated space. Return either SQLITE_OK or
1188** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001189**
drh0a45c272009-07-08 01:49:11 +00001190** The caller guarantees that there is sufficient space to make the
1191** allocation. This routine might need to defragment in order to bring
1192** all the space together, however. This routine will avoid using
1193** the first two bytes past the cell pointer area since presumably this
1194** allocation is being made in order to insert a new cell, so we will
1195** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001196*/
drh0a45c272009-07-08 01:49:11 +00001197static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001198 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1199 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001200 int top; /* First byte of cell content area */
1201 int gap; /* First byte of gap between cell pointers and cell content */
1202 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001203 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001204
danielk19773b8a05f2007-03-19 17:44:26 +00001205 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001206 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001207 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001208 assert( nByte>=0 ); /* Minimum cell size is 4 */
1209 assert( pPage->nFree>=nByte );
1210 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001211 usableSize = pPage->pBt->usableSize;
1212 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001213
drh0a45c272009-07-08 01:49:11 +00001214 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1215 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001216 assert( gap<=65536 );
1217 top = get2byte(&data[hdr+5]);
1218 if( gap>top ){
1219 if( top==0 ){
1220 top = 65536;
1221 }else{
1222 return SQLITE_CORRUPT_BKPT;
1223 }
1224 }
drh4c04f3c2014-08-20 11:56:14 +00001225
1226 /* If there is enough space between gap and top for one more cell pointer
1227 ** array entry offset, and if the freelist is not empty, then search the
1228 ** freelist looking for a free slot big enough to satisfy the request.
1229 */
drh0a45c272009-07-08 01:49:11 +00001230 testcase( gap+2==top );
1231 testcase( gap+1==top );
1232 testcase( gap==top );
drh4c04f3c2014-08-20 11:56:14 +00001233 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
danielk19776011a752009-04-01 16:25:32 +00001234 int pc, addr;
1235 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001236 int size; /* Size of the free slot */
1237 if( pc>usableSize-4 || pc<addr+4 ){
1238 return SQLITE_CORRUPT_BKPT;
1239 }
1240 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001241 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001242 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001243 testcase( x==4 );
1244 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001245 if( x<4 ){
drh4c04f3c2014-08-20 11:56:14 +00001246 if( data[hdr+7]>=60 ) goto defragment_page;
danielk1977fad91942009-04-29 17:49:59 +00001247 /* Remove the slot from the free-list. Update the number of
1248 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001249 memcpy(&data[addr], &data[pc], 2);
drh75b31dc2014-08-20 00:54:46 +00001250 data[hdr+7] += (u8)x;
drh00ce3942009-12-06 03:35:51 +00001251 }else if( size+pc > usableSize ){
1252 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001253 }else{
danielk1977fad91942009-04-29 17:49:59 +00001254 /* The slot remains on the free-list. Reduce its size to account
1255 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001256 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001257 }
drh0a45c272009-07-08 01:49:11 +00001258 *pIdx = pc + x;
1259 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001260 }
drh9e572e62004-04-23 23:43:10 +00001261 }
1262 }
drh43605152004-05-29 21:46:49 +00001263
drh4c04f3c2014-08-20 11:56:14 +00001264 /* The request could not be fulfilled using a freelist slot. Check
1265 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001266 */
1267 testcase( gap+2+nByte==top );
1268 if( gap+2+nByte>top ){
drh4c04f3c2014-08-20 11:56:14 +00001269defragment_page:
drh90555262014-08-20 13:17:43 +00001270 testcase( pPage->nCell==0 );
drh0a45c272009-07-08 01:49:11 +00001271 rc = defragmentPage(pPage);
1272 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001273 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001274 assert( gap+nByte<=top );
1275 }
1276
1277
drh43605152004-05-29 21:46:49 +00001278 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001279 ** and the cell content area. The btreeInitPage() call has already
1280 ** validated the freelist. Given that the freelist is valid, there
1281 ** is no way that the allocation can extend off the end of the page.
1282 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001283 */
drh0a45c272009-07-08 01:49:11 +00001284 top -= nByte;
drh43605152004-05-29 21:46:49 +00001285 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001286 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001287 *pIdx = top;
1288 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001289}
1290
1291/*
drh9e572e62004-04-23 23:43:10 +00001292** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001293** The first byte of the new free block is pPage->aData[iStart]
1294** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001295**
1296** Most of the effort here is involved in coalesing adjacent
1297** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001298*/
drh7fb91642014-08-20 14:37:09 +00001299static int freeSpace(MemPage *pPage, int iStart, int iSize){
1300 int iPtr; /* Address of pointer to next freeblock */
1301 int iFreeBlk; /* Address of the next freeblock */
1302 int hdr; /* Page header size. 0 or 100 */
1303 int iLast; /* Largest possible freeblock offset */
1304 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001305
drh9e572e62004-04-23 23:43:10 +00001306 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001307 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh7fb91642014-08-20 14:37:09 +00001308 assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1309 assert( (iStart + iSize) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001310 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001311 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001312
drhc9166342012-01-05 23:32:06 +00001313 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001314 /* Overwrite deleted information with zeros when the secure_delete
1315 ** option is enabled */
drh7fb91642014-08-20 14:37:09 +00001316 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001317 }
drhfcce93f2006-02-22 03:08:32 +00001318
drh0a45c272009-07-08 01:49:11 +00001319 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001320 ** even though the freeblock list was checked by btreeInitPage(),
1321 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001322 ** freeblocks that overlapped cells. Nor does it detect when the
1323 ** cell content area exceeds the value in the page header. If these
1324 ** situations arise, then subsequent insert operations might corrupt
1325 ** the freelist. So we do need to check for corruption while scanning
1326 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001327 */
drh43605152004-05-29 21:46:49 +00001328 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001329 iPtr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001330 iLast = pPage->pBt->usableSize - 4;
drh7fb91642014-08-20 14:37:09 +00001331 assert( iStart<=iLast );
1332 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart && iFreeBlk>0 ){
1333 if( iFreeBlk<iPtr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001334 return SQLITE_CORRUPT_BKPT;
1335 }
drh7fb91642014-08-20 14:37:09 +00001336 iPtr = iFreeBlk;
drh2af926b2001-05-15 00:39:25 +00001337 }
drh7fb91642014-08-20 14:37:09 +00001338 if( iFreeBlk>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001339 return SQLITE_CORRUPT_BKPT;
1340 }
drh7fb91642014-08-20 14:37:09 +00001341 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1342 put2byte(&data[iPtr], iStart);
1343 put2byte(&data[iStart], iFreeBlk);
1344 put2byte(&data[iStart+2], iSize);
1345 pPage->nFree = pPage->nFree + (u16)iSize;
drh9e572e62004-04-23 23:43:10 +00001346
1347 /* Coalesce adjacent free blocks */
drh7fb91642014-08-20 14:37:09 +00001348 iPtr = hdr + 1;
1349 while( (iFreeBlk = get2byte(&data[iPtr]))>0 ){
1350 int iNextBlk; /* Next freeblock after iFreeBlk */
1351 int szFreeBlk; /* Size of iFreeBlk */
1352 assert( iFreeBlk>iPtr );
1353 assert( iFreeBlk <= (int)pPage->pBt->usableSize-4 );
1354 iNextBlk = get2byte(&data[iFreeBlk]);
1355 szFreeBlk = get2byte(&data[iFreeBlk+2]);
1356 if( iFreeBlk + szFreeBlk + 3 >= iNextBlk && iNextBlk>0 ){
1357 int nFrag; /* Fragment bytes in between iFreeBlk and iNextBlk */
1358 int x; /* Temp value */
1359 nFrag = iNextBlk - (iFreeBlk+szFreeBlk);
1360 if( (nFrag<0) || (nFrag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001361 return SQLITE_CORRUPT_BKPT;
1362 }
drh7fb91642014-08-20 14:37:09 +00001363 data[hdr+7] -= (u8)nFrag;
1364 x = get2byte(&data[iNextBlk]);
1365 put2byte(&data[iFreeBlk], x);
1366 x = iNextBlk + get2byte(&data[iNextBlk+2]) - iFreeBlk;
1367 put2byte(&data[iFreeBlk+2], x);
drh9e572e62004-04-23 23:43:10 +00001368 }else{
drh7fb91642014-08-20 14:37:09 +00001369 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001370 }
1371 }
drh7e3b0a02001-04-28 16:52:40 +00001372
drh43605152004-05-29 21:46:49 +00001373 /* If the cell content area begins with a freeblock, remove it. */
1374 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1375 int top;
drh7fb91642014-08-20 14:37:09 +00001376 iFreeBlk = get2byte(&data[hdr+1]);
1377 memcpy(&data[hdr+1], &data[iFreeBlk], 2);
1378 top = get2byte(&data[hdr+5]) + get2byte(&data[iFreeBlk+2]);
drhf49661a2008-12-10 16:45:50 +00001379 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001380 }
drhc5053fb2008-11-27 02:22:10 +00001381 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001382 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001383}
1384
1385/*
drh271efa52004-05-30 19:19:05 +00001386** Decode the flags byte (the first byte of the header) for a page
1387** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001388**
1389** Only the following combinations are supported. Anything different
1390** indicates a corrupt database files:
1391**
1392** PTF_ZERODATA
1393** PTF_ZERODATA | PTF_LEAF
1394** PTF_LEAFDATA | PTF_INTKEY
1395** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001396*/
drh44845222008-07-17 18:39:57 +00001397static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001398 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001399
1400 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001401 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001402 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001403 flagByte &= ~PTF_LEAF;
1404 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001405 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001406 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1407 pPage->intKey = 1;
1408 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001409 pPage->maxLocal = pBt->maxLeaf;
1410 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001411 }else if( flagByte==PTF_ZERODATA ){
1412 pPage->intKey = 0;
1413 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001414 pPage->maxLocal = pBt->maxLocal;
1415 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001416 }else{
1417 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001418 }
drhc9166342012-01-05 23:32:06 +00001419 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001420 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001421}
1422
1423/*
drh7e3b0a02001-04-28 16:52:40 +00001424** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001425**
1426** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001427** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001428** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1429** guarantee that the page is well-formed. It only shows that
1430** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001431*/
danielk197730548662009-07-09 05:07:37 +00001432static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001433
danielk197771d5d2c2008-09-29 11:49:47 +00001434 assert( pPage->pBt!=0 );
1435 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001436 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001437 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1438 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001439
1440 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001441 u16 pc; /* Address of a freeblock within pPage->aData[] */
1442 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001443 u8 *data; /* Equal to pPage->aData */
1444 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001445 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001446 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001447 int nFree; /* Number of unused bytes on the page */
1448 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001449 int iCellFirst; /* First allowable cell or freeblock offset */
1450 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001451
1452 pBt = pPage->pBt;
1453
danielk1977eaa06f62008-09-18 17:34:44 +00001454 hdr = pPage->hdrOffset;
1455 data = pPage->aData;
1456 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001457 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1458 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001459 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001460 usableSize = pBt->usableSize;
1461 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001462 pPage->aDataEnd = &data[usableSize];
1463 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001464 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001465 pPage->nCell = get2byte(&data[hdr+3]);
1466 if( pPage->nCell>MX_CELL(pBt) ){
1467 /* To many cells for a single page. The page must be corrupt */
1468 return SQLITE_CORRUPT_BKPT;
1469 }
drhb908d762009-07-08 16:54:40 +00001470 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001471
shane5eff7cf2009-08-10 03:57:58 +00001472 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001473 ** of page when parsing a cell.
1474 **
1475 ** The following block of code checks early to see if a cell extends
1476 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1477 ** returned if it does.
1478 */
drh0a45c272009-07-08 01:49:11 +00001479 iCellFirst = cellOffset + 2*pPage->nCell;
1480 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001481#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001482 {
drh69e931e2009-06-03 21:04:35 +00001483 int i; /* Index into the cell pointer array */
1484 int sz; /* Size of a cell */
1485
drh69e931e2009-06-03 21:04:35 +00001486 if( !pPage->leaf ) iCellLast--;
1487 for(i=0; i<pPage->nCell; i++){
1488 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001489 testcase( pc==iCellFirst );
1490 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001491 if( pc<iCellFirst || pc>iCellLast ){
1492 return SQLITE_CORRUPT_BKPT;
1493 }
1494 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001495 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001496 if( pc+sz>usableSize ){
1497 return SQLITE_CORRUPT_BKPT;
1498 }
1499 }
drh0a45c272009-07-08 01:49:11 +00001500 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001501 }
1502#endif
1503
danielk1977eaa06f62008-09-18 17:34:44 +00001504 /* Compute the total free space on the page */
1505 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001506 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001507 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001508 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001509 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001510 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001511 return SQLITE_CORRUPT_BKPT;
1512 }
1513 next = get2byte(&data[pc]);
1514 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001515 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1516 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001517 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001518 return SQLITE_CORRUPT_BKPT;
1519 }
shane85095702009-06-15 16:27:08 +00001520 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001521 pc = next;
1522 }
danielk197793c829c2009-06-03 17:26:17 +00001523
1524 /* At this point, nFree contains the sum of the offset to the start
1525 ** of the cell-content area plus the number of free bytes within
1526 ** the cell-content area. If this is greater than the usable-size
1527 ** of the page, then the page must be corrupted. This check also
1528 ** serves to verify that the offset to the start of the cell-content
1529 ** area, according to the page header, lies within the page.
1530 */
1531 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001532 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001533 }
shane5eff7cf2009-08-10 03:57:58 +00001534 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001535 pPage->isInit = 1;
1536 }
drh9e572e62004-04-23 23:43:10 +00001537 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001538}
1539
1540/*
drh8b2f49b2001-06-08 00:21:52 +00001541** Set up a raw page so that it looks like a database page holding
1542** no entries.
drhbd03cae2001-06-02 02:40:57 +00001543*/
drh9e572e62004-04-23 23:43:10 +00001544static void zeroPage(MemPage *pPage, int flags){
1545 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001546 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001547 u8 hdr = pPage->hdrOffset;
1548 u16 first;
drh9e572e62004-04-23 23:43:10 +00001549
danielk19773b8a05f2007-03-19 17:44:26 +00001550 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001551 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1552 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001553 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001554 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001555 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001556 memset(&data[hdr], 0, pBt->usableSize - hdr);
1557 }
drh1bd10f82008-12-10 21:19:56 +00001558 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001559 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001560 memset(&data[hdr+1], 0, 4);
1561 data[hdr+7] = 0;
1562 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001563 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001564 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001565 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001566 pPage->aDataEnd = &data[pBt->usableSize];
1567 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001568 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001569 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1570 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001571 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001572 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001573}
1574
drh897a8202008-09-18 01:08:15 +00001575
1576/*
1577** Convert a DbPage obtained from the pager into a MemPage used by
1578** the btree layer.
1579*/
1580static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1581 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1582 pPage->aData = sqlite3PagerGetData(pDbPage);
1583 pPage->pDbPage = pDbPage;
1584 pPage->pBt = pBt;
1585 pPage->pgno = pgno;
1586 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1587 return pPage;
1588}
1589
drhbd03cae2001-06-02 02:40:57 +00001590/*
drh3aac2dd2004-04-26 14:10:20 +00001591** Get a page from the pager. Initialize the MemPage.pBt and
1592** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001593**
1594** If the noContent flag is set, it means that we do not care about
1595** the content of the page at this time. So do not go to the disk
1596** to fetch the content. Just fill in the content with zeros for now.
1597** If in the future we call sqlite3PagerWrite() on this page, that
1598** means we have started to be concerned about content and the disk
1599** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001600*/
danielk197730548662009-07-09 05:07:37 +00001601static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001602 BtShared *pBt, /* The btree */
1603 Pgno pgno, /* Number of the page to fetch */
1604 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001605 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001606){
drh3aac2dd2004-04-26 14:10:20 +00001607 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001608 DbPage *pDbPage;
1609
drhb00fc3b2013-08-21 23:42:32 +00001610 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001611 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001612 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001613 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001614 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001615 return SQLITE_OK;
1616}
1617
1618/*
danielk1977bea2a942009-01-20 17:06:27 +00001619** Retrieve a page from the pager cache. If the requested page is not
1620** already in the pager cache return NULL. Initialize the MemPage.pBt and
1621** MemPage.aData elements if needed.
1622*/
1623static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1624 DbPage *pDbPage;
1625 assert( sqlite3_mutex_held(pBt->mutex) );
1626 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1627 if( pDbPage ){
1628 return btreePageFromDbPage(pDbPage, pgno, pBt);
1629 }
1630 return 0;
1631}
1632
1633/*
danielk197789d40042008-11-17 14:20:56 +00001634** Return the size of the database file in pages. If there is any kind of
1635** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001636*/
drhb1299152010-03-30 22:58:33 +00001637static Pgno btreePagecount(BtShared *pBt){
1638 return pBt->nPage;
1639}
1640u32 sqlite3BtreeLastPage(Btree *p){
1641 assert( sqlite3BtreeHoldsMutex(p) );
1642 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001643 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001644}
1645
1646/*
danielk197789bc4bc2009-07-21 19:25:24 +00001647** Get a page from the pager and initialize it. This routine is just a
1648** convenience wrapper around separate calls to btreeGetPage() and
1649** btreeInitPage().
1650**
1651** If an error occurs, then the value *ppPage is set to is undefined. It
1652** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001653*/
1654static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001655 BtShared *pBt, /* The database file */
1656 Pgno pgno, /* Number of the page to get */
1657 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001658 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001659){
1660 int rc;
drh1fee73e2007-08-29 04:00:57 +00001661 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001662 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001663
danba3cbf32010-06-30 04:29:03 +00001664 if( pgno>btreePagecount(pBt) ){
1665 rc = SQLITE_CORRUPT_BKPT;
1666 }else{
drhb00fc3b2013-08-21 23:42:32 +00001667 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001668 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001669 rc = btreeInitPage(*ppPage);
1670 if( rc!=SQLITE_OK ){
1671 releasePage(*ppPage);
1672 }
danielk197789bc4bc2009-07-21 19:25:24 +00001673 }
drhee696e22004-08-30 16:52:17 +00001674 }
danba3cbf32010-06-30 04:29:03 +00001675
1676 testcase( pgno==0 );
1677 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001678 return rc;
1679}
1680
1681/*
drh3aac2dd2004-04-26 14:10:20 +00001682** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001683** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001684*/
drh4b70f112004-05-02 21:12:19 +00001685static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001686 if( pPage ){
1687 assert( pPage->aData );
1688 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001689 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001690 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1691 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001692 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001693 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001694 }
1695}
1696
1697/*
drha6abd042004-06-09 17:37:22 +00001698** During a rollback, when the pager reloads information into the cache
1699** so that the cache is restored to its original state at the start of
1700** the transaction, for each page restored this routine is called.
1701**
1702** This routine needs to reset the extra data section at the end of the
1703** page to agree with the restored data.
1704*/
danielk1977eaa06f62008-09-18 17:34:44 +00001705static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001706 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001707 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001708 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001709 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001710 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001711 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001712 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001713 /* pPage might not be a btree page; it might be an overflow page
1714 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001715 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001716 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001717 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001718 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001719 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001720 }
drha6abd042004-06-09 17:37:22 +00001721 }
1722}
1723
1724/*
drhe5fe6902007-12-07 18:55:28 +00001725** Invoke the busy handler for a btree.
1726*/
danielk19771ceedd32008-11-19 10:22:33 +00001727static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001728 BtShared *pBt = (BtShared*)pArg;
1729 assert( pBt->db );
1730 assert( sqlite3_mutex_held(pBt->db->mutex) );
1731 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1732}
1733
1734/*
drhad3e0102004-09-03 23:32:18 +00001735** Open a database file.
1736**
drh382c0242001-10-06 16:33:02 +00001737** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001738** then an ephemeral database is created. The ephemeral database might
1739** be exclusively in memory, or it might use a disk-based memory cache.
1740** Either way, the ephemeral database will be automatically deleted
1741** when sqlite3BtreeClose() is called.
1742**
drhe53831d2007-08-17 01:14:38 +00001743** If zFilename is ":memory:" then an in-memory database is created
1744** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001745**
drh33f111d2012-01-17 15:29:14 +00001746** The "flags" parameter is a bitmask that might contain bits like
1747** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001748**
drhc47fd8e2009-04-30 13:30:32 +00001749** If the database is already opened in the same database connection
1750** and we are in shared cache mode, then the open will fail with an
1751** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1752** objects in the same database connection since doing so will lead
1753** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001754*/
drh23e11ca2004-05-04 17:27:28 +00001755int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001756 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001757 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001758 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001759 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001760 int flags, /* Options */
1761 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001762){
drh7555d8e2009-03-20 13:15:30 +00001763 BtShared *pBt = 0; /* Shared part of btree structure */
1764 Btree *p; /* Handle to return */
1765 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1766 int rc = SQLITE_OK; /* Result code from this function */
1767 u8 nReserve; /* Byte of unused space on each page */
1768 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001769
drh75c014c2010-08-30 15:02:28 +00001770 /* True if opening an ephemeral, temporary database */
1771 const int isTempDb = zFilename==0 || zFilename[0]==0;
1772
danielk1977aef0bf62005-12-30 16:28:01 +00001773 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001774 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001775 */
drhb0a7c9c2010-12-06 21:09:59 +00001776#ifdef SQLITE_OMIT_MEMORYDB
1777 const int isMemdb = 0;
1778#else
1779 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001780 || (isTempDb && sqlite3TempInMemory(db))
1781 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001782#endif
1783
drhe5fe6902007-12-07 18:55:28 +00001784 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001785 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001786 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001787 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1788
1789 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1790 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1791
1792 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1793 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001794
drh75c014c2010-08-30 15:02:28 +00001795 if( isMemdb ){
1796 flags |= BTREE_MEMORY;
1797 }
1798 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1799 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1800 }
drh17435752007-08-16 04:30:38 +00001801 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001802 if( !p ){
1803 return SQLITE_NOMEM;
1804 }
1805 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001806 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001807#ifndef SQLITE_OMIT_SHARED_CACHE
1808 p->lock.pBtree = p;
1809 p->lock.iTable = 1;
1810#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001811
drh198bf392006-01-06 21:52:49 +00001812#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001813 /*
1814 ** If this Btree is a candidate for shared cache, try to find an
1815 ** existing BtShared object that we can share with
1816 */
drh4ab9d252012-05-26 20:08:49 +00001817 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001818 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001819 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001820 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001821 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001822 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001823 if( !zFullPathname ){
1824 sqlite3_free(p);
1825 return SQLITE_NOMEM;
1826 }
drhafc8b7f2012-05-26 18:06:38 +00001827 if( isMemdb ){
1828 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1829 }else{
1830 rc = sqlite3OsFullPathname(pVfs, zFilename,
1831 nFullPathname, zFullPathname);
1832 if( rc ){
1833 sqlite3_free(zFullPathname);
1834 sqlite3_free(p);
1835 return rc;
1836 }
drh070ad6b2011-11-17 11:43:19 +00001837 }
drh30ddce62011-10-15 00:16:30 +00001838#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001839 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1840 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001841 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001842 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001843#endif
drh78f82d12008-09-02 00:52:52 +00001844 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001845 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001846 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001847 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001848 int iDb;
1849 for(iDb=db->nDb-1; iDb>=0; iDb--){
1850 Btree *pExisting = db->aDb[iDb].pBt;
1851 if( pExisting && pExisting->pBt==pBt ){
1852 sqlite3_mutex_leave(mutexShared);
1853 sqlite3_mutex_leave(mutexOpen);
1854 sqlite3_free(zFullPathname);
1855 sqlite3_free(p);
1856 return SQLITE_CONSTRAINT;
1857 }
1858 }
drhff0587c2007-08-29 17:43:19 +00001859 p->pBt = pBt;
1860 pBt->nRef++;
1861 break;
1862 }
1863 }
1864 sqlite3_mutex_leave(mutexShared);
1865 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001866 }
drhff0587c2007-08-29 17:43:19 +00001867#ifdef SQLITE_DEBUG
1868 else{
1869 /* In debug mode, we mark all persistent databases as sharable
1870 ** even when they are not. This exercises the locking code and
1871 ** gives more opportunity for asserts(sqlite3_mutex_held())
1872 ** statements to find locking problems.
1873 */
1874 p->sharable = 1;
1875 }
1876#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001877 }
1878#endif
drha059ad02001-04-17 20:09:11 +00001879 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001880 /*
1881 ** The following asserts make sure that structures used by the btree are
1882 ** the right size. This is to guard against size changes that result
1883 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001884 */
drhe53831d2007-08-17 01:14:38 +00001885 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1886 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1887 assert( sizeof(u32)==4 );
1888 assert( sizeof(u16)==2 );
1889 assert( sizeof(Pgno)==4 );
1890
1891 pBt = sqlite3MallocZero( sizeof(*pBt) );
1892 if( pBt==0 ){
1893 rc = SQLITE_NOMEM;
1894 goto btree_open_out;
1895 }
danielk197771d5d2c2008-09-29 11:49:47 +00001896 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001897 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001898 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00001899 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00001900 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1901 }
1902 if( rc!=SQLITE_OK ){
1903 goto btree_open_out;
1904 }
shanehbd2aaf92010-09-01 02:38:21 +00001905 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001906 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001907 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001908 p->pBt = pBt;
1909
drhe53831d2007-08-17 01:14:38 +00001910 pBt->pCursor = 0;
1911 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001912 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001913#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001914 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001915#endif
drhb2eced52010-08-12 02:41:12 +00001916 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001917 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1918 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001919 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001920#ifndef SQLITE_OMIT_AUTOVACUUM
1921 /* If the magic name ":memory:" will create an in-memory database, then
1922 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1923 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1924 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1925 ** regular file-name. In this case the auto-vacuum applies as per normal.
1926 */
1927 if( zFilename && !isMemdb ){
1928 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1929 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1930 }
1931#endif
1932 nReserve = 0;
1933 }else{
1934 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001935 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001936#ifndef SQLITE_OMIT_AUTOVACUUM
1937 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1938 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1939#endif
1940 }
drhfa9601a2009-06-18 17:22:39 +00001941 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001942 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001943 pBt->usableSize = pBt->pageSize - nReserve;
1944 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001945
1946#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1947 /* Add the new BtShared object to the linked list sharable BtShareds.
1948 */
1949 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001950 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001951 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001952 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001953 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001954 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001955 if( pBt->mutex==0 ){
1956 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001957 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001958 goto btree_open_out;
1959 }
drhff0587c2007-08-29 17:43:19 +00001960 }
drhe53831d2007-08-17 01:14:38 +00001961 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001962 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1963 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001964 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001965 }
drheee46cf2004-11-06 00:02:48 +00001966#endif
drh90f5ecb2004-07-22 01:19:35 +00001967 }
danielk1977aef0bf62005-12-30 16:28:01 +00001968
drhcfed7bc2006-03-13 14:28:05 +00001969#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001970 /* If the new Btree uses a sharable pBtShared, then link the new
1971 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001972 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001973 */
drhe53831d2007-08-17 01:14:38 +00001974 if( p->sharable ){
1975 int i;
1976 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001977 for(i=0; i<db->nDb; i++){
1978 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001979 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1980 if( p->pBt<pSib->pBt ){
1981 p->pNext = pSib;
1982 p->pPrev = 0;
1983 pSib->pPrev = p;
1984 }else{
drhabddb0c2007-08-20 13:14:28 +00001985 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001986 pSib = pSib->pNext;
1987 }
1988 p->pNext = pSib->pNext;
1989 p->pPrev = pSib;
1990 if( p->pNext ){
1991 p->pNext->pPrev = p;
1992 }
1993 pSib->pNext = p;
1994 }
1995 break;
1996 }
1997 }
danielk1977aef0bf62005-12-30 16:28:01 +00001998 }
danielk1977aef0bf62005-12-30 16:28:01 +00001999#endif
2000 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002001
2002btree_open_out:
2003 if( rc!=SQLITE_OK ){
2004 if( pBt && pBt->pPager ){
2005 sqlite3PagerClose(pBt->pPager);
2006 }
drh17435752007-08-16 04:30:38 +00002007 sqlite3_free(pBt);
2008 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002009 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002010 }else{
2011 /* If the B-Tree was successfully opened, set the pager-cache size to the
2012 ** default value. Except, when opening on an existing shared pager-cache,
2013 ** do not change the pager-cache size.
2014 */
2015 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2016 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2017 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002018 }
drh7555d8e2009-03-20 13:15:30 +00002019 if( mutexOpen ){
2020 assert( sqlite3_mutex_held(mutexOpen) );
2021 sqlite3_mutex_leave(mutexOpen);
2022 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002023 return rc;
drha059ad02001-04-17 20:09:11 +00002024}
2025
2026/*
drhe53831d2007-08-17 01:14:38 +00002027** Decrement the BtShared.nRef counter. When it reaches zero,
2028** remove the BtShared structure from the sharing list. Return
2029** true if the BtShared.nRef counter reaches zero and return
2030** false if it is still positive.
2031*/
2032static int removeFromSharingList(BtShared *pBt){
2033#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002034 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002035 BtShared *pList;
2036 int removed = 0;
2037
drhd677b3d2007-08-20 22:48:41 +00002038 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002039 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002040 sqlite3_mutex_enter(pMaster);
2041 pBt->nRef--;
2042 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002043 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2044 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002045 }else{
drh78f82d12008-09-02 00:52:52 +00002046 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002047 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002048 pList=pList->pNext;
2049 }
drh34004ce2008-07-11 16:15:17 +00002050 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002051 pList->pNext = pBt->pNext;
2052 }
2053 }
drh3285db22007-09-03 22:00:39 +00002054 if( SQLITE_THREADSAFE ){
2055 sqlite3_mutex_free(pBt->mutex);
2056 }
drhe53831d2007-08-17 01:14:38 +00002057 removed = 1;
2058 }
2059 sqlite3_mutex_leave(pMaster);
2060 return removed;
2061#else
2062 return 1;
2063#endif
2064}
2065
2066/*
drhf7141992008-06-19 00:16:08 +00002067** Make sure pBt->pTmpSpace points to an allocation of
2068** MX_CELL_SIZE(pBt) bytes.
2069*/
2070static void allocateTempSpace(BtShared *pBt){
2071 if( !pBt->pTmpSpace ){
2072 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002073
2074 /* One of the uses of pBt->pTmpSpace is to format cells before
2075 ** inserting them into a leaf page (function fillInCell()). If
2076 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2077 ** by the various routines that manipulate binary cells. Which
2078 ** can mean that fillInCell() only initializes the first 2 or 3
2079 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2080 ** it into a database page. This is not actually a problem, but it
2081 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2082 ** data is passed to system call write(). So to avoid this error,
2083 ** zero the first 4 bytes of temp space here. */
2084 if( pBt->pTmpSpace ) memset(pBt->pTmpSpace, 0, 4);
drhf7141992008-06-19 00:16:08 +00002085 }
2086}
2087
2088/*
2089** Free the pBt->pTmpSpace allocation
2090*/
2091static void freeTempSpace(BtShared *pBt){
2092 sqlite3PageFree( pBt->pTmpSpace);
2093 pBt->pTmpSpace = 0;
2094}
2095
2096/*
drha059ad02001-04-17 20:09:11 +00002097** Close an open database and invalidate all cursors.
2098*/
danielk1977aef0bf62005-12-30 16:28:01 +00002099int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002100 BtShared *pBt = p->pBt;
2101 BtCursor *pCur;
2102
danielk1977aef0bf62005-12-30 16:28:01 +00002103 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002104 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002105 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002106 pCur = pBt->pCursor;
2107 while( pCur ){
2108 BtCursor *pTmp = pCur;
2109 pCur = pCur->pNext;
2110 if( pTmp->pBtree==p ){
2111 sqlite3BtreeCloseCursor(pTmp);
2112 }
drha059ad02001-04-17 20:09:11 +00002113 }
danielk1977aef0bf62005-12-30 16:28:01 +00002114
danielk19778d34dfd2006-01-24 16:37:57 +00002115 /* Rollback any active transaction and free the handle structure.
2116 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2117 ** this handle.
2118 */
drh0f198a72012-02-13 16:43:16 +00002119 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002120 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002121
danielk1977aef0bf62005-12-30 16:28:01 +00002122 /* If there are still other outstanding references to the shared-btree
2123 ** structure, return now. The remainder of this procedure cleans
2124 ** up the shared-btree.
2125 */
drhe53831d2007-08-17 01:14:38 +00002126 assert( p->wantToLock==0 && p->locked==0 );
2127 if( !p->sharable || removeFromSharingList(pBt) ){
2128 /* The pBt is no longer on the sharing list, so we can access
2129 ** it without having to hold the mutex.
2130 **
2131 ** Clean out and delete the BtShared object.
2132 */
2133 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002134 sqlite3PagerClose(pBt->pPager);
2135 if( pBt->xFreeSchema && pBt->pSchema ){
2136 pBt->xFreeSchema(pBt->pSchema);
2137 }
drhb9755982010-07-24 16:34:37 +00002138 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002139 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002140 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002141 }
2142
drhe53831d2007-08-17 01:14:38 +00002143#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002144 assert( p->wantToLock==0 );
2145 assert( p->locked==0 );
2146 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2147 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002148#endif
2149
drhe53831d2007-08-17 01:14:38 +00002150 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002151 return SQLITE_OK;
2152}
2153
2154/*
drhda47d772002-12-02 04:25:19 +00002155** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002156**
2157** The maximum number of cache pages is set to the absolute
2158** value of mxPage. If mxPage is negative, the pager will
2159** operate asynchronously - it will not stop to do fsync()s
2160** to insure data is written to the disk surface before
2161** continuing. Transactions still work if synchronous is off,
2162** and the database cannot be corrupted if this program
2163** crashes. But if the operating system crashes or there is
2164** an abrupt power failure when synchronous is off, the database
2165** could be left in an inconsistent and unrecoverable state.
2166** Synchronous is on by default so database corruption is not
2167** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002168*/
danielk1977aef0bf62005-12-30 16:28:01 +00002169int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2170 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002171 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002172 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002173 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002174 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002175 return SQLITE_OK;
2176}
2177
drh18c7e402014-03-14 11:46:10 +00002178#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002179/*
dan5d8a1372013-03-19 19:28:06 +00002180** Change the limit on the amount of the database file that may be
2181** memory mapped.
2182*/
drh9b4c59f2013-04-15 17:03:42 +00002183int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002184 BtShared *pBt = p->pBt;
2185 assert( sqlite3_mutex_held(p->db->mutex) );
2186 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002187 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002188 sqlite3BtreeLeave(p);
2189 return SQLITE_OK;
2190}
drh18c7e402014-03-14 11:46:10 +00002191#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002192
2193/*
drh973b6e32003-02-12 14:09:42 +00002194** Change the way data is synced to disk in order to increase or decrease
2195** how well the database resists damage due to OS crashes and power
2196** failures. Level 1 is the same as asynchronous (no syncs() occur and
2197** there is a high probability of damage) Level 2 is the default. There
2198** is a very low but non-zero probability of damage. Level 3 reduces the
2199** probability of damage to near zero but with a write performance reduction.
2200*/
danielk197793758c82005-01-21 08:13:14 +00002201#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002202int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002203 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002204 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002205){
danielk1977aef0bf62005-12-30 16:28:01 +00002206 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002207 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002208 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002209 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002210 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002211 return SQLITE_OK;
2212}
danielk197793758c82005-01-21 08:13:14 +00002213#endif
drh973b6e32003-02-12 14:09:42 +00002214
drh2c8997b2005-08-27 16:36:48 +00002215/*
2216** Return TRUE if the given btree is set to safety level 1. In other
2217** words, return TRUE if no sync() occurs on the disk files.
2218*/
danielk1977aef0bf62005-12-30 16:28:01 +00002219int sqlite3BtreeSyncDisabled(Btree *p){
2220 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002221 int rc;
drhe5fe6902007-12-07 18:55:28 +00002222 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002223 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002224 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002225 rc = sqlite3PagerNosync(pBt->pPager);
2226 sqlite3BtreeLeave(p);
2227 return rc;
drh2c8997b2005-08-27 16:36:48 +00002228}
2229
drh973b6e32003-02-12 14:09:42 +00002230/*
drh90f5ecb2004-07-22 01:19:35 +00002231** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002232** Or, if the page size has already been fixed, return SQLITE_READONLY
2233** without changing anything.
drh06f50212004-11-02 14:24:33 +00002234**
2235** The page size must be a power of 2 between 512 and 65536. If the page
2236** size supplied does not meet this constraint then the page size is not
2237** changed.
2238**
2239** Page sizes are constrained to be a power of two so that the region
2240** of the database file used for locking (beginning at PENDING_BYTE,
2241** the first byte past the 1GB boundary, 0x40000000) needs to occur
2242** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002243**
2244** If parameter nReserve is less than zero, then the number of reserved
2245** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002246**
drhc9166342012-01-05 23:32:06 +00002247** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002248** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002249*/
drhce4869f2009-04-02 20:16:58 +00002250int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002251 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002252 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002253 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002254 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002255 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002256 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002257 return SQLITE_READONLY;
2258 }
2259 if( nReserve<0 ){
2260 nReserve = pBt->pageSize - pBt->usableSize;
2261 }
drhf49661a2008-12-10 16:45:50 +00002262 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002263 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2264 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002265 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002266 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002267 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002268 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002269 }
drhfa9601a2009-06-18 17:22:39 +00002270 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002271 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002272 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002273 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002274 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002275}
2276
2277/*
2278** Return the currently defined page size
2279*/
danielk1977aef0bf62005-12-30 16:28:01 +00002280int sqlite3BtreeGetPageSize(Btree *p){
2281 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002282}
drh7f751222009-03-17 22:33:00 +00002283
drha1f38532012-10-01 12:44:26 +00002284#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002285/*
2286** This function is similar to sqlite3BtreeGetReserve(), except that it
2287** may only be called if it is guaranteed that the b-tree mutex is already
2288** held.
2289**
2290** This is useful in one special case in the backup API code where it is
2291** known that the shared b-tree mutex is held, but the mutex on the
2292** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2293** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002294** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002295*/
2296int sqlite3BtreeGetReserveNoMutex(Btree *p){
2297 assert( sqlite3_mutex_held(p->pBt->mutex) );
2298 return p->pBt->pageSize - p->pBt->usableSize;
2299}
drha1f38532012-10-01 12:44:26 +00002300#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002301
danbb2b4412011-04-06 17:54:31 +00002302#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002303/*
2304** Return the number of bytes of space at the end of every page that
2305** are intentually left unused. This is the "reserved" space that is
2306** sometimes used by extensions.
2307*/
danielk1977aef0bf62005-12-30 16:28:01 +00002308int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002309 int n;
2310 sqlite3BtreeEnter(p);
2311 n = p->pBt->pageSize - p->pBt->usableSize;
2312 sqlite3BtreeLeave(p);
2313 return n;
drh2011d5f2004-07-22 02:40:37 +00002314}
drhf8e632b2007-05-08 14:51:36 +00002315
2316/*
2317** Set the maximum page count for a database if mxPage is positive.
2318** No changes are made if mxPage is 0 or negative.
2319** Regardless of the value of mxPage, return the maximum page count.
2320*/
2321int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002322 int n;
2323 sqlite3BtreeEnter(p);
2324 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2325 sqlite3BtreeLeave(p);
2326 return n;
drhf8e632b2007-05-08 14:51:36 +00002327}
drh5b47efa2010-02-12 18:18:39 +00002328
2329/*
drhc9166342012-01-05 23:32:06 +00002330** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2331** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002332** setting after the change.
2333*/
2334int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2335 int b;
drhaf034ed2010-02-12 19:46:26 +00002336 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002337 sqlite3BtreeEnter(p);
2338 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002339 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2340 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002341 }
drhc9166342012-01-05 23:32:06 +00002342 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002343 sqlite3BtreeLeave(p);
2344 return b;
2345}
danielk1977576ec6b2005-01-21 11:55:25 +00002346#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002347
2348/*
danielk1977951af802004-11-05 15:45:09 +00002349** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2350** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2351** is disabled. The default value for the auto-vacuum property is
2352** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2353*/
danielk1977aef0bf62005-12-30 16:28:01 +00002354int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002355#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002356 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002357#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002358 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002359 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002360 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002361
2362 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002363 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002364 rc = SQLITE_READONLY;
2365 }else{
drh076d4662009-02-18 20:31:18 +00002366 pBt->autoVacuum = av ?1:0;
2367 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002368 }
drhd677b3d2007-08-20 22:48:41 +00002369 sqlite3BtreeLeave(p);
2370 return rc;
danielk1977951af802004-11-05 15:45:09 +00002371#endif
2372}
2373
2374/*
2375** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2376** enabled 1 is returned. Otherwise 0.
2377*/
danielk1977aef0bf62005-12-30 16:28:01 +00002378int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002379#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002380 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002381#else
drhd677b3d2007-08-20 22:48:41 +00002382 int rc;
2383 sqlite3BtreeEnter(p);
2384 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002385 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2386 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2387 BTREE_AUTOVACUUM_INCR
2388 );
drhd677b3d2007-08-20 22:48:41 +00002389 sqlite3BtreeLeave(p);
2390 return rc;
danielk1977951af802004-11-05 15:45:09 +00002391#endif
2392}
2393
2394
2395/*
drha34b6762004-05-07 13:30:42 +00002396** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002397** also acquire a readlock on that file.
2398**
2399** SQLITE_OK is returned on success. If the file is not a
2400** well-formed database file, then SQLITE_CORRUPT is returned.
2401** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002402** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002403*/
danielk1977aef0bf62005-12-30 16:28:01 +00002404static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002405 int rc; /* Result code from subfunctions */
2406 MemPage *pPage1; /* Page 1 of the database file */
2407 int nPage; /* Number of pages in the database */
2408 int nPageFile = 0; /* Number of pages in the database file */
2409 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002410
drh1fee73e2007-08-29 04:00:57 +00002411 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002412 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002413 rc = sqlite3PagerSharedLock(pBt->pPager);
2414 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002415 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002416 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002417
2418 /* Do some checking to help insure the file we opened really is
2419 ** a valid database file.
2420 */
drhc2a4bab2010-04-02 12:46:45 +00002421 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002422 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002423 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002424 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002425 }
2426 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002427 u32 pageSize;
2428 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002429 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002430 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002431 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002432 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002433 }
dan5cf53532010-05-01 16:40:20 +00002434
2435#ifdef SQLITE_OMIT_WAL
2436 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002437 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002438 }
2439 if( page1[19]>1 ){
2440 goto page1_init_failed;
2441 }
2442#else
dane04dc882010-04-20 18:53:15 +00002443 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002444 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002445 }
dane04dc882010-04-20 18:53:15 +00002446 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002447 goto page1_init_failed;
2448 }
drhe5ae5732008-06-15 02:51:47 +00002449
dana470aeb2010-04-21 11:43:38 +00002450 /* If the write version is set to 2, this database should be accessed
2451 ** in WAL mode. If the log is not already open, open it now. Then
2452 ** return SQLITE_OK and return without populating BtShared.pPage1.
2453 ** The caller detects this and calls this function again. This is
2454 ** required as the version of page 1 currently in the page1 buffer
2455 ** may not be the latest version - there may be a newer one in the log
2456 ** file.
2457 */
drhc9166342012-01-05 23:32:06 +00002458 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002459 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002460 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002461 if( rc!=SQLITE_OK ){
2462 goto page1_init_failed;
2463 }else if( isOpen==0 ){
2464 releasePage(pPage1);
2465 return SQLITE_OK;
2466 }
dan8b5444b2010-04-27 14:37:47 +00002467 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002468 }
dan5cf53532010-05-01 16:40:20 +00002469#endif
dane04dc882010-04-20 18:53:15 +00002470
drhe5ae5732008-06-15 02:51:47 +00002471 /* The maximum embedded fraction must be exactly 25%. And the minimum
2472 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2473 ** The original design allowed these amounts to vary, but as of
2474 ** version 3.6.0, we require them to be fixed.
2475 */
2476 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2477 goto page1_init_failed;
2478 }
drhb2eced52010-08-12 02:41:12 +00002479 pageSize = (page1[16]<<8) | (page1[17]<<16);
2480 if( ((pageSize-1)&pageSize)!=0
2481 || pageSize>SQLITE_MAX_PAGE_SIZE
2482 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002483 ){
drh07d183d2005-05-01 22:52:42 +00002484 goto page1_init_failed;
2485 }
2486 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002487 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002488 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002489 /* After reading the first page of the database assuming a page size
2490 ** of BtShared.pageSize, we have discovered that the page-size is
2491 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2492 ** zero and return SQLITE_OK. The caller will call this function
2493 ** again with the correct page-size.
2494 */
2495 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002496 pBt->usableSize = usableSize;
2497 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002498 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002499 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2500 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002501 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002502 }
danecac6702011-02-09 18:19:20 +00002503 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002504 rc = SQLITE_CORRUPT_BKPT;
2505 goto page1_init_failed;
2506 }
drhb33e1b92009-06-18 11:29:20 +00002507 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002508 goto page1_init_failed;
2509 }
drh43b18e12010-08-17 19:40:08 +00002510 pBt->pageSize = pageSize;
2511 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002512#ifndef SQLITE_OMIT_AUTOVACUUM
2513 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002514 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002515#endif
drh306dc212001-05-21 13:45:10 +00002516 }
drhb6f41482004-05-14 01:58:11 +00002517
2518 /* maxLocal is the maximum amount of payload to store locally for
2519 ** a cell. Make sure it is small enough so that at least minFanout
2520 ** cells can will fit on one page. We assume a 10-byte page header.
2521 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002522 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002523 ** 4-byte child pointer
2524 ** 9-byte nKey value
2525 ** 4-byte nData value
2526 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002527 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002528 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2529 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002530 */
shaneh1df2db72010-08-18 02:28:48 +00002531 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2532 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2533 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2534 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002535 if( pBt->maxLocal>127 ){
2536 pBt->max1bytePayload = 127;
2537 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002538 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002539 }
drh2e38c322004-09-03 18:38:44 +00002540 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002541 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002542 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002543 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002544
drh72f82862001-05-24 21:06:34 +00002545page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002546 releasePage(pPage1);
2547 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002548 return rc;
drh306dc212001-05-21 13:45:10 +00002549}
2550
drh85ec3b62013-05-14 23:12:06 +00002551#ifndef NDEBUG
2552/*
2553** Return the number of cursors open on pBt. This is for use
2554** in assert() expressions, so it is only compiled if NDEBUG is not
2555** defined.
2556**
2557** Only write cursors are counted if wrOnly is true. If wrOnly is
2558** false then all cursors are counted.
2559**
2560** For the purposes of this routine, a cursor is any cursor that
2561** is capable of reading or writing to the databse. Cursors that
2562** have been tripped into the CURSOR_FAULT state are not counted.
2563*/
2564static int countValidCursors(BtShared *pBt, int wrOnly){
2565 BtCursor *pCur;
2566 int r = 0;
2567 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002568 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2569 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002570 }
2571 return r;
2572}
2573#endif
2574
drh306dc212001-05-21 13:45:10 +00002575/*
drhb8ca3072001-12-05 00:21:20 +00002576** If there are no outstanding cursors and we are not in the middle
2577** of a transaction but there is a read lock on the database, then
2578** this routine unrefs the first page of the database file which
2579** has the effect of releasing the read lock.
2580**
drhb8ca3072001-12-05 00:21:20 +00002581** If there is a transaction in progress, this routine is a no-op.
2582*/
danielk1977aef0bf62005-12-30 16:28:01 +00002583static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002584 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002585 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002586 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002587 assert( pBt->pPage1->aData );
2588 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2589 assert( pBt->pPage1->aData );
2590 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002591 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002592 }
2593}
2594
2595/*
drhe39f2f92009-07-23 01:43:59 +00002596** If pBt points to an empty file then convert that empty file
2597** into a new empty database by initializing the first page of
2598** the database.
drh8b2f49b2001-06-08 00:21:52 +00002599*/
danielk1977aef0bf62005-12-30 16:28:01 +00002600static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002601 MemPage *pP1;
2602 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002603 int rc;
drhd677b3d2007-08-20 22:48:41 +00002604
drh1fee73e2007-08-29 04:00:57 +00002605 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002606 if( pBt->nPage>0 ){
2607 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002608 }
drh3aac2dd2004-04-26 14:10:20 +00002609 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002610 assert( pP1!=0 );
2611 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002612 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002613 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002614 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2615 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002616 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2617 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002618 data[18] = 1;
2619 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002620 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2621 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002622 data[21] = 64;
2623 data[22] = 32;
2624 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002625 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002626 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002627 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002628#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002629 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002630 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002631 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002632 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002633#endif
drhdd3cd972010-03-27 17:12:36 +00002634 pBt->nPage = 1;
2635 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002636 return SQLITE_OK;
2637}
2638
2639/*
danb483eba2012-10-13 19:58:11 +00002640** Initialize the first page of the database file (creating a database
2641** consisting of a single page and no schema objects). Return SQLITE_OK
2642** if successful, or an SQLite error code otherwise.
2643*/
2644int sqlite3BtreeNewDb(Btree *p){
2645 int rc;
2646 sqlite3BtreeEnter(p);
2647 p->pBt->nPage = 0;
2648 rc = newDatabase(p->pBt);
2649 sqlite3BtreeLeave(p);
2650 return rc;
2651}
2652
2653/*
danielk1977ee5741e2004-05-31 10:01:34 +00002654** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002655** is started if the second argument is nonzero, otherwise a read-
2656** transaction. If the second argument is 2 or more and exclusive
2657** transaction is started, meaning that no other process is allowed
2658** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002659** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002660** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002661**
danielk1977ee5741e2004-05-31 10:01:34 +00002662** A write-transaction must be started before attempting any
2663** changes to the database. None of the following routines
2664** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002665**
drh23e11ca2004-05-04 17:27:28 +00002666** sqlite3BtreeCreateTable()
2667** sqlite3BtreeCreateIndex()
2668** sqlite3BtreeClearTable()
2669** sqlite3BtreeDropTable()
2670** sqlite3BtreeInsert()
2671** sqlite3BtreeDelete()
2672** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002673**
drhb8ef32c2005-03-14 02:01:49 +00002674** If an initial attempt to acquire the lock fails because of lock contention
2675** and the database was previously unlocked, then invoke the busy handler
2676** if there is one. But if there was previously a read-lock, do not
2677** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2678** returned when there is already a read-lock in order to avoid a deadlock.
2679**
2680** Suppose there are two processes A and B. A has a read lock and B has
2681** a reserved lock. B tries to promote to exclusive but is blocked because
2682** of A's read lock. A tries to promote to reserved but is blocked by B.
2683** One or the other of the two processes must give way or there can be
2684** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2685** when A already has a read lock, we encourage A to give up and let B
2686** proceed.
drha059ad02001-04-17 20:09:11 +00002687*/
danielk1977aef0bf62005-12-30 16:28:01 +00002688int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002689 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002690 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002691 int rc = SQLITE_OK;
2692
drhd677b3d2007-08-20 22:48:41 +00002693 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002694 btreeIntegrity(p);
2695
danielk1977ee5741e2004-05-31 10:01:34 +00002696 /* If the btree is already in a write-transaction, or it
2697 ** is already in a read-transaction and a read-transaction
2698 ** is requested, this is a no-op.
2699 */
danielk1977aef0bf62005-12-30 16:28:01 +00002700 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002701 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002702 }
dan56c517a2013-09-26 11:04:33 +00002703 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002704
2705 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002706 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002707 rc = SQLITE_READONLY;
2708 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002709 }
2710
danielk1977404ca072009-03-16 13:19:36 +00002711#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002712 /* If another database handle has already opened a write transaction
2713 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002714 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002715 */
drhc9166342012-01-05 23:32:06 +00002716 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2717 || (pBt->btsFlags & BTS_PENDING)!=0
2718 ){
danielk1977404ca072009-03-16 13:19:36 +00002719 pBlock = pBt->pWriter->db;
2720 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002721 BtLock *pIter;
2722 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2723 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002724 pBlock = pIter->pBtree->db;
2725 break;
danielk1977641b0f42007-12-21 04:47:25 +00002726 }
2727 }
2728 }
danielk1977404ca072009-03-16 13:19:36 +00002729 if( pBlock ){
2730 sqlite3ConnectionBlocked(p->db, pBlock);
2731 rc = SQLITE_LOCKED_SHAREDCACHE;
2732 goto trans_begun;
2733 }
danielk1977641b0f42007-12-21 04:47:25 +00002734#endif
2735
danielk1977602b4662009-07-02 07:47:33 +00002736 /* Any read-only or read-write transaction implies a read-lock on
2737 ** page 1. So if some other shared-cache client already has a write-lock
2738 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002739 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2740 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002741
drhc9166342012-01-05 23:32:06 +00002742 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2743 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002744 do {
danielk1977295dc102009-04-01 19:07:03 +00002745 /* Call lockBtree() until either pBt->pPage1 is populated or
2746 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2747 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2748 ** reading page 1 it discovers that the page-size of the database
2749 ** file is not pBt->pageSize. In this case lockBtree() will update
2750 ** pBt->pageSize to the page-size of the file on disk.
2751 */
2752 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002753
drhb8ef32c2005-03-14 02:01:49 +00002754 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002755 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002756 rc = SQLITE_READONLY;
2757 }else{
danielk1977d8293352009-04-30 09:10:37 +00002758 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002759 if( rc==SQLITE_OK ){
2760 rc = newDatabase(pBt);
2761 }
drhb8ef32c2005-03-14 02:01:49 +00002762 }
2763 }
2764
danielk1977bd434552009-03-18 10:33:00 +00002765 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002766 unlockBtreeIfUnused(pBt);
2767 }
danf9b76712010-06-01 14:12:45 +00002768 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002769 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002770
2771 if( rc==SQLITE_OK ){
2772 if( p->inTrans==TRANS_NONE ){
2773 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002774#ifndef SQLITE_OMIT_SHARED_CACHE
2775 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002776 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002777 p->lock.eLock = READ_LOCK;
2778 p->lock.pNext = pBt->pLock;
2779 pBt->pLock = &p->lock;
2780 }
2781#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002782 }
2783 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2784 if( p->inTrans>pBt->inTransaction ){
2785 pBt->inTransaction = p->inTrans;
2786 }
danielk1977404ca072009-03-16 13:19:36 +00002787 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002788 MemPage *pPage1 = pBt->pPage1;
2789#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002790 assert( !pBt->pWriter );
2791 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002792 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2793 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002794#endif
dan59257dc2010-08-04 11:34:31 +00002795
2796 /* If the db-size header field is incorrect (as it may be if an old
2797 ** client has been writing the database file), update it now. Doing
2798 ** this sooner rather than later means the database size can safely
2799 ** re-read the database size from page 1 if a savepoint or transaction
2800 ** rollback occurs within the transaction.
2801 */
2802 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2803 rc = sqlite3PagerWrite(pPage1->pDbPage);
2804 if( rc==SQLITE_OK ){
2805 put4byte(&pPage1->aData[28], pBt->nPage);
2806 }
2807 }
2808 }
danielk1977aef0bf62005-12-30 16:28:01 +00002809 }
2810
drhd677b3d2007-08-20 22:48:41 +00002811
2812trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002813 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002814 /* This call makes sure that the pager has the correct number of
2815 ** open savepoints. If the second parameter is greater than 0 and
2816 ** the sub-journal is not already open, then it will be opened here.
2817 */
danielk1977fd7f0452008-12-17 17:30:26 +00002818 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2819 }
danielk197712dd5492008-12-18 15:45:07 +00002820
danielk1977aef0bf62005-12-30 16:28:01 +00002821 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002822 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002823 return rc;
drha059ad02001-04-17 20:09:11 +00002824}
2825
danielk1977687566d2004-11-02 12:56:41 +00002826#ifndef SQLITE_OMIT_AUTOVACUUM
2827
2828/*
2829** Set the pointer-map entries for all children of page pPage. Also, if
2830** pPage contains cells that point to overflow pages, set the pointer
2831** map entries for the overflow pages as well.
2832*/
2833static int setChildPtrmaps(MemPage *pPage){
2834 int i; /* Counter variable */
2835 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002836 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002837 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002838 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002839 Pgno pgno = pPage->pgno;
2840
drh1fee73e2007-08-29 04:00:57 +00002841 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002842 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002843 if( rc!=SQLITE_OK ){
2844 goto set_child_ptrmaps_out;
2845 }
danielk1977687566d2004-11-02 12:56:41 +00002846 nCell = pPage->nCell;
2847
2848 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002849 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002850
drh98add2e2009-07-20 17:11:49 +00002851 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002852
danielk1977687566d2004-11-02 12:56:41 +00002853 if( !pPage->leaf ){
2854 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002855 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002856 }
2857 }
2858
2859 if( !pPage->leaf ){
2860 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002861 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002862 }
2863
2864set_child_ptrmaps_out:
2865 pPage->isInit = isInitOrig;
2866 return rc;
2867}
2868
2869/*
drhf3aed592009-07-08 18:12:49 +00002870** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2871** that it points to iTo. Parameter eType describes the type of pointer to
2872** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002873**
2874** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2875** page of pPage.
2876**
2877** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2878** page pointed to by one of the cells on pPage.
2879**
2880** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2881** overflow page in the list.
2882*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002883static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002884 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002885 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002886 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002887 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002888 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002889 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002890 }
danielk1977f78fc082004-11-02 14:40:32 +00002891 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002892 }else{
drhf49661a2008-12-10 16:45:50 +00002893 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002894 int i;
2895 int nCell;
2896
danielk197730548662009-07-09 05:07:37 +00002897 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002898 nCell = pPage->nCell;
2899
danielk1977687566d2004-11-02 12:56:41 +00002900 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002901 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002902 if( eType==PTRMAP_OVERFLOW1 ){
2903 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002904 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002905 if( info.iOverflow
2906 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2907 && iFrom==get4byte(&pCell[info.iOverflow])
2908 ){
2909 put4byte(&pCell[info.iOverflow], iTo);
2910 break;
danielk1977687566d2004-11-02 12:56:41 +00002911 }
2912 }else{
2913 if( get4byte(pCell)==iFrom ){
2914 put4byte(pCell, iTo);
2915 break;
2916 }
2917 }
2918 }
2919
2920 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002921 if( eType!=PTRMAP_BTREE ||
2922 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002923 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002924 }
danielk1977687566d2004-11-02 12:56:41 +00002925 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2926 }
2927
2928 pPage->isInit = isInitOrig;
2929 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002930 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002931}
2932
danielk1977003ba062004-11-04 02:57:33 +00002933
danielk19777701e812005-01-10 12:59:51 +00002934/*
2935** Move the open database page pDbPage to location iFreePage in the
2936** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002937**
2938** The isCommit flag indicates that there is no need to remember that
2939** the journal needs to be sync()ed before database page pDbPage->pgno
2940** can be written to. The caller has already promised not to write to that
2941** page.
danielk19777701e812005-01-10 12:59:51 +00002942*/
danielk1977003ba062004-11-04 02:57:33 +00002943static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002944 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002945 MemPage *pDbPage, /* Open page to move */
2946 u8 eType, /* Pointer map 'type' entry for pDbPage */
2947 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002948 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002949 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002950){
2951 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2952 Pgno iDbPage = pDbPage->pgno;
2953 Pager *pPager = pBt->pPager;
2954 int rc;
2955
danielk1977a0bf2652004-11-04 14:30:04 +00002956 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2957 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002958 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002959 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002960
drh85b623f2007-12-13 21:54:09 +00002961 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002962 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2963 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002964 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002965 if( rc!=SQLITE_OK ){
2966 return rc;
2967 }
2968 pDbPage->pgno = iFreePage;
2969
2970 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2971 ** that point to overflow pages. The pointer map entries for all these
2972 ** pages need to be changed.
2973 **
2974 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2975 ** pointer to a subsequent overflow page. If this is the case, then
2976 ** the pointer map needs to be updated for the subsequent overflow page.
2977 */
danielk1977a0bf2652004-11-04 14:30:04 +00002978 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002979 rc = setChildPtrmaps(pDbPage);
2980 if( rc!=SQLITE_OK ){
2981 return rc;
2982 }
2983 }else{
2984 Pgno nextOvfl = get4byte(pDbPage->aData);
2985 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002986 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002987 if( rc!=SQLITE_OK ){
2988 return rc;
2989 }
2990 }
2991 }
2992
2993 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2994 ** that it points at iFreePage. Also fix the pointer map entry for
2995 ** iPtrPage.
2996 */
danielk1977a0bf2652004-11-04 14:30:04 +00002997 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00002998 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002999 if( rc!=SQLITE_OK ){
3000 return rc;
3001 }
danielk19773b8a05f2007-03-19 17:44:26 +00003002 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003003 if( rc!=SQLITE_OK ){
3004 releasePage(pPtrPage);
3005 return rc;
3006 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003007 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003008 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003009 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003010 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003011 }
danielk1977003ba062004-11-04 02:57:33 +00003012 }
danielk1977003ba062004-11-04 02:57:33 +00003013 return rc;
3014}
3015
danielk1977dddbcdc2007-04-26 14:42:34 +00003016/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003017static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003018
3019/*
dan51f0b6d2013-02-22 20:16:34 +00003020** Perform a single step of an incremental-vacuum. If successful, return
3021** SQLITE_OK. If there is no work to do (and therefore no point in
3022** calling this function again), return SQLITE_DONE. Or, if an error
3023** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003024**
dan51f0b6d2013-02-22 20:16:34 +00003025** More specificly, this function attempts to re-organize the database so
3026** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003027**
dan51f0b6d2013-02-22 20:16:34 +00003028** Parameter nFin is the number of pages that this database would contain
3029** were this function called until it returns SQLITE_DONE.
3030**
3031** If the bCommit parameter is non-zero, this function assumes that the
3032** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3033** or an error. bCommit is passed true for an auto-vacuum-on-commmit
3034** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003035*/
dan51f0b6d2013-02-22 20:16:34 +00003036static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003037 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003038 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003039
drh1fee73e2007-08-29 04:00:57 +00003040 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003041 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003042
3043 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003044 u8 eType;
3045 Pgno iPtrPage;
3046
3047 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003048 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003049 return SQLITE_DONE;
3050 }
3051
3052 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3053 if( rc!=SQLITE_OK ){
3054 return rc;
3055 }
3056 if( eType==PTRMAP_ROOTPAGE ){
3057 return SQLITE_CORRUPT_BKPT;
3058 }
3059
3060 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003061 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003062 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003063 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003064 ** truncated to zero after this function returns, so it doesn't
3065 ** matter if it still contains some garbage entries.
3066 */
3067 Pgno iFreePg;
3068 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003069 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003070 if( rc!=SQLITE_OK ){
3071 return rc;
3072 }
3073 assert( iFreePg==iLastPg );
3074 releasePage(pFreePg);
3075 }
3076 } else {
3077 Pgno iFreePg; /* Index of free page to move pLastPg to */
3078 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003079 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3080 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003081
drhb00fc3b2013-08-21 23:42:32 +00003082 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003083 if( rc!=SQLITE_OK ){
3084 return rc;
3085 }
3086
dan51f0b6d2013-02-22 20:16:34 +00003087 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003088 ** is swapped with the first free page pulled off the free list.
3089 **
dan51f0b6d2013-02-22 20:16:34 +00003090 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003091 ** looping until a free-page located within the first nFin pages
3092 ** of the file is found.
3093 */
dan51f0b6d2013-02-22 20:16:34 +00003094 if( bCommit==0 ){
3095 eMode = BTALLOC_LE;
3096 iNear = nFin;
3097 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003098 do {
3099 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003100 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003101 if( rc!=SQLITE_OK ){
3102 releasePage(pLastPg);
3103 return rc;
3104 }
3105 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003106 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003107 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003108
dane1df4e32013-03-05 11:27:04 +00003109 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003110 releasePage(pLastPg);
3111 if( rc!=SQLITE_OK ){
3112 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003113 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003114 }
3115 }
3116
dan51f0b6d2013-02-22 20:16:34 +00003117 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003118 do {
danielk19773460d192008-12-27 15:23:13 +00003119 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003120 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3121 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003122 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003123 }
3124 return SQLITE_OK;
3125}
3126
3127/*
dan51f0b6d2013-02-22 20:16:34 +00003128** The database opened by the first argument is an auto-vacuum database
3129** nOrig pages in size containing nFree free pages. Return the expected
3130** size of the database in pages following an auto-vacuum operation.
3131*/
3132static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3133 int nEntry; /* Number of entries on one ptrmap page */
3134 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3135 Pgno nFin; /* Return value */
3136
3137 nEntry = pBt->usableSize/5;
3138 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3139 nFin = nOrig - nFree - nPtrmap;
3140 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3141 nFin--;
3142 }
3143 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3144 nFin--;
3145 }
dan51f0b6d2013-02-22 20:16:34 +00003146
3147 return nFin;
3148}
3149
3150/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003151** A write-transaction must be opened before calling this function.
3152** It performs a single unit of work towards an incremental vacuum.
3153**
3154** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003155** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003156** SQLITE_OK is returned. Otherwise an SQLite error code.
3157*/
3158int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003159 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003160 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003161
3162 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003163 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3164 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003165 rc = SQLITE_DONE;
3166 }else{
dan51f0b6d2013-02-22 20:16:34 +00003167 Pgno nOrig = btreePagecount(pBt);
3168 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3169 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3170
dan91384712013-02-24 11:50:43 +00003171 if( nOrig<nFin ){
3172 rc = SQLITE_CORRUPT_BKPT;
3173 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003174 rc = saveAllCursors(pBt, 0, 0);
3175 if( rc==SQLITE_OK ){
3176 invalidateAllOverflowCache(pBt);
3177 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3178 }
dan51f0b6d2013-02-22 20:16:34 +00003179 if( rc==SQLITE_OK ){
3180 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3181 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3182 }
3183 }else{
3184 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003185 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003186 }
drhd677b3d2007-08-20 22:48:41 +00003187 sqlite3BtreeLeave(p);
3188 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003189}
3190
3191/*
danielk19773b8a05f2007-03-19 17:44:26 +00003192** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003193** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003194**
3195** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3196** the database file should be truncated to during the commit process.
3197** i.e. the database has been reorganized so that only the first *pnTrunc
3198** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003199*/
danielk19773460d192008-12-27 15:23:13 +00003200static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003201 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003202 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003203 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003204
drh1fee73e2007-08-29 04:00:57 +00003205 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003206 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003207 assert(pBt->autoVacuum);
3208 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003209 Pgno nFin; /* Number of pages in database after autovacuuming */
3210 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003211 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003212 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003213
drhb1299152010-03-30 22:58:33 +00003214 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003215 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3216 /* It is not possible to create a database for which the final page
3217 ** is either a pointer-map page or the pending-byte page. If one
3218 ** is encountered, this indicates corruption.
3219 */
danielk19773460d192008-12-27 15:23:13 +00003220 return SQLITE_CORRUPT_BKPT;
3221 }
danielk1977ef165ce2009-04-06 17:50:03 +00003222
danielk19773460d192008-12-27 15:23:13 +00003223 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003224 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003225 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003226 if( nFin<nOrig ){
3227 rc = saveAllCursors(pBt, 0, 0);
3228 }
danielk19773460d192008-12-27 15:23:13 +00003229 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003230 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003231 }
danielk19773460d192008-12-27 15:23:13 +00003232 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003233 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3234 put4byte(&pBt->pPage1->aData[32], 0);
3235 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003236 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003237 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003238 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003239 }
3240 if( rc!=SQLITE_OK ){
3241 sqlite3PagerRollback(pPager);
3242 }
danielk1977687566d2004-11-02 12:56:41 +00003243 }
3244
dan0aed84d2013-03-26 14:16:20 +00003245 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003246 return rc;
3247}
danielk1977dddbcdc2007-04-26 14:42:34 +00003248
danielk1977a50d9aa2009-06-08 14:49:45 +00003249#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3250# define setChildPtrmaps(x) SQLITE_OK
3251#endif
danielk1977687566d2004-11-02 12:56:41 +00003252
3253/*
drh80e35f42007-03-30 14:06:34 +00003254** This routine does the first phase of a two-phase commit. This routine
3255** causes a rollback journal to be created (if it does not already exist)
3256** and populated with enough information so that if a power loss occurs
3257** the database can be restored to its original state by playing back
3258** the journal. Then the contents of the journal are flushed out to
3259** the disk. After the journal is safely on oxide, the changes to the
3260** database are written into the database file and flushed to oxide.
3261** At the end of this call, the rollback journal still exists on the
3262** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003263** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003264** commit process.
3265**
3266** This call is a no-op if no write-transaction is currently active on pBt.
3267**
3268** Otherwise, sync the database file for the btree pBt. zMaster points to
3269** the name of a master journal file that should be written into the
3270** individual journal file, or is NULL, indicating no master journal file
3271** (single database transaction).
3272**
3273** When this is called, the master journal should already have been
3274** created, populated with this journal pointer and synced to disk.
3275**
3276** Once this is routine has returned, the only thing required to commit
3277** the write-transaction for this database file is to delete the journal.
3278*/
3279int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3280 int rc = SQLITE_OK;
3281 if( p->inTrans==TRANS_WRITE ){
3282 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003283 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003284#ifndef SQLITE_OMIT_AUTOVACUUM
3285 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003286 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003287 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003288 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003289 return rc;
3290 }
3291 }
danbc1a3c62013-02-23 16:40:46 +00003292 if( pBt->bDoTruncate ){
3293 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3294 }
drh80e35f42007-03-30 14:06:34 +00003295#endif
drh49b9d332009-01-02 18:10:42 +00003296 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003297 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003298 }
3299 return rc;
3300}
3301
3302/*
danielk197794b30732009-07-02 17:21:57 +00003303** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3304** at the conclusion of a transaction.
3305*/
3306static void btreeEndTransaction(Btree *p){
3307 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003308 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003309 assert( sqlite3BtreeHoldsMutex(p) );
3310
danbc1a3c62013-02-23 16:40:46 +00003311#ifndef SQLITE_OMIT_AUTOVACUUM
3312 pBt->bDoTruncate = 0;
3313#endif
danc0537fe2013-06-28 19:41:43 +00003314 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003315 /* If there are other active statements that belong to this database
3316 ** handle, downgrade to a read-only transaction. The other statements
3317 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003318 downgradeAllSharedCacheTableLocks(p);
3319 p->inTrans = TRANS_READ;
3320 }else{
3321 /* If the handle had any kind of transaction open, decrement the
3322 ** transaction count of the shared btree. If the transaction count
3323 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3324 ** call below will unlock the pager. */
3325 if( p->inTrans!=TRANS_NONE ){
3326 clearAllSharedCacheTableLocks(p);
3327 pBt->nTransaction--;
3328 if( 0==pBt->nTransaction ){
3329 pBt->inTransaction = TRANS_NONE;
3330 }
3331 }
3332
3333 /* Set the current transaction state to TRANS_NONE and unlock the
3334 ** pager if this call closed the only read or write transaction. */
3335 p->inTrans = TRANS_NONE;
3336 unlockBtreeIfUnused(pBt);
3337 }
3338
3339 btreeIntegrity(p);
3340}
3341
3342/*
drh2aa679f2001-06-25 02:11:07 +00003343** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003344**
drh6e345992007-03-30 11:12:08 +00003345** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003346** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3347** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3348** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003349** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003350** routine has to do is delete or truncate or zero the header in the
3351** the rollback journal (which causes the transaction to commit) and
3352** drop locks.
drh6e345992007-03-30 11:12:08 +00003353**
dan60939d02011-03-29 15:40:55 +00003354** Normally, if an error occurs while the pager layer is attempting to
3355** finalize the underlying journal file, this function returns an error and
3356** the upper layer will attempt a rollback. However, if the second argument
3357** is non-zero then this b-tree transaction is part of a multi-file
3358** transaction. In this case, the transaction has already been committed
3359** (by deleting a master journal file) and the caller will ignore this
3360** functions return code. So, even if an error occurs in the pager layer,
3361** reset the b-tree objects internal state to indicate that the write
3362** transaction has been closed. This is quite safe, as the pager will have
3363** transitioned to the error state.
3364**
drh5e00f6c2001-09-13 13:46:56 +00003365** This will release the write lock on the database file. If there
3366** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003367*/
dan60939d02011-03-29 15:40:55 +00003368int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003369
drh075ed302010-10-14 01:17:30 +00003370 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003371 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003372 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003373
3374 /* If the handle has a write-transaction open, commit the shared-btrees
3375 ** transaction and set the shared state to TRANS_READ.
3376 */
3377 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003378 int rc;
drh075ed302010-10-14 01:17:30 +00003379 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003380 assert( pBt->inTransaction==TRANS_WRITE );
3381 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003382 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003383 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003384 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003385 return rc;
3386 }
danielk1977aef0bf62005-12-30 16:28:01 +00003387 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003388 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003389 }
danielk1977aef0bf62005-12-30 16:28:01 +00003390
danielk197794b30732009-07-02 17:21:57 +00003391 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003392 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003393 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003394}
3395
drh80e35f42007-03-30 14:06:34 +00003396/*
3397** Do both phases of a commit.
3398*/
3399int sqlite3BtreeCommit(Btree *p){
3400 int rc;
drhd677b3d2007-08-20 22:48:41 +00003401 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003402 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3403 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003404 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003405 }
drhd677b3d2007-08-20 22:48:41 +00003406 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003407 return rc;
3408}
3409
drhc39e0002004-05-07 23:50:57 +00003410/*
drhfb982642007-08-30 01:19:59 +00003411** This routine sets the state to CURSOR_FAULT and the error
3412** code to errCode for every cursor on BtShared that pBtree
3413** references.
3414**
3415** Every cursor is tripped, including cursors that belong
3416** to other database connections that happen to be sharing
3417** the cache with pBtree.
3418**
3419** This routine gets called when a rollback occurs.
3420** All cursors using the same cache must be tripped
3421** to prevent them from trying to use the btree after
3422** the rollback. The rollback may have deleted tables
3423** or moved root pages, so it is not sufficient to
3424** save the state of the cursor. The cursor must be
3425** invalidated.
3426*/
3427void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3428 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003429 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003430 sqlite3BtreeEnter(pBtree);
3431 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003432 int i;
danielk1977be51a652008-10-08 17:58:48 +00003433 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003434 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003435 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003436 for(i=0; i<=p->iPage; i++){
3437 releasePage(p->apPage[i]);
3438 p->apPage[i] = 0;
3439 }
drhfb982642007-08-30 01:19:59 +00003440 }
3441 sqlite3BtreeLeave(pBtree);
3442}
3443
3444/*
drhecdc7532001-09-23 02:35:53 +00003445** Rollback the transaction in progress. All cursors will be
3446** invalided by this operation. Any attempt to use a cursor
3447** that was open at the beginning of this operation will result
3448** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003449**
3450** This will release the write lock on the database file. If there
3451** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003452*/
drh0f198a72012-02-13 16:43:16 +00003453int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003454 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003455 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003456 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003457
drhd677b3d2007-08-20 22:48:41 +00003458 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003459 if( tripCode==SQLITE_OK ){
3460 rc = tripCode = saveAllCursors(pBt, 0, 0);
3461 }else{
3462 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003463 }
drh0f198a72012-02-13 16:43:16 +00003464 if( tripCode ){
3465 sqlite3BtreeTripAllCursors(p, tripCode);
3466 }
danielk1977aef0bf62005-12-30 16:28:01 +00003467 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003468
3469 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003470 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003471
danielk19778d34dfd2006-01-24 16:37:57 +00003472 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003473 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003474 if( rc2!=SQLITE_OK ){
3475 rc = rc2;
3476 }
3477
drh24cd67e2004-05-10 16:18:47 +00003478 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003479 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003480 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003481 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003482 int nPage = get4byte(28+(u8*)pPage1->aData);
3483 testcase( nPage==0 );
3484 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3485 testcase( pBt->nPage!=nPage );
3486 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003487 releasePage(pPage1);
3488 }
drh85ec3b62013-05-14 23:12:06 +00003489 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003490 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003491 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003492 }
danielk1977aef0bf62005-12-30 16:28:01 +00003493
danielk197794b30732009-07-02 17:21:57 +00003494 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003495 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003496 return rc;
3497}
3498
3499/*
danielk1977bd434552009-03-18 10:33:00 +00003500** Start a statement subtransaction. The subtransaction can can be rolled
3501** back independently of the main transaction. You must start a transaction
3502** before starting a subtransaction. The subtransaction is ended automatically
3503** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003504**
3505** Statement subtransactions are used around individual SQL statements
3506** that are contained within a BEGIN...COMMIT block. If a constraint
3507** error occurs within the statement, the effect of that one statement
3508** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003509**
3510** A statement sub-transaction is implemented as an anonymous savepoint. The
3511** value passed as the second parameter is the total number of savepoints,
3512** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3513** are no active savepoints and no other statement-transactions open,
3514** iStatement is 1. This anonymous savepoint can be released or rolled back
3515** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003516*/
danielk1977bd434552009-03-18 10:33:00 +00003517int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003518 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003519 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003520 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003521 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003522 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003523 assert( iStatement>0 );
3524 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003525 assert( pBt->inTransaction==TRANS_WRITE );
3526 /* At the pager level, a statement transaction is a savepoint with
3527 ** an index greater than all savepoints created explicitly using
3528 ** SQL statements. It is illegal to open, release or rollback any
3529 ** such savepoints while the statement transaction savepoint is active.
3530 */
3531 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003532 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003533 return rc;
3534}
3535
3536/*
danielk1977fd7f0452008-12-17 17:30:26 +00003537** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3538** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003539** savepoint identified by parameter iSavepoint, depending on the value
3540** of op.
3541**
3542** Normally, iSavepoint is greater than or equal to zero. However, if op is
3543** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3544** contents of the entire transaction are rolled back. This is different
3545** from a normal transaction rollback, as no locks are released and the
3546** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003547*/
3548int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3549 int rc = SQLITE_OK;
3550 if( p && p->inTrans==TRANS_WRITE ){
3551 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003552 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3553 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3554 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003555 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003556 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003557 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3558 pBt->nPage = 0;
3559 }
drh9f0bbf92009-01-02 21:08:09 +00003560 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003561 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003562
3563 /* The database size was written into the offset 28 of the header
3564 ** when the transaction started, so we know that the value at offset
3565 ** 28 is nonzero. */
3566 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003567 }
danielk1977fd7f0452008-12-17 17:30:26 +00003568 sqlite3BtreeLeave(p);
3569 }
3570 return rc;
3571}
3572
3573/*
drh8b2f49b2001-06-08 00:21:52 +00003574** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003575** iTable. If a read-only cursor is requested, it is assumed that
3576** the caller already has at least a read-only transaction open
3577** on the database already. If a write-cursor is requested, then
3578** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003579**
3580** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003581** If wrFlag==1, then the cursor can be used for reading or for
3582** writing if other conditions for writing are also met. These
3583** are the conditions that must be met in order for writing to
3584** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003585**
drhf74b8d92002-09-01 23:20:45 +00003586** 1: The cursor must have been opened with wrFlag==1
3587**
drhfe5d71d2007-03-19 11:54:10 +00003588** 2: Other database connections that share the same pager cache
3589** but which are not in the READ_UNCOMMITTED state may not have
3590** cursors open with wrFlag==0 on the same table. Otherwise
3591** the changes made by this write cursor would be visible to
3592** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003593**
3594** 3: The database must be writable (not on read-only media)
3595**
3596** 4: There must be an active transaction.
3597**
drh6446c4d2001-12-15 14:22:18 +00003598** No checking is done to make sure that page iTable really is the
3599** root page of a b-tree. If it is not, then the cursor acquired
3600** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003601**
drhf25a5072009-11-18 23:01:25 +00003602** It is assumed that the sqlite3BtreeCursorZero() has been called
3603** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003604*/
drhd677b3d2007-08-20 22:48:41 +00003605static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003606 Btree *p, /* The btree */
3607 int iTable, /* Root page of table to open */
3608 int wrFlag, /* 1 to write. 0 read-only */
3609 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3610 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003611){
danielk19773e8add92009-07-04 17:16:00 +00003612 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003613
drh1fee73e2007-08-29 04:00:57 +00003614 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003615 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003616
danielk1977602b4662009-07-02 07:47:33 +00003617 /* The following assert statements verify that if this is a sharable
3618 ** b-tree database, the connection is holding the required table locks,
3619 ** and that no other connection has any open cursor that conflicts with
3620 ** this lock. */
3621 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003622 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3623
danielk19773e8add92009-07-04 17:16:00 +00003624 /* Assert that the caller has opened the required transaction. */
3625 assert( p->inTrans>TRANS_NONE );
3626 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3627 assert( pBt->pPage1 && pBt->pPage1->aData );
3628
drhc9166342012-01-05 23:32:06 +00003629 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003630 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003631 }
drhb1299152010-03-30 22:58:33 +00003632 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003633 assert( wrFlag==0 );
3634 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003635 }
danielk1977aef0bf62005-12-30 16:28:01 +00003636
danielk1977aef0bf62005-12-30 16:28:01 +00003637 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003638 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003639 pCur->pgnoRoot = (Pgno)iTable;
3640 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003641 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003642 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003643 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00003644 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
3645 pCur->curFlags = wrFlag;
drha059ad02001-04-17 20:09:11 +00003646 pCur->pNext = pBt->pCursor;
3647 if( pCur->pNext ){
3648 pCur->pNext->pPrev = pCur;
3649 }
3650 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003651 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00003652 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003653}
drhd677b3d2007-08-20 22:48:41 +00003654int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003655 Btree *p, /* The btree */
3656 int iTable, /* Root page of table to open */
3657 int wrFlag, /* 1 to write. 0 read-only */
3658 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3659 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003660){
3661 int rc;
3662 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003663 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003664 sqlite3BtreeLeave(p);
3665 return rc;
3666}
drh7f751222009-03-17 22:33:00 +00003667
3668/*
3669** Return the size of a BtCursor object in bytes.
3670**
3671** This interfaces is needed so that users of cursors can preallocate
3672** sufficient storage to hold a cursor. The BtCursor object is opaque
3673** to users so they cannot do the sizeof() themselves - they must call
3674** this routine.
3675*/
3676int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003677 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003678}
3679
drh7f751222009-03-17 22:33:00 +00003680/*
drhf25a5072009-11-18 23:01:25 +00003681** Initialize memory that will be converted into a BtCursor object.
3682**
3683** The simple approach here would be to memset() the entire object
3684** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3685** do not need to be zeroed and they are large, so we can save a lot
3686** of run-time by skipping the initialization of those elements.
3687*/
3688void sqlite3BtreeCursorZero(BtCursor *p){
3689 memset(p, 0, offsetof(BtCursor, iPage));
3690}
3691
3692/*
drh5e00f6c2001-09-13 13:46:56 +00003693** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003694** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003695*/
drh3aac2dd2004-04-26 14:10:20 +00003696int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003697 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003698 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003699 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003700 BtShared *pBt = pCur->pBt;
3701 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003702 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003703 if( pCur->pPrev ){
3704 pCur->pPrev->pNext = pCur->pNext;
3705 }else{
3706 pBt->pCursor = pCur->pNext;
3707 }
3708 if( pCur->pNext ){
3709 pCur->pNext->pPrev = pCur->pPrev;
3710 }
danielk197771d5d2c2008-09-29 11:49:47 +00003711 for(i=0; i<=pCur->iPage; i++){
3712 releasePage(pCur->apPage[i]);
3713 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003714 unlockBtreeIfUnused(pBt);
dan5a500af2014-03-11 20:33:04 +00003715 sqlite3DbFree(pBtree->db, pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00003716 /* sqlite3_free(pCur); */
3717 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003718 }
drh8c42ca92001-06-22 19:15:00 +00003719 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003720}
3721
drh5e2f8b92001-05-28 00:41:15 +00003722/*
drh86057612007-06-26 01:04:48 +00003723** Make sure the BtCursor* given in the argument has a valid
3724** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003725** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003726**
3727** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003728** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003729**
3730** 2007-06-25: There is a bug in some versions of MSVC that cause the
3731** compiler to crash when getCellInfo() is implemented as a macro.
3732** But there is a measureable speed advantage to using the macro on gcc
3733** (when less compiler optimizations like -Os or -O0 are used and the
3734** compiler is not doing agressive inlining.) So we use a real function
3735** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003736*/
drh9188b382004-05-14 21:12:22 +00003737#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003738 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003739 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003740 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003741 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003742 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00003743 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003744 }
danielk19771cc5ed82007-05-16 17:28:43 +00003745#else
3746 #define assertCellInfo(x)
3747#endif
drh86057612007-06-26 01:04:48 +00003748#ifdef _MSC_VER
3749 /* Use a real function in MSVC to work around bugs in that compiler. */
3750 static void getCellInfo(BtCursor *pCur){
3751 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003752 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003753 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drh036dbec2014-03-11 23:40:44 +00003754 pCur->curFlags |= BTCF_ValidNKey;
drh86057612007-06-26 01:04:48 +00003755 }else{
3756 assertCellInfo(pCur);
3757 }
3758 }
3759#else /* if not _MSC_VER */
3760 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003761#define getCellInfo(pCur) \
3762 if( pCur->info.nSize==0 ){ \
3763 int iPage = pCur->iPage; \
drh036dbec2014-03-11 23:40:44 +00003764 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3765 pCur->curFlags |= BTCF_ValidNKey; \
danielk197771d5d2c2008-09-29 11:49:47 +00003766 }else{ \
3767 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003768 }
3769#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003770
drhea8ffdf2009-07-22 00:35:23 +00003771#ifndef NDEBUG /* The next routine used only within assert() statements */
3772/*
3773** Return true if the given BtCursor is valid. A valid cursor is one
3774** that is currently pointing to a row in a (non-empty) table.
3775** This is a verification routine is used only within assert() statements.
3776*/
3777int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3778 return pCur && pCur->eState==CURSOR_VALID;
3779}
3780#endif /* NDEBUG */
3781
drh9188b382004-05-14 21:12:22 +00003782/*
drh3aac2dd2004-04-26 14:10:20 +00003783** Set *pSize to the size of the buffer needed to hold the value of
3784** the key for the current entry. If the cursor is not pointing
3785** to a valid entry, *pSize is set to 0.
3786**
drh4b70f112004-05-02 21:12:19 +00003787** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003788** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003789**
3790** The caller must position the cursor prior to invoking this routine.
3791**
3792** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003793*/
drh4a1c3802004-05-12 15:15:47 +00003794int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003795 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003796 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3797 if( pCur->eState!=CURSOR_VALID ){
3798 *pSize = 0;
3799 }else{
3800 getCellInfo(pCur);
3801 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003802 }
drhea8ffdf2009-07-22 00:35:23 +00003803 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003804}
drh2af926b2001-05-15 00:39:25 +00003805
drh72f82862001-05-24 21:06:34 +00003806/*
drh0e1c19e2004-05-11 00:58:56 +00003807** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003808** cursor currently points to.
3809**
3810** The caller must guarantee that the cursor is pointing to a non-NULL
3811** valid entry. In other words, the calling procedure must guarantee
3812** that the cursor has Cursor.eState==CURSOR_VALID.
3813**
3814** Failure is not possible. This function always returns SQLITE_OK.
3815** It might just as well be a procedure (returning void) but we continue
3816** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003817*/
3818int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003819 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003820 assert( pCur->eState==CURSOR_VALID );
3821 getCellInfo(pCur);
3822 *pSize = pCur->info.nData;
3823 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003824}
3825
3826/*
danielk1977d04417962007-05-02 13:16:30 +00003827** Given the page number of an overflow page in the database (parameter
3828** ovfl), this function finds the page number of the next page in the
3829** linked list of overflow pages. If possible, it uses the auto-vacuum
3830** pointer-map data instead of reading the content of page ovfl to do so.
3831**
3832** If an error occurs an SQLite error code is returned. Otherwise:
3833**
danielk1977bea2a942009-01-20 17:06:27 +00003834** The page number of the next overflow page in the linked list is
3835** written to *pPgnoNext. If page ovfl is the last page in its linked
3836** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003837**
danielk1977bea2a942009-01-20 17:06:27 +00003838** If ppPage is not NULL, and a reference to the MemPage object corresponding
3839** to page number pOvfl was obtained, then *ppPage is set to point to that
3840** reference. It is the responsibility of the caller to call releasePage()
3841** on *ppPage to free the reference. In no reference was obtained (because
3842** the pointer-map was used to obtain the value for *pPgnoNext), then
3843** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003844*/
3845static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003846 BtShared *pBt, /* The database file */
3847 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003848 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003849 Pgno *pPgnoNext /* OUT: Next overflow page number */
3850){
3851 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003852 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003853 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003854
drh1fee73e2007-08-29 04:00:57 +00003855 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003856 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003857
3858#ifndef SQLITE_OMIT_AUTOVACUUM
3859 /* Try to find the next page in the overflow list using the
3860 ** autovacuum pointer-map pages. Guess that the next page in
3861 ** the overflow list is page number (ovfl+1). If that guess turns
3862 ** out to be wrong, fall back to loading the data of page
3863 ** number ovfl to determine the next page number.
3864 */
3865 if( pBt->autoVacuum ){
3866 Pgno pgno;
3867 Pgno iGuess = ovfl+1;
3868 u8 eType;
3869
3870 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3871 iGuess++;
3872 }
3873
drhb1299152010-03-30 22:58:33 +00003874 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003875 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003876 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003877 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003878 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003879 }
3880 }
3881 }
3882#endif
3883
danielk1977d8a3f3d2009-07-11 11:45:23 +00003884 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003885 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00003886 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003887 assert( rc==SQLITE_OK || pPage==0 );
3888 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003889 next = get4byte(pPage->aData);
3890 }
danielk1977443c0592009-01-16 15:21:05 +00003891 }
danielk197745d68822009-01-16 16:23:38 +00003892
danielk1977bea2a942009-01-20 17:06:27 +00003893 *pPgnoNext = next;
3894 if( ppPage ){
3895 *ppPage = pPage;
3896 }else{
3897 releasePage(pPage);
3898 }
3899 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003900}
3901
danielk1977da107192007-05-04 08:32:13 +00003902/*
3903** Copy data from a buffer to a page, or from a page to a buffer.
3904**
3905** pPayload is a pointer to data stored on database page pDbPage.
3906** If argument eOp is false, then nByte bytes of data are copied
3907** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3908** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3909** of data are copied from the buffer pBuf to pPayload.
3910**
3911** SQLITE_OK is returned on success, otherwise an error code.
3912*/
3913static int copyPayload(
3914 void *pPayload, /* Pointer to page data */
3915 void *pBuf, /* Pointer to buffer */
3916 int nByte, /* Number of bytes to copy */
3917 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3918 DbPage *pDbPage /* Page containing pPayload */
3919){
3920 if( eOp ){
3921 /* Copy data from buffer to page (a write operation) */
3922 int rc = sqlite3PagerWrite(pDbPage);
3923 if( rc!=SQLITE_OK ){
3924 return rc;
3925 }
3926 memcpy(pPayload, pBuf, nByte);
3927 }else{
3928 /* Copy data from page to buffer (a read operation) */
3929 memcpy(pBuf, pPayload, nByte);
3930 }
3931 return SQLITE_OK;
3932}
danielk1977d04417962007-05-02 13:16:30 +00003933
3934/*
danielk19779f8d6402007-05-02 17:48:45 +00003935** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00003936** for the entry that the pCur cursor is pointing to. The eOp
3937** argument is interpreted as follows:
3938**
3939** 0: The operation is a read. Populate the overflow cache.
3940** 1: The operation is a write. Populate the overflow cache.
3941** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00003942**
3943** A total of "amt" bytes are read or written beginning at "offset".
3944** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003945**
drh3bcdfd22009-07-12 02:32:21 +00003946** The content being read or written might appear on the main page
3947** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003948**
dan5a500af2014-03-11 20:33:04 +00003949** If the current cursor entry uses one or more overflow pages and the
3950** eOp argument is not 2, this function may allocate space for and lazily
3951** popluates the overflow page-list cache array (BtCursor.aOverflow).
3952** Subsequent calls use this cache to make seeking to the supplied offset
3953** more efficient.
danielk1977da107192007-05-04 08:32:13 +00003954**
3955** Once an overflow page-list cache has been allocated, it may be
3956** invalidated if some other cursor writes to the same table, or if
3957** the cursor is moved to a different row. Additionally, in auto-vacuum
3958** mode, the following events may invalidate an overflow page-list cache.
3959**
3960** * An incremental vacuum,
3961** * A commit in auto_vacuum="full" mode,
3962** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003963*/
danielk19779f8d6402007-05-02 17:48:45 +00003964static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003965 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003966 u32 offset, /* Begin reading this far into payload */
3967 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003968 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003969 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003970){
3971 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003972 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003973 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003974 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003975 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003976 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00003977#ifdef SQLITE_DIRECT_OVERFLOW_READ
3978 int bEnd; /* True if reading to end of data */
3979#endif
drh3aac2dd2004-04-26 14:10:20 +00003980
danielk1977da107192007-05-04 08:32:13 +00003981 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003982 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003983 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003984 assert( cursorHoldsMutex(pCur) );
drha38c9512014-04-01 01:24:34 +00003985 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00003986
drh86057612007-06-26 01:04:48 +00003987 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003988 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003989 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
drh4c417182014-03-31 23:57:41 +00003990#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9bc21b52014-03-20 18:56:35 +00003991 bEnd = (offset+amt==nKey+pCur->info.nData);
drh4c417182014-03-31 23:57:41 +00003992#endif
danielk1977da107192007-05-04 08:32:13 +00003993
drh3bcdfd22009-07-12 02:32:21 +00003994 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003995 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3996 ){
danielk1977da107192007-05-04 08:32:13 +00003997 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003998 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003999 }
danielk1977da107192007-05-04 08:32:13 +00004000
4001 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004002 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004003 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004004 if( a+offset>pCur->info.nLocal ){
4005 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004006 }
dan5a500af2014-03-11 20:33:04 +00004007 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004008 offset = 0;
drha34b6762004-05-07 13:30:42 +00004009 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004010 amt -= a;
drhdd793422001-06-28 01:54:48 +00004011 }else{
drhfa1a98a2004-05-14 19:08:17 +00004012 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004013 }
danielk1977da107192007-05-04 08:32:13 +00004014
4015 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004016 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004017 Pgno nextPage;
4018
drhfa1a98a2004-05-14 19:08:17 +00004019 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004020
drha38c9512014-04-01 01:24:34 +00004021 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4022 ** Except, do not allocate aOverflow[] for eOp==2.
4023 **
4024 ** The aOverflow[] array is sized at one entry for each overflow page
4025 ** in the overflow chain. The page number of the first overflow page is
4026 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4027 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004028 */
drh036dbec2014-03-11 23:40:44 +00004029 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004030 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004031 if( nOvfl>pCur->nOvflAlloc ){
4032 Pgno *aNew = (Pgno*)sqlite3DbRealloc(
4033 pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4034 );
4035 if( aNew==0 ){
4036 rc = SQLITE_NOMEM;
4037 }else{
4038 pCur->nOvflAlloc = nOvfl*2;
4039 pCur->aOverflow = aNew;
4040 }
4041 }
4042 if( rc==SQLITE_OK ){
4043 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004044 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004045 }
4046 }
danielk1977da107192007-05-04 08:32:13 +00004047
4048 /* If the overflow page-list cache has been allocated and the
4049 ** entry for the first required overflow page is valid, skip
4050 ** directly to it.
4051 */
drh036dbec2014-03-11 23:40:44 +00004052 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 && pCur->aOverflow[offset/ovflSize] ){
danielk19772dec9702007-05-02 16:48:37 +00004053 iIdx = (offset/ovflSize);
4054 nextPage = pCur->aOverflow[iIdx];
4055 offset = (offset%ovflSize);
4056 }
danielk1977da107192007-05-04 08:32:13 +00004057
4058 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4059
danielk1977da107192007-05-04 08:32:13 +00004060 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004061 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004062 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4063 pCur->aOverflow[iIdx] = nextPage;
4064 }
danielk1977da107192007-05-04 08:32:13 +00004065
danielk1977d04417962007-05-02 13:16:30 +00004066 if( offset>=ovflSize ){
4067 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004068 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004069 ** data is not required. So first try to lookup the overflow
4070 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004071 ** function.
drha38c9512014-04-01 01:24:34 +00004072 **
4073 ** Note that the aOverflow[] array must be allocated because eOp!=2
4074 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004075 */
drha38c9512014-04-01 01:24:34 +00004076 assert( eOp!=2 );
4077 assert( pCur->curFlags & BTCF_ValidOvfl );
4078 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004079 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004080 }else{
danielk1977da107192007-05-04 08:32:13 +00004081 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004082 }
danielk1977da107192007-05-04 08:32:13 +00004083 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004084 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004085 /* Need to read this page properly. It contains some of the
4086 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004087 */
danf4ba1092011-10-08 14:57:07 +00004088#ifdef SQLITE_DIRECT_OVERFLOW_READ
4089 sqlite3_file *fd;
4090#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004091 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004092 if( a + offset > ovflSize ){
4093 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004094 }
danf4ba1092011-10-08 14:57:07 +00004095
4096#ifdef SQLITE_DIRECT_OVERFLOW_READ
4097 /* If all the following are true:
4098 **
4099 ** 1) this is a read operation, and
4100 ** 2) data is required from the start of this overflow page, and
4101 ** 3) the database is file-backed, and
4102 ** 4) there is no open write-transaction, and
4103 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004104 ** 6) all data from the page is being read.
danf4ba1092011-10-08 14:57:07 +00004105 **
4106 ** then data can be read directly from the database file into the
4107 ** output buffer, bypassing the page-cache altogether. This speeds
4108 ** up loading large records that span many overflow pages.
4109 */
dan5a500af2014-03-11 20:33:04 +00004110 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004111 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004112 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004113 && pBt->inTransaction==TRANS_READ /* (4) */
4114 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4115 && pBt->pPage1->aData[19]==0x01 /* (5) */
4116 ){
4117 u8 aSave[4];
4118 u8 *aWrite = &pBuf[-4];
4119 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004120 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004121 nextPage = get4byte(aWrite);
4122 memcpy(aWrite, aSave, 4);
4123 }else
4124#endif
4125
4126 {
4127 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004128 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004129 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004130 );
danf4ba1092011-10-08 14:57:07 +00004131 if( rc==SQLITE_OK ){
4132 aPayload = sqlite3PagerGetData(pDbPage);
4133 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004134 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004135 sqlite3PagerUnref(pDbPage);
4136 offset = 0;
4137 }
4138 }
4139 amt -= a;
4140 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004141 }
drh2af926b2001-05-15 00:39:25 +00004142 }
drh2af926b2001-05-15 00:39:25 +00004143 }
danielk1977cfe9a692004-06-16 12:00:29 +00004144
danielk1977da107192007-05-04 08:32:13 +00004145 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004146 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004147 }
danielk1977da107192007-05-04 08:32:13 +00004148 return rc;
drh2af926b2001-05-15 00:39:25 +00004149}
4150
drh72f82862001-05-24 21:06:34 +00004151/*
drh3aac2dd2004-04-26 14:10:20 +00004152** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004153** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004154** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004155**
drh5d1a8722009-07-22 18:07:40 +00004156** The caller must ensure that pCur is pointing to a valid row
4157** in the table.
4158**
drh3aac2dd2004-04-26 14:10:20 +00004159** Return SQLITE_OK on success or an error code if anything goes
4160** wrong. An error is returned if "offset+amt" is larger than
4161** the available payload.
drh72f82862001-05-24 21:06:34 +00004162*/
drha34b6762004-05-07 13:30:42 +00004163int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004164 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004165 assert( pCur->eState==CURSOR_VALID );
4166 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4167 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4168 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004169}
4170
4171/*
drh3aac2dd2004-04-26 14:10:20 +00004172** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004173** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004174** begins at "offset".
4175**
4176** Return SQLITE_OK on success or an error code if anything goes
4177** wrong. An error is returned if "offset+amt" is larger than
4178** the available payload.
drh72f82862001-05-24 21:06:34 +00004179*/
drh3aac2dd2004-04-26 14:10:20 +00004180int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004181 int rc;
4182
danielk19773588ceb2008-06-10 17:30:26 +00004183#ifndef SQLITE_OMIT_INCRBLOB
4184 if ( pCur->eState==CURSOR_INVALID ){
4185 return SQLITE_ABORT;
4186 }
4187#endif
4188
drh1fee73e2007-08-29 04:00:57 +00004189 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004190 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004191 if( rc==SQLITE_OK ){
4192 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004193 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4194 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004195 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004196 }
4197 return rc;
drh2af926b2001-05-15 00:39:25 +00004198}
4199
drh72f82862001-05-24 21:06:34 +00004200/*
drh0e1c19e2004-05-11 00:58:56 +00004201** Return a pointer to payload information from the entry that the
4202** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004203** the key if index btrees (pPage->intKey==0) and is the data for
4204** table btrees (pPage->intKey==1). The number of bytes of available
4205** key/data is written into *pAmt. If *pAmt==0, then the value
4206** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004207**
4208** This routine is an optimization. It is common for the entire key
4209** and data to fit on the local page and for there to be no overflow
4210** pages. When that is so, this routine can be used to access the
4211** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004212** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004213** the key/data and copy it into a preallocated buffer.
4214**
4215** The pointer returned by this routine looks directly into the cached
4216** page of the database. The data might change or move the next time
4217** any btree routine is called.
4218*/
drh2a8d2262013-12-09 20:43:22 +00004219static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004220 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004221 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004222){
danielk197771d5d2c2008-09-29 11:49:47 +00004223 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004224 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004225 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004226 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004227 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004228 assert( pCur->info.nSize>0 );
drh2a8d2262013-12-09 20:43:22 +00004229 *pAmt = pCur->info.nLocal;
4230 return (void*)(pCur->info.pCell + pCur->info.nHeader);
drh0e1c19e2004-05-11 00:58:56 +00004231}
4232
4233
4234/*
drhe51c44f2004-05-30 20:46:09 +00004235** For the entry that cursor pCur is point to, return as
4236** many bytes of the key or data as are available on the local
4237** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004238**
4239** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004240** or be destroyed on the next call to any Btree routine,
4241** including calls from other threads against the same cache.
4242** Hence, a mutex on the BtShared should be held prior to calling
4243** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004244**
4245** These routines is used to get quick access to key and data
4246** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004247*/
drh501932c2013-11-21 21:59:53 +00004248const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004249 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004250}
drh501932c2013-11-21 21:59:53 +00004251const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004252 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004253}
4254
4255
4256/*
drh8178a752003-01-05 21:41:40 +00004257** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004258** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004259**
4260** This function returns SQLITE_CORRUPT if the page-header flags field of
4261** the new child page does not match the flags field of the parent (i.e.
4262** if an intkey page appears to be the parent of a non-intkey page, or
4263** vice-versa).
drh72f82862001-05-24 21:06:34 +00004264*/
drh3aac2dd2004-04-26 14:10:20 +00004265static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004266 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004267 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004268 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004269 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004270
drh1fee73e2007-08-29 04:00:57 +00004271 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004272 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004273 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004274 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004275 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4276 return SQLITE_CORRUPT_BKPT;
4277 }
drhb00fc3b2013-08-21 23:42:32 +00004278 rc = getAndInitPage(pBt, newPgno, &pNewPage,
drh036dbec2014-03-11 23:40:44 +00004279 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004280 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004281 pCur->apPage[i+1] = pNewPage;
4282 pCur->aiIdx[i+1] = 0;
4283 pCur->iPage++;
4284
drh271efa52004-05-30 19:19:05 +00004285 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004286 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk1977bd5969a2009-07-11 17:39:42 +00004287 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004288 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004289 }
drh72f82862001-05-24 21:06:34 +00004290 return SQLITE_OK;
4291}
4292
danbb246c42012-01-12 14:25:55 +00004293#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004294/*
4295** Page pParent is an internal (non-leaf) tree page. This function
4296** asserts that page number iChild is the left-child if the iIdx'th
4297** cell in page pParent. Or, if iIdx is equal to the total number of
4298** cells in pParent, that page number iChild is the right-child of
4299** the page.
4300*/
4301static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4302 assert( iIdx<=pParent->nCell );
4303 if( iIdx==pParent->nCell ){
4304 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4305 }else{
4306 assert( get4byte(findCell(pParent, iIdx))==iChild );
4307 }
4308}
4309#else
4310# define assertParentIndex(x,y,z)
4311#endif
4312
drh72f82862001-05-24 21:06:34 +00004313/*
drh5e2f8b92001-05-28 00:41:15 +00004314** Move the cursor up to the parent page.
4315**
4316** pCur->idx is set to the cell index that contains the pointer
4317** to the page we are coming from. If we are coming from the
4318** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004319** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004320*/
danielk197730548662009-07-09 05:07:37 +00004321static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004322 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004323 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004324 assert( pCur->iPage>0 );
4325 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004326
4327 /* UPDATE: It is actually possible for the condition tested by the assert
4328 ** below to be untrue if the database file is corrupt. This can occur if
4329 ** one cursor has modified page pParent while a reference to it is held
4330 ** by a second cursor. Which can only happen if a single page is linked
4331 ** into more than one b-tree structure in a corrupt database. */
4332#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004333 assertParentIndex(
4334 pCur->apPage[pCur->iPage-1],
4335 pCur->aiIdx[pCur->iPage-1],
4336 pCur->apPage[pCur->iPage]->pgno
4337 );
danbb246c42012-01-12 14:25:55 +00004338#endif
dan6c2688c2012-01-12 15:05:03 +00004339 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004340
danielk197771d5d2c2008-09-29 11:49:47 +00004341 releasePage(pCur->apPage[pCur->iPage]);
4342 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004343 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004344 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh72f82862001-05-24 21:06:34 +00004345}
4346
4347/*
danielk19778f880a82009-07-13 09:41:45 +00004348** Move the cursor to point to the root page of its b-tree structure.
4349**
4350** If the table has a virtual root page, then the cursor is moved to point
4351** to the virtual root page instead of the actual root page. A table has a
4352** virtual root page when the actual root page contains no cells and a
4353** single child page. This can only happen with the table rooted at page 1.
4354**
4355** If the b-tree structure is empty, the cursor state is set to
4356** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4357** cell located on the root (or virtual root) page and the cursor state
4358** is set to CURSOR_VALID.
4359**
4360** If this function returns successfully, it may be assumed that the
4361** page-header flags indicate that the [virtual] root-page is the expected
4362** kind of b-tree page (i.e. if when opening the cursor the caller did not
4363** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4364** indicating a table b-tree, or if the caller did specify a KeyInfo
4365** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4366** b-tree).
drh72f82862001-05-24 21:06:34 +00004367*/
drh5e2f8b92001-05-28 00:41:15 +00004368static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004369 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004370 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004371
drh1fee73e2007-08-29 04:00:57 +00004372 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004373 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4374 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4375 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4376 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4377 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004378 assert( pCur->skipNext!=SQLITE_OK );
4379 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004380 }
danielk1977be51a652008-10-08 17:58:48 +00004381 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004382 }
danielk197771d5d2c2008-09-29 11:49:47 +00004383
4384 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004385 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004386 }else if( pCur->pgnoRoot==0 ){
4387 pCur->eState = CURSOR_INVALID;
4388 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004389 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004390 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh036dbec2014-03-11 23:40:44 +00004391 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004392 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004393 pCur->eState = CURSOR_INVALID;
4394 return rc;
4395 }
danielk1977172114a2009-07-07 15:47:12 +00004396 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004397 }
danielk197771d5d2c2008-09-29 11:49:47 +00004398 pRoot = pCur->apPage[0];
4399 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004400
4401 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4402 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4403 ** NULL, the caller expects a table b-tree. If this is not the case,
4404 ** return an SQLITE_CORRUPT error.
4405 **
4406 ** Earlier versions of SQLite assumed that this test could not fail
4407 ** if the root page was already loaded when this function was called (i.e.
4408 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4409 ** in such a way that page pRoot is linked into a second b-tree table
4410 ** (or the freelist). */
4411 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4412 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4413 return SQLITE_CORRUPT_BKPT;
4414 }
danielk19778f880a82009-07-13 09:41:45 +00004415
danielk197771d5d2c2008-09-29 11:49:47 +00004416 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004417 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004418 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004419
drh4e8fe3f2013-12-06 23:25:27 +00004420 if( pRoot->nCell>0 ){
4421 pCur->eState = CURSOR_VALID;
4422 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004423 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004424 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004425 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004426 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004427 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004428 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004429 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004430 }
4431 return rc;
drh72f82862001-05-24 21:06:34 +00004432}
drh2af926b2001-05-15 00:39:25 +00004433
drh5e2f8b92001-05-28 00:41:15 +00004434/*
4435** Move the cursor down to the left-most leaf entry beneath the
4436** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004437**
4438** The left-most leaf is the one with the smallest key - the first
4439** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004440*/
4441static int moveToLeftmost(BtCursor *pCur){
4442 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004443 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004444 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004445
drh1fee73e2007-08-29 04:00:57 +00004446 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004447 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004448 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4449 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4450 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004451 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004452 }
drhd677b3d2007-08-20 22:48:41 +00004453 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004454}
4455
drh2dcc9aa2002-12-04 13:40:25 +00004456/*
4457** Move the cursor down to the right-most leaf entry beneath the
4458** page to which it is currently pointing. Notice the difference
4459** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4460** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4461** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004462**
4463** The right-most entry is the one with the largest key - the last
4464** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004465*/
4466static int moveToRightmost(BtCursor *pCur){
4467 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004468 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004469 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004470
drh1fee73e2007-08-29 04:00:57 +00004471 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004472 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004473 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004474 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004475 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004476 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004477 }
drhd677b3d2007-08-20 22:48:41 +00004478 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004479 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004480 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004481 pCur->curFlags &= ~BTCF_ValidNKey;
drhd677b3d2007-08-20 22:48:41 +00004482 }
danielk1977518002e2008-09-05 05:02:46 +00004483 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004484}
4485
drh5e00f6c2001-09-13 13:46:56 +00004486/* Move the cursor to the first entry in the table. Return SQLITE_OK
4487** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004488** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004489*/
drh3aac2dd2004-04-26 14:10:20 +00004490int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004491 int rc;
drhd677b3d2007-08-20 22:48:41 +00004492
drh1fee73e2007-08-29 04:00:57 +00004493 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004494 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004495 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004496 if( rc==SQLITE_OK ){
4497 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004498 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004499 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004500 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004501 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004502 *pRes = 0;
4503 rc = moveToLeftmost(pCur);
4504 }
drh5e00f6c2001-09-13 13:46:56 +00004505 }
drh5e00f6c2001-09-13 13:46:56 +00004506 return rc;
4507}
drh5e2f8b92001-05-28 00:41:15 +00004508
drh9562b552002-02-19 15:00:07 +00004509/* Move the cursor to the last entry in the table. Return SQLITE_OK
4510** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004511** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004512*/
drh3aac2dd2004-04-26 14:10:20 +00004513int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004514 int rc;
drhd677b3d2007-08-20 22:48:41 +00004515
drh1fee73e2007-08-29 04:00:57 +00004516 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004517 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004518
4519 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004520 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004521#ifdef SQLITE_DEBUG
4522 /* This block serves to assert() that the cursor really does point
4523 ** to the last entry in the b-tree. */
4524 int ii;
4525 for(ii=0; ii<pCur->iPage; ii++){
4526 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4527 }
4528 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4529 assert( pCur->apPage[pCur->iPage]->leaf );
4530#endif
4531 return SQLITE_OK;
4532 }
4533
drh9562b552002-02-19 15:00:07 +00004534 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004535 if( rc==SQLITE_OK ){
4536 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004537 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004538 *pRes = 1;
4539 }else{
4540 assert( pCur->eState==CURSOR_VALID );
4541 *pRes = 0;
4542 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004543 if( rc==SQLITE_OK ){
4544 pCur->curFlags |= BTCF_AtLast;
4545 }else{
4546 pCur->curFlags &= ~BTCF_AtLast;
4547 }
4548
drhd677b3d2007-08-20 22:48:41 +00004549 }
drh9562b552002-02-19 15:00:07 +00004550 }
drh9562b552002-02-19 15:00:07 +00004551 return rc;
4552}
4553
drhe14006d2008-03-25 17:23:32 +00004554/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004555** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004556**
drhe63d9992008-08-13 19:11:48 +00004557** For INTKEY tables, the intKey parameter is used. pIdxKey
4558** must be NULL. For index tables, pIdxKey is used and intKey
4559** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004560**
drh5e2f8b92001-05-28 00:41:15 +00004561** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004562** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004563** were present. The cursor might point to an entry that comes
4564** before or after the key.
4565**
drh64022502009-01-09 14:11:04 +00004566** An integer is written into *pRes which is the result of
4567** comparing the key with the entry to which the cursor is
4568** pointing. The meaning of the integer written into
4569** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004570**
4571** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004572** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004573** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004574**
4575** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004576** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004577**
4578** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004579** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004580**
drha059ad02001-04-17 20:09:11 +00004581*/
drhe63d9992008-08-13 19:11:48 +00004582int sqlite3BtreeMovetoUnpacked(
4583 BtCursor *pCur, /* The cursor to be moved */
4584 UnpackedRecord *pIdxKey, /* Unpacked index key */
4585 i64 intKey, /* The table key */
4586 int biasRight, /* If true, bias the search to the high end */
4587 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004588){
drh72f82862001-05-24 21:06:34 +00004589 int rc;
dan3b9330f2014-02-27 20:44:18 +00004590 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004591
drh1fee73e2007-08-29 04:00:57 +00004592 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004593 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004594 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004595 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004596
4597 /* If the cursor is already positioned at the point we are trying
4598 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00004599 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00004600 && pCur->apPage[0]->intKey
4601 ){
drhe63d9992008-08-13 19:11:48 +00004602 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004603 *pRes = 0;
4604 return SQLITE_OK;
4605 }
drh036dbec2014-03-11 23:40:44 +00004606 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004607 *pRes = -1;
4608 return SQLITE_OK;
4609 }
4610 }
4611
dan1fed5da2014-02-25 21:01:25 +00004612 if( pIdxKey ){
4613 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
drha1f7c0a2014-03-28 03:12:48 +00004614 pIdxKey->isCorrupt = 0;
dan3b9330f2014-02-27 20:44:18 +00004615 assert( pIdxKey->default_rc==1
4616 || pIdxKey->default_rc==0
4617 || pIdxKey->default_rc==-1
4618 );
drh13a747e2014-03-03 21:46:55 +00004619 }else{
drhb6e8fd12014-03-06 01:56:33 +00004620 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004621 }
4622
drh5e2f8b92001-05-28 00:41:15 +00004623 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004624 if( rc ){
4625 return rc;
4626 }
dana205a482011-08-27 18:48:57 +00004627 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4628 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4629 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004630 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004631 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004632 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004633 return SQLITE_OK;
4634 }
danielk197771d5d2c2008-09-29 11:49:47 +00004635 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004636 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004637 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004638 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004639 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004640 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004641
4642 /* pPage->nCell must be greater than zero. If this is the root-page
4643 ** the cursor would have been INVALID above and this for(;;) loop
4644 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004645 ** would have already detected db corruption. Similarly, pPage must
4646 ** be the right kind (index or table) of b-tree page. Otherwise
4647 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004648 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004649 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004650 lwr = 0;
4651 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00004652 assert( biasRight==0 || biasRight==1 );
4653 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00004654 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00004655 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00004656 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004657 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00004658 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drhd172f862006-01-12 15:01:15 +00004659 if( pPage->hasData ){
drh9b2fc612013-11-25 20:14:13 +00004660 while( 0x80 <= *(pCell++) ){
4661 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4662 }
drhd172f862006-01-12 15:01:15 +00004663 }
drha2c20e42008-03-29 16:01:04 +00004664 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00004665 if( nCellKey<intKey ){
4666 lwr = idx+1;
4667 if( lwr>upr ){ c = -1; break; }
4668 }else if( nCellKey>intKey ){
4669 upr = idx-1;
4670 if( lwr>upr ){ c = +1; break; }
4671 }else{
4672 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00004673 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00004674 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00004675 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004676 if( !pPage->leaf ){
4677 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00004678 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00004679 }else{
4680 *pRes = 0;
4681 rc = SQLITE_OK;
4682 goto moveto_finish;
4683 }
drhd793f442013-11-25 14:10:15 +00004684 }
drhebf10b12013-11-25 17:38:26 +00004685 assert( lwr+upr>=0 );
4686 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00004687 }
4688 }else{
4689 for(;;){
4690 int nCell;
drhec3e6b12013-11-25 02:38:55 +00004691 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4692
drhb2eced52010-08-12 02:41:12 +00004693 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004694 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004695 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004696 ** varint. This information is used to attempt to avoid parsing
4697 ** the entire cell by checking for the cases where the record is
4698 ** stored entirely within the b-tree page by inspecting the first
4699 ** 2 bytes of the cell.
4700 */
drhec3e6b12013-11-25 02:38:55 +00004701 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00004702 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00004703 /* This branch runs if the record-size field of the cell is a
4704 ** single byte varint and the record fits entirely on the main
4705 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004706 testcase( pCell+nCell+1==pPage->aDataEnd );
dan3833e932014-03-01 19:44:56 +00004707 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey, 0);
danielk197711c327a2009-05-04 19:01:26 +00004708 }else if( !(pCell[1] & 0x80)
4709 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4710 ){
4711 /* The record-size field is a 2 byte varint and the record
4712 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004713 testcase( pCell+nCell+2==pPage->aDataEnd );
dan3833e932014-03-01 19:44:56 +00004714 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey, 0);
drhe51c44f2004-05-30 20:46:09 +00004715 }else{
danielk197711c327a2009-05-04 19:01:26 +00004716 /* The record flows over onto one or more overflow pages. In
4717 ** this case the whole cell needs to be parsed, a buffer allocated
4718 ** and accessPayload() used to retrieve the record into the
4719 ** buffer before VdbeRecordCompare() can be called. */
4720 void *pCellKey;
4721 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004722 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004723 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004724 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004725 if( pCellKey==0 ){
4726 rc = SQLITE_NOMEM;
4727 goto moveto_finish;
4728 }
drhd793f442013-11-25 14:10:15 +00004729 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00004730 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00004731 if( rc ){
4732 sqlite3_free(pCellKey);
4733 goto moveto_finish;
4734 }
dan3833e932014-03-01 19:44:56 +00004735 c = xRecordCompare(nCell, pCellKey, pIdxKey, 0);
drhfacf0302008-06-17 15:12:00 +00004736 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004737 }
drha1f7c0a2014-03-28 03:12:48 +00004738 assert( pIdxKey->isCorrupt==0 || c==0 );
drhbb933ef2013-11-25 15:01:38 +00004739 if( c<0 ){
4740 lwr = idx+1;
4741 }else if( c>0 ){
4742 upr = idx-1;
4743 }else{
4744 assert( c==0 );
drh64022502009-01-09 14:11:04 +00004745 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004746 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00004747 pCur->aiIdx[pCur->iPage] = (u16)idx;
drha1f7c0a2014-03-28 03:12:48 +00004748 if( pIdxKey->isCorrupt ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00004749 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004750 }
drhebf10b12013-11-25 17:38:26 +00004751 if( lwr>upr ) break;
4752 assert( lwr+upr>=0 );
4753 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00004754 }
drh72f82862001-05-24 21:06:34 +00004755 }
drhb07028f2011-10-14 21:49:18 +00004756 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004757 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004758 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00004759 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00004760 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004761 *pRes = c;
4762 rc = SQLITE_OK;
4763 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00004764 }
4765moveto_next_layer:
4766 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004767 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004768 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004769 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004770 }
drhf49661a2008-12-10 16:45:50 +00004771 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00004772 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00004773 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00004774 }
drh1e968a02008-03-25 00:22:21 +00004775moveto_finish:
drhd2022b02013-11-25 16:23:52 +00004776 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004777 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00004778 return rc;
4779}
4780
drhd677b3d2007-08-20 22:48:41 +00004781
drh72f82862001-05-24 21:06:34 +00004782/*
drhc39e0002004-05-07 23:50:57 +00004783** Return TRUE if the cursor is not pointing at an entry of the table.
4784**
4785** TRUE will be returned after a call to sqlite3BtreeNext() moves
4786** past the last entry in the table or sqlite3BtreePrev() moves past
4787** the first entry. TRUE is also returned if the table is empty.
4788*/
4789int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004790 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4791 ** have been deleted? This API will need to change to return an error code
4792 ** as well as the boolean result value.
4793 */
4794 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004795}
4796
4797/*
drhbd03cae2001-06-02 02:40:57 +00004798** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004799** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004800** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004801** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00004802**
4803** The calling function will set *pRes to 0 or 1. The initial *pRes value
4804** will be 1 if the cursor being stepped corresponds to an SQL index and
4805** if this routine could have been skipped if that SQL index had been
4806** a unique index. Otherwise the caller will have set *pRes to zero.
4807** Zero is the common case. The btree implementation is free to use the
4808** initial *pRes value as a hint to improve performance, but the current
4809** SQLite btree implementation does not. (Note that the comdb2 btree
4810** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00004811*/
drhd094db12008-04-03 21:46:57 +00004812int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004813 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004814 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004815 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004816
drh1fee73e2007-08-29 04:00:57 +00004817 assert( cursorHoldsMutex(pCur) );
drh8c4d3a62007-04-06 01:03:32 +00004818 assert( pRes!=0 );
drhe39a7322014-02-03 14:04:11 +00004819 assert( *pRes==0 || *pRes==1 );
drh9b47ee32013-08-20 03:13:51 +00004820 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhf66f26a2013-08-19 20:04:10 +00004821 if( pCur->eState!=CURSOR_VALID ){
drh036dbec2014-03-11 23:40:44 +00004822 invalidateOverflowCache(pCur);
drhf66f26a2013-08-19 20:04:10 +00004823 rc = restoreCursorPosition(pCur);
4824 if( rc!=SQLITE_OK ){
drh9b47ee32013-08-20 03:13:51 +00004825 *pRes = 0;
drhf66f26a2013-08-19 20:04:10 +00004826 return rc;
4827 }
4828 if( CURSOR_INVALID==pCur->eState ){
4829 *pRes = 1;
4830 return SQLITE_OK;
4831 }
drh9b47ee32013-08-20 03:13:51 +00004832 if( pCur->skipNext ){
4833 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4834 pCur->eState = CURSOR_VALID;
4835 if( pCur->skipNext>0 ){
4836 pCur->skipNext = 0;
4837 *pRes = 0;
4838 return SQLITE_OK;
4839 }
drhf66f26a2013-08-19 20:04:10 +00004840 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004841 }
danielk1977da184232006-01-05 11:34:32 +00004842 }
danielk1977da184232006-01-05 11:34:32 +00004843
danielk197771d5d2c2008-09-29 11:49:47 +00004844 pPage = pCur->apPage[pCur->iPage];
4845 idx = ++pCur->aiIdx[pCur->iPage];
4846 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004847
4848 /* If the database file is corrupt, it is possible for the value of idx
4849 ** to be invalid here. This can only occur if a second cursor modifies
4850 ** the page while cursor pCur is holding a reference to it. Which can
4851 ** only happen if the database is corrupt in such a way as to link the
4852 ** page into more than one b-tree structure. */
4853 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004854
drh271efa52004-05-30 19:19:05 +00004855 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004856 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004857 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004858 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004859 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh9b47ee32013-08-20 03:13:51 +00004860 if( rc ){
4861 *pRes = 0;
4862 return rc;
4863 }
drh5e2f8b92001-05-28 00:41:15 +00004864 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004865 *pRes = 0;
4866 return rc;
drh72f82862001-05-24 21:06:34 +00004867 }
drh5e2f8b92001-05-28 00:41:15 +00004868 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004869 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004870 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004871 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004872 return SQLITE_OK;
4873 }
danielk197730548662009-07-09 05:07:37 +00004874 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004875 pPage = pCur->apPage[pCur->iPage];
4876 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004877 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004878 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004879 rc = sqlite3BtreeNext(pCur, pRes);
4880 }else{
4881 rc = SQLITE_OK;
4882 }
4883 return rc;
drh8178a752003-01-05 21:41:40 +00004884 }
4885 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004886 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004887 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004888 }
drh5e2f8b92001-05-28 00:41:15 +00004889 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004890 return rc;
drh72f82862001-05-24 21:06:34 +00004891}
drhd677b3d2007-08-20 22:48:41 +00004892
drh72f82862001-05-24 21:06:34 +00004893
drh3b7511c2001-05-26 13:15:44 +00004894/*
drh2dcc9aa2002-12-04 13:40:25 +00004895** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004896** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004897** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004898** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00004899**
4900** The calling function will set *pRes to 0 or 1. The initial *pRes value
4901** will be 1 if the cursor being stepped corresponds to an SQL index and
4902** if this routine could have been skipped if that SQL index had been
4903** a unique index. Otherwise the caller will have set *pRes to zero.
4904** Zero is the common case. The btree implementation is free to use the
4905** initial *pRes value as a hint to improve performance, but the current
4906** SQLite btree implementation does not. (Note that the comdb2 btree
4907** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00004908*/
drhd094db12008-04-03 21:46:57 +00004909int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004910 int rc;
drh8178a752003-01-05 21:41:40 +00004911 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004912
drh1fee73e2007-08-29 04:00:57 +00004913 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00004914 assert( pRes!=0 );
drhe39a7322014-02-03 14:04:11 +00004915 assert( *pRes==0 || *pRes==1 );
drh9b47ee32013-08-20 03:13:51 +00004916 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drh036dbec2014-03-11 23:40:44 +00004917 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl);
drhf66f26a2013-08-19 20:04:10 +00004918 if( pCur->eState!=CURSOR_VALID ){
4919 if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){
4920 rc = btreeRestoreCursorPosition(pCur);
drh9b47ee32013-08-20 03:13:51 +00004921 if( rc!=SQLITE_OK ){
4922 *pRes = 0;
4923 return rc;
4924 }
drhf66f26a2013-08-19 20:04:10 +00004925 }
4926 if( CURSOR_INVALID==pCur->eState ){
4927 *pRes = 1;
4928 return SQLITE_OK;
4929 }
drh9b47ee32013-08-20 03:13:51 +00004930 if( pCur->skipNext ){
4931 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4932 pCur->eState = CURSOR_VALID;
4933 if( pCur->skipNext<0 ){
4934 pCur->skipNext = 0;
4935 *pRes = 0;
4936 return SQLITE_OK;
4937 }
drhf66f26a2013-08-19 20:04:10 +00004938 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004939 }
danielk1977da184232006-01-05 11:34:32 +00004940 }
danielk1977da184232006-01-05 11:34:32 +00004941
danielk197771d5d2c2008-09-29 11:49:47 +00004942 pPage = pCur->apPage[pCur->iPage];
4943 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004944 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004945 int idx = pCur->aiIdx[pCur->iPage];
4946 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004947 if( rc ){
drh9b47ee32013-08-20 03:13:51 +00004948 *pRes = 0;
drhd677b3d2007-08-20 22:48:41 +00004949 return rc;
4950 }
drh2dcc9aa2002-12-04 13:40:25 +00004951 rc = moveToRightmost(pCur);
4952 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004953 while( pCur->aiIdx[pCur->iPage]==0 ){
4954 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004955 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004956 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004957 return SQLITE_OK;
4958 }
danielk197730548662009-07-09 05:07:37 +00004959 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004960 }
drh271efa52004-05-30 19:19:05 +00004961 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004962 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004963
4964 pCur->aiIdx[pCur->iPage]--;
4965 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004966 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004967 rc = sqlite3BtreePrevious(pCur, pRes);
4968 }else{
4969 rc = SQLITE_OK;
4970 }
drh2dcc9aa2002-12-04 13:40:25 +00004971 }
drh8178a752003-01-05 21:41:40 +00004972 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004973 return rc;
4974}
4975
4976/*
drh3b7511c2001-05-26 13:15:44 +00004977** Allocate a new page from the database file.
4978**
danielk19773b8a05f2007-03-19 17:44:26 +00004979** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004980** has already been called on the new page.) The new page has also
4981** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004982** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004983**
4984** SQLITE_OK is returned on success. Any other return value indicates
4985** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004986** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004987**
drh82e647d2013-03-02 03:25:55 +00004988** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00004989** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004990** attempt to keep related pages close to each other in the database file,
4991** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004992**
drh82e647d2013-03-02 03:25:55 +00004993** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
4994** anywhere on the free-list, then it is guaranteed to be returned. If
4995** eMode is BTALLOC_LT then the page returned will be less than or equal
4996** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
4997** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00004998*/
drh4f0c5872007-03-26 22:05:01 +00004999static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005000 BtShared *pBt, /* The btree */
5001 MemPage **ppPage, /* Store pointer to the allocated page here */
5002 Pgno *pPgno, /* Store the page number here */
5003 Pgno nearby, /* Search for a page near this one */
5004 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005005){
drh3aac2dd2004-04-26 14:10:20 +00005006 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005007 int rc;
drh35cd6432009-06-05 14:17:21 +00005008 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005009 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005010 MemPage *pTrunk = 0;
5011 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005012 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005013
drh1fee73e2007-08-29 04:00:57 +00005014 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005015 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005016 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005017 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00005018 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005019 testcase( n==mxPage-1 );
5020 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005021 return SQLITE_CORRUPT_BKPT;
5022 }
drh3aac2dd2004-04-26 14:10:20 +00005023 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005024 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005025 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005026 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5027
drh82e647d2013-03-02 03:25:55 +00005028 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005029 ** shows that the page 'nearby' is somewhere on the free-list, then
5030 ** the entire-list will be searched for that page.
5031 */
5032#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005033 if( eMode==BTALLOC_EXACT ){
5034 if( nearby<=mxPage ){
5035 u8 eType;
5036 assert( nearby>0 );
5037 assert( pBt->autoVacuum );
5038 rc = ptrmapGet(pBt, nearby, &eType, 0);
5039 if( rc ) return rc;
5040 if( eType==PTRMAP_FREEPAGE ){
5041 searchList = 1;
5042 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005043 }
dan51f0b6d2013-02-22 20:16:34 +00005044 }else if( eMode==BTALLOC_LE ){
5045 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005046 }
5047#endif
5048
5049 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5050 ** first free-list trunk page. iPrevTrunk is initially 1.
5051 */
danielk19773b8a05f2007-03-19 17:44:26 +00005052 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005053 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005054 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005055
5056 /* The code within this loop is run only once if the 'searchList' variable
5057 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005058 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5059 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005060 */
5061 do {
5062 pPrevTrunk = pTrunk;
5063 if( pPrevTrunk ){
5064 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005065 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00005066 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005067 }
drhdf35a082009-07-09 02:24:35 +00005068 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005069 if( iTrunk>mxPage ){
5070 rc = SQLITE_CORRUPT_BKPT;
5071 }else{
drhb00fc3b2013-08-21 23:42:32 +00005072 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005073 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005074 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005075 pTrunk = 0;
5076 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005077 }
drhb07028f2011-10-14 21:49:18 +00005078 assert( pTrunk!=0 );
5079 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005080
drh93b4fc72011-04-07 14:47:01 +00005081 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005082 if( k==0 && !searchList ){
5083 /* The trunk has no leaves and the list is not being searched.
5084 ** So extract the trunk page itself and use it as the newly
5085 ** allocated page */
5086 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005087 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005088 if( rc ){
5089 goto end_allocate_page;
5090 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005091 *pPgno = iTrunk;
5092 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5093 *ppPage = pTrunk;
5094 pTrunk = 0;
5095 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005096 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005097 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005098 rc = SQLITE_CORRUPT_BKPT;
5099 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005100#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005101 }else if( searchList
5102 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5103 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005104 /* The list is being searched and this trunk page is the page
5105 ** to allocate, regardless of whether it has leaves.
5106 */
dan51f0b6d2013-02-22 20:16:34 +00005107 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005108 *ppPage = pTrunk;
5109 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005110 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005111 if( rc ){
5112 goto end_allocate_page;
5113 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005114 if( k==0 ){
5115 if( !pPrevTrunk ){
5116 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5117 }else{
danf48c3552010-08-23 15:41:24 +00005118 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5119 if( rc!=SQLITE_OK ){
5120 goto end_allocate_page;
5121 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005122 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5123 }
5124 }else{
5125 /* The trunk page is required by the caller but it contains
5126 ** pointers to free-list leaves. The first leaf becomes a trunk
5127 ** page in this case.
5128 */
5129 MemPage *pNewTrunk;
5130 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005131 if( iNewTrunk>mxPage ){
5132 rc = SQLITE_CORRUPT_BKPT;
5133 goto end_allocate_page;
5134 }
drhdf35a082009-07-09 02:24:35 +00005135 testcase( iNewTrunk==mxPage );
drhb00fc3b2013-08-21 23:42:32 +00005136 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005137 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005138 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005139 }
danielk19773b8a05f2007-03-19 17:44:26 +00005140 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005141 if( rc!=SQLITE_OK ){
5142 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005143 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005144 }
5145 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5146 put4byte(&pNewTrunk->aData[4], k-1);
5147 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005148 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005149 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005150 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005151 put4byte(&pPage1->aData[32], iNewTrunk);
5152 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005153 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005154 if( rc ){
5155 goto end_allocate_page;
5156 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005157 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5158 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005159 }
5160 pTrunk = 0;
5161 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5162#endif
danielk1977e5765212009-06-17 11:13:28 +00005163 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005164 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005165 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005166 Pgno iPage;
5167 unsigned char *aData = pTrunk->aData;
5168 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005169 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005170 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005171 if( eMode==BTALLOC_LE ){
5172 for(i=0; i<k; i++){
5173 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005174 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005175 closest = i;
5176 break;
5177 }
5178 }
5179 }else{
5180 int dist;
5181 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5182 for(i=1; i<k; i++){
5183 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5184 if( d2<dist ){
5185 closest = i;
5186 dist = d2;
5187 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005188 }
5189 }
5190 }else{
5191 closest = 0;
5192 }
5193
5194 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005195 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005196 if( iPage>mxPage ){
5197 rc = SQLITE_CORRUPT_BKPT;
5198 goto end_allocate_page;
5199 }
drhdf35a082009-07-09 02:24:35 +00005200 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005201 if( !searchList
5202 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5203 ){
danielk1977bea2a942009-01-20 17:06:27 +00005204 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005205 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005206 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5207 ": %d more free pages\n",
5208 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005209 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5210 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005211 if( closest<k-1 ){
5212 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5213 }
5214 put4byte(&aData[4], k-1);
drhb00fc3b2013-08-21 23:42:32 +00005215 noContent = !btreeGetHasContent(pBt, *pPgno) ? PAGER_GET_NOCONTENT : 0;
5216 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005217 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005218 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005219 if( rc!=SQLITE_OK ){
5220 releasePage(*ppPage);
5221 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005222 }
5223 searchList = 0;
5224 }
drhee696e22004-08-30 16:52:17 +00005225 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005226 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005227 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005228 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005229 }else{
danbc1a3c62013-02-23 16:40:46 +00005230 /* There are no pages on the freelist, so append a new page to the
5231 ** database image.
5232 **
5233 ** Normally, new pages allocated by this block can be requested from the
5234 ** pager layer with the 'no-content' flag set. This prevents the pager
5235 ** from trying to read the pages content from disk. However, if the
5236 ** current transaction has already run one or more incremental-vacuum
5237 ** steps, then the page we are about to allocate may contain content
5238 ** that is required in the event of a rollback. In this case, do
5239 ** not set the no-content flag. This causes the pager to load and journal
5240 ** the current page content before overwriting it.
5241 **
5242 ** Note that the pager will not actually attempt to load or journal
5243 ** content for any page that really does lie past the end of the database
5244 ** file on disk. So the effects of disabling the no-content optimization
5245 ** here are confined to those pages that lie between the end of the
5246 ** database image and the end of the database file.
5247 */
drhb00fc3b2013-08-21 23:42:32 +00005248 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)) ? PAGER_GET_NOCONTENT : 0;
danbc1a3c62013-02-23 16:40:46 +00005249
drhdd3cd972010-03-27 17:12:36 +00005250 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5251 if( rc ) return rc;
5252 pBt->nPage++;
5253 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005254
danielk1977afcdd022004-10-31 16:25:42 +00005255#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005256 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005257 /* If *pPgno refers to a pointer-map page, allocate two new pages
5258 ** at the end of the file instead of one. The first allocated page
5259 ** becomes a new pointer-map page, the second is used by the caller.
5260 */
danielk1977ac861692009-03-28 10:54:22 +00005261 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005262 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5263 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005264 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005265 if( rc==SQLITE_OK ){
5266 rc = sqlite3PagerWrite(pPg->pDbPage);
5267 releasePage(pPg);
5268 }
5269 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005270 pBt->nPage++;
5271 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005272 }
5273#endif
drhdd3cd972010-03-27 17:12:36 +00005274 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5275 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005276
danielk1977599fcba2004-11-08 07:13:13 +00005277 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005278 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005279 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005280 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005281 if( rc!=SQLITE_OK ){
5282 releasePage(*ppPage);
5283 }
drh3a4c1412004-05-09 20:40:11 +00005284 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005285 }
danielk1977599fcba2004-11-08 07:13:13 +00005286
5287 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005288
5289end_allocate_page:
5290 releasePage(pTrunk);
5291 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005292 if( rc==SQLITE_OK ){
5293 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5294 releasePage(*ppPage);
dan7df42ab2014-01-20 18:25:44 +00005295 *ppPage = 0;
danielk1977b247c212008-11-21 09:09:01 +00005296 return SQLITE_CORRUPT_BKPT;
5297 }
5298 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005299 }else{
5300 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005301 }
drh93b4fc72011-04-07 14:47:01 +00005302 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005303 return rc;
5304}
5305
5306/*
danielk1977bea2a942009-01-20 17:06:27 +00005307** This function is used to add page iPage to the database file free-list.
5308** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005309**
danielk1977bea2a942009-01-20 17:06:27 +00005310** The value passed as the second argument to this function is optional.
5311** If the caller happens to have a pointer to the MemPage object
5312** corresponding to page iPage handy, it may pass it as the second value.
5313** Otherwise, it may pass NULL.
5314**
5315** If a pointer to a MemPage object is passed as the second argument,
5316** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005317*/
danielk1977bea2a942009-01-20 17:06:27 +00005318static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5319 MemPage *pTrunk = 0; /* Free-list trunk page */
5320 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5321 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5322 MemPage *pPage; /* Page being freed. May be NULL. */
5323 int rc; /* Return Code */
5324 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005325
danielk1977bea2a942009-01-20 17:06:27 +00005326 assert( sqlite3_mutex_held(pBt->mutex) );
5327 assert( iPage>1 );
5328 assert( !pMemPage || pMemPage->pgno==iPage );
5329
5330 if( pMemPage ){
5331 pPage = pMemPage;
5332 sqlite3PagerRef(pPage->pDbPage);
5333 }else{
5334 pPage = btreePageLookup(pBt, iPage);
5335 }
drh3aac2dd2004-04-26 14:10:20 +00005336
drha34b6762004-05-07 13:30:42 +00005337 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005338 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005339 if( rc ) goto freepage_out;
5340 nFree = get4byte(&pPage1->aData[36]);
5341 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005342
drhc9166342012-01-05 23:32:06 +00005343 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005344 /* If the secure_delete option is enabled, then
5345 ** always fully overwrite deleted information with zeros.
5346 */
drhb00fc3b2013-08-21 23:42:32 +00005347 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005348 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005349 ){
5350 goto freepage_out;
5351 }
5352 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005353 }
drhfcce93f2006-02-22 03:08:32 +00005354
danielk1977687566d2004-11-02 12:56:41 +00005355 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005356 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005357 */
danielk197785d90ca2008-07-19 14:25:15 +00005358 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005359 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005360 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005361 }
danielk1977687566d2004-11-02 12:56:41 +00005362
danielk1977bea2a942009-01-20 17:06:27 +00005363 /* Now manipulate the actual database free-list structure. There are two
5364 ** possibilities. If the free-list is currently empty, or if the first
5365 ** trunk page in the free-list is full, then this page will become a
5366 ** new free-list trunk page. Otherwise, it will become a leaf of the
5367 ** first trunk page in the current free-list. This block tests if it
5368 ** is possible to add the page as a new free-list leaf.
5369 */
5370 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005371 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005372
5373 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005374 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005375 if( rc!=SQLITE_OK ){
5376 goto freepage_out;
5377 }
5378
5379 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005380 assert( pBt->usableSize>32 );
5381 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005382 rc = SQLITE_CORRUPT_BKPT;
5383 goto freepage_out;
5384 }
drheeb844a2009-08-08 18:01:07 +00005385 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005386 /* In this case there is room on the trunk page to insert the page
5387 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005388 **
5389 ** Note that the trunk page is not really full until it contains
5390 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5391 ** coded. But due to a coding error in versions of SQLite prior to
5392 ** 3.6.0, databases with freelist trunk pages holding more than
5393 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5394 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005395 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005396 ** for now. At some point in the future (once everyone has upgraded
5397 ** to 3.6.0 or later) we should consider fixing the conditional above
5398 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5399 */
danielk19773b8a05f2007-03-19 17:44:26 +00005400 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005401 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005402 put4byte(&pTrunk->aData[4], nLeaf+1);
5403 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005404 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005405 sqlite3PagerDontWrite(pPage->pDbPage);
5406 }
danielk1977bea2a942009-01-20 17:06:27 +00005407 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005408 }
drh3a4c1412004-05-09 20:40:11 +00005409 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005410 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005411 }
drh3b7511c2001-05-26 13:15:44 +00005412 }
danielk1977bea2a942009-01-20 17:06:27 +00005413
5414 /* If control flows to this point, then it was not possible to add the
5415 ** the page being freed as a leaf page of the first trunk in the free-list.
5416 ** Possibly because the free-list is empty, or possibly because the
5417 ** first trunk in the free-list is full. Either way, the page being freed
5418 ** will become the new first trunk page in the free-list.
5419 */
drhb00fc3b2013-08-21 23:42:32 +00005420 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005421 goto freepage_out;
5422 }
5423 rc = sqlite3PagerWrite(pPage->pDbPage);
5424 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005425 goto freepage_out;
5426 }
5427 put4byte(pPage->aData, iTrunk);
5428 put4byte(&pPage->aData[4], 0);
5429 put4byte(&pPage1->aData[32], iPage);
5430 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5431
5432freepage_out:
5433 if( pPage ){
5434 pPage->isInit = 0;
5435 }
5436 releasePage(pPage);
5437 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005438 return rc;
5439}
drhc314dc72009-07-21 11:52:34 +00005440static void freePage(MemPage *pPage, int *pRC){
5441 if( (*pRC)==SQLITE_OK ){
5442 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5443 }
danielk1977bea2a942009-01-20 17:06:27 +00005444}
drh3b7511c2001-05-26 13:15:44 +00005445
5446/*
drh3aac2dd2004-04-26 14:10:20 +00005447** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005448*/
drh3aac2dd2004-04-26 14:10:20 +00005449static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005450 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005451 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005452 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005453 int rc;
drh94440812007-03-06 11:42:19 +00005454 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005455 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005456
drh1fee73e2007-08-29 04:00:57 +00005457 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005458 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005459 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005460 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005461 }
drhe42a9b42011-08-31 13:27:19 +00005462 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005463 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005464 }
drh6f11bef2004-05-13 01:12:56 +00005465 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005466 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005467 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005468 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5469 assert( ovflPgno==0 || nOvfl>0 );
5470 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005471 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005472 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005473 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005474 /* 0 is not a legal page number and page 1 cannot be an
5475 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5476 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005477 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005478 }
danielk1977bea2a942009-01-20 17:06:27 +00005479 if( nOvfl ){
5480 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5481 if( rc ) return rc;
5482 }
dan887d4b22010-02-25 12:09:16 +00005483
shaneh1da207e2010-03-09 14:41:12 +00005484 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005485 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5486 ){
5487 /* There is no reason any cursor should have an outstanding reference
5488 ** to an overflow page belonging to a cell that is being deleted/updated.
5489 ** So if there exists more than one reference to this page, then it
5490 ** must not really be an overflow page and the database must be corrupt.
5491 ** It is helpful to detect this before calling freePage2(), as
5492 ** freePage2() may zero the page contents if secure-delete mode is
5493 ** enabled. If this 'overflow' page happens to be a page that the
5494 ** caller is iterating through or using in some other way, this
5495 ** can be problematic.
5496 */
5497 rc = SQLITE_CORRUPT_BKPT;
5498 }else{
5499 rc = freePage2(pBt, pOvfl, ovflPgno);
5500 }
5501
danielk1977bea2a942009-01-20 17:06:27 +00005502 if( pOvfl ){
5503 sqlite3PagerUnref(pOvfl->pDbPage);
5504 }
drh3b7511c2001-05-26 13:15:44 +00005505 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005506 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005507 }
drh5e2f8b92001-05-28 00:41:15 +00005508 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005509}
5510
5511/*
drh91025292004-05-03 19:49:32 +00005512** Create the byte sequence used to represent a cell on page pPage
5513** and write that byte sequence into pCell[]. Overflow pages are
5514** allocated and filled in as necessary. The calling procedure
5515** is responsible for making sure sufficient space has been allocated
5516** for pCell[].
5517**
5518** Note that pCell does not necessary need to point to the pPage->aData
5519** area. pCell might point to some temporary storage. The cell will
5520** be constructed in this temporary area then copied into pPage->aData
5521** later.
drh3b7511c2001-05-26 13:15:44 +00005522*/
5523static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005524 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005525 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005526 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005527 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005528 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005529 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005530){
drh3b7511c2001-05-26 13:15:44 +00005531 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005532 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005533 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005534 int spaceLeft;
5535 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005536 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005537 unsigned char *pPrior;
5538 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005539 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005540 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005541 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005542 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005543
drh1fee73e2007-08-29 04:00:57 +00005544 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005545
drhc5053fb2008-11-27 02:22:10 +00005546 /* pPage is not necessarily writeable since pCell might be auxiliary
5547 ** buffer space that is separate from the pPage buffer area */
5548 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5549 || sqlite3PagerIswriteable(pPage->pDbPage) );
5550
drh91025292004-05-03 19:49:32 +00005551 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005552 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005553 if( !pPage->leaf ){
5554 nHeader += 4;
5555 }
drh8b18dd42004-05-12 19:18:15 +00005556 if( pPage->hasData ){
drh7599d4a2013-12-09 00:47:11 +00005557 nHeader += putVarint32(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005558 }else{
drhb026e052007-05-02 01:34:31 +00005559 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005560 }
drh6f11bef2004-05-13 01:12:56 +00005561 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005562 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005563 assert( info.nHeader==nHeader );
5564 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005565 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005566
5567 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005568 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005569 if( pPage->intKey ){
5570 pSrc = pData;
5571 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005572 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005573 }else{
danielk197731d31b82009-07-13 13:18:07 +00005574 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5575 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005576 }
drhf49661a2008-12-10 16:45:50 +00005577 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005578 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005579 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005580 }
drh6f11bef2004-05-13 01:12:56 +00005581 *pnSize = info.nSize;
5582 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005583 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005584 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005585
drh3b7511c2001-05-26 13:15:44 +00005586 while( nPayload>0 ){
5587 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005588#ifndef SQLITE_OMIT_AUTOVACUUM
5589 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005590 if( pBt->autoVacuum ){
5591 do{
5592 pgnoOvfl++;
5593 } while(
5594 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5595 );
danielk1977b39f70b2007-05-17 18:28:11 +00005596 }
danielk1977afcdd022004-10-31 16:25:42 +00005597#endif
drhf49661a2008-12-10 16:45:50 +00005598 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005599#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005600 /* If the database supports auto-vacuum, and the second or subsequent
5601 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005602 ** for that page now.
5603 **
5604 ** If this is the first overflow page, then write a partial entry
5605 ** to the pointer-map. If we write nothing to this pointer-map slot,
5606 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005607 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005608 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005609 */
danielk19774ef24492007-05-23 09:52:41 +00005610 if( pBt->autoVacuum && rc==SQLITE_OK ){
5611 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005612 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005613 if( rc ){
5614 releasePage(pOvfl);
5615 }
danielk1977afcdd022004-10-31 16:25:42 +00005616 }
5617#endif
drh3b7511c2001-05-26 13:15:44 +00005618 if( rc ){
drh9b171272004-05-08 02:03:22 +00005619 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005620 return rc;
5621 }
drhc5053fb2008-11-27 02:22:10 +00005622
5623 /* If pToRelease is not zero than pPrior points into the data area
5624 ** of pToRelease. Make sure pToRelease is still writeable. */
5625 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5626
5627 /* If pPrior is part of the data area of pPage, then make sure pPage
5628 ** is still writeable */
5629 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5630 || sqlite3PagerIswriteable(pPage->pDbPage) );
5631
drh3aac2dd2004-04-26 14:10:20 +00005632 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005633 releasePage(pToRelease);
5634 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005635 pPrior = pOvfl->aData;
5636 put4byte(pPrior, 0);
5637 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005638 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005639 }
5640 n = nPayload;
5641 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005642
5643 /* If pToRelease is not zero than pPayload points into the data area
5644 ** of pToRelease. Make sure pToRelease is still writeable. */
5645 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5646
5647 /* If pPayload is part of the data area of pPage, then make sure pPage
5648 ** is still writeable */
5649 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5650 || sqlite3PagerIswriteable(pPage->pDbPage) );
5651
drhb026e052007-05-02 01:34:31 +00005652 if( nSrc>0 ){
5653 if( n>nSrc ) n = nSrc;
5654 assert( pSrc );
5655 memcpy(pPayload, pSrc, n);
5656 }else{
5657 memset(pPayload, 0, n);
5658 }
drh3b7511c2001-05-26 13:15:44 +00005659 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005660 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005661 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005662 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005663 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005664 if( nSrc==0 ){
5665 nSrc = nData;
5666 pSrc = pData;
5667 }
drhdd793422001-06-28 01:54:48 +00005668 }
drh9b171272004-05-08 02:03:22 +00005669 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005670 return SQLITE_OK;
5671}
5672
drh14acc042001-06-10 19:56:58 +00005673/*
5674** Remove the i-th cell from pPage. This routine effects pPage only.
5675** The cell content is not freed or deallocated. It is assumed that
5676** the cell content has been copied someplace else. This routine just
5677** removes the reference to the cell from pPage.
5678**
5679** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005680*/
drh98add2e2009-07-20 17:11:49 +00005681static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005682 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005683 u8 *data; /* pPage->aData */
5684 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005685 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005686 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005687
drh98add2e2009-07-20 17:11:49 +00005688 if( *pRC ) return;
5689
drh8c42ca92001-06-22 19:15:00 +00005690 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005691 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005692 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005693 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005694 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005695 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005696 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005697 hdr = pPage->hdrOffset;
5698 testcase( pc==get2byte(&data[hdr+5]) );
5699 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005700 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005701 *pRC = SQLITE_CORRUPT_BKPT;
5702 return;
shane0af3f892008-11-12 04:55:34 +00005703 }
shanedcc50b72008-11-13 18:29:50 +00005704 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005705 if( rc ){
5706 *pRC = rc;
5707 return;
shanedcc50b72008-11-13 18:29:50 +00005708 }
drh14acc042001-06-10 19:56:58 +00005709 pPage->nCell--;
drh9bb7c4f2013-12-09 01:58:11 +00005710 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
drhc314dc72009-07-21 11:52:34 +00005711 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005712 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005713}
5714
5715/*
5716** Insert a new cell on pPage at cell index "i". pCell points to the
5717** content of the cell.
5718**
5719** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005720** will not fit, then make a copy of the cell content into pTemp if
5721** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005722** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005723** in pTemp or the original pCell) and also record its index.
5724** Allocating a new entry in pPage->aCell[] implies that
5725** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005726**
5727** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5728** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005729** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005730** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005731*/
drh98add2e2009-07-20 17:11:49 +00005732static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005733 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005734 int i, /* New cell becomes the i-th cell of the page */
5735 u8 *pCell, /* Content of the new cell */
5736 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005737 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005738 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5739 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005740){
drh383d30f2010-02-26 13:07:37 +00005741 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005742 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005743 int end; /* First byte past the last cell pointer in data[] */
5744 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005745 int cellOffset; /* Address of first cell pointer in data[] */
5746 u8 *data; /* The content of the whole page */
danielk19774dbaa892009-06-16 16:50:22 +00005747 int nSkip = (iChild ? 4 : 0);
5748
drh98add2e2009-07-20 17:11:49 +00005749 if( *pRC ) return;
5750
drh43605152004-05-29 21:46:49 +00005751 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00005752 assert( MX_CELL(pPage->pBt)<=10921 );
5753 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00005754 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5755 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005756 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005757 /* The cell should normally be sized correctly. However, when moving a
5758 ** malformed cell from a leaf page to an interior page, if the cell size
5759 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5760 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5761 ** the term after the || in the following assert(). */
5762 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005763 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005764 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005765 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005766 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005767 }
danielk19774dbaa892009-06-16 16:50:22 +00005768 if( iChild ){
5769 put4byte(pCell, iChild);
5770 }
drh43605152004-05-29 21:46:49 +00005771 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005772 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5773 pPage->apOvfl[j] = pCell;
5774 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005775 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005776 int rc = sqlite3PagerWrite(pPage->pDbPage);
5777 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005778 *pRC = rc;
5779 return;
danielk19776e465eb2007-08-21 13:11:00 +00005780 }
5781 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005782 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005783 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005784 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005785 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005786 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005787 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005788 /* The allocateSpace() routine guarantees the following two properties
5789 ** if it returns success */
5790 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005791 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005792 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005793 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005794 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005795 if( iChild ){
5796 put4byte(&data[idx], iChild);
5797 }
drh8f518832013-12-09 02:32:19 +00005798 memmove(&data[ins+2], &data[ins], end-ins);
drh43605152004-05-29 21:46:49 +00005799 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005800 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005801#ifndef SQLITE_OMIT_AUTOVACUUM
5802 if( pPage->pBt->autoVacuum ){
5803 /* The cell may contain a pointer to an overflow page. If so, write
5804 ** the entry for the overflow page into the pointer map.
5805 */
drh98add2e2009-07-20 17:11:49 +00005806 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005807 }
5808#endif
drh14acc042001-06-10 19:56:58 +00005809 }
5810}
5811
5812/*
drhfa1a98a2004-05-14 19:08:17 +00005813** Add a list of cells to a page. The page should be initially empty.
5814** The cells are guaranteed to fit on the page.
5815*/
5816static void assemblePage(
5817 MemPage *pPage, /* The page to be assemblied */
5818 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005819 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005820 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005821){
5822 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005823 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005824 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005825 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5826 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5827 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005828
drh43605152004-05-29 21:46:49 +00005829 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005830 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005831 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5832 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005833 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005834
5835 /* Check that the page has just been zeroed by zeroPage() */
5836 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005837 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005838
drh3def2352011-11-11 00:27:15 +00005839 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005840 cellbody = nUsable;
5841 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005842 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005843 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005844 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005845 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005846 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005847 }
danielk1977fad91942009-04-29 17:49:59 +00005848 put2byte(&data[hdr+3], nCell);
5849 put2byte(&data[hdr+5], cellbody);
5850 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005851 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005852}
5853
drh14acc042001-06-10 19:56:58 +00005854/*
drhc3b70572003-01-04 19:44:07 +00005855** The following parameters determine how many adjacent pages get involved
5856** in a balancing operation. NN is the number of neighbors on either side
5857** of the page that participate in the balancing operation. NB is the
5858** total number of pages that participate, including the target page and
5859** NN neighbors on either side.
5860**
5861** The minimum value of NN is 1 (of course). Increasing NN above 1
5862** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5863** in exchange for a larger degradation in INSERT and UPDATE performance.
5864** The value of NN appears to give the best results overall.
5865*/
5866#define NN 1 /* Number of neighbors on either side of pPage */
5867#define NB (NN*2+1) /* Total pages involved in the balance */
5868
danielk1977ac245ec2005-01-14 13:50:11 +00005869
drh615ae552005-01-16 23:21:00 +00005870#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005871/*
5872** This version of balance() handles the common special case where
5873** a new entry is being inserted on the extreme right-end of the
5874** tree, in other words, when the new entry will become the largest
5875** entry in the tree.
5876**
drhc314dc72009-07-21 11:52:34 +00005877** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005878** a new page to the right-hand side and put the one new entry in
5879** that page. This leaves the right side of the tree somewhat
5880** unbalanced. But odds are that we will be inserting new entries
5881** at the end soon afterwards so the nearly empty page will quickly
5882** fill up. On average.
5883**
5884** pPage is the leaf page which is the right-most page in the tree.
5885** pParent is its parent. pPage must have a single overflow entry
5886** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005887**
5888** The pSpace buffer is used to store a temporary copy of the divider
5889** cell that will be inserted into pParent. Such a cell consists of a 4
5890** byte page number followed by a variable length integer. In other
5891** words, at most 13 bytes. Hence the pSpace buffer must be at
5892** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005893*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005894static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5895 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005896 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005897 int rc; /* Return Code */
5898 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005899
drh1fee73e2007-08-29 04:00:57 +00005900 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005901 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005902 assert( pPage->nOverflow==1 );
5903
drh5d433ce2010-08-14 16:02:52 +00005904 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00005905 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005906
danielk1977a50d9aa2009-06-08 14:49:45 +00005907 /* Allocate a new page. This page will become the right-sibling of
5908 ** pPage. Make the parent page writable, so that the new divider cell
5909 ** may be inserted. If both these operations are successful, proceed.
5910 */
drh4f0c5872007-03-26 22:05:01 +00005911 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005912
danielk1977eaa06f62008-09-18 17:34:44 +00005913 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005914
5915 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00005916 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00005917 u16 szCell = cellSizePtr(pPage, pCell);
5918 u8 *pStop;
5919
drhc5053fb2008-11-27 02:22:10 +00005920 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005921 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5922 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005923 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005924
5925 /* If this is an auto-vacuum database, update the pointer map
5926 ** with entries for the new page, and any pointer from the
5927 ** cell on the page to an overflow page. If either of these
5928 ** operations fails, the return code is set, but the contents
5929 ** of the parent page are still manipulated by thh code below.
5930 ** That is Ok, at this point the parent page is guaranteed to
5931 ** be marked as dirty. Returning an error code will cause a
5932 ** rollback, undoing any changes made to the parent page.
5933 */
5934 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005935 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5936 if( szCell>pNew->minLocal ){
5937 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005938 }
5939 }
danielk1977eaa06f62008-09-18 17:34:44 +00005940
danielk19776f235cc2009-06-04 14:46:08 +00005941 /* Create a divider cell to insert into pParent. The divider cell
5942 ** consists of a 4-byte page number (the page number of pPage) and
5943 ** a variable length key value (which must be the same value as the
5944 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005945 **
danielk19776f235cc2009-06-04 14:46:08 +00005946 ** To find the largest key value on pPage, first find the right-most
5947 ** cell on pPage. The first two fields of this cell are the
5948 ** record-length (a variable length integer at most 32-bits in size)
5949 ** and the key value (a variable length integer, may have any value).
5950 ** The first of the while(...) loops below skips over the record-length
5951 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005952 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005953 */
danielk1977eaa06f62008-09-18 17:34:44 +00005954 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005955 pStop = &pCell[9];
5956 while( (*(pCell++)&0x80) && pCell<pStop );
5957 pStop = &pCell[9];
5958 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5959
danielk19774dbaa892009-06-16 16:50:22 +00005960 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005961 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5962 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005963
5964 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005965 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5966
danielk1977e08a3c42008-09-18 18:17:03 +00005967 /* Release the reference to the new page. */
5968 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005969 }
5970
danielk1977eaa06f62008-09-18 17:34:44 +00005971 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005972}
drh615ae552005-01-16 23:21:00 +00005973#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005974
danielk19774dbaa892009-06-16 16:50:22 +00005975#if 0
drhc3b70572003-01-04 19:44:07 +00005976/*
danielk19774dbaa892009-06-16 16:50:22 +00005977** This function does not contribute anything to the operation of SQLite.
5978** it is sometimes activated temporarily while debugging code responsible
5979** for setting pointer-map entries.
5980*/
5981static int ptrmapCheckPages(MemPage **apPage, int nPage){
5982 int i, j;
5983 for(i=0; i<nPage; i++){
5984 Pgno n;
5985 u8 e;
5986 MemPage *pPage = apPage[i];
5987 BtShared *pBt = pPage->pBt;
5988 assert( pPage->isInit );
5989
5990 for(j=0; j<pPage->nCell; j++){
5991 CellInfo info;
5992 u8 *z;
5993
5994 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005995 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005996 if( info.iOverflow ){
5997 Pgno ovfl = get4byte(&z[info.iOverflow]);
5998 ptrmapGet(pBt, ovfl, &e, &n);
5999 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6000 }
6001 if( !pPage->leaf ){
6002 Pgno child = get4byte(z);
6003 ptrmapGet(pBt, child, &e, &n);
6004 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6005 }
6006 }
6007 if( !pPage->leaf ){
6008 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6009 ptrmapGet(pBt, child, &e, &n);
6010 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6011 }
6012 }
6013 return 1;
6014}
6015#endif
6016
danielk1977cd581a72009-06-23 15:43:39 +00006017/*
6018** This function is used to copy the contents of the b-tree node stored
6019** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6020** the pointer-map entries for each child page are updated so that the
6021** parent page stored in the pointer map is page pTo. If pFrom contained
6022** any cells with overflow page pointers, then the corresponding pointer
6023** map entries are also updated so that the parent page is page pTo.
6024**
6025** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006026** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006027**
danielk197730548662009-07-09 05:07:37 +00006028** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006029**
6030** The performance of this function is not critical. It is only used by
6031** the balance_shallower() and balance_deeper() procedures, neither of
6032** which are called often under normal circumstances.
6033*/
drhc314dc72009-07-21 11:52:34 +00006034static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6035 if( (*pRC)==SQLITE_OK ){
6036 BtShared * const pBt = pFrom->pBt;
6037 u8 * const aFrom = pFrom->aData;
6038 u8 * const aTo = pTo->aData;
6039 int const iFromHdr = pFrom->hdrOffset;
6040 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006041 int rc;
drhc314dc72009-07-21 11:52:34 +00006042 int iData;
6043
6044
6045 assert( pFrom->isInit );
6046 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006047 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006048
6049 /* Copy the b-tree node content from page pFrom to page pTo. */
6050 iData = get2byte(&aFrom[iFromHdr+5]);
6051 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6052 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6053
6054 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006055 ** match the new data. The initialization of pTo can actually fail under
6056 ** fairly obscure circumstances, even though it is a copy of initialized
6057 ** page pFrom.
6058 */
drhc314dc72009-07-21 11:52:34 +00006059 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006060 rc = btreeInitPage(pTo);
6061 if( rc!=SQLITE_OK ){
6062 *pRC = rc;
6063 return;
6064 }
drhc314dc72009-07-21 11:52:34 +00006065
6066 /* If this is an auto-vacuum database, update the pointer-map entries
6067 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6068 */
6069 if( ISAUTOVACUUM ){
6070 *pRC = setChildPtrmaps(pTo);
6071 }
danielk1977cd581a72009-06-23 15:43:39 +00006072 }
danielk1977cd581a72009-06-23 15:43:39 +00006073}
6074
6075/*
danielk19774dbaa892009-06-16 16:50:22 +00006076** This routine redistributes cells on the iParentIdx'th child of pParent
6077** (hereafter "the page") and up to 2 siblings so that all pages have about the
6078** same amount of free space. Usually a single sibling on either side of the
6079** page are used in the balancing, though both siblings might come from one
6080** side if the page is the first or last child of its parent. If the page
6081** has fewer than 2 siblings (something which can only happen if the page
6082** is a root page or a child of a root page) then all available siblings
6083** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006084**
danielk19774dbaa892009-06-16 16:50:22 +00006085** The number of siblings of the page might be increased or decreased by
6086** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006087**
danielk19774dbaa892009-06-16 16:50:22 +00006088** Note that when this routine is called, some of the cells on the page
6089** might not actually be stored in MemPage.aData[]. This can happen
6090** if the page is overfull. This routine ensures that all cells allocated
6091** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006092**
danielk19774dbaa892009-06-16 16:50:22 +00006093** In the course of balancing the page and its siblings, cells may be
6094** inserted into or removed from the parent page (pParent). Doing so
6095** may cause the parent page to become overfull or underfull. If this
6096** happens, it is the responsibility of the caller to invoke the correct
6097** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006098**
drh5e00f6c2001-09-13 13:46:56 +00006099** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006100** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006101** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006102**
6103** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006104** buffer big enough to hold one page. If while inserting cells into the parent
6105** page (pParent) the parent page becomes overfull, this buffer is
6106** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006107** a maximum of four divider cells into the parent page, and the maximum
6108** size of a cell stored within an internal node is always less than 1/4
6109** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6110** enough for all overflow cells.
6111**
6112** If aOvflSpace is set to a null pointer, this function returns
6113** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006114*/
mistachkine7c54162012-10-02 22:54:27 +00006115#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6116#pragma optimize("", off)
6117#endif
danielk19774dbaa892009-06-16 16:50:22 +00006118static int balance_nonroot(
6119 MemPage *pParent, /* Parent page of siblings being balanced */
6120 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006121 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006122 int isRoot, /* True if pParent is a root-page */
6123 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006124){
drh16a9b832007-05-05 18:39:25 +00006125 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006126 int nCell = 0; /* Number of cells in apCell[] */
6127 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006128 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006129 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006130 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006131 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006132 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006133 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006134 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006135 int usableSpace; /* Bytes in pPage beyond the header */
6136 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006137 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006138 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006139 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006140 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006141 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00006142 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00006143 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006144 u8 *pRight; /* Location in parent of right-sibling pointer */
6145 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006146 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6147 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006148 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006149 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006150 u8 *aSpace1; /* Space for copies of dividers cells */
6151 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00006152
danielk1977a50d9aa2009-06-08 14:49:45 +00006153 pBt = pParent->pBt;
6154 assert( sqlite3_mutex_held(pBt->mutex) );
6155 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006156
danielk1977e5765212009-06-17 11:13:28 +00006157#if 0
drh43605152004-05-29 21:46:49 +00006158 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006159#endif
drh2e38c322004-09-03 18:38:44 +00006160
danielk19774dbaa892009-06-16 16:50:22 +00006161 /* At this point pParent may have at most one overflow cell. And if
6162 ** this overflow cell is present, it must be the cell with
6163 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006164 ** is called (indirectly) from sqlite3BtreeDelete().
6165 */
danielk19774dbaa892009-06-16 16:50:22 +00006166 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006167 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006168
danielk197711a8a862009-06-17 11:49:52 +00006169 if( !aOvflSpace ){
6170 return SQLITE_NOMEM;
6171 }
6172
danielk1977a50d9aa2009-06-08 14:49:45 +00006173 /* Find the sibling pages to balance. Also locate the cells in pParent
6174 ** that divide the siblings. An attempt is made to find NN siblings on
6175 ** either side of pPage. More siblings are taken from one side, however,
6176 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006177 ** has NB or fewer children then all children of pParent are taken.
6178 **
6179 ** This loop also drops the divider cells from the parent page. This
6180 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006181 ** overflow cells in the parent page, since if any existed they will
6182 ** have already been removed.
6183 */
danielk19774dbaa892009-06-16 16:50:22 +00006184 i = pParent->nOverflow + pParent->nCell;
6185 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006186 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006187 }else{
dan7d6885a2012-08-08 14:04:56 +00006188 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006189 if( iParentIdx==0 ){
6190 nxDiv = 0;
6191 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006192 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006193 }else{
dan7d6885a2012-08-08 14:04:56 +00006194 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006195 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006196 }
dan7d6885a2012-08-08 14:04:56 +00006197 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006198 }
dan7d6885a2012-08-08 14:04:56 +00006199 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006200 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6201 pRight = &pParent->aData[pParent->hdrOffset+8];
6202 }else{
6203 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6204 }
6205 pgno = get4byte(pRight);
6206 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006207 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006208 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006209 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006210 goto balance_cleanup;
6211 }
danielk1977634f2982005-03-28 08:44:07 +00006212 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006213 if( (i--)==0 ) break;
6214
drh2cbd78b2012-02-02 19:37:18 +00006215 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6216 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006217 pgno = get4byte(apDiv[i]);
6218 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6219 pParent->nOverflow = 0;
6220 }else{
6221 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6222 pgno = get4byte(apDiv[i]);
6223 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6224
6225 /* Drop the cell from the parent page. apDiv[i] still points to
6226 ** the cell within the parent, even though it has been dropped.
6227 ** This is safe because dropping a cell only overwrites the first
6228 ** four bytes of it, and this function does not need the first
6229 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006230 ** later on.
6231 **
drh8a575d92011-10-12 17:00:28 +00006232 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006233 ** the dropCell() routine will overwrite the entire cell with zeroes.
6234 ** In this case, temporarily copy the cell into the aOvflSpace[]
6235 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6236 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006237 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006238 int iOff;
6239
6240 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006241 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006242 rc = SQLITE_CORRUPT_BKPT;
6243 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6244 goto balance_cleanup;
6245 }else{
6246 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6247 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6248 }
drh5b47efa2010-02-12 18:18:39 +00006249 }
drh98add2e2009-07-20 17:11:49 +00006250 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006251 }
drh8b2f49b2001-06-08 00:21:52 +00006252 }
6253
drha9121e42008-02-19 14:59:35 +00006254 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006255 ** alignment */
drha9121e42008-02-19 14:59:35 +00006256 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006257
drh8b2f49b2001-06-08 00:21:52 +00006258 /*
danielk1977634f2982005-03-28 08:44:07 +00006259 ** Allocate space for memory structures
6260 */
danielk19774dbaa892009-06-16 16:50:22 +00006261 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006262 szScratch =
drha9121e42008-02-19 14:59:35 +00006263 nMaxCells*sizeof(u8*) /* apCell */
6264 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006265 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006266 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006267 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006268 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006269 rc = SQLITE_NOMEM;
6270 goto balance_cleanup;
6271 }
drha9121e42008-02-19 14:59:35 +00006272 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006273 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006274 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006275
6276 /*
6277 ** Load pointers to all cells on sibling pages and the divider cells
6278 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006279 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006280 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006281 **
6282 ** If the siblings are on leaf pages, then the child pointers of the
6283 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006284 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006285 ** child pointers. If siblings are not leaves, then all cell in
6286 ** apCell[] include child pointers. Either way, all cells in apCell[]
6287 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006288 **
6289 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6290 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006291 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006292 leafCorrection = apOld[0]->leaf*4;
6293 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006294 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006295 int limit;
6296
6297 /* Before doing anything else, take a copy of the i'th original sibling
6298 ** The rest of this function will use data from the copies rather
6299 ** that the original pages since the original pages will be in the
6300 ** process of being overwritten. */
6301 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6302 memcpy(pOld, apOld[i], sizeof(MemPage));
6303 pOld->aData = (void*)&pOld[1];
6304 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6305
6306 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006307 if( pOld->nOverflow>0 ){
6308 for(j=0; j<limit; j++){
6309 assert( nCell<nMaxCells );
6310 apCell[nCell] = findOverflowCell(pOld, j);
6311 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6312 nCell++;
6313 }
6314 }else{
6315 u8 *aData = pOld->aData;
6316 u16 maskPage = pOld->maskPage;
6317 u16 cellOffset = pOld->cellOffset;
6318 for(j=0; j<limit; j++){
6319 assert( nCell<nMaxCells );
6320 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6321 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6322 nCell++;
6323 }
6324 }
danielk19774dbaa892009-06-16 16:50:22 +00006325 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006326 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006327 u8 *pTemp;
6328 assert( nCell<nMaxCells );
6329 szCell[nCell] = sz;
6330 pTemp = &aSpace1[iSpace1];
6331 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006332 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006333 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006334 memcpy(pTemp, apDiv[i], sz);
6335 apCell[nCell] = pTemp+leafCorrection;
6336 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006337 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006338 if( !pOld->leaf ){
6339 assert( leafCorrection==0 );
6340 assert( pOld->hdrOffset==0 );
6341 /* The right pointer of the child page pOld becomes the left
6342 ** pointer of the divider cell */
6343 memcpy(apCell[nCell], &pOld->aData[8], 4);
6344 }else{
6345 assert( leafCorrection==4 );
6346 if( szCell[nCell]<4 ){
6347 /* Do not allow any cells smaller than 4 bytes. */
6348 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006349 }
6350 }
drh14acc042001-06-10 19:56:58 +00006351 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006352 }
drh8b2f49b2001-06-08 00:21:52 +00006353 }
6354
6355 /*
drh6019e162001-07-02 17:51:45 +00006356 ** Figure out the number of pages needed to hold all nCell cells.
6357 ** Store this number in "k". Also compute szNew[] which is the total
6358 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006359 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006360 ** cntNew[k] should equal nCell.
6361 **
drh96f5b762004-05-16 16:24:36 +00006362 ** Values computed by this block:
6363 **
6364 ** k: The total number of sibling pages
6365 ** szNew[i]: Spaced used on the i-th sibling page.
6366 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6367 ** the right of the i-th sibling page.
6368 ** usableSpace: Number of bytes of space available on each sibling.
6369 **
drh8b2f49b2001-06-08 00:21:52 +00006370 */
drh43605152004-05-29 21:46:49 +00006371 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006372 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006373 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006374 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006375 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006376 szNew[k] = subtotal - szCell[i];
6377 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006378 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006379 subtotal = 0;
6380 k++;
drh9978c972010-02-23 17:36:32 +00006381 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006382 }
6383 }
6384 szNew[k] = subtotal;
6385 cntNew[k] = nCell;
6386 k++;
drh96f5b762004-05-16 16:24:36 +00006387
6388 /*
6389 ** The packing computed by the previous block is biased toward the siblings
6390 ** on the left side. The left siblings are always nearly full, while the
6391 ** right-most sibling might be nearly empty. This block of code attempts
6392 ** to adjust the packing of siblings to get a better balance.
6393 **
6394 ** This adjustment is more than an optimization. The packing above might
6395 ** be so out of balance as to be illegal. For example, the right-most
6396 ** sibling might be completely empty. This adjustment is not optional.
6397 */
drh6019e162001-07-02 17:51:45 +00006398 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006399 int szRight = szNew[i]; /* Size of sibling on the right */
6400 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6401 int r; /* Index of right-most cell in left sibling */
6402 int d; /* Index of first cell to the left of right sibling */
6403
6404 r = cntNew[i-1] - 1;
6405 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006406 assert( d<nMaxCells );
6407 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006408 while( szRight==0
6409 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6410 ){
drh43605152004-05-29 21:46:49 +00006411 szRight += szCell[d] + 2;
6412 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006413 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006414 r = cntNew[i-1] - 1;
6415 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006416 }
drh96f5b762004-05-16 16:24:36 +00006417 szNew[i] = szRight;
6418 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006419 }
drh09d0deb2005-08-02 17:13:09 +00006420
danielk19776f235cc2009-06-04 14:46:08 +00006421 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006422 ** a virtual root page. A virtual root page is when the real root
6423 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006424 **
6425 ** UPDATE: The assert() below is not necessarily true if the database
6426 ** file is corrupt. The corruption will be detected and reported later
6427 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006428 */
drh2f32fba2012-01-02 16:38:57 +00006429#if 0
drh09d0deb2005-08-02 17:13:09 +00006430 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006431#endif
drh8b2f49b2001-06-08 00:21:52 +00006432
danielk1977e5765212009-06-17 11:13:28 +00006433 TRACE(("BALANCE: old: %d %d %d ",
6434 apOld[0]->pgno,
6435 nOld>=2 ? apOld[1]->pgno : 0,
6436 nOld>=3 ? apOld[2]->pgno : 0
6437 ));
6438
drh8b2f49b2001-06-08 00:21:52 +00006439 /*
drh6b308672002-07-08 02:16:37 +00006440 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006441 */
drheac74422009-06-14 12:47:11 +00006442 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006443 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006444 goto balance_cleanup;
6445 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006446 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006447 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006448 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006449 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006450 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006451 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006452 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006453 nNew++;
danielk197728129562005-01-11 10:25:06 +00006454 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006455 }else{
drh7aa8f852006-03-28 00:24:44 +00006456 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006457 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006458 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006459 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006460 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006461
6462 /* Set the pointer-map entry for the new sibling page. */
6463 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006464 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006465 if( rc!=SQLITE_OK ){
6466 goto balance_cleanup;
6467 }
6468 }
drh6b308672002-07-08 02:16:37 +00006469 }
drh8b2f49b2001-06-08 00:21:52 +00006470 }
6471
danielk1977299b1872004-11-22 10:02:10 +00006472 /* Free any old pages that were not reused as new pages.
6473 */
6474 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006475 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006476 if( rc ) goto balance_cleanup;
6477 releasePage(apOld[i]);
6478 apOld[i] = 0;
6479 i++;
6480 }
6481
drh8b2f49b2001-06-08 00:21:52 +00006482 /*
drhf9ffac92002-03-02 19:00:31 +00006483 ** Put the new pages in accending order. This helps to
6484 ** keep entries in the disk file in order so that a scan
6485 ** of the table is a linear scan through the file. That
6486 ** in turn helps the operating system to deliver pages
6487 ** from the disk more rapidly.
6488 **
6489 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006490 ** n is never more than NB (a small constant), that should
6491 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006492 **
drhc3b70572003-01-04 19:44:07 +00006493 ** When NB==3, this one optimization makes the database
6494 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006495 */
6496 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006497 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006498 int minI = i;
6499 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006500 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006501 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006502 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006503 }
6504 }
6505 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006506 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006507 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006508 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006509 apNew[minI] = pT;
6510 }
6511 }
danielk1977e5765212009-06-17 11:13:28 +00006512 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006513 apNew[0]->pgno, szNew[0],
6514 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6515 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6516 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6517 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6518
6519 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6520 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006521
drhf9ffac92002-03-02 19:00:31 +00006522 /*
drh14acc042001-06-10 19:56:58 +00006523 ** Evenly distribute the data in apCell[] across the new pages.
6524 ** Insert divider cells into pParent as necessary.
6525 */
6526 j = 0;
6527 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006528 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006529 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006530 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006531 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006532 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006533 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006534 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006535
danielk1977ac11ee62005-01-15 12:45:51 +00006536 j = cntNew[i];
6537
6538 /* If the sibling page assembled above was not the right-most sibling,
6539 ** insert a divider cell into the parent page.
6540 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006541 assert( i<nNew-1 || j==nCell );
6542 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006543 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006544 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006545 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006546
6547 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006548 pCell = apCell[j];
6549 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006550 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006551 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006552 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006553 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006554 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006555 ** then there is no divider cell in apCell[]. Instead, the divider
6556 ** cell consists of the integer key for the right-most cell of
6557 ** the sibling-page assembled above only.
6558 */
drh6f11bef2004-05-13 01:12:56 +00006559 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006560 j--;
danielk197730548662009-07-09 05:07:37 +00006561 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006562 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006563 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006564 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006565 }else{
6566 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006567 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006568 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006569 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006570 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006571 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006572 ** insertCell(), so reparse the cell now.
6573 **
6574 ** Note that this can never happen in an SQLite data file, as all
6575 ** cells are at least 4 bytes. It only happens in b-trees used
6576 ** to evaluate "IN (SELECT ...)" and similar clauses.
6577 */
6578 if( szCell[j]==4 ){
6579 assert(leafCorrection==4);
6580 sz = cellSizePtr(pParent, pCell);
6581 }
drh4b70f112004-05-02 21:12:19 +00006582 }
danielk19776067a9b2009-06-09 09:41:00 +00006583 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006584 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006585 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006586 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006587 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006588 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006589
drh14acc042001-06-10 19:56:58 +00006590 j++;
6591 nxDiv++;
6592 }
6593 }
drh6019e162001-07-02 17:51:45 +00006594 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006595 assert( nOld>0 );
6596 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006597 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006598 u8 *zChild = &apCopy[nOld-1]->aData[8];
6599 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006600 }
6601
danielk197713bd99f2009-06-24 05:40:34 +00006602 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6603 /* The root page of the b-tree now contains no cells. The only sibling
6604 ** page is the right-child of the parent. Copy the contents of the
6605 ** child page into the parent, decreasing the overall height of the
6606 ** b-tree structure by one. This is described as the "balance-shallower"
6607 ** sub-algorithm in some documentation.
6608 **
6609 ** If this is an auto-vacuum database, the call to copyNodeContent()
6610 ** sets all pointer-map entries corresponding to database image pages
6611 ** for which the pointer is stored within the content being copied.
6612 **
6613 ** The second assert below verifies that the child page is defragmented
6614 ** (it must be, as it was just reconstructed using assemblePage()). This
6615 ** is important if the parent page happens to be page 1 of the database
6616 ** image. */
6617 assert( nNew==1 );
6618 assert( apNew[0]->nFree ==
6619 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6620 );
drhc314dc72009-07-21 11:52:34 +00006621 copyNodeContent(apNew[0], pParent, &rc);
6622 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006623 }else if( ISAUTOVACUUM ){
6624 /* Fix the pointer-map entries for all the cells that were shifted around.
6625 ** There are several different types of pointer-map entries that need to
6626 ** be dealt with by this routine. Some of these have been set already, but
6627 ** many have not. The following is a summary:
6628 **
6629 ** 1) The entries associated with new sibling pages that were not
6630 ** siblings when this function was called. These have already
6631 ** been set. We don't need to worry about old siblings that were
6632 ** moved to the free-list - the freePage() code has taken care
6633 ** of those.
6634 **
6635 ** 2) The pointer-map entries associated with the first overflow
6636 ** page in any overflow chains used by new divider cells. These
6637 ** have also already been taken care of by the insertCell() code.
6638 **
6639 ** 3) If the sibling pages are not leaves, then the child pages of
6640 ** cells stored on the sibling pages may need to be updated.
6641 **
6642 ** 4) If the sibling pages are not internal intkey nodes, then any
6643 ** overflow pages used by these cells may need to be updated
6644 ** (internal intkey nodes never contain pointers to overflow pages).
6645 **
6646 ** 5) If the sibling pages are not leaves, then the pointer-map
6647 ** entries for the right-child pages of each sibling may need
6648 ** to be updated.
6649 **
6650 ** Cases 1 and 2 are dealt with above by other code. The next
6651 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6652 ** setting a pointer map entry is a relatively expensive operation, this
6653 ** code only sets pointer map entries for child or overflow pages that have
6654 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006655 MemPage *pNew = apNew[0];
6656 MemPage *pOld = apCopy[0];
6657 int nOverflow = pOld->nOverflow;
6658 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006659 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006660 j = 0; /* Current 'old' sibling page */
6661 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006662 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006663 int isDivider = 0;
6664 while( i==iNextOld ){
6665 /* Cell i is the cell immediately following the last cell on old
6666 ** sibling page j. If the siblings are not leaf pages of an
6667 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006668 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006669 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006670 pOld = apCopy[++j];
6671 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6672 if( pOld->nOverflow ){
6673 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006674 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006675 }
6676 isDivider = !leafData;
6677 }
6678
6679 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006680 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6681 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006682 if( i==iOverflow ){
6683 isDivider = 1;
6684 if( (--nOverflow)>0 ){
6685 iOverflow++;
6686 }
6687 }
6688
6689 if( i==cntNew[k] ){
6690 /* Cell i is the cell immediately following the last cell on new
6691 ** sibling page k. If the siblings are not leaf pages of an
6692 ** intkey b-tree, then cell i is a divider cell. */
6693 pNew = apNew[++k];
6694 if( !leafData ) continue;
6695 }
danielk19774dbaa892009-06-16 16:50:22 +00006696 assert( j<nOld );
6697 assert( k<nNew );
6698
6699 /* If the cell was originally divider cell (and is not now) or
6700 ** an overflow cell, or if the cell was located on a different sibling
6701 ** page before the balancing, then the pointer map entries associated
6702 ** with any child or overflow pages need to be updated. */
6703 if( isDivider || pOld->pgno!=pNew->pgno ){
6704 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006705 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006706 }
drh98add2e2009-07-20 17:11:49 +00006707 if( szCell[i]>pNew->minLocal ){
6708 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006709 }
6710 }
6711 }
6712
6713 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006714 for(i=0; i<nNew; i++){
6715 u32 key = get4byte(&apNew[i]->aData[8]);
6716 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006717 }
6718 }
6719
6720#if 0
6721 /* The ptrmapCheckPages() contains assert() statements that verify that
6722 ** all pointer map pages are set correctly. This is helpful while
6723 ** debugging. This is usually disabled because a corrupt database may
6724 ** cause an assert() statement to fail. */
6725 ptrmapCheckPages(apNew, nNew);
6726 ptrmapCheckPages(&pParent, 1);
6727#endif
6728 }
6729
danielk197771d5d2c2008-09-29 11:49:47 +00006730 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006731 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6732 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006733
drh8b2f49b2001-06-08 00:21:52 +00006734 /*
drh14acc042001-06-10 19:56:58 +00006735 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006736 */
drh14acc042001-06-10 19:56:58 +00006737balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006738 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006739 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006740 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006741 }
drh14acc042001-06-10 19:56:58 +00006742 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006743 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006744 }
danielk1977eaa06f62008-09-18 17:34:44 +00006745
drh8b2f49b2001-06-08 00:21:52 +00006746 return rc;
6747}
mistachkine7c54162012-10-02 22:54:27 +00006748#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6749#pragma optimize("", on)
6750#endif
drh8b2f49b2001-06-08 00:21:52 +00006751
drh43605152004-05-29 21:46:49 +00006752
6753/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006754** This function is called when the root page of a b-tree structure is
6755** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006756**
danielk1977a50d9aa2009-06-08 14:49:45 +00006757** A new child page is allocated and the contents of the current root
6758** page, including overflow cells, are copied into the child. The root
6759** page is then overwritten to make it an empty page with the right-child
6760** pointer pointing to the new page.
6761**
6762** Before returning, all pointer-map entries corresponding to pages
6763** that the new child-page now contains pointers to are updated. The
6764** entry corresponding to the new right-child pointer of the root
6765** page is also updated.
6766**
6767** If successful, *ppChild is set to contain a reference to the child
6768** page and SQLITE_OK is returned. In this case the caller is required
6769** to call releasePage() on *ppChild exactly once. If an error occurs,
6770** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006771*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006772static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6773 int rc; /* Return value from subprocedures */
6774 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006775 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006776 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006777
danielk1977a50d9aa2009-06-08 14:49:45 +00006778 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006779 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006780
danielk1977a50d9aa2009-06-08 14:49:45 +00006781 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6782 ** page that will become the new right-child of pPage. Copy the contents
6783 ** of the node stored on pRoot into the new child page.
6784 */
drh98add2e2009-07-20 17:11:49 +00006785 rc = sqlite3PagerWrite(pRoot->pDbPage);
6786 if( rc==SQLITE_OK ){
6787 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006788 copyNodeContent(pRoot, pChild, &rc);
6789 if( ISAUTOVACUUM ){
6790 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006791 }
6792 }
6793 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006794 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006795 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006796 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006797 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006798 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6799 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6800 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006801
danielk1977a50d9aa2009-06-08 14:49:45 +00006802 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6803
6804 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006805 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6806 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6807 memcpy(pChild->apOvfl, pRoot->apOvfl,
6808 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006809 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006810
6811 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6812 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6813 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6814
6815 *ppChild = pChild;
6816 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006817}
6818
6819/*
danielk197771d5d2c2008-09-29 11:49:47 +00006820** The page that pCur currently points to has just been modified in
6821** some way. This function figures out if this modification means the
6822** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006823** routine. Balancing routines are:
6824**
6825** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006826** balance_deeper()
6827** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006828*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006829static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006830 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006831 const int nMin = pCur->pBt->usableSize * 2 / 3;
6832 u8 aBalanceQuickSpace[13];
6833 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006834
shane75ac1de2009-06-09 18:58:52 +00006835 TESTONLY( int balance_quick_called = 0 );
6836 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006837
6838 do {
6839 int iPage = pCur->iPage;
6840 MemPage *pPage = pCur->apPage[iPage];
6841
6842 if( iPage==0 ){
6843 if( pPage->nOverflow ){
6844 /* The root page of the b-tree is overfull. In this case call the
6845 ** balance_deeper() function to create a new child for the root-page
6846 ** and copy the current contents of the root-page to it. The
6847 ** next iteration of the do-loop will balance the child page.
6848 */
6849 assert( (balance_deeper_called++)==0 );
6850 rc = balance_deeper(pPage, &pCur->apPage[1]);
6851 if( rc==SQLITE_OK ){
6852 pCur->iPage = 1;
6853 pCur->aiIdx[0] = 0;
6854 pCur->aiIdx[1] = 0;
6855 assert( pCur->apPage[1]->nOverflow );
6856 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006857 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006858 break;
6859 }
6860 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6861 break;
6862 }else{
6863 MemPage * const pParent = pCur->apPage[iPage-1];
6864 int const iIdx = pCur->aiIdx[iPage-1];
6865
6866 rc = sqlite3PagerWrite(pParent->pDbPage);
6867 if( rc==SQLITE_OK ){
6868#ifndef SQLITE_OMIT_QUICKBALANCE
6869 if( pPage->hasData
6870 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006871 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006872 && pParent->pgno!=1
6873 && pParent->nCell==iIdx
6874 ){
6875 /* Call balance_quick() to create a new sibling of pPage on which
6876 ** to store the overflow cell. balance_quick() inserts a new cell
6877 ** into pParent, which may cause pParent overflow. If this
6878 ** happens, the next interation of the do-loop will balance pParent
6879 ** use either balance_nonroot() or balance_deeper(). Until this
6880 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6881 ** buffer.
6882 **
6883 ** The purpose of the following assert() is to check that only a
6884 ** single call to balance_quick() is made for each call to this
6885 ** function. If this were not verified, a subtle bug involving reuse
6886 ** of the aBalanceQuickSpace[] might sneak in.
6887 */
6888 assert( (balance_quick_called++)==0 );
6889 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6890 }else
6891#endif
6892 {
6893 /* In this case, call balance_nonroot() to redistribute cells
6894 ** between pPage and up to 2 of its sibling pages. This involves
6895 ** modifying the contents of pParent, which may cause pParent to
6896 ** become overfull or underfull. The next iteration of the do-loop
6897 ** will balance the parent page to correct this.
6898 **
6899 ** If the parent page becomes overfull, the overflow cell or cells
6900 ** are stored in the pSpace buffer allocated immediately below.
6901 ** A subsequent iteration of the do-loop will deal with this by
6902 ** calling balance_nonroot() (balance_deeper() may be called first,
6903 ** but it doesn't deal with overflow cells - just moves them to a
6904 ** different page). Once this subsequent call to balance_nonroot()
6905 ** has completed, it is safe to release the pSpace buffer used by
6906 ** the previous call, as the overflow cell data will have been
6907 ** copied either into the body of a database page or into the new
6908 ** pSpace buffer passed to the latter call to balance_nonroot().
6909 */
6910 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00006911 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00006912 if( pFree ){
6913 /* If pFree is not NULL, it points to the pSpace buffer used
6914 ** by a previous call to balance_nonroot(). Its contents are
6915 ** now stored either on real database pages or within the
6916 ** new pSpace buffer, so it may be safely freed here. */
6917 sqlite3PageFree(pFree);
6918 }
6919
danielk19774dbaa892009-06-16 16:50:22 +00006920 /* The pSpace buffer will be freed after the next call to
6921 ** balance_nonroot(), or just before this function returns, whichever
6922 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006923 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006924 }
6925 }
6926
6927 pPage->nOverflow = 0;
6928
6929 /* The next iteration of the do-loop balances the parent page. */
6930 releasePage(pPage);
6931 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006932 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006933 }while( rc==SQLITE_OK );
6934
6935 if( pFree ){
6936 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006937 }
6938 return rc;
6939}
6940
drhf74b8d92002-09-01 23:20:45 +00006941
6942/*
drh3b7511c2001-05-26 13:15:44 +00006943** Insert a new record into the BTree. The key is given by (pKey,nKey)
6944** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006945** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006946** is left pointing at a random location.
6947**
6948** For an INTKEY table, only the nKey value of the key is used. pKey is
6949** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006950**
6951** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006952** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006953** been performed. seekResult is the search result returned (a negative
6954** number if pCur points at an entry that is smaller than (pKey, nKey), or
6955** a positive value if pCur points at an etry that is larger than
6956** (pKey, nKey)).
6957**
drh3e9ca092009-09-08 01:14:48 +00006958** If the seekResult parameter is non-zero, then the caller guarantees that
6959** cursor pCur is pointing at the existing copy of a row that is to be
6960** overwritten. If the seekResult parameter is 0, then cursor pCur may
6961** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006962** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006963*/
drh3aac2dd2004-04-26 14:10:20 +00006964int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006965 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006966 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006967 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006968 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006969 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006970 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006971){
drh3b7511c2001-05-26 13:15:44 +00006972 int rc;
drh3e9ca092009-09-08 01:14:48 +00006973 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006974 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006975 int idx;
drh3b7511c2001-05-26 13:15:44 +00006976 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006977 Btree *p = pCur->pBtree;
6978 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006979 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006980 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006981
drh98add2e2009-07-20 17:11:49 +00006982 if( pCur->eState==CURSOR_FAULT ){
6983 assert( pCur->skipNext!=SQLITE_OK );
6984 return pCur->skipNext;
6985 }
6986
drh1fee73e2007-08-29 04:00:57 +00006987 assert( cursorHoldsMutex(pCur) );
drh036dbec2014-03-11 23:40:44 +00006988 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00006989 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006990 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6991
danielk197731d31b82009-07-13 13:18:07 +00006992 /* Assert that the caller has been consistent. If this cursor was opened
6993 ** expecting an index b-tree, then the caller should be inserting blob
6994 ** keys with no associated data. If the cursor was opened expecting an
6995 ** intkey table, the caller should be inserting integer keys with a
6996 ** blob of associated data. */
6997 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6998
danielk19779c3acf32009-05-02 07:36:49 +00006999 /* Save the positions of any other cursors open on this table.
7000 **
danielk19773509a652009-07-06 18:56:13 +00007001 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007002 ** example, when inserting data into a table with auto-generated integer
7003 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7004 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007005 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007006 ** that the cursor is already where it needs to be and returns without
7007 ** doing any work. To avoid thwarting these optimizations, it is important
7008 ** not to clear the cursor here.
7009 */
drh4c301aa2009-07-15 17:25:45 +00007010 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7011 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007012
drhd60f4f42012-03-23 14:23:52 +00007013 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00007014 /* If this is an insert into a table b-tree, invalidate any incrblob
7015 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007016 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007017
7018 /* If the cursor is currently on the last row and we are appending a
7019 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7020 ** call */
drh036dbec2014-03-11 23:40:44 +00007021 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 && pCur->info.nKey==nKey-1 ){
drhe0670b62014-02-12 21:31:12 +00007022 loc = -1;
7023 }
drhd60f4f42012-03-23 14:23:52 +00007024 }
7025
drh4c301aa2009-07-15 17:25:45 +00007026 if( !loc ){
7027 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7028 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007029 }
danielk1977b980d2212009-06-22 18:03:51 +00007030 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007031
danielk197771d5d2c2008-09-29 11:49:47 +00007032 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007033 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007034 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007035
drh3a4c1412004-05-09 20:40:11 +00007036 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7037 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7038 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007039 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007040 allocateTempSpace(pBt);
7041 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00007042 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00007043 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007044 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00007045 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007046 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007047 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007048 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007049 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007050 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007051 rc = sqlite3PagerWrite(pPage->pDbPage);
7052 if( rc ){
7053 goto end_insert;
7054 }
danielk197771d5d2c2008-09-29 11:49:47 +00007055 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007056 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007057 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007058 }
drh43605152004-05-29 21:46:49 +00007059 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00007060 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00007061 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007062 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007063 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007064 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007065 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007066 }else{
drh4b70f112004-05-02 21:12:19 +00007067 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007068 }
drh98add2e2009-07-20 17:11:49 +00007069 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007070 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007071
mistachkin48864df2013-03-21 21:20:32 +00007072 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007073 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007074 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007075 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007076 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007077 ** Previous versions of SQLite called moveToRoot() to move the cursor
7078 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007079 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7080 ** set the cursor state to "invalid". This makes common insert operations
7081 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007082 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007083 ** There is a subtle but important optimization here too. When inserting
7084 ** multiple records into an intkey b-tree using a single cursor (as can
7085 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7086 ** is advantageous to leave the cursor pointing to the last entry in
7087 ** the b-tree if possible. If the cursor is left pointing to the last
7088 ** entry in the table, and the next row inserted has an integer key
7089 ** larger than the largest existing key, it is possible to insert the
7090 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007091 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007092 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007093 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00007094 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00007095 rc = balance(pCur);
7096
7097 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007098 ** fails. Internal data structure corruption will result otherwise.
7099 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7100 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007101 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007102 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007103 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007104 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007105
drh2e38c322004-09-03 18:38:44 +00007106end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007107 return rc;
7108}
7109
7110/*
drh4b70f112004-05-02 21:12:19 +00007111** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00007112** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007113*/
drh3aac2dd2004-04-26 14:10:20 +00007114int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007115 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007116 BtShared *pBt = p->pBt;
7117 int rc; /* Return code */
7118 MemPage *pPage; /* Page to delete cell from */
7119 unsigned char *pCell; /* Pointer to cell to delete */
7120 int iCellIdx; /* Index of cell to delete */
7121 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00007122
drh1fee73e2007-08-29 04:00:57 +00007123 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007124 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007125 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00007126 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00007127 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7128 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7129
danielk19774dbaa892009-06-16 16:50:22 +00007130 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7131 || NEVER(pCur->eState!=CURSOR_VALID)
7132 ){
7133 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007134 }
danielk1977da184232006-01-05 11:34:32 +00007135
danielk19774dbaa892009-06-16 16:50:22 +00007136 iCellDepth = pCur->iPage;
7137 iCellIdx = pCur->aiIdx[iCellDepth];
7138 pPage = pCur->apPage[iCellDepth];
7139 pCell = findCell(pPage, iCellIdx);
7140
7141 /* If the page containing the entry to delete is not a leaf page, move
7142 ** the cursor to the largest entry in the tree that is smaller than
7143 ** the entry being deleted. This cell will replace the cell being deleted
7144 ** from the internal node. The 'previous' entry is used for this instead
7145 ** of the 'next' entry, as the previous entry is always a part of the
7146 ** sub-tree headed by the child page of the cell being deleted. This makes
7147 ** balancing the tree following the delete operation easier. */
7148 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00007149 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00007150 rc = sqlite3BtreePrevious(pCur, &notUsed);
7151 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007152 }
7153
7154 /* Save the positions of any other cursors open on this table before
7155 ** making any modifications. Make the page containing the entry to be
7156 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007157 ** entry and finally remove the cell itself from within the page.
7158 */
7159 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7160 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007161
7162 /* If this is a delete operation to remove a row from a table b-tree,
7163 ** invalidate any incrblob cursors open on the row being deleted. */
7164 if( pCur->pKeyInfo==0 ){
7165 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7166 }
7167
drha4ec1d42009-07-11 13:13:11 +00007168 rc = sqlite3PagerWrite(pPage->pDbPage);
7169 if( rc ) return rc;
7170 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00007171 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00007172 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007173
danielk19774dbaa892009-06-16 16:50:22 +00007174 /* If the cell deleted was not located on a leaf page, then the cursor
7175 ** is currently pointing to the largest entry in the sub-tree headed
7176 ** by the child-page of the cell that was just deleted from an internal
7177 ** node. The cell from the leaf node needs to be moved to the internal
7178 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007179 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007180 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7181 int nCell;
7182 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7183 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007184
danielk19774dbaa892009-06-16 16:50:22 +00007185 pCell = findCell(pLeaf, pLeaf->nCell-1);
7186 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007187 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007188
danielk19774dbaa892009-06-16 16:50:22 +00007189 allocateTempSpace(pBt);
7190 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00007191
drha4ec1d42009-07-11 13:13:11 +00007192 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007193 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7194 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007195 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007196 }
danielk19774dbaa892009-06-16 16:50:22 +00007197
7198 /* Balance the tree. If the entry deleted was located on a leaf page,
7199 ** then the cursor still points to that page. In this case the first
7200 ** call to balance() repairs the tree, and the if(...) condition is
7201 ** never true.
7202 **
7203 ** Otherwise, if the entry deleted was on an internal node page, then
7204 ** pCur is pointing to the leaf page from which a cell was removed to
7205 ** replace the cell deleted from the internal node. This is slightly
7206 ** tricky as the leaf node may be underfull, and the internal node may
7207 ** be either under or overfull. In this case run the balancing algorithm
7208 ** on the leaf node first. If the balance proceeds far enough up the
7209 ** tree that we can be sure that any problem in the internal node has
7210 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7211 ** walk the cursor up the tree to the internal node and balance it as
7212 ** well. */
7213 rc = balance(pCur);
7214 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7215 while( pCur->iPage>iCellDepth ){
7216 releasePage(pCur->apPage[pCur->iPage--]);
7217 }
7218 rc = balance(pCur);
7219 }
7220
danielk19776b456a22005-03-21 04:04:02 +00007221 if( rc==SQLITE_OK ){
7222 moveToRoot(pCur);
7223 }
drh5e2f8b92001-05-28 00:41:15 +00007224 return rc;
drh3b7511c2001-05-26 13:15:44 +00007225}
drh8b2f49b2001-06-08 00:21:52 +00007226
7227/*
drhc6b52df2002-01-04 03:09:29 +00007228** Create a new BTree table. Write into *piTable the page
7229** number for the root page of the new table.
7230**
drhab01f612004-05-22 02:55:23 +00007231** The type of type is determined by the flags parameter. Only the
7232** following values of flags are currently in use. Other values for
7233** flags might not work:
7234**
7235** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7236** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007237*/
drhd4187c72010-08-30 22:15:45 +00007238static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007239 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007240 MemPage *pRoot;
7241 Pgno pgnoRoot;
7242 int rc;
drhd4187c72010-08-30 22:15:45 +00007243 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007244
drh1fee73e2007-08-29 04:00:57 +00007245 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007246 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007247 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007248
danielk1977003ba062004-11-04 02:57:33 +00007249#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007250 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007251 if( rc ){
7252 return rc;
7253 }
danielk1977003ba062004-11-04 02:57:33 +00007254#else
danielk1977687566d2004-11-02 12:56:41 +00007255 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007256 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7257 MemPage *pPageMove; /* The page to move to. */
7258
danielk197720713f32007-05-03 11:43:33 +00007259 /* Creating a new table may probably require moving an existing database
7260 ** to make room for the new tables root page. In case this page turns
7261 ** out to be an overflow page, delete all overflow page-map caches
7262 ** held by open cursors.
7263 */
danielk197792d4d7a2007-05-04 12:05:56 +00007264 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007265
danielk1977003ba062004-11-04 02:57:33 +00007266 /* Read the value of meta[3] from the database to determine where the
7267 ** root page of the new table should go. meta[3] is the largest root-page
7268 ** created so far, so the new root-page is (meta[3]+1).
7269 */
danielk1977602b4662009-07-02 07:47:33 +00007270 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007271 pgnoRoot++;
7272
danielk1977599fcba2004-11-08 07:13:13 +00007273 /* The new root-page may not be allocated on a pointer-map page, or the
7274 ** PENDING_BYTE page.
7275 */
drh72190432008-01-31 14:54:43 +00007276 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007277 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007278 pgnoRoot++;
7279 }
7280 assert( pgnoRoot>=3 );
7281
7282 /* Allocate a page. The page that currently resides at pgnoRoot will
7283 ** be moved to the allocated page (unless the allocated page happens
7284 ** to reside at pgnoRoot).
7285 */
dan51f0b6d2013-02-22 20:16:34 +00007286 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007287 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007288 return rc;
7289 }
danielk1977003ba062004-11-04 02:57:33 +00007290
7291 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007292 /* pgnoRoot is the page that will be used for the root-page of
7293 ** the new table (assuming an error did not occur). But we were
7294 ** allocated pgnoMove. If required (i.e. if it was not allocated
7295 ** by extending the file), the current page at position pgnoMove
7296 ** is already journaled.
7297 */
drheeb844a2009-08-08 18:01:07 +00007298 u8 eType = 0;
7299 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007300
danf7679ad2013-04-03 11:38:36 +00007301 /* Save the positions of any open cursors. This is required in
7302 ** case they are holding a reference to an xFetch reference
7303 ** corresponding to page pgnoRoot. */
7304 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007305 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007306 if( rc!=SQLITE_OK ){
7307 return rc;
7308 }
danielk1977f35843b2007-04-07 15:03:17 +00007309
7310 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00007311 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007312 if( rc!=SQLITE_OK ){
7313 return rc;
7314 }
7315 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007316 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7317 rc = SQLITE_CORRUPT_BKPT;
7318 }
7319 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007320 releasePage(pRoot);
7321 return rc;
7322 }
drhccae6022005-02-26 17:31:26 +00007323 assert( eType!=PTRMAP_ROOTPAGE );
7324 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007325 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007326 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007327
7328 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007329 if( rc!=SQLITE_OK ){
7330 return rc;
7331 }
drhb00fc3b2013-08-21 23:42:32 +00007332 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007333 if( rc!=SQLITE_OK ){
7334 return rc;
7335 }
danielk19773b8a05f2007-03-19 17:44:26 +00007336 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007337 if( rc!=SQLITE_OK ){
7338 releasePage(pRoot);
7339 return rc;
7340 }
7341 }else{
7342 pRoot = pPageMove;
7343 }
7344
danielk197742741be2005-01-08 12:42:39 +00007345 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007346 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007347 if( rc ){
7348 releasePage(pRoot);
7349 return rc;
7350 }
drhbf592832010-03-30 15:51:12 +00007351
7352 /* When the new root page was allocated, page 1 was made writable in
7353 ** order either to increase the database filesize, or to decrement the
7354 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7355 */
7356 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007357 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007358 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007359 releasePage(pRoot);
7360 return rc;
7361 }
danielk197742741be2005-01-08 12:42:39 +00007362
danielk1977003ba062004-11-04 02:57:33 +00007363 }else{
drh4f0c5872007-03-26 22:05:01 +00007364 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007365 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007366 }
7367#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007368 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007369 if( createTabFlags & BTREE_INTKEY ){
7370 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7371 }else{
7372 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7373 }
7374 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007375 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007376 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007377 *piTable = (int)pgnoRoot;
7378 return SQLITE_OK;
7379}
drhd677b3d2007-08-20 22:48:41 +00007380int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7381 int rc;
7382 sqlite3BtreeEnter(p);
7383 rc = btreeCreateTable(p, piTable, flags);
7384 sqlite3BtreeLeave(p);
7385 return rc;
7386}
drh8b2f49b2001-06-08 00:21:52 +00007387
7388/*
7389** Erase the given database page and all its children. Return
7390** the page to the freelist.
7391*/
drh4b70f112004-05-02 21:12:19 +00007392static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007393 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007394 Pgno pgno, /* Page number to clear */
7395 int freePageFlag, /* Deallocate page if true */
7396 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007397){
danielk1977146ba992009-07-22 14:08:13 +00007398 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007399 int rc;
drh4b70f112004-05-02 21:12:19 +00007400 unsigned char *pCell;
7401 int i;
dan8ce71842014-01-14 20:14:09 +00007402 int hdr;
drh8b2f49b2001-06-08 00:21:52 +00007403
drh1fee73e2007-08-29 04:00:57 +00007404 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007405 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007406 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007407 }
7408
dan11dcd112013-03-15 18:29:18 +00007409 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00007410 if( rc ) return rc;
dan8ce71842014-01-14 20:14:09 +00007411 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00007412 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007413 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007414 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007415 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007416 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007417 }
drh4b70f112004-05-02 21:12:19 +00007418 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007419 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007420 }
drha34b6762004-05-07 13:30:42 +00007421 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00007422 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007423 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007424 }else if( pnChange ){
7425 assert( pPage->intKey );
7426 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007427 }
7428 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007429 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007430 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00007431 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007432 }
danielk19776b456a22005-03-21 04:04:02 +00007433
7434cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007435 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007436 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007437}
7438
7439/*
drhab01f612004-05-22 02:55:23 +00007440** Delete all information from a single table in the database. iTable is
7441** the page number of the root of the table. After this routine returns,
7442** the root page is empty, but still exists.
7443**
7444** This routine will fail with SQLITE_LOCKED if there are any open
7445** read cursors on the table. Open write cursors are moved to the
7446** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007447**
7448** If pnChange is not NULL, then table iTable must be an intkey table. The
7449** integer value pointed to by pnChange is incremented by the number of
7450** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007451*/
danielk1977c7af4842008-10-27 13:59:33 +00007452int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007453 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007454 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007455 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007456 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007457
drhc046e3e2009-07-15 11:26:44 +00007458 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007459
drhc046e3e2009-07-15 11:26:44 +00007460 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007461 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7462 ** is the root of a table b-tree - if it is not, the following call is
7463 ** a no-op). */
7464 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007465 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007466 }
drhd677b3d2007-08-20 22:48:41 +00007467 sqlite3BtreeLeave(p);
7468 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007469}
7470
7471/*
drh079a3072014-03-19 14:10:55 +00007472** Delete all information from the single table that pCur is open on.
7473**
7474** This routine only work for pCur on an ephemeral table.
7475*/
7476int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
7477 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
7478}
7479
7480/*
drh8b2f49b2001-06-08 00:21:52 +00007481** Erase all information in a table and add the root of the table to
7482** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007483** page 1) is never added to the freelist.
7484**
7485** This routine will fail with SQLITE_LOCKED if there are any open
7486** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007487**
7488** If AUTOVACUUM is enabled and the page at iTable is not the last
7489** root page in the database file, then the last root page
7490** in the database file is moved into the slot formerly occupied by
7491** iTable and that last slot formerly occupied by the last root page
7492** is added to the freelist instead of iTable. In this say, all
7493** root pages are kept at the beginning of the database file, which
7494** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7495** page number that used to be the last root page in the file before
7496** the move. If no page gets moved, *piMoved is set to 0.
7497** The last root page is recorded in meta[3] and the value of
7498** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007499*/
danielk197789d40042008-11-17 14:20:56 +00007500static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007501 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007502 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007503 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007504
drh1fee73e2007-08-29 04:00:57 +00007505 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007506 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007507
danielk1977e6efa742004-11-10 11:55:10 +00007508 /* It is illegal to drop a table if any cursors are open on the
7509 ** database. This is because in auto-vacuum mode the backend may
7510 ** need to move another root-page to fill a gap left by the deleted
7511 ** root page. If an open cursor was using this page a problem would
7512 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007513 **
7514 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007515 */
drhc046e3e2009-07-15 11:26:44 +00007516 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007517 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7518 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007519 }
danielk1977a0bf2652004-11-04 14:30:04 +00007520
drhb00fc3b2013-08-21 23:42:32 +00007521 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007522 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007523 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007524 if( rc ){
7525 releasePage(pPage);
7526 return rc;
7527 }
danielk1977a0bf2652004-11-04 14:30:04 +00007528
drh205f48e2004-11-05 00:43:11 +00007529 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007530
drh4b70f112004-05-02 21:12:19 +00007531 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007532#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007533 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007534 releasePage(pPage);
7535#else
7536 if( pBt->autoVacuum ){
7537 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007538 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007539
7540 if( iTable==maxRootPgno ){
7541 /* If the table being dropped is the table with the largest root-page
7542 ** number in the database, put the root page on the free list.
7543 */
drhc314dc72009-07-21 11:52:34 +00007544 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007545 releasePage(pPage);
7546 if( rc!=SQLITE_OK ){
7547 return rc;
7548 }
7549 }else{
7550 /* The table being dropped does not have the largest root-page
7551 ** number in the database. So move the page that does into the
7552 ** gap left by the deleted root-page.
7553 */
7554 MemPage *pMove;
7555 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00007556 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007557 if( rc!=SQLITE_OK ){
7558 return rc;
7559 }
danielk19774c999992008-07-16 18:17:55 +00007560 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007561 releasePage(pMove);
7562 if( rc!=SQLITE_OK ){
7563 return rc;
7564 }
drhfe3313f2009-07-21 19:02:20 +00007565 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00007566 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007567 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007568 releasePage(pMove);
7569 if( rc!=SQLITE_OK ){
7570 return rc;
7571 }
7572 *piMoved = maxRootPgno;
7573 }
7574
danielk1977599fcba2004-11-08 07:13:13 +00007575 /* Set the new 'max-root-page' value in the database header. This
7576 ** is the old value less one, less one more if that happens to
7577 ** be a root-page number, less one again if that is the
7578 ** PENDING_BYTE_PAGE.
7579 */
danielk197787a6e732004-11-05 12:58:25 +00007580 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007581 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7582 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007583 maxRootPgno--;
7584 }
danielk1977599fcba2004-11-08 07:13:13 +00007585 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7586
danielk1977aef0bf62005-12-30 16:28:01 +00007587 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007588 }else{
drhc314dc72009-07-21 11:52:34 +00007589 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007590 releasePage(pPage);
7591 }
7592#endif
drh2aa679f2001-06-25 02:11:07 +00007593 }else{
drhc046e3e2009-07-15 11:26:44 +00007594 /* If sqlite3BtreeDropTable was called on page 1.
7595 ** This really never should happen except in a corrupt
7596 ** database.
7597 */
drha34b6762004-05-07 13:30:42 +00007598 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007599 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007600 }
drh8b2f49b2001-06-08 00:21:52 +00007601 return rc;
7602}
drhd677b3d2007-08-20 22:48:41 +00007603int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7604 int rc;
7605 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007606 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007607 sqlite3BtreeLeave(p);
7608 return rc;
7609}
drh8b2f49b2001-06-08 00:21:52 +00007610
drh001bbcb2003-03-19 03:14:00 +00007611
drh8b2f49b2001-06-08 00:21:52 +00007612/*
danielk1977602b4662009-07-02 07:47:33 +00007613** This function may only be called if the b-tree connection already
7614** has a read or write transaction open on the database.
7615**
drh23e11ca2004-05-04 17:27:28 +00007616** Read the meta-information out of a database file. Meta[0]
7617** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007618** through meta[15] are available for use by higher layers. Meta[0]
7619** is read-only, the others are read/write.
7620**
7621** The schema layer numbers meta values differently. At the schema
7622** layer (and the SetCookie and ReadCookie opcodes) the number of
7623** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007624*/
danielk1977602b4662009-07-02 07:47:33 +00007625void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007626 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007627
drhd677b3d2007-08-20 22:48:41 +00007628 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007629 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007630 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007631 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007632 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007633
danielk1977602b4662009-07-02 07:47:33 +00007634 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007635
danielk1977602b4662009-07-02 07:47:33 +00007636 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7637 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007638#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007639 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7640 pBt->btsFlags |= BTS_READ_ONLY;
7641 }
danielk1977003ba062004-11-04 02:57:33 +00007642#endif
drhae157872004-08-14 19:20:09 +00007643
drhd677b3d2007-08-20 22:48:41 +00007644 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007645}
7646
7647/*
drh23e11ca2004-05-04 17:27:28 +00007648** Write meta-information back into the database. Meta[0] is
7649** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007650*/
danielk1977aef0bf62005-12-30 16:28:01 +00007651int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7652 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007653 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007654 int rc;
drh23e11ca2004-05-04 17:27:28 +00007655 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007656 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007657 assert( p->inTrans==TRANS_WRITE );
7658 assert( pBt->pPage1!=0 );
7659 pP1 = pBt->pPage1->aData;
7660 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7661 if( rc==SQLITE_OK ){
7662 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007663#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007664 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007665 assert( pBt->autoVacuum || iMeta==0 );
7666 assert( iMeta==0 || iMeta==1 );
7667 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007668 }
drh64022502009-01-09 14:11:04 +00007669#endif
drh5df72a52002-06-06 23:16:05 +00007670 }
drhd677b3d2007-08-20 22:48:41 +00007671 sqlite3BtreeLeave(p);
7672 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007673}
drh8c42ca92001-06-22 19:15:00 +00007674
danielk1977a5533162009-02-24 10:01:51 +00007675#ifndef SQLITE_OMIT_BTREECOUNT
7676/*
7677** The first argument, pCur, is a cursor opened on some b-tree. Count the
7678** number of entries in the b-tree and write the result to *pnEntry.
7679**
7680** SQLITE_OK is returned if the operation is successfully executed.
7681** Otherwise, if an error is encountered (i.e. an IO error or database
7682** corruption) an SQLite error code is returned.
7683*/
7684int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7685 i64 nEntry = 0; /* Value to return in *pnEntry */
7686 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007687
7688 if( pCur->pgnoRoot==0 ){
7689 *pnEntry = 0;
7690 return SQLITE_OK;
7691 }
danielk1977a5533162009-02-24 10:01:51 +00007692 rc = moveToRoot(pCur);
7693
7694 /* Unless an error occurs, the following loop runs one iteration for each
7695 ** page in the B-Tree structure (not including overflow pages).
7696 */
7697 while( rc==SQLITE_OK ){
7698 int iIdx; /* Index of child node in parent */
7699 MemPage *pPage; /* Current page of the b-tree */
7700
7701 /* If this is a leaf page or the tree is not an int-key tree, then
7702 ** this page contains countable entries. Increment the entry counter
7703 ** accordingly.
7704 */
7705 pPage = pCur->apPage[pCur->iPage];
7706 if( pPage->leaf || !pPage->intKey ){
7707 nEntry += pPage->nCell;
7708 }
7709
7710 /* pPage is a leaf node. This loop navigates the cursor so that it
7711 ** points to the first interior cell that it points to the parent of
7712 ** the next page in the tree that has not yet been visited. The
7713 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7714 ** of the page, or to the number of cells in the page if the next page
7715 ** to visit is the right-child of its parent.
7716 **
7717 ** If all pages in the tree have been visited, return SQLITE_OK to the
7718 ** caller.
7719 */
7720 if( pPage->leaf ){
7721 do {
7722 if( pCur->iPage==0 ){
7723 /* All pages of the b-tree have been visited. Return successfully. */
7724 *pnEntry = nEntry;
7725 return SQLITE_OK;
7726 }
danielk197730548662009-07-09 05:07:37 +00007727 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007728 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7729
7730 pCur->aiIdx[pCur->iPage]++;
7731 pPage = pCur->apPage[pCur->iPage];
7732 }
7733
7734 /* Descend to the child node of the cell that the cursor currently
7735 ** points at. This is the right-child if (iIdx==pPage->nCell).
7736 */
7737 iIdx = pCur->aiIdx[pCur->iPage];
7738 if( iIdx==pPage->nCell ){
7739 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7740 }else{
7741 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7742 }
7743 }
7744
shanebe217792009-03-05 04:20:31 +00007745 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007746 return rc;
7747}
7748#endif
drhdd793422001-06-28 01:54:48 +00007749
drhdd793422001-06-28 01:54:48 +00007750/*
drh5eddca62001-06-30 21:53:53 +00007751** Return the pager associated with a BTree. This routine is used for
7752** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007753*/
danielk1977aef0bf62005-12-30 16:28:01 +00007754Pager *sqlite3BtreePager(Btree *p){
7755 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007756}
drh5eddca62001-06-30 21:53:53 +00007757
drhb7f91642004-10-31 02:22:47 +00007758#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007759/*
7760** Append a message to the error message string.
7761*/
drh2e38c322004-09-03 18:38:44 +00007762static void checkAppendMsg(
7763 IntegrityCk *pCheck,
7764 char *zMsg1,
7765 const char *zFormat,
7766 ...
7767){
7768 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007769 if( !pCheck->mxErr ) return;
7770 pCheck->mxErr--;
7771 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007772 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007773 if( pCheck->errMsg.nChar ){
7774 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007775 }
drhf089aa42008-07-08 19:34:06 +00007776 if( zMsg1 ){
drha6353a32013-12-09 19:03:26 +00007777 sqlite3StrAccumAppendAll(&pCheck->errMsg, zMsg1);
drhf089aa42008-07-08 19:34:06 +00007778 }
7779 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7780 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00007781 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00007782 pCheck->mallocFailed = 1;
7783 }
drh5eddca62001-06-30 21:53:53 +00007784}
drhb7f91642004-10-31 02:22:47 +00007785#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007786
drhb7f91642004-10-31 02:22:47 +00007787#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007788
7789/*
7790** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7791** corresponds to page iPg is already set.
7792*/
7793static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7794 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7795 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7796}
7797
7798/*
7799** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7800*/
7801static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7802 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7803 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7804}
7805
7806
drh5eddca62001-06-30 21:53:53 +00007807/*
7808** Add 1 to the reference count for page iPage. If this is the second
7809** reference to the page, add an error message to pCheck->zErrMsg.
7810** Return 1 if there are 2 ore more references to the page and 0 if
7811** if this is the first reference to the page.
7812**
7813** Also check that the page number is in bounds.
7814*/
danielk197789d40042008-11-17 14:20:56 +00007815static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007816 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007817 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007818 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007819 return 1;
7820 }
dan1235bb12012-04-03 17:43:28 +00007821 if( getPageReferenced(pCheck, iPage) ){
drh2e38c322004-09-03 18:38:44 +00007822 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007823 return 1;
7824 }
dan1235bb12012-04-03 17:43:28 +00007825 setPageReferenced(pCheck, iPage);
7826 return 0;
drh5eddca62001-06-30 21:53:53 +00007827}
7828
danielk1977afcdd022004-10-31 16:25:42 +00007829#ifndef SQLITE_OMIT_AUTOVACUUM
7830/*
7831** Check that the entry in the pointer-map for page iChild maps to
7832** page iParent, pointer type ptrType. If not, append an error message
7833** to pCheck.
7834*/
7835static void checkPtrmap(
7836 IntegrityCk *pCheck, /* Integrity check context */
7837 Pgno iChild, /* Child page number */
7838 u8 eType, /* Expected pointer map type */
7839 Pgno iParent, /* Expected pointer map parent page number */
7840 char *zContext /* Context description (used for error msg) */
7841){
7842 int rc;
7843 u8 ePtrmapType;
7844 Pgno iPtrmapParent;
7845
7846 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7847 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007848 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007849 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7850 return;
7851 }
7852
7853 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7854 checkAppendMsg(pCheck, zContext,
7855 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7856 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7857 }
7858}
7859#endif
7860
drh5eddca62001-06-30 21:53:53 +00007861/*
7862** Check the integrity of the freelist or of an overflow page list.
7863** Verify that the number of pages on the list is N.
7864*/
drh30e58752002-03-02 20:41:57 +00007865static void checkList(
7866 IntegrityCk *pCheck, /* Integrity checking context */
7867 int isFreeList, /* True for a freelist. False for overflow page list */
7868 int iPage, /* Page number for first page in the list */
7869 int N, /* Expected number of pages in the list */
7870 char *zContext /* Context for error messages */
7871){
7872 int i;
drh3a4c1412004-05-09 20:40:11 +00007873 int expected = N;
7874 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007875 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007876 DbPage *pOvflPage;
7877 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007878 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007879 checkAppendMsg(pCheck, zContext,
7880 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007881 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007882 break;
7883 }
7884 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007885 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007886 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007887 break;
7888 }
danielk19773b8a05f2007-03-19 17:44:26 +00007889 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007890 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007891 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007892#ifndef SQLITE_OMIT_AUTOVACUUM
7893 if( pCheck->pBt->autoVacuum ){
7894 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7895 }
7896#endif
drh43b18e12010-08-17 19:40:08 +00007897 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007898 checkAppendMsg(pCheck, zContext,
7899 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007900 N--;
7901 }else{
7902 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007903 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007904#ifndef SQLITE_OMIT_AUTOVACUUM
7905 if( pCheck->pBt->autoVacuum ){
7906 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7907 }
7908#endif
7909 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007910 }
7911 N -= n;
drh30e58752002-03-02 20:41:57 +00007912 }
drh30e58752002-03-02 20:41:57 +00007913 }
danielk1977afcdd022004-10-31 16:25:42 +00007914#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007915 else{
7916 /* If this database supports auto-vacuum and iPage is not the last
7917 ** page in this overflow list, check that the pointer-map entry for
7918 ** the following page matches iPage.
7919 */
7920 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007921 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007922 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7923 }
danielk1977afcdd022004-10-31 16:25:42 +00007924 }
7925#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007926 iPage = get4byte(pOvflData);
7927 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007928 }
7929}
drhb7f91642004-10-31 02:22:47 +00007930#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007931
drhb7f91642004-10-31 02:22:47 +00007932#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007933/*
7934** Do various sanity checks on a single page of a tree. Return
7935** the tree depth. Root pages return 0. Parents of root pages
7936** return 1, and so forth.
7937**
7938** These checks are done:
7939**
7940** 1. Make sure that cells and freeblocks do not overlap
7941** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007942** NO 2. Make sure cell keys are in order.
7943** NO 3. Make sure no key is less than or equal to zLowerBound.
7944** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007945** 5. Check the integrity of overflow pages.
7946** 6. Recursively call checkTreePage on all children.
7947** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007948** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007949** the root of the tree.
7950*/
7951static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007952 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007953 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007954 char *zParentContext, /* Parent context */
7955 i64 *pnParentMinKey,
7956 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007957){
7958 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007959 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007960 int hdr, cellStart;
7961 int nCell;
drhda200cc2004-05-09 11:51:38 +00007962 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007963 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007964 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007965 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007966 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007967 i64 nMinKey = 0;
7968 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007969
drh5bb3eb92007-05-04 13:15:55 +00007970 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007971
drh5eddca62001-06-30 21:53:53 +00007972 /* Check that the page exists
7973 */
drhd9cb6ac2005-10-20 07:28:17 +00007974 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007975 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007976 if( iPage==0 ) return 0;
7977 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drhb00fc3b2013-08-21 23:42:32 +00007978 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007979 checkAppendMsg(pCheck, zContext,
7980 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007981 return 0;
7982 }
danielk197793caf5a2009-07-11 06:55:33 +00007983
7984 /* Clear MemPage.isInit to make sure the corruption detection code in
7985 ** btreeInitPage() is executed. */
7986 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007987 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007988 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007989 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007990 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007991 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007992 return 0;
7993 }
7994
7995 /* Check out all the cells.
7996 */
7997 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007998 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007999 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00008000 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00008001 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00008002
8003 /* Check payload overflow pages
8004 */
drh5bb3eb92007-05-04 13:15:55 +00008005 sqlite3_snprintf(sizeof(zContext), zContext,
8006 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00008007 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00008008 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00008009 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00008010 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00008011 /* For intKey pages, check that the keys are in order.
8012 */
8013 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
8014 else{
8015 if( info.nKey <= nMaxKey ){
8016 checkAppendMsg(pCheck, zContext,
8017 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
8018 }
8019 nMaxKey = info.nKey;
8020 }
drh72365832007-03-06 15:53:44 +00008021 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00008022 if( (sz>info.nLocal)
8023 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8024 ){
drhb6f41482004-05-14 01:58:11 +00008025 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008026 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8027#ifndef SQLITE_OMIT_AUTOVACUUM
8028 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00008029 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008030 }
8031#endif
8032 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00008033 }
8034
8035 /* Check sanity of left child page.
8036 */
drhda200cc2004-05-09 11:51:38 +00008037 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008038 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008039#ifndef SQLITE_OMIT_AUTOVACUUM
8040 if( pBt->autoVacuum ){
8041 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
8042 }
8043#endif
shaneh195475d2010-02-19 04:28:08 +00008044 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008045 if( i>0 && d2!=depth ){
8046 checkAppendMsg(pCheck, zContext, "Child page depth differs");
8047 }
8048 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008049 }
drh5eddca62001-06-30 21:53:53 +00008050 }
shaneh195475d2010-02-19 04:28:08 +00008051
drhda200cc2004-05-09 11:51:38 +00008052 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008053 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00008054 sqlite3_snprintf(sizeof(zContext), zContext,
8055 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008056#ifndef SQLITE_OMIT_AUTOVACUUM
8057 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00008058 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008059 }
8060#endif
shaneh195475d2010-02-19 04:28:08 +00008061 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008062 }
drh5eddca62001-06-30 21:53:53 +00008063
shaneh195475d2010-02-19 04:28:08 +00008064 /* For intKey leaf pages, check that the min/max keys are in order
8065 ** with any left/parent/right pages.
8066 */
8067 if( pPage->leaf && pPage->intKey ){
8068 /* if we are a left child page */
8069 if( pnParentMinKey ){
8070 /* if we are the left most child page */
8071 if( !pnParentMaxKey ){
8072 if( nMaxKey > *pnParentMinKey ){
8073 checkAppendMsg(pCheck, zContext,
8074 "Rowid %lld out of order (max larger than parent min of %lld)",
8075 nMaxKey, *pnParentMinKey);
8076 }
8077 }else{
8078 if( nMinKey <= *pnParentMinKey ){
8079 checkAppendMsg(pCheck, zContext,
8080 "Rowid %lld out of order (min less than parent min of %lld)",
8081 nMinKey, *pnParentMinKey);
8082 }
8083 if( nMaxKey > *pnParentMaxKey ){
8084 checkAppendMsg(pCheck, zContext,
8085 "Rowid %lld out of order (max larger than parent max of %lld)",
8086 nMaxKey, *pnParentMaxKey);
8087 }
8088 *pnParentMinKey = nMaxKey;
8089 }
8090 /* else if we're a right child page */
8091 } else if( pnParentMaxKey ){
8092 if( nMinKey <= *pnParentMaxKey ){
8093 checkAppendMsg(pCheck, zContext,
8094 "Rowid %lld out of order (min less than parent max of %lld)",
8095 nMinKey, *pnParentMaxKey);
8096 }
8097 }
8098 }
8099
drh5eddca62001-06-30 21:53:53 +00008100 /* Check for complete coverage of the page
8101 */
drhda200cc2004-05-09 11:51:38 +00008102 data = pPage->aData;
8103 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008104 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00008105 if( hit==0 ){
8106 pCheck->mallocFailed = 1;
8107 }else{
drh5d433ce2010-08-14 16:02:52 +00008108 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008109 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008110 memset(hit+contentOffset, 0, usableSize-contentOffset);
8111 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00008112 nCell = get2byte(&data[hdr+3]);
8113 cellStart = hdr + 12 - 4*pPage->leaf;
8114 for(i=0; i<nCell; i++){
8115 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008116 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008117 int j;
drh8c2bbb62009-07-10 02:52:20 +00008118 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008119 size = cellSizePtr(pPage, &data[pc]);
8120 }
drh43b18e12010-08-17 19:40:08 +00008121 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00008122 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00008123 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008124 }else{
8125 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8126 }
drh2e38c322004-09-03 18:38:44 +00008127 }
drh8c2bbb62009-07-10 02:52:20 +00008128 i = get2byte(&data[hdr+1]);
8129 while( i>0 ){
8130 int size, j;
8131 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8132 size = get2byte(&data[i+2]);
8133 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8134 for(j=i+size-1; j>=i; j--) hit[j]++;
8135 j = get2byte(&data[i]);
8136 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8137 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8138 i = j;
drh2e38c322004-09-03 18:38:44 +00008139 }
8140 for(i=cnt=0; i<usableSize; i++){
8141 if( hit[i]==0 ){
8142 cnt++;
8143 }else if( hit[i]>1 ){
8144 checkAppendMsg(pCheck, 0,
8145 "Multiple uses for byte %d of page %d", i, iPage);
8146 break;
8147 }
8148 }
8149 if( cnt!=data[hdr+7] ){
8150 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00008151 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008152 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008153 }
8154 }
drh8c2bbb62009-07-10 02:52:20 +00008155 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008156 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00008157 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008158}
drhb7f91642004-10-31 02:22:47 +00008159#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008160
drhb7f91642004-10-31 02:22:47 +00008161#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008162/*
8163** This routine does a complete check of the given BTree file. aRoot[] is
8164** an array of pages numbers were each page number is the root page of
8165** a table. nRoot is the number of entries in aRoot.
8166**
danielk19773509a652009-07-06 18:56:13 +00008167** A read-only or read-write transaction must be opened before calling
8168** this function.
8169**
drhc890fec2008-08-01 20:10:08 +00008170** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008171** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008172** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008173** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008174*/
drh1dcdbc02007-01-27 02:24:54 +00008175char *sqlite3BtreeIntegrityCheck(
8176 Btree *p, /* The btree to be checked */
8177 int *aRoot, /* An array of root pages numbers for individual trees */
8178 int nRoot, /* Number of entries in aRoot[] */
8179 int mxErr, /* Stop reporting errors after this many */
8180 int *pnErr /* Write number of errors seen to this variable */
8181){
danielk197789d40042008-11-17 14:20:56 +00008182 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008183 int nRef;
drhaaab5722002-02-19 13:39:21 +00008184 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008185 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008186 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008187
drhd677b3d2007-08-20 22:48:41 +00008188 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008189 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008190 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008191 sCheck.pBt = pBt;
8192 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008193 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008194 sCheck.mxErr = mxErr;
8195 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008196 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00008197 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008198 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008199 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008200 return 0;
8201 }
dan1235bb12012-04-03 17:43:28 +00008202
8203 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8204 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008205 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008206 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008207 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008208 }
drh42cac6d2004-11-20 20:31:11 +00008209 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008210 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008211 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008212 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008213
8214 /* Check the integrity of the freelist
8215 */
drha34b6762004-05-07 13:30:42 +00008216 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8217 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00008218
8219 /* Check all the tables.
8220 */
danielk197789d40042008-11-17 14:20:56 +00008221 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008222 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008223#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008224 if( pBt->autoVacuum && aRoot[i]>1 ){
8225 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8226 }
8227#endif
shaneh195475d2010-02-19 04:28:08 +00008228 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00008229 }
8230
8231 /* Make sure every page in the file is referenced
8232 */
drh1dcdbc02007-01-27 02:24:54 +00008233 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008234#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008235 if( getPageReferenced(&sCheck, i)==0 ){
drh2e38c322004-09-03 18:38:44 +00008236 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008237 }
danielk1977afcdd022004-10-31 16:25:42 +00008238#else
8239 /* If the database supports auto-vacuum, make sure no tables contain
8240 ** references to pointer-map pages.
8241 */
dan1235bb12012-04-03 17:43:28 +00008242 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008243 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008244 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8245 }
dan1235bb12012-04-03 17:43:28 +00008246 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008247 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008248 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8249 }
8250#endif
drh5eddca62001-06-30 21:53:53 +00008251 }
8252
drh64022502009-01-09 14:11:04 +00008253 /* Make sure this analysis did not leave any unref() pages.
8254 ** This is an internal consistency check; an integrity check
8255 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008256 */
drh64022502009-01-09 14:11:04 +00008257 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008258 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008259 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008260 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008261 );
drh5eddca62001-06-30 21:53:53 +00008262 }
8263
8264 /* Clean up and report errors.
8265 */
drhd677b3d2007-08-20 22:48:41 +00008266 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008267 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008268 if( sCheck.mallocFailed ){
8269 sqlite3StrAccumReset(&sCheck.errMsg);
8270 *pnErr = sCheck.nErr+1;
8271 return 0;
8272 }
drh1dcdbc02007-01-27 02:24:54 +00008273 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008274 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8275 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008276}
drhb7f91642004-10-31 02:22:47 +00008277#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008278
drh73509ee2003-04-06 20:44:45 +00008279/*
drhd4e0bb02012-05-27 01:19:04 +00008280** Return the full pathname of the underlying database file. Return
8281** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008282**
8283** The pager filename is invariant as long as the pager is
8284** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008285*/
danielk1977aef0bf62005-12-30 16:28:01 +00008286const char *sqlite3BtreeGetFilename(Btree *p){
8287 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008288 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008289}
8290
8291/*
danielk19775865e3d2004-06-14 06:03:57 +00008292** Return the pathname of the journal file for this database. The return
8293** value of this routine is the same regardless of whether the journal file
8294** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008295**
8296** The pager journal filename is invariant as long as the pager is
8297** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008298*/
danielk1977aef0bf62005-12-30 16:28:01 +00008299const char *sqlite3BtreeGetJournalname(Btree *p){
8300 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008301 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008302}
8303
danielk19771d850a72004-05-31 08:26:49 +00008304/*
8305** Return non-zero if a transaction is active.
8306*/
danielk1977aef0bf62005-12-30 16:28:01 +00008307int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008308 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008309 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008310}
8311
dana550f2d2010-08-02 10:47:05 +00008312#ifndef SQLITE_OMIT_WAL
8313/*
8314** Run a checkpoint on the Btree passed as the first argument.
8315**
8316** Return SQLITE_LOCKED if this or any other connection has an open
8317** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008318**
dancdc1f042010-11-18 12:11:05 +00008319** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008320*/
dancdc1f042010-11-18 12:11:05 +00008321int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008322 int rc = SQLITE_OK;
8323 if( p ){
8324 BtShared *pBt = p->pBt;
8325 sqlite3BtreeEnter(p);
8326 if( pBt->inTransaction!=TRANS_NONE ){
8327 rc = SQLITE_LOCKED;
8328 }else{
dancdc1f042010-11-18 12:11:05 +00008329 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008330 }
8331 sqlite3BtreeLeave(p);
8332 }
8333 return rc;
8334}
8335#endif
8336
danielk19771d850a72004-05-31 08:26:49 +00008337/*
danielk19772372c2b2006-06-27 16:34:56 +00008338** Return non-zero if a read (or write) transaction is active.
8339*/
8340int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008341 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008342 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008343 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008344}
8345
danielk197704103022009-02-03 16:51:24 +00008346int sqlite3BtreeIsInBackup(Btree *p){
8347 assert( p );
8348 assert( sqlite3_mutex_held(p->db->mutex) );
8349 return p->nBackup!=0;
8350}
8351
danielk19772372c2b2006-06-27 16:34:56 +00008352/*
danielk1977da184232006-01-05 11:34:32 +00008353** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008354** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008355** purposes (for example, to store a high-level schema associated with
8356** the shared-btree). The btree layer manages reference counting issues.
8357**
8358** The first time this is called on a shared-btree, nBytes bytes of memory
8359** are allocated, zeroed, and returned to the caller. For each subsequent
8360** call the nBytes parameter is ignored and a pointer to the same blob
8361** of memory returned.
8362**
danielk1977171bfed2008-06-23 09:50:50 +00008363** If the nBytes parameter is 0 and the blob of memory has not yet been
8364** allocated, a null pointer is returned. If the blob has already been
8365** allocated, it is returned as normal.
8366**
danielk1977da184232006-01-05 11:34:32 +00008367** Just before the shared-btree is closed, the function passed as the
8368** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008369** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008370** on the memory, the btree layer does that.
8371*/
8372void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8373 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008374 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008375 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008376 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008377 pBt->xFreeSchema = xFree;
8378 }
drh27641702007-08-22 02:56:42 +00008379 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008380 return pBt->pSchema;
8381}
8382
danielk1977c87d34d2006-01-06 13:00:28 +00008383/*
danielk1977404ca072009-03-16 13:19:36 +00008384** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8385** btree as the argument handle holds an exclusive lock on the
8386** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008387*/
8388int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008389 int rc;
drhe5fe6902007-12-07 18:55:28 +00008390 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008391 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008392 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8393 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008394 sqlite3BtreeLeave(p);
8395 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008396}
8397
drha154dcd2006-03-22 22:10:07 +00008398
8399#ifndef SQLITE_OMIT_SHARED_CACHE
8400/*
8401** Obtain a lock on the table whose root page is iTab. The
8402** lock is a write lock if isWritelock is true or a read lock
8403** if it is false.
8404*/
danielk1977c00da102006-01-07 13:21:04 +00008405int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008406 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008407 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008408 if( p->sharable ){
8409 u8 lockType = READ_LOCK + isWriteLock;
8410 assert( READ_LOCK+1==WRITE_LOCK );
8411 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008412
drh6a9ad3d2008-04-02 16:29:30 +00008413 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008414 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008415 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008416 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008417 }
8418 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008419 }
8420 return rc;
8421}
drha154dcd2006-03-22 22:10:07 +00008422#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008423
danielk1977b4e9af92007-05-01 17:49:49 +00008424#ifndef SQLITE_OMIT_INCRBLOB
8425/*
8426** Argument pCsr must be a cursor opened for writing on an
8427** INTKEY table currently pointing at a valid table entry.
8428** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008429**
8430** Only the data content may only be modified, it is not possible to
8431** change the length of the data stored. If this function is called with
8432** parameters that attempt to write past the end of the existing data,
8433** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008434*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008435int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008436 int rc;
drh1fee73e2007-08-29 04:00:57 +00008437 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008438 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00008439 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00008440
danielk1977c9000e62009-07-08 13:55:28 +00008441 rc = restoreCursorPosition(pCsr);
8442 if( rc!=SQLITE_OK ){
8443 return rc;
8444 }
danielk19773588ceb2008-06-10 17:30:26 +00008445 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8446 if( pCsr->eState!=CURSOR_VALID ){
8447 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008448 }
8449
dan227a1c42013-04-03 11:17:39 +00008450 /* Save the positions of all other cursors open on this table. This is
8451 ** required in case any of them are holding references to an xFetch
8452 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00008453 **
8454 ** Note that pCsr must be open on a BTREE_INTKEY table and saveCursorPosition()
8455 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8456 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00008457 */
drh370c9f42013-04-03 20:04:04 +00008458 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8459 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00008460
danielk1977c9000e62009-07-08 13:55:28 +00008461 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008462 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008463 ** (b) there is a read/write transaction open,
8464 ** (c) the connection holds a write-lock on the table (if required),
8465 ** (d) there are no conflicting read-locks, and
8466 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008467 */
drh036dbec2014-03-11 23:40:44 +00008468 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00008469 return SQLITE_READONLY;
8470 }
drhc9166342012-01-05 23:32:06 +00008471 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8472 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008473 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8474 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008475 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008476
drhfb192682009-07-11 18:26:28 +00008477 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008478}
danielk19772dec9702007-05-02 16:48:37 +00008479
8480/*
dan5a500af2014-03-11 20:33:04 +00008481** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00008482*/
dan5a500af2014-03-11 20:33:04 +00008483void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00008484 pCur->curFlags |= BTCF_Incrblob;
danielk19772dec9702007-05-02 16:48:37 +00008485}
danielk1977b4e9af92007-05-01 17:49:49 +00008486#endif
dane04dc882010-04-20 18:53:15 +00008487
8488/*
8489** Set both the "read version" (single byte at byte offset 18) and
8490** "write version" (single byte at byte offset 19) fields in the database
8491** header to iVersion.
8492*/
8493int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8494 BtShared *pBt = pBtree->pBt;
8495 int rc; /* Return code */
8496
dane04dc882010-04-20 18:53:15 +00008497 assert( iVersion==1 || iVersion==2 );
8498
danb9780022010-04-21 18:37:57 +00008499 /* If setting the version fields to 1, do not automatically open the
8500 ** WAL connection, even if the version fields are currently set to 2.
8501 */
drhc9166342012-01-05 23:32:06 +00008502 pBt->btsFlags &= ~BTS_NO_WAL;
8503 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008504
8505 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008506 if( rc==SQLITE_OK ){
8507 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008508 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008509 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008510 if( rc==SQLITE_OK ){
8511 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8512 if( rc==SQLITE_OK ){
8513 aData[18] = (u8)iVersion;
8514 aData[19] = (u8)iVersion;
8515 }
8516 }
8517 }
dane04dc882010-04-20 18:53:15 +00008518 }
8519
drhc9166342012-01-05 23:32:06 +00008520 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008521 return rc;
8522}
dan428c2182012-08-06 18:50:11 +00008523
8524/*
8525** set the mask of hint flags for cursor pCsr. Currently the only valid
8526** values are 0 and BTREE_BULKLOAD.
8527*/
8528void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8529 assert( mask==BTREE_BULKLOAD || mask==0 );
8530 pCsr->hints = mask;
8531}
drh781597f2014-05-21 08:21:07 +00008532
8533/*
8534** Return true if the given Btree is read-only.
8535*/
8536int sqlite3BtreeIsReadonly(Btree *p){
8537 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
8538}