blob: 0a8e6a99e42b21a464bd4825b9e795efc5e1bcf3 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
daneebf2f52017-11-18 17:30:08 +0000115/*
116** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118**
119** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122** with the page number and filename associated with the (MemPage*).
123*/
124#ifdef SQLITE_DEBUG
125int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000126 char *zMsg;
127 sqlite3BeginBenignMalloc();
128 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130 );
drh8bfe66a2018-01-22 15:45:12 +0000131 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000132 if( zMsg ){
133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134 }
135 sqlite3_free(zMsg);
136 return SQLITE_CORRUPT_BKPT;
137}
138# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139#else
140# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141#endif
142
drhe53831d2007-08-17 01:14:38 +0000143#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000144
145#ifdef SQLITE_DEBUG
146/*
drh0ee3dbe2009-10-16 15:05:18 +0000147**** This function is only used as part of an assert() statement. ***
148**
149** Check to see if pBtree holds the required locks to read or write to the
150** table with root page iRoot. Return 1 if it does and 0 if not.
151**
152** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000153** Btree connection pBtree:
154**
155** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156**
drh0ee3dbe2009-10-16 15:05:18 +0000157** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000158** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000159** the corresponding table. This makes things a bit more complicated,
160** as this module treats each table as a separate structure. To determine
161** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000162** function has to search through the database schema.
163**
drh0ee3dbe2009-10-16 15:05:18 +0000164** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000165** hold a write-lock on the schema table (root page 1). This is also
166** acceptable.
167*/
168static int hasSharedCacheTableLock(
169 Btree *pBtree, /* Handle that must hold lock */
170 Pgno iRoot, /* Root page of b-tree */
171 int isIndex, /* True if iRoot is the root of an index b-tree */
172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
173){
174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175 Pgno iTab = 0;
176 BtLock *pLock;
177
drh0ee3dbe2009-10-16 15:05:18 +0000178 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000179 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000180 ** Return true immediately.
181 */
danielk197796d48e92009-06-29 06:00:37 +0000182 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000184 ){
185 return 1;
186 }
187
drh0ee3dbe2009-10-16 15:05:18 +0000188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
192 */
drh2c5e35f2014-08-05 11:04:21 +0000193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000194 return 1;
195 }
196
danielk197796d48e92009-06-29 06:00:37 +0000197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
200 ** table. */
201 if( isIndex ){
202 HashElem *p;
203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000205 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000206 if( iTab ){
207 /* Two or more indexes share the same root page. There must
208 ** be imposter tables. So just return true. The assert is not
209 ** useful in that case. */
210 return 1;
211 }
shane5eff7cf2009-08-10 03:57:58 +0000212 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000213 }
214 }
215 }else{
216 iTab = iRoot;
217 }
218
219 /* Search for the required lock. Either a write-lock on root-page iTab, a
220 ** write-lock on the schema table, or (if the client is reading) a
221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223 if( pLock->pBtree==pBtree
224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225 && pLock->eLock>=eLockType
226 ){
227 return 1;
228 }
229 }
230
231 /* Failed to find the required lock. */
232 return 0;
233}
drh0ee3dbe2009-10-16 15:05:18 +0000234#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000235
drh0ee3dbe2009-10-16 15:05:18 +0000236#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000237/*
drh0ee3dbe2009-10-16 15:05:18 +0000238**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000239**
drh0ee3dbe2009-10-16 15:05:18 +0000240** Return true if it would be illegal for pBtree to write into the
241** table or index rooted at iRoot because other shared connections are
242** simultaneously reading that same table or index.
243**
244** It is illegal for pBtree to write if some other Btree object that
245** shares the same BtShared object is currently reading or writing
246** the iRoot table. Except, if the other Btree object has the
247** read-uncommitted flag set, then it is OK for the other object to
248** have a read cursor.
249**
250** For example, before writing to any part of the table or index
251** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000252**
253** assert( !hasReadConflicts(pBtree, iRoot) );
254*/
255static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256 BtCursor *p;
257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258 if( p->pgnoRoot==iRoot
259 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000261 ){
262 return 1;
263 }
264 }
265 return 0;
266}
267#endif /* #ifdef SQLITE_DEBUG */
268
danielk1977da184232006-01-05 11:34:32 +0000269/*
drh0ee3dbe2009-10-16 15:05:18 +0000270** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000271** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000272** SQLITE_OK if the lock may be obtained (by calling
273** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000274*/
drhc25eabe2009-02-24 18:57:31 +0000275static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000276 BtShared *pBt = p->pBt;
277 BtLock *pIter;
278
drh1fee73e2007-08-29 04:00:57 +0000279 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000283
danielk19775b413d72009-04-01 09:41:54 +0000284 /* If requesting a write-lock, then the Btree must have an open write
285 ** transaction on this file. And, obviously, for this to be so there
286 ** must be an open write transaction on the file itself.
287 */
288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290
drh0ee3dbe2009-10-16 15:05:18 +0000291 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000292 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000293 return SQLITE_OK;
294 }
295
danielk1977641b0f42007-12-21 04:47:25 +0000296 /* If some other connection is holding an exclusive lock, the
297 ** requested lock may not be obtained.
298 */
drhc9166342012-01-05 23:32:06 +0000299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000302 }
303
danielk1977e0d9e6f2009-07-03 16:25:06 +0000304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305 /* The condition (pIter->eLock!=eLock) in the following if(...)
306 ** statement is a simplification of:
307 **
308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309 **
310 ** since we know that if eLock==WRITE_LOCK, then no other connection
311 ** may hold a WRITE_LOCK on any table in this file (since there can
312 ** only be a single writer).
313 */
314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318 if( eLock==WRITE_LOCK ){
319 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000320 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000321 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000323 }
324 }
325 return SQLITE_OK;
326}
drhe53831d2007-08-17 01:14:38 +0000327#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000328
drhe53831d2007-08-17 01:14:38 +0000329#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000330/*
331** Add a lock on the table with root-page iTable to the shared-btree used
332** by Btree handle p. Parameter eLock must be either READ_LOCK or
333** WRITE_LOCK.
334**
danielk19779d104862009-07-09 08:27:14 +0000335** This function assumes the following:
336**
drh0ee3dbe2009-10-16 15:05:18 +0000337** (a) The specified Btree object p is connected to a sharable
338** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000339**
drh0ee3dbe2009-10-16 15:05:18 +0000340** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000341** with the requested lock (i.e. querySharedCacheTableLock() has
342** already been called and returned SQLITE_OK).
343**
344** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000346*/
drhc25eabe2009-02-24 18:57:31 +0000347static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000348 BtShared *pBt = p->pBt;
349 BtLock *pLock = 0;
350 BtLock *pIter;
351
drh1fee73e2007-08-29 04:00:57 +0000352 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000355
danielk1977e0d9e6f2009-07-03 16:25:06 +0000356 /* A connection with the read-uncommitted flag set will never try to
357 ** obtain a read-lock using this function. The only read-lock obtained
358 ** by a connection in read-uncommitted mode is on the sqlite_master
359 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000361
danielk19779d104862009-07-09 08:27:14 +0000362 /* This function should only be called on a sharable b-tree after it
363 ** has been determined that no other b-tree holds a conflicting lock. */
364 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000366
367 /* First search the list for an existing lock on this table. */
368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369 if( pIter->iTable==iTable && pIter->pBtree==p ){
370 pLock = pIter;
371 break;
372 }
373 }
374
375 /* If the above search did not find a BtLock struct associating Btree p
376 ** with table iTable, allocate one and link it into the list.
377 */
378 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000380 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000381 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000382 }
383 pLock->iTable = iTable;
384 pLock->pBtree = p;
385 pLock->pNext = pBt->pLock;
386 pBt->pLock = pLock;
387 }
388
389 /* Set the BtLock.eLock variable to the maximum of the current lock
390 ** and the requested lock. This means if a write-lock was already held
391 ** and a read-lock requested, we don't incorrectly downgrade the lock.
392 */
393 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000394 if( eLock>pLock->eLock ){
395 pLock->eLock = eLock;
396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397
398 return SQLITE_OK;
399}
drhe53831d2007-08-17 01:14:38 +0000400#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000401
drhe53831d2007-08-17 01:14:38 +0000402#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000403/*
drhc25eabe2009-02-24 18:57:31 +0000404** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000405** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000406**
drh0ee3dbe2009-10-16 15:05:18 +0000407** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000408** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000409** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000410*/
drhc25eabe2009-02-24 18:57:31 +0000411static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000412 BtShared *pBt = p->pBt;
413 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000414
drh1fee73e2007-08-29 04:00:57 +0000415 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000416 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000417 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000418
danielk1977aef0bf62005-12-30 16:28:01 +0000419 while( *ppIter ){
420 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000422 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000423 if( pLock->pBtree==p ){
424 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000425 assert( pLock->iTable!=1 || pLock==&p->lock );
426 if( pLock->iTable!=1 ){
427 sqlite3_free(pLock);
428 }
danielk1977aef0bf62005-12-30 16:28:01 +0000429 }else{
430 ppIter = &pLock->pNext;
431 }
432 }
danielk1977641b0f42007-12-21 04:47:25 +0000433
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000435 if( pBt->pWriter==p ){
436 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000438 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000439 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000440 ** transaction. If there currently exists a writer, and p is not
441 ** that writer, then the number of locks held by connections other
442 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000443 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000444 **
drhc9166342012-01-05 23:32:06 +0000445 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000446 ** be zero already. So this next line is harmless in that case.
447 */
drhc9166342012-01-05 23:32:06 +0000448 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000449 }
danielk1977aef0bf62005-12-30 16:28:01 +0000450}
danielk197794b30732009-07-02 17:21:57 +0000451
danielk1977e0d9e6f2009-07-03 16:25:06 +0000452/*
drh0ee3dbe2009-10-16 15:05:18 +0000453** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000454*/
danielk197794b30732009-07-02 17:21:57 +0000455static void downgradeAllSharedCacheTableLocks(Btree *p){
456 BtShared *pBt = p->pBt;
457 if( pBt->pWriter==p ){
458 BtLock *pLock;
459 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463 pLock->eLock = READ_LOCK;
464 }
465 }
466}
467
danielk1977aef0bf62005-12-30 16:28:01 +0000468#endif /* SQLITE_OMIT_SHARED_CACHE */
469
drh3908fe92017-09-01 14:50:19 +0000470static void releasePage(MemPage *pPage); /* Forward reference */
471static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000472static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000473
drh1fee73e2007-08-29 04:00:57 +0000474/*
drh0ee3dbe2009-10-16 15:05:18 +0000475***** This routine is used inside of assert() only ****
476**
477** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000478*/
drh0ee3dbe2009-10-16 15:05:18 +0000479#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000480static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000481 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000482}
drh5e08d0f2016-06-04 21:05:54 +0000483
484/* Verify that the cursor and the BtShared agree about what is the current
485** database connetion. This is important in shared-cache mode. If the database
486** connection pointers get out-of-sync, it is possible for routines like
487** btreeInitPage() to reference an stale connection pointer that references a
488** a connection that has already closed. This routine is used inside assert()
489** statements only and for the purpose of double-checking that the btree code
490** does keep the database connection pointers up-to-date.
491*/
dan7a2347e2016-01-07 16:43:54 +0000492static int cursorOwnsBtShared(BtCursor *p){
493 assert( cursorHoldsMutex(p) );
494 return (p->pBtree->db==p->pBt->db);
495}
drh1fee73e2007-08-29 04:00:57 +0000496#endif
497
danielk197792d4d7a2007-05-04 12:05:56 +0000498/*
dan5a500af2014-03-11 20:33:04 +0000499** Invalidate the overflow cache of the cursor passed as the first argument.
500** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000501*/
drh036dbec2014-03-11 23:40:44 +0000502#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000503
504/*
505** Invalidate the overflow page-list cache for all cursors opened
506** on the shared btree structure pBt.
507*/
508static void invalidateAllOverflowCache(BtShared *pBt){
509 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000510 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000511 for(p=pBt->pCursor; p; p=p->pNext){
512 invalidateOverflowCache(p);
513 }
514}
danielk197796d48e92009-06-29 06:00:37 +0000515
dan5a500af2014-03-11 20:33:04 +0000516#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000517/*
518** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000519** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000520** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000521**
522** If argument isClearTable is true, then the entire contents of the
523** table is about to be deleted. In this case invalidate all incrblob
524** cursors open on any row within the table with root-page pgnoRoot.
525**
526** Otherwise, if argument isClearTable is false, then the row with
527** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000528** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000529*/
530static void invalidateIncrblobCursors(
531 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000532 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000533 i64 iRow, /* The rowid that might be changing */
534 int isClearTable /* True if all rows are being deleted */
535){
536 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000537 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000538 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000539 pBtree->hasIncrblobCur = 0;
540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541 if( (p->curFlags & BTCF_Incrblob)!=0 ){
542 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000544 p->eState = CURSOR_INVALID;
545 }
danielk197796d48e92009-06-29 06:00:37 +0000546 }
547 }
548}
549
danielk197792d4d7a2007-05-04 12:05:56 +0000550#else
dan5a500af2014-03-11 20:33:04 +0000551 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000552 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000553#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000554
drh980b1a72006-08-16 16:42:48 +0000555/*
danielk1977bea2a942009-01-20 17:06:27 +0000556** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557** when a page that previously contained data becomes a free-list leaf
558** page.
559**
560** The BtShared.pHasContent bitvec exists to work around an obscure
561** bug caused by the interaction of two useful IO optimizations surrounding
562** free-list leaf pages:
563**
564** 1) When all data is deleted from a page and the page becomes
565** a free-list leaf page, the page is not written to the database
566** (as free-list leaf pages contain no meaningful data). Sometimes
567** such a page is not even journalled (as it will not be modified,
568** why bother journalling it?).
569**
570** 2) When a free-list leaf page is reused, its content is not read
571** from the database or written to the journal file (why should it
572** be, if it is not at all meaningful?).
573**
574** By themselves, these optimizations work fine and provide a handy
575** performance boost to bulk delete or insert operations. However, if
576** a page is moved to the free-list and then reused within the same
577** transaction, a problem comes up. If the page is not journalled when
578** it is moved to the free-list and it is also not journalled when it
579** is extracted from the free-list and reused, then the original data
580** may be lost. In the event of a rollback, it may not be possible
581** to restore the database to its original configuration.
582**
583** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584** moved to become a free-list leaf page, the corresponding bit is
585** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000586** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000587** set in BtShared.pHasContent. The contents of the bitvec are cleared
588** at the end of every transaction.
589*/
590static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591 int rc = SQLITE_OK;
592 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000593 assert( pgno<=pBt->nPage );
594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000595 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000596 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000597 }
598 }
599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601 }
602 return rc;
603}
604
605/*
606** Query the BtShared.pHasContent vector.
607**
608** This function is called when a free-list leaf page is removed from the
609** free-list for reuse. It returns false if it is safe to retrieve the
610** page from the pager layer with the 'no-content' flag set. True otherwise.
611*/
612static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613 Bitvec *p = pBt->pHasContent;
614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615}
616
617/*
618** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619** invoked at the conclusion of each write-transaction.
620*/
621static void btreeClearHasContent(BtShared *pBt){
622 sqlite3BitvecDestroy(pBt->pHasContent);
623 pBt->pHasContent = 0;
624}
625
626/*
drh138eeeb2013-03-27 03:15:23 +0000627** Release all of the apPage[] pages for a cursor.
628*/
629static void btreeReleaseAllCursorPages(BtCursor *pCur){
630 int i;
drh352a35a2017-08-15 03:46:47 +0000631 if( pCur->iPage>=0 ){
632 for(i=0; i<pCur->iPage; i++){
633 releasePageNotNull(pCur->apPage[i]);
634 }
635 releasePageNotNull(pCur->pPage);
636 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000637 }
drh138eeeb2013-03-27 03:15:23 +0000638}
639
danf0ee1d32015-09-12 19:26:11 +0000640/*
641** The cursor passed as the only argument must point to a valid entry
642** when this function is called (i.e. have eState==CURSOR_VALID). This
643** function saves the current cursor key in variables pCur->nKey and
644** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645** code otherwise.
646**
647** If the cursor is open on an intkey table, then the integer key
648** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650** set to point to a malloced buffer pCur->nKey bytes in size containing
651** the key.
652*/
653static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000654 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000655 assert( CURSOR_VALID==pCur->eState );
656 assert( 0==pCur->pKey );
657 assert( cursorHoldsMutex(pCur) );
658
drha7c90c42016-06-04 20:37:10 +0000659 if( pCur->curIntKey ){
660 /* Only the rowid is required for a table btree */
661 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662 }else{
danfffaf232018-12-14 13:18:35 +0000663 /* For an index btree, save the complete key content. It is possible
664 ** that the current key is corrupt. In that case, it is possible that
665 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666 ** up to the size of 1 varint plus 1 8-byte value when the cursor
667 ** position is restored. Hence the 17 bytes of padding allocated
668 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000669 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000670 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000671 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000672 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000673 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000674 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000675 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000676 pCur->pKey = pKey;
677 }else{
678 sqlite3_free(pKey);
679 }
680 }else{
mistachkinfad30392016-02-13 23:43:46 +0000681 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000682 }
683 }
684 assert( !pCur->curIntKey || !pCur->pKey );
685 return rc;
686}
drh138eeeb2013-03-27 03:15:23 +0000687
688/*
drh980b1a72006-08-16 16:42:48 +0000689** Save the current cursor position in the variables BtCursor.nKey
690** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000691**
692** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
693** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000694*/
695static int saveCursorPosition(BtCursor *pCur){
696 int rc;
697
drhd2f83132015-03-25 17:35:01 +0000698 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000699 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000700 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000701
drhd2f83132015-03-25 17:35:01 +0000702 if( pCur->eState==CURSOR_SKIPNEXT ){
703 pCur->eState = CURSOR_VALID;
704 }else{
705 pCur->skipNext = 0;
706 }
drh980b1a72006-08-16 16:42:48 +0000707
danf0ee1d32015-09-12 19:26:11 +0000708 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000709 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000710 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000711 pCur->eState = CURSOR_REQUIRESEEK;
712 }
713
dane755e102015-09-30 12:59:12 +0000714 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000715 return rc;
716}
717
drh637f3d82014-08-22 22:26:07 +0000718/* Forward reference */
719static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
720
drh980b1a72006-08-16 16:42:48 +0000721/*
drh0ee3dbe2009-10-16 15:05:18 +0000722** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000723** the table with root-page iRoot. "Saving the cursor position" means that
724** the location in the btree is remembered in such a way that it can be
725** moved back to the same spot after the btree has been modified. This
726** routine is called just before cursor pExcept is used to modify the
727** table, for example in BtreeDelete() or BtreeInsert().
728**
drh27fb7462015-06-30 02:47:36 +0000729** If there are two or more cursors on the same btree, then all such
730** cursors should have their BTCF_Multiple flag set. The btreeCursor()
731** routine enforces that rule. This routine only needs to be called in
732** the uncommon case when pExpect has the BTCF_Multiple flag set.
733**
734** If pExpect!=NULL and if no other cursors are found on the same root-page,
735** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
736** pointless call to this routine.
737**
drh637f3d82014-08-22 22:26:07 +0000738** Implementation note: This routine merely checks to see if any cursors
739** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
740** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000741*/
742static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
743 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000744 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000745 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000746 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000747 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
748 }
drh27fb7462015-06-30 02:47:36 +0000749 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
750 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
751 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000752}
753
754/* This helper routine to saveAllCursors does the actual work of saving
755** the cursors if and when a cursor is found that actually requires saving.
756** The common case is that no cursors need to be saved, so this routine is
757** broken out from its caller to avoid unnecessary stack pointer movement.
758*/
759static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000760 BtCursor *p, /* The first cursor that needs saving */
761 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
762 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000763){
764 do{
drh138eeeb2013-03-27 03:15:23 +0000765 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000766 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000767 int rc = saveCursorPosition(p);
768 if( SQLITE_OK!=rc ){
769 return rc;
770 }
771 }else{
drh85ef6302017-08-02 15:50:09 +0000772 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000773 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000774 }
775 }
drh637f3d82014-08-22 22:26:07 +0000776 p = p->pNext;
777 }while( p );
drh980b1a72006-08-16 16:42:48 +0000778 return SQLITE_OK;
779}
780
781/*
drhbf700f32007-03-31 02:36:44 +0000782** Clear the current cursor position.
783*/
danielk1977be51a652008-10-08 17:58:48 +0000784void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000785 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000786 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000787 pCur->pKey = 0;
788 pCur->eState = CURSOR_INVALID;
789}
790
791/*
danielk19773509a652009-07-06 18:56:13 +0000792** In this version of BtreeMoveto, pKey is a packed index record
793** such as is generated by the OP_MakeRecord opcode. Unpack the
794** record and then call BtreeMovetoUnpacked() to do the work.
795*/
796static int btreeMoveto(
797 BtCursor *pCur, /* Cursor open on the btree to be searched */
798 const void *pKey, /* Packed key if the btree is an index */
799 i64 nKey, /* Integer key for tables. Size of pKey for indices */
800 int bias, /* Bias search to the high end */
801 int *pRes /* Write search results here */
802){
803 int rc; /* Status code */
804 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000805
806 if( pKey ){
danb0c4c942019-01-24 15:16:17 +0000807 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +0000808 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +0000809 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000810 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +0000811 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
812 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +0000813 rc = SQLITE_CORRUPT_BKPT;
drha582b012016-12-21 19:45:54 +0000814 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000815 }
danielk19773509a652009-07-06 18:56:13 +0000816 }else{
817 pIdxKey = 0;
818 }
819 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000820moveto_done:
821 if( pIdxKey ){
822 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000823 }
824 return rc;
825}
826
827/*
drh980b1a72006-08-16 16:42:48 +0000828** Restore the cursor to the position it was in (or as close to as possible)
829** when saveCursorPosition() was called. Note that this call deletes the
830** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000831** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000832** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000833*/
danielk197730548662009-07-09 05:07:37 +0000834static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000835 int rc;
drhd2f83132015-03-25 17:35:01 +0000836 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000837 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000838 assert( pCur->eState>=CURSOR_REQUIRESEEK );
839 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000840 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000841 }
drh980b1a72006-08-16 16:42:48 +0000842 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000843 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000844 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000845 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000846 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000847 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +0000848 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +0000849 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
850 pCur->eState = CURSOR_SKIPNEXT;
851 }
drh980b1a72006-08-16 16:42:48 +0000852 }
853 return rc;
854}
855
drha3460582008-07-11 21:02:53 +0000856#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000857 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000858 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000859 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000860
drha3460582008-07-11 21:02:53 +0000861/*
drh6848dad2014-08-22 23:33:03 +0000862** Determine whether or not a cursor has moved from the position where
863** it was last placed, or has been invalidated for any other reason.
864** Cursors can move when the row they are pointing at is deleted out
865** from under them, for example. Cursor might also move if a btree
866** is rebalanced.
drha3460582008-07-11 21:02:53 +0000867**
drh6848dad2014-08-22 23:33:03 +0000868** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000869**
drh6848dad2014-08-22 23:33:03 +0000870** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
871** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000872*/
drh6848dad2014-08-22 23:33:03 +0000873int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000874 assert( EIGHT_BYTE_ALIGNMENT(pCur)
875 || pCur==sqlite3BtreeFakeValidCursor() );
876 assert( offsetof(BtCursor, eState)==0 );
877 assert( sizeof(pCur->eState)==1 );
878 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000879}
880
881/*
drhfe0cf7a2017-08-16 19:20:20 +0000882** Return a pointer to a fake BtCursor object that will always answer
883** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
884** cursor returned must not be used with any other Btree interface.
885*/
886BtCursor *sqlite3BtreeFakeValidCursor(void){
887 static u8 fakeCursor = CURSOR_VALID;
888 assert( offsetof(BtCursor, eState)==0 );
889 return (BtCursor*)&fakeCursor;
890}
891
892/*
drh6848dad2014-08-22 23:33:03 +0000893** This routine restores a cursor back to its original position after it
894** has been moved by some outside activity (such as a btree rebalance or
895** a row having been deleted out from under the cursor).
896**
897** On success, the *pDifferentRow parameter is false if the cursor is left
898** pointing at exactly the same row. *pDifferntRow is the row the cursor
899** was pointing to has been deleted, forcing the cursor to point to some
900** nearby row.
901**
902** This routine should only be called for a cursor that just returned
903** TRUE from sqlite3BtreeCursorHasMoved().
904*/
905int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000906 int rc;
907
drh6848dad2014-08-22 23:33:03 +0000908 assert( pCur!=0 );
909 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000910 rc = restoreCursorPosition(pCur);
911 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000912 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000913 return rc;
914 }
drh606a3572015-03-25 18:29:10 +0000915 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000916 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000917 }else{
drh6848dad2014-08-22 23:33:03 +0000918 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000919 }
920 return SQLITE_OK;
921}
922
drhf7854c72015-10-27 13:24:37 +0000923#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000924/*
drh0df57012015-08-14 15:05:55 +0000925** Provide hints to the cursor. The particular hint given (and the type
926** and number of the varargs parameters) is determined by the eHintType
927** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000928*/
drh0df57012015-08-14 15:05:55 +0000929void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000930 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000931}
drhf7854c72015-10-27 13:24:37 +0000932#endif
933
934/*
935** Provide flag hints to the cursor.
936*/
937void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
938 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
939 pCur->hints = x;
940}
941
drh28935362013-12-07 20:39:19 +0000942
danielk1977599fcba2004-11-08 07:13:13 +0000943#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000944/*
drha3152892007-05-05 11:48:52 +0000945** Given a page number of a regular database page, return the page
946** number for the pointer-map page that contains the entry for the
947** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000948**
949** Return 0 (not a valid page) for pgno==1 since there is
950** no pointer map associated with page 1. The integrity_check logic
951** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000952*/
danielk1977266664d2006-02-10 08:24:21 +0000953static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000954 int nPagesPerMapPage;
955 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000956 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000957 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000958 nPagesPerMapPage = (pBt->usableSize/5)+1;
959 iPtrMap = (pgno-2)/nPagesPerMapPage;
960 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000961 if( ret==PENDING_BYTE_PAGE(pBt) ){
962 ret++;
963 }
964 return ret;
965}
danielk1977a19df672004-11-03 11:37:07 +0000966
danielk1977afcdd022004-10-31 16:25:42 +0000967/*
danielk1977afcdd022004-10-31 16:25:42 +0000968** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000969**
970** This routine updates the pointer map entry for page number 'key'
971** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000972**
973** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
974** a no-op. If an error occurs, the appropriate error code is written
975** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000976*/
drh98add2e2009-07-20 17:11:49 +0000977static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000978 DbPage *pDbPage; /* The pointer map page */
979 u8 *pPtrmap; /* The pointer map data */
980 Pgno iPtrmap; /* The pointer map page number */
981 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000982 int rc; /* Return code from subfunctions */
983
984 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000985
drh1fee73e2007-08-29 04:00:57 +0000986 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000987 /* The master-journal page number must never be used as a pointer map page */
988 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
989
danielk1977ac11ee62005-01-15 12:45:51 +0000990 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000991 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000992 *pRC = SQLITE_CORRUPT_BKPT;
993 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000994 }
danielk1977266664d2006-02-10 08:24:21 +0000995 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000996 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000997 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000998 *pRC = rc;
999 return;
danielk1977afcdd022004-10-31 16:25:42 +00001000 }
drh203b1ea2018-12-14 03:14:18 +00001001 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1002 /* The first byte of the extra data is the MemPage.isInit byte.
1003 ** If that byte is set, it means this page is also being used
1004 ** as a btree page. */
1005 *pRC = SQLITE_CORRUPT_BKPT;
1006 goto ptrmap_exit;
1007 }
danielk19778c666b12008-07-18 09:34:57 +00001008 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001009 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001010 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001011 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001012 }
drhfc243732011-05-17 15:21:56 +00001013 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001014 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001015
drh615ae552005-01-16 23:21:00 +00001016 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1017 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001018 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001019 if( rc==SQLITE_OK ){
1020 pPtrmap[offset] = eType;
1021 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001022 }
danielk1977afcdd022004-10-31 16:25:42 +00001023 }
1024
drh4925a552009-07-07 11:39:58 +00001025ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001026 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001027}
1028
1029/*
1030** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001031**
1032** This routine retrieves the pointer map entry for page 'key', writing
1033** the type and parent page number to *pEType and *pPgno respectively.
1034** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001035*/
danielk1977aef0bf62005-12-30 16:28:01 +00001036static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001037 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001038 int iPtrmap; /* Pointer map page index */
1039 u8 *pPtrmap; /* Pointer map page data */
1040 int offset; /* Offset of entry in pointer map */
1041 int rc;
1042
drh1fee73e2007-08-29 04:00:57 +00001043 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001044
danielk1977266664d2006-02-10 08:24:21 +00001045 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001046 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001047 if( rc!=0 ){
1048 return rc;
1049 }
danielk19773b8a05f2007-03-19 17:44:26 +00001050 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001051
danielk19778c666b12008-07-18 09:34:57 +00001052 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001053 if( offset<0 ){
1054 sqlite3PagerUnref(pDbPage);
1055 return SQLITE_CORRUPT_BKPT;
1056 }
1057 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001058 assert( pEType!=0 );
1059 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001060 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001061
danielk19773b8a05f2007-03-19 17:44:26 +00001062 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001063 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001064 return SQLITE_OK;
1065}
1066
danielk197785d90ca2008-07-19 14:25:15 +00001067#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001068 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001069 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001070 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001071#endif
danielk1977afcdd022004-10-31 16:25:42 +00001072
drh0d316a42002-08-11 20:10:47 +00001073/*
drh271efa52004-05-30 19:19:05 +00001074** Given a btree page and a cell index (0 means the first cell on
1075** the page, 1 means the second cell, and so forth) return a pointer
1076** to the cell content.
1077**
drhf44890a2015-06-27 03:58:15 +00001078** findCellPastPtr() does the same except it skips past the initial
1079** 4-byte child pointer found on interior pages, if there is one.
1080**
drh271efa52004-05-30 19:19:05 +00001081** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001082*/
drh1688c862008-07-18 02:44:17 +00001083#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001084 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001085#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001086 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001087
drh43605152004-05-29 21:46:49 +00001088
1089/*
drh5fa60512015-06-19 17:19:34 +00001090** This is common tail processing for btreeParseCellPtr() and
1091** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1092** on a single B-tree page. Make necessary adjustments to the CellInfo
1093** structure.
drh43605152004-05-29 21:46:49 +00001094*/
drh5fa60512015-06-19 17:19:34 +00001095static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1096 MemPage *pPage, /* Page containing the cell */
1097 u8 *pCell, /* Pointer to the cell text. */
1098 CellInfo *pInfo /* Fill in this structure */
1099){
1100 /* If the payload will not fit completely on the local page, we have
1101 ** to decide how much to store locally and how much to spill onto
1102 ** overflow pages. The strategy is to minimize the amount of unused
1103 ** space on overflow pages while keeping the amount of local storage
1104 ** in between minLocal and maxLocal.
1105 **
1106 ** Warning: changing the way overflow payload is distributed in any
1107 ** way will result in an incompatible file format.
1108 */
1109 int minLocal; /* Minimum amount of payload held locally */
1110 int maxLocal; /* Maximum amount of payload held locally */
1111 int surplus; /* Overflow payload available for local storage */
1112
1113 minLocal = pPage->minLocal;
1114 maxLocal = pPage->maxLocal;
1115 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1116 testcase( surplus==maxLocal );
1117 testcase( surplus==maxLocal+1 );
1118 if( surplus <= maxLocal ){
1119 pInfo->nLocal = (u16)surplus;
1120 }else{
1121 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001122 }
drh45ac1c72015-12-18 03:59:16 +00001123 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001124}
1125
1126/*
drh5fa60512015-06-19 17:19:34 +00001127** The following routines are implementations of the MemPage.xParseCell()
1128** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001129**
drh5fa60512015-06-19 17:19:34 +00001130** Parse a cell content block and fill in the CellInfo structure.
1131**
1132** btreeParseCellPtr() => table btree leaf nodes
1133** btreeParseCellNoPayload() => table btree internal nodes
1134** btreeParseCellPtrIndex() => index btree nodes
1135**
1136** There is also a wrapper function btreeParseCell() that works for
1137** all MemPage types and that references the cell by index rather than
1138** by pointer.
drh43605152004-05-29 21:46:49 +00001139*/
drh5fa60512015-06-19 17:19:34 +00001140static void btreeParseCellPtrNoPayload(
1141 MemPage *pPage, /* Page containing the cell */
1142 u8 *pCell, /* Pointer to the cell text. */
1143 CellInfo *pInfo /* Fill in this structure */
1144){
1145 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1146 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001147 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001148#ifndef SQLITE_DEBUG
1149 UNUSED_PARAMETER(pPage);
1150#endif
drh5fa60512015-06-19 17:19:34 +00001151 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1152 pInfo->nPayload = 0;
1153 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001154 pInfo->pPayload = 0;
1155 return;
1156}
danielk197730548662009-07-09 05:07:37 +00001157static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001158 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001159 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001160 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001161){
drh3e28ff52014-09-24 00:59:08 +00001162 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001163 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001164 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001165
drh1fee73e2007-08-29 04:00:57 +00001166 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001167 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001168 assert( pPage->intKeyLeaf );
1169 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001170 pIter = pCell;
1171
1172 /* The next block of code is equivalent to:
1173 **
1174 ** pIter += getVarint32(pIter, nPayload);
1175 **
1176 ** The code is inlined to avoid a function call.
1177 */
1178 nPayload = *pIter;
1179 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001180 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001181 nPayload &= 0x7f;
1182 do{
1183 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1184 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001185 }
drh56cb04e2015-06-19 18:24:37 +00001186 pIter++;
1187
1188 /* The next block of code is equivalent to:
1189 **
1190 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1191 **
1192 ** The code is inlined to avoid a function call.
1193 */
1194 iKey = *pIter;
1195 if( iKey>=0x80 ){
1196 u8 *pEnd = &pIter[7];
1197 iKey &= 0x7f;
1198 while(1){
1199 iKey = (iKey<<7) | (*++pIter & 0x7f);
1200 if( (*pIter)<0x80 ) break;
1201 if( pIter>=pEnd ){
1202 iKey = (iKey<<8) | *++pIter;
1203 break;
1204 }
1205 }
1206 }
1207 pIter++;
1208
1209 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001210 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001211 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001212 testcase( nPayload==pPage->maxLocal );
1213 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001214 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001215 /* This is the (easy) common case where the entire payload fits
1216 ** on the local page. No overflow is required.
1217 */
drhab1cc582014-09-23 21:25:19 +00001218 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1219 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001220 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001221 }else{
drh5fa60512015-06-19 17:19:34 +00001222 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001223 }
drh3aac2dd2004-04-26 14:10:20 +00001224}
drh5fa60512015-06-19 17:19:34 +00001225static void btreeParseCellPtrIndex(
1226 MemPage *pPage, /* Page containing the cell */
1227 u8 *pCell, /* Pointer to the cell text. */
1228 CellInfo *pInfo /* Fill in this structure */
1229){
1230 u8 *pIter; /* For scanning through pCell */
1231 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001232
drh5fa60512015-06-19 17:19:34 +00001233 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1234 assert( pPage->leaf==0 || pPage->leaf==1 );
1235 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001236 pIter = pCell + pPage->childPtrSize;
1237 nPayload = *pIter;
1238 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001239 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001240 nPayload &= 0x7f;
1241 do{
1242 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1243 }while( *(pIter)>=0x80 && pIter<pEnd );
1244 }
1245 pIter++;
1246 pInfo->nKey = nPayload;
1247 pInfo->nPayload = nPayload;
1248 pInfo->pPayload = pIter;
1249 testcase( nPayload==pPage->maxLocal );
1250 testcase( nPayload==pPage->maxLocal+1 );
1251 if( nPayload<=pPage->maxLocal ){
1252 /* This is the (easy) common case where the entire payload fits
1253 ** on the local page. No overflow is required.
1254 */
1255 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1256 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1257 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001258 }else{
1259 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001260 }
1261}
danielk197730548662009-07-09 05:07:37 +00001262static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001263 MemPage *pPage, /* Page containing the cell */
1264 int iCell, /* The cell index. First cell is 0 */
1265 CellInfo *pInfo /* Fill in this structure */
1266){
drh5fa60512015-06-19 17:19:34 +00001267 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001268}
drh3aac2dd2004-04-26 14:10:20 +00001269
1270/*
drh5fa60512015-06-19 17:19:34 +00001271** The following routines are implementations of the MemPage.xCellSize
1272** method.
1273**
drh43605152004-05-29 21:46:49 +00001274** Compute the total number of bytes that a Cell needs in the cell
1275** data area of the btree-page. The return number includes the cell
1276** data header and the local payload, but not any overflow page or
1277** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001278**
drh5fa60512015-06-19 17:19:34 +00001279** cellSizePtrNoPayload() => table internal nodes
1280** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001281*/
danielk1977ae5558b2009-04-29 11:31:47 +00001282static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001283 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1284 u8 *pEnd; /* End mark for a varint */
1285 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001286
1287#ifdef SQLITE_DEBUG
1288 /* The value returned by this function should always be the same as
1289 ** the (CellInfo.nSize) value found by doing a full parse of the
1290 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1291 ** this function verifies that this invariant is not violated. */
1292 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001293 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001294#endif
1295
drh3e28ff52014-09-24 00:59:08 +00001296 nSize = *pIter;
1297 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001298 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001299 nSize &= 0x7f;
1300 do{
1301 nSize = (nSize<<7) | (*++pIter & 0x7f);
1302 }while( *(pIter)>=0x80 && pIter<pEnd );
1303 }
1304 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001305 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001306 /* pIter now points at the 64-bit integer key value, a variable length
1307 ** integer. The following block moves pIter to point at the first byte
1308 ** past the end of the key value. */
1309 pEnd = &pIter[9];
1310 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001311 }
drh0a45c272009-07-08 01:49:11 +00001312 testcase( nSize==pPage->maxLocal );
1313 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001314 if( nSize<=pPage->maxLocal ){
1315 nSize += (u32)(pIter - pCell);
1316 if( nSize<4 ) nSize = 4;
1317 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001318 int minLocal = pPage->minLocal;
1319 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001320 testcase( nSize==pPage->maxLocal );
1321 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001322 if( nSize>pPage->maxLocal ){
1323 nSize = minLocal;
1324 }
drh3e28ff52014-09-24 00:59:08 +00001325 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001326 }
drhdc41d602014-09-22 19:51:35 +00001327 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001328 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001329}
drh25ada072015-06-19 15:07:14 +00001330static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1331 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1332 u8 *pEnd; /* End mark for a varint */
1333
1334#ifdef SQLITE_DEBUG
1335 /* The value returned by this function should always be the same as
1336 ** the (CellInfo.nSize) value found by doing a full parse of the
1337 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1338 ** this function verifies that this invariant is not violated. */
1339 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001340 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001341#else
1342 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001343#endif
1344
1345 assert( pPage->childPtrSize==4 );
1346 pEnd = pIter + 9;
1347 while( (*pIter++)&0x80 && pIter<pEnd );
1348 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1349 return (u16)(pIter - pCell);
1350}
1351
drh0ee3dbe2009-10-16 15:05:18 +00001352
1353#ifdef SQLITE_DEBUG
1354/* This variation on cellSizePtr() is used inside of assert() statements
1355** only. */
drha9121e42008-02-19 14:59:35 +00001356static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001357 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001358}
danielk1977bc6ada42004-06-30 08:20:16 +00001359#endif
drh3b7511c2001-05-26 13:15:44 +00001360
danielk197779a40da2005-01-16 08:00:01 +00001361#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001362/*
drh0f1bf4c2019-01-13 20:17:21 +00001363** The cell pCell is currently part of page pSrc but will ultimately be part
1364** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1365** pointer to an overflow page, insert an entry into the pointer-map for
1366** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001367*/
drh0f1bf4c2019-01-13 20:17:21 +00001368static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001369 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001370 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001371 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001372 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001373 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001374 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001375 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1376 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001377 *pRC = SQLITE_CORRUPT_BKPT;
1378 return;
1379 }
1380 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001381 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001382 }
danielk1977ac11ee62005-01-15 12:45:51 +00001383}
danielk197779a40da2005-01-16 08:00:01 +00001384#endif
1385
danielk1977ac11ee62005-01-15 12:45:51 +00001386
drhda200cc2004-05-09 11:51:38 +00001387/*
dane6d065a2017-02-24 19:58:22 +00001388** Defragment the page given. This routine reorganizes cells within the
1389** page so that there are no free-blocks on the free-block list.
1390**
1391** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1392** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001393**
1394** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1395** b-tree page so that there are no freeblocks or fragment bytes, all
1396** unused bytes are contained in the unallocated space region, and all
1397** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001398*/
dane6d065a2017-02-24 19:58:22 +00001399static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001400 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001401 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001402 int hdr; /* Offset to the page header */
1403 int size; /* Size of a cell */
1404 int usableSize; /* Number of usable bytes on a page */
1405 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001406 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001407 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001408 unsigned char *data; /* The page data */
1409 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001410 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001411 int iCellFirst; /* First allowable cell index */
1412 int iCellLast; /* Last possible cell index */
1413
danielk19773b8a05f2007-03-19 17:44:26 +00001414 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001415 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001416 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001417 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001418 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001419 temp = 0;
1420 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001421 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001422 cellOffset = pPage->cellOffset;
1423 nCell = pPage->nCell;
1424 assert( nCell==get2byte(&data[hdr+3]) );
dane6d065a2017-02-24 19:58:22 +00001425 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001426 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001427
1428 /* This block handles pages with two or fewer free blocks and nMaxFrag
1429 ** or fewer fragmented bytes. In this case it is faster to move the
1430 ** two (or one) blocks of cells using memmove() and add the required
1431 ** offsets to each pointer in the cell-pointer array than it is to
1432 ** reconstruct the entire page. */
1433 if( (int)data[hdr+7]<=nMaxFrag ){
1434 int iFree = get2byte(&data[hdr+1]);
drh5881dfe2018-12-13 03:36:13 +00001435
drhc01f41c2019-02-11 12:51:39 +00001436 /* If the initial freeblock offset were out of bounds, that would have
1437 ** been detected by btreeComputeFreeSpace() when it was computing the
drh5881dfe2018-12-13 03:36:13 +00001438 ** number of free bytes on the page. */
1439 assert( iFree<=usableSize-4 );
dane6d065a2017-02-24 19:58:22 +00001440 if( iFree ){
1441 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001442 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001443 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1444 u8 *pEnd = &data[cellOffset + nCell*2];
1445 u8 *pAddr;
1446 int sz2 = 0;
1447 int sz = get2byte(&data[iFree+2]);
1448 int top = get2byte(&data[hdr+5]);
drh4e6cec12017-09-28 13:47:35 +00001449 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001450 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001451 }
dane6d065a2017-02-24 19:58:22 +00001452 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001453 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001454 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001455 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001456 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1457 sz += sz2;
1458 }
1459 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001460 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001461 memmove(&data[cbrk], &data[top], iFree-top);
1462 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1463 pc = get2byte(pAddr);
1464 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1465 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1466 }
1467 goto defragment_out;
1468 }
1469 }
1470 }
1471
drh281b21d2008-08-22 12:57:08 +00001472 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001473 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001474 for(i=0; i<nCell; i++){
1475 u8 *pAddr; /* The i-th cell pointer */
1476 pAddr = &data[cellOffset + i*2];
1477 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001478 testcase( pc==iCellFirst );
1479 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001480 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001481 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001482 */
1483 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001484 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001485 }
drh17146622009-07-07 17:38:38 +00001486 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001487 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001488 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001489 if( cbrk<iCellFirst || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001490 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001491 }
drh7157e1d2009-07-09 13:25:32 +00001492 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001493 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001494 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001495 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001496 if( temp==0 ){
1497 int x;
1498 if( cbrk==pc ) continue;
1499 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1500 x = get2byte(&data[hdr+5]);
1501 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1502 src = temp;
1503 }
1504 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001505 }
dane6d065a2017-02-24 19:58:22 +00001506 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001507
1508 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001509 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001510 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001511 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001512 }
drh17146622009-07-07 17:38:38 +00001513 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001514 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001515 data[hdr+1] = 0;
1516 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001517 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001518 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001519 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001520}
1521
drha059ad02001-04-17 20:09:11 +00001522/*
dan8e9ba0c2014-10-14 17:27:04 +00001523** Search the free-list on page pPg for space to store a cell nByte bytes in
1524** size. If one can be found, return a pointer to the space and remove it
1525** from the free-list.
1526**
1527** If no suitable space can be found on the free-list, return NULL.
1528**
drhba0f9992014-10-30 20:48:44 +00001529** This function may detect corruption within pPg. If corruption is
1530** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001531**
drhb7580e82015-06-25 18:36:13 +00001532** Slots on the free list that are between 1 and 3 bytes larger than nByte
1533** will be ignored if adding the extra space to the fragmentation count
1534** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001535*/
drhb7580e82015-06-25 18:36:13 +00001536static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001537 const int hdr = pPg->hdrOffset; /* Offset to page header */
1538 u8 * const aData = pPg->aData; /* Page data */
1539 int iAddr = hdr + 1; /* Address of ptr to pc */
1540 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */
1541 int x; /* Excess size of the slot */
1542 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1543 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001544
drhb7580e82015-06-25 18:36:13 +00001545 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001546 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001547 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1548 ** freeblock form a big-endian integer which is the size of the freeblock
1549 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001550 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001551 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001552 testcase( x==4 );
1553 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001554 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001555 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1556 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001557 if( aData[hdr+7]>57 ) return 0;
1558
dan8e9ba0c2014-10-14 17:27:04 +00001559 /* Remove the slot from the free-list. Update the number of
1560 ** fragmented bytes within the page. */
1561 memcpy(&aData[iAddr], &aData[pc], 2);
1562 aData[hdr+7] += (u8)x;
drh298f45c2019-02-08 22:34:59 +00001563 }else if( x+pc > maxPC ){
1564 /* This slot extends off the end of the usable part of the page */
1565 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1566 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001567 }else{
1568 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001569 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001570 put2byte(&aData[pc+2], x);
1571 }
1572 return &aData[pc + x];
1573 }
drhb7580e82015-06-25 18:36:13 +00001574 iAddr = pc;
1575 pc = get2byte(&aData[pc]);
drh298f45c2019-02-08 22:34:59 +00001576 if( pc<iAddr+size ){
1577 if( pc ){
1578 /* The next slot in the chain is not past the end of the current slot */
1579 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1580 }
1581 return 0;
1582 }
drh87d63c92017-08-23 23:09:03 +00001583 }
drh298f45c2019-02-08 22:34:59 +00001584 if( pc>maxPC+nByte-4 ){
1585 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001586 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001587 }
dan8e9ba0c2014-10-14 17:27:04 +00001588 return 0;
1589}
1590
1591/*
danielk19776011a752009-04-01 16:25:32 +00001592** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001593** as the first argument. Write into *pIdx the index into pPage->aData[]
1594** of the first byte of allocated space. Return either SQLITE_OK or
1595** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001596**
drh0a45c272009-07-08 01:49:11 +00001597** The caller guarantees that there is sufficient space to make the
1598** allocation. This routine might need to defragment in order to bring
1599** all the space together, however. This routine will avoid using
1600** the first two bytes past the cell pointer area since presumably this
1601** allocation is being made in order to insert a new cell, so we will
1602** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001603*/
drh0a45c272009-07-08 01:49:11 +00001604static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001605 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1606 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001607 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001608 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001609 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001610
danielk19773b8a05f2007-03-19 17:44:26 +00001611 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001612 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001613 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001614 assert( nByte>=0 ); /* Minimum cell size is 4 */
1615 assert( pPage->nFree>=nByte );
1616 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001617 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001618
drh0a45c272009-07-08 01:49:11 +00001619 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1620 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001621 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001622 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1623 ** and the reserved space is zero (the usual value for reserved space)
1624 ** then the cell content offset of an empty page wants to be 65536.
1625 ** However, that integer is too large to be stored in a 2-byte unsigned
1626 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001627 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001628 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001629 if( gap>top ){
1630 if( top==0 && pPage->pBt->usableSize==65536 ){
1631 top = 65536;
1632 }else{
daneebf2f52017-11-18 17:30:08 +00001633 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001634 }
1635 }
drh43605152004-05-29 21:46:49 +00001636
drhd4a67442019-02-11 19:27:36 +00001637 /* If there is enough space between gap and top for one more cell pointer,
1638 ** and if the freelist is not empty, then search the
1639 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001640 */
drh5e2f8b92001-05-28 00:41:15 +00001641 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001642 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001643 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001644 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001645 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001646 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001647 assert( pSpace>=data && (pSpace - data)<65536 );
1648 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001649 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001650 }else if( rc ){
1651 return rc;
drh9e572e62004-04-23 23:43:10 +00001652 }
1653 }
drh43605152004-05-29 21:46:49 +00001654
drh4c04f3c2014-08-20 11:56:14 +00001655 /* The request could not be fulfilled using a freelist slot. Check
1656 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001657 */
1658 testcase( gap+2+nByte==top );
1659 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001660 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001661 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001662 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001663 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001664 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001665 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001666 }
1667
1668
drh43605152004-05-29 21:46:49 +00001669 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001670 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001671 ** validated the freelist. Given that the freelist is valid, there
1672 ** is no way that the allocation can extend off the end of the page.
1673 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001674 */
drh0a45c272009-07-08 01:49:11 +00001675 top -= nByte;
drh43605152004-05-29 21:46:49 +00001676 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001677 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001678 *pIdx = top;
1679 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001680}
1681
1682/*
drh9e572e62004-04-23 23:43:10 +00001683** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001684** The first byte of the new free block is pPage->aData[iStart]
1685** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001686**
drh5f5c7532014-08-20 17:56:27 +00001687** Adjacent freeblocks are coalesced.
1688**
drh5860a612019-02-12 16:58:26 +00001689** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001690** that routine will not detect overlap between cells or freeblocks. Nor
1691** does it detect cells or freeblocks that encrouch into the reserved bytes
1692** at the end of the page. So do additional corruption checks inside this
1693** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001694*/
drh5f5c7532014-08-20 17:56:27 +00001695static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001696 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001697 u16 iFreeBlk; /* Address of the next freeblock */
1698 u8 hdr; /* Page header size. 0 or 100 */
1699 u8 nFrag = 0; /* Reduction in fragmentation */
1700 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001701 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001702 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001703 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001704
drh9e572e62004-04-23 23:43:10 +00001705 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001706 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001707 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001708 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001709 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001710 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001711 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001712
drh5f5c7532014-08-20 17:56:27 +00001713 /* The list of freeblocks must be in ascending order. Find the
1714 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001715 */
drh43605152004-05-29 21:46:49 +00001716 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001717 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001718 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1719 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1720 }else{
drh85f071b2016-09-17 19:34:32 +00001721 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1722 if( iFreeBlk<iPtr+4 ){
1723 if( iFreeBlk==0 ) break;
daneebf2f52017-11-18 17:30:08 +00001724 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001725 }
drh7bc4c452014-08-20 18:43:44 +00001726 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001727 }
drh5e398e42017-08-23 20:36:06 +00001728 if( iFreeBlk>pPage->pBt->usableSize-4 ){
daneebf2f52017-11-18 17:30:08 +00001729 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001730 }
drh7bc4c452014-08-20 18:43:44 +00001731 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1732
1733 /* At this point:
1734 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001735 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001736 **
1737 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1738 */
1739 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1740 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001741 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001742 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhcc97ca42017-06-07 22:32:59 +00001743 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001744 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001745 }
drh7bc4c452014-08-20 18:43:44 +00001746 iSize = iEnd - iStart;
1747 iFreeBlk = get2byte(&data[iFreeBlk]);
1748 }
1749
drh3f387402014-09-24 01:23:00 +00001750 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1751 ** pointer in the page header) then check to see if iStart should be
1752 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001753 */
1754 if( iPtr>hdr+1 ){
1755 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1756 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001757 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001758 nFrag += iStart - iPtrEnd;
1759 iSize = iEnd - iPtr;
1760 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001761 }
drh9e572e62004-04-23 23:43:10 +00001762 }
daneebf2f52017-11-18 17:30:08 +00001763 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001764 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001765 }
drh5e398e42017-08-23 20:36:06 +00001766 x = get2byte(&data[hdr+5]);
1767 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001768 /* The new freeblock is at the beginning of the cell content area,
1769 ** so just extend the cell content area rather than create another
1770 ** freelist entry */
daneebf2f52017-11-18 17:30:08 +00001771 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001772 put2byte(&data[hdr+1], iFreeBlk);
1773 put2byte(&data[hdr+5], iEnd);
1774 }else{
1775 /* Insert the new freeblock into the freelist */
1776 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001777 }
drh5e398e42017-08-23 20:36:06 +00001778 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1779 /* Overwrite deleted information with zeros when the secure_delete
1780 ** option is enabled */
1781 memset(&data[iStart], 0, iSize);
1782 }
1783 put2byte(&data[iStart], iFreeBlk);
1784 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001785 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001786 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001787}
1788
1789/*
drh271efa52004-05-30 19:19:05 +00001790** Decode the flags byte (the first byte of the header) for a page
1791** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001792**
1793** Only the following combinations are supported. Anything different
1794** indicates a corrupt database files:
1795**
1796** PTF_ZERODATA
1797** PTF_ZERODATA | PTF_LEAF
1798** PTF_LEAFDATA | PTF_INTKEY
1799** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001800*/
drh44845222008-07-17 18:39:57 +00001801static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001802 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001803
1804 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001805 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001806 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001807 flagByte &= ~PTF_LEAF;
1808 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001809 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001810 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001811 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001812 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1813 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001814 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001815 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1816 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001817 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001818 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001819 if( pPage->leaf ){
1820 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001821 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001822 }else{
1823 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001824 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001825 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001826 }
drh271efa52004-05-30 19:19:05 +00001827 pPage->maxLocal = pBt->maxLeaf;
1828 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001829 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001830 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1831 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001832 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001833 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1834 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001835 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001836 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001837 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001838 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001839 pPage->maxLocal = pBt->maxLocal;
1840 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001841 }else{
drhfdab0262014-11-20 15:30:50 +00001842 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1843 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001844 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001845 }
drhc9166342012-01-05 23:32:06 +00001846 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001847 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001848}
1849
1850/*
drhb0ea9432019-02-09 21:06:40 +00001851** Compute the amount of freespace on the page. In other words, fill
1852** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00001853*/
drhb0ea9432019-02-09 21:06:40 +00001854static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001855 int pc; /* Address of a freeblock within pPage->aData[] */
1856 u8 hdr; /* Offset to beginning of page header */
1857 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00001858 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00001859 int nFree; /* Number of unused bytes on the page */
1860 int top; /* First byte of the cell content area */
1861 int iCellFirst; /* First allowable cell or freeblock offset */
1862 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001863
danielk197771d5d2c2008-09-29 11:49:47 +00001864 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001865 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001866 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001867 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001868 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1869 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00001870 assert( pPage->isInit==1 );
1871 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001872
drhb0ea9432019-02-09 21:06:40 +00001873 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00001874 hdr = pPage->hdrOffset;
1875 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00001876 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1877 ** the start of the cell content area. A zero value for this integer is
1878 ** interpreted as 65536. */
1879 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00001880 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00001881 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00001882
drh14e845a2017-05-25 21:35:56 +00001883 /* Compute the total free space on the page
1884 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1885 ** start of the first freeblock on the page, or is zero if there are no
1886 ** freeblocks. */
1887 pc = get2byte(&data[hdr+1]);
1888 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1889 if( pc>0 ){
1890 u32 next, size;
1891 if( pc<iCellFirst ){
1892 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1893 ** always be at least one cell before the first freeblock.
1894 */
daneebf2f52017-11-18 17:30:08 +00001895 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001896 }
drh14e845a2017-05-25 21:35:56 +00001897 while( 1 ){
1898 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001899 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001900 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001901 }
1902 next = get2byte(&data[pc]);
1903 size = get2byte(&data[pc+2]);
1904 nFree = nFree + size;
1905 if( next<=pc+size+3 ) break;
1906 pc = next;
1907 }
1908 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001909 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001910 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001911 }
1912 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001913 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001914 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001915 }
danielk197771d5d2c2008-09-29 11:49:47 +00001916 }
drh14e845a2017-05-25 21:35:56 +00001917
1918 /* At this point, nFree contains the sum of the offset to the start
1919 ** of the cell-content area plus the number of free bytes within
1920 ** the cell-content area. If this is greater than the usable-size
1921 ** of the page, then the page must be corrupted. This check also
1922 ** serves to verify that the offset to the start of the cell-content
1923 ** area, according to the page header, lies within the page.
1924 */
1925 if( nFree>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001926 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001927 }
1928 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00001929 return SQLITE_OK;
1930}
1931
1932/*
drh5860a612019-02-12 16:58:26 +00001933** Do additional sanity check after btreeInitPage() if
1934** PRAGMA cell_size_check=ON
1935*/
1936static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1937 int iCellFirst; /* First allowable cell or freeblock offset */
1938 int iCellLast; /* Last possible cell or freeblock offset */
1939 int i; /* Index into the cell pointer array */
1940 int sz; /* Size of a cell */
1941 int pc; /* Address of a freeblock within pPage->aData[] */
1942 u8 *data; /* Equal to pPage->aData */
1943 int usableSize; /* Maximum usable space on the page */
1944 int cellOffset; /* Start of cell content area */
1945
1946 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1947 usableSize = pPage->pBt->usableSize;
1948 iCellLast = usableSize - 4;
1949 data = pPage->aData;
1950 cellOffset = pPage->cellOffset;
1951 if( !pPage->leaf ) iCellLast--;
1952 for(i=0; i<pPage->nCell; i++){
1953 pc = get2byteAligned(&data[cellOffset+i*2]);
1954 testcase( pc==iCellFirst );
1955 testcase( pc==iCellLast );
1956 if( pc<iCellFirst || pc>iCellLast ){
1957 return SQLITE_CORRUPT_PAGE(pPage);
1958 }
1959 sz = pPage->xCellSize(pPage, &data[pc]);
1960 testcase( pc+sz==usableSize );
1961 if( pc+sz>usableSize ){
1962 return SQLITE_CORRUPT_PAGE(pPage);
1963 }
1964 }
1965 return SQLITE_OK;
1966}
1967
1968/*
drhb0ea9432019-02-09 21:06:40 +00001969** Initialize the auxiliary information for a disk block.
1970**
1971** Return SQLITE_OK on success. If we see that the page does
1972** not contain a well-formed database page, then return
1973** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1974** guarantee that the page is well-formed. It only shows that
1975** we failed to detect any corruption.
1976*/
1977static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00001978 u8 *data; /* Equal to pPage->aData */
1979 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00001980
1981 assert( pPage->pBt!=0 );
1982 assert( pPage->pBt->db!=0 );
1983 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1984 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1985 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1986 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1987 assert( pPage->isInit==0 );
1988
1989 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00001990 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00001991 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1992 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00001993 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00001994 return SQLITE_CORRUPT_PAGE(pPage);
1995 }
1996 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1997 pPage->maskPage = (u16)(pBt->pageSize - 1);
1998 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00001999 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2000 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2001 pPage->aDataEnd = pPage->aData + pBt->usableSize;
2002 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002003 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2004 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002005 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002006 if( pPage->nCell>MX_CELL(pBt) ){
2007 /* To many cells for a single page. The page must be corrupt */
2008 return SQLITE_CORRUPT_PAGE(pPage);
2009 }
2010 testcase( pPage->nCell==MX_CELL(pBt) );
2011 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2012 ** possible for a root page of a table that contains no rows) then the
2013 ** offset to the cell content area will equal the page size minus the
2014 ** bytes of reserved space. */
2015 assert( pPage->nCell>0
drh5860a612019-02-12 16:58:26 +00002016 || get2byteNotZero(&data[5])==pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002017 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002018 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002019 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002020 if( pBt->db->flags & SQLITE_CellSizeCk ){
2021 return btreeCellSizeCheck(pPage);
2022 }
drh9e572e62004-04-23 23:43:10 +00002023 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002024}
2025
2026/*
drh8b2f49b2001-06-08 00:21:52 +00002027** Set up a raw page so that it looks like a database page holding
2028** no entries.
drhbd03cae2001-06-02 02:40:57 +00002029*/
drh9e572e62004-04-23 23:43:10 +00002030static void zeroPage(MemPage *pPage, int flags){
2031 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002032 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002033 u8 hdr = pPage->hdrOffset;
2034 u16 first;
drh9e572e62004-04-23 23:43:10 +00002035
danielk19773b8a05f2007-03-19 17:44:26 +00002036 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00002037 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2038 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002039 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002040 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002041 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002042 memset(&data[hdr], 0, pBt->usableSize - hdr);
2043 }
drh1bd10f82008-12-10 21:19:56 +00002044 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002045 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002046 memset(&data[hdr+1], 0, 4);
2047 data[hdr+7] = 0;
2048 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002049 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002050 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002051 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002052 pPage->aDataEnd = &data[pBt->usableSize];
2053 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002054 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002055 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002056 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2057 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002058 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002059 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002060}
2061
drh897a8202008-09-18 01:08:15 +00002062
2063/*
2064** Convert a DbPage obtained from the pager into a MemPage used by
2065** the btree layer.
2066*/
2067static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2068 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002069 if( pgno!=pPage->pgno ){
2070 pPage->aData = sqlite3PagerGetData(pDbPage);
2071 pPage->pDbPage = pDbPage;
2072 pPage->pBt = pBt;
2073 pPage->pgno = pgno;
2074 pPage->hdrOffset = pgno==1 ? 100 : 0;
2075 }
2076 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002077 return pPage;
2078}
2079
drhbd03cae2001-06-02 02:40:57 +00002080/*
drh3aac2dd2004-04-26 14:10:20 +00002081** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002082** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002083**
drh7e8c6f12015-05-28 03:28:27 +00002084** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2085** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002086** to fetch the content. Just fill in the content with zeros for now.
2087** If in the future we call sqlite3PagerWrite() on this page, that
2088** means we have started to be concerned about content and the disk
2089** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002090*/
danielk197730548662009-07-09 05:07:37 +00002091static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002092 BtShared *pBt, /* The btree */
2093 Pgno pgno, /* Number of the page to fetch */
2094 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002095 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002096){
drh3aac2dd2004-04-26 14:10:20 +00002097 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002098 DbPage *pDbPage;
2099
drhb00fc3b2013-08-21 23:42:32 +00002100 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002101 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002102 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002103 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002104 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002105 return SQLITE_OK;
2106}
2107
2108/*
danielk1977bea2a942009-01-20 17:06:27 +00002109** Retrieve a page from the pager cache. If the requested page is not
2110** already in the pager cache return NULL. Initialize the MemPage.pBt and
2111** MemPage.aData elements if needed.
2112*/
2113static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2114 DbPage *pDbPage;
2115 assert( sqlite3_mutex_held(pBt->mutex) );
2116 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2117 if( pDbPage ){
2118 return btreePageFromDbPage(pDbPage, pgno, pBt);
2119 }
2120 return 0;
2121}
2122
2123/*
danielk197789d40042008-11-17 14:20:56 +00002124** Return the size of the database file in pages. If there is any kind of
2125** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002126*/
drhb1299152010-03-30 22:58:33 +00002127static Pgno btreePagecount(BtShared *pBt){
2128 return pBt->nPage;
2129}
2130u32 sqlite3BtreeLastPage(Btree *p){
2131 assert( sqlite3BtreeHoldsMutex(p) );
drh8a181002017-10-12 01:19:06 +00002132 assert( ((p->pBt->nPage)&0x80000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002133 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002134}
2135
2136/*
drh28f58dd2015-06-27 19:45:03 +00002137** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002138**
drh15a00212015-06-27 20:55:00 +00002139** If pCur!=0 then the page is being fetched as part of a moveToChild()
2140** call. Do additional sanity checking on the page in this case.
2141** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002142**
2143** The page is fetched as read-write unless pCur is not NULL and is
2144** a read-only cursor.
2145**
2146** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002147** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002148*/
2149static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002150 BtShared *pBt, /* The database file */
2151 Pgno pgno, /* Number of the page to get */
2152 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002153 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2154 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002155){
2156 int rc;
drh28f58dd2015-06-27 19:45:03 +00002157 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002158 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002159 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002160 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002161 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002162
danba3cbf32010-06-30 04:29:03 +00002163 if( pgno>btreePagecount(pBt) ){
2164 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002165 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002166 }
drh9584f582015-11-04 20:22:37 +00002167 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002168 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002169 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002170 }
drh8dd1c252015-11-04 22:31:02 +00002171 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002172 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002173 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002174 rc = btreeInitPage(*ppPage);
2175 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002176 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002177 }
drhee696e22004-08-30 16:52:17 +00002178 }
drh8dd1c252015-11-04 22:31:02 +00002179 assert( (*ppPage)->pgno==pgno );
2180 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002181
drh15a00212015-06-27 20:55:00 +00002182 /* If obtaining a child page for a cursor, we must verify that the page is
2183 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002184 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002185 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002186 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002187 }
drh28f58dd2015-06-27 19:45:03 +00002188 return SQLITE_OK;
2189
drhb0ea9432019-02-09 21:06:40 +00002190getAndInitPage_error2:
2191 releasePage(*ppPage);
2192getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002193 if( pCur ){
2194 pCur->iPage--;
2195 pCur->pPage = pCur->apPage[pCur->iPage];
2196 }
danba3cbf32010-06-30 04:29:03 +00002197 testcase( pgno==0 );
2198 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002199 return rc;
2200}
2201
2202/*
drh3aac2dd2004-04-26 14:10:20 +00002203** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002204** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002205**
2206** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002207*/
drhbbf0f862015-06-27 14:59:26 +00002208static void releasePageNotNull(MemPage *pPage){
2209 assert( pPage->aData );
2210 assert( pPage->pBt );
2211 assert( pPage->pDbPage!=0 );
2212 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2213 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2214 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2215 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002216}
drh3aac2dd2004-04-26 14:10:20 +00002217static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002218 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002219}
drh3908fe92017-09-01 14:50:19 +00002220static void releasePageOne(MemPage *pPage){
2221 assert( pPage!=0 );
2222 assert( pPage->aData );
2223 assert( pPage->pBt );
2224 assert( pPage->pDbPage!=0 );
2225 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2226 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2227 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2228 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2229}
drh3aac2dd2004-04-26 14:10:20 +00002230
2231/*
drh7e8c6f12015-05-28 03:28:27 +00002232** Get an unused page.
2233**
2234** This works just like btreeGetPage() with the addition:
2235**
2236** * If the page is already in use for some other purpose, immediately
2237** release it and return an SQLITE_CURRUPT error.
2238** * Make sure the isInit flag is clear
2239*/
2240static int btreeGetUnusedPage(
2241 BtShared *pBt, /* The btree */
2242 Pgno pgno, /* Number of the page to fetch */
2243 MemPage **ppPage, /* Return the page in this parameter */
2244 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2245){
2246 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2247 if( rc==SQLITE_OK ){
2248 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2249 releasePage(*ppPage);
2250 *ppPage = 0;
2251 return SQLITE_CORRUPT_BKPT;
2252 }
2253 (*ppPage)->isInit = 0;
2254 }else{
2255 *ppPage = 0;
2256 }
2257 return rc;
2258}
2259
drha059ad02001-04-17 20:09:11 +00002260
2261/*
drha6abd042004-06-09 17:37:22 +00002262** During a rollback, when the pager reloads information into the cache
2263** so that the cache is restored to its original state at the start of
2264** the transaction, for each page restored this routine is called.
2265**
2266** This routine needs to reset the extra data section at the end of the
2267** page to agree with the restored data.
2268*/
danielk1977eaa06f62008-09-18 17:34:44 +00002269static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002270 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002271 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002272 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002273 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002274 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002275 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002276 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002277 /* pPage might not be a btree page; it might be an overflow page
2278 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002279 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002280 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002281 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002282 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002283 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002284 }
drha6abd042004-06-09 17:37:22 +00002285 }
2286}
2287
2288/*
drhe5fe6902007-12-07 18:55:28 +00002289** Invoke the busy handler for a btree.
2290*/
danielk19771ceedd32008-11-19 10:22:33 +00002291static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002292 BtShared *pBt = (BtShared*)pArg;
2293 assert( pBt->db );
2294 assert( sqlite3_mutex_held(pBt->db->mutex) );
drhf0119b22018-03-26 17:40:53 +00002295 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2296 sqlite3PagerFile(pBt->pPager));
drhe5fe6902007-12-07 18:55:28 +00002297}
2298
2299/*
drhad3e0102004-09-03 23:32:18 +00002300** Open a database file.
2301**
drh382c0242001-10-06 16:33:02 +00002302** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002303** then an ephemeral database is created. The ephemeral database might
2304** be exclusively in memory, or it might use a disk-based memory cache.
2305** Either way, the ephemeral database will be automatically deleted
2306** when sqlite3BtreeClose() is called.
2307**
drhe53831d2007-08-17 01:14:38 +00002308** If zFilename is ":memory:" then an in-memory database is created
2309** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002310**
drh33f111d2012-01-17 15:29:14 +00002311** The "flags" parameter is a bitmask that might contain bits like
2312** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002313**
drhc47fd8e2009-04-30 13:30:32 +00002314** If the database is already opened in the same database connection
2315** and we are in shared cache mode, then the open will fail with an
2316** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2317** objects in the same database connection since doing so will lead
2318** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002319*/
drh23e11ca2004-05-04 17:27:28 +00002320int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002321 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002322 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002323 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002324 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002325 int flags, /* Options */
2326 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002327){
drh7555d8e2009-03-20 13:15:30 +00002328 BtShared *pBt = 0; /* Shared part of btree structure */
2329 Btree *p; /* Handle to return */
2330 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2331 int rc = SQLITE_OK; /* Result code from this function */
2332 u8 nReserve; /* Byte of unused space on each page */
2333 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002334
drh75c014c2010-08-30 15:02:28 +00002335 /* True if opening an ephemeral, temporary database */
2336 const int isTempDb = zFilename==0 || zFilename[0]==0;
2337
danielk1977aef0bf62005-12-30 16:28:01 +00002338 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002339 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002340 */
drhb0a7c9c2010-12-06 21:09:59 +00002341#ifdef SQLITE_OMIT_MEMORYDB
2342 const int isMemdb = 0;
2343#else
2344 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002345 || (isTempDb && sqlite3TempInMemory(db))
2346 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002347#endif
2348
drhe5fe6902007-12-07 18:55:28 +00002349 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002350 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002351 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002352 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2353
2354 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2355 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2356
2357 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2358 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002359
drh75c014c2010-08-30 15:02:28 +00002360 if( isMemdb ){
2361 flags |= BTREE_MEMORY;
2362 }
2363 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2364 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2365 }
drh17435752007-08-16 04:30:38 +00002366 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002367 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002368 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002369 }
2370 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002371 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002372#ifndef SQLITE_OMIT_SHARED_CACHE
2373 p->lock.pBtree = p;
2374 p->lock.iTable = 1;
2375#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002376
drh198bf392006-01-06 21:52:49 +00002377#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002378 /*
2379 ** If this Btree is a candidate for shared cache, try to find an
2380 ** existing BtShared object that we can share with
2381 */
drh4ab9d252012-05-26 20:08:49 +00002382 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002383 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002384 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002385 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002386 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002387 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002388
drhff0587c2007-08-29 17:43:19 +00002389 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002390 if( !zFullPathname ){
2391 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002392 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002393 }
drhafc8b7f2012-05-26 18:06:38 +00002394 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002395 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002396 }else{
2397 rc = sqlite3OsFullPathname(pVfs, zFilename,
2398 nFullPathname, zFullPathname);
2399 if( rc ){
2400 sqlite3_free(zFullPathname);
2401 sqlite3_free(p);
2402 return rc;
2403 }
drh070ad6b2011-11-17 11:43:19 +00002404 }
drh30ddce62011-10-15 00:16:30 +00002405#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002406 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2407 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002408 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002409 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002410#endif
drh78f82d12008-09-02 00:52:52 +00002411 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002412 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002413 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002414 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002415 int iDb;
2416 for(iDb=db->nDb-1; iDb>=0; iDb--){
2417 Btree *pExisting = db->aDb[iDb].pBt;
2418 if( pExisting && pExisting->pBt==pBt ){
2419 sqlite3_mutex_leave(mutexShared);
2420 sqlite3_mutex_leave(mutexOpen);
2421 sqlite3_free(zFullPathname);
2422 sqlite3_free(p);
2423 return SQLITE_CONSTRAINT;
2424 }
2425 }
drhff0587c2007-08-29 17:43:19 +00002426 p->pBt = pBt;
2427 pBt->nRef++;
2428 break;
2429 }
2430 }
2431 sqlite3_mutex_leave(mutexShared);
2432 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002433 }
drhff0587c2007-08-29 17:43:19 +00002434#ifdef SQLITE_DEBUG
2435 else{
2436 /* In debug mode, we mark all persistent databases as sharable
2437 ** even when they are not. This exercises the locking code and
2438 ** gives more opportunity for asserts(sqlite3_mutex_held())
2439 ** statements to find locking problems.
2440 */
2441 p->sharable = 1;
2442 }
2443#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002444 }
2445#endif
drha059ad02001-04-17 20:09:11 +00002446 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002447 /*
2448 ** The following asserts make sure that structures used by the btree are
2449 ** the right size. This is to guard against size changes that result
2450 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002451 */
drh062cf272015-03-23 19:03:51 +00002452 assert( sizeof(i64)==8 );
2453 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002454 assert( sizeof(u32)==4 );
2455 assert( sizeof(u16)==2 );
2456 assert( sizeof(Pgno)==4 );
2457
2458 pBt = sqlite3MallocZero( sizeof(*pBt) );
2459 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002460 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002461 goto btree_open_out;
2462 }
danielk197771d5d2c2008-09-29 11:49:47 +00002463 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002464 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002465 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002466 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002467 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2468 }
2469 if( rc!=SQLITE_OK ){
2470 goto btree_open_out;
2471 }
shanehbd2aaf92010-09-01 02:38:21 +00002472 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002473 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002474 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002475 p->pBt = pBt;
2476
drhe53831d2007-08-17 01:14:38 +00002477 pBt->pCursor = 0;
2478 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002479 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002480#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002481 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002482#elif defined(SQLITE_FAST_SECURE_DELETE)
2483 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002484#endif
drh113762a2014-11-19 16:36:25 +00002485 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2486 ** determined by the 2-byte integer located at an offset of 16 bytes from
2487 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002488 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002489 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2490 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002491 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002492#ifndef SQLITE_OMIT_AUTOVACUUM
2493 /* If the magic name ":memory:" will create an in-memory database, then
2494 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2495 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2496 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2497 ** regular file-name. In this case the auto-vacuum applies as per normal.
2498 */
2499 if( zFilename && !isMemdb ){
2500 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2501 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2502 }
2503#endif
2504 nReserve = 0;
2505 }else{
drh113762a2014-11-19 16:36:25 +00002506 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2507 ** determined by the one-byte unsigned integer found at an offset of 20
2508 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002509 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002510 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002511#ifndef SQLITE_OMIT_AUTOVACUUM
2512 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2513 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2514#endif
2515 }
drhfa9601a2009-06-18 17:22:39 +00002516 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002517 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002518 pBt->usableSize = pBt->pageSize - nReserve;
2519 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002520
2521#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2522 /* Add the new BtShared object to the linked list sharable BtShareds.
2523 */
dan272989b2016-07-06 10:12:02 +00002524 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002525 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002526 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002527 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002528 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002529 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002530 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002531 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002532 goto btree_open_out;
2533 }
drhff0587c2007-08-29 17:43:19 +00002534 }
drhe53831d2007-08-17 01:14:38 +00002535 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002536 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2537 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002538 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002539 }
drheee46cf2004-11-06 00:02:48 +00002540#endif
drh90f5ecb2004-07-22 01:19:35 +00002541 }
danielk1977aef0bf62005-12-30 16:28:01 +00002542
drhcfed7bc2006-03-13 14:28:05 +00002543#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002544 /* If the new Btree uses a sharable pBtShared, then link the new
2545 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002546 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002547 */
drhe53831d2007-08-17 01:14:38 +00002548 if( p->sharable ){
2549 int i;
2550 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002551 for(i=0; i<db->nDb; i++){
2552 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002553 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002554 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002555 p->pNext = pSib;
2556 p->pPrev = 0;
2557 pSib->pPrev = p;
2558 }else{
drh3bfa7e82016-03-22 14:37:59 +00002559 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002560 pSib = pSib->pNext;
2561 }
2562 p->pNext = pSib->pNext;
2563 p->pPrev = pSib;
2564 if( p->pNext ){
2565 p->pNext->pPrev = p;
2566 }
2567 pSib->pNext = p;
2568 }
2569 break;
2570 }
2571 }
danielk1977aef0bf62005-12-30 16:28:01 +00002572 }
danielk1977aef0bf62005-12-30 16:28:01 +00002573#endif
2574 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002575
2576btree_open_out:
2577 if( rc!=SQLITE_OK ){
2578 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002579 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002580 }
drh17435752007-08-16 04:30:38 +00002581 sqlite3_free(pBt);
2582 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002583 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002584 }else{
dan0f5a1862016-08-13 14:30:23 +00002585 sqlite3_file *pFile;
2586
drh75c014c2010-08-30 15:02:28 +00002587 /* If the B-Tree was successfully opened, set the pager-cache size to the
2588 ** default value. Except, when opening on an existing shared pager-cache,
2589 ** do not change the pager-cache size.
2590 */
2591 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2592 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2593 }
dan0f5a1862016-08-13 14:30:23 +00002594
2595 pFile = sqlite3PagerFile(pBt->pPager);
2596 if( pFile->pMethods ){
2597 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2598 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002599 }
drh7555d8e2009-03-20 13:15:30 +00002600 if( mutexOpen ){
2601 assert( sqlite3_mutex_held(mutexOpen) );
2602 sqlite3_mutex_leave(mutexOpen);
2603 }
dan272989b2016-07-06 10:12:02 +00002604 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002605 return rc;
drha059ad02001-04-17 20:09:11 +00002606}
2607
2608/*
drhe53831d2007-08-17 01:14:38 +00002609** Decrement the BtShared.nRef counter. When it reaches zero,
2610** remove the BtShared structure from the sharing list. Return
2611** true if the BtShared.nRef counter reaches zero and return
2612** false if it is still positive.
2613*/
2614static int removeFromSharingList(BtShared *pBt){
2615#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002616 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002617 BtShared *pList;
2618 int removed = 0;
2619
drhd677b3d2007-08-20 22:48:41 +00002620 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002621 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002622 sqlite3_mutex_enter(pMaster);
2623 pBt->nRef--;
2624 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002625 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2626 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002627 }else{
drh78f82d12008-09-02 00:52:52 +00002628 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002629 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002630 pList=pList->pNext;
2631 }
drh34004ce2008-07-11 16:15:17 +00002632 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002633 pList->pNext = pBt->pNext;
2634 }
2635 }
drh3285db22007-09-03 22:00:39 +00002636 if( SQLITE_THREADSAFE ){
2637 sqlite3_mutex_free(pBt->mutex);
2638 }
drhe53831d2007-08-17 01:14:38 +00002639 removed = 1;
2640 }
2641 sqlite3_mutex_leave(pMaster);
2642 return removed;
2643#else
2644 return 1;
2645#endif
2646}
2647
2648/*
drhf7141992008-06-19 00:16:08 +00002649** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002650** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2651** pointer.
drhf7141992008-06-19 00:16:08 +00002652*/
2653static void allocateTempSpace(BtShared *pBt){
2654 if( !pBt->pTmpSpace ){
2655 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002656
2657 /* One of the uses of pBt->pTmpSpace is to format cells before
2658 ** inserting them into a leaf page (function fillInCell()). If
2659 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2660 ** by the various routines that manipulate binary cells. Which
2661 ** can mean that fillInCell() only initializes the first 2 or 3
2662 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2663 ** it into a database page. This is not actually a problem, but it
2664 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2665 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002666 ** zero the first 4 bytes of temp space here.
2667 **
2668 ** Also: Provide four bytes of initialized space before the
2669 ** beginning of pTmpSpace as an area available to prepend the
2670 ** left-child pointer to the beginning of a cell.
2671 */
2672 if( pBt->pTmpSpace ){
2673 memset(pBt->pTmpSpace, 0, 8);
2674 pBt->pTmpSpace += 4;
2675 }
drhf7141992008-06-19 00:16:08 +00002676 }
2677}
2678
2679/*
2680** Free the pBt->pTmpSpace allocation
2681*/
2682static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002683 if( pBt->pTmpSpace ){
2684 pBt->pTmpSpace -= 4;
2685 sqlite3PageFree(pBt->pTmpSpace);
2686 pBt->pTmpSpace = 0;
2687 }
drhf7141992008-06-19 00:16:08 +00002688}
2689
2690/*
drha059ad02001-04-17 20:09:11 +00002691** Close an open database and invalidate all cursors.
2692*/
danielk1977aef0bf62005-12-30 16:28:01 +00002693int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002694 BtShared *pBt = p->pBt;
2695 BtCursor *pCur;
2696
danielk1977aef0bf62005-12-30 16:28:01 +00002697 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002698 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002699 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002700 pCur = pBt->pCursor;
2701 while( pCur ){
2702 BtCursor *pTmp = pCur;
2703 pCur = pCur->pNext;
2704 if( pTmp->pBtree==p ){
2705 sqlite3BtreeCloseCursor(pTmp);
2706 }
drha059ad02001-04-17 20:09:11 +00002707 }
danielk1977aef0bf62005-12-30 16:28:01 +00002708
danielk19778d34dfd2006-01-24 16:37:57 +00002709 /* Rollback any active transaction and free the handle structure.
2710 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2711 ** this handle.
2712 */
drh47b7fc72014-11-11 01:33:57 +00002713 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002714 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002715
danielk1977aef0bf62005-12-30 16:28:01 +00002716 /* If there are still other outstanding references to the shared-btree
2717 ** structure, return now. The remainder of this procedure cleans
2718 ** up the shared-btree.
2719 */
drhe53831d2007-08-17 01:14:38 +00002720 assert( p->wantToLock==0 && p->locked==0 );
2721 if( !p->sharable || removeFromSharingList(pBt) ){
2722 /* The pBt is no longer on the sharing list, so we can access
2723 ** it without having to hold the mutex.
2724 **
2725 ** Clean out and delete the BtShared object.
2726 */
2727 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002728 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002729 if( pBt->xFreeSchema && pBt->pSchema ){
2730 pBt->xFreeSchema(pBt->pSchema);
2731 }
drhb9755982010-07-24 16:34:37 +00002732 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002733 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002734 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002735 }
2736
drhe53831d2007-08-17 01:14:38 +00002737#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002738 assert( p->wantToLock==0 );
2739 assert( p->locked==0 );
2740 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2741 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002742#endif
2743
drhe53831d2007-08-17 01:14:38 +00002744 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002745 return SQLITE_OK;
2746}
2747
2748/*
drh9b0cf342015-11-12 14:57:19 +00002749** Change the "soft" limit on the number of pages in the cache.
2750** Unused and unmodified pages will be recycled when the number of
2751** pages in the cache exceeds this soft limit. But the size of the
2752** cache is allowed to grow larger than this limit if it contains
2753** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002754*/
danielk1977aef0bf62005-12-30 16:28:01 +00002755int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2756 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002757 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002758 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002759 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002760 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002761 return SQLITE_OK;
2762}
2763
drh9b0cf342015-11-12 14:57:19 +00002764/*
2765** Change the "spill" limit on the number of pages in the cache.
2766** If the number of pages exceeds this limit during a write transaction,
2767** the pager might attempt to "spill" pages to the journal early in
2768** order to free up memory.
2769**
2770** The value returned is the current spill size. If zero is passed
2771** as an argument, no changes are made to the spill size setting, so
2772** using mxPage of 0 is a way to query the current spill size.
2773*/
2774int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2775 BtShared *pBt = p->pBt;
2776 int res;
2777 assert( sqlite3_mutex_held(p->db->mutex) );
2778 sqlite3BtreeEnter(p);
2779 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2780 sqlite3BtreeLeave(p);
2781 return res;
2782}
2783
drh18c7e402014-03-14 11:46:10 +00002784#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002785/*
dan5d8a1372013-03-19 19:28:06 +00002786** Change the limit on the amount of the database file that may be
2787** memory mapped.
2788*/
drh9b4c59f2013-04-15 17:03:42 +00002789int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002790 BtShared *pBt = p->pBt;
2791 assert( sqlite3_mutex_held(p->db->mutex) );
2792 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002793 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002794 sqlite3BtreeLeave(p);
2795 return SQLITE_OK;
2796}
drh18c7e402014-03-14 11:46:10 +00002797#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002798
2799/*
drh973b6e32003-02-12 14:09:42 +00002800** Change the way data is synced to disk in order to increase or decrease
2801** how well the database resists damage due to OS crashes and power
2802** failures. Level 1 is the same as asynchronous (no syncs() occur and
2803** there is a high probability of damage) Level 2 is the default. There
2804** is a very low but non-zero probability of damage. Level 3 reduces the
2805** probability of damage to near zero but with a write performance reduction.
2806*/
danielk197793758c82005-01-21 08:13:14 +00002807#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002808int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002809 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002810 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002811){
danielk1977aef0bf62005-12-30 16:28:01 +00002812 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002813 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002814 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002815 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002816 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002817 return SQLITE_OK;
2818}
danielk197793758c82005-01-21 08:13:14 +00002819#endif
drh973b6e32003-02-12 14:09:42 +00002820
drh2c8997b2005-08-27 16:36:48 +00002821/*
drh90f5ecb2004-07-22 01:19:35 +00002822** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002823** Or, if the page size has already been fixed, return SQLITE_READONLY
2824** without changing anything.
drh06f50212004-11-02 14:24:33 +00002825**
2826** The page size must be a power of 2 between 512 and 65536. If the page
2827** size supplied does not meet this constraint then the page size is not
2828** changed.
2829**
2830** Page sizes are constrained to be a power of two so that the region
2831** of the database file used for locking (beginning at PENDING_BYTE,
2832** the first byte past the 1GB boundary, 0x40000000) needs to occur
2833** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002834**
2835** If parameter nReserve is less than zero, then the number of reserved
2836** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002837**
drhc9166342012-01-05 23:32:06 +00002838** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002839** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002840*/
drhce4869f2009-04-02 20:16:58 +00002841int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002842 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002843 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002844 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002845 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002846#if SQLITE_HAS_CODEC
2847 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2848#endif
drhc9166342012-01-05 23:32:06 +00002849 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002850 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002851 return SQLITE_READONLY;
2852 }
2853 if( nReserve<0 ){
2854 nReserve = pBt->pageSize - pBt->usableSize;
2855 }
drhf49661a2008-12-10 16:45:50 +00002856 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002857 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2858 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002859 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002860 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002861 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002862 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002863 }
drhfa9601a2009-06-18 17:22:39 +00002864 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002865 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002866 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002867 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002868 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002869}
2870
2871/*
2872** Return the currently defined page size
2873*/
danielk1977aef0bf62005-12-30 16:28:01 +00002874int sqlite3BtreeGetPageSize(Btree *p){
2875 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002876}
drh7f751222009-03-17 22:33:00 +00002877
dan0094f372012-09-28 20:23:42 +00002878/*
2879** This function is similar to sqlite3BtreeGetReserve(), except that it
2880** may only be called if it is guaranteed that the b-tree mutex is already
2881** held.
2882**
2883** This is useful in one special case in the backup API code where it is
2884** known that the shared b-tree mutex is held, but the mutex on the
2885** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2886** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002887** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002888*/
2889int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002890 int n;
dan0094f372012-09-28 20:23:42 +00002891 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002892 n = p->pBt->pageSize - p->pBt->usableSize;
2893 return n;
dan0094f372012-09-28 20:23:42 +00002894}
2895
drh7f751222009-03-17 22:33:00 +00002896/*
2897** Return the number of bytes of space at the end of every page that
2898** are intentually left unused. This is the "reserved" space that is
2899** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002900**
2901** If SQLITE_HAS_MUTEX is defined then the number returned is the
2902** greater of the current reserved space and the maximum requested
2903** reserve space.
drh7f751222009-03-17 22:33:00 +00002904*/
drhad0961b2015-02-21 00:19:25 +00002905int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002906 int n;
2907 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002908 n = sqlite3BtreeGetReserveNoMutex(p);
2909#ifdef SQLITE_HAS_CODEC
2910 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2911#endif
drhd677b3d2007-08-20 22:48:41 +00002912 sqlite3BtreeLeave(p);
2913 return n;
drh2011d5f2004-07-22 02:40:37 +00002914}
drhf8e632b2007-05-08 14:51:36 +00002915
drhad0961b2015-02-21 00:19:25 +00002916
drhf8e632b2007-05-08 14:51:36 +00002917/*
2918** Set the maximum page count for a database if mxPage is positive.
2919** No changes are made if mxPage is 0 or negative.
2920** Regardless of the value of mxPage, return the maximum page count.
2921*/
2922int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002923 int n;
2924 sqlite3BtreeEnter(p);
2925 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2926 sqlite3BtreeLeave(p);
2927 return n;
drhf8e632b2007-05-08 14:51:36 +00002928}
drh5b47efa2010-02-12 18:18:39 +00002929
2930/*
drha5907a82017-06-19 11:44:22 +00002931** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2932**
2933** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2934** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2935** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2936** newFlag==(-1) No changes
2937**
2938** This routine acts as a query if newFlag is less than zero
2939**
2940** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2941** freelist leaf pages are not written back to the database. Thus in-page
2942** deleted content is cleared, but freelist deleted content is not.
2943**
2944** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2945** that freelist leaf pages are written back into the database, increasing
2946** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002947*/
2948int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2949 int b;
drhaf034ed2010-02-12 19:46:26 +00002950 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002951 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002952 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2953 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002954 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002955 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2956 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2957 }
2958 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002959 sqlite3BtreeLeave(p);
2960 return b;
2961}
drh90f5ecb2004-07-22 01:19:35 +00002962
2963/*
danielk1977951af802004-11-05 15:45:09 +00002964** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2965** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2966** is disabled. The default value for the auto-vacuum property is
2967** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2968*/
danielk1977aef0bf62005-12-30 16:28:01 +00002969int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002970#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002971 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002972#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002973 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002974 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002975 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002976
2977 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002978 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002979 rc = SQLITE_READONLY;
2980 }else{
drh076d4662009-02-18 20:31:18 +00002981 pBt->autoVacuum = av ?1:0;
2982 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002983 }
drhd677b3d2007-08-20 22:48:41 +00002984 sqlite3BtreeLeave(p);
2985 return rc;
danielk1977951af802004-11-05 15:45:09 +00002986#endif
2987}
2988
2989/*
2990** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2991** enabled 1 is returned. Otherwise 0.
2992*/
danielk1977aef0bf62005-12-30 16:28:01 +00002993int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002994#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002995 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002996#else
drhd677b3d2007-08-20 22:48:41 +00002997 int rc;
2998 sqlite3BtreeEnter(p);
2999 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003000 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3001 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3002 BTREE_AUTOVACUUM_INCR
3003 );
drhd677b3d2007-08-20 22:48:41 +00003004 sqlite3BtreeLeave(p);
3005 return rc;
danielk1977951af802004-11-05 15:45:09 +00003006#endif
3007}
3008
danf5da7db2017-03-16 18:14:39 +00003009/*
3010** If the user has not set the safety-level for this database connection
3011** using "PRAGMA synchronous", and if the safety-level is not already
3012** set to the value passed to this function as the second parameter,
3013** set it so.
3014*/
drh2ed57372017-10-05 20:57:38 +00003015#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3016 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003017static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3018 sqlite3 *db;
3019 Db *pDb;
3020 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3021 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3022 if( pDb->bSyncSet==0
3023 && pDb->safety_level!=safety_level
3024 && pDb!=&db->aDb[1]
3025 ){
3026 pDb->safety_level = safety_level;
3027 sqlite3PagerSetFlags(pBt->pPager,
3028 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3029 }
3030 }
3031}
3032#else
danfc8f4b62017-03-16 18:54:42 +00003033# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003034#endif
danielk1977951af802004-11-05 15:45:09 +00003035
drh0314cf32018-04-28 01:27:09 +00003036/* Forward declaration */
3037static int newDatabase(BtShared*);
3038
3039
danielk1977951af802004-11-05 15:45:09 +00003040/*
drha34b6762004-05-07 13:30:42 +00003041** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003042** also acquire a readlock on that file.
3043**
3044** SQLITE_OK is returned on success. If the file is not a
3045** well-formed database file, then SQLITE_CORRUPT is returned.
3046** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003047** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003048*/
danielk1977aef0bf62005-12-30 16:28:01 +00003049static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003050 int rc; /* Result code from subfunctions */
3051 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003052 u32 nPage; /* Number of pages in the database */
3053 u32 nPageFile = 0; /* Number of pages in the database file */
3054 u32 nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00003055
drh1fee73e2007-08-29 04:00:57 +00003056 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003057 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003058 rc = sqlite3PagerSharedLock(pBt->pPager);
3059 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003060 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003061 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003062
3063 /* Do some checking to help insure the file we opened really is
3064 ** a valid database file.
3065 */
drhc2a4bab2010-04-02 12:46:45 +00003066 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003067 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003068 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003069 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003070 }
drh0314cf32018-04-28 01:27:09 +00003071 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3072 nPage = 0;
3073 }
drh97b59a52010-03-31 02:31:33 +00003074 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003075 u32 pageSize;
3076 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003077 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003078 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003079 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3080 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3081 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003082 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003083 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003084 }
dan5cf53532010-05-01 16:40:20 +00003085
3086#ifdef SQLITE_OMIT_WAL
3087 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003088 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003089 }
3090 if( page1[19]>1 ){
3091 goto page1_init_failed;
3092 }
3093#else
dane04dc882010-04-20 18:53:15 +00003094 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003095 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003096 }
dane04dc882010-04-20 18:53:15 +00003097 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003098 goto page1_init_failed;
3099 }
drhe5ae5732008-06-15 02:51:47 +00003100
dana470aeb2010-04-21 11:43:38 +00003101 /* If the write version is set to 2, this database should be accessed
3102 ** in WAL mode. If the log is not already open, open it now. Then
3103 ** return SQLITE_OK and return without populating BtShared.pPage1.
3104 ** The caller detects this and calls this function again. This is
3105 ** required as the version of page 1 currently in the page1 buffer
3106 ** may not be the latest version - there may be a newer one in the log
3107 ** file.
3108 */
drhc9166342012-01-05 23:32:06 +00003109 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003110 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003111 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003112 if( rc!=SQLITE_OK ){
3113 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003114 }else{
danf5da7db2017-03-16 18:14:39 +00003115 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003116 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003117 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003118 return SQLITE_OK;
3119 }
dane04dc882010-04-20 18:53:15 +00003120 }
dan8b5444b2010-04-27 14:37:47 +00003121 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003122 }else{
3123 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003124 }
dan5cf53532010-05-01 16:40:20 +00003125#endif
dane04dc882010-04-20 18:53:15 +00003126
drh113762a2014-11-19 16:36:25 +00003127 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3128 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3129 **
drhe5ae5732008-06-15 02:51:47 +00003130 ** The original design allowed these amounts to vary, but as of
3131 ** version 3.6.0, we require them to be fixed.
3132 */
3133 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3134 goto page1_init_failed;
3135 }
drh113762a2014-11-19 16:36:25 +00003136 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3137 ** determined by the 2-byte integer located at an offset of 16 bytes from
3138 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003139 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003140 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3141 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003142 if( ((pageSize-1)&pageSize)!=0
3143 || pageSize>SQLITE_MAX_PAGE_SIZE
3144 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003145 ){
drh07d183d2005-05-01 22:52:42 +00003146 goto page1_init_failed;
3147 }
drhdcc27002019-01-06 02:06:31 +00003148 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003149 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003150 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3151 ** integer at offset 20 is the number of bytes of space at the end of
3152 ** each page to reserve for extensions.
3153 **
3154 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3155 ** determined by the one-byte unsigned integer found at an offset of 20
3156 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003157 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003158 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003159 /* After reading the first page of the database assuming a page size
3160 ** of BtShared.pageSize, we have discovered that the page-size is
3161 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3162 ** zero and return SQLITE_OK. The caller will call this function
3163 ** again with the correct page-size.
3164 */
drh3908fe92017-09-01 14:50:19 +00003165 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003166 pBt->usableSize = usableSize;
3167 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003168 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003169 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3170 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003171 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003172 }
drh0f1c2eb2018-11-03 17:31:48 +00003173 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003174 rc = SQLITE_CORRUPT_BKPT;
3175 goto page1_init_failed;
3176 }
drh113762a2014-11-19 16:36:25 +00003177 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3178 ** be less than 480. In other words, if the page size is 512, then the
3179 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003180 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003181 goto page1_init_failed;
3182 }
drh43b18e12010-08-17 19:40:08 +00003183 pBt->pageSize = pageSize;
3184 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003185#ifndef SQLITE_OMIT_AUTOVACUUM
3186 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003187 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003188#endif
drh306dc212001-05-21 13:45:10 +00003189 }
drhb6f41482004-05-14 01:58:11 +00003190
3191 /* maxLocal is the maximum amount of payload to store locally for
3192 ** a cell. Make sure it is small enough so that at least minFanout
3193 ** cells can will fit on one page. We assume a 10-byte page header.
3194 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003195 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003196 ** 4-byte child pointer
3197 ** 9-byte nKey value
3198 ** 4-byte nData value
3199 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003200 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003201 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3202 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003203 */
shaneh1df2db72010-08-18 02:28:48 +00003204 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3205 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3206 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3207 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003208 if( pBt->maxLocal>127 ){
3209 pBt->max1bytePayload = 127;
3210 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003211 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003212 }
drh2e38c322004-09-03 18:38:44 +00003213 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003214 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003215 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003216 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003217
drh72f82862001-05-24 21:06:34 +00003218page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003219 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003220 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003221 return rc;
drh306dc212001-05-21 13:45:10 +00003222}
3223
drh85ec3b62013-05-14 23:12:06 +00003224#ifndef NDEBUG
3225/*
3226** Return the number of cursors open on pBt. This is for use
3227** in assert() expressions, so it is only compiled if NDEBUG is not
3228** defined.
3229**
3230** Only write cursors are counted if wrOnly is true. If wrOnly is
3231** false then all cursors are counted.
3232**
3233** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003234** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003235** have been tripped into the CURSOR_FAULT state are not counted.
3236*/
3237static int countValidCursors(BtShared *pBt, int wrOnly){
3238 BtCursor *pCur;
3239 int r = 0;
3240 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003241 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3242 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003243 }
3244 return r;
3245}
3246#endif
3247
drh306dc212001-05-21 13:45:10 +00003248/*
drhb8ca3072001-12-05 00:21:20 +00003249** If there are no outstanding cursors and we are not in the middle
3250** of a transaction but there is a read lock on the database, then
3251** this routine unrefs the first page of the database file which
3252** has the effect of releasing the read lock.
3253**
drhb8ca3072001-12-05 00:21:20 +00003254** If there is a transaction in progress, this routine is a no-op.
3255*/
danielk1977aef0bf62005-12-30 16:28:01 +00003256static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003257 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003258 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003259 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003260 MemPage *pPage1 = pBt->pPage1;
3261 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003262 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003263 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003264 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003265 }
3266}
3267
3268/*
drhe39f2f92009-07-23 01:43:59 +00003269** If pBt points to an empty file then convert that empty file
3270** into a new empty database by initializing the first page of
3271** the database.
drh8b2f49b2001-06-08 00:21:52 +00003272*/
danielk1977aef0bf62005-12-30 16:28:01 +00003273static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003274 MemPage *pP1;
3275 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003276 int rc;
drhd677b3d2007-08-20 22:48:41 +00003277
drh1fee73e2007-08-29 04:00:57 +00003278 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003279 if( pBt->nPage>0 ){
3280 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003281 }
drh3aac2dd2004-04-26 14:10:20 +00003282 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003283 assert( pP1!=0 );
3284 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003285 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003286 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003287 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3288 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003289 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3290 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003291 data[18] = 1;
3292 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003293 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3294 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003295 data[21] = 64;
3296 data[22] = 32;
3297 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003298 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003299 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003300 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003301#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003302 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003303 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003304 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003305 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003306#endif
drhdd3cd972010-03-27 17:12:36 +00003307 pBt->nPage = 1;
3308 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003309 return SQLITE_OK;
3310}
3311
3312/*
danb483eba2012-10-13 19:58:11 +00003313** Initialize the first page of the database file (creating a database
3314** consisting of a single page and no schema objects). Return SQLITE_OK
3315** if successful, or an SQLite error code otherwise.
3316*/
3317int sqlite3BtreeNewDb(Btree *p){
3318 int rc;
3319 sqlite3BtreeEnter(p);
3320 p->pBt->nPage = 0;
3321 rc = newDatabase(p->pBt);
3322 sqlite3BtreeLeave(p);
3323 return rc;
3324}
3325
3326/*
danielk1977ee5741e2004-05-31 10:01:34 +00003327** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003328** is started if the second argument is nonzero, otherwise a read-
3329** transaction. If the second argument is 2 or more and exclusive
3330** transaction is started, meaning that no other process is allowed
3331** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003332** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003333** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003334**
danielk1977ee5741e2004-05-31 10:01:34 +00003335** A write-transaction must be started before attempting any
3336** changes to the database. None of the following routines
3337** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003338**
drh23e11ca2004-05-04 17:27:28 +00003339** sqlite3BtreeCreateTable()
3340** sqlite3BtreeCreateIndex()
3341** sqlite3BtreeClearTable()
3342** sqlite3BtreeDropTable()
3343** sqlite3BtreeInsert()
3344** sqlite3BtreeDelete()
3345** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003346**
drhb8ef32c2005-03-14 02:01:49 +00003347** If an initial attempt to acquire the lock fails because of lock contention
3348** and the database was previously unlocked, then invoke the busy handler
3349** if there is one. But if there was previously a read-lock, do not
3350** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3351** returned when there is already a read-lock in order to avoid a deadlock.
3352**
3353** Suppose there are two processes A and B. A has a read lock and B has
3354** a reserved lock. B tries to promote to exclusive but is blocked because
3355** of A's read lock. A tries to promote to reserved but is blocked by B.
3356** One or the other of the two processes must give way or there can be
3357** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3358** when A already has a read lock, we encourage A to give up and let B
3359** proceed.
drha059ad02001-04-17 20:09:11 +00003360*/
drhbb2d9b12018-06-06 16:28:40 +00003361int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003362 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003363 int rc = SQLITE_OK;
3364
drhd677b3d2007-08-20 22:48:41 +00003365 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003366 btreeIntegrity(p);
3367
danielk1977ee5741e2004-05-31 10:01:34 +00003368 /* If the btree is already in a write-transaction, or it
3369 ** is already in a read-transaction and a read-transaction
3370 ** is requested, this is a no-op.
3371 */
danielk1977aef0bf62005-12-30 16:28:01 +00003372 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003373 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003374 }
dan56c517a2013-09-26 11:04:33 +00003375 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003376
danea933f02018-07-19 11:44:02 +00003377 if( (p->db->flags & SQLITE_ResetDatabase)
3378 && sqlite3PagerIsreadonly(pBt->pPager)==0
3379 ){
3380 pBt->btsFlags &= ~BTS_READ_ONLY;
3381 }
3382
drhb8ef32c2005-03-14 02:01:49 +00003383 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003384 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003385 rc = SQLITE_READONLY;
3386 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003387 }
3388
danielk1977404ca072009-03-16 13:19:36 +00003389#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003390 {
3391 sqlite3 *pBlock = 0;
3392 /* If another database handle has already opened a write transaction
3393 ** on this shared-btree structure and a second write transaction is
3394 ** requested, return SQLITE_LOCKED.
3395 */
3396 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3397 || (pBt->btsFlags & BTS_PENDING)!=0
3398 ){
3399 pBlock = pBt->pWriter->db;
3400 }else if( wrflag>1 ){
3401 BtLock *pIter;
3402 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3403 if( pIter->pBtree!=p ){
3404 pBlock = pIter->pBtree->db;
3405 break;
3406 }
danielk1977641b0f42007-12-21 04:47:25 +00003407 }
3408 }
drh5a1fb182016-01-08 19:34:39 +00003409 if( pBlock ){
3410 sqlite3ConnectionBlocked(p->db, pBlock);
3411 rc = SQLITE_LOCKED_SHAREDCACHE;
3412 goto trans_begun;
3413 }
danielk1977404ca072009-03-16 13:19:36 +00003414 }
danielk1977641b0f42007-12-21 04:47:25 +00003415#endif
3416
danielk1977602b4662009-07-02 07:47:33 +00003417 /* Any read-only or read-write transaction implies a read-lock on
3418 ** page 1. So if some other shared-cache client already has a write-lock
3419 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003420 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3421 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003422
drhc9166342012-01-05 23:32:06 +00003423 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3424 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003425 do {
danielk1977295dc102009-04-01 19:07:03 +00003426 /* Call lockBtree() until either pBt->pPage1 is populated or
3427 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3428 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3429 ** reading page 1 it discovers that the page-size of the database
3430 ** file is not pBt->pageSize. In this case lockBtree() will update
3431 ** pBt->pageSize to the page-size of the file on disk.
3432 */
3433 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003434
drhb8ef32c2005-03-14 02:01:49 +00003435 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003436 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003437 rc = SQLITE_READONLY;
3438 }else{
danielk1977d8293352009-04-30 09:10:37 +00003439 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003440 if( rc==SQLITE_OK ){
3441 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003442 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3443 /* if there was no transaction opened when this function was
3444 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3445 ** code to SQLITE_BUSY. */
3446 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003447 }
drhb8ef32c2005-03-14 02:01:49 +00003448 }
3449 }
3450
danielk1977bd434552009-03-18 10:33:00 +00003451 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003452 unlockBtreeIfUnused(pBt);
3453 }
danf9b76712010-06-01 14:12:45 +00003454 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003455 btreeInvokeBusyHandler(pBt) );
drhfd725632018-03-26 20:43:05 +00003456 sqlite3PagerResetLockTimeout(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00003457
3458 if( rc==SQLITE_OK ){
3459 if( p->inTrans==TRANS_NONE ){
3460 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003461#ifndef SQLITE_OMIT_SHARED_CACHE
3462 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003463 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003464 p->lock.eLock = READ_LOCK;
3465 p->lock.pNext = pBt->pLock;
3466 pBt->pLock = &p->lock;
3467 }
3468#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003469 }
3470 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3471 if( p->inTrans>pBt->inTransaction ){
3472 pBt->inTransaction = p->inTrans;
3473 }
danielk1977404ca072009-03-16 13:19:36 +00003474 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003475 MemPage *pPage1 = pBt->pPage1;
3476#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003477 assert( !pBt->pWriter );
3478 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003479 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3480 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003481#endif
dan59257dc2010-08-04 11:34:31 +00003482
3483 /* If the db-size header field is incorrect (as it may be if an old
3484 ** client has been writing the database file), update it now. Doing
3485 ** this sooner rather than later means the database size can safely
3486 ** re-read the database size from page 1 if a savepoint or transaction
3487 ** rollback occurs within the transaction.
3488 */
3489 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3490 rc = sqlite3PagerWrite(pPage1->pDbPage);
3491 if( rc==SQLITE_OK ){
3492 put4byte(&pPage1->aData[28], pBt->nPage);
3493 }
3494 }
3495 }
danielk1977aef0bf62005-12-30 16:28:01 +00003496 }
3497
drhd677b3d2007-08-20 22:48:41 +00003498trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003499 if( rc==SQLITE_OK ){
3500 if( pSchemaVersion ){
3501 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3502 }
3503 if( wrflag ){
3504 /* This call makes sure that the pager has the correct number of
3505 ** open savepoints. If the second parameter is greater than 0 and
3506 ** the sub-journal is not already open, then it will be opened here.
3507 */
3508 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3509 }
danielk1977fd7f0452008-12-17 17:30:26 +00003510 }
danielk197712dd5492008-12-18 15:45:07 +00003511
danielk1977aef0bf62005-12-30 16:28:01 +00003512 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003513 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003514 return rc;
drha059ad02001-04-17 20:09:11 +00003515}
3516
danielk1977687566d2004-11-02 12:56:41 +00003517#ifndef SQLITE_OMIT_AUTOVACUUM
3518
3519/*
3520** Set the pointer-map entries for all children of page pPage. Also, if
3521** pPage contains cells that point to overflow pages, set the pointer
3522** map entries for the overflow pages as well.
3523*/
3524static int setChildPtrmaps(MemPage *pPage){
3525 int i; /* Counter variable */
3526 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003527 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003528 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003529 Pgno pgno = pPage->pgno;
3530
drh1fee73e2007-08-29 04:00:57 +00003531 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003532 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003533 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003534 nCell = pPage->nCell;
3535
3536 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003537 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003538
drh0f1bf4c2019-01-13 20:17:21 +00003539 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003540
danielk1977687566d2004-11-02 12:56:41 +00003541 if( !pPage->leaf ){
3542 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003543 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003544 }
3545 }
3546
3547 if( !pPage->leaf ){
3548 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003549 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003550 }
3551
danielk1977687566d2004-11-02 12:56:41 +00003552 return rc;
3553}
3554
3555/*
drhf3aed592009-07-08 18:12:49 +00003556** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3557** that it points to iTo. Parameter eType describes the type of pointer to
3558** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003559**
3560** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3561** page of pPage.
3562**
3563** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3564** page pointed to by one of the cells on pPage.
3565**
3566** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3567** overflow page in the list.
3568*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003569static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003570 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003571 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003572 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003573 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003574 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003575 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003576 }
danielk1977f78fc082004-11-02 14:40:32 +00003577 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003578 }else{
danielk1977687566d2004-11-02 12:56:41 +00003579 int i;
3580 int nCell;
drha1f75d92015-05-24 10:18:12 +00003581 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003582
drh14e845a2017-05-25 21:35:56 +00003583 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003584 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003585 nCell = pPage->nCell;
3586
danielk1977687566d2004-11-02 12:56:41 +00003587 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003588 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003589 if( eType==PTRMAP_OVERFLOW1 ){
3590 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003591 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003592 if( info.nLocal<info.nPayload ){
3593 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003594 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003595 }
3596 if( iFrom==get4byte(pCell+info.nSize-4) ){
3597 put4byte(pCell+info.nSize-4, iTo);
3598 break;
3599 }
danielk1977687566d2004-11-02 12:56:41 +00003600 }
3601 }else{
3602 if( get4byte(pCell)==iFrom ){
3603 put4byte(pCell, iTo);
3604 break;
3605 }
3606 }
3607 }
3608
3609 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003610 if( eType!=PTRMAP_BTREE ||
3611 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003612 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003613 }
danielk1977687566d2004-11-02 12:56:41 +00003614 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3615 }
danielk1977687566d2004-11-02 12:56:41 +00003616 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003617 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003618}
3619
danielk1977003ba062004-11-04 02:57:33 +00003620
danielk19777701e812005-01-10 12:59:51 +00003621/*
3622** Move the open database page pDbPage to location iFreePage in the
3623** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003624**
3625** The isCommit flag indicates that there is no need to remember that
3626** the journal needs to be sync()ed before database page pDbPage->pgno
3627** can be written to. The caller has already promised not to write to that
3628** page.
danielk19777701e812005-01-10 12:59:51 +00003629*/
danielk1977003ba062004-11-04 02:57:33 +00003630static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003631 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003632 MemPage *pDbPage, /* Open page to move */
3633 u8 eType, /* Pointer map 'type' entry for pDbPage */
3634 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003635 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003636 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003637){
3638 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3639 Pgno iDbPage = pDbPage->pgno;
3640 Pager *pPager = pBt->pPager;
3641 int rc;
3642
danielk1977a0bf2652004-11-04 14:30:04 +00003643 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3644 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003645 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003646 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003647 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003648
drh85b623f2007-12-13 21:54:09 +00003649 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003650 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3651 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003652 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003653 if( rc!=SQLITE_OK ){
3654 return rc;
3655 }
3656 pDbPage->pgno = iFreePage;
3657
3658 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3659 ** that point to overflow pages. The pointer map entries for all these
3660 ** pages need to be changed.
3661 **
3662 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3663 ** pointer to a subsequent overflow page. If this is the case, then
3664 ** the pointer map needs to be updated for the subsequent overflow page.
3665 */
danielk1977a0bf2652004-11-04 14:30:04 +00003666 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003667 rc = setChildPtrmaps(pDbPage);
3668 if( rc!=SQLITE_OK ){
3669 return rc;
3670 }
3671 }else{
3672 Pgno nextOvfl = get4byte(pDbPage->aData);
3673 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003674 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003675 if( rc!=SQLITE_OK ){
3676 return rc;
3677 }
3678 }
3679 }
3680
3681 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3682 ** that it points at iFreePage. Also fix the pointer map entry for
3683 ** iPtrPage.
3684 */
danielk1977a0bf2652004-11-04 14:30:04 +00003685 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003686 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003687 if( rc!=SQLITE_OK ){
3688 return rc;
3689 }
danielk19773b8a05f2007-03-19 17:44:26 +00003690 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003691 if( rc!=SQLITE_OK ){
3692 releasePage(pPtrPage);
3693 return rc;
3694 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003695 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003696 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003697 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003698 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003699 }
danielk1977003ba062004-11-04 02:57:33 +00003700 }
danielk1977003ba062004-11-04 02:57:33 +00003701 return rc;
3702}
3703
danielk1977dddbcdc2007-04-26 14:42:34 +00003704/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003705static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003706
3707/*
dan51f0b6d2013-02-22 20:16:34 +00003708** Perform a single step of an incremental-vacuum. If successful, return
3709** SQLITE_OK. If there is no work to do (and therefore no point in
3710** calling this function again), return SQLITE_DONE. Or, if an error
3711** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003712**
peter.d.reid60ec9142014-09-06 16:39:46 +00003713** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003714** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003715**
dan51f0b6d2013-02-22 20:16:34 +00003716** Parameter nFin is the number of pages that this database would contain
3717** were this function called until it returns SQLITE_DONE.
3718**
3719** If the bCommit parameter is non-zero, this function assumes that the
3720** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003721** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003722** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003723*/
dan51f0b6d2013-02-22 20:16:34 +00003724static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003725 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003726 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003727
drh1fee73e2007-08-29 04:00:57 +00003728 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003729 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003730
3731 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003732 u8 eType;
3733 Pgno iPtrPage;
3734
3735 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003736 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003737 return SQLITE_DONE;
3738 }
3739
3740 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3741 if( rc!=SQLITE_OK ){
3742 return rc;
3743 }
3744 if( eType==PTRMAP_ROOTPAGE ){
3745 return SQLITE_CORRUPT_BKPT;
3746 }
3747
3748 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003749 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003750 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003751 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003752 ** truncated to zero after this function returns, so it doesn't
3753 ** matter if it still contains some garbage entries.
3754 */
3755 Pgno iFreePg;
3756 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003757 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003758 if( rc!=SQLITE_OK ){
3759 return rc;
3760 }
3761 assert( iFreePg==iLastPg );
3762 releasePage(pFreePg);
3763 }
3764 } else {
3765 Pgno iFreePg; /* Index of free page to move pLastPg to */
3766 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003767 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3768 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003769
drhb00fc3b2013-08-21 23:42:32 +00003770 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003771 if( rc!=SQLITE_OK ){
3772 return rc;
3773 }
3774
dan51f0b6d2013-02-22 20:16:34 +00003775 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003776 ** is swapped with the first free page pulled off the free list.
3777 **
dan51f0b6d2013-02-22 20:16:34 +00003778 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003779 ** looping until a free-page located within the first nFin pages
3780 ** of the file is found.
3781 */
dan51f0b6d2013-02-22 20:16:34 +00003782 if( bCommit==0 ){
3783 eMode = BTALLOC_LE;
3784 iNear = nFin;
3785 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003786 do {
3787 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003788 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003789 if( rc!=SQLITE_OK ){
3790 releasePage(pLastPg);
3791 return rc;
3792 }
3793 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003794 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003795 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003796
dane1df4e32013-03-05 11:27:04 +00003797 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003798 releasePage(pLastPg);
3799 if( rc!=SQLITE_OK ){
3800 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003801 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003802 }
3803 }
3804
dan51f0b6d2013-02-22 20:16:34 +00003805 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003806 do {
danielk19773460d192008-12-27 15:23:13 +00003807 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003808 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3809 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003810 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003811 }
3812 return SQLITE_OK;
3813}
3814
3815/*
dan51f0b6d2013-02-22 20:16:34 +00003816** The database opened by the first argument is an auto-vacuum database
3817** nOrig pages in size containing nFree free pages. Return the expected
3818** size of the database in pages following an auto-vacuum operation.
3819*/
3820static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3821 int nEntry; /* Number of entries on one ptrmap page */
3822 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3823 Pgno nFin; /* Return value */
3824
3825 nEntry = pBt->usableSize/5;
3826 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3827 nFin = nOrig - nFree - nPtrmap;
3828 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3829 nFin--;
3830 }
3831 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3832 nFin--;
3833 }
dan51f0b6d2013-02-22 20:16:34 +00003834
3835 return nFin;
3836}
3837
3838/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003839** A write-transaction must be opened before calling this function.
3840** It performs a single unit of work towards an incremental vacuum.
3841**
3842** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003843** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003844** SQLITE_OK is returned. Otherwise an SQLite error code.
3845*/
3846int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003847 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003848 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003849
3850 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003851 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3852 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003853 rc = SQLITE_DONE;
3854 }else{
dan51f0b6d2013-02-22 20:16:34 +00003855 Pgno nOrig = btreePagecount(pBt);
3856 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3857 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3858
dan91384712013-02-24 11:50:43 +00003859 if( nOrig<nFin ){
3860 rc = SQLITE_CORRUPT_BKPT;
3861 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003862 rc = saveAllCursors(pBt, 0, 0);
3863 if( rc==SQLITE_OK ){
3864 invalidateAllOverflowCache(pBt);
3865 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3866 }
dan51f0b6d2013-02-22 20:16:34 +00003867 if( rc==SQLITE_OK ){
3868 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3869 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3870 }
3871 }else{
3872 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003873 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003874 }
drhd677b3d2007-08-20 22:48:41 +00003875 sqlite3BtreeLeave(p);
3876 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003877}
3878
3879/*
danielk19773b8a05f2007-03-19 17:44:26 +00003880** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003881** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003882**
3883** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3884** the database file should be truncated to during the commit process.
3885** i.e. the database has been reorganized so that only the first *pnTrunc
3886** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003887*/
danielk19773460d192008-12-27 15:23:13 +00003888static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003889 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003890 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003891 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003892
drh1fee73e2007-08-29 04:00:57 +00003893 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003894 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003895 assert(pBt->autoVacuum);
3896 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003897 Pgno nFin; /* Number of pages in database after autovacuuming */
3898 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003899 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003900 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003901
drhb1299152010-03-30 22:58:33 +00003902 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003903 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3904 /* It is not possible to create a database for which the final page
3905 ** is either a pointer-map page or the pending-byte page. If one
3906 ** is encountered, this indicates corruption.
3907 */
danielk19773460d192008-12-27 15:23:13 +00003908 return SQLITE_CORRUPT_BKPT;
3909 }
danielk1977ef165ce2009-04-06 17:50:03 +00003910
danielk19773460d192008-12-27 15:23:13 +00003911 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003912 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003913 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003914 if( nFin<nOrig ){
3915 rc = saveAllCursors(pBt, 0, 0);
3916 }
danielk19773460d192008-12-27 15:23:13 +00003917 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003918 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003919 }
danielk19773460d192008-12-27 15:23:13 +00003920 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003921 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3922 put4byte(&pBt->pPage1->aData[32], 0);
3923 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003924 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003925 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003926 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003927 }
3928 if( rc!=SQLITE_OK ){
3929 sqlite3PagerRollback(pPager);
3930 }
danielk1977687566d2004-11-02 12:56:41 +00003931 }
3932
dan0aed84d2013-03-26 14:16:20 +00003933 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003934 return rc;
3935}
danielk1977dddbcdc2007-04-26 14:42:34 +00003936
danielk1977a50d9aa2009-06-08 14:49:45 +00003937#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3938# define setChildPtrmaps(x) SQLITE_OK
3939#endif
danielk1977687566d2004-11-02 12:56:41 +00003940
3941/*
drh80e35f42007-03-30 14:06:34 +00003942** This routine does the first phase of a two-phase commit. This routine
3943** causes a rollback journal to be created (if it does not already exist)
3944** and populated with enough information so that if a power loss occurs
3945** the database can be restored to its original state by playing back
3946** the journal. Then the contents of the journal are flushed out to
3947** the disk. After the journal is safely on oxide, the changes to the
3948** database are written into the database file and flushed to oxide.
3949** At the end of this call, the rollback journal still exists on the
3950** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003951** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003952** commit process.
3953**
3954** This call is a no-op if no write-transaction is currently active on pBt.
3955**
3956** Otherwise, sync the database file for the btree pBt. zMaster points to
3957** the name of a master journal file that should be written into the
3958** individual journal file, or is NULL, indicating no master journal file
3959** (single database transaction).
3960**
3961** When this is called, the master journal should already have been
3962** created, populated with this journal pointer and synced to disk.
3963**
3964** Once this is routine has returned, the only thing required to commit
3965** the write-transaction for this database file is to delete the journal.
3966*/
3967int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3968 int rc = SQLITE_OK;
3969 if( p->inTrans==TRANS_WRITE ){
3970 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003971 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003972#ifndef SQLITE_OMIT_AUTOVACUUM
3973 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003974 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003975 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003976 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003977 return rc;
3978 }
3979 }
danbc1a3c62013-02-23 16:40:46 +00003980 if( pBt->bDoTruncate ){
3981 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3982 }
drh80e35f42007-03-30 14:06:34 +00003983#endif
drh49b9d332009-01-02 18:10:42 +00003984 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003985 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003986 }
3987 return rc;
3988}
3989
3990/*
danielk197794b30732009-07-02 17:21:57 +00003991** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3992** at the conclusion of a transaction.
3993*/
3994static void btreeEndTransaction(Btree *p){
3995 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003996 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003997 assert( sqlite3BtreeHoldsMutex(p) );
3998
danbc1a3c62013-02-23 16:40:46 +00003999#ifndef SQLITE_OMIT_AUTOVACUUM
4000 pBt->bDoTruncate = 0;
4001#endif
danc0537fe2013-06-28 19:41:43 +00004002 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004003 /* If there are other active statements that belong to this database
4004 ** handle, downgrade to a read-only transaction. The other statements
4005 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004006 downgradeAllSharedCacheTableLocks(p);
4007 p->inTrans = TRANS_READ;
4008 }else{
4009 /* If the handle had any kind of transaction open, decrement the
4010 ** transaction count of the shared btree. If the transaction count
4011 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4012 ** call below will unlock the pager. */
4013 if( p->inTrans!=TRANS_NONE ){
4014 clearAllSharedCacheTableLocks(p);
4015 pBt->nTransaction--;
4016 if( 0==pBt->nTransaction ){
4017 pBt->inTransaction = TRANS_NONE;
4018 }
4019 }
4020
4021 /* Set the current transaction state to TRANS_NONE and unlock the
4022 ** pager if this call closed the only read or write transaction. */
4023 p->inTrans = TRANS_NONE;
4024 unlockBtreeIfUnused(pBt);
4025 }
4026
4027 btreeIntegrity(p);
4028}
4029
4030/*
drh2aa679f2001-06-25 02:11:07 +00004031** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004032**
drh6e345992007-03-30 11:12:08 +00004033** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004034** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4035** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4036** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004037** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004038** routine has to do is delete or truncate or zero the header in the
4039** the rollback journal (which causes the transaction to commit) and
4040** drop locks.
drh6e345992007-03-30 11:12:08 +00004041**
dan60939d02011-03-29 15:40:55 +00004042** Normally, if an error occurs while the pager layer is attempting to
4043** finalize the underlying journal file, this function returns an error and
4044** the upper layer will attempt a rollback. However, if the second argument
4045** is non-zero then this b-tree transaction is part of a multi-file
4046** transaction. In this case, the transaction has already been committed
4047** (by deleting a master journal file) and the caller will ignore this
4048** functions return code. So, even if an error occurs in the pager layer,
4049** reset the b-tree objects internal state to indicate that the write
4050** transaction has been closed. This is quite safe, as the pager will have
4051** transitioned to the error state.
4052**
drh5e00f6c2001-09-13 13:46:56 +00004053** This will release the write lock on the database file. If there
4054** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004055*/
dan60939d02011-03-29 15:40:55 +00004056int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004057
drh075ed302010-10-14 01:17:30 +00004058 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004059 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004060 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004061
4062 /* If the handle has a write-transaction open, commit the shared-btrees
4063 ** transaction and set the shared state to TRANS_READ.
4064 */
4065 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004066 int rc;
drh075ed302010-10-14 01:17:30 +00004067 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004068 assert( pBt->inTransaction==TRANS_WRITE );
4069 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004070 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004071 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004072 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004073 return rc;
4074 }
drh3da9c042014-12-22 18:41:21 +00004075 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004076 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004077 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004078 }
danielk1977aef0bf62005-12-30 16:28:01 +00004079
danielk197794b30732009-07-02 17:21:57 +00004080 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004081 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004082 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004083}
4084
drh80e35f42007-03-30 14:06:34 +00004085/*
4086** Do both phases of a commit.
4087*/
4088int sqlite3BtreeCommit(Btree *p){
4089 int rc;
drhd677b3d2007-08-20 22:48:41 +00004090 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004091 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4092 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004093 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004094 }
drhd677b3d2007-08-20 22:48:41 +00004095 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004096 return rc;
4097}
4098
drhc39e0002004-05-07 23:50:57 +00004099/*
drhfb982642007-08-30 01:19:59 +00004100** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004101** code to errCode for every cursor on any BtShared that pBtree
4102** references. Or if the writeOnly flag is set to 1, then only
4103** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004104**
drh47b7fc72014-11-11 01:33:57 +00004105** Every cursor is a candidate to be tripped, including cursors
4106** that belong to other database connections that happen to be
4107** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004108**
dan80231042014-11-12 14:56:02 +00004109** This routine gets called when a rollback occurs. If the writeOnly
4110** flag is true, then only write-cursors need be tripped - read-only
4111** cursors save their current positions so that they may continue
4112** following the rollback. Or, if writeOnly is false, all cursors are
4113** tripped. In general, writeOnly is false if the transaction being
4114** rolled back modified the database schema. In this case b-tree root
4115** pages may be moved or deleted from the database altogether, making
4116** it unsafe for read cursors to continue.
4117**
4118** If the writeOnly flag is true and an error is encountered while
4119** saving the current position of a read-only cursor, all cursors,
4120** including all read-cursors are tripped.
4121**
4122** SQLITE_OK is returned if successful, or if an error occurs while
4123** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004124*/
dan80231042014-11-12 14:56:02 +00004125int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004126 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004127 int rc = SQLITE_OK;
4128
drh47b7fc72014-11-11 01:33:57 +00004129 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004130 if( pBtree ){
4131 sqlite3BtreeEnter(pBtree);
4132 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004133 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004134 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004135 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004136 if( rc!=SQLITE_OK ){
4137 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4138 break;
4139 }
4140 }
4141 }else{
4142 sqlite3BtreeClearCursor(p);
4143 p->eState = CURSOR_FAULT;
4144 p->skipNext = errCode;
4145 }
drh85ef6302017-08-02 15:50:09 +00004146 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004147 }
dan80231042014-11-12 14:56:02 +00004148 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004149 }
dan80231042014-11-12 14:56:02 +00004150 return rc;
drhfb982642007-08-30 01:19:59 +00004151}
4152
4153/*
drh47b7fc72014-11-11 01:33:57 +00004154** Rollback the transaction in progress.
4155**
4156** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4157** Only write cursors are tripped if writeOnly is true but all cursors are
4158** tripped if writeOnly is false. Any attempt to use
4159** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004160**
4161** This will release the write lock on the database file. If there
4162** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004163*/
drh47b7fc72014-11-11 01:33:57 +00004164int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004165 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004166 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004167 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004168
drh47b7fc72014-11-11 01:33:57 +00004169 assert( writeOnly==1 || writeOnly==0 );
4170 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004171 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004172 if( tripCode==SQLITE_OK ){
4173 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004174 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004175 }else{
4176 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004177 }
drh0f198a72012-02-13 16:43:16 +00004178 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004179 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4180 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4181 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004182 }
danielk1977aef0bf62005-12-30 16:28:01 +00004183 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004184
4185 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004186 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004187
danielk19778d34dfd2006-01-24 16:37:57 +00004188 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004189 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004190 if( rc2!=SQLITE_OK ){
4191 rc = rc2;
4192 }
4193
drh24cd67e2004-05-10 16:18:47 +00004194 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004195 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004196 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004197 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00004198 int nPage = get4byte(28+(u8*)pPage1->aData);
4199 testcase( nPage==0 );
4200 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4201 testcase( pBt->nPage!=nPage );
4202 pBt->nPage = nPage;
drh3908fe92017-09-01 14:50:19 +00004203 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004204 }
drh85ec3b62013-05-14 23:12:06 +00004205 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004206 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004207 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004208 }
danielk1977aef0bf62005-12-30 16:28:01 +00004209
danielk197794b30732009-07-02 17:21:57 +00004210 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004211 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004212 return rc;
4213}
4214
4215/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004216** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004217** back independently of the main transaction. You must start a transaction
4218** before starting a subtransaction. The subtransaction is ended automatically
4219** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004220**
4221** Statement subtransactions are used around individual SQL statements
4222** that are contained within a BEGIN...COMMIT block. If a constraint
4223** error occurs within the statement, the effect of that one statement
4224** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004225**
4226** A statement sub-transaction is implemented as an anonymous savepoint. The
4227** value passed as the second parameter is the total number of savepoints,
4228** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4229** are no active savepoints and no other statement-transactions open,
4230** iStatement is 1. This anonymous savepoint can be released or rolled back
4231** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004232*/
danielk1977bd434552009-03-18 10:33:00 +00004233int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004234 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004235 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004236 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004237 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004238 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004239 assert( iStatement>0 );
4240 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004241 assert( pBt->inTransaction==TRANS_WRITE );
4242 /* At the pager level, a statement transaction is a savepoint with
4243 ** an index greater than all savepoints created explicitly using
4244 ** SQL statements. It is illegal to open, release or rollback any
4245 ** such savepoints while the statement transaction savepoint is active.
4246 */
4247 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004248 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004249 return rc;
4250}
4251
4252/*
danielk1977fd7f0452008-12-17 17:30:26 +00004253** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4254** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004255** savepoint identified by parameter iSavepoint, depending on the value
4256** of op.
4257**
4258** Normally, iSavepoint is greater than or equal to zero. However, if op is
4259** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4260** contents of the entire transaction are rolled back. This is different
4261** from a normal transaction rollback, as no locks are released and the
4262** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004263*/
4264int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4265 int rc = SQLITE_OK;
4266 if( p && p->inTrans==TRANS_WRITE ){
4267 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004268 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4269 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4270 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004271 if( op==SAVEPOINT_ROLLBACK ){
4272 rc = saveAllCursors(pBt, 0, 0);
4273 }
4274 if( rc==SQLITE_OK ){
4275 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4276 }
drh9f0bbf92009-01-02 21:08:09 +00004277 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004278 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4279 pBt->nPage = 0;
4280 }
drh9f0bbf92009-01-02 21:08:09 +00004281 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004282 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004283
4284 /* The database size was written into the offset 28 of the header
4285 ** when the transaction started, so we know that the value at offset
4286 ** 28 is nonzero. */
4287 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004288 }
danielk1977fd7f0452008-12-17 17:30:26 +00004289 sqlite3BtreeLeave(p);
4290 }
4291 return rc;
4292}
4293
4294/*
drh8b2f49b2001-06-08 00:21:52 +00004295** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004296** iTable. If a read-only cursor is requested, it is assumed that
4297** the caller already has at least a read-only transaction open
4298** on the database already. If a write-cursor is requested, then
4299** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004300**
drhe807bdb2016-01-21 17:06:33 +00004301** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4302** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4303** can be used for reading or for writing if other conditions for writing
4304** are also met. These are the conditions that must be met in order
4305** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004306**
drhe807bdb2016-01-21 17:06:33 +00004307** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004308**
drhfe5d71d2007-03-19 11:54:10 +00004309** 2: Other database connections that share the same pager cache
4310** but which are not in the READ_UNCOMMITTED state may not have
4311** cursors open with wrFlag==0 on the same table. Otherwise
4312** the changes made by this write cursor would be visible to
4313** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004314**
4315** 3: The database must be writable (not on read-only media)
4316**
4317** 4: There must be an active transaction.
4318**
drhe807bdb2016-01-21 17:06:33 +00004319** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4320** is set. If FORDELETE is set, that is a hint to the implementation that
4321** this cursor will only be used to seek to and delete entries of an index
4322** as part of a larger DELETE statement. The FORDELETE hint is not used by
4323** this implementation. But in a hypothetical alternative storage engine
4324** in which index entries are automatically deleted when corresponding table
4325** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4326** operations on this cursor can be no-ops and all READ operations can
4327** return a null row (2-bytes: 0x01 0x00).
4328**
drh6446c4d2001-12-15 14:22:18 +00004329** No checking is done to make sure that page iTable really is the
4330** root page of a b-tree. If it is not, then the cursor acquired
4331** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004332**
drhf25a5072009-11-18 23:01:25 +00004333** It is assumed that the sqlite3BtreeCursorZero() has been called
4334** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004335*/
drhd677b3d2007-08-20 22:48:41 +00004336static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004337 Btree *p, /* The btree */
4338 int iTable, /* Root page of table to open */
4339 int wrFlag, /* 1 to write. 0 read-only */
4340 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4341 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004342){
danielk19773e8add92009-07-04 17:16:00 +00004343 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004344 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004345
drh1fee73e2007-08-29 04:00:57 +00004346 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004347 assert( wrFlag==0
4348 || wrFlag==BTREE_WRCSR
4349 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4350 );
danielk197796d48e92009-06-29 06:00:37 +00004351
danielk1977602b4662009-07-02 07:47:33 +00004352 /* The following assert statements verify that if this is a sharable
4353 ** b-tree database, the connection is holding the required table locks,
4354 ** and that no other connection has any open cursor that conflicts with
4355 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004356 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004357 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4358
danielk19773e8add92009-07-04 17:16:00 +00004359 /* Assert that the caller has opened the required transaction. */
4360 assert( p->inTrans>TRANS_NONE );
4361 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4362 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004363 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004364
drh3fbb0222014-09-24 19:47:27 +00004365 if( wrFlag ){
4366 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004367 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004368 }
drhb1299152010-03-30 22:58:33 +00004369 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004370 assert( wrFlag==0 );
4371 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004372 }
danielk1977aef0bf62005-12-30 16:28:01 +00004373
danielk1977aef0bf62005-12-30 16:28:01 +00004374 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004375 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004376 pCur->pgnoRoot = (Pgno)iTable;
4377 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004378 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004379 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004380 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004381 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004382 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004383 /* If there are two or more cursors on the same btree, then all such
4384 ** cursors *must* have the BTCF_Multiple flag set. */
4385 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4386 if( pX->pgnoRoot==(Pgno)iTable ){
4387 pX->curFlags |= BTCF_Multiple;
4388 pCur->curFlags |= BTCF_Multiple;
4389 }
drha059ad02001-04-17 20:09:11 +00004390 }
drh27fb7462015-06-30 02:47:36 +00004391 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004392 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004393 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004394 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004395}
drhd677b3d2007-08-20 22:48:41 +00004396int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004397 Btree *p, /* The btree */
4398 int iTable, /* Root page of table to open */
4399 int wrFlag, /* 1 to write. 0 read-only */
4400 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4401 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004402){
4403 int rc;
dan08f901b2015-05-25 19:24:36 +00004404 if( iTable<1 ){
4405 rc = SQLITE_CORRUPT_BKPT;
4406 }else{
4407 sqlite3BtreeEnter(p);
4408 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4409 sqlite3BtreeLeave(p);
4410 }
drhd677b3d2007-08-20 22:48:41 +00004411 return rc;
4412}
drh7f751222009-03-17 22:33:00 +00004413
4414/*
4415** Return the size of a BtCursor object in bytes.
4416**
4417** This interfaces is needed so that users of cursors can preallocate
4418** sufficient storage to hold a cursor. The BtCursor object is opaque
4419** to users so they cannot do the sizeof() themselves - they must call
4420** this routine.
4421*/
4422int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004423 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004424}
4425
drh7f751222009-03-17 22:33:00 +00004426/*
drhf25a5072009-11-18 23:01:25 +00004427** Initialize memory that will be converted into a BtCursor object.
4428**
4429** The simple approach here would be to memset() the entire object
4430** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4431** do not need to be zeroed and they are large, so we can save a lot
4432** of run-time by skipping the initialization of those elements.
4433*/
4434void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004435 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004436}
4437
4438/*
drh5e00f6c2001-09-13 13:46:56 +00004439** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004440** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004441*/
drh3aac2dd2004-04-26 14:10:20 +00004442int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004443 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004444 if( pBtree ){
4445 BtShared *pBt = pCur->pBt;
4446 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004447 assert( pBt->pCursor!=0 );
4448 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004449 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004450 }else{
4451 BtCursor *pPrev = pBt->pCursor;
4452 do{
4453 if( pPrev->pNext==pCur ){
4454 pPrev->pNext = pCur->pNext;
4455 break;
4456 }
4457 pPrev = pPrev->pNext;
4458 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004459 }
drh352a35a2017-08-15 03:46:47 +00004460 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004461 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004462 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004463 sqlite3_free(pCur->pKey);
danielk1977cd3e8f72008-03-25 09:47:35 +00004464 sqlite3BtreeLeave(pBtree);
dan97c8cb32019-01-01 18:00:17 +00004465 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004466 }
drh8c42ca92001-06-22 19:15:00 +00004467 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004468}
4469
drh5e2f8b92001-05-28 00:41:15 +00004470/*
drh86057612007-06-26 01:04:48 +00004471** Make sure the BtCursor* given in the argument has a valid
4472** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004473** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004474**
4475** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004476** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004477*/
drh9188b382004-05-14 21:12:22 +00004478#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004479 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4480 if( a->nKey!=b->nKey ) return 0;
4481 if( a->pPayload!=b->pPayload ) return 0;
4482 if( a->nPayload!=b->nPayload ) return 0;
4483 if( a->nLocal!=b->nLocal ) return 0;
4484 if( a->nSize!=b->nSize ) return 0;
4485 return 1;
4486 }
danielk19771cc5ed82007-05-16 17:28:43 +00004487 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004488 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004489 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004490 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004491 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004492 }
danielk19771cc5ed82007-05-16 17:28:43 +00004493#else
4494 #define assertCellInfo(x)
4495#endif
drhc5b41ac2015-06-17 02:11:46 +00004496static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4497 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004498 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004499 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004500 }else{
4501 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004502 }
drhc5b41ac2015-06-17 02:11:46 +00004503}
drh9188b382004-05-14 21:12:22 +00004504
drhea8ffdf2009-07-22 00:35:23 +00004505#ifndef NDEBUG /* The next routine used only within assert() statements */
4506/*
4507** Return true if the given BtCursor is valid. A valid cursor is one
4508** that is currently pointing to a row in a (non-empty) table.
4509** This is a verification routine is used only within assert() statements.
4510*/
4511int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4512 return pCur && pCur->eState==CURSOR_VALID;
4513}
4514#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004515int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4516 assert( pCur!=0 );
4517 return pCur->eState==CURSOR_VALID;
4518}
drhea8ffdf2009-07-22 00:35:23 +00004519
drh9188b382004-05-14 21:12:22 +00004520/*
drha7c90c42016-06-04 20:37:10 +00004521** Return the value of the integer key or "rowid" for a table btree.
4522** This routine is only valid for a cursor that is pointing into a
4523** ordinary table btree. If the cursor points to an index btree or
4524** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004525*/
drha7c90c42016-06-04 20:37:10 +00004526i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004527 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004528 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004529 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004530 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004531 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004532}
drh2af926b2001-05-15 00:39:25 +00004533
drh092457b2017-12-29 15:04:49 +00004534#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004535/*
drh2fc865c2017-12-16 20:20:37 +00004536** Return the offset into the database file for the start of the
4537** payload to which the cursor is pointing.
4538*/
drh092457b2017-12-29 15:04:49 +00004539i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004540 assert( cursorHoldsMutex(pCur) );
4541 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004542 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004543 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004544 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4545}
drh092457b2017-12-29 15:04:49 +00004546#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004547
4548/*
drha7c90c42016-06-04 20:37:10 +00004549** Return the number of bytes of payload for the entry that pCur is
4550** currently pointing to. For table btrees, this will be the amount
4551** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004552**
4553** The caller must guarantee that the cursor is pointing to a non-NULL
4554** valid entry. In other words, the calling procedure must guarantee
4555** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004556*/
drha7c90c42016-06-04 20:37:10 +00004557u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4558 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004559 assert( pCur->eState==CURSOR_VALID );
4560 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004561 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004562}
4563
4564/*
drh53d30dd2019-02-04 21:10:24 +00004565** Return an upper bound on the size of any record for the table
4566** that the cursor is pointing into.
4567**
4568** This is an optimization. Everything will still work if this
4569** routine always returns 2147483647 (which is the largest record
4570** that SQLite can handle) or more. But returning a smaller value might
4571** prevent large memory allocations when trying to interpret a
4572** corrupt datrabase.
4573**
4574** The current implementation merely returns the size of the underlying
4575** database file.
4576*/
4577sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4578 assert( cursorHoldsMutex(pCur) );
4579 assert( pCur->eState==CURSOR_VALID );
4580 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4581}
4582
4583/*
danielk1977d04417962007-05-02 13:16:30 +00004584** Given the page number of an overflow page in the database (parameter
4585** ovfl), this function finds the page number of the next page in the
4586** linked list of overflow pages. If possible, it uses the auto-vacuum
4587** pointer-map data instead of reading the content of page ovfl to do so.
4588**
4589** If an error occurs an SQLite error code is returned. Otherwise:
4590**
danielk1977bea2a942009-01-20 17:06:27 +00004591** The page number of the next overflow page in the linked list is
4592** written to *pPgnoNext. If page ovfl is the last page in its linked
4593** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004594**
danielk1977bea2a942009-01-20 17:06:27 +00004595** If ppPage is not NULL, and a reference to the MemPage object corresponding
4596** to page number pOvfl was obtained, then *ppPage is set to point to that
4597** reference. It is the responsibility of the caller to call releasePage()
4598** on *ppPage to free the reference. In no reference was obtained (because
4599** the pointer-map was used to obtain the value for *pPgnoNext), then
4600** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004601*/
4602static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004603 BtShared *pBt, /* The database file */
4604 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004605 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004606 Pgno *pPgnoNext /* OUT: Next overflow page number */
4607){
4608 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004609 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004610 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004611
drh1fee73e2007-08-29 04:00:57 +00004612 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004613 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004614
4615#ifndef SQLITE_OMIT_AUTOVACUUM
4616 /* Try to find the next page in the overflow list using the
4617 ** autovacuum pointer-map pages. Guess that the next page in
4618 ** the overflow list is page number (ovfl+1). If that guess turns
4619 ** out to be wrong, fall back to loading the data of page
4620 ** number ovfl to determine the next page number.
4621 */
4622 if( pBt->autoVacuum ){
4623 Pgno pgno;
4624 Pgno iGuess = ovfl+1;
4625 u8 eType;
4626
4627 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4628 iGuess++;
4629 }
4630
drhb1299152010-03-30 22:58:33 +00004631 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004632 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004633 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004634 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004635 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004636 }
4637 }
4638 }
4639#endif
4640
danielk1977d8a3f3d2009-07-11 11:45:23 +00004641 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004642 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004643 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004644 assert( rc==SQLITE_OK || pPage==0 );
4645 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004646 next = get4byte(pPage->aData);
4647 }
danielk1977443c0592009-01-16 15:21:05 +00004648 }
danielk197745d68822009-01-16 16:23:38 +00004649
danielk1977bea2a942009-01-20 17:06:27 +00004650 *pPgnoNext = next;
4651 if( ppPage ){
4652 *ppPage = pPage;
4653 }else{
4654 releasePage(pPage);
4655 }
4656 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004657}
4658
danielk1977da107192007-05-04 08:32:13 +00004659/*
4660** Copy data from a buffer to a page, or from a page to a buffer.
4661**
4662** pPayload is a pointer to data stored on database page pDbPage.
4663** If argument eOp is false, then nByte bytes of data are copied
4664** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4665** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4666** of data are copied from the buffer pBuf to pPayload.
4667**
4668** SQLITE_OK is returned on success, otherwise an error code.
4669*/
4670static int copyPayload(
4671 void *pPayload, /* Pointer to page data */
4672 void *pBuf, /* Pointer to buffer */
4673 int nByte, /* Number of bytes to copy */
4674 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4675 DbPage *pDbPage /* Page containing pPayload */
4676){
4677 if( eOp ){
4678 /* Copy data from buffer to page (a write operation) */
4679 int rc = sqlite3PagerWrite(pDbPage);
4680 if( rc!=SQLITE_OK ){
4681 return rc;
4682 }
4683 memcpy(pPayload, pBuf, nByte);
4684 }else{
4685 /* Copy data from page to buffer (a read operation) */
4686 memcpy(pBuf, pPayload, nByte);
4687 }
4688 return SQLITE_OK;
4689}
danielk1977d04417962007-05-02 13:16:30 +00004690
4691/*
danielk19779f8d6402007-05-02 17:48:45 +00004692** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004693** for the entry that the pCur cursor is pointing to. The eOp
4694** argument is interpreted as follows:
4695**
4696** 0: The operation is a read. Populate the overflow cache.
4697** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004698**
4699** A total of "amt" bytes are read or written beginning at "offset".
4700** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004701**
drh3bcdfd22009-07-12 02:32:21 +00004702** The content being read or written might appear on the main page
4703** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004704**
drh42e28f12017-01-27 00:31:59 +00004705** If the current cursor entry uses one or more overflow pages
4706** this function may allocate space for and lazily populate
4707** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004708** Subsequent calls use this cache to make seeking to the supplied offset
4709** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004710**
drh42e28f12017-01-27 00:31:59 +00004711** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004712** invalidated if some other cursor writes to the same table, or if
4713** the cursor is moved to a different row. Additionally, in auto-vacuum
4714** mode, the following events may invalidate an overflow page-list cache.
4715**
4716** * An incremental vacuum,
4717** * A commit in auto_vacuum="full" mode,
4718** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004719*/
danielk19779f8d6402007-05-02 17:48:45 +00004720static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004721 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004722 u32 offset, /* Begin reading this far into payload */
4723 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004724 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004725 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004726){
4727 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004728 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004729 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004730 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004731 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004732#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004733 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004734#endif
drh3aac2dd2004-04-26 14:10:20 +00004735
danielk1977da107192007-05-04 08:32:13 +00004736 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004737 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004738 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004739 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004740 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004741
drh86057612007-06-26 01:04:48 +00004742 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004743 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004744 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004745
drh0b982072016-03-22 14:10:45 +00004746 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004747 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004748 /* Trying to read or write past the end of the data is an error. The
4749 ** conditional above is really:
4750 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4751 ** but is recast into its current form to avoid integer overflow problems
4752 */
daneebf2f52017-11-18 17:30:08 +00004753 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004754 }
danielk1977da107192007-05-04 08:32:13 +00004755
4756 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004757 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004758 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004759 if( a+offset>pCur->info.nLocal ){
4760 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004761 }
drh42e28f12017-01-27 00:31:59 +00004762 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004763 offset = 0;
drha34b6762004-05-07 13:30:42 +00004764 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004765 amt -= a;
drhdd793422001-06-28 01:54:48 +00004766 }else{
drhfa1a98a2004-05-14 19:08:17 +00004767 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004768 }
danielk1977da107192007-05-04 08:32:13 +00004769
dan85753662014-12-11 16:38:18 +00004770
danielk1977da107192007-05-04 08:32:13 +00004771 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004772 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004773 Pgno nextPage;
4774
drhfa1a98a2004-05-14 19:08:17 +00004775 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004776
drha38c9512014-04-01 01:24:34 +00004777 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004778 **
4779 ** The aOverflow[] array is sized at one entry for each overflow page
4780 ** in the overflow chain. The page number of the first overflow page is
4781 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4782 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004783 */
drh42e28f12017-01-27 00:31:59 +00004784 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004785 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004786 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004787 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004788 ){
dan85753662014-12-11 16:38:18 +00004789 Pgno *aNew = (Pgno*)sqlite3Realloc(
4790 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004791 );
4792 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004793 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004794 }else{
dan5a500af2014-03-11 20:33:04 +00004795 pCur->aOverflow = aNew;
4796 }
4797 }
drhcd645532017-01-20 20:43:14 +00004798 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4799 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004800 }else{
4801 /* If the overflow page-list cache has been allocated and the
4802 ** entry for the first required overflow page is valid, skip
4803 ** directly to it.
4804 */
4805 if( pCur->aOverflow[offset/ovflSize] ){
4806 iIdx = (offset/ovflSize);
4807 nextPage = pCur->aOverflow[iIdx];
4808 offset = (offset%ovflSize);
4809 }
danielk19772dec9702007-05-02 16:48:37 +00004810 }
danielk1977da107192007-05-04 08:32:13 +00004811
drhcd645532017-01-20 20:43:14 +00004812 assert( rc==SQLITE_OK && amt>0 );
4813 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004814 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004815 assert( pCur->aOverflow[iIdx]==0
4816 || pCur->aOverflow[iIdx]==nextPage
4817 || CORRUPT_DB );
4818 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004819
danielk1977d04417962007-05-02 13:16:30 +00004820 if( offset>=ovflSize ){
4821 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004822 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004823 ** data is not required. So first try to lookup the overflow
4824 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004825 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004826 */
drha38c9512014-04-01 01:24:34 +00004827 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004828 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004829 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004830 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004831 }else{
danielk1977da107192007-05-04 08:32:13 +00004832 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004833 }
danielk1977da107192007-05-04 08:32:13 +00004834 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004835 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004836 /* Need to read this page properly. It contains some of the
4837 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004838 */
danielk1977cfe9a692004-06-16 12:00:29 +00004839 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004840 if( a + offset > ovflSize ){
4841 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004842 }
danf4ba1092011-10-08 14:57:07 +00004843
4844#ifdef SQLITE_DIRECT_OVERFLOW_READ
4845 /* If all the following are true:
4846 **
4847 ** 1) this is a read operation, and
4848 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00004849 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00004850 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004851 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004852 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004853 **
4854 ** then data can be read directly from the database file into the
4855 ** output buffer, bypassing the page-cache altogether. This speeds
4856 ** up loading large records that span many overflow pages.
4857 */
drh42e28f12017-01-27 00:31:59 +00004858 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004859 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00004860 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00004861 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004862 ){
dan09236752018-11-22 19:10:14 +00004863 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00004864 u8 aSave[4];
4865 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004866 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004867 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004868 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004869 nextPage = get4byte(aWrite);
4870 memcpy(aWrite, aSave, 4);
4871 }else
4872#endif
4873
4874 {
4875 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004876 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004877 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004878 );
danf4ba1092011-10-08 14:57:07 +00004879 if( rc==SQLITE_OK ){
4880 aPayload = sqlite3PagerGetData(pDbPage);
4881 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004882 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004883 sqlite3PagerUnref(pDbPage);
4884 offset = 0;
4885 }
4886 }
4887 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004888 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004889 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004890 }
drhcd645532017-01-20 20:43:14 +00004891 if( rc ) break;
4892 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004893 }
drh2af926b2001-05-15 00:39:25 +00004894 }
danielk1977cfe9a692004-06-16 12:00:29 +00004895
danielk1977da107192007-05-04 08:32:13 +00004896 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004897 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00004898 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00004899 }
danielk1977da107192007-05-04 08:32:13 +00004900 return rc;
drh2af926b2001-05-15 00:39:25 +00004901}
4902
drh72f82862001-05-24 21:06:34 +00004903/*
drhcb3cabd2016-11-25 19:18:28 +00004904** Read part of the payload for the row at which that cursor pCur is currently
4905** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004906** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004907**
drhcb3cabd2016-11-25 19:18:28 +00004908** pCur can be pointing to either a table or an index b-tree.
4909** If pointing to a table btree, then the content section is read. If
4910** pCur is pointing to an index b-tree then the key section is read.
4911**
4912** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4913** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4914** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004915**
drh3aac2dd2004-04-26 14:10:20 +00004916** Return SQLITE_OK on success or an error code if anything goes
4917** wrong. An error is returned if "offset+amt" is larger than
4918** the available payload.
drh72f82862001-05-24 21:06:34 +00004919*/
drhcb3cabd2016-11-25 19:18:28 +00004920int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004921 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004922 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00004923 assert( pCur->iPage>=0 && pCur->pPage );
4924 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00004925 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004926}
drh83ec2762017-01-26 16:54:47 +00004927
4928/*
4929** This variant of sqlite3BtreePayload() works even if the cursor has not
4930** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4931** interface.
4932*/
danielk19773588ceb2008-06-10 17:30:26 +00004933#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004934static SQLITE_NOINLINE int accessPayloadChecked(
4935 BtCursor *pCur,
4936 u32 offset,
4937 u32 amt,
4938 void *pBuf
4939){
drhcb3cabd2016-11-25 19:18:28 +00004940 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004941 if ( pCur->eState==CURSOR_INVALID ){
4942 return SQLITE_ABORT;
4943 }
dan7a2347e2016-01-07 16:43:54 +00004944 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004945 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004946 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4947}
4948int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4949 if( pCur->eState==CURSOR_VALID ){
4950 assert( cursorOwnsBtShared(pCur) );
4951 return accessPayload(pCur, offset, amt, pBuf, 0);
4952 }else{
4953 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004954 }
drh2af926b2001-05-15 00:39:25 +00004955}
drhcb3cabd2016-11-25 19:18:28 +00004956#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004957
drh72f82862001-05-24 21:06:34 +00004958/*
drh0e1c19e2004-05-11 00:58:56 +00004959** Return a pointer to payload information from the entry that the
4960** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004961** the key if index btrees (pPage->intKey==0) and is the data for
4962** table btrees (pPage->intKey==1). The number of bytes of available
4963** key/data is written into *pAmt. If *pAmt==0, then the value
4964** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004965**
4966** This routine is an optimization. It is common for the entire key
4967** and data to fit on the local page and for there to be no overflow
4968** pages. When that is so, this routine can be used to access the
4969** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004970** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004971** the key/data and copy it into a preallocated buffer.
4972**
4973** The pointer returned by this routine looks directly into the cached
4974** page of the database. The data might change or move the next time
4975** any btree routine is called.
4976*/
drh2a8d2262013-12-09 20:43:22 +00004977static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004978 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004979 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004980){
danf2f72a02017-10-19 15:17:38 +00004981 int amt;
drh352a35a2017-08-15 03:46:47 +00004982 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00004983 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004984 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004985 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00004986 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00004987 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00004988 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
4989 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00004990 amt = pCur->info.nLocal;
4991 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
4992 /* There is too little space on the page for the expected amount
4993 ** of local content. Database must be corrupt. */
4994 assert( CORRUPT_DB );
4995 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
4996 }
4997 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00004998 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004999}
5000
5001
5002/*
drhe51c44f2004-05-30 20:46:09 +00005003** For the entry that cursor pCur is point to, return as
5004** many bytes of the key or data as are available on the local
5005** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005006**
5007** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005008** or be destroyed on the next call to any Btree routine,
5009** including calls from other threads against the same cache.
5010** Hence, a mutex on the BtShared should be held prior to calling
5011** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005012**
5013** These routines is used to get quick access to key and data
5014** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005015*/
drha7c90c42016-06-04 20:37:10 +00005016const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005017 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005018}
5019
5020
5021/*
drh8178a752003-01-05 21:41:40 +00005022** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005023** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005024**
5025** This function returns SQLITE_CORRUPT if the page-header flags field of
5026** the new child page does not match the flags field of the parent (i.e.
5027** if an intkey page appears to be the parent of a non-intkey page, or
5028** vice-versa).
drh72f82862001-05-24 21:06:34 +00005029*/
drh3aac2dd2004-04-26 14:10:20 +00005030static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005031 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005032
dan7a2347e2016-01-07 16:43:54 +00005033 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005034 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005035 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005036 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005037 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5038 return SQLITE_CORRUPT_BKPT;
5039 }
drh271efa52004-05-30 19:19:05 +00005040 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005041 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005042 pCur->aiIdx[pCur->iPage] = pCur->ix;
5043 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005044 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005045 pCur->iPage++;
5046 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005047}
5048
drhd879e3e2017-02-13 13:35:55 +00005049#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005050/*
5051** Page pParent is an internal (non-leaf) tree page. This function
5052** asserts that page number iChild is the left-child if the iIdx'th
5053** cell in page pParent. Or, if iIdx is equal to the total number of
5054** cells in pParent, that page number iChild is the right-child of
5055** the page.
5056*/
5057static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005058 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5059 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005060 assert( iIdx<=pParent->nCell );
5061 if( iIdx==pParent->nCell ){
5062 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5063 }else{
5064 assert( get4byte(findCell(pParent, iIdx))==iChild );
5065 }
5066}
5067#else
5068# define assertParentIndex(x,y,z)
5069#endif
5070
drh72f82862001-05-24 21:06:34 +00005071/*
drh5e2f8b92001-05-28 00:41:15 +00005072** Move the cursor up to the parent page.
5073**
5074** pCur->idx is set to the cell index that contains the pointer
5075** to the page we are coming from. If we are coming from the
5076** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005077** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005078*/
danielk197730548662009-07-09 05:07:37 +00005079static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005080 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005081 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005082 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005083 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005084 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005085 assertParentIndex(
5086 pCur->apPage[pCur->iPage-1],
5087 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005088 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005089 );
dan6c2688c2012-01-12 15:05:03 +00005090 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005091 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005092 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005093 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005094 pLeaf = pCur->pPage;
5095 pCur->pPage = pCur->apPage[--pCur->iPage];
5096 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005097}
5098
5099/*
danielk19778f880a82009-07-13 09:41:45 +00005100** Move the cursor to point to the root page of its b-tree structure.
5101**
5102** If the table has a virtual root page, then the cursor is moved to point
5103** to the virtual root page instead of the actual root page. A table has a
5104** virtual root page when the actual root page contains no cells and a
5105** single child page. This can only happen with the table rooted at page 1.
5106**
5107** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005108** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5109** the cursor is set to point to the first cell located on the root
5110** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005111**
5112** If this function returns successfully, it may be assumed that the
5113** page-header flags indicate that the [virtual] root-page is the expected
5114** kind of b-tree page (i.e. if when opening the cursor the caller did not
5115** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5116** indicating a table b-tree, or if the caller did specify a KeyInfo
5117** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5118** b-tree).
drh72f82862001-05-24 21:06:34 +00005119*/
drh5e2f8b92001-05-28 00:41:15 +00005120static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005121 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005122 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005123
dan7a2347e2016-01-07 16:43:54 +00005124 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005125 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5126 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5127 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005128 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005129 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005130
5131 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005132 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005133 releasePageNotNull(pCur->pPage);
5134 while( --pCur->iPage ){
5135 releasePageNotNull(pCur->apPage[pCur->iPage]);
5136 }
5137 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005138 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005139 }
dana205a482011-08-27 18:48:57 +00005140 }else if( pCur->pgnoRoot==0 ){
5141 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005142 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005143 }else{
drh28f58dd2015-06-27 19:45:03 +00005144 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005145 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5146 if( pCur->eState==CURSOR_FAULT ){
5147 assert( pCur->skipNext!=SQLITE_OK );
5148 return pCur->skipNext;
5149 }
5150 sqlite3BtreeClearCursor(pCur);
5151 }
drh352a35a2017-08-15 03:46:47 +00005152 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005153 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005154 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005155 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005156 return rc;
drh777e4c42006-01-13 04:31:58 +00005157 }
danielk1977172114a2009-07-07 15:47:12 +00005158 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005159 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005160 }
drh352a35a2017-08-15 03:46:47 +00005161 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005162 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005163
5164 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5165 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5166 ** NULL, the caller expects a table b-tree. If this is not the case,
5167 ** return an SQLITE_CORRUPT error.
5168 **
5169 ** Earlier versions of SQLite assumed that this test could not fail
5170 ** if the root page was already loaded when this function was called (i.e.
5171 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5172 ** in such a way that page pRoot is linked into a second b-tree table
5173 ** (or the freelist). */
5174 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5175 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005176 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005177 }
danielk19778f880a82009-07-13 09:41:45 +00005178
drh7ad3eb62016-10-24 01:01:09 +00005179skip_init:
drh75e96b32017-04-01 00:20:06 +00005180 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005181 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005182 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005183
drh352a35a2017-08-15 03:46:47 +00005184 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005185 if( pRoot->nCell>0 ){
5186 pCur->eState = CURSOR_VALID;
5187 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005188 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005189 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005190 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005191 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005192 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005193 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005194 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005195 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005196 }
5197 return rc;
drh72f82862001-05-24 21:06:34 +00005198}
drh2af926b2001-05-15 00:39:25 +00005199
drh5e2f8b92001-05-28 00:41:15 +00005200/*
5201** Move the cursor down to the left-most leaf entry beneath the
5202** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005203**
5204** The left-most leaf is the one with the smallest key - the first
5205** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005206*/
5207static int moveToLeftmost(BtCursor *pCur){
5208 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005209 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005210 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005211
dan7a2347e2016-01-07 16:43:54 +00005212 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005213 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005214 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005215 assert( pCur->ix<pPage->nCell );
5216 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005217 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005218 }
drhd677b3d2007-08-20 22:48:41 +00005219 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005220}
5221
drh2dcc9aa2002-12-04 13:40:25 +00005222/*
5223** Move the cursor down to the right-most leaf entry beneath the
5224** page to which it is currently pointing. Notice the difference
5225** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5226** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5227** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005228**
5229** The right-most entry is the one with the largest key - the last
5230** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005231*/
5232static int moveToRightmost(BtCursor *pCur){
5233 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005234 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005235 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005236
dan7a2347e2016-01-07 16:43:54 +00005237 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005238 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005239 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005240 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005241 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005242 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005243 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005244 }
drh75e96b32017-04-01 00:20:06 +00005245 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005246 assert( pCur->info.nSize==0 );
5247 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5248 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005249}
5250
drh5e00f6c2001-09-13 13:46:56 +00005251/* Move the cursor to the first entry in the table. Return SQLITE_OK
5252** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005253** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005254*/
drh3aac2dd2004-04-26 14:10:20 +00005255int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005256 int rc;
drhd677b3d2007-08-20 22:48:41 +00005257
dan7a2347e2016-01-07 16:43:54 +00005258 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005259 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005260 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005261 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005262 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005263 *pRes = 0;
5264 rc = moveToLeftmost(pCur);
5265 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005266 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005267 *pRes = 1;
5268 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005269 }
drh5e00f6c2001-09-13 13:46:56 +00005270 return rc;
5271}
drh5e2f8b92001-05-28 00:41:15 +00005272
danc0bb4452018-06-12 20:53:38 +00005273/*
5274** This function is a no-op if cursor pCur does not point to a valid row.
5275** Otherwise, if pCur is valid, configure it so that the next call to
5276** sqlite3BtreeNext() is a no-op.
5277*/
dan67a9b8e2018-06-22 20:51:35 +00005278#ifndef SQLITE_OMIT_WINDOWFUNC
danc3a20c12018-05-23 20:55:37 +00005279void sqlite3BtreeSkipNext(BtCursor *pCur){
drhf7103452018-07-09 20:41:39 +00005280 /* We believe that the cursor must always be in the valid state when
5281 ** this routine is called, but the proof is difficult, so we add an
5282 ** ALWaYS() test just in case we are wrong. */
5283 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
danc3a20c12018-05-23 20:55:37 +00005284 pCur->eState = CURSOR_SKIPNEXT;
5285 pCur->skipNext = 1;
5286 }
5287}
dan67a9b8e2018-06-22 20:51:35 +00005288#endif /* SQLITE_OMIT_WINDOWFUNC */
danc3a20c12018-05-23 20:55:37 +00005289
drh9562b552002-02-19 15:00:07 +00005290/* Move the cursor to the last entry in the table. Return SQLITE_OK
5291** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005292** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005293*/
drh3aac2dd2004-04-26 14:10:20 +00005294int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005295 int rc;
drhd677b3d2007-08-20 22:48:41 +00005296
dan7a2347e2016-01-07 16:43:54 +00005297 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005298 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005299
5300 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005301 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005302#ifdef SQLITE_DEBUG
5303 /* This block serves to assert() that the cursor really does point
5304 ** to the last entry in the b-tree. */
5305 int ii;
5306 for(ii=0; ii<pCur->iPage; ii++){
5307 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5308 }
drh352a35a2017-08-15 03:46:47 +00005309 assert( pCur->ix==pCur->pPage->nCell-1 );
5310 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005311#endif
5312 return SQLITE_OK;
5313 }
5314
drh9562b552002-02-19 15:00:07 +00005315 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005316 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005317 assert( pCur->eState==CURSOR_VALID );
5318 *pRes = 0;
5319 rc = moveToRightmost(pCur);
5320 if( rc==SQLITE_OK ){
5321 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005322 }else{
drh44548e72017-08-14 18:13:52 +00005323 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005324 }
drh44548e72017-08-14 18:13:52 +00005325 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005326 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005327 *pRes = 1;
5328 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005329 }
drh9562b552002-02-19 15:00:07 +00005330 return rc;
5331}
5332
drhe14006d2008-03-25 17:23:32 +00005333/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005334** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005335**
drhe63d9992008-08-13 19:11:48 +00005336** For INTKEY tables, the intKey parameter is used. pIdxKey
5337** must be NULL. For index tables, pIdxKey is used and intKey
5338** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005339**
drh5e2f8b92001-05-28 00:41:15 +00005340** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005341** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005342** were present. The cursor might point to an entry that comes
5343** before or after the key.
5344**
drh64022502009-01-09 14:11:04 +00005345** An integer is written into *pRes which is the result of
5346** comparing the key with the entry to which the cursor is
5347** pointing. The meaning of the integer written into
5348** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005349**
5350** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005351** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005352** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005353**
5354** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005355** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005356**
5357** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005358** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005359**
drhb1d607d2015-11-05 22:30:54 +00005360** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5361** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005362*/
drhe63d9992008-08-13 19:11:48 +00005363int sqlite3BtreeMovetoUnpacked(
5364 BtCursor *pCur, /* The cursor to be moved */
5365 UnpackedRecord *pIdxKey, /* Unpacked index key */
5366 i64 intKey, /* The table key */
5367 int biasRight, /* If true, bias the search to the high end */
5368 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005369){
drh72f82862001-05-24 21:06:34 +00005370 int rc;
dan3b9330f2014-02-27 20:44:18 +00005371 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005372
dan7a2347e2016-01-07 16:43:54 +00005373 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005374 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005375 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005376 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005377 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005378
5379 /* If the cursor is already positioned at the point we are trying
5380 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005381 if( pIdxKey==0
5382 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005383 ){
drhe63d9992008-08-13 19:11:48 +00005384 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005385 *pRes = 0;
5386 return SQLITE_OK;
5387 }
drh451e76d2017-01-21 16:54:19 +00005388 if( pCur->info.nKey<intKey ){
5389 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5390 *pRes = -1;
5391 return SQLITE_OK;
5392 }
drh7f11afa2017-01-21 21:47:54 +00005393 /* If the requested key is one more than the previous key, then
5394 ** try to get there using sqlite3BtreeNext() rather than a full
5395 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005396 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005397 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005398 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005399 rc = sqlite3BtreeNext(pCur, 0);
5400 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005401 getCellInfo(pCur);
5402 if( pCur->info.nKey==intKey ){
5403 return SQLITE_OK;
5404 }
drh2ab792e2017-05-30 18:34:07 +00005405 }else if( rc==SQLITE_DONE ){
5406 rc = SQLITE_OK;
5407 }else{
5408 return rc;
drh451e76d2017-01-21 16:54:19 +00005409 }
5410 }
drha2c20e42008-03-29 16:01:04 +00005411 }
5412 }
5413
dan1fed5da2014-02-25 21:01:25 +00005414 if( pIdxKey ){
5415 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005416 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005417 assert( pIdxKey->default_rc==1
5418 || pIdxKey->default_rc==0
5419 || pIdxKey->default_rc==-1
5420 );
drh13a747e2014-03-03 21:46:55 +00005421 }else{
drhb6e8fd12014-03-06 01:56:33 +00005422 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005423 }
5424
drh5e2f8b92001-05-28 00:41:15 +00005425 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005426 if( rc ){
drh44548e72017-08-14 18:13:52 +00005427 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005428 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005429 *pRes = -1;
5430 return SQLITE_OK;
5431 }
drhd677b3d2007-08-20 22:48:41 +00005432 return rc;
5433 }
drh352a35a2017-08-15 03:46:47 +00005434 assert( pCur->pPage );
5435 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005436 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005437 assert( pCur->pPage->nCell > 0 );
5438 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005439 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005440 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005441 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005442 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005443 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005444 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005445
5446 /* pPage->nCell must be greater than zero. If this is the root-page
5447 ** the cursor would have been INVALID above and this for(;;) loop
5448 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005449 ** would have already detected db corruption. Similarly, pPage must
5450 ** be the right kind (index or table) of b-tree page. Otherwise
5451 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005452 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005453 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005454 lwr = 0;
5455 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005456 assert( biasRight==0 || biasRight==1 );
5457 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005458 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005459 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005460 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005461 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005462 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005463 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005464 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005465 if( pCell>=pPage->aDataEnd ){
daneebf2f52017-11-18 17:30:08 +00005466 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00005467 }
drh9b2fc612013-11-25 20:14:13 +00005468 }
drhd172f862006-01-12 15:01:15 +00005469 }
drha2c20e42008-03-29 16:01:04 +00005470 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005471 if( nCellKey<intKey ){
5472 lwr = idx+1;
5473 if( lwr>upr ){ c = -1; break; }
5474 }else if( nCellKey>intKey ){
5475 upr = idx-1;
5476 if( lwr>upr ){ c = +1; break; }
5477 }else{
5478 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005479 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005480 if( !pPage->leaf ){
5481 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005482 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005483 }else{
drhd95ef5c2016-11-11 18:19:05 +00005484 pCur->curFlags |= BTCF_ValidNKey;
5485 pCur->info.nKey = nCellKey;
5486 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005487 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005488 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005489 }
drhd793f442013-11-25 14:10:15 +00005490 }
drhebf10b12013-11-25 17:38:26 +00005491 assert( lwr+upr>=0 );
5492 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005493 }
5494 }else{
5495 for(;;){
drhc6827502015-05-28 15:14:32 +00005496 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005497 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005498
drhb2eced52010-08-12 02:41:12 +00005499 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005500 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005501 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005502 ** varint. This information is used to attempt to avoid parsing
5503 ** the entire cell by checking for the cases where the record is
5504 ** stored entirely within the b-tree page by inspecting the first
5505 ** 2 bytes of the cell.
5506 */
drhec3e6b12013-11-25 02:38:55 +00005507 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005508 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005509 /* This branch runs if the record-size field of the cell is a
5510 ** single byte varint and the record fits entirely on the main
5511 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005512 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005513 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005514 }else if( !(pCell[1] & 0x80)
5515 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5516 ){
5517 /* The record-size field is a 2 byte varint and the record
5518 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005519 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005520 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005521 }else{
danielk197711c327a2009-05-04 19:01:26 +00005522 /* The record flows over onto one or more overflow pages. In
5523 ** this case the whole cell needs to be parsed, a buffer allocated
5524 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005525 ** buffer before VdbeRecordCompare() can be called.
5526 **
5527 ** If the record is corrupt, the xRecordCompare routine may read
5528 ** up to two varints past the end of the buffer. An extra 18
5529 ** bytes of padding is allocated at the end of the buffer in
5530 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005531 void *pCellKey;
5532 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005533 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005534 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005535 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5536 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5537 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5538 testcase( nCell==2 ); /* Minimum legal index key size */
drh87c3ad42019-01-21 23:18:22 +00005539 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
daneebf2f52017-11-18 17:30:08 +00005540 rc = SQLITE_CORRUPT_PAGE(pPage);
dan3548db72015-05-27 14:21:05 +00005541 goto moveto_finish;
5542 }
5543 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005544 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005545 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005546 goto moveto_finish;
5547 }
drh75e96b32017-04-01 00:20:06 +00005548 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005549 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5550 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005551 if( rc ){
5552 sqlite3_free(pCellKey);
5553 goto moveto_finish;
5554 }
drh75179de2014-09-16 14:37:35 +00005555 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005556 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005557 }
dan38fdead2014-04-01 10:19:02 +00005558 assert(
5559 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005560 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005561 );
drhbb933ef2013-11-25 15:01:38 +00005562 if( c<0 ){
5563 lwr = idx+1;
5564 }else if( c>0 ){
5565 upr = idx-1;
5566 }else{
5567 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005568 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005569 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005570 pCur->ix = (u16)idx;
mistachkin88a79732017-09-04 19:31:54 +00005571 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
drh1e968a02008-03-25 00:22:21 +00005572 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005573 }
drhebf10b12013-11-25 17:38:26 +00005574 if( lwr>upr ) break;
5575 assert( lwr+upr>=0 );
5576 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005577 }
drh72f82862001-05-24 21:06:34 +00005578 }
drhb07028f2011-10-14 21:49:18 +00005579 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005580 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005581 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005582 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005583 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005584 *pRes = c;
5585 rc = SQLITE_OK;
5586 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005587 }
5588moveto_next_layer:
5589 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005590 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005591 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005592 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005593 }
drh75e96b32017-04-01 00:20:06 +00005594 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005595 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005596 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005597 }
drh1e968a02008-03-25 00:22:21 +00005598moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005599 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005600 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005601 return rc;
5602}
5603
drhd677b3d2007-08-20 22:48:41 +00005604
drh72f82862001-05-24 21:06:34 +00005605/*
drhc39e0002004-05-07 23:50:57 +00005606** Return TRUE if the cursor is not pointing at an entry of the table.
5607**
5608** TRUE will be returned after a call to sqlite3BtreeNext() moves
5609** past the last entry in the table or sqlite3BtreePrev() moves past
5610** the first entry. TRUE is also returned if the table is empty.
5611*/
5612int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005613 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5614 ** have been deleted? This API will need to change to return an error code
5615 ** as well as the boolean result value.
5616 */
5617 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005618}
5619
5620/*
drh5e98e832017-02-17 19:24:06 +00005621** Return an estimate for the number of rows in the table that pCur is
5622** pointing to. Return a negative number if no estimate is currently
5623** available.
5624*/
5625i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5626 i64 n;
5627 u8 i;
5628
5629 assert( cursorOwnsBtShared(pCur) );
5630 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005631
5632 /* Currently this interface is only called by the OP_IfSmaller
5633 ** opcode, and it that case the cursor will always be valid and
5634 ** will always point to a leaf node. */
5635 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005636 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005637
drh352a35a2017-08-15 03:46:47 +00005638 n = pCur->pPage->nCell;
5639 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005640 n *= pCur->apPage[i]->nCell;
5641 }
5642 return n;
5643}
5644
5645/*
drh2ab792e2017-05-30 18:34:07 +00005646** Advance the cursor to the next entry in the database.
5647** Return value:
5648**
5649** SQLITE_OK success
5650** SQLITE_DONE cursor is already pointing at the last element
5651** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005652**
drhee6438d2014-09-01 13:29:32 +00005653** The main entry point is sqlite3BtreeNext(). That routine is optimized
5654** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5655** to the next cell on the current page. The (slower) btreeNext() helper
5656** routine is called when it is necessary to move to a different page or
5657** to restore the cursor.
5658**
drh89997982017-07-11 18:11:33 +00005659** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5660** cursor corresponds to an SQL index and this routine could have been
5661** skipped if the SQL index had been a unique index. The F argument
5662** is a hint to the implement. SQLite btree implementation does not use
5663** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005664*/
drh89997982017-07-11 18:11:33 +00005665static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005666 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005667 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005668 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005669
dan7a2347e2016-01-07 16:43:54 +00005670 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00005671 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005672 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005673 rc = restoreCursorPosition(pCur);
5674 if( rc!=SQLITE_OK ){
5675 return rc;
5676 }
5677 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005678 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005679 }
drh0c873bf2019-01-28 00:42:06 +00005680 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00005681 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005682 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005683 }
danielk1977da184232006-01-05 11:34:32 +00005684 }
danielk1977da184232006-01-05 11:34:32 +00005685
drh352a35a2017-08-15 03:46:47 +00005686 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005687 idx = ++pCur->ix;
drhf3cd0c82018-06-08 19:13:57 +00005688 if( !pPage->isInit ){
5689 /* The only known way for this to happen is for there to be a
5690 ** recursive SQL function that does a DELETE operation as part of a
5691 ** SELECT which deletes content out from under an active cursor
5692 ** in a corrupt database file where the table being DELETE-ed from
5693 ** has pages in common with the table being queried. See TH3
5694 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5695 ** example. */
5696 return SQLITE_CORRUPT_BKPT;
5697 }
danbb246c42012-01-12 14:25:55 +00005698
5699 /* If the database file is corrupt, it is possible for the value of idx
5700 ** to be invalid here. This can only occur if a second cursor modifies
5701 ** the page while cursor pCur is holding a reference to it. Which can
5702 ** only happen if the database is corrupt in such a way as to link the
5703 ** page into more than one b-tree structure. */
5704 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005705
danielk197771d5d2c2008-09-29 11:49:47 +00005706 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005707 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005708 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005709 if( rc ) return rc;
5710 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005711 }
drh5e2f8b92001-05-28 00:41:15 +00005712 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005713 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005714 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005715 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005716 }
danielk197730548662009-07-09 05:07:37 +00005717 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005718 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005719 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005720 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005721 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005722 }else{
drhee6438d2014-09-01 13:29:32 +00005723 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005724 }
drh8178a752003-01-05 21:41:40 +00005725 }
drh3aac2dd2004-04-26 14:10:20 +00005726 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005727 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005728 }else{
5729 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005730 }
drh72f82862001-05-24 21:06:34 +00005731}
drh2ab792e2017-05-30 18:34:07 +00005732int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005733 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005734 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005735 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005736 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005737 pCur->info.nSize = 0;
5738 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005739 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005740 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005741 if( (++pCur->ix)>=pPage->nCell ){
5742 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005743 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005744 }
5745 if( pPage->leaf ){
5746 return SQLITE_OK;
5747 }else{
5748 return moveToLeftmost(pCur);
5749 }
5750}
drh72f82862001-05-24 21:06:34 +00005751
drh3b7511c2001-05-26 13:15:44 +00005752/*
drh2ab792e2017-05-30 18:34:07 +00005753** Step the cursor to the back to the previous entry in the database.
5754** Return values:
5755**
5756** SQLITE_OK success
5757** SQLITE_DONE the cursor is already on the first element of the table
5758** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005759**
drhee6438d2014-09-01 13:29:32 +00005760** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5761** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005762** to the previous cell on the current page. The (slower) btreePrevious()
5763** helper routine is called when it is necessary to move to a different page
5764** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005765**
drh89997982017-07-11 18:11:33 +00005766** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5767** the cursor corresponds to an SQL index and this routine could have been
5768** skipped if the SQL index had been a unique index. The F argument is a
5769** hint to the implement. The native SQLite btree implementation does not
5770** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005771*/
drh89997982017-07-11 18:11:33 +00005772static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005773 int rc;
drh8178a752003-01-05 21:41:40 +00005774 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005775
dan7a2347e2016-01-07 16:43:54 +00005776 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005777 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5778 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005779 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005780 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005781 if( rc!=SQLITE_OK ){
5782 return rc;
drhf66f26a2013-08-19 20:04:10 +00005783 }
5784 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005785 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005786 }
drh0c873bf2019-01-28 00:42:06 +00005787 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00005788 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005789 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005790 }
danielk1977da184232006-01-05 11:34:32 +00005791 }
danielk1977da184232006-01-05 11:34:32 +00005792
drh352a35a2017-08-15 03:46:47 +00005793 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005794 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005795 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005796 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005797 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005798 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005799 rc = moveToRightmost(pCur);
5800 }else{
drh75e96b32017-04-01 00:20:06 +00005801 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005802 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005803 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005804 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005805 }
danielk197730548662009-07-09 05:07:37 +00005806 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005807 }
drhee6438d2014-09-01 13:29:32 +00005808 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005809 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005810
drh75e96b32017-04-01 00:20:06 +00005811 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005812 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005813 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005814 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005815 }else{
5816 rc = SQLITE_OK;
5817 }
drh2dcc9aa2002-12-04 13:40:25 +00005818 }
drh2dcc9aa2002-12-04 13:40:25 +00005819 return rc;
5820}
drh2ab792e2017-05-30 18:34:07 +00005821int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005822 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005823 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00005824 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005825 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5826 pCur->info.nSize = 0;
5827 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005828 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005829 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005830 ){
drh89997982017-07-11 18:11:33 +00005831 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005832 }
drh75e96b32017-04-01 00:20:06 +00005833 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005834 return SQLITE_OK;
5835}
drh2dcc9aa2002-12-04 13:40:25 +00005836
5837/*
drh3b7511c2001-05-26 13:15:44 +00005838** Allocate a new page from the database file.
5839**
danielk19773b8a05f2007-03-19 17:44:26 +00005840** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005841** has already been called on the new page.) The new page has also
5842** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005843** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005844**
5845** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005846** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005847**
drh82e647d2013-03-02 03:25:55 +00005848** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005849** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005850** attempt to keep related pages close to each other in the database file,
5851** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005852**
drh82e647d2013-03-02 03:25:55 +00005853** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5854** anywhere on the free-list, then it is guaranteed to be returned. If
5855** eMode is BTALLOC_LT then the page returned will be less than or equal
5856** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5857** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005858*/
drh4f0c5872007-03-26 22:05:01 +00005859static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005860 BtShared *pBt, /* The btree */
5861 MemPage **ppPage, /* Store pointer to the allocated page here */
5862 Pgno *pPgno, /* Store the page number here */
5863 Pgno nearby, /* Search for a page near this one */
5864 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005865){
drh3aac2dd2004-04-26 14:10:20 +00005866 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005867 int rc;
drh35cd6432009-06-05 14:17:21 +00005868 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005869 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005870 MemPage *pTrunk = 0;
5871 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005872 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005873
drh1fee73e2007-08-29 04:00:57 +00005874 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005875 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005876 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005877 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005878 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5879 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005880 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005881 testcase( n==mxPage-1 );
5882 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005883 return SQLITE_CORRUPT_BKPT;
5884 }
drh3aac2dd2004-04-26 14:10:20 +00005885 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005886 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005887 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005888 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005889 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005890
drh82e647d2013-03-02 03:25:55 +00005891 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005892 ** shows that the page 'nearby' is somewhere on the free-list, then
5893 ** the entire-list will be searched for that page.
5894 */
5895#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005896 if( eMode==BTALLOC_EXACT ){
5897 if( nearby<=mxPage ){
5898 u8 eType;
5899 assert( nearby>0 );
5900 assert( pBt->autoVacuum );
5901 rc = ptrmapGet(pBt, nearby, &eType, 0);
5902 if( rc ) return rc;
5903 if( eType==PTRMAP_FREEPAGE ){
5904 searchList = 1;
5905 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005906 }
dan51f0b6d2013-02-22 20:16:34 +00005907 }else if( eMode==BTALLOC_LE ){
5908 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005909 }
5910#endif
5911
5912 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5913 ** first free-list trunk page. iPrevTrunk is initially 1.
5914 */
danielk19773b8a05f2007-03-19 17:44:26 +00005915 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005916 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005917 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005918
5919 /* The code within this loop is run only once if the 'searchList' variable
5920 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005921 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5922 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005923 */
5924 do {
5925 pPrevTrunk = pTrunk;
5926 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005927 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5928 ** is the page number of the next freelist trunk page in the list or
5929 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005930 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005931 }else{
drh113762a2014-11-19 16:36:25 +00005932 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5933 ** stores the page number of the first page of the freelist, or zero if
5934 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005935 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005936 }
drhdf35a082009-07-09 02:24:35 +00005937 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005938 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005939 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005940 }else{
drh7e8c6f12015-05-28 03:28:27 +00005941 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005942 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005943 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005944 pTrunk = 0;
5945 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005946 }
drhb07028f2011-10-14 21:49:18 +00005947 assert( pTrunk!=0 );
5948 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005949 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5950 ** is the number of leaf page pointers to follow. */
5951 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005952 if( k==0 && !searchList ){
5953 /* The trunk has no leaves and the list is not being searched.
5954 ** So extract the trunk page itself and use it as the newly
5955 ** allocated page */
5956 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005957 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005958 if( rc ){
5959 goto end_allocate_page;
5960 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005961 *pPgno = iTrunk;
5962 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5963 *ppPage = pTrunk;
5964 pTrunk = 0;
5965 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005966 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005967 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00005968 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00005969 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005970#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005971 }else if( searchList
5972 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5973 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005974 /* The list is being searched and this trunk page is the page
5975 ** to allocate, regardless of whether it has leaves.
5976 */
dan51f0b6d2013-02-22 20:16:34 +00005977 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005978 *ppPage = pTrunk;
5979 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005980 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005981 if( rc ){
5982 goto end_allocate_page;
5983 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005984 if( k==0 ){
5985 if( !pPrevTrunk ){
5986 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5987 }else{
danf48c3552010-08-23 15:41:24 +00005988 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5989 if( rc!=SQLITE_OK ){
5990 goto end_allocate_page;
5991 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005992 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5993 }
5994 }else{
5995 /* The trunk page is required by the caller but it contains
5996 ** pointers to free-list leaves. The first leaf becomes a trunk
5997 ** page in this case.
5998 */
5999 MemPage *pNewTrunk;
6000 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00006001 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006002 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006003 goto end_allocate_page;
6004 }
drhdf35a082009-07-09 02:24:35 +00006005 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00006006 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006007 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00006008 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006009 }
danielk19773b8a05f2007-03-19 17:44:26 +00006010 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006011 if( rc!=SQLITE_OK ){
6012 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00006013 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006014 }
6015 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6016 put4byte(&pNewTrunk->aData[4], k-1);
6017 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006018 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006019 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006020 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006021 put4byte(&pPage1->aData[32], iNewTrunk);
6022 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006023 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006024 if( rc ){
6025 goto end_allocate_page;
6026 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006027 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6028 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006029 }
6030 pTrunk = 0;
6031 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6032#endif
danielk1977e5765212009-06-17 11:13:28 +00006033 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006034 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006035 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006036 Pgno iPage;
6037 unsigned char *aData = pTrunk->aData;
6038 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006039 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006040 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006041 if( eMode==BTALLOC_LE ){
6042 for(i=0; i<k; i++){
6043 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006044 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006045 closest = i;
6046 break;
6047 }
6048 }
6049 }else{
6050 int dist;
6051 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6052 for(i=1; i<k; i++){
6053 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6054 if( d2<dist ){
6055 closest = i;
6056 dist = d2;
6057 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006058 }
6059 }
6060 }else{
6061 closest = 0;
6062 }
6063
6064 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006065 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00006066 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006067 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006068 goto end_allocate_page;
6069 }
drhdf35a082009-07-09 02:24:35 +00006070 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006071 if( !searchList
6072 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6073 ){
danielk1977bea2a942009-01-20 17:06:27 +00006074 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006075 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006076 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6077 ": %d more free pages\n",
6078 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006079 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6080 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006081 if( closest<k-1 ){
6082 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6083 }
6084 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006085 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006086 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006087 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006088 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006089 if( rc!=SQLITE_OK ){
6090 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006091 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006092 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006093 }
6094 searchList = 0;
6095 }
drhee696e22004-08-30 16:52:17 +00006096 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006097 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006098 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006099 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006100 }else{
danbc1a3c62013-02-23 16:40:46 +00006101 /* There are no pages on the freelist, so append a new page to the
6102 ** database image.
6103 **
6104 ** Normally, new pages allocated by this block can be requested from the
6105 ** pager layer with the 'no-content' flag set. This prevents the pager
6106 ** from trying to read the pages content from disk. However, if the
6107 ** current transaction has already run one or more incremental-vacuum
6108 ** steps, then the page we are about to allocate may contain content
6109 ** that is required in the event of a rollback. In this case, do
6110 ** not set the no-content flag. This causes the pager to load and journal
6111 ** the current page content before overwriting it.
6112 **
6113 ** Note that the pager will not actually attempt to load or journal
6114 ** content for any page that really does lie past the end of the database
6115 ** file on disk. So the effects of disabling the no-content optimization
6116 ** here are confined to those pages that lie between the end of the
6117 ** database image and the end of the database file.
6118 */
drh3f387402014-09-24 01:23:00 +00006119 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006120
drhdd3cd972010-03-27 17:12:36 +00006121 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6122 if( rc ) return rc;
6123 pBt->nPage++;
6124 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006125
danielk1977afcdd022004-10-31 16:25:42 +00006126#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006127 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006128 /* If *pPgno refers to a pointer-map page, allocate two new pages
6129 ** at the end of the file instead of one. The first allocated page
6130 ** becomes a new pointer-map page, the second is used by the caller.
6131 */
danielk1977ac861692009-03-28 10:54:22 +00006132 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006133 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6134 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006135 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006136 if( rc==SQLITE_OK ){
6137 rc = sqlite3PagerWrite(pPg->pDbPage);
6138 releasePage(pPg);
6139 }
6140 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006141 pBt->nPage++;
6142 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006143 }
6144#endif
drhdd3cd972010-03-27 17:12:36 +00006145 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6146 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006147
danielk1977599fcba2004-11-08 07:13:13 +00006148 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006149 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006150 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006151 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006152 if( rc!=SQLITE_OK ){
6153 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006154 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006155 }
drh3a4c1412004-05-09 20:40:11 +00006156 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006157 }
danielk1977599fcba2004-11-08 07:13:13 +00006158
danba14c692019-01-25 13:42:12 +00006159 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006160
6161end_allocate_page:
6162 releasePage(pTrunk);
6163 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006164 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6165 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006166 return rc;
6167}
6168
6169/*
danielk1977bea2a942009-01-20 17:06:27 +00006170** This function is used to add page iPage to the database file free-list.
6171** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006172**
danielk1977bea2a942009-01-20 17:06:27 +00006173** The value passed as the second argument to this function is optional.
6174** If the caller happens to have a pointer to the MemPage object
6175** corresponding to page iPage handy, it may pass it as the second value.
6176** Otherwise, it may pass NULL.
6177**
6178** If a pointer to a MemPage object is passed as the second argument,
6179** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006180*/
danielk1977bea2a942009-01-20 17:06:27 +00006181static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6182 MemPage *pTrunk = 0; /* Free-list trunk page */
6183 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6184 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6185 MemPage *pPage; /* Page being freed. May be NULL. */
6186 int rc; /* Return Code */
6187 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006188
danielk1977bea2a942009-01-20 17:06:27 +00006189 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006190 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006191 assert( !pMemPage || pMemPage->pgno==iPage );
6192
danfb0246b2015-05-26 12:18:17 +00006193 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00006194 if( pMemPage ){
6195 pPage = pMemPage;
6196 sqlite3PagerRef(pPage->pDbPage);
6197 }else{
6198 pPage = btreePageLookup(pBt, iPage);
6199 }
drh3aac2dd2004-04-26 14:10:20 +00006200
drha34b6762004-05-07 13:30:42 +00006201 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006202 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006203 if( rc ) goto freepage_out;
6204 nFree = get4byte(&pPage1->aData[36]);
6205 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006206
drhc9166342012-01-05 23:32:06 +00006207 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006208 /* If the secure_delete option is enabled, then
6209 ** always fully overwrite deleted information with zeros.
6210 */
drhb00fc3b2013-08-21 23:42:32 +00006211 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006212 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006213 ){
6214 goto freepage_out;
6215 }
6216 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006217 }
drhfcce93f2006-02-22 03:08:32 +00006218
danielk1977687566d2004-11-02 12:56:41 +00006219 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006220 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006221 */
danielk197785d90ca2008-07-19 14:25:15 +00006222 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006223 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006224 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006225 }
danielk1977687566d2004-11-02 12:56:41 +00006226
danielk1977bea2a942009-01-20 17:06:27 +00006227 /* Now manipulate the actual database free-list structure. There are two
6228 ** possibilities. If the free-list is currently empty, or if the first
6229 ** trunk page in the free-list is full, then this page will become a
6230 ** new free-list trunk page. Otherwise, it will become a leaf of the
6231 ** first trunk page in the current free-list. This block tests if it
6232 ** is possible to add the page as a new free-list leaf.
6233 */
6234 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006235 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006236
6237 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006238 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006239 if( rc!=SQLITE_OK ){
6240 goto freepage_out;
6241 }
6242
6243 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006244 assert( pBt->usableSize>32 );
6245 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006246 rc = SQLITE_CORRUPT_BKPT;
6247 goto freepage_out;
6248 }
drheeb844a2009-08-08 18:01:07 +00006249 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006250 /* In this case there is room on the trunk page to insert the page
6251 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006252 **
6253 ** Note that the trunk page is not really full until it contains
6254 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6255 ** coded. But due to a coding error in versions of SQLite prior to
6256 ** 3.6.0, databases with freelist trunk pages holding more than
6257 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6258 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006259 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006260 ** for now. At some point in the future (once everyone has upgraded
6261 ** to 3.6.0 or later) we should consider fixing the conditional above
6262 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006263 **
6264 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6265 ** avoid using the last six entries in the freelist trunk page array in
6266 ** order that database files created by newer versions of SQLite can be
6267 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006268 */
danielk19773b8a05f2007-03-19 17:44:26 +00006269 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006270 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006271 put4byte(&pTrunk->aData[4], nLeaf+1);
6272 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006273 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006274 sqlite3PagerDontWrite(pPage->pDbPage);
6275 }
danielk1977bea2a942009-01-20 17:06:27 +00006276 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006277 }
drh3a4c1412004-05-09 20:40:11 +00006278 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006279 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006280 }
drh3b7511c2001-05-26 13:15:44 +00006281 }
danielk1977bea2a942009-01-20 17:06:27 +00006282
6283 /* If control flows to this point, then it was not possible to add the
6284 ** the page being freed as a leaf page of the first trunk in the free-list.
6285 ** Possibly because the free-list is empty, or possibly because the
6286 ** first trunk in the free-list is full. Either way, the page being freed
6287 ** will become the new first trunk page in the free-list.
6288 */
drhb00fc3b2013-08-21 23:42:32 +00006289 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006290 goto freepage_out;
6291 }
6292 rc = sqlite3PagerWrite(pPage->pDbPage);
6293 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006294 goto freepage_out;
6295 }
6296 put4byte(pPage->aData, iTrunk);
6297 put4byte(&pPage->aData[4], 0);
6298 put4byte(&pPage1->aData[32], iPage);
6299 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6300
6301freepage_out:
6302 if( pPage ){
6303 pPage->isInit = 0;
6304 }
6305 releasePage(pPage);
6306 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006307 return rc;
6308}
drhc314dc72009-07-21 11:52:34 +00006309static void freePage(MemPage *pPage, int *pRC){
6310 if( (*pRC)==SQLITE_OK ){
6311 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6312 }
danielk1977bea2a942009-01-20 17:06:27 +00006313}
drh3b7511c2001-05-26 13:15:44 +00006314
6315/*
drh8d7f1632018-01-23 13:30:38 +00006316** Free any overflow pages associated with the given Cell. Store
6317** size information about the cell in pInfo.
drh3b7511c2001-05-26 13:15:44 +00006318*/
drh9bfdc252014-09-24 02:05:41 +00006319static int clearCell(
6320 MemPage *pPage, /* The page that contains the Cell */
6321 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006322 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006323){
drh60172a52017-08-02 18:27:50 +00006324 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006325 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006326 int rc;
drh94440812007-03-06 11:42:19 +00006327 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006328 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006329
drh1fee73e2007-08-29 04:00:57 +00006330 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006331 pPage->xParseCell(pPage, pCell, pInfo);
6332 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006333 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006334 }
drh6fcf83a2018-05-05 01:23:28 +00006335 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6336 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6337 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006338 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006339 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006340 }
drh80159da2016-12-09 17:32:51 +00006341 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006342 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006343 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006344 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006345 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006346 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006347 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006348 );
drh72365832007-03-06 15:53:44 +00006349 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006350 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006351 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006352 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006353 /* 0 is not a legal page number and page 1 cannot be an
6354 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6355 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006356 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006357 }
danielk1977bea2a942009-01-20 17:06:27 +00006358 if( nOvfl ){
6359 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6360 if( rc ) return rc;
6361 }
dan887d4b22010-02-25 12:09:16 +00006362
shaneh1da207e2010-03-09 14:41:12 +00006363 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006364 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6365 ){
6366 /* There is no reason any cursor should have an outstanding reference
6367 ** to an overflow page belonging to a cell that is being deleted/updated.
6368 ** So if there exists more than one reference to this page, then it
6369 ** must not really be an overflow page and the database must be corrupt.
6370 ** It is helpful to detect this before calling freePage2(), as
6371 ** freePage2() may zero the page contents if secure-delete mode is
6372 ** enabled. If this 'overflow' page happens to be a page that the
6373 ** caller is iterating through or using in some other way, this
6374 ** can be problematic.
6375 */
6376 rc = SQLITE_CORRUPT_BKPT;
6377 }else{
6378 rc = freePage2(pBt, pOvfl, ovflPgno);
6379 }
6380
danielk1977bea2a942009-01-20 17:06:27 +00006381 if( pOvfl ){
6382 sqlite3PagerUnref(pOvfl->pDbPage);
6383 }
drh3b7511c2001-05-26 13:15:44 +00006384 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006385 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006386 }
drh5e2f8b92001-05-28 00:41:15 +00006387 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006388}
6389
6390/*
drh91025292004-05-03 19:49:32 +00006391** Create the byte sequence used to represent a cell on page pPage
6392** and write that byte sequence into pCell[]. Overflow pages are
6393** allocated and filled in as necessary. The calling procedure
6394** is responsible for making sure sufficient space has been allocated
6395** for pCell[].
6396**
6397** Note that pCell does not necessary need to point to the pPage->aData
6398** area. pCell might point to some temporary storage. The cell will
6399** be constructed in this temporary area then copied into pPage->aData
6400** later.
drh3b7511c2001-05-26 13:15:44 +00006401*/
6402static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006403 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006404 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006405 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006406 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006407){
drh3b7511c2001-05-26 13:15:44 +00006408 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006409 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006410 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006411 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006412 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006413 unsigned char *pPrior;
6414 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006415 BtShared *pBt;
6416 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006417 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006418
drh1fee73e2007-08-29 04:00:57 +00006419 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006420
drhc5053fb2008-11-27 02:22:10 +00006421 /* pPage is not necessarily writeable since pCell might be auxiliary
6422 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006423 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006424 || sqlite3PagerIswriteable(pPage->pDbPage) );
6425
drh91025292004-05-03 19:49:32 +00006426 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006427 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006428 if( pPage->intKey ){
6429 nPayload = pX->nData + pX->nZero;
6430 pSrc = pX->pData;
6431 nSrc = pX->nData;
6432 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006433 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006434 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006435 }else{
drh8eeb4462016-05-21 20:03:42 +00006436 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6437 nSrc = nPayload = (int)pX->nKey;
6438 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006439 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006440 }
drhdfc2daa2016-05-21 23:25:29 +00006441
6442 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006443 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006444 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006445 /* This is the common case where everything fits on the btree page
6446 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006447 n = nHeader + nPayload;
6448 testcase( n==3 );
6449 testcase( n==4 );
6450 if( n<4 ) n = 4;
6451 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006452 assert( nSrc<=nPayload );
6453 testcase( nSrc<nPayload );
6454 memcpy(pPayload, pSrc, nSrc);
6455 memset(pPayload+nSrc, 0, nPayload-nSrc);
6456 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006457 }
drh5e27e1d2017-08-23 14:45:59 +00006458
6459 /* If we reach this point, it means that some of the content will need
6460 ** to spill onto overflow pages.
6461 */
6462 mn = pPage->minLocal;
6463 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6464 testcase( n==pPage->maxLocal );
6465 testcase( n==pPage->maxLocal+1 );
6466 if( n > pPage->maxLocal ) n = mn;
6467 spaceLeft = n;
6468 *pnSize = n + nHeader + 4;
6469 pPrior = &pCell[nHeader+n];
6470 pToRelease = 0;
6471 pgnoOvfl = 0;
6472 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006473
drh6200c882014-09-23 22:36:25 +00006474 /* At this point variables should be set as follows:
6475 **
6476 ** nPayload Total payload size in bytes
6477 ** pPayload Begin writing payload here
6478 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6479 ** that means content must spill into overflow pages.
6480 ** *pnSize Size of the local cell (not counting overflow pages)
6481 ** pPrior Where to write the pgno of the first overflow page
6482 **
6483 ** Use a call to btreeParseCellPtr() to verify that the values above
6484 ** were computed correctly.
6485 */
drhd879e3e2017-02-13 13:35:55 +00006486#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006487 {
6488 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006489 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006490 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006491 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006492 assert( *pnSize == info.nSize );
6493 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006494 }
6495#endif
6496
6497 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006498 while( 1 ){
6499 n = nPayload;
6500 if( n>spaceLeft ) n = spaceLeft;
6501
6502 /* If pToRelease is not zero than pPayload points into the data area
6503 ** of pToRelease. Make sure pToRelease is still writeable. */
6504 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6505
6506 /* If pPayload is part of the data area of pPage, then make sure pPage
6507 ** is still writeable */
6508 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6509 || sqlite3PagerIswriteable(pPage->pDbPage) );
6510
6511 if( nSrc>=n ){
6512 memcpy(pPayload, pSrc, n);
6513 }else if( nSrc>0 ){
6514 n = nSrc;
6515 memcpy(pPayload, pSrc, n);
6516 }else{
6517 memset(pPayload, 0, n);
6518 }
6519 nPayload -= n;
6520 if( nPayload<=0 ) break;
6521 pPayload += n;
6522 pSrc += n;
6523 nSrc -= n;
6524 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006525 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006526 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006527#ifndef SQLITE_OMIT_AUTOVACUUM
6528 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006529 if( pBt->autoVacuum ){
6530 do{
6531 pgnoOvfl++;
6532 } while(
6533 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6534 );
danielk1977b39f70b2007-05-17 18:28:11 +00006535 }
danielk1977afcdd022004-10-31 16:25:42 +00006536#endif
drhf49661a2008-12-10 16:45:50 +00006537 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006538#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006539 /* If the database supports auto-vacuum, and the second or subsequent
6540 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006541 ** for that page now.
6542 **
6543 ** If this is the first overflow page, then write a partial entry
6544 ** to the pointer-map. If we write nothing to this pointer-map slot,
6545 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006546 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006547 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006548 */
danielk19774ef24492007-05-23 09:52:41 +00006549 if( pBt->autoVacuum && rc==SQLITE_OK ){
6550 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006551 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006552 if( rc ){
6553 releasePage(pOvfl);
6554 }
danielk1977afcdd022004-10-31 16:25:42 +00006555 }
6556#endif
drh3b7511c2001-05-26 13:15:44 +00006557 if( rc ){
drh9b171272004-05-08 02:03:22 +00006558 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006559 return rc;
6560 }
drhc5053fb2008-11-27 02:22:10 +00006561
6562 /* If pToRelease is not zero than pPrior points into the data area
6563 ** of pToRelease. Make sure pToRelease is still writeable. */
6564 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6565
6566 /* If pPrior is part of the data area of pPage, then make sure pPage
6567 ** is still writeable */
6568 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6569 || sqlite3PagerIswriteable(pPage->pDbPage) );
6570
drh3aac2dd2004-04-26 14:10:20 +00006571 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006572 releasePage(pToRelease);
6573 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006574 pPrior = pOvfl->aData;
6575 put4byte(pPrior, 0);
6576 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006577 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006578 }
drhdd793422001-06-28 01:54:48 +00006579 }
drh9b171272004-05-08 02:03:22 +00006580 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006581 return SQLITE_OK;
6582}
6583
drh14acc042001-06-10 19:56:58 +00006584/*
6585** Remove the i-th cell from pPage. This routine effects pPage only.
6586** The cell content is not freed or deallocated. It is assumed that
6587** the cell content has been copied someplace else. This routine just
6588** removes the reference to the cell from pPage.
6589**
6590** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006591*/
drh98add2e2009-07-20 17:11:49 +00006592static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006593 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006594 u8 *data; /* pPage->aData */
6595 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006596 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006597 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006598
drh98add2e2009-07-20 17:11:49 +00006599 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006600 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006601 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006602 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006603 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00006604 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00006605 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006606 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006607 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006608 hdr = pPage->hdrOffset;
6609 testcase( pc==get2byte(&data[hdr+5]) );
6610 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006611 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006612 *pRC = SQLITE_CORRUPT_BKPT;
6613 return;
shane0af3f892008-11-12 04:55:34 +00006614 }
shanedcc50b72008-11-13 18:29:50 +00006615 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006616 if( rc ){
6617 *pRC = rc;
6618 return;
shanedcc50b72008-11-13 18:29:50 +00006619 }
drh14acc042001-06-10 19:56:58 +00006620 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006621 if( pPage->nCell==0 ){
6622 memset(&data[hdr+1], 0, 4);
6623 data[hdr+7] = 0;
6624 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6625 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6626 - pPage->childPtrSize - 8;
6627 }else{
6628 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6629 put2byte(&data[hdr+3], pPage->nCell);
6630 pPage->nFree += 2;
6631 }
drh14acc042001-06-10 19:56:58 +00006632}
6633
6634/*
6635** Insert a new cell on pPage at cell index "i". pCell points to the
6636** content of the cell.
6637**
6638** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006639** will not fit, then make a copy of the cell content into pTemp if
6640** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006641** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006642** in pTemp or the original pCell) and also record its index.
6643** Allocating a new entry in pPage->aCell[] implies that
6644** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006645**
6646** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006647*/
drh98add2e2009-07-20 17:11:49 +00006648static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006649 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006650 int i, /* New cell becomes the i-th cell of the page */
6651 u8 *pCell, /* Content of the new cell */
6652 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006653 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006654 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6655 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006656){
drh383d30f2010-02-26 13:07:37 +00006657 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006658 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006659 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006660 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006661
drhcb89f4a2016-05-21 11:23:26 +00006662 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006663 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006664 assert( MX_CELL(pPage->pBt)<=10921 );
6665 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006666 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6667 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006668 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006669 /* The cell should normally be sized correctly. However, when moving a
6670 ** malformed cell from a leaf page to an interior page, if the cell size
6671 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6672 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6673 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006674 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drhb0ea9432019-02-09 21:06:40 +00006675 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00006676 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006677 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006678 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006679 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006680 }
danielk19774dbaa892009-06-16 16:50:22 +00006681 if( iChild ){
6682 put4byte(pCell, iChild);
6683 }
drh43605152004-05-29 21:46:49 +00006684 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006685 /* Comparison against ArraySize-1 since we hold back one extra slot
6686 ** as a contingency. In other words, never need more than 3 overflow
6687 ** slots but 4 are allocated, just to be safe. */
6688 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006689 pPage->apOvfl[j] = pCell;
6690 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006691
6692 /* When multiple overflows occur, they are always sequential and in
6693 ** sorted order. This invariants arise because multiple overflows can
6694 ** only occur when inserting divider cells into the parent page during
6695 ** balancing, and the dividers are adjacent and sorted.
6696 */
6697 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6698 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006699 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006700 int rc = sqlite3PagerWrite(pPage->pDbPage);
6701 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006702 *pRC = rc;
6703 return;
danielk19776e465eb2007-08-21 13:11:00 +00006704 }
6705 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006706 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006707 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006708 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006709 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006710 /* The allocateSpace() routine guarantees the following properties
6711 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006712 assert( idx >= 0 );
6713 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006714 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006715 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00006716 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00006717 /* In a corrupt database where an entry in the cell index section of
6718 ** a btree page has a value of 3 or less, the pCell value might point
6719 ** as many as 4 bytes in front of the start of the aData buffer for
6720 ** the source page. Make sure this does not cause problems by not
6721 ** reading the first 4 bytes */
6722 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00006723 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00006724 }else{
6725 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006726 }
drh2c8fb922015-06-25 19:53:48 +00006727 pIns = pPage->aCellIdx + i*2;
6728 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6729 put2byte(pIns, idx);
6730 pPage->nCell++;
6731 /* increment the cell count */
6732 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00006733 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
danielk1977a19df672004-11-03 11:37:07 +00006734#ifndef SQLITE_OMIT_AUTOVACUUM
6735 if( pPage->pBt->autoVacuum ){
6736 /* The cell may contain a pointer to an overflow page. If so, write
6737 ** the entry for the overflow page into the pointer map.
6738 */
drh0f1bf4c2019-01-13 20:17:21 +00006739 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006740 }
6741#endif
drh14acc042001-06-10 19:56:58 +00006742 }
6743}
6744
6745/*
drhe3dadac2019-01-23 19:25:59 +00006746** The following parameters determine how many adjacent pages get involved
6747** in a balancing operation. NN is the number of neighbors on either side
6748** of the page that participate in the balancing operation. NB is the
6749** total number of pages that participate, including the target page and
6750** NN neighbors on either side.
6751**
6752** The minimum value of NN is 1 (of course). Increasing NN above 1
6753** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6754** in exchange for a larger degradation in INSERT and UPDATE performance.
6755** The value of NN appears to give the best results overall.
6756**
6757** (Later:) The description above makes it seem as if these values are
6758** tunable - as if you could change them and recompile and it would all work.
6759** But that is unlikely. NB has been 3 since the inception of SQLite and
6760** we have never tested any other value.
6761*/
6762#define NN 1 /* Number of neighbors on either side of pPage */
6763#define NB 3 /* (NN*2+1): Total pages involved in the balance */
6764
6765/*
drh1ffd2472015-06-23 02:37:30 +00006766** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006767** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00006768**
6769** The cells in this array are the divider cell or cells from the pParent
6770** page plus up to three child pages. There are a total of nCell cells.
6771**
6772** pRef is a pointer to one of the pages that contributes cells. This is
6773** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6774** which should be common to all pages that contribute cells to this array.
6775**
6776** apCell[] and szCell[] hold, respectively, pointers to the start of each
6777** cell and the size of each cell. Some of the apCell[] pointers might refer
6778** to overflow cells. In other words, some apCel[] pointers might not point
6779** to content area of the pages.
6780**
6781** A szCell[] of zero means the size of that cell has not yet been computed.
6782**
6783** The cells come from as many as four different pages:
6784**
6785** -----------
6786** | Parent |
6787** -----------
6788** / | \
6789** / | \
6790** --------- --------- ---------
6791** |Child-1| |Child-2| |Child-3|
6792** --------- --------- ---------
6793**
drh26b7ec82019-02-01 14:50:43 +00006794** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00006795**
6796** 1. All cells from Child-1 in order
6797** 2. The first divider cell from Parent
6798** 3. All cells from Child-2 in order
6799** 4. The second divider cell from Parent
6800** 5. All cells from Child-3 in order
6801**
drh26b7ec82019-02-01 14:50:43 +00006802** For a table-btree (with rowids) the items 2 and 4 are empty because
6803** content exists only in leaves and there are no divider cells.
6804**
6805** For an index btree, the apEnd[] array holds pointer to the end of page
6806** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6807** respectively. The ixNx[] array holds the number of cells contained in
6808** each of these 5 stages, and all stages to the left. Hence:
6809**
drhe3dadac2019-01-23 19:25:59 +00006810** ixNx[0] = Number of cells in Child-1.
6811** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6812** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6813** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6814** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00006815**
6816** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6817** are used and they point to the leaf pages only, and the ixNx value are:
6818**
6819** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00006820** ixNx[1] = Number of cells in Child-1 and Child-2.
6821** ixNx[2] = Total number of cells.
6822**
6823** Sometimes when deleting, a child page can have zero cells. In those
6824** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6825** entries, shift down. The end result is that each ixNx[] entry should
6826** be larger than the previous
drhfa1a98a2004-05-14 19:08:17 +00006827*/
drh1ffd2472015-06-23 02:37:30 +00006828typedef struct CellArray CellArray;
6829struct CellArray {
6830 int nCell; /* Number of cells in apCell[] */
6831 MemPage *pRef; /* Reference page */
6832 u8 **apCell; /* All cells begin balanced */
6833 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00006834 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
6835 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00006836};
drhfa1a98a2004-05-14 19:08:17 +00006837
drh1ffd2472015-06-23 02:37:30 +00006838/*
6839** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6840** computed.
6841*/
6842static void populateCellCache(CellArray *p, int idx, int N){
6843 assert( idx>=0 && idx+N<=p->nCell );
6844 while( N>0 ){
6845 assert( p->apCell[idx]!=0 );
6846 if( p->szCell[idx]==0 ){
6847 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6848 }else{
6849 assert( CORRUPT_DB ||
6850 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6851 }
6852 idx++;
6853 N--;
drhfa1a98a2004-05-14 19:08:17 +00006854 }
drh1ffd2472015-06-23 02:37:30 +00006855}
6856
6857/*
6858** Return the size of the Nth element of the cell array
6859*/
6860static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6861 assert( N>=0 && N<p->nCell );
6862 assert( p->szCell[N]==0 );
6863 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6864 return p->szCell[N];
6865}
6866static u16 cachedCellSize(CellArray *p, int N){
6867 assert( N>=0 && N<p->nCell );
6868 if( p->szCell[N] ) return p->szCell[N];
6869 return computeCellSize(p, N);
6870}
6871
6872/*
dan8e9ba0c2014-10-14 17:27:04 +00006873** Array apCell[] contains pointers to nCell b-tree page cells. The
6874** szCell[] array contains the size in bytes of each cell. This function
6875** replaces the current contents of page pPg with the contents of the cell
6876** array.
6877**
6878** Some of the cells in apCell[] may currently be stored in pPg. This
6879** function works around problems caused by this by making a copy of any
6880** such cells before overwriting the page data.
6881**
6882** The MemPage.nFree field is invalidated by this function. It is the
6883** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006884*/
drh658873b2015-06-22 20:02:04 +00006885static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00006886 CellArray *pCArray, /* Content to be added to page pPg */
6887 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00006888 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00006889 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00006890){
6891 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6892 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6893 const int usableSize = pPg->pBt->usableSize;
6894 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00006895 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00006896 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00006897 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00006898 u8 *pCellptr = pPg->aCellIdx;
6899 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6900 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00006901 int k; /* Current slot in pCArray->apEnd[] */
6902 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00006903
drhe3dadac2019-01-23 19:25:59 +00006904 assert( i<iEnd );
6905 j = get2byte(&aData[hdr+5]);
drh3f4f6822019-01-29 16:54:31 +00006906 if( NEVER(j>(u32)usableSize) ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00006907 memcpy(&pTmp[j], &aData[j], usableSize - j);
6908
6909 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6910 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00006911
dan8e9ba0c2014-10-14 17:27:04 +00006912 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00006913 while( 1/*exit by break*/ ){
6914 u8 *pCell = pCArray->apCell[i];
6915 u16 sz = pCArray->szCell[i];
6916 assert( sz>0 );
drh8b0ba7b2015-12-16 13:07:35 +00006917 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
drhe3dadac2019-01-23 19:25:59 +00006918 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006919 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00006920 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
6921 && (uptr)(pCell)<(uptr)pSrcEnd
6922 ){
6923 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006924 }
drhe3dadac2019-01-23 19:25:59 +00006925
6926 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00006927 put2byte(pCellptr, (pData - aData));
6928 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006929 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drhe3dadac2019-01-23 19:25:59 +00006930 memcpy(pData, pCell, sz);
6931 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6932 testcase( sz!=pPg->xCellSize(pPg,pCell) );
6933 i++;
6934 if( i>=iEnd ) break;
6935 if( pCArray->ixNx[k]<=i ){
6936 k++;
6937 pSrcEnd = pCArray->apEnd[k];
6938 }
dan33ea4862014-10-09 19:35:37 +00006939 }
6940
dand7b545b2014-10-13 18:03:27 +00006941 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006942 pPg->nCell = nCell;
6943 pPg->nOverflow = 0;
6944
6945 put2byte(&aData[hdr+1], 0);
6946 put2byte(&aData[hdr+3], pPg->nCell);
6947 put2byte(&aData[hdr+5], pData - aData);
6948 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006949 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006950}
6951
dan8e9ba0c2014-10-14 17:27:04 +00006952/*
drhe3dadac2019-01-23 19:25:59 +00006953** The pCArray objects contains pointers to b-tree cells and the cell sizes.
6954** This function attempts to add the cells stored in the array to page pPg.
6955** If it cannot (because the page needs to be defragmented before the cells
6956** will fit), non-zero is returned. Otherwise, if the cells are added
6957** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00006958**
6959** Argument pCellptr points to the first entry in the cell-pointer array
6960** (part of page pPg) to populate. After cell apCell[0] is written to the
6961** page body, a 16-bit offset is written to pCellptr. And so on, for each
6962** cell in the array. It is the responsibility of the caller to ensure
6963** that it is safe to overwrite this part of the cell-pointer array.
6964**
6965** When this function is called, *ppData points to the start of the
6966** content area on page pPg. If the size of the content area is extended,
6967** *ppData is updated to point to the new start of the content area
6968** before returning.
6969**
6970** Finally, argument pBegin points to the byte immediately following the
6971** end of the space required by this page for the cell-pointer area (for
6972** all cells - not just those inserted by the current call). If the content
6973** area must be extended to before this point in order to accomodate all
6974** cells in apCell[], then the cells do not fit and non-zero is returned.
6975*/
dand7b545b2014-10-13 18:03:27 +00006976static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006977 MemPage *pPg, /* Page to add cells to */
6978 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00006979 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00006980 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006981 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006982 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006983 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006984){
drhe3dadac2019-01-23 19:25:59 +00006985 int i = iFirst; /* Loop counter - cell index to insert */
6986 u8 *aData = pPg->aData; /* Complete page */
6987 u8 *pData = *ppData; /* Content area. A subset of aData[] */
6988 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
6989 int k; /* Current slot in pCArray->apEnd[] */
6990 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00006991 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00006992 if( iEnd<=iFirst ) return 0;
6993 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6994 pEnd = pCArray->apEnd[k];
6995 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00006996 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006997 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006998 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006999 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00007000 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00007001 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00007002 pSlot = pData;
7003 }
drh48310f82015-10-10 16:41:28 +00007004 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7005 ** database. But they might for a corrupt database. Hence use memmove()
7006 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7007 assert( (pSlot+sz)<=pCArray->apCell[i]
7008 || pSlot>=(pCArray->apCell[i]+sz)
7009 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007010 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7011 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7012 ){
7013 assert( CORRUPT_DB );
7014 (void)SQLITE_CORRUPT_BKPT;
7015 return 1;
7016 }
drh48310f82015-10-10 16:41:28 +00007017 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007018 put2byte(pCellptr, (pSlot - aData));
7019 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007020 i++;
7021 if( i>=iEnd ) break;
7022 if( pCArray->ixNx[k]<=i ){
7023 k++;
7024 pEnd = pCArray->apEnd[k];
7025 }
dand7b545b2014-10-13 18:03:27 +00007026 }
7027 *ppData = pData;
7028 return 0;
7029}
7030
dan8e9ba0c2014-10-14 17:27:04 +00007031/*
drhe3dadac2019-01-23 19:25:59 +00007032** The pCArray object contains pointers to b-tree cells and their sizes.
7033**
7034** This function adds the space associated with each cell in the array
7035** that is currently stored within the body of pPg to the pPg free-list.
7036** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007037**
7038** This function returns the total number of cells added to the free-list.
7039*/
dand7b545b2014-10-13 18:03:27 +00007040static int pageFreeArray(
7041 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007042 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007043 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007044 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007045){
7046 u8 * const aData = pPg->aData;
7047 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007048 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007049 int nRet = 0;
7050 int i;
drhf7838932015-06-23 15:36:34 +00007051 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007052 u8 *pFree = 0;
7053 int szFree = 0;
7054
drhf7838932015-06-23 15:36:34 +00007055 for(i=iFirst; i<iEnd; i++){
7056 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007057 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007058 int sz;
7059 /* No need to use cachedCellSize() here. The sizes of all cells that
7060 ** are to be freed have already been computing while deciding which
7061 ** cells need freeing */
7062 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007063 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007064 if( pFree ){
7065 assert( pFree>aData && (pFree - aData)<65536 );
7066 freeSpace(pPg, (u16)(pFree - aData), szFree);
7067 }
dand7b545b2014-10-13 18:03:27 +00007068 pFree = pCell;
7069 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00007070 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00007071 }else{
7072 pFree = pCell;
7073 szFree += sz;
7074 }
7075 nRet++;
7076 }
7077 }
drhfefa0942014-11-05 21:21:08 +00007078 if( pFree ){
7079 assert( pFree>aData && (pFree - aData)<65536 );
7080 freeSpace(pPg, (u16)(pFree - aData), szFree);
7081 }
dand7b545b2014-10-13 18:03:27 +00007082 return nRet;
7083}
7084
dand7b545b2014-10-13 18:03:27 +00007085/*
drha0466432019-01-29 16:41:13 +00007086** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007087** balanced. The current page, pPg, has pPg->nCell cells starting with
7088** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007089** starting at apCell[iNew].
7090**
7091** This routine makes the necessary adjustments to pPg so that it contains
7092** the correct cells after being balanced.
7093**
dand7b545b2014-10-13 18:03:27 +00007094** The pPg->nFree field is invalid when this function returns. It is the
7095** responsibility of the caller to set it correctly.
7096*/
drh658873b2015-06-22 20:02:04 +00007097static int editPage(
dan09c68402014-10-11 20:00:24 +00007098 MemPage *pPg, /* Edit this page */
7099 int iOld, /* Index of first cell currently on page */
7100 int iNew, /* Index of new first cell on page */
7101 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007102 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007103){
dand7b545b2014-10-13 18:03:27 +00007104 u8 * const aData = pPg->aData;
7105 const int hdr = pPg->hdrOffset;
7106 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7107 int nCell = pPg->nCell; /* Cells stored on pPg */
7108 u8 *pData;
7109 u8 *pCellptr;
7110 int i;
7111 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7112 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007113
7114#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007115 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7116 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007117#endif
7118
dand7b545b2014-10-13 18:03:27 +00007119 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007120 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007121 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007122 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drha0466432019-01-29 16:41:13 +00007123 if( nShift>nCell ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007124 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7125 nCell -= nShift;
7126 }
7127 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007128 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7129 assert( nCell>=nTail );
7130 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007131 }
dan09c68402014-10-11 20:00:24 +00007132
drh5ab63772014-11-27 03:46:04 +00007133 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007134 if( pData<pBegin ) goto editpage_fail;
7135
7136 /* Add cells to the start of the page */
7137 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007138 int nAdd = MIN(nNew,iOld-iNew);
7139 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007140 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007141 pCellptr = pPg->aCellIdx;
7142 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7143 if( pageInsertArray(
7144 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007145 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007146 ) ) goto editpage_fail;
7147 nCell += nAdd;
7148 }
7149
7150 /* Add any overflow cells */
7151 for(i=0; i<pPg->nOverflow; i++){
7152 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7153 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007154 pCellptr = &pPg->aCellIdx[iCell * 2];
drha0466432019-01-29 16:41:13 +00007155 assert( nCell>=iCell );
dand7b545b2014-10-13 18:03:27 +00007156 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7157 nCell++;
7158 if( pageInsertArray(
7159 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007160 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007161 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007162 }
dand7b545b2014-10-13 18:03:27 +00007163 }
dan09c68402014-10-11 20:00:24 +00007164
dand7b545b2014-10-13 18:03:27 +00007165 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007166 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007167 pCellptr = &pPg->aCellIdx[nCell*2];
7168 if( pageInsertArray(
7169 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007170 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007171 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007172
dand7b545b2014-10-13 18:03:27 +00007173 pPg->nCell = nNew;
7174 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007175
dand7b545b2014-10-13 18:03:27 +00007176 put2byte(&aData[hdr+3], pPg->nCell);
7177 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007178
7179#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007180 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007181 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007182 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007183 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007184 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007185 }
drh1ffd2472015-06-23 02:37:30 +00007186 assert( 0==memcmp(pCell, &aData[iOff],
7187 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007188 }
dan09c68402014-10-11 20:00:24 +00007189#endif
7190
drh658873b2015-06-22 20:02:04 +00007191 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007192 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007193 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007194 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007195 return rebuildPage(pCArray, iNew, nNew, pPg);
drhfa1a98a2004-05-14 19:08:17 +00007196}
7197
danielk1977ac245ec2005-01-14 13:50:11 +00007198
drh615ae552005-01-16 23:21:00 +00007199#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007200/*
7201** This version of balance() handles the common special case where
7202** a new entry is being inserted on the extreme right-end of the
7203** tree, in other words, when the new entry will become the largest
7204** entry in the tree.
7205**
drhc314dc72009-07-21 11:52:34 +00007206** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007207** a new page to the right-hand side and put the one new entry in
7208** that page. This leaves the right side of the tree somewhat
7209** unbalanced. But odds are that we will be inserting new entries
7210** at the end soon afterwards so the nearly empty page will quickly
7211** fill up. On average.
7212**
7213** pPage is the leaf page which is the right-most page in the tree.
7214** pParent is its parent. pPage must have a single overflow entry
7215** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007216**
7217** The pSpace buffer is used to store a temporary copy of the divider
7218** cell that will be inserted into pParent. Such a cell consists of a 4
7219** byte page number followed by a variable length integer. In other
7220** words, at most 13 bytes. Hence the pSpace buffer must be at
7221** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007222*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007223static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7224 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007225 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007226 int rc; /* Return Code */
7227 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007228
drh1fee73e2007-08-29 04:00:57 +00007229 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007230 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007231 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007232
drh6301c432018-12-13 21:52:18 +00007233 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007234 assert( pPage->nFree>=0 );
7235 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007236
danielk1977a50d9aa2009-06-08 14:49:45 +00007237 /* Allocate a new page. This page will become the right-sibling of
7238 ** pPage. Make the parent page writable, so that the new divider cell
7239 ** may be inserted. If both these operations are successful, proceed.
7240 */
drh4f0c5872007-03-26 22:05:01 +00007241 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007242
danielk1977eaa06f62008-09-18 17:34:44 +00007243 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007244
7245 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007246 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007247 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007248 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007249 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007250
drhc5053fb2008-11-27 02:22:10 +00007251 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007252 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007253 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007254 b.nCell = 1;
7255 b.pRef = pPage;
7256 b.apCell = &pCell;
7257 b.szCell = &szCell;
7258 b.apEnd[0] = pPage->aDataEnd;
7259 b.ixNx[0] = 2;
7260 rc = rebuildPage(&b, 0, 1, pNew);
7261 if( NEVER(rc) ){
7262 releasePage(pNew);
7263 return rc;
7264 }
dan8e9ba0c2014-10-14 17:27:04 +00007265 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007266
7267 /* If this is an auto-vacuum database, update the pointer map
7268 ** with entries for the new page, and any pointer from the
7269 ** cell on the page to an overflow page. If either of these
7270 ** operations fails, the return code is set, but the contents
7271 ** of the parent page are still manipulated by thh code below.
7272 ** That is Ok, at this point the parent page is guaranteed to
7273 ** be marked as dirty. Returning an error code will cause a
7274 ** rollback, undoing any changes made to the parent page.
7275 */
7276 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007277 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7278 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007279 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007280 }
7281 }
danielk1977eaa06f62008-09-18 17:34:44 +00007282
danielk19776f235cc2009-06-04 14:46:08 +00007283 /* Create a divider cell to insert into pParent. The divider cell
7284 ** consists of a 4-byte page number (the page number of pPage) and
7285 ** a variable length key value (which must be the same value as the
7286 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007287 **
danielk19776f235cc2009-06-04 14:46:08 +00007288 ** To find the largest key value on pPage, first find the right-most
7289 ** cell on pPage. The first two fields of this cell are the
7290 ** record-length (a variable length integer at most 32-bits in size)
7291 ** and the key value (a variable length integer, may have any value).
7292 ** The first of the while(...) loops below skips over the record-length
7293 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007294 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007295 */
danielk1977eaa06f62008-09-18 17:34:44 +00007296 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007297 pStop = &pCell[9];
7298 while( (*(pCell++)&0x80) && pCell<pStop );
7299 pStop = &pCell[9];
7300 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7301
danielk19774dbaa892009-06-16 16:50:22 +00007302 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007303 if( rc==SQLITE_OK ){
7304 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7305 0, pPage->pgno, &rc);
7306 }
danielk19776f235cc2009-06-04 14:46:08 +00007307
7308 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007309 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7310
danielk1977e08a3c42008-09-18 18:17:03 +00007311 /* Release the reference to the new page. */
7312 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007313 }
7314
danielk1977eaa06f62008-09-18 17:34:44 +00007315 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007316}
drh615ae552005-01-16 23:21:00 +00007317#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007318
danielk19774dbaa892009-06-16 16:50:22 +00007319#if 0
drhc3b70572003-01-04 19:44:07 +00007320/*
danielk19774dbaa892009-06-16 16:50:22 +00007321** This function does not contribute anything to the operation of SQLite.
7322** it is sometimes activated temporarily while debugging code responsible
7323** for setting pointer-map entries.
7324*/
7325static int ptrmapCheckPages(MemPage **apPage, int nPage){
7326 int i, j;
7327 for(i=0; i<nPage; i++){
7328 Pgno n;
7329 u8 e;
7330 MemPage *pPage = apPage[i];
7331 BtShared *pBt = pPage->pBt;
7332 assert( pPage->isInit );
7333
7334 for(j=0; j<pPage->nCell; j++){
7335 CellInfo info;
7336 u8 *z;
7337
7338 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007339 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007340 if( info.nLocal<info.nPayload ){
7341 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007342 ptrmapGet(pBt, ovfl, &e, &n);
7343 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7344 }
7345 if( !pPage->leaf ){
7346 Pgno child = get4byte(z);
7347 ptrmapGet(pBt, child, &e, &n);
7348 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7349 }
7350 }
7351 if( !pPage->leaf ){
7352 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7353 ptrmapGet(pBt, child, &e, &n);
7354 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7355 }
7356 }
7357 return 1;
7358}
7359#endif
7360
danielk1977cd581a72009-06-23 15:43:39 +00007361/*
7362** This function is used to copy the contents of the b-tree node stored
7363** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7364** the pointer-map entries for each child page are updated so that the
7365** parent page stored in the pointer map is page pTo. If pFrom contained
7366** any cells with overflow page pointers, then the corresponding pointer
7367** map entries are also updated so that the parent page is page pTo.
7368**
7369** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007370** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007371**
danielk197730548662009-07-09 05:07:37 +00007372** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007373**
7374** The performance of this function is not critical. It is only used by
7375** the balance_shallower() and balance_deeper() procedures, neither of
7376** which are called often under normal circumstances.
7377*/
drhc314dc72009-07-21 11:52:34 +00007378static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7379 if( (*pRC)==SQLITE_OK ){
7380 BtShared * const pBt = pFrom->pBt;
7381 u8 * const aFrom = pFrom->aData;
7382 u8 * const aTo = pTo->aData;
7383 int const iFromHdr = pFrom->hdrOffset;
7384 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007385 int rc;
drhc314dc72009-07-21 11:52:34 +00007386 int iData;
7387
7388
7389 assert( pFrom->isInit );
7390 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007391 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007392
7393 /* Copy the b-tree node content from page pFrom to page pTo. */
7394 iData = get2byte(&aFrom[iFromHdr+5]);
7395 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7396 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7397
7398 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007399 ** match the new data. The initialization of pTo can actually fail under
7400 ** fairly obscure circumstances, even though it is a copy of initialized
7401 ** page pFrom.
7402 */
drhc314dc72009-07-21 11:52:34 +00007403 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007404 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00007405 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00007406 if( rc!=SQLITE_OK ){
7407 *pRC = rc;
7408 return;
7409 }
drhc314dc72009-07-21 11:52:34 +00007410
7411 /* If this is an auto-vacuum database, update the pointer-map entries
7412 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7413 */
7414 if( ISAUTOVACUUM ){
7415 *pRC = setChildPtrmaps(pTo);
7416 }
danielk1977cd581a72009-06-23 15:43:39 +00007417 }
danielk1977cd581a72009-06-23 15:43:39 +00007418}
7419
7420/*
danielk19774dbaa892009-06-16 16:50:22 +00007421** This routine redistributes cells on the iParentIdx'th child of pParent
7422** (hereafter "the page") and up to 2 siblings so that all pages have about the
7423** same amount of free space. Usually a single sibling on either side of the
7424** page are used in the balancing, though both siblings might come from one
7425** side if the page is the first or last child of its parent. If the page
7426** has fewer than 2 siblings (something which can only happen if the page
7427** is a root page or a child of a root page) then all available siblings
7428** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007429**
danielk19774dbaa892009-06-16 16:50:22 +00007430** The number of siblings of the page might be increased or decreased by
7431** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007432**
danielk19774dbaa892009-06-16 16:50:22 +00007433** Note that when this routine is called, some of the cells on the page
7434** might not actually be stored in MemPage.aData[]. This can happen
7435** if the page is overfull. This routine ensures that all cells allocated
7436** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007437**
danielk19774dbaa892009-06-16 16:50:22 +00007438** In the course of balancing the page and its siblings, cells may be
7439** inserted into or removed from the parent page (pParent). Doing so
7440** may cause the parent page to become overfull or underfull. If this
7441** happens, it is the responsibility of the caller to invoke the correct
7442** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007443**
drh5e00f6c2001-09-13 13:46:56 +00007444** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007445** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007446** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007447**
7448** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007449** buffer big enough to hold one page. If while inserting cells into the parent
7450** page (pParent) the parent page becomes overfull, this buffer is
7451** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007452** a maximum of four divider cells into the parent page, and the maximum
7453** size of a cell stored within an internal node is always less than 1/4
7454** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7455** enough for all overflow cells.
7456**
7457** If aOvflSpace is set to a null pointer, this function returns
7458** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007459*/
danielk19774dbaa892009-06-16 16:50:22 +00007460static int balance_nonroot(
7461 MemPage *pParent, /* Parent page of siblings being balanced */
7462 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007463 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007464 int isRoot, /* True if pParent is a root-page */
7465 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007466){
drh16a9b832007-05-05 18:39:25 +00007467 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007468 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007469 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007470 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007471 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007472 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007473 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007474 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007475 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007476 int usableSpace; /* Bytes in pPage beyond the header */
7477 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007478 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007479 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007480 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007481 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007482 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007483 u8 *pRight; /* Location in parent of right-sibling pointer */
7484 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007485 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7486 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007487 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007488 u8 *aSpace1; /* Space for copies of dividers cells */
7489 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007490 u8 abDone[NB+2]; /* True after i'th new page is populated */
7491 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007492 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007493 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007494 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007495
dan33ea4862014-10-09 19:35:37 +00007496 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007497 b.nCell = 0;
7498 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007499 pBt = pParent->pBt;
7500 assert( sqlite3_mutex_held(pBt->mutex) );
7501 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007502
danielk19774dbaa892009-06-16 16:50:22 +00007503 /* At this point pParent may have at most one overflow cell. And if
7504 ** this overflow cell is present, it must be the cell with
7505 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007506 ** is called (indirectly) from sqlite3BtreeDelete().
7507 */
danielk19774dbaa892009-06-16 16:50:22 +00007508 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007509 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007510
danielk197711a8a862009-06-17 11:49:52 +00007511 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007512 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007513 }
drh68133502019-02-11 17:22:30 +00007514 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00007515
danielk1977a50d9aa2009-06-08 14:49:45 +00007516 /* Find the sibling pages to balance. Also locate the cells in pParent
7517 ** that divide the siblings. An attempt is made to find NN siblings on
7518 ** either side of pPage. More siblings are taken from one side, however,
7519 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007520 ** has NB or fewer children then all children of pParent are taken.
7521 **
7522 ** This loop also drops the divider cells from the parent page. This
7523 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007524 ** overflow cells in the parent page, since if any existed they will
7525 ** have already been removed.
7526 */
danielk19774dbaa892009-06-16 16:50:22 +00007527 i = pParent->nOverflow + pParent->nCell;
7528 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007529 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007530 }else{
dan7d6885a2012-08-08 14:04:56 +00007531 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007532 if( iParentIdx==0 ){
7533 nxDiv = 0;
7534 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007535 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007536 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007537 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007538 }
dan7d6885a2012-08-08 14:04:56 +00007539 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007540 }
dan7d6885a2012-08-08 14:04:56 +00007541 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007542 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7543 pRight = &pParent->aData[pParent->hdrOffset+8];
7544 }else{
7545 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7546 }
7547 pgno = get4byte(pRight);
7548 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007549 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007550 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007551 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007552 goto balance_cleanup;
7553 }
drh85a379b2019-02-09 22:33:44 +00007554 if( apOld[i]->nFree<0 ){
7555 rc = btreeComputeFreeSpace(apOld[i]);
7556 if( rc ){
7557 memset(apOld, 0, (i)*sizeof(MemPage*));
7558 goto balance_cleanup;
7559 }
7560 }
danielk1977634f2982005-03-28 08:44:07 +00007561 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007562 if( (i--)==0 ) break;
7563
drh9cc5b4e2016-12-26 01:41:33 +00007564 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007565 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007566 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007567 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007568 pParent->nOverflow = 0;
7569 }else{
7570 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7571 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007572 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007573
7574 /* Drop the cell from the parent page. apDiv[i] still points to
7575 ** the cell within the parent, even though it has been dropped.
7576 ** This is safe because dropping a cell only overwrites the first
7577 ** four bytes of it, and this function does not need the first
7578 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007579 ** later on.
7580 **
drh8a575d92011-10-12 17:00:28 +00007581 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007582 ** the dropCell() routine will overwrite the entire cell with zeroes.
7583 ** In this case, temporarily copy the cell into the aOvflSpace[]
7584 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7585 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007586 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007587 int iOff;
7588
7589 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007590 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007591 rc = SQLITE_CORRUPT_BKPT;
7592 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7593 goto balance_cleanup;
7594 }else{
7595 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7596 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7597 }
drh5b47efa2010-02-12 18:18:39 +00007598 }
drh98add2e2009-07-20 17:11:49 +00007599 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007600 }
drh8b2f49b2001-06-08 00:21:52 +00007601 }
7602
drha9121e42008-02-19 14:59:35 +00007603 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007604 ** alignment */
drha9121e42008-02-19 14:59:35 +00007605 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007606
drh8b2f49b2001-06-08 00:21:52 +00007607 /*
danielk1977634f2982005-03-28 08:44:07 +00007608 ** Allocate space for memory structures
7609 */
drhfacf0302008-06-17 15:12:00 +00007610 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007611 nMaxCells*sizeof(u8*) /* b.apCell */
7612 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007613 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007614
mistachkin0fbd7352014-12-09 04:26:56 +00007615 assert( szScratch<=6*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007616 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007617 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007618 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007619 goto balance_cleanup;
7620 }
drh1ffd2472015-06-23 02:37:30 +00007621 b.szCell = (u16*)&b.apCell[nMaxCells];
7622 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007623 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007624
7625 /*
7626 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007627 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007628 ** into space obtained from aSpace1[]. The divider cells have already
7629 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007630 **
7631 ** If the siblings are on leaf pages, then the child pointers of the
7632 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007633 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007634 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007635 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007636 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007637 **
7638 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7639 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007640 */
drh1ffd2472015-06-23 02:37:30 +00007641 b.pRef = apOld[0];
7642 leafCorrection = b.pRef->leaf*4;
7643 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007644 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007645 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007646 int limit = pOld->nCell;
7647 u8 *aData = pOld->aData;
7648 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007649 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007650 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007651
drh73d340a2015-05-28 11:23:11 +00007652 /* Verify that all sibling pages are of the same "type" (table-leaf,
7653 ** table-interior, index-leaf, or index-interior).
7654 */
7655 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7656 rc = SQLITE_CORRUPT_BKPT;
7657 goto balance_cleanup;
7658 }
7659
drhfe647dc2015-06-23 18:24:25 +00007660 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007661 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007662 ** in the correct spot.
7663 **
7664 ** Note that when there are multiple overflow cells, it is always the
7665 ** case that they are sequential and adjacent. This invariant arises
7666 ** because multiple overflows can only occurs when inserting divider
7667 ** cells into a parent on a prior balance, and divider cells are always
7668 ** adjacent and are inserted in order. There is an assert() tagged
7669 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7670 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007671 **
7672 ** This must be done in advance. Once the balance starts, the cell
7673 ** offset section of the btree page will be overwritten and we will no
7674 ** long be able to find the cells if a pointer to each cell is not saved
7675 ** first.
7676 */
drh36b78ee2016-01-20 01:32:00 +00007677 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007678 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007679 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007680 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007681 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007682 piCell += 2;
7683 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007684 }
drhfe647dc2015-06-23 18:24:25 +00007685 for(k=0; k<pOld->nOverflow; k++){
7686 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007687 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007688 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007689 }
drh1ffd2472015-06-23 02:37:30 +00007690 }
drhfe647dc2015-06-23 18:24:25 +00007691 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7692 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007693 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007694 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007695 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007696 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007697 }
7698
drh1ffd2472015-06-23 02:37:30 +00007699 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007700 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007701 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007702 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007703 assert( b.nCell<nMaxCells );
7704 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007705 pTemp = &aSpace1[iSpace1];
7706 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007707 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007708 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007709 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007710 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007711 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007712 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007713 if( !pOld->leaf ){
7714 assert( leafCorrection==0 );
7715 assert( pOld->hdrOffset==0 );
7716 /* The right pointer of the child page pOld becomes the left
7717 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007718 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007719 }else{
7720 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007721 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007722 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7723 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007724 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7725 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007726 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007727 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007728 }
7729 }
drh1ffd2472015-06-23 02:37:30 +00007730 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007731 }
drh8b2f49b2001-06-08 00:21:52 +00007732 }
7733
7734 /*
drh1ffd2472015-06-23 02:37:30 +00007735 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007736 ** Store this number in "k". Also compute szNew[] which is the total
7737 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007738 ** in b.apCell[] of the cell that divides page i from page i+1.
7739 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007740 **
drh96f5b762004-05-16 16:24:36 +00007741 ** Values computed by this block:
7742 **
7743 ** k: The total number of sibling pages
7744 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007745 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007746 ** the right of the i-th sibling page.
7747 ** usableSpace: Number of bytes of space available on each sibling.
7748 **
drh8b2f49b2001-06-08 00:21:52 +00007749 */
drh43605152004-05-29 21:46:49 +00007750 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00007751 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00007752 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00007753 b.apEnd[k] = p->aDataEnd;
7754 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00007755 if( k && b.ixNx[k]==b.ixNx[k-1] ){
7756 k--; /* Omit b.ixNx[] entry for child pages with no cells */
7757 }
drh26b7ec82019-02-01 14:50:43 +00007758 if( !leafData ){
7759 k++;
7760 b.apEnd[k] = pParent->aDataEnd;
7761 b.ixNx[k] = cntOld[i]+1;
7762 }
drhb0ea9432019-02-09 21:06:40 +00007763 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00007764 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007765 for(j=0; j<p->nOverflow; j++){
7766 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7767 }
7768 cntNew[i] = cntOld[i];
7769 }
7770 k = nOld;
7771 for(i=0; i<k; i++){
7772 int sz;
7773 while( szNew[i]>usableSpace ){
7774 if( i+1>=k ){
7775 k = i+2;
7776 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7777 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007778 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007779 }
drh1ffd2472015-06-23 02:37:30 +00007780 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007781 szNew[i] -= sz;
7782 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007783 if( cntNew[i]<b.nCell ){
7784 sz = 2 + cachedCellSize(&b, cntNew[i]);
7785 }else{
7786 sz = 0;
7787 }
drh658873b2015-06-22 20:02:04 +00007788 }
7789 szNew[i+1] += sz;
7790 cntNew[i]--;
7791 }
drh1ffd2472015-06-23 02:37:30 +00007792 while( cntNew[i]<b.nCell ){
7793 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007794 if( szNew[i]+sz>usableSpace ) break;
7795 szNew[i] += sz;
7796 cntNew[i]++;
7797 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007798 if( cntNew[i]<b.nCell ){
7799 sz = 2 + cachedCellSize(&b, cntNew[i]);
7800 }else{
7801 sz = 0;
7802 }
drh658873b2015-06-22 20:02:04 +00007803 }
7804 szNew[i+1] -= sz;
7805 }
drh1ffd2472015-06-23 02:37:30 +00007806 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007807 k = i+1;
drh672073a2015-06-24 12:07:40 +00007808 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007809 rc = SQLITE_CORRUPT_BKPT;
7810 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007811 }
7812 }
drh96f5b762004-05-16 16:24:36 +00007813
7814 /*
7815 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007816 ** on the left side (siblings with smaller keys). The left siblings are
7817 ** always nearly full, while the right-most sibling might be nearly empty.
7818 ** The next block of code attempts to adjust the packing of siblings to
7819 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007820 **
7821 ** This adjustment is more than an optimization. The packing above might
7822 ** be so out of balance as to be illegal. For example, the right-most
7823 ** sibling might be completely empty. This adjustment is not optional.
7824 */
drh6019e162001-07-02 17:51:45 +00007825 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007826 int szRight = szNew[i]; /* Size of sibling on the right */
7827 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7828 int r; /* Index of right-most cell in left sibling */
7829 int d; /* Index of first cell to the left of right sibling */
7830
7831 r = cntNew[i-1] - 1;
7832 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007833 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007834 do{
drh1ffd2472015-06-23 02:37:30 +00007835 assert( d<nMaxCells );
7836 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007837 (void)cachedCellSize(&b, r);
7838 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007839 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007840 break;
7841 }
7842 szRight += b.szCell[d] + 2;
7843 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007844 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007845 r--;
7846 d--;
drh672073a2015-06-24 12:07:40 +00007847 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007848 szNew[i] = szRight;
7849 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007850 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7851 rc = SQLITE_CORRUPT_BKPT;
7852 goto balance_cleanup;
7853 }
drh6019e162001-07-02 17:51:45 +00007854 }
drh09d0deb2005-08-02 17:13:09 +00007855
drh2a0df922014-10-30 23:14:56 +00007856 /* Sanity check: For a non-corrupt database file one of the follwing
7857 ** must be true:
7858 ** (1) We found one or more cells (cntNew[0])>0), or
7859 ** (2) pPage is a virtual root page. A virtual root page is when
7860 ** the real root page is page 1 and we are the only child of
7861 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007862 */
drh2a0df922014-10-30 23:14:56 +00007863 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007864 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7865 apOld[0]->pgno, apOld[0]->nCell,
7866 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7867 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007868 ));
7869
drh8b2f49b2001-06-08 00:21:52 +00007870 /*
drh6b308672002-07-08 02:16:37 +00007871 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007872 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007873 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007874 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007875 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007876 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007877 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007878 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007879 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007880 nNew++;
danielk197728129562005-01-11 10:25:06 +00007881 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007882 }else{
drh7aa8f852006-03-28 00:24:44 +00007883 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007884 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007885 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007886 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007887 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007888 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007889 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007890
7891 /* Set the pointer-map entry for the new sibling page. */
7892 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007893 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007894 if( rc!=SQLITE_OK ){
7895 goto balance_cleanup;
7896 }
7897 }
drh6b308672002-07-08 02:16:37 +00007898 }
drh8b2f49b2001-06-08 00:21:52 +00007899 }
7900
7901 /*
dan33ea4862014-10-09 19:35:37 +00007902 ** Reassign page numbers so that the new pages are in ascending order.
7903 ** This helps to keep entries in the disk file in order so that a scan
7904 ** of the table is closer to a linear scan through the file. That in turn
7905 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007906 **
dan33ea4862014-10-09 19:35:37 +00007907 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7908 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007909 **
dan33ea4862014-10-09 19:35:37 +00007910 ** When NB==3, this one optimization makes the database about 25% faster
7911 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007912 */
dan33ea4862014-10-09 19:35:37 +00007913 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007914 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007915 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007916 for(j=0; j<i; j++){
7917 if( aPgno[j]==aPgno[i] ){
7918 /* This branch is taken if the set of sibling pages somehow contains
7919 ** duplicate entries. This can happen if the database is corrupt.
7920 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007921 ** we do the detection here in order to avoid populating the pager
7922 ** cache with two separate objects associated with the same
7923 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007924 assert( CORRUPT_DB );
7925 rc = SQLITE_CORRUPT_BKPT;
7926 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007927 }
7928 }
dan33ea4862014-10-09 19:35:37 +00007929 }
7930 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007931 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007932 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007933 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007934 }
drh00fe08a2014-10-31 00:05:23 +00007935 pgno = aPgOrder[iBest];
7936 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007937 if( iBest!=i ){
7938 if( iBest>i ){
7939 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7940 }
7941 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7942 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007943 }
7944 }
dan33ea4862014-10-09 19:35:37 +00007945
7946 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7947 "%d(%d nc=%d) %d(%d nc=%d)\n",
7948 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007949 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007950 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007951 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007952 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007953 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007954 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7955 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7956 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7957 ));
danielk19774dbaa892009-06-16 16:50:22 +00007958
7959 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7960 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007961
dan33ea4862014-10-09 19:35:37 +00007962 /* If the sibling pages are not leaves, ensure that the right-child pointer
7963 ** of the right-most new sibling page is set to the value that was
7964 ** originally in the same field of the right-most old sibling page. */
7965 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7966 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7967 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7968 }
danielk1977ac11ee62005-01-15 12:45:51 +00007969
dan33ea4862014-10-09 19:35:37 +00007970 /* Make any required updates to pointer map entries associated with
7971 ** cells stored on sibling pages following the balance operation. Pointer
7972 ** map entries associated with divider cells are set by the insertCell()
7973 ** routine. The associated pointer map entries are:
7974 **
7975 ** a) if the cell contains a reference to an overflow chain, the
7976 ** entry associated with the first page in the overflow chain, and
7977 **
7978 ** b) if the sibling pages are not leaves, the child page associated
7979 ** with the cell.
7980 **
7981 ** If the sibling pages are not leaves, then the pointer map entry
7982 ** associated with the right-child of each sibling may also need to be
7983 ** updated. This happens below, after the sibling pages have been
7984 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007985 */
dan33ea4862014-10-09 19:35:37 +00007986 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00007987 MemPage *pOld;
7988 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00007989 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00007990 int iNew = 0;
7991 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007992
drh1ffd2472015-06-23 02:37:30 +00007993 for(i=0; i<b.nCell; i++){
7994 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00007995 while( i==cntOldNext ){
7996 iOld++;
7997 assert( iOld<nNew || iOld<nOld );
7998 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00007999 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
drh4b70f112004-05-02 21:12:19 +00008000 }
dan33ea4862014-10-09 19:35:37 +00008001 if( i==cntNew[iNew] ){
8002 pNew = apNew[++iNew];
8003 if( !leafData ) continue;
8004 }
danielk197785d90ca2008-07-19 14:25:15 +00008005
dan33ea4862014-10-09 19:35:37 +00008006 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00008007 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00008008 ** or else the divider cell to the left of sibling page iOld. So,
8009 ** if sibling page iOld had the same page number as pNew, and if
8010 ** pCell really was a part of sibling page iOld (not a divider or
8011 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008012 if( iOld>=nNew
8013 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008014 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008015 ){
dan33ea4862014-10-09 19:35:37 +00008016 if( !leafCorrection ){
8017 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8018 }
drh1ffd2472015-06-23 02:37:30 +00008019 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008020 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00008021 }
drhea82b372015-06-23 21:35:28 +00008022 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00008023 }
drh14acc042001-06-10 19:56:58 +00008024 }
8025 }
dan33ea4862014-10-09 19:35:37 +00008026
8027 /* Insert new divider cells into pParent. */
8028 for(i=0; i<nNew-1; i++){
8029 u8 *pCell;
8030 u8 *pTemp;
8031 int sz;
8032 MemPage *pNew = apNew[i];
8033 j = cntNew[i];
8034
8035 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008036 assert( b.apCell[j]!=0 );
8037 pCell = b.apCell[j];
8038 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008039 pTemp = &aOvflSpace[iOvflSpace];
8040 if( !pNew->leaf ){
8041 memcpy(&pNew->aData[8], pCell, 4);
8042 }else if( leafData ){
8043 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008044 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008045 ** cell consists of the integer key for the right-most cell of
8046 ** the sibling-page assembled above only.
8047 */
8048 CellInfo info;
8049 j--;
drh1ffd2472015-06-23 02:37:30 +00008050 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008051 pCell = pTemp;
8052 sz = 4 + putVarint(&pCell[4], info.nKey);
8053 pTemp = 0;
8054 }else{
8055 pCell -= 4;
8056 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8057 ** previously stored on a leaf node, and its reported size was 4
8058 ** bytes, then it may actually be smaller than this
8059 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8060 ** any cell). But it is important to pass the correct size to
8061 ** insertCell(), so reparse the cell now.
8062 **
drhc1fb2b82016-03-09 03:29:27 +00008063 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8064 ** and WITHOUT ROWID tables with exactly one column which is the
8065 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008066 */
drh1ffd2472015-06-23 02:37:30 +00008067 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008068 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008069 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008070 }
8071 }
8072 iOvflSpace += sz;
8073 assert( sz<=pBt->maxLocal+23 );
8074 assert( iOvflSpace <= (int)pBt->pageSize );
8075 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8076 if( rc!=SQLITE_OK ) goto balance_cleanup;
8077 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8078 }
8079
8080 /* Now update the actual sibling pages. The order in which they are updated
8081 ** is important, as this code needs to avoid disrupting any page from which
8082 ** cells may still to be read. In practice, this means:
8083 **
drhd836d422014-10-31 14:26:36 +00008084 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8085 ** then it is not safe to update page apNew[iPg] until after
8086 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008087 **
drhd836d422014-10-31 14:26:36 +00008088 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8089 ** then it is not safe to update page apNew[iPg] until after
8090 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008091 **
8092 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008093 **
8094 ** The iPg value in the following loop starts at nNew-1 goes down
8095 ** to 0, then back up to nNew-1 again, thus making two passes over
8096 ** the pages. On the initial downward pass, only condition (1) above
8097 ** needs to be tested because (2) will always be true from the previous
8098 ** step. On the upward pass, both conditions are always true, so the
8099 ** upwards pass simply processes pages that were missed on the downward
8100 ** pass.
dan33ea4862014-10-09 19:35:37 +00008101 */
drhbec021b2014-10-31 12:22:00 +00008102 for(i=1-nNew; i<nNew; i++){
8103 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008104 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008105 if( abDone[iPg] ) continue; /* Skip pages already processed */
8106 if( i>=0 /* On the upwards pass, or... */
8107 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008108 ){
dan09c68402014-10-11 20:00:24 +00008109 int iNew;
8110 int iOld;
8111 int nNewCell;
8112
drhd836d422014-10-31 14:26:36 +00008113 /* Verify condition (1): If cells are moving left, update iPg
8114 ** only after iPg-1 has already been updated. */
8115 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8116
8117 /* Verify condition (2): If cells are moving right, update iPg
8118 ** only after iPg+1 has already been updated. */
8119 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8120
dan09c68402014-10-11 20:00:24 +00008121 if( iPg==0 ){
8122 iNew = iOld = 0;
8123 nNewCell = cntNew[0];
8124 }else{
drh1ffd2472015-06-23 02:37:30 +00008125 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008126 iNew = cntNew[iPg-1] + !leafData;
8127 nNewCell = cntNew[iPg] - iNew;
8128 }
8129
drh1ffd2472015-06-23 02:37:30 +00008130 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008131 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008132 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008133 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008134 assert( apNew[iPg]->nOverflow==0 );
8135 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008136 }
8137 }
drhd836d422014-10-31 14:26:36 +00008138
8139 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008140 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8141
drh7aa8f852006-03-28 00:24:44 +00008142 assert( nOld>0 );
8143 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008144
danielk197713bd99f2009-06-24 05:40:34 +00008145 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8146 /* The root page of the b-tree now contains no cells. The only sibling
8147 ** page is the right-child of the parent. Copy the contents of the
8148 ** child page into the parent, decreasing the overall height of the
8149 ** b-tree structure by one. This is described as the "balance-shallower"
8150 ** sub-algorithm in some documentation.
8151 **
8152 ** If this is an auto-vacuum database, the call to copyNodeContent()
8153 ** sets all pointer-map entries corresponding to database image pages
8154 ** for which the pointer is stored within the content being copied.
8155 **
drh768f2902014-10-31 02:51:41 +00008156 ** It is critical that the child page be defragmented before being
8157 ** copied into the parent, because if the parent is page 1 then it will
8158 ** by smaller than the child due to the database header, and so all the
8159 ** free space needs to be up front.
8160 */
drh9b5351d2015-09-30 14:19:08 +00008161 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008162 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008163 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00008164 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00008165 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
8166 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00008167 );
drhc314dc72009-07-21 11:52:34 +00008168 copyNodeContent(apNew[0], pParent, &rc);
8169 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00008170 }else if( ISAUTOVACUUM && !leafCorrection ){
8171 /* Fix the pointer map entries associated with the right-child of each
8172 ** sibling page. All other pointer map entries have already been taken
8173 ** care of. */
8174 for(i=0; i<nNew; i++){
8175 u32 key = get4byte(&apNew[i]->aData[8]);
8176 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008177 }
dan33ea4862014-10-09 19:35:37 +00008178 }
danielk19774dbaa892009-06-16 16:50:22 +00008179
dan33ea4862014-10-09 19:35:37 +00008180 assert( pParent->isInit );
8181 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008182 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008183
dan33ea4862014-10-09 19:35:37 +00008184 /* Free any old pages that were not reused as new pages.
8185 */
8186 for(i=nNew; i<nOld; i++){
8187 freePage(apOld[i], &rc);
8188 }
danielk19774dbaa892009-06-16 16:50:22 +00008189
8190#if 0
dan33ea4862014-10-09 19:35:37 +00008191 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008192 /* The ptrmapCheckPages() contains assert() statements that verify that
8193 ** all pointer map pages are set correctly. This is helpful while
8194 ** debugging. This is usually disabled because a corrupt database may
8195 ** cause an assert() statement to fail. */
8196 ptrmapCheckPages(apNew, nNew);
8197 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008198 }
dan33ea4862014-10-09 19:35:37 +00008199#endif
danielk1977cd581a72009-06-23 15:43:39 +00008200
drh8b2f49b2001-06-08 00:21:52 +00008201 /*
drh14acc042001-06-10 19:56:58 +00008202 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008203 */
drh14acc042001-06-10 19:56:58 +00008204balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008205 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008206 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008207 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008208 }
drh14acc042001-06-10 19:56:58 +00008209 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008210 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008211 }
danielk1977eaa06f62008-09-18 17:34:44 +00008212
drh8b2f49b2001-06-08 00:21:52 +00008213 return rc;
8214}
8215
drh43605152004-05-29 21:46:49 +00008216
8217/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008218** This function is called when the root page of a b-tree structure is
8219** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008220**
danielk1977a50d9aa2009-06-08 14:49:45 +00008221** A new child page is allocated and the contents of the current root
8222** page, including overflow cells, are copied into the child. The root
8223** page is then overwritten to make it an empty page with the right-child
8224** pointer pointing to the new page.
8225**
8226** Before returning, all pointer-map entries corresponding to pages
8227** that the new child-page now contains pointers to are updated. The
8228** entry corresponding to the new right-child pointer of the root
8229** page is also updated.
8230**
8231** If successful, *ppChild is set to contain a reference to the child
8232** page and SQLITE_OK is returned. In this case the caller is required
8233** to call releasePage() on *ppChild exactly once. If an error occurs,
8234** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008235*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008236static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8237 int rc; /* Return value from subprocedures */
8238 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008239 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008240 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008241
danielk1977a50d9aa2009-06-08 14:49:45 +00008242 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008243 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008244
danielk1977a50d9aa2009-06-08 14:49:45 +00008245 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8246 ** page that will become the new right-child of pPage. Copy the contents
8247 ** of the node stored on pRoot into the new child page.
8248 */
drh98add2e2009-07-20 17:11:49 +00008249 rc = sqlite3PagerWrite(pRoot->pDbPage);
8250 if( rc==SQLITE_OK ){
8251 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008252 copyNodeContent(pRoot, pChild, &rc);
8253 if( ISAUTOVACUUM ){
8254 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008255 }
8256 }
8257 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008258 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008259 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008260 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008261 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008262 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8263 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8264 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00008265
danielk1977a50d9aa2009-06-08 14:49:45 +00008266 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8267
8268 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008269 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8270 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8271 memcpy(pChild->apOvfl, pRoot->apOvfl,
8272 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008273 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008274
8275 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8276 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8277 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8278
8279 *ppChild = pChild;
8280 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008281}
8282
8283/*
danielk197771d5d2c2008-09-29 11:49:47 +00008284** The page that pCur currently points to has just been modified in
8285** some way. This function figures out if this modification means the
8286** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008287** routine. Balancing routines are:
8288**
8289** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008290** balance_deeper()
8291** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008292*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008293static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008294 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008295 const int nMin = pCur->pBt->usableSize * 2 / 3;
8296 u8 aBalanceQuickSpace[13];
8297 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008298
drhcc5f8a42016-02-06 22:32:06 +00008299 VVA_ONLY( int balance_quick_called = 0 );
8300 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008301
8302 do {
8303 int iPage = pCur->iPage;
drh352a35a2017-08-15 03:46:47 +00008304 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008305
drha941ff72019-02-12 00:58:10 +00008306 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
danielk1977a50d9aa2009-06-08 14:49:45 +00008307 if( iPage==0 ){
8308 if( pPage->nOverflow ){
8309 /* The root page of the b-tree is overfull. In this case call the
8310 ** balance_deeper() function to create a new child for the root-page
8311 ** and copy the current contents of the root-page to it. The
8312 ** next iteration of the do-loop will balance the child page.
8313 */
drhcc5f8a42016-02-06 22:32:06 +00008314 assert( balance_deeper_called==0 );
8315 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008316 rc = balance_deeper(pPage, &pCur->apPage[1]);
8317 if( rc==SQLITE_OK ){
8318 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008319 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008320 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008321 pCur->apPage[0] = pPage;
8322 pCur->pPage = pCur->apPage[1];
8323 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008324 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008325 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008326 break;
8327 }
8328 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8329 break;
8330 }else{
8331 MemPage * const pParent = pCur->apPage[iPage-1];
8332 int const iIdx = pCur->aiIdx[iPage-1];
8333
8334 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00008335 if( rc==SQLITE_OK && pParent->nFree<0 ){
8336 rc = btreeComputeFreeSpace(pParent);
8337 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008338 if( rc==SQLITE_OK ){
8339#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008340 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008341 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008342 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008343 && pParent->pgno!=1
8344 && pParent->nCell==iIdx
8345 ){
8346 /* Call balance_quick() to create a new sibling of pPage on which
8347 ** to store the overflow cell. balance_quick() inserts a new cell
8348 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008349 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008350 ** use either balance_nonroot() or balance_deeper(). Until this
8351 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8352 ** buffer.
8353 **
8354 ** The purpose of the following assert() is to check that only a
8355 ** single call to balance_quick() is made for each call to this
8356 ** function. If this were not verified, a subtle bug involving reuse
8357 ** of the aBalanceQuickSpace[] might sneak in.
8358 */
drhcc5f8a42016-02-06 22:32:06 +00008359 assert( balance_quick_called==0 );
8360 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008361 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8362 }else
8363#endif
8364 {
8365 /* In this case, call balance_nonroot() to redistribute cells
8366 ** between pPage and up to 2 of its sibling pages. This involves
8367 ** modifying the contents of pParent, which may cause pParent to
8368 ** become overfull or underfull. The next iteration of the do-loop
8369 ** will balance the parent page to correct this.
8370 **
8371 ** If the parent page becomes overfull, the overflow cell or cells
8372 ** are stored in the pSpace buffer allocated immediately below.
8373 ** A subsequent iteration of the do-loop will deal with this by
8374 ** calling balance_nonroot() (balance_deeper() may be called first,
8375 ** but it doesn't deal with overflow cells - just moves them to a
8376 ** different page). Once this subsequent call to balance_nonroot()
8377 ** has completed, it is safe to release the pSpace buffer used by
8378 ** the previous call, as the overflow cell data will have been
8379 ** copied either into the body of a database page or into the new
8380 ** pSpace buffer passed to the latter call to balance_nonroot().
8381 */
8382 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008383 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8384 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008385 if( pFree ){
8386 /* If pFree is not NULL, it points to the pSpace buffer used
8387 ** by a previous call to balance_nonroot(). Its contents are
8388 ** now stored either on real database pages or within the
8389 ** new pSpace buffer, so it may be safely freed here. */
8390 sqlite3PageFree(pFree);
8391 }
8392
danielk19774dbaa892009-06-16 16:50:22 +00008393 /* The pSpace buffer will be freed after the next call to
8394 ** balance_nonroot(), or just before this function returns, whichever
8395 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008396 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008397 }
8398 }
8399
8400 pPage->nOverflow = 0;
8401
8402 /* The next iteration of the do-loop balances the parent page. */
8403 releasePage(pPage);
8404 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008405 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008406 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008407 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008408 }while( rc==SQLITE_OK );
8409
8410 if( pFree ){
8411 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008412 }
8413 return rc;
8414}
8415
drh3de5d162018-05-03 03:59:02 +00008416/* Overwrite content from pX into pDest. Only do the write if the
8417** content is different from what is already there.
8418*/
8419static int btreeOverwriteContent(
8420 MemPage *pPage, /* MemPage on which writing will occur */
8421 u8 *pDest, /* Pointer to the place to start writing */
8422 const BtreePayload *pX, /* Source of data to write */
8423 int iOffset, /* Offset of first byte to write */
8424 int iAmt /* Number of bytes to be written */
8425){
8426 int nData = pX->nData - iOffset;
8427 if( nData<=0 ){
8428 /* Overwritting with zeros */
8429 int i;
8430 for(i=0; i<iAmt && pDest[i]==0; i++){}
8431 if( i<iAmt ){
8432 int rc = sqlite3PagerWrite(pPage->pDbPage);
8433 if( rc ) return rc;
8434 memset(pDest + i, 0, iAmt - i);
8435 }
8436 }else{
8437 if( nData<iAmt ){
8438 /* Mixed read data and zeros at the end. Make a recursive call
8439 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008440 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8441 iAmt-nData);
8442 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008443 iAmt = nData;
8444 }
8445 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8446 int rc = sqlite3PagerWrite(pPage->pDbPage);
8447 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00008448 /* In a corrupt database, it is possible for the source and destination
8449 ** buffers to overlap. This is harmless since the database is already
8450 ** corrupt but it does cause valgrind and ASAN warnings. So use
8451 ** memmove(). */
8452 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00008453 }
8454 }
8455 return SQLITE_OK;
8456}
8457
8458/*
8459** Overwrite the cell that cursor pCur is pointing to with fresh content
8460** contained in pX.
8461*/
8462static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8463 int iOffset; /* Next byte of pX->pData to write */
8464 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8465 int rc; /* Return code */
8466 MemPage *pPage = pCur->pPage; /* Page being written */
8467 BtShared *pBt; /* Btree */
8468 Pgno ovflPgno; /* Next overflow page to write */
8469 u32 ovflPageSize; /* Size to write on overflow page */
8470
drh4f84e9c2018-05-03 13:56:23 +00008471 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){
8472 return SQLITE_CORRUPT_BKPT;
8473 }
drh3de5d162018-05-03 03:59:02 +00008474 /* Overwrite the local portion first */
8475 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8476 0, pCur->info.nLocal);
8477 if( rc ) return rc;
8478 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8479
8480 /* Now overwrite the overflow pages */
8481 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008482 assert( nTotal>=0 );
8483 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008484 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8485 pBt = pPage->pBt;
8486 ovflPageSize = pBt->usableSize - 4;
8487 do{
8488 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8489 if( rc ) return rc;
drh4f84e9c2018-05-03 13:56:23 +00008490 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
drhd5aa9262018-05-03 16:56:06 +00008491 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008492 }else{
drh30f7a252018-05-07 11:29:59 +00008493 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008494 ovflPgno = get4byte(pPage->aData);
8495 }else{
8496 ovflPageSize = nTotal - iOffset;
8497 }
8498 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8499 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008500 }
drhd5aa9262018-05-03 16:56:06 +00008501 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008502 if( rc ) return rc;
8503 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008504 }while( iOffset<nTotal );
8505 return SQLITE_OK;
8506}
8507
drhf74b8d92002-09-01 23:20:45 +00008508
8509/*
drh8eeb4462016-05-21 20:03:42 +00008510** Insert a new record into the BTree. The content of the new record
8511** is described by the pX object. The pCur cursor is used only to
8512** define what table the record should be inserted into, and is left
8513** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008514**
drh8eeb4462016-05-21 20:03:42 +00008515** For a table btree (used for rowid tables), only the pX.nKey value of
8516** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8517** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8518** hold the content of the row.
8519**
8520** For an index btree (used for indexes and WITHOUT ROWID tables), the
8521** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8522** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008523**
8524** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008525** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8526** been performed. In other words, if seekResult!=0 then the cursor
8527** is currently pointing to a cell that will be adjacent to the cell
8528** to be inserted. If seekResult<0 then pCur points to a cell that is
8529** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8530** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008531**
drheaf6ae22016-11-09 20:14:34 +00008532** If seekResult==0, that means pCur is pointing at some unknown location.
8533** In that case, this routine must seek the cursor to the correct insertion
8534** point for (pKey,nKey) before doing the insertion. For index btrees,
8535** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8536** key values and pX->aMem can be used instead of pX->pKey to avoid having
8537** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008538*/
drh3aac2dd2004-04-26 14:10:20 +00008539int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008540 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008541 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008542 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008543 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008544){
drh3b7511c2001-05-26 13:15:44 +00008545 int rc;
drh3e9ca092009-09-08 01:14:48 +00008546 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008547 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008548 int idx;
drh3b7511c2001-05-26 13:15:44 +00008549 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008550 Btree *p = pCur->pBtree;
8551 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008552 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008553 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008554
danf91c1312017-01-10 20:04:38 +00008555 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8556
drh98add2e2009-07-20 17:11:49 +00008557 if( pCur->eState==CURSOR_FAULT ){
8558 assert( pCur->skipNext!=SQLITE_OK );
8559 return pCur->skipNext;
8560 }
8561
dan7a2347e2016-01-07 16:43:54 +00008562 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008563 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8564 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008565 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008566 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8567
danielk197731d31b82009-07-13 13:18:07 +00008568 /* Assert that the caller has been consistent. If this cursor was opened
8569 ** expecting an index b-tree, then the caller should be inserting blob
8570 ** keys with no associated data. If the cursor was opened expecting an
8571 ** intkey table, the caller should be inserting integer keys with a
8572 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008573 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008574
danielk19779c3acf32009-05-02 07:36:49 +00008575 /* Save the positions of any other cursors open on this table.
8576 **
danielk19773509a652009-07-06 18:56:13 +00008577 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008578 ** example, when inserting data into a table with auto-generated integer
8579 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8580 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008581 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008582 ** that the cursor is already where it needs to be and returns without
8583 ** doing any work. To avoid thwarting these optimizations, it is important
8584 ** not to clear the cursor here.
8585 */
drh27fb7462015-06-30 02:47:36 +00008586 if( pCur->curFlags & BTCF_Multiple ){
8587 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8588 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008589 }
8590
danielk197771d5d2c2008-09-29 11:49:47 +00008591 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008592 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008593 /* If this is an insert into a table b-tree, invalidate any incrblob
8594 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008595 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008596
danf91c1312017-01-10 20:04:38 +00008597 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008598 ** to a row with the same key as the new entry being inserted.
8599 */
8600#ifdef SQLITE_DEBUG
8601 if( flags & BTREE_SAVEPOSITION ){
8602 assert( pCur->curFlags & BTCF_ValidNKey );
8603 assert( pX->nKey==pCur->info.nKey );
8604 assert( pCur->info.nSize!=0 );
8605 assert( loc==0 );
8606 }
8607#endif
danf91c1312017-01-10 20:04:38 +00008608
drhd720d392018-05-07 17:27:04 +00008609 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8610 ** that the cursor is not pointing to a row to be overwritten.
8611 ** So do a complete check.
8612 */
drh7a1c28d2016-11-10 20:42:08 +00008613 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008614 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008615 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008616 assert( pX->nData>=0 && pX->nZero>=0 );
8617 if( pCur->info.nSize!=0
8618 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8619 ){
drhd720d392018-05-07 17:27:04 +00008620 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008621 return btreeOverwriteCell(pCur, pX);
8622 }
drhd720d392018-05-07 17:27:04 +00008623 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008624 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008625 /* The cursor is *not* pointing to the cell to be overwritten, nor
8626 ** to an adjacent cell. Move the cursor so that it is pointing either
8627 ** to the cell to be overwritten or an adjacent cell.
8628 */
danf91c1312017-01-10 20:04:38 +00008629 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008630 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008631 }
drhd720d392018-05-07 17:27:04 +00008632 }else{
8633 /* This is an index or a WITHOUT ROWID table */
8634
8635 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8636 ** to a row with the same key as the new entry being inserted.
8637 */
8638 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8639
8640 /* If the cursor is not already pointing either to the cell to be
8641 ** overwritten, or if a new cell is being inserted, if the cursor is
8642 ** not pointing to an immediately adjacent cell, then move the cursor
8643 ** so that it does.
8644 */
8645 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8646 if( pX->nMem ){
8647 UnpackedRecord r;
8648 r.pKeyInfo = pCur->pKeyInfo;
8649 r.aMem = pX->aMem;
8650 r.nField = pX->nMem;
8651 r.default_rc = 0;
8652 r.errCode = 0;
8653 r.r1 = 0;
8654 r.r2 = 0;
8655 r.eqSeen = 0;
8656 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8657 }else{
8658 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8659 }
8660 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00008661 }
drh89ee2292018-05-07 18:41:19 +00008662
8663 /* If the cursor is currently pointing to an entry to be overwritten
8664 ** and the new content is the same as as the old, then use the
8665 ** overwrite optimization.
8666 */
8667 if( loc==0 ){
8668 getCellInfo(pCur);
8669 if( pCur->info.nKey==pX->nKey ){
8670 BtreePayload x2;
8671 x2.pData = pX->pKey;
8672 x2.nData = pX->nKey;
8673 x2.nZero = 0;
8674 return btreeOverwriteCell(pCur, &x2);
8675 }
8676 }
8677
danielk1977da184232006-01-05 11:34:32 +00008678 }
danielk1977b980d2212009-06-22 18:03:51 +00008679 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008680
drh352a35a2017-08-15 03:46:47 +00008681 pPage = pCur->pPage;
drh8eeb4462016-05-21 20:03:42 +00008682 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008683 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00008684 if( pPage->nFree<0 ){
8685 rc = btreeComputeFreeSpace(pPage);
8686 if( rc ) return rc;
8687 }
danielk19778f880a82009-07-13 09:41:45 +00008688
drh3a4c1412004-05-09 20:40:11 +00008689 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008690 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008691 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008692 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008693 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008694 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008695 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008696 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008697 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008698 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008699 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008700 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008701 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008702 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008703 rc = sqlite3PagerWrite(pPage->pDbPage);
8704 if( rc ){
8705 goto end_insert;
8706 }
danielk197771d5d2c2008-09-29 11:49:47 +00008707 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008708 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008709 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008710 }
drh80159da2016-12-09 17:32:51 +00008711 rc = clearCell(pPage, oldCell, &info);
danca66f6c2017-06-08 11:14:08 +00008712 if( info.nSize==szNew && info.nLocal==info.nPayload
8713 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8714 ){
drhf9238252016-12-09 18:09:42 +00008715 /* Overwrite the old cell with the new if they are the same size.
8716 ** We could also try to do this if the old cell is smaller, then add
8717 ** the leftover space to the free list. But experiments show that
8718 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008719 ** calling dropCell() and insertCell().
8720 **
8721 ** This optimization cannot be used on an autovacuum database if the
8722 ** new entry uses overflow pages, as the insertCell() call below is
8723 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008724 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008725 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008726 memcpy(oldCell, newCell, szNew);
8727 return SQLITE_OK;
8728 }
8729 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008730 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008731 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008732 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008733 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008734 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008735 }else{
drh4b70f112004-05-02 21:12:19 +00008736 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008737 }
drh98add2e2009-07-20 17:11:49 +00008738 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008739 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008740 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008741
mistachkin48864df2013-03-21 21:20:32 +00008742 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008743 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008744 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008745 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008746 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008747 ** Previous versions of SQLite called moveToRoot() to move the cursor
8748 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008749 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8750 ** set the cursor state to "invalid". This makes common insert operations
8751 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008752 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008753 ** There is a subtle but important optimization here too. When inserting
8754 ** multiple records into an intkey b-tree using a single cursor (as can
8755 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8756 ** is advantageous to leave the cursor pointing to the last entry in
8757 ** the b-tree if possible. If the cursor is left pointing to the last
8758 ** entry in the table, and the next row inserted has an integer key
8759 ** larger than the largest existing key, it is possible to insert the
8760 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008761 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008762 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008763 if( pPage->nOverflow ){
8764 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008765 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008766 rc = balance(pCur);
8767
8768 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008769 ** fails. Internal data structure corruption will result otherwise.
8770 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8771 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00008772 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008773 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008774 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00008775 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00008776 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008777 assert( pCur->pKey==0 );
8778 pCur->pKey = sqlite3Malloc( pX->nKey );
8779 if( pCur->pKey==0 ){
8780 rc = SQLITE_NOMEM;
8781 }else{
8782 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8783 }
8784 }
8785 pCur->eState = CURSOR_REQUIRESEEK;
8786 pCur->nKey = pX->nKey;
8787 }
danielk19773f632d52009-05-02 10:03:09 +00008788 }
drh352a35a2017-08-15 03:46:47 +00008789 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008790
drh2e38c322004-09-03 18:38:44 +00008791end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008792 return rc;
8793}
8794
8795/*
danf0ee1d32015-09-12 19:26:11 +00008796** Delete the entry that the cursor is pointing to.
8797**
drhe807bdb2016-01-21 17:06:33 +00008798** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8799** the cursor is left pointing at an arbitrary location after the delete.
8800** But if that bit is set, then the cursor is left in a state such that
8801** the next call to BtreeNext() or BtreePrev() moves it to the same row
8802** as it would have been on if the call to BtreeDelete() had been omitted.
8803**
drhdef19e32016-01-27 16:26:25 +00008804** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8805** associated with a single table entry and its indexes. Only one of those
8806** deletes is considered the "primary" delete. The primary delete occurs
8807** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8808** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8809** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008810** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008811*/
drhe807bdb2016-01-21 17:06:33 +00008812int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008813 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008814 BtShared *pBt = p->pBt;
8815 int rc; /* Return code */
8816 MemPage *pPage; /* Page to delete cell from */
8817 unsigned char *pCell; /* Pointer to cell to delete */
8818 int iCellIdx; /* Index of cell to delete */
8819 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008820 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008821 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008822 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008823
dan7a2347e2016-01-07 16:43:54 +00008824 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008825 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008826 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008827 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008828 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8829 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +00008830 assert( pCur->ix<pCur->pPage->nCell );
drh98ef0f62015-06-30 01:25:52 +00008831 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008832 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008833
danielk19774dbaa892009-06-16 16:50:22 +00008834 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008835 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00008836 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008837 pCell = findCell(pPage, iCellIdx);
drhb0ea9432019-02-09 21:06:40 +00008838 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
danielk19774dbaa892009-06-16 16:50:22 +00008839
drhbfc7a8b2016-04-09 17:04:05 +00008840 /* If the bPreserve flag is set to true, then the cursor position must
8841 ** be preserved following this delete operation. If the current delete
8842 ** will cause a b-tree rebalance, then this is done by saving the cursor
8843 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8844 ** returning.
8845 **
8846 ** Or, if the current delete will not cause a rebalance, then the cursor
8847 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8848 ** before or after the deleted entry. In this case set bSkipnext to true. */
8849 if( bPreserve ){
8850 if( !pPage->leaf
8851 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00008852 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00008853 ){
8854 /* A b-tree rebalance will be required after deleting this entry.
8855 ** Save the cursor key. */
8856 rc = saveCursorKey(pCur);
8857 if( rc ) return rc;
8858 }else{
8859 bSkipnext = 1;
8860 }
8861 }
8862
danielk19774dbaa892009-06-16 16:50:22 +00008863 /* If the page containing the entry to delete is not a leaf page, move
8864 ** the cursor to the largest entry in the tree that is smaller than
8865 ** the entry being deleted. This cell will replace the cell being deleted
8866 ** from the internal node. The 'previous' entry is used for this instead
8867 ** of the 'next' entry, as the previous entry is always a part of the
8868 ** sub-tree headed by the child page of the cell being deleted. This makes
8869 ** balancing the tree following the delete operation easier. */
8870 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008871 rc = sqlite3BtreePrevious(pCur, 0);
8872 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008873 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008874 }
8875
8876 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008877 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008878 if( pCur->curFlags & BTCF_Multiple ){
8879 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8880 if( rc ) return rc;
8881 }
drhd60f4f42012-03-23 14:23:52 +00008882
8883 /* If this is a delete operation to remove a row from a table b-tree,
8884 ** invalidate any incrblob cursors open on the row being deleted. */
8885 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008886 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008887 }
8888
danf0ee1d32015-09-12 19:26:11 +00008889 /* Make the page containing the entry to be deleted writable. Then free any
8890 ** overflow pages associated with the entry and finally remove the cell
8891 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008892 rc = sqlite3PagerWrite(pPage->pDbPage);
8893 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008894 rc = clearCell(pPage, pCell, &info);
8895 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008896 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008897
danielk19774dbaa892009-06-16 16:50:22 +00008898 /* If the cell deleted was not located on a leaf page, then the cursor
8899 ** is currently pointing to the largest entry in the sub-tree headed
8900 ** by the child-page of the cell that was just deleted from an internal
8901 ** node. The cell from the leaf node needs to be moved to the internal
8902 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008903 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00008904 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008905 int nCell;
drh352a35a2017-08-15 03:46:47 +00008906 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00008907 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008908
drhb0ea9432019-02-09 21:06:40 +00008909 if( pLeaf->nFree<0 ){
8910 rc = btreeComputeFreeSpace(pLeaf);
8911 if( rc ) return rc;
8912 }
drh352a35a2017-08-15 03:46:47 +00008913 if( iCellDepth<pCur->iPage-1 ){
8914 n = pCur->apPage[iCellDepth+1]->pgno;
8915 }else{
8916 n = pCur->pPage->pgno;
8917 }
danielk19774dbaa892009-06-16 16:50:22 +00008918 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008919 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008920 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008921 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008922 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008923 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008924 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008925 if( rc==SQLITE_OK ){
8926 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8927 }
drh98add2e2009-07-20 17:11:49 +00008928 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008929 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008930 }
danielk19774dbaa892009-06-16 16:50:22 +00008931
8932 /* Balance the tree. If the entry deleted was located on a leaf page,
8933 ** then the cursor still points to that page. In this case the first
8934 ** call to balance() repairs the tree, and the if(...) condition is
8935 ** never true.
8936 **
8937 ** Otherwise, if the entry deleted was on an internal node page, then
8938 ** pCur is pointing to the leaf page from which a cell was removed to
8939 ** replace the cell deleted from the internal node. This is slightly
8940 ** tricky as the leaf node may be underfull, and the internal node may
8941 ** be either under or overfull. In this case run the balancing algorithm
8942 ** on the leaf node first. If the balance proceeds far enough up the
8943 ** tree that we can be sure that any problem in the internal node has
8944 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8945 ** walk the cursor up the tree to the internal node and balance it as
8946 ** well. */
8947 rc = balance(pCur);
8948 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00008949 releasePageNotNull(pCur->pPage);
8950 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00008951 while( pCur->iPage>iCellDepth ){
8952 releasePage(pCur->apPage[pCur->iPage--]);
8953 }
drh352a35a2017-08-15 03:46:47 +00008954 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00008955 rc = balance(pCur);
8956 }
8957
danielk19776b456a22005-03-21 04:04:02 +00008958 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008959 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008960 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00008961 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008962 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008963 pCur->eState = CURSOR_SKIPNEXT;
8964 if( iCellIdx>=pPage->nCell ){
8965 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00008966 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00008967 }else{
8968 pCur->skipNext = 1;
8969 }
8970 }else{
8971 rc = moveToRoot(pCur);
8972 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00008973 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00008974 pCur->eState = CURSOR_REQUIRESEEK;
8975 }
drh44548e72017-08-14 18:13:52 +00008976 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00008977 }
danielk19776b456a22005-03-21 04:04:02 +00008978 }
drh5e2f8b92001-05-28 00:41:15 +00008979 return rc;
drh3b7511c2001-05-26 13:15:44 +00008980}
drh8b2f49b2001-06-08 00:21:52 +00008981
8982/*
drhc6b52df2002-01-04 03:09:29 +00008983** Create a new BTree table. Write into *piTable the page
8984** number for the root page of the new table.
8985**
drhab01f612004-05-22 02:55:23 +00008986** The type of type is determined by the flags parameter. Only the
8987** following values of flags are currently in use. Other values for
8988** flags might not work:
8989**
8990** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8991** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008992*/
drhd4187c72010-08-30 22:15:45 +00008993static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008994 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008995 MemPage *pRoot;
8996 Pgno pgnoRoot;
8997 int rc;
drhd4187c72010-08-30 22:15:45 +00008998 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008999
drh1fee73e2007-08-29 04:00:57 +00009000 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009001 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009002 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00009003
danielk1977003ba062004-11-04 02:57:33 +00009004#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00009005 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00009006 if( rc ){
9007 return rc;
9008 }
danielk1977003ba062004-11-04 02:57:33 +00009009#else
danielk1977687566d2004-11-02 12:56:41 +00009010 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009011 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9012 MemPage *pPageMove; /* The page to move to. */
9013
danielk197720713f32007-05-03 11:43:33 +00009014 /* Creating a new table may probably require moving an existing database
9015 ** to make room for the new tables root page. In case this page turns
9016 ** out to be an overflow page, delete all overflow page-map caches
9017 ** held by open cursors.
9018 */
danielk197792d4d7a2007-05-04 12:05:56 +00009019 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009020
danielk1977003ba062004-11-04 02:57:33 +00009021 /* Read the value of meta[3] from the database to determine where the
9022 ** root page of the new table should go. meta[3] is the largest root-page
9023 ** created so far, so the new root-page is (meta[3]+1).
9024 */
danielk1977602b4662009-07-02 07:47:33 +00009025 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00009026 pgnoRoot++;
9027
danielk1977599fcba2004-11-08 07:13:13 +00009028 /* The new root-page may not be allocated on a pointer-map page, or the
9029 ** PENDING_BYTE page.
9030 */
drh72190432008-01-31 14:54:43 +00009031 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009032 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009033 pgnoRoot++;
9034 }
drh499e15b2015-05-22 12:37:37 +00009035 assert( pgnoRoot>=3 || CORRUPT_DB );
9036 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00009037
9038 /* Allocate a page. The page that currently resides at pgnoRoot will
9039 ** be moved to the allocated page (unless the allocated page happens
9040 ** to reside at pgnoRoot).
9041 */
dan51f0b6d2013-02-22 20:16:34 +00009042 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009043 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009044 return rc;
9045 }
danielk1977003ba062004-11-04 02:57:33 +00009046
9047 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009048 /* pgnoRoot is the page that will be used for the root-page of
9049 ** the new table (assuming an error did not occur). But we were
9050 ** allocated pgnoMove. If required (i.e. if it was not allocated
9051 ** by extending the file), the current page at position pgnoMove
9052 ** is already journaled.
9053 */
drheeb844a2009-08-08 18:01:07 +00009054 u8 eType = 0;
9055 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009056
danf7679ad2013-04-03 11:38:36 +00009057 /* Save the positions of any open cursors. This is required in
9058 ** case they are holding a reference to an xFetch reference
9059 ** corresponding to page pgnoRoot. */
9060 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009061 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009062 if( rc!=SQLITE_OK ){
9063 return rc;
9064 }
danielk1977f35843b2007-04-07 15:03:17 +00009065
9066 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009067 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009068 if( rc!=SQLITE_OK ){
9069 return rc;
9070 }
9071 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009072 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9073 rc = SQLITE_CORRUPT_BKPT;
9074 }
9075 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009076 releasePage(pRoot);
9077 return rc;
9078 }
drhccae6022005-02-26 17:31:26 +00009079 assert( eType!=PTRMAP_ROOTPAGE );
9080 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009081 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009082 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009083
9084 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009085 if( rc!=SQLITE_OK ){
9086 return rc;
9087 }
drhb00fc3b2013-08-21 23:42:32 +00009088 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009089 if( rc!=SQLITE_OK ){
9090 return rc;
9091 }
danielk19773b8a05f2007-03-19 17:44:26 +00009092 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009093 if( rc!=SQLITE_OK ){
9094 releasePage(pRoot);
9095 return rc;
9096 }
9097 }else{
9098 pRoot = pPageMove;
9099 }
9100
danielk197742741be2005-01-08 12:42:39 +00009101 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009102 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009103 if( rc ){
9104 releasePage(pRoot);
9105 return rc;
9106 }
drhbf592832010-03-30 15:51:12 +00009107
9108 /* When the new root page was allocated, page 1 was made writable in
9109 ** order either to increase the database filesize, or to decrement the
9110 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9111 */
9112 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009113 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009114 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009115 releasePage(pRoot);
9116 return rc;
9117 }
danielk197742741be2005-01-08 12:42:39 +00009118
danielk1977003ba062004-11-04 02:57:33 +00009119 }else{
drh4f0c5872007-03-26 22:05:01 +00009120 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009121 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009122 }
9123#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009124 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009125 if( createTabFlags & BTREE_INTKEY ){
9126 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9127 }else{
9128 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9129 }
9130 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009131 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009132 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00009133 *piTable = (int)pgnoRoot;
9134 return SQLITE_OK;
9135}
drhd677b3d2007-08-20 22:48:41 +00009136int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
9137 int rc;
9138 sqlite3BtreeEnter(p);
9139 rc = btreeCreateTable(p, piTable, flags);
9140 sqlite3BtreeLeave(p);
9141 return rc;
9142}
drh8b2f49b2001-06-08 00:21:52 +00009143
9144/*
9145** Erase the given database page and all its children. Return
9146** the page to the freelist.
9147*/
drh4b70f112004-05-02 21:12:19 +00009148static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00009149 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00009150 Pgno pgno, /* Page number to clear */
9151 int freePageFlag, /* Deallocate page if true */
9152 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00009153){
danielk1977146ba992009-07-22 14:08:13 +00009154 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00009155 int rc;
drh4b70f112004-05-02 21:12:19 +00009156 unsigned char *pCell;
9157 int i;
dan8ce71842014-01-14 20:14:09 +00009158 int hdr;
drh80159da2016-12-09 17:32:51 +00009159 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00009160
drh1fee73e2007-08-29 04:00:57 +00009161 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00009162 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00009163 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00009164 }
drh28f58dd2015-06-27 19:45:03 +00009165 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00009166 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00009167 if( pPage->bBusy ){
9168 rc = SQLITE_CORRUPT_BKPT;
9169 goto cleardatabasepage_out;
9170 }
9171 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00009172 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00009173 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00009174 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00009175 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00009176 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009177 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009178 }
drh80159da2016-12-09 17:32:51 +00009179 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00009180 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009181 }
drha34b6762004-05-07 13:30:42 +00009182 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00009183 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009184 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00009185 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00009186 assert( pPage->intKey || CORRUPT_DB );
9187 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00009188 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00009189 }
9190 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00009191 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00009192 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00009193 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00009194 }
danielk19776b456a22005-03-21 04:04:02 +00009195
9196cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00009197 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00009198 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00009199 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009200}
9201
9202/*
drhab01f612004-05-22 02:55:23 +00009203** Delete all information from a single table in the database. iTable is
9204** the page number of the root of the table. After this routine returns,
9205** the root page is empty, but still exists.
9206**
9207** This routine will fail with SQLITE_LOCKED if there are any open
9208** read cursors on the table. Open write cursors are moved to the
9209** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00009210**
9211** If pnChange is not NULL, then table iTable must be an intkey table. The
9212** integer value pointed to by pnChange is incremented by the number of
9213** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00009214*/
danielk1977c7af4842008-10-27 13:59:33 +00009215int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00009216 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009217 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009218 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009219 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009220
drhc046e3e2009-07-15 11:26:44 +00009221 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009222
drhc046e3e2009-07-15 11:26:44 +00009223 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009224 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9225 ** is the root of a table b-tree - if it is not, the following call is
9226 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00009227 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00009228 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009229 }
drhd677b3d2007-08-20 22:48:41 +00009230 sqlite3BtreeLeave(p);
9231 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009232}
9233
9234/*
drh079a3072014-03-19 14:10:55 +00009235** Delete all information from the single table that pCur is open on.
9236**
9237** This routine only work for pCur on an ephemeral table.
9238*/
9239int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9240 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9241}
9242
9243/*
drh8b2f49b2001-06-08 00:21:52 +00009244** Erase all information in a table and add the root of the table to
9245** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009246** page 1) is never added to the freelist.
9247**
9248** This routine will fail with SQLITE_LOCKED if there are any open
9249** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009250**
9251** If AUTOVACUUM is enabled and the page at iTable is not the last
9252** root page in the database file, then the last root page
9253** in the database file is moved into the slot formerly occupied by
9254** iTable and that last slot formerly occupied by the last root page
9255** is added to the freelist instead of iTable. In this say, all
9256** root pages are kept at the beginning of the database file, which
9257** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9258** page number that used to be the last root page in the file before
9259** the move. If no page gets moved, *piMoved is set to 0.
9260** The last root page is recorded in meta[3] and the value of
9261** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009262*/
danielk197789d40042008-11-17 14:20:56 +00009263static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009264 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009265 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009266 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009267
drh1fee73e2007-08-29 04:00:57 +00009268 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009269 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009270 assert( iTable>=2 );
drh055f2982016-01-15 15:06:41 +00009271
drhb00fc3b2013-08-21 23:42:32 +00009272 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00009273 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00009274 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00009275 if( rc ){
9276 releasePage(pPage);
9277 return rc;
9278 }
danielk1977a0bf2652004-11-04 14:30:04 +00009279
drh205f48e2004-11-05 00:43:11 +00009280 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009281
danielk1977a0bf2652004-11-04 14:30:04 +00009282#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009283 freePage(pPage, &rc);
9284 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009285#else
drh055f2982016-01-15 15:06:41 +00009286 if( pBt->autoVacuum ){
9287 Pgno maxRootPgno;
9288 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009289
drh055f2982016-01-15 15:06:41 +00009290 if( iTable==maxRootPgno ){
9291 /* If the table being dropped is the table with the largest root-page
9292 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009293 */
drhc314dc72009-07-21 11:52:34 +00009294 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009295 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009296 if( rc!=SQLITE_OK ){
9297 return rc;
9298 }
9299 }else{
9300 /* The table being dropped does not have the largest root-page
9301 ** number in the database. So move the page that does into the
9302 ** gap left by the deleted root-page.
9303 */
9304 MemPage *pMove;
9305 releasePage(pPage);
9306 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9307 if( rc!=SQLITE_OK ){
9308 return rc;
9309 }
9310 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9311 releasePage(pMove);
9312 if( rc!=SQLITE_OK ){
9313 return rc;
9314 }
9315 pMove = 0;
9316 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9317 freePage(pMove, &rc);
9318 releasePage(pMove);
9319 if( rc!=SQLITE_OK ){
9320 return rc;
9321 }
9322 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009323 }
drh055f2982016-01-15 15:06:41 +00009324
9325 /* Set the new 'max-root-page' value in the database header. This
9326 ** is the old value less one, less one more if that happens to
9327 ** be a root-page number, less one again if that is the
9328 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009329 */
drh055f2982016-01-15 15:06:41 +00009330 maxRootPgno--;
9331 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9332 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9333 maxRootPgno--;
9334 }
9335 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9336
9337 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9338 }else{
9339 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009340 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009341 }
drh055f2982016-01-15 15:06:41 +00009342#endif
drh8b2f49b2001-06-08 00:21:52 +00009343 return rc;
9344}
drhd677b3d2007-08-20 22:48:41 +00009345int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9346 int rc;
9347 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009348 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009349 sqlite3BtreeLeave(p);
9350 return rc;
9351}
drh8b2f49b2001-06-08 00:21:52 +00009352
drh001bbcb2003-03-19 03:14:00 +00009353
drh8b2f49b2001-06-08 00:21:52 +00009354/*
danielk1977602b4662009-07-02 07:47:33 +00009355** This function may only be called if the b-tree connection already
9356** has a read or write transaction open on the database.
9357**
drh23e11ca2004-05-04 17:27:28 +00009358** Read the meta-information out of a database file. Meta[0]
9359** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009360** through meta[15] are available for use by higher layers. Meta[0]
9361** is read-only, the others are read/write.
9362**
9363** The schema layer numbers meta values differently. At the schema
9364** layer (and the SetCookie and ReadCookie opcodes) the number of
9365** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009366**
9367** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9368** of reading the value out of the header, it instead loads the "DataVersion"
9369** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9370** database file. It is a number computed by the pager. But its access
9371** pattern is the same as header meta values, and so it is convenient to
9372** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009373*/
danielk1977602b4662009-07-02 07:47:33 +00009374void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009375 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009376
drhd677b3d2007-08-20 22:48:41 +00009377 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009378 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00009379 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009380 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009381 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009382
drh91618562014-12-19 19:28:02 +00009383 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00009384 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00009385 }else{
9386 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9387 }
drhae157872004-08-14 19:20:09 +00009388
danielk1977602b4662009-07-02 07:47:33 +00009389 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9390 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009391#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009392 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9393 pBt->btsFlags |= BTS_READ_ONLY;
9394 }
danielk1977003ba062004-11-04 02:57:33 +00009395#endif
drhae157872004-08-14 19:20:09 +00009396
drhd677b3d2007-08-20 22:48:41 +00009397 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009398}
9399
9400/*
drh23e11ca2004-05-04 17:27:28 +00009401** Write meta-information back into the database. Meta[0] is
9402** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009403*/
danielk1977aef0bf62005-12-30 16:28:01 +00009404int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9405 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009406 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009407 int rc;
drh23e11ca2004-05-04 17:27:28 +00009408 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009409 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009410 assert( p->inTrans==TRANS_WRITE );
9411 assert( pBt->pPage1!=0 );
9412 pP1 = pBt->pPage1->aData;
9413 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9414 if( rc==SQLITE_OK ){
9415 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009416#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009417 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009418 assert( pBt->autoVacuum || iMeta==0 );
9419 assert( iMeta==0 || iMeta==1 );
9420 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009421 }
drh64022502009-01-09 14:11:04 +00009422#endif
drh5df72a52002-06-06 23:16:05 +00009423 }
drhd677b3d2007-08-20 22:48:41 +00009424 sqlite3BtreeLeave(p);
9425 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009426}
drh8c42ca92001-06-22 19:15:00 +00009427
danielk1977a5533162009-02-24 10:01:51 +00009428#ifndef SQLITE_OMIT_BTREECOUNT
9429/*
9430** The first argument, pCur, is a cursor opened on some b-tree. Count the
9431** number of entries in the b-tree and write the result to *pnEntry.
9432**
9433** SQLITE_OK is returned if the operation is successfully executed.
9434** Otherwise, if an error is encountered (i.e. an IO error or database
9435** corruption) an SQLite error code is returned.
9436*/
9437int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9438 i64 nEntry = 0; /* Value to return in *pnEntry */
9439 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009440
drh44548e72017-08-14 18:13:52 +00009441 rc = moveToRoot(pCur);
9442 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009443 *pnEntry = 0;
9444 return SQLITE_OK;
9445 }
danielk1977a5533162009-02-24 10:01:51 +00009446
9447 /* Unless an error occurs, the following loop runs one iteration for each
9448 ** page in the B-Tree structure (not including overflow pages).
9449 */
9450 while( rc==SQLITE_OK ){
9451 int iIdx; /* Index of child node in parent */
9452 MemPage *pPage; /* Current page of the b-tree */
9453
9454 /* If this is a leaf page or the tree is not an int-key tree, then
9455 ** this page contains countable entries. Increment the entry counter
9456 ** accordingly.
9457 */
drh352a35a2017-08-15 03:46:47 +00009458 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009459 if( pPage->leaf || !pPage->intKey ){
9460 nEntry += pPage->nCell;
9461 }
9462
9463 /* pPage is a leaf node. This loop navigates the cursor so that it
9464 ** points to the first interior cell that it points to the parent of
9465 ** the next page in the tree that has not yet been visited. The
9466 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9467 ** of the page, or to the number of cells in the page if the next page
9468 ** to visit is the right-child of its parent.
9469 **
9470 ** If all pages in the tree have been visited, return SQLITE_OK to the
9471 ** caller.
9472 */
9473 if( pPage->leaf ){
9474 do {
9475 if( pCur->iPage==0 ){
9476 /* All pages of the b-tree have been visited. Return successfully. */
9477 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009478 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009479 }
danielk197730548662009-07-09 05:07:37 +00009480 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009481 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009482
drh75e96b32017-04-01 00:20:06 +00009483 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009484 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009485 }
9486
9487 /* Descend to the child node of the cell that the cursor currently
9488 ** points at. This is the right-child if (iIdx==pPage->nCell).
9489 */
drh75e96b32017-04-01 00:20:06 +00009490 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009491 if( iIdx==pPage->nCell ){
9492 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9493 }else{
9494 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9495 }
9496 }
9497
shanebe217792009-03-05 04:20:31 +00009498 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009499 return rc;
9500}
9501#endif
drhdd793422001-06-28 01:54:48 +00009502
drhdd793422001-06-28 01:54:48 +00009503/*
drh5eddca62001-06-30 21:53:53 +00009504** Return the pager associated with a BTree. This routine is used for
9505** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009506*/
danielk1977aef0bf62005-12-30 16:28:01 +00009507Pager *sqlite3BtreePager(Btree *p){
9508 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009509}
drh5eddca62001-06-30 21:53:53 +00009510
drhb7f91642004-10-31 02:22:47 +00009511#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009512/*
9513** Append a message to the error message string.
9514*/
drh2e38c322004-09-03 18:38:44 +00009515static void checkAppendMsg(
9516 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009517 const char *zFormat,
9518 ...
9519){
9520 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009521 if( !pCheck->mxErr ) return;
9522 pCheck->mxErr--;
9523 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009524 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009525 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +00009526 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009527 }
drh867db832014-09-26 02:41:05 +00009528 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +00009529 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009530 }
drh0cdbe1a2018-05-09 13:46:26 +00009531 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009532 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +00009533 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009534 pCheck->mallocFailed = 1;
9535 }
drh5eddca62001-06-30 21:53:53 +00009536}
drhb7f91642004-10-31 02:22:47 +00009537#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009538
drhb7f91642004-10-31 02:22:47 +00009539#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009540
9541/*
9542** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9543** corresponds to page iPg is already set.
9544*/
9545static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9546 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9547 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9548}
9549
9550/*
9551** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9552*/
9553static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9554 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9555 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9556}
9557
9558
drh5eddca62001-06-30 21:53:53 +00009559/*
9560** Add 1 to the reference count for page iPage. If this is the second
9561** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009562** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009563** if this is the first reference to the page.
9564**
9565** Also check that the page number is in bounds.
9566*/
drh867db832014-09-26 02:41:05 +00009567static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +00009568 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +00009569 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009570 return 1;
9571 }
dan1235bb12012-04-03 17:43:28 +00009572 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009573 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009574 return 1;
9575 }
dan1235bb12012-04-03 17:43:28 +00009576 setPageReferenced(pCheck, iPage);
9577 return 0;
drh5eddca62001-06-30 21:53:53 +00009578}
9579
danielk1977afcdd022004-10-31 16:25:42 +00009580#ifndef SQLITE_OMIT_AUTOVACUUM
9581/*
9582** Check that the entry in the pointer-map for page iChild maps to
9583** page iParent, pointer type ptrType. If not, append an error message
9584** to pCheck.
9585*/
9586static void checkPtrmap(
9587 IntegrityCk *pCheck, /* Integrity check context */
9588 Pgno iChild, /* Child page number */
9589 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009590 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009591){
9592 int rc;
9593 u8 ePtrmapType;
9594 Pgno iPtrmapParent;
9595
9596 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9597 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009598 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009599 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009600 return;
9601 }
9602
9603 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009604 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009605 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9606 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9607 }
9608}
9609#endif
9610
drh5eddca62001-06-30 21:53:53 +00009611/*
9612** Check the integrity of the freelist or of an overflow page list.
9613** Verify that the number of pages on the list is N.
9614*/
drh30e58752002-03-02 20:41:57 +00009615static void checkList(
9616 IntegrityCk *pCheck, /* Integrity checking context */
9617 int isFreeList, /* True for a freelist. False for overflow page list */
9618 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00009619 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009620){
9621 int i;
drh3a4c1412004-05-09 20:40:11 +00009622 int expected = N;
drh91d58662018-07-20 13:39:28 +00009623 int nErrAtStart = pCheck->nErr;
9624 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009625 DbPage *pOvflPage;
9626 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +00009627 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +00009628 N--;
drh9584f582015-11-04 20:22:37 +00009629 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009630 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009631 break;
9632 }
danielk19773b8a05f2007-03-19 17:44:26 +00009633 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009634 if( isFreeList ){
drhae104742018-12-14 17:57:01 +00009635 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009636#ifndef SQLITE_OMIT_AUTOVACUUM
9637 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009638 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009639 }
9640#endif
drhae104742018-12-14 17:57:01 +00009641 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009642 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009643 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009644 N--;
9645 }else{
drhae104742018-12-14 17:57:01 +00009646 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009647 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009648#ifndef SQLITE_OMIT_AUTOVACUUM
9649 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009650 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009651 }
9652#endif
drh867db832014-09-26 02:41:05 +00009653 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009654 }
9655 N -= n;
drh30e58752002-03-02 20:41:57 +00009656 }
drh30e58752002-03-02 20:41:57 +00009657 }
danielk1977afcdd022004-10-31 16:25:42 +00009658#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009659 else{
9660 /* If this database supports auto-vacuum and iPage is not the last
9661 ** page in this overflow list, check that the pointer-map entry for
9662 ** the following page matches iPage.
9663 */
9664 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009665 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009666 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009667 }
danielk1977afcdd022004-10-31 16:25:42 +00009668 }
9669#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009670 iPage = get4byte(pOvflData);
9671 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +00009672 }
9673 if( N && nErrAtStart==pCheck->nErr ){
9674 checkAppendMsg(pCheck,
9675 "%s is %d but should be %d",
9676 isFreeList ? "size" : "overflow list length",
9677 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +00009678 }
9679}
drhb7f91642004-10-31 02:22:47 +00009680#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009681
drh67731a92015-04-16 11:56:03 +00009682/*
9683** An implementation of a min-heap.
9684**
9685** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009686** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009687** and aHeap[N*2+1].
9688**
9689** The heap property is this: Every node is less than or equal to both
9690** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009691** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009692**
9693** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9694** the heap, preserving the heap property. The btreeHeapPull() routine
9695** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009696** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009697** property.
9698**
9699** This heap is used for cell overlap and coverage testing. Each u32
9700** entry represents the span of a cell or freeblock on a btree page.
9701** The upper 16 bits are the index of the first byte of a range and the
9702** lower 16 bits are the index of the last byte of that range.
9703*/
9704static void btreeHeapInsert(u32 *aHeap, u32 x){
9705 u32 j, i = ++aHeap[0];
9706 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009707 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009708 x = aHeap[j];
9709 aHeap[j] = aHeap[i];
9710 aHeap[i] = x;
9711 i = j;
9712 }
9713}
9714static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9715 u32 j, i, x;
9716 if( (x = aHeap[0])==0 ) return 0;
9717 *pOut = aHeap[1];
9718 aHeap[1] = aHeap[x];
9719 aHeap[x] = 0xffffffff;
9720 aHeap[0]--;
9721 i = 1;
9722 while( (j = i*2)<=aHeap[0] ){
9723 if( aHeap[j]>aHeap[j+1] ) j++;
9724 if( aHeap[i]<aHeap[j] ) break;
9725 x = aHeap[i];
9726 aHeap[i] = aHeap[j];
9727 aHeap[j] = x;
9728 i = j;
9729 }
9730 return 1;
9731}
9732
drhb7f91642004-10-31 02:22:47 +00009733#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009734/*
9735** Do various sanity checks on a single page of a tree. Return
9736** the tree depth. Root pages return 0. Parents of root pages
9737** return 1, and so forth.
9738**
9739** These checks are done:
9740**
9741** 1. Make sure that cells and freeblocks do not overlap
9742** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009743** 2. Make sure integer cell keys are in order.
9744** 3. Check the integrity of overflow pages.
9745** 4. Recursively call checkTreePage on all children.
9746** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009747*/
9748static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009749 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009750 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009751 i64 *piMinKey, /* Write minimum integer primary key here */
9752 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009753){
drhcbc6b712015-07-02 16:17:30 +00009754 MemPage *pPage = 0; /* The page being analyzed */
9755 int i; /* Loop counter */
9756 int rc; /* Result code from subroutine call */
9757 int depth = -1, d2; /* Depth of a subtree */
9758 int pgno; /* Page number */
9759 int nFrag; /* Number of fragmented bytes on the page */
9760 int hdr; /* Offset to the page header */
9761 int cellStart; /* Offset to the start of the cell pointer array */
9762 int nCell; /* Number of cells */
9763 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9764 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9765 ** False if IPK must be strictly less than maxKey */
9766 u8 *data; /* Page content */
9767 u8 *pCell; /* Cell content */
9768 u8 *pCellIdx; /* Next element of the cell pointer array */
9769 BtShared *pBt; /* The BtShared object that owns pPage */
9770 u32 pc; /* Address of a cell */
9771 u32 usableSize; /* Usable size of the page */
9772 u32 contentOffset; /* Offset to the start of the cell content area */
9773 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009774 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009775 const char *saved_zPfx = pCheck->zPfx;
9776 int saved_v1 = pCheck->v1;
9777 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009778 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009779
drh5eddca62001-06-30 21:53:53 +00009780 /* Check that the page exists
9781 */
drhd9cb6ac2005-10-20 07:28:17 +00009782 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009783 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009784 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009785 if( checkRef(pCheck, iPage) ) return 0;
9786 pCheck->zPfx = "Page %d: ";
9787 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009788 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009789 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009790 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009791 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009792 }
danielk197793caf5a2009-07-11 06:55:33 +00009793
9794 /* Clear MemPage.isInit to make sure the corruption detection code in
9795 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009796 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009797 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009798 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009799 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009800 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009801 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009802 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009803 }
drhb0ea9432019-02-09 21:06:40 +00009804 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
9805 assert( rc==SQLITE_CORRUPT );
9806 checkAppendMsg(pCheck, "free space corruption", rc);
9807 goto end_of_check;
9808 }
drhcbc6b712015-07-02 16:17:30 +00009809 data = pPage->aData;
9810 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009811
drhcbc6b712015-07-02 16:17:30 +00009812 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009813 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009814 contentOffset = get2byteNotZero(&data[hdr+5]);
9815 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9816
9817 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9818 ** number of cells on the page. */
9819 nCell = get2byte(&data[hdr+3]);
9820 assert( pPage->nCell==nCell );
9821
9822 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9823 ** immediately follows the b-tree page header. */
9824 cellStart = hdr + 12 - 4*pPage->leaf;
9825 assert( pPage->aCellIdx==&data[cellStart] );
9826 pCellIdx = &data[cellStart + 2*(nCell-1)];
9827
9828 if( !pPage->leaf ){
9829 /* Analyze the right-child page of internal pages */
9830 pgno = get4byte(&data[hdr+8]);
9831#ifndef SQLITE_OMIT_AUTOVACUUM
9832 if( pBt->autoVacuum ){
9833 pCheck->zPfx = "On page %d at right child: ";
9834 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9835 }
9836#endif
9837 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9838 keyCanBeEqual = 0;
9839 }else{
9840 /* For leaf pages, the coverage check will occur in the same loop
9841 ** as the other cell checks, so initialize the heap. */
9842 heap = pCheck->heap;
9843 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009844 }
9845
drhcbc6b712015-07-02 16:17:30 +00009846 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9847 ** integer offsets to the cell contents. */
9848 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009849 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009850
drhcbc6b712015-07-02 16:17:30 +00009851 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009852 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009853 assert( pCellIdx==&data[cellStart + i*2] );
9854 pc = get2byteAligned(pCellIdx);
9855 pCellIdx -= 2;
9856 if( pc<contentOffset || pc>usableSize-4 ){
9857 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9858 pc, contentOffset, usableSize-4);
9859 doCoverageCheck = 0;
9860 continue;
shaneh195475d2010-02-19 04:28:08 +00009861 }
drhcbc6b712015-07-02 16:17:30 +00009862 pCell = &data[pc];
9863 pPage->xParseCell(pPage, pCell, &info);
9864 if( pc+info.nSize>usableSize ){
9865 checkAppendMsg(pCheck, "Extends off end of page");
9866 doCoverageCheck = 0;
9867 continue;
drh5eddca62001-06-30 21:53:53 +00009868 }
9869
drhcbc6b712015-07-02 16:17:30 +00009870 /* Check for integer primary key out of range */
9871 if( pPage->intKey ){
9872 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9873 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9874 }
9875 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009876 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009877 }
9878
9879 /* Check the content overflow list */
9880 if( info.nPayload>info.nLocal ){
9881 int nPage; /* Number of pages on the overflow chain */
9882 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009883 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009884 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009885 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009886#ifndef SQLITE_OMIT_AUTOVACUUM
9887 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009888 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009889 }
9890#endif
drh867db832014-09-26 02:41:05 +00009891 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009892 }
9893
drh5eddca62001-06-30 21:53:53 +00009894 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009895 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009896 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009897#ifndef SQLITE_OMIT_AUTOVACUUM
9898 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009899 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009900 }
9901#endif
drhcbc6b712015-07-02 16:17:30 +00009902 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9903 keyCanBeEqual = 0;
9904 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009905 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009906 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009907 }
drhcbc6b712015-07-02 16:17:30 +00009908 }else{
9909 /* Populate the coverage-checking heap for leaf pages */
9910 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009911 }
9912 }
drhcbc6b712015-07-02 16:17:30 +00009913 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009914
drh5eddca62001-06-30 21:53:53 +00009915 /* Check for complete coverage of the page
9916 */
drh867db832014-09-26 02:41:05 +00009917 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009918 if( doCoverageCheck && pCheck->mxErr>0 ){
9919 /* For leaf pages, the min-heap has already been initialized and the
9920 ** cells have already been inserted. But for internal pages, that has
9921 ** not yet been done, so do it now */
9922 if( !pPage->leaf ){
9923 heap = pCheck->heap;
9924 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009925 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009926 u32 size;
9927 pc = get2byteAligned(&data[cellStart+i*2]);
9928 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009929 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009930 }
drh2e38c322004-09-03 18:38:44 +00009931 }
drhcbc6b712015-07-02 16:17:30 +00009932 /* Add the freeblocks to the min-heap
9933 **
9934 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009935 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009936 ** freeblocks on the page.
9937 */
drh8c2bbb62009-07-10 02:52:20 +00009938 i = get2byte(&data[hdr+1]);
9939 while( i>0 ){
9940 int size, j;
drh5860a612019-02-12 16:58:26 +00009941 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +00009942 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +00009943 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +00009944 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009945 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9946 ** big-endian integer which is the offset in the b-tree page of the next
9947 ** freeblock in the chain, or zero if the freeblock is the last on the
9948 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009949 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009950 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9951 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +00009952 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
9953 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +00009954 i = j;
drh2e38c322004-09-03 18:38:44 +00009955 }
drhcbc6b712015-07-02 16:17:30 +00009956 /* Analyze the min-heap looking for overlap between cells and/or
9957 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009958 **
9959 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9960 ** There is an implied first entry the covers the page header, the cell
9961 ** pointer index, and the gap between the cell pointer index and the start
9962 ** of cell content.
9963 **
9964 ** The loop below pulls entries from the min-heap in order and compares
9965 ** the start_address against the previous end_address. If there is an
9966 ** overlap, that means bytes are used multiple times. If there is a gap,
9967 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009968 */
9969 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009970 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009971 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009972 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009973 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009974 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009975 break;
drh67731a92015-04-16 11:56:03 +00009976 }else{
drhcbc6b712015-07-02 16:17:30 +00009977 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009978 prev = x;
drh2e38c322004-09-03 18:38:44 +00009979 }
9980 }
drhcbc6b712015-07-02 16:17:30 +00009981 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009982 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9983 ** is stored in the fifth field of the b-tree page header.
9984 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9985 ** number of fragmented free bytes within the cell content area.
9986 */
drhcbc6b712015-07-02 16:17:30 +00009987 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009988 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009989 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009990 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009991 }
9992 }
drh867db832014-09-26 02:41:05 +00009993
9994end_of_check:
drh72e191e2015-07-04 11:14:20 +00009995 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009996 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009997 pCheck->zPfx = saved_zPfx;
9998 pCheck->v1 = saved_v1;
9999 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +000010000 return depth+1;
drh5eddca62001-06-30 21:53:53 +000010001}
drhb7f91642004-10-31 02:22:47 +000010002#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010003
drhb7f91642004-10-31 02:22:47 +000010004#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010005/*
10006** This routine does a complete check of the given BTree file. aRoot[] is
10007** an array of pages numbers were each page number is the root page of
10008** a table. nRoot is the number of entries in aRoot.
10009**
danielk19773509a652009-07-06 18:56:13 +000010010** A read-only or read-write transaction must be opened before calling
10011** this function.
10012**
drhc890fec2008-08-01 20:10:08 +000010013** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010014** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010015** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010016** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +000010017*/
drh1dcdbc02007-01-27 02:24:54 +000010018char *sqlite3BtreeIntegrityCheck(
10019 Btree *p, /* The btree to be checked */
10020 int *aRoot, /* An array of root pages numbers for individual trees */
10021 int nRoot, /* Number of entries in aRoot[] */
10022 int mxErr, /* Stop reporting errors after this many */
10023 int *pnErr /* Write number of errors seen to this variable */
10024){
danielk197789d40042008-11-17 14:20:56 +000010025 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010026 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010027 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010028 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010029 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +000010030 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +000010031
drhd677b3d2007-08-20 22:48:41 +000010032 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010033 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010034 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10035 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +000010036 sCheck.pBt = pBt;
10037 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010038 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010039 sCheck.mxErr = mxErr;
10040 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +000010041 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +000010042 sCheck.zPfx = 0;
10043 sCheck.v1 = 0;
10044 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010045 sCheck.aPgRef = 0;
10046 sCheck.heap = 0;
10047 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010048 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010049 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010050 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010051 }
dan1235bb12012-04-03 17:43:28 +000010052
10053 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10054 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +000010055 sCheck.mallocFailed = 1;
10056 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010057 }
drhe05b3f82015-07-01 17:53:49 +000010058 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10059 if( sCheck.heap==0 ){
10060 sCheck.mallocFailed = 1;
10061 goto integrity_ck_cleanup;
10062 }
10063
drh42cac6d2004-11-20 20:31:11 +000010064 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010065 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010066
10067 /* Check the integrity of the freelist
10068 */
drh867db832014-09-26 02:41:05 +000010069 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +000010070 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +000010071 get4byte(&pBt->pPage1->aData[36]));
10072 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +000010073
10074 /* Check all the tables.
10075 */
drh040d77a2018-07-20 15:44:09 +000010076#ifndef SQLITE_OMIT_AUTOVACUUM
10077 if( pBt->autoVacuum ){
10078 int mx = 0;
10079 int mxInHdr;
10080 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10081 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10082 if( mx!=mxInHdr ){
10083 checkAppendMsg(&sCheck,
10084 "max rootpage (%d) disagrees with header (%d)",
10085 mx, mxInHdr
10086 );
10087 }
10088 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10089 checkAppendMsg(&sCheck,
10090 "incremental_vacuum enabled with a max rootpage of zero"
10091 );
10092 }
10093#endif
drhcbc6b712015-07-02 16:17:30 +000010094 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010095 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010096 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010097 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010098 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010099#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010100 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +000010101 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010102 }
10103#endif
drhcbc6b712015-07-02 16:17:30 +000010104 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000010105 }
drhcbc6b712015-07-02 16:17:30 +000010106 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000010107
10108 /* Make sure every page in the file is referenced
10109 */
drh1dcdbc02007-01-27 02:24:54 +000010110 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000010111#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +000010112 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +000010113 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +000010114 }
danielk1977afcdd022004-10-31 16:25:42 +000010115#else
10116 /* If the database supports auto-vacuum, make sure no tables contain
10117 ** references to pointer-map pages.
10118 */
dan1235bb12012-04-03 17:43:28 +000010119 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +000010120 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010121 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +000010122 }
dan1235bb12012-04-03 17:43:28 +000010123 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +000010124 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010125 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +000010126 }
10127#endif
drh5eddca62001-06-30 21:53:53 +000010128 }
10129
drh5eddca62001-06-30 21:53:53 +000010130 /* Clean up and report errors.
10131 */
drhe05b3f82015-07-01 17:53:49 +000010132integrity_ck_cleanup:
10133 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000010134 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +000010135 if( sCheck.mallocFailed ){
drh0cdbe1a2018-05-09 13:46:26 +000010136 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010137 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000010138 }
drh1dcdbc02007-01-27 02:24:54 +000010139 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000010140 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010141 /* Make sure this analysis did not leave any unref() pages. */
10142 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10143 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000010144 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000010145}
drhb7f91642004-10-31 02:22:47 +000010146#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000010147
drh73509ee2003-04-06 20:44:45 +000010148/*
drhd4e0bb02012-05-27 01:19:04 +000010149** Return the full pathname of the underlying database file. Return
10150** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000010151**
10152** The pager filename is invariant as long as the pager is
10153** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000010154*/
danielk1977aef0bf62005-12-30 16:28:01 +000010155const char *sqlite3BtreeGetFilename(Btree *p){
10156 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000010157 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000010158}
10159
10160/*
danielk19775865e3d2004-06-14 06:03:57 +000010161** Return the pathname of the journal file for this database. The return
10162** value of this routine is the same regardless of whether the journal file
10163** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000010164**
10165** The pager journal filename is invariant as long as the pager is
10166** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000010167*/
danielk1977aef0bf62005-12-30 16:28:01 +000010168const char *sqlite3BtreeGetJournalname(Btree *p){
10169 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000010170 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000010171}
10172
danielk19771d850a72004-05-31 08:26:49 +000010173/*
10174** Return non-zero if a transaction is active.
10175*/
danielk1977aef0bf62005-12-30 16:28:01 +000010176int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000010177 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +000010178 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +000010179}
10180
dana550f2d2010-08-02 10:47:05 +000010181#ifndef SQLITE_OMIT_WAL
10182/*
10183** Run a checkpoint on the Btree passed as the first argument.
10184**
10185** Return SQLITE_LOCKED if this or any other connection has an open
10186** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000010187**
dancdc1f042010-11-18 12:11:05 +000010188** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000010189*/
dancdc1f042010-11-18 12:11:05 +000010190int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000010191 int rc = SQLITE_OK;
10192 if( p ){
10193 BtShared *pBt = p->pBt;
10194 sqlite3BtreeEnter(p);
10195 if( pBt->inTransaction!=TRANS_NONE ){
10196 rc = SQLITE_LOCKED;
10197 }else{
dan7fb89902016-08-12 16:21:15 +000010198 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000010199 }
10200 sqlite3BtreeLeave(p);
10201 }
10202 return rc;
10203}
10204#endif
10205
danielk19771d850a72004-05-31 08:26:49 +000010206/*
danielk19772372c2b2006-06-27 16:34:56 +000010207** Return non-zero if a read (or write) transaction is active.
10208*/
10209int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +000010210 assert( p );
drhe5fe6902007-12-07 18:55:28 +000010211 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +000010212 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +000010213}
10214
danielk197704103022009-02-03 16:51:24 +000010215int sqlite3BtreeIsInBackup(Btree *p){
10216 assert( p );
10217 assert( sqlite3_mutex_held(p->db->mutex) );
10218 return p->nBackup!=0;
10219}
10220
danielk19772372c2b2006-06-27 16:34:56 +000010221/*
danielk1977da184232006-01-05 11:34:32 +000010222** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010223** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010224** purposes (for example, to store a high-level schema associated with
10225** the shared-btree). The btree layer manages reference counting issues.
10226**
10227** The first time this is called on a shared-btree, nBytes bytes of memory
10228** are allocated, zeroed, and returned to the caller. For each subsequent
10229** call the nBytes parameter is ignored and a pointer to the same blob
10230** of memory returned.
10231**
danielk1977171bfed2008-06-23 09:50:50 +000010232** If the nBytes parameter is 0 and the blob of memory has not yet been
10233** allocated, a null pointer is returned. If the blob has already been
10234** allocated, it is returned as normal.
10235**
danielk1977da184232006-01-05 11:34:32 +000010236** Just before the shared-btree is closed, the function passed as the
10237** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010238** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010239** on the memory, the btree layer does that.
10240*/
10241void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10242 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010243 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010244 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010245 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010246 pBt->xFreeSchema = xFree;
10247 }
drh27641702007-08-22 02:56:42 +000010248 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010249 return pBt->pSchema;
10250}
10251
danielk1977c87d34d2006-01-06 13:00:28 +000010252/*
danielk1977404ca072009-03-16 13:19:36 +000010253** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10254** btree as the argument handle holds an exclusive lock on the
10255** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010256*/
10257int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010258 int rc;
drhe5fe6902007-12-07 18:55:28 +000010259 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010260 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +000010261 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10262 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010263 sqlite3BtreeLeave(p);
10264 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010265}
10266
drha154dcd2006-03-22 22:10:07 +000010267
10268#ifndef SQLITE_OMIT_SHARED_CACHE
10269/*
10270** Obtain a lock on the table whose root page is iTab. The
10271** lock is a write lock if isWritelock is true or a read lock
10272** if it is false.
10273*/
danielk1977c00da102006-01-07 13:21:04 +000010274int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010275 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010276 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010277 if( p->sharable ){
10278 u8 lockType = READ_LOCK + isWriteLock;
10279 assert( READ_LOCK+1==WRITE_LOCK );
10280 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010281
drh6a9ad3d2008-04-02 16:29:30 +000010282 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010283 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010284 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010285 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010286 }
10287 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010288 }
10289 return rc;
10290}
drha154dcd2006-03-22 22:10:07 +000010291#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010292
danielk1977b4e9af92007-05-01 17:49:49 +000010293#ifndef SQLITE_OMIT_INCRBLOB
10294/*
10295** Argument pCsr must be a cursor opened for writing on an
10296** INTKEY table currently pointing at a valid table entry.
10297** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010298**
10299** Only the data content may only be modified, it is not possible to
10300** change the length of the data stored. If this function is called with
10301** parameters that attempt to write past the end of the existing data,
10302** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010303*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010304int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010305 int rc;
dan7a2347e2016-01-07 16:43:54 +000010306 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010307 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010308 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010309
danielk1977c9000e62009-07-08 13:55:28 +000010310 rc = restoreCursorPosition(pCsr);
10311 if( rc!=SQLITE_OK ){
10312 return rc;
10313 }
danielk19773588ceb2008-06-10 17:30:26 +000010314 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10315 if( pCsr->eState!=CURSOR_VALID ){
10316 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010317 }
10318
dan227a1c42013-04-03 11:17:39 +000010319 /* Save the positions of all other cursors open on this table. This is
10320 ** required in case any of them are holding references to an xFetch
10321 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010322 **
drh3f387402014-09-24 01:23:00 +000010323 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010324 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10325 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010326 */
drh370c9f42013-04-03 20:04:04 +000010327 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10328 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010329
danielk1977c9000e62009-07-08 13:55:28 +000010330 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010331 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010332 ** (b) there is a read/write transaction open,
10333 ** (c) the connection holds a write-lock on the table (if required),
10334 ** (d) there are no conflicting read-locks, and
10335 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010336 */
drh036dbec2014-03-11 23:40:44 +000010337 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010338 return SQLITE_READONLY;
10339 }
drhc9166342012-01-05 23:32:06 +000010340 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10341 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010342 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10343 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010344 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010345
drhfb192682009-07-11 18:26:28 +000010346 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010347}
danielk19772dec9702007-05-02 16:48:37 +000010348
10349/*
dan5a500af2014-03-11 20:33:04 +000010350** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010351*/
dan5a500af2014-03-11 20:33:04 +000010352void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010353 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010354 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010355}
danielk1977b4e9af92007-05-01 17:49:49 +000010356#endif
dane04dc882010-04-20 18:53:15 +000010357
10358/*
10359** Set both the "read version" (single byte at byte offset 18) and
10360** "write version" (single byte at byte offset 19) fields in the database
10361** header to iVersion.
10362*/
10363int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10364 BtShared *pBt = pBtree->pBt;
10365 int rc; /* Return code */
10366
dane04dc882010-04-20 18:53:15 +000010367 assert( iVersion==1 || iVersion==2 );
10368
danb9780022010-04-21 18:37:57 +000010369 /* If setting the version fields to 1, do not automatically open the
10370 ** WAL connection, even if the version fields are currently set to 2.
10371 */
drhc9166342012-01-05 23:32:06 +000010372 pBt->btsFlags &= ~BTS_NO_WAL;
10373 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010374
drhbb2d9b12018-06-06 16:28:40 +000010375 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000010376 if( rc==SQLITE_OK ){
10377 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010378 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000010379 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000010380 if( rc==SQLITE_OK ){
10381 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10382 if( rc==SQLITE_OK ){
10383 aData[18] = (u8)iVersion;
10384 aData[19] = (u8)iVersion;
10385 }
10386 }
10387 }
dane04dc882010-04-20 18:53:15 +000010388 }
10389
drhc9166342012-01-05 23:32:06 +000010390 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010391 return rc;
10392}
dan428c2182012-08-06 18:50:11 +000010393
drhe0997b32015-03-20 14:57:50 +000010394/*
10395** Return true if the cursor has a hint specified. This routine is
10396** only used from within assert() statements
10397*/
10398int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10399 return (pCsr->hints & mask)!=0;
10400}
drhe0997b32015-03-20 14:57:50 +000010401
drh781597f2014-05-21 08:21:07 +000010402/*
10403** Return true if the given Btree is read-only.
10404*/
10405int sqlite3BtreeIsReadonly(Btree *p){
10406 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10407}
drhdef68892014-11-04 12:11:23 +000010408
10409/*
10410** Return the size of the header added to each page by this module.
10411*/
drh37c057b2014-12-30 00:57:29 +000010412int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010413
drh5a1fb182016-01-08 19:34:39 +000010414#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010415/*
10416** Return true if the Btree passed as the only argument is sharable.
10417*/
10418int sqlite3BtreeSharable(Btree *p){
10419 return p->sharable;
10420}
dan272989b2016-07-06 10:12:02 +000010421
10422/*
10423** Return the number of connections to the BtShared object accessed by
10424** the Btree handle passed as the only argument. For private caches
10425** this is always 1. For shared caches it may be 1 or greater.
10426*/
10427int sqlite3BtreeConnectionCount(Btree *p){
10428 testcase( p->sharable );
10429 return p->pBt->nRef;
10430}
drh5a1fb182016-01-08 19:34:39 +000010431#endif