blob: 288a141ec62cf10195d6ad4f9f3d9c52cb2abb45 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
drhccb21132020-06-19 11:34:57 +000072** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drh37ccfcf2020-08-31 18:49:04 +0000115#ifdef SQLITE_DEBUG
116/*
drha7fc1682020-11-24 19:55:49 +0000117** Return and reset the seek counter for a Btree object.
drh37ccfcf2020-08-31 18:49:04 +0000118*/
119sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120 u64 n = pBt->nSeek;
121 pBt->nSeek = 0;
122 return n;
123}
124#endif
125
daneebf2f52017-11-18 17:30:08 +0000126/*
127** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128** (MemPage*) as an argument. The (MemPage*) must not be NULL.
129**
130** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133** with the page number and filename associated with the (MemPage*).
134*/
135#ifdef SQLITE_DEBUG
136int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000137 char *zMsg;
138 sqlite3BeginBenignMalloc();
139 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
141 );
drh8bfe66a2018-01-22 15:45:12 +0000142 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000143 if( zMsg ){
144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
145 }
146 sqlite3_free(zMsg);
147 return SQLITE_CORRUPT_BKPT;
148}
149# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150#else
151# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152#endif
153
drhe53831d2007-08-17 01:14:38 +0000154#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000155
156#ifdef SQLITE_DEBUG
157/*
drh0ee3dbe2009-10-16 15:05:18 +0000158**** This function is only used as part of an assert() statement. ***
159**
160** Check to see if pBtree holds the required locks to read or write to the
161** table with root page iRoot. Return 1 if it does and 0 if not.
162**
163** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000164** Btree connection pBtree:
165**
166** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
167**
drh0ee3dbe2009-10-16 15:05:18 +0000168** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000169** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000170** the corresponding table. This makes things a bit more complicated,
171** as this module treats each table as a separate structure. To determine
172** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000173** function has to search through the database schema.
174**
drh0ee3dbe2009-10-16 15:05:18 +0000175** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000176** hold a write-lock on the schema table (root page 1). This is also
177** acceptable.
178*/
179static int hasSharedCacheTableLock(
180 Btree *pBtree, /* Handle that must hold lock */
181 Pgno iRoot, /* Root page of b-tree */
182 int isIndex, /* True if iRoot is the root of an index b-tree */
183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
184){
185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186 Pgno iTab = 0;
187 BtLock *pLock;
188
drh0ee3dbe2009-10-16 15:05:18 +0000189 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000190 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000191 ** Return true immediately.
192 */
danielk197796d48e92009-06-29 06:00:37 +0000193 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000195 ){
196 return 1;
197 }
198
drh0ee3dbe2009-10-16 15:05:18 +0000199 /* If the client is reading or writing an index and the schema is
200 ** not loaded, then it is too difficult to actually check to see if
201 ** the correct locks are held. So do not bother - just return true.
202 ** This case does not come up very often anyhow.
203 */
drh2c5e35f2014-08-05 11:04:21 +0000204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000205 return 1;
206 }
207
danielk197796d48e92009-06-29 06:00:37 +0000208 /* Figure out the root-page that the lock should be held on. For table
209 ** b-trees, this is just the root page of the b-tree being read or
210 ** written. For index b-trees, it is the root page of the associated
211 ** table. */
212 if( isIndex ){
213 HashElem *p;
dan877859f2020-06-17 20:29:56 +0000214 int bSeen = 0;
danielk197796d48e92009-06-29 06:00:37 +0000215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000217 if( pIdx->tnum==(int)iRoot ){
dan877859f2020-06-17 20:29:56 +0000218 if( bSeen ){
drh1ffede82015-01-30 20:59:27 +0000219 /* Two or more indexes share the same root page. There must
220 ** be imposter tables. So just return true. The assert is not
221 ** useful in that case. */
222 return 1;
223 }
shane5eff7cf2009-08-10 03:57:58 +0000224 iTab = pIdx->pTable->tnum;
dan877859f2020-06-17 20:29:56 +0000225 bSeen = 1;
danielk197796d48e92009-06-29 06:00:37 +0000226 }
227 }
228 }else{
229 iTab = iRoot;
230 }
231
232 /* Search for the required lock. Either a write-lock on root-page iTab, a
233 ** write-lock on the schema table, or (if the client is reading) a
234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236 if( pLock->pBtree==pBtree
237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238 && pLock->eLock>=eLockType
239 ){
240 return 1;
241 }
242 }
243
244 /* Failed to find the required lock. */
245 return 0;
246}
drh0ee3dbe2009-10-16 15:05:18 +0000247#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000248
drh0ee3dbe2009-10-16 15:05:18 +0000249#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000250/*
drh0ee3dbe2009-10-16 15:05:18 +0000251**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000252**
drh0ee3dbe2009-10-16 15:05:18 +0000253** Return true if it would be illegal for pBtree to write into the
254** table or index rooted at iRoot because other shared connections are
255** simultaneously reading that same table or index.
256**
257** It is illegal for pBtree to write if some other Btree object that
258** shares the same BtShared object is currently reading or writing
259** the iRoot table. Except, if the other Btree object has the
260** read-uncommitted flag set, then it is OK for the other object to
261** have a read cursor.
262**
263** For example, before writing to any part of the table or index
264** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000265**
266** assert( !hasReadConflicts(pBtree, iRoot) );
267*/
268static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269 BtCursor *p;
270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271 if( p->pgnoRoot==iRoot
272 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000274 ){
275 return 1;
276 }
277 }
278 return 0;
279}
280#endif /* #ifdef SQLITE_DEBUG */
281
danielk1977da184232006-01-05 11:34:32 +0000282/*
drh0ee3dbe2009-10-16 15:05:18 +0000283** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000284** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000285** SQLITE_OK if the lock may be obtained (by calling
286** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000287*/
drhc25eabe2009-02-24 18:57:31 +0000288static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000289 BtShared *pBt = p->pBt;
290 BtLock *pIter;
291
drh1fee73e2007-08-29 04:00:57 +0000292 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000296
danielk19775b413d72009-04-01 09:41:54 +0000297 /* If requesting a write-lock, then the Btree must have an open write
298 ** transaction on this file. And, obviously, for this to be so there
299 ** must be an open write transaction on the file itself.
300 */
301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
303
drh0ee3dbe2009-10-16 15:05:18 +0000304 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000305 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000306 return SQLITE_OK;
307 }
308
danielk1977641b0f42007-12-21 04:47:25 +0000309 /* If some other connection is holding an exclusive lock, the
310 ** requested lock may not be obtained.
311 */
drhc9166342012-01-05 23:32:06 +0000312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000315 }
316
danielk1977e0d9e6f2009-07-03 16:25:06 +0000317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318 /* The condition (pIter->eLock!=eLock) in the following if(...)
319 ** statement is a simplification of:
320 **
321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
322 **
323 ** since we know that if eLock==WRITE_LOCK, then no other connection
324 ** may hold a WRITE_LOCK on any table in this file (since there can
325 ** only be a single writer).
326 */
327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331 if( eLock==WRITE_LOCK ){
332 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000333 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000334 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000335 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000336 }
337 }
338 return SQLITE_OK;
339}
drhe53831d2007-08-17 01:14:38 +0000340#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000341
drhe53831d2007-08-17 01:14:38 +0000342#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000343/*
344** Add a lock on the table with root-page iTable to the shared-btree used
345** by Btree handle p. Parameter eLock must be either READ_LOCK or
346** WRITE_LOCK.
347**
danielk19779d104862009-07-09 08:27:14 +0000348** This function assumes the following:
349**
drh0ee3dbe2009-10-16 15:05:18 +0000350** (a) The specified Btree object p is connected to a sharable
351** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000352**
drh0ee3dbe2009-10-16 15:05:18 +0000353** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000354** with the requested lock (i.e. querySharedCacheTableLock() has
355** already been called and returned SQLITE_OK).
356**
357** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000359*/
drhc25eabe2009-02-24 18:57:31 +0000360static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000361 BtShared *pBt = p->pBt;
362 BtLock *pLock = 0;
363 BtLock *pIter;
364
drh1fee73e2007-08-29 04:00:57 +0000365 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000368
danielk1977e0d9e6f2009-07-03 16:25:06 +0000369 /* A connection with the read-uncommitted flag set will never try to
370 ** obtain a read-lock using this function. The only read-lock obtained
drh1e32bed2020-06-19 13:33:53 +0000371 ** by a connection in read-uncommitted mode is on the sqlite_schema
danielk1977e0d9e6f2009-07-03 16:25:06 +0000372 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000374
danielk19779d104862009-07-09 08:27:14 +0000375 /* This function should only be called on a sharable b-tree after it
376 ** has been determined that no other b-tree holds a conflicting lock. */
377 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000379
380 /* First search the list for an existing lock on this table. */
381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382 if( pIter->iTable==iTable && pIter->pBtree==p ){
383 pLock = pIter;
384 break;
385 }
386 }
387
388 /* If the above search did not find a BtLock struct associating Btree p
389 ** with table iTable, allocate one and link it into the list.
390 */
391 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000393 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000394 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }
396 pLock->iTable = iTable;
397 pLock->pBtree = p;
398 pLock->pNext = pBt->pLock;
399 pBt->pLock = pLock;
400 }
401
402 /* Set the BtLock.eLock variable to the maximum of the current lock
403 ** and the requested lock. This means if a write-lock was already held
404 ** and a read-lock requested, we don't incorrectly downgrade the lock.
405 */
406 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000407 if( eLock>pLock->eLock ){
408 pLock->eLock = eLock;
409 }
danielk1977aef0bf62005-12-30 16:28:01 +0000410
411 return SQLITE_OK;
412}
drhe53831d2007-08-17 01:14:38 +0000413#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000414
drhe53831d2007-08-17 01:14:38 +0000415#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000416/*
drhc25eabe2009-02-24 18:57:31 +0000417** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000418** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000419**
drh0ee3dbe2009-10-16 15:05:18 +0000420** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000421** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000422** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000423*/
drhc25eabe2009-02-24 18:57:31 +0000424static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000425 BtShared *pBt = p->pBt;
426 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000427
drh1fee73e2007-08-29 04:00:57 +0000428 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000429 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000430 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000431
danielk1977aef0bf62005-12-30 16:28:01 +0000432 while( *ppIter ){
433 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000435 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000436 if( pLock->pBtree==p ){
437 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000438 assert( pLock->iTable!=1 || pLock==&p->lock );
439 if( pLock->iTable!=1 ){
440 sqlite3_free(pLock);
441 }
danielk1977aef0bf62005-12-30 16:28:01 +0000442 }else{
443 ppIter = &pLock->pNext;
444 }
445 }
danielk1977641b0f42007-12-21 04:47:25 +0000446
drhc9166342012-01-05 23:32:06 +0000447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000448 if( pBt->pWriter==p ){
449 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000451 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000452 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000453 ** transaction. If there currently exists a writer, and p is not
454 ** that writer, then the number of locks held by connections other
455 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000456 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000457 **
drhc9166342012-01-05 23:32:06 +0000458 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000459 ** be zero already. So this next line is harmless in that case.
460 */
drhc9166342012-01-05 23:32:06 +0000461 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000462 }
danielk1977aef0bf62005-12-30 16:28:01 +0000463}
danielk197794b30732009-07-02 17:21:57 +0000464
danielk1977e0d9e6f2009-07-03 16:25:06 +0000465/*
drh0ee3dbe2009-10-16 15:05:18 +0000466** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000467*/
danielk197794b30732009-07-02 17:21:57 +0000468static void downgradeAllSharedCacheTableLocks(Btree *p){
469 BtShared *pBt = p->pBt;
470 if( pBt->pWriter==p ){
471 BtLock *pLock;
472 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476 pLock->eLock = READ_LOCK;
477 }
478 }
479}
480
danielk1977aef0bf62005-12-30 16:28:01 +0000481#endif /* SQLITE_OMIT_SHARED_CACHE */
482
drh3908fe92017-09-01 14:50:19 +0000483static void releasePage(MemPage *pPage); /* Forward reference */
484static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000485static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000486
drh1fee73e2007-08-29 04:00:57 +0000487/*
drh0ee3dbe2009-10-16 15:05:18 +0000488***** This routine is used inside of assert() only ****
489**
490** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000491*/
drh0ee3dbe2009-10-16 15:05:18 +0000492#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000493static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000494 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000495}
drh5e08d0f2016-06-04 21:05:54 +0000496
497/* Verify that the cursor and the BtShared agree about what is the current
498** database connetion. This is important in shared-cache mode. If the database
499** connection pointers get out-of-sync, it is possible for routines like
500** btreeInitPage() to reference an stale connection pointer that references a
501** a connection that has already closed. This routine is used inside assert()
502** statements only and for the purpose of double-checking that the btree code
503** does keep the database connection pointers up-to-date.
504*/
dan7a2347e2016-01-07 16:43:54 +0000505static int cursorOwnsBtShared(BtCursor *p){
506 assert( cursorHoldsMutex(p) );
507 return (p->pBtree->db==p->pBt->db);
508}
drh1fee73e2007-08-29 04:00:57 +0000509#endif
510
danielk197792d4d7a2007-05-04 12:05:56 +0000511/*
dan5a500af2014-03-11 20:33:04 +0000512** Invalidate the overflow cache of the cursor passed as the first argument.
513** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000514*/
drh036dbec2014-03-11 23:40:44 +0000515#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000516
517/*
518** Invalidate the overflow page-list cache for all cursors opened
519** on the shared btree structure pBt.
520*/
521static void invalidateAllOverflowCache(BtShared *pBt){
522 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000523 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000524 for(p=pBt->pCursor; p; p=p->pNext){
525 invalidateOverflowCache(p);
526 }
527}
danielk197796d48e92009-06-29 06:00:37 +0000528
dan5a500af2014-03-11 20:33:04 +0000529#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000530/*
531** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000532** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000533** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000534**
535** If argument isClearTable is true, then the entire contents of the
536** table is about to be deleted. In this case invalidate all incrblob
537** cursors open on any row within the table with root-page pgnoRoot.
538**
539** Otherwise, if argument isClearTable is false, then the row with
540** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000541** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000542*/
543static void invalidateIncrblobCursors(
544 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000545 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000546 i64 iRow, /* The rowid that might be changing */
547 int isClearTable /* True if all rows are being deleted */
548){
549 BtCursor *p;
drh49bb56e2021-05-14 20:01:36 +0000550 assert( pBtree->hasIncrblobCur );
danielk197796d48e92009-06-29 06:00:37 +0000551 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000552 pBtree->hasIncrblobCur = 0;
553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554 if( (p->curFlags & BTCF_Incrblob)!=0 ){
555 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000557 p->eState = CURSOR_INVALID;
558 }
danielk197796d48e92009-06-29 06:00:37 +0000559 }
560 }
561}
562
danielk197792d4d7a2007-05-04 12:05:56 +0000563#else
dan5a500af2014-03-11 20:33:04 +0000564 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000565 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000566#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000567
drh980b1a72006-08-16 16:42:48 +0000568/*
danielk1977bea2a942009-01-20 17:06:27 +0000569** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570** when a page that previously contained data becomes a free-list leaf
571** page.
572**
573** The BtShared.pHasContent bitvec exists to work around an obscure
574** bug caused by the interaction of two useful IO optimizations surrounding
575** free-list leaf pages:
576**
577** 1) When all data is deleted from a page and the page becomes
578** a free-list leaf page, the page is not written to the database
579** (as free-list leaf pages contain no meaningful data). Sometimes
580** such a page is not even journalled (as it will not be modified,
581** why bother journalling it?).
582**
583** 2) When a free-list leaf page is reused, its content is not read
584** from the database or written to the journal file (why should it
585** be, if it is not at all meaningful?).
586**
587** By themselves, these optimizations work fine and provide a handy
588** performance boost to bulk delete or insert operations. However, if
589** a page is moved to the free-list and then reused within the same
590** transaction, a problem comes up. If the page is not journalled when
591** it is moved to the free-list and it is also not journalled when it
592** is extracted from the free-list and reused, then the original data
593** may be lost. In the event of a rollback, it may not be possible
594** to restore the database to its original configuration.
595**
596** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597** moved to become a free-list leaf page, the corresponding bit is
598** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000599** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000600** set in BtShared.pHasContent. The contents of the bitvec are cleared
601** at the end of every transaction.
602*/
603static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604 int rc = SQLITE_OK;
605 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000606 assert( pgno<=pBt->nPage );
607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000608 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000609 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000610 }
611 }
612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
614 }
615 return rc;
616}
617
618/*
619** Query the BtShared.pHasContent vector.
620**
621** This function is called when a free-list leaf page is removed from the
622** free-list for reuse. It returns false if it is safe to retrieve the
623** page from the pager layer with the 'no-content' flag set. True otherwise.
624*/
625static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626 Bitvec *p = pBt->pHasContent;
pdrdb9cb172020-03-08 13:33:58 +0000627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
danielk1977bea2a942009-01-20 17:06:27 +0000628}
629
630/*
631** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632** invoked at the conclusion of each write-transaction.
633*/
634static void btreeClearHasContent(BtShared *pBt){
635 sqlite3BitvecDestroy(pBt->pHasContent);
636 pBt->pHasContent = 0;
637}
638
639/*
drh138eeeb2013-03-27 03:15:23 +0000640** Release all of the apPage[] pages for a cursor.
641*/
642static void btreeReleaseAllCursorPages(BtCursor *pCur){
643 int i;
drh352a35a2017-08-15 03:46:47 +0000644 if( pCur->iPage>=0 ){
645 for(i=0; i<pCur->iPage; i++){
646 releasePageNotNull(pCur->apPage[i]);
647 }
648 releasePageNotNull(pCur->pPage);
649 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000650 }
drh138eeeb2013-03-27 03:15:23 +0000651}
652
danf0ee1d32015-09-12 19:26:11 +0000653/*
654** The cursor passed as the only argument must point to a valid entry
655** when this function is called (i.e. have eState==CURSOR_VALID). This
656** function saves the current cursor key in variables pCur->nKey and
657** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658** code otherwise.
659**
660** If the cursor is open on an intkey table, then the integer key
661** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663** set to point to a malloced buffer pCur->nKey bytes in size containing
664** the key.
665*/
666static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000667 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000668 assert( CURSOR_VALID==pCur->eState );
669 assert( 0==pCur->pKey );
670 assert( cursorHoldsMutex(pCur) );
671
drha7c90c42016-06-04 20:37:10 +0000672 if( pCur->curIntKey ){
673 /* Only the rowid is required for a table btree */
674 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675 }else{
danfffaf232018-12-14 13:18:35 +0000676 /* For an index btree, save the complete key content. It is possible
677 ** that the current key is corrupt. In that case, it is possible that
678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679 ** up to the size of 1 varint plus 1 8-byte value when the cursor
680 ** position is restored. Hence the 17 bytes of padding allocated
681 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000682 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000683 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000685 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000687 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000689 pCur->pKey = pKey;
690 }else{
691 sqlite3_free(pKey);
692 }
693 }else{
mistachkinfad30392016-02-13 23:43:46 +0000694 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000695 }
696 }
697 assert( !pCur->curIntKey || !pCur->pKey );
698 return rc;
699}
drh138eeeb2013-03-27 03:15:23 +0000700
701/*
drh980b1a72006-08-16 16:42:48 +0000702** Save the current cursor position in the variables BtCursor.nKey
703** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000704**
705** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000707*/
708static int saveCursorPosition(BtCursor *pCur){
709 int rc;
710
drhd2f83132015-03-25 17:35:01 +0000711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000712 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000713 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000714
drh7b14b652019-12-29 22:08:20 +0000715 if( pCur->curFlags & BTCF_Pinned ){
716 return SQLITE_CONSTRAINT_PINNED;
717 }
drhd2f83132015-03-25 17:35:01 +0000718 if( pCur->eState==CURSOR_SKIPNEXT ){
719 pCur->eState = CURSOR_VALID;
720 }else{
721 pCur->skipNext = 0;
722 }
drh980b1a72006-08-16 16:42:48 +0000723
danf0ee1d32015-09-12 19:26:11 +0000724 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000725 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000726 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000727 pCur->eState = CURSOR_REQUIRESEEK;
728 }
729
dane755e102015-09-30 12:59:12 +0000730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000731 return rc;
732}
733
drh637f3d82014-08-22 22:26:07 +0000734/* Forward reference */
735static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
736
drh980b1a72006-08-16 16:42:48 +0000737/*
drh0ee3dbe2009-10-16 15:05:18 +0000738** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000739** the table with root-page iRoot. "Saving the cursor position" means that
740** the location in the btree is remembered in such a way that it can be
741** moved back to the same spot after the btree has been modified. This
742** routine is called just before cursor pExcept is used to modify the
743** table, for example in BtreeDelete() or BtreeInsert().
744**
drh27fb7462015-06-30 02:47:36 +0000745** If there are two or more cursors on the same btree, then all such
746** cursors should have their BTCF_Multiple flag set. The btreeCursor()
747** routine enforces that rule. This routine only needs to be called in
748** the uncommon case when pExpect has the BTCF_Multiple flag set.
749**
750** If pExpect!=NULL and if no other cursors are found on the same root-page,
751** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752** pointless call to this routine.
753**
drh637f3d82014-08-22 22:26:07 +0000754** Implementation note: This routine merely checks to see if any cursors
755** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
756** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000757*/
758static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000760 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000761 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000762 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
764 }
drh27fb7462015-06-30 02:47:36 +0000765 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000768}
769
770/* This helper routine to saveAllCursors does the actual work of saving
771** the cursors if and when a cursor is found that actually requires saving.
772** The common case is that no cursors need to be saved, so this routine is
773** broken out from its caller to avoid unnecessary stack pointer movement.
774*/
775static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000776 BtCursor *p, /* The first cursor that needs saving */
777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
778 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000779){
780 do{
drh138eeeb2013-03-27 03:15:23 +0000781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000783 int rc = saveCursorPosition(p);
784 if( SQLITE_OK!=rc ){
785 return rc;
786 }
787 }else{
drh85ef6302017-08-02 15:50:09 +0000788 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000789 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000790 }
791 }
drh637f3d82014-08-22 22:26:07 +0000792 p = p->pNext;
793 }while( p );
drh980b1a72006-08-16 16:42:48 +0000794 return SQLITE_OK;
795}
796
797/*
drhbf700f32007-03-31 02:36:44 +0000798** Clear the current cursor position.
799*/
danielk1977be51a652008-10-08 17:58:48 +0000800void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000801 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000802 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000803 pCur->pKey = 0;
804 pCur->eState = CURSOR_INVALID;
805}
806
807/*
danielk19773509a652009-07-06 18:56:13 +0000808** In this version of BtreeMoveto, pKey is a packed index record
809** such as is generated by the OP_MakeRecord opcode. Unpack the
810** record and then call BtreeMovetoUnpacked() to do the work.
811*/
812static int btreeMoveto(
813 BtCursor *pCur, /* Cursor open on the btree to be searched */
814 const void *pKey, /* Packed key if the btree is an index */
815 i64 nKey, /* Integer key for tables. Size of pKey for indices */
816 int bias, /* Bias search to the high end */
817 int *pRes /* Write search results here */
818){
819 int rc; /* Status code */
820 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000821
822 if( pKey ){
danb0c4c942019-01-24 15:16:17 +0000823 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +0000824 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +0000825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +0000827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +0000829 rc = SQLITE_CORRUPT_BKPT;
drh42a410d2021-06-19 18:32:20 +0000830 }else{
831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
drh094b7582013-11-30 12:49:28 +0000832 }
drh42a410d2021-06-19 18:32:20 +0000833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000834 }else{
835 pIdxKey = 0;
drh42a410d2021-06-19 18:32:20 +0000836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
danielk19773509a652009-07-06 18:56:13 +0000837 }
838 return rc;
839}
840
841/*
drh980b1a72006-08-16 16:42:48 +0000842** Restore the cursor to the position it was in (or as close to as possible)
843** when saveCursorPosition() was called. Note that this call deletes the
844** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000845** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000846** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000847*/
danielk197730548662009-07-09 05:07:37 +0000848static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000849 int rc;
mistachkin4e2d3d42019-04-01 03:07:21 +0000850 int skipNext = 0;
dan7a2347e2016-01-07 16:43:54 +0000851 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000852 assert( pCur->eState>=CURSOR_REQUIRESEEK );
853 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000854 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000855 }
drh980b1a72006-08-16 16:42:48 +0000856 pCur->eState = CURSOR_INVALID;
drhb336d1a2019-03-30 19:17:35 +0000857 if( sqlite3FaultSim(410) ){
858 rc = SQLITE_IOERR;
859 }else{
860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
861 }
drh980b1a72006-08-16 16:42:48 +0000862 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000863 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000864 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +0000866 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +0000867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
868 pCur->eState = CURSOR_SKIPNEXT;
869 }
drh980b1a72006-08-16 16:42:48 +0000870 }
871 return rc;
872}
873
drha3460582008-07-11 21:02:53 +0000874#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000875 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000876 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000877 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000878
drha3460582008-07-11 21:02:53 +0000879/*
drh6848dad2014-08-22 23:33:03 +0000880** Determine whether or not a cursor has moved from the position where
881** it was last placed, or has been invalidated for any other reason.
882** Cursors can move when the row they are pointing at is deleted out
883** from under them, for example. Cursor might also move if a btree
884** is rebalanced.
drha3460582008-07-11 21:02:53 +0000885**
drh6848dad2014-08-22 23:33:03 +0000886** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000887**
drh6848dad2014-08-22 23:33:03 +0000888** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000890*/
drh6848dad2014-08-22 23:33:03 +0000891int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000892 assert( EIGHT_BYTE_ALIGNMENT(pCur)
893 || pCur==sqlite3BtreeFakeValidCursor() );
894 assert( offsetof(BtCursor, eState)==0 );
895 assert( sizeof(pCur->eState)==1 );
896 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000897}
898
899/*
drhfe0cf7a2017-08-16 19:20:20 +0000900** Return a pointer to a fake BtCursor object that will always answer
901** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
902** cursor returned must not be used with any other Btree interface.
903*/
904BtCursor *sqlite3BtreeFakeValidCursor(void){
905 static u8 fakeCursor = CURSOR_VALID;
906 assert( offsetof(BtCursor, eState)==0 );
907 return (BtCursor*)&fakeCursor;
908}
909
910/*
drh6848dad2014-08-22 23:33:03 +0000911** This routine restores a cursor back to its original position after it
912** has been moved by some outside activity (such as a btree rebalance or
913** a row having been deleted out from under the cursor).
914**
915** On success, the *pDifferentRow parameter is false if the cursor is left
916** pointing at exactly the same row. *pDifferntRow is the row the cursor
917** was pointing to has been deleted, forcing the cursor to point to some
918** nearby row.
919**
920** This routine should only be called for a cursor that just returned
921** TRUE from sqlite3BtreeCursorHasMoved().
922*/
923int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000924 int rc;
925
drh6848dad2014-08-22 23:33:03 +0000926 assert( pCur!=0 );
927 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000928 rc = restoreCursorPosition(pCur);
929 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000930 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000931 return rc;
932 }
drh606a3572015-03-25 18:29:10 +0000933 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000934 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000935 }else{
drh6848dad2014-08-22 23:33:03 +0000936 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000937 }
938 return SQLITE_OK;
939}
940
drhf7854c72015-10-27 13:24:37 +0000941#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000942/*
drh0df57012015-08-14 15:05:55 +0000943** Provide hints to the cursor. The particular hint given (and the type
944** and number of the varargs parameters) is determined by the eHintType
945** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000946*/
drh0df57012015-08-14 15:05:55 +0000947void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000948 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000949}
drhf7854c72015-10-27 13:24:37 +0000950#endif
951
952/*
953** Provide flag hints to the cursor.
954*/
955void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
957 pCur->hints = x;
958}
959
drh28935362013-12-07 20:39:19 +0000960
danielk1977599fcba2004-11-08 07:13:13 +0000961#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000962/*
drha3152892007-05-05 11:48:52 +0000963** Given a page number of a regular database page, return the page
964** number for the pointer-map page that contains the entry for the
965** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000966**
967** Return 0 (not a valid page) for pgno==1 since there is
968** no pointer map associated with page 1. The integrity_check logic
969** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000970*/
danielk1977266664d2006-02-10 08:24:21 +0000971static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000972 int nPagesPerMapPage;
973 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000974 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000975 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000976 nPagesPerMapPage = (pBt->usableSize/5)+1;
977 iPtrMap = (pgno-2)/nPagesPerMapPage;
978 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000979 if( ret==PENDING_BYTE_PAGE(pBt) ){
980 ret++;
981 }
982 return ret;
983}
danielk1977a19df672004-11-03 11:37:07 +0000984
danielk1977afcdd022004-10-31 16:25:42 +0000985/*
danielk1977afcdd022004-10-31 16:25:42 +0000986** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000987**
988** This routine updates the pointer map entry for page number 'key'
989** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000990**
991** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992** a no-op. If an error occurs, the appropriate error code is written
993** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000994*/
drh98add2e2009-07-20 17:11:49 +0000995static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000996 DbPage *pDbPage; /* The pointer map page */
997 u8 *pPtrmap; /* The pointer map data */
998 Pgno iPtrmap; /* The pointer map page number */
999 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +00001000 int rc; /* Return code from subfunctions */
1001
1002 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +00001003
drh1fee73e2007-08-29 04:00:57 +00001004 assert( sqlite3_mutex_held(pBt->mutex) );
drh067b92b2020-06-19 15:24:12 +00001005 /* The super-journal page number must never be used as a pointer map page */
danielk1977266664d2006-02-10 08:24:21 +00001006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1007
danielk1977ac11ee62005-01-15 12:45:51 +00001008 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +00001009 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +00001010 *pRC = SQLITE_CORRUPT_BKPT;
1011 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +00001012 }
danielk1977266664d2006-02-10 08:24:21 +00001013 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00001015 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00001016 *pRC = rc;
1017 return;
danielk1977afcdd022004-10-31 16:25:42 +00001018 }
drh203b1ea2018-12-14 03:14:18 +00001019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1020 /* The first byte of the extra data is the MemPage.isInit byte.
1021 ** If that byte is set, it means this page is also being used
1022 ** as a btree page. */
1023 *pRC = SQLITE_CORRUPT_BKPT;
1024 goto ptrmap_exit;
1025 }
danielk19778c666b12008-07-18 09:34:57 +00001026 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001027 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001028 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001029 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001030 }
drhfc243732011-05-17 15:21:56 +00001031 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001033
drh615ae552005-01-16 23:21:00 +00001034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001036 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001037 if( rc==SQLITE_OK ){
1038 pPtrmap[offset] = eType;
1039 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001040 }
danielk1977afcdd022004-10-31 16:25:42 +00001041 }
1042
drh4925a552009-07-07 11:39:58 +00001043ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001044 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001045}
1046
1047/*
1048** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001049**
1050** This routine retrieves the pointer map entry for page 'key', writing
1051** the type and parent page number to *pEType and *pPgno respectively.
1052** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001053*/
danielk1977aef0bf62005-12-30 16:28:01 +00001054static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001055 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001056 int iPtrmap; /* Pointer map page index */
1057 u8 *pPtrmap; /* Pointer map page data */
1058 int offset; /* Offset of entry in pointer map */
1059 int rc;
1060
drh1fee73e2007-08-29 04:00:57 +00001061 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001062
danielk1977266664d2006-02-10 08:24:21 +00001063 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001065 if( rc!=0 ){
1066 return rc;
1067 }
danielk19773b8a05f2007-03-19 17:44:26 +00001068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001069
danielk19778c666b12008-07-18 09:34:57 +00001070 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001071 if( offset<0 ){
1072 sqlite3PagerUnref(pDbPage);
1073 return SQLITE_CORRUPT_BKPT;
1074 }
1075 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001076 assert( pEType!=0 );
1077 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001079
danielk19773b8a05f2007-03-19 17:44:26 +00001080 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001082 return SQLITE_OK;
1083}
1084
danielk197785d90ca2008-07-19 14:25:15 +00001085#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001086 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001087 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001088 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001089#endif
danielk1977afcdd022004-10-31 16:25:42 +00001090
drh0d316a42002-08-11 20:10:47 +00001091/*
drh271efa52004-05-30 19:19:05 +00001092** Given a btree page and a cell index (0 means the first cell on
1093** the page, 1 means the second cell, and so forth) return a pointer
1094** to the cell content.
1095**
drhf44890a2015-06-27 03:58:15 +00001096** findCellPastPtr() does the same except it skips past the initial
1097** 4-byte child pointer found on interior pages, if there is one.
1098**
drh271efa52004-05-30 19:19:05 +00001099** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001100*/
drh1688c862008-07-18 02:44:17 +00001101#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001103#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001105
drh43605152004-05-29 21:46:49 +00001106
1107/*
drh5fa60512015-06-19 17:19:34 +00001108** This is common tail processing for btreeParseCellPtr() and
1109** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110** on a single B-tree page. Make necessary adjustments to the CellInfo
1111** structure.
drh43605152004-05-29 21:46:49 +00001112*/
drh5fa60512015-06-19 17:19:34 +00001113static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1114 MemPage *pPage, /* Page containing the cell */
1115 u8 *pCell, /* Pointer to the cell text. */
1116 CellInfo *pInfo /* Fill in this structure */
1117){
1118 /* If the payload will not fit completely on the local page, we have
1119 ** to decide how much to store locally and how much to spill onto
1120 ** overflow pages. The strategy is to minimize the amount of unused
1121 ** space on overflow pages while keeping the amount of local storage
1122 ** in between minLocal and maxLocal.
1123 **
1124 ** Warning: changing the way overflow payload is distributed in any
1125 ** way will result in an incompatible file format.
1126 */
1127 int minLocal; /* Minimum amount of payload held locally */
1128 int maxLocal; /* Maximum amount of payload held locally */
1129 int surplus; /* Overflow payload available for local storage */
1130
1131 minLocal = pPage->minLocal;
1132 maxLocal = pPage->maxLocal;
1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1134 testcase( surplus==maxLocal );
1135 testcase( surplus==maxLocal+1 );
1136 if( surplus <= maxLocal ){
1137 pInfo->nLocal = (u16)surplus;
1138 }else{
1139 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001140 }
drh45ac1c72015-12-18 03:59:16 +00001141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001142}
1143
1144/*
danebbf3682020-12-09 16:32:11 +00001145** Given a record with nPayload bytes of payload stored within btree
1146** page pPage, return the number of bytes of payload stored locally.
1147*/
dan59964b42020-12-14 15:25:14 +00001148static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
danebbf3682020-12-09 16:32:11 +00001149 int maxLocal; /* Maximum amount of payload held locally */
1150 maxLocal = pPage->maxLocal;
1151 if( nPayload<=maxLocal ){
1152 return nPayload;
1153 }else{
1154 int minLocal; /* Minimum amount of payload held locally */
1155 int surplus; /* Overflow payload available for local storage */
1156 minLocal = pPage->minLocal;
1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1158 return ( surplus <= maxLocal ) ? surplus : minLocal;
1159 }
1160}
1161
1162/*
drh5fa60512015-06-19 17:19:34 +00001163** The following routines are implementations of the MemPage.xParseCell()
1164** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001165**
drh5fa60512015-06-19 17:19:34 +00001166** Parse a cell content block and fill in the CellInfo structure.
1167**
1168** btreeParseCellPtr() => table btree leaf nodes
1169** btreeParseCellNoPayload() => table btree internal nodes
1170** btreeParseCellPtrIndex() => index btree nodes
1171**
1172** There is also a wrapper function btreeParseCell() that works for
1173** all MemPage types and that references the cell by index rather than
1174** by pointer.
drh43605152004-05-29 21:46:49 +00001175*/
drh5fa60512015-06-19 17:19:34 +00001176static void btreeParseCellPtrNoPayload(
1177 MemPage *pPage, /* Page containing the cell */
1178 u8 *pCell, /* Pointer to the cell text. */
1179 CellInfo *pInfo /* Fill in this structure */
1180){
1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001183 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001184#ifndef SQLITE_DEBUG
1185 UNUSED_PARAMETER(pPage);
1186#endif
drh5fa60512015-06-19 17:19:34 +00001187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1188 pInfo->nPayload = 0;
1189 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001190 pInfo->pPayload = 0;
1191 return;
1192}
danielk197730548662009-07-09 05:07:37 +00001193static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001194 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001195 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001196 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001197){
drh3e28ff52014-09-24 00:59:08 +00001198 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001199 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001200 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001201
drh1fee73e2007-08-29 04:00:57 +00001202 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001203 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001204 assert( pPage->intKeyLeaf );
1205 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001206 pIter = pCell;
1207
1208 /* The next block of code is equivalent to:
1209 **
1210 ** pIter += getVarint32(pIter, nPayload);
1211 **
1212 ** The code is inlined to avoid a function call.
1213 */
1214 nPayload = *pIter;
1215 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001216 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001217 nPayload &= 0x7f;
1218 do{
1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1220 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001221 }
drh56cb04e2015-06-19 18:24:37 +00001222 pIter++;
1223
1224 /* The next block of code is equivalent to:
1225 **
1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1227 **
drh29bbc2b2022-01-02 16:48:00 +00001228 ** The code is inlined and the loop is unrolled for performance.
1229 ** This routine is a high-runner.
drh56cb04e2015-06-19 18:24:37 +00001230 */
1231 iKey = *pIter;
1232 if( iKey>=0x80 ){
drh29bbc2b2022-01-02 16:48:00 +00001233 u8 x;
1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f);
1235 if( x>=0x80 ){
1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f);
1237 if( x>=0x80 ){
1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1239 if( x>=0x80 ){
1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1241 if( x>=0x80 ){
1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1243 if( x>=0x80 ){
1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1245 if( x>=0x80 ){
1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1247 if( x>=0x80 ){
1248 iKey = (iKey<<8) | (*++pIter);
1249 }
1250 }
1251 }
1252 }
1253 }
drh56cb04e2015-06-19 18:24:37 +00001254 }
1255 }
1256 }
1257 pIter++;
1258
1259 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001260 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001261 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001262 testcase( nPayload==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001263 testcase( nPayload==(u32)pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001264 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001265 /* This is the (easy) common case where the entire payload fits
1266 ** on the local page. No overflow is required.
1267 */
drhab1cc582014-09-23 21:25:19 +00001268 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1269 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001270 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001271 }else{
drh5fa60512015-06-19 17:19:34 +00001272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001273 }
drh3aac2dd2004-04-26 14:10:20 +00001274}
drh5fa60512015-06-19 17:19:34 +00001275static void btreeParseCellPtrIndex(
1276 MemPage *pPage, /* Page containing the cell */
1277 u8 *pCell, /* Pointer to the cell text. */
1278 CellInfo *pInfo /* Fill in this structure */
1279){
1280 u8 *pIter; /* For scanning through pCell */
1281 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001282
drh5fa60512015-06-19 17:19:34 +00001283 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1284 assert( pPage->leaf==0 || pPage->leaf==1 );
1285 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001286 pIter = pCell + pPage->childPtrSize;
1287 nPayload = *pIter;
1288 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001289 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001290 nPayload &= 0x7f;
1291 do{
1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1293 }while( *(pIter)>=0x80 && pIter<pEnd );
1294 }
1295 pIter++;
1296 pInfo->nKey = nPayload;
1297 pInfo->nPayload = nPayload;
1298 pInfo->pPayload = pIter;
1299 testcase( nPayload==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001300 testcase( nPayload==(u32)pPage->maxLocal+1 );
drh5fa60512015-06-19 17:19:34 +00001301 if( nPayload<=pPage->maxLocal ){
1302 /* This is the (easy) common case where the entire payload fits
1303 ** on the local page. No overflow is required.
1304 */
1305 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1306 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1307 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001308 }else{
1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001310 }
1311}
danielk197730548662009-07-09 05:07:37 +00001312static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001313 MemPage *pPage, /* Page containing the cell */
1314 int iCell, /* The cell index. First cell is 0 */
1315 CellInfo *pInfo /* Fill in this structure */
1316){
drh5fa60512015-06-19 17:19:34 +00001317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001318}
drh3aac2dd2004-04-26 14:10:20 +00001319
1320/*
drh5fa60512015-06-19 17:19:34 +00001321** The following routines are implementations of the MemPage.xCellSize
1322** method.
1323**
drh43605152004-05-29 21:46:49 +00001324** Compute the total number of bytes that a Cell needs in the cell
1325** data area of the btree-page. The return number includes the cell
1326** data header and the local payload, but not any overflow page or
1327** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001328**
drh5fa60512015-06-19 17:19:34 +00001329** cellSizePtrNoPayload() => table internal nodes
drh19ae01b2022-02-23 22:56:10 +00001330** cellSizePtrTableLeaf() => table leaf nodes
drh5fa60512015-06-19 17:19:34 +00001331** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001332*/
danielk1977ae5558b2009-04-29 11:31:47 +00001333static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001334 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1335 u8 *pEnd; /* End mark for a varint */
1336 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001337
1338#ifdef SQLITE_DEBUG
1339 /* The value returned by this function should always be the same as
1340 ** the (CellInfo.nSize) value found by doing a full parse of the
1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1342 ** this function verifies that this invariant is not violated. */
1343 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001344 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001345#endif
1346
drh3e28ff52014-09-24 00:59:08 +00001347 nSize = *pIter;
1348 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001349 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001350 nSize &= 0x7f;
1351 do{
1352 nSize = (nSize<<7) | (*++pIter & 0x7f);
1353 }while( *(pIter)>=0x80 && pIter<pEnd );
1354 }
1355 pIter++;
drh0a45c272009-07-08 01:49:11 +00001356 testcase( nSize==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001357 testcase( nSize==(u32)pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001358 if( nSize<=pPage->maxLocal ){
1359 nSize += (u32)(pIter - pCell);
1360 if( nSize<4 ) nSize = 4;
1361 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001362 int minLocal = pPage->minLocal;
1363 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001364 testcase( nSize==pPage->maxLocal );
mistachkin2b5fbb22021-12-31 18:26:50 +00001365 testcase( nSize==(u32)pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001366 if( nSize>pPage->maxLocal ){
1367 nSize = minLocal;
1368 }
drh3e28ff52014-09-24 00:59:08 +00001369 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001370 }
drhdc41d602014-09-22 19:51:35 +00001371 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001372 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001373}
drh25ada072015-06-19 15:07:14 +00001374static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1375 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1376 u8 *pEnd; /* End mark for a varint */
1377
1378#ifdef SQLITE_DEBUG
1379 /* The value returned by this function should always be the same as
1380 ** the (CellInfo.nSize) value found by doing a full parse of the
1381 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1382 ** this function verifies that this invariant is not violated. */
1383 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001384 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001385#else
1386 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001387#endif
1388
1389 assert( pPage->childPtrSize==4 );
1390 pEnd = pIter + 9;
1391 while( (*pIter++)&0x80 && pIter<pEnd );
1392 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1393 return (u16)(pIter - pCell);
1394}
drh19ae01b2022-02-23 22:56:10 +00001395static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){
1396 u8 *pIter = pCell; /* For looping over bytes of pCell */
1397 u8 *pEnd; /* End mark for a varint */
1398 u32 nSize; /* Size value to return */
1399
1400#ifdef SQLITE_DEBUG
1401 /* The value returned by this function should always be the same as
1402 ** the (CellInfo.nSize) value found by doing a full parse of the
1403 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1404 ** this function verifies that this invariant is not violated. */
1405 CellInfo debuginfo;
1406 pPage->xParseCell(pPage, pCell, &debuginfo);
1407#endif
1408
1409 nSize = *pIter;
1410 if( nSize>=0x80 ){
1411 pEnd = &pIter[8];
1412 nSize &= 0x7f;
1413 do{
1414 nSize = (nSize<<7) | (*++pIter & 0x7f);
1415 }while( *(pIter)>=0x80 && pIter<pEnd );
1416 }
1417 pIter++;
1418 /* pIter now points at the 64-bit integer key value, a variable length
1419 ** integer. The following block moves pIter to point at the first byte
1420 ** past the end of the key value. */
1421 if( (*pIter++)&0x80
1422 && (*pIter++)&0x80
1423 && (*pIter++)&0x80
1424 && (*pIter++)&0x80
1425 && (*pIter++)&0x80
1426 && (*pIter++)&0x80
1427 && (*pIter++)&0x80
1428 && (*pIter++)&0x80 ){ pIter++; }
1429 testcase( nSize==pPage->maxLocal );
1430 testcase( nSize==(u32)pPage->maxLocal+1 );
1431 if( nSize<=pPage->maxLocal ){
1432 nSize += (u32)(pIter - pCell);
1433 if( nSize<4 ) nSize = 4;
1434 }else{
1435 int minLocal = pPage->minLocal;
1436 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1437 testcase( nSize==pPage->maxLocal );
1438 testcase( nSize==(u32)pPage->maxLocal+1 );
1439 if( nSize>pPage->maxLocal ){
1440 nSize = minLocal;
1441 }
1442 nSize += 4 + (u16)(pIter - pCell);
1443 }
1444 assert( nSize==debuginfo.nSize || CORRUPT_DB );
1445 return (u16)nSize;
1446}
drh25ada072015-06-19 15:07:14 +00001447
drh0ee3dbe2009-10-16 15:05:18 +00001448
1449#ifdef SQLITE_DEBUG
1450/* This variation on cellSizePtr() is used inside of assert() statements
1451** only. */
drha9121e42008-02-19 14:59:35 +00001452static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001453 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001454}
danielk1977bc6ada42004-06-30 08:20:16 +00001455#endif
drh3b7511c2001-05-26 13:15:44 +00001456
danielk197779a40da2005-01-16 08:00:01 +00001457#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001458/*
drh0f1bf4c2019-01-13 20:17:21 +00001459** The cell pCell is currently part of page pSrc but will ultimately be part
1460** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1461** pointer to an overflow page, insert an entry into the pointer-map for
1462** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001463*/
drh0f1bf4c2019-01-13 20:17:21 +00001464static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001465 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001466 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001467 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001468 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001469 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001470 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001471 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1472 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001473 *pRC = SQLITE_CORRUPT_BKPT;
1474 return;
1475 }
1476 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001477 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001478 }
danielk1977ac11ee62005-01-15 12:45:51 +00001479}
danielk197779a40da2005-01-16 08:00:01 +00001480#endif
1481
danielk1977ac11ee62005-01-15 12:45:51 +00001482
drhda200cc2004-05-09 11:51:38 +00001483/*
dane6d065a2017-02-24 19:58:22 +00001484** Defragment the page given. This routine reorganizes cells within the
1485** page so that there are no free-blocks on the free-block list.
1486**
1487** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1488** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001489**
1490** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1491** b-tree page so that there are no freeblocks or fragment bytes, all
1492** unused bytes are contained in the unallocated space region, and all
1493** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001494*/
dane6d065a2017-02-24 19:58:22 +00001495static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001496 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001497 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001498 int hdr; /* Offset to the page header */
1499 int size; /* Size of a cell */
1500 int usableSize; /* Number of usable bytes on a page */
1501 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001502 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001503 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001504 unsigned char *data; /* The page data */
1505 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001506 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001507 int iCellFirst; /* First allowable cell index */
1508 int iCellLast; /* Last possible cell index */
dan7f65b7a2021-04-10 20:27:06 +00001509 int iCellStart; /* First cell offset in input */
drh17146622009-07-07 17:38:38 +00001510
danielk19773b8a05f2007-03-19 17:44:26 +00001511 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001512 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001513 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001514 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001515 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001516 temp = 0;
1517 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001518 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001519 cellOffset = pPage->cellOffset;
1520 nCell = pPage->nCell;
drh45616c72019-02-28 13:21:36 +00001521 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001522 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001523 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001524
1525 /* This block handles pages with two or fewer free blocks and nMaxFrag
1526 ** or fewer fragmented bytes. In this case it is faster to move the
1527 ** two (or one) blocks of cells using memmove() and add the required
1528 ** offsets to each pointer in the cell-pointer array than it is to
1529 ** reconstruct the entire page. */
1530 if( (int)data[hdr+7]<=nMaxFrag ){
1531 int iFree = get2byte(&data[hdr+1]);
drh119e1ff2019-03-30 18:39:13 +00001532 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001533 if( iFree ){
1534 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001535 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001536 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1537 u8 *pEnd = &data[cellOffset + nCell*2];
1538 u8 *pAddr;
1539 int sz2 = 0;
1540 int sz = get2byte(&data[iFree+2]);
1541 int top = get2byte(&data[hdr+5]);
drh4b9e7362020-02-18 23:58:58 +00001542 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001543 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001544 }
dane6d065a2017-02-24 19:58:22 +00001545 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001546 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001547 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001548 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001549 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1550 sz += sz2;
drh46c425b2021-11-10 10:59:10 +00001551 }else if( NEVER(iFree+sz>usableSize) ){
dandcc427c2019-03-21 21:18:36 +00001552 return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001553 }
dandcc427c2019-03-21 21:18:36 +00001554
dane6d065a2017-02-24 19:58:22 +00001555 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001556 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001557 memmove(&data[cbrk], &data[top], iFree-top);
1558 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1559 pc = get2byte(pAddr);
1560 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1561 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1562 }
1563 goto defragment_out;
1564 }
1565 }
1566 }
1567
drh281b21d2008-08-22 12:57:08 +00001568 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001569 iCellLast = usableSize - 4;
dan7f65b7a2021-04-10 20:27:06 +00001570 iCellStart = get2byte(&data[hdr+5]);
drh43605152004-05-29 21:46:49 +00001571 for(i=0; i<nCell; i++){
1572 u8 *pAddr; /* The i-th cell pointer */
1573 pAddr = &data[cellOffset + i*2];
1574 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001575 testcase( pc==iCellFirst );
1576 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001577 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001578 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001579 */
dan7f65b7a2021-04-10 20:27:06 +00001580 if( pc<iCellStart || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001581 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001582 }
dan7f65b7a2021-04-10 20:27:06 +00001583 assert( pc>=iCellStart && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001584 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001585 cbrk -= size;
dan7f65b7a2021-04-10 20:27:06 +00001586 if( cbrk<iCellStart || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001587 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001588 }
dan7f65b7a2021-04-10 20:27:06 +00001589 assert( cbrk+size<=usableSize && cbrk>=iCellStart );
drh0a45c272009-07-08 01:49:11 +00001590 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001591 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001592 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001593 if( temp==0 ){
drh588400b2014-09-27 05:00:25 +00001594 if( cbrk==pc ) continue;
1595 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drhccf0bb42021-06-07 13:50:36 +00001596 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
drh588400b2014-09-27 05:00:25 +00001597 src = temp;
1598 }
1599 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001600 }
dane6d065a2017-02-24 19:58:22 +00001601 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001602
1603 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001604 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001605 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001606 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001607 }
drh17146622009-07-07 17:38:38 +00001608 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001609 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001610 data[hdr+1] = 0;
1611 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001612 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001613 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001614 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001615}
1616
drha059ad02001-04-17 20:09:11 +00001617/*
dan8e9ba0c2014-10-14 17:27:04 +00001618** Search the free-list on page pPg for space to store a cell nByte bytes in
1619** size. If one can be found, return a pointer to the space and remove it
1620** from the free-list.
1621**
1622** If no suitable space can be found on the free-list, return NULL.
1623**
drhba0f9992014-10-30 20:48:44 +00001624** This function may detect corruption within pPg. If corruption is
1625** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001626**
drhb7580e82015-06-25 18:36:13 +00001627** Slots on the free list that are between 1 and 3 bytes larger than nByte
1628** will be ignored if adding the extra space to the fragmentation count
1629** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001630*/
drhb7580e82015-06-25 18:36:13 +00001631static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001632 const int hdr = pPg->hdrOffset; /* Offset to page header */
1633 u8 * const aData = pPg->aData; /* Page data */
1634 int iAddr = hdr + 1; /* Address of ptr to pc */
drh009a48e2022-02-23 18:23:15 +00001635 u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */
1636 int pc = get2byte(pTmp); /* Address of a free slot */
drh298f45c2019-02-08 22:34:59 +00001637 int x; /* Excess size of the slot */
1638 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1639 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001640
drhb7580e82015-06-25 18:36:13 +00001641 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001642 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001643 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1644 ** freeblock form a big-endian integer which is the size of the freeblock
1645 ** in bytes, including the 4-byte header. */
drh009a48e2022-02-23 18:23:15 +00001646 pTmp = &aData[pc+2];
1647 size = get2byte(pTmp);
drhb7580e82015-06-25 18:36:13 +00001648 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001649 testcase( x==4 );
1650 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001651 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001652 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1653 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001654 if( aData[hdr+7]>57 ) return 0;
1655
dan8e9ba0c2014-10-14 17:27:04 +00001656 /* Remove the slot from the free-list. Update the number of
1657 ** fragmented bytes within the page. */
1658 memcpy(&aData[iAddr], &aData[pc], 2);
1659 aData[hdr+7] += (u8)x;
drh298f45c2019-02-08 22:34:59 +00001660 }else if( x+pc > maxPC ){
1661 /* This slot extends off the end of the usable part of the page */
1662 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1663 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001664 }else{
1665 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001666 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001667 put2byte(&aData[pc+2], x);
1668 }
1669 return &aData[pc + x];
1670 }
drhb7580e82015-06-25 18:36:13 +00001671 iAddr = pc;
drh009a48e2022-02-23 18:23:15 +00001672 pTmp = &aData[pc];
1673 pc = get2byte(pTmp);
drh2a934d72019-03-13 10:29:16 +00001674 if( pc<=iAddr+size ){
drh298f45c2019-02-08 22:34:59 +00001675 if( pc ){
1676 /* The next slot in the chain is not past the end of the current slot */
1677 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1678 }
1679 return 0;
1680 }
drh87d63c92017-08-23 23:09:03 +00001681 }
drh298f45c2019-02-08 22:34:59 +00001682 if( pc>maxPC+nByte-4 ){
1683 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001684 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001685 }
dan8e9ba0c2014-10-14 17:27:04 +00001686 return 0;
1687}
1688
1689/*
danielk19776011a752009-04-01 16:25:32 +00001690** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001691** as the first argument. Write into *pIdx the index into pPage->aData[]
1692** of the first byte of allocated space. Return either SQLITE_OK or
1693** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001694**
drh0a45c272009-07-08 01:49:11 +00001695** The caller guarantees that there is sufficient space to make the
1696** allocation. This routine might need to defragment in order to bring
1697** all the space together, however. This routine will avoid using
1698** the first two bytes past the cell pointer area since presumably this
1699** allocation is being made in order to insert a new cell, so we will
1700** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001701*/
drh0a45c272009-07-08 01:49:11 +00001702static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001703 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1704 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001705 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001706 int rc = SQLITE_OK; /* Integer return code */
drh009a48e2022-02-23 18:23:15 +00001707 u8 *pTmp; /* Temp ptr into data[] */
drh0a45c272009-07-08 01:49:11 +00001708 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001709
danielk19773b8a05f2007-03-19 17:44:26 +00001710 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001711 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001712 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001713 assert( nByte>=0 ); /* Minimum cell size is 4 */
1714 assert( pPage->nFree>=nByte );
1715 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001716 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001717
drh0a45c272009-07-08 01:49:11 +00001718 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1719 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001720 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001721 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1722 ** and the reserved space is zero (the usual value for reserved space)
1723 ** then the cell content offset of an empty page wants to be 65536.
1724 ** However, that integer is too large to be stored in a 2-byte unsigned
1725 ** integer, so a value of 0 is used in its place. */
drh009a48e2022-02-23 18:23:15 +00001726 pTmp = &data[hdr+5];
1727 top = get2byte(pTmp);
drhdfcecdf2019-05-08 00:17:45 +00001728 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
drhded340e2015-06-25 15:04:56 +00001729 if( gap>top ){
drh291508f2019-05-08 04:33:17 +00001730 if( top==0 && pPage->pBt->usableSize==65536 ){
drhded340e2015-06-25 15:04:56 +00001731 top = 65536;
1732 }else{
daneebf2f52017-11-18 17:30:08 +00001733 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001734 }
1735 }
drh43605152004-05-29 21:46:49 +00001736
drhd4a67442019-02-11 19:27:36 +00001737 /* If there is enough space between gap and top for one more cell pointer,
1738 ** and if the freelist is not empty, then search the
1739 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001740 */
drh5e2f8b92001-05-28 00:41:15 +00001741 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001742 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001743 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001744 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001745 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001746 if( pSpace ){
drh3b76c452020-01-03 17:40:30 +00001747 int g2;
drh2b96b692019-08-05 16:22:20 +00001748 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
drh3b76c452020-01-03 17:40:30 +00001749 *pIdx = g2 = (int)(pSpace-data);
drhb9154182021-06-20 22:49:26 +00001750 if( g2<=gap ){
drh2b96b692019-08-05 16:22:20 +00001751 return SQLITE_CORRUPT_PAGE(pPage);
1752 }else{
1753 return SQLITE_OK;
1754 }
drhb7580e82015-06-25 18:36:13 +00001755 }else if( rc ){
1756 return rc;
drh9e572e62004-04-23 23:43:10 +00001757 }
1758 }
drh43605152004-05-29 21:46:49 +00001759
drh4c04f3c2014-08-20 11:56:14 +00001760 /* The request could not be fulfilled using a freelist slot. Check
1761 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001762 */
1763 testcase( gap+2+nByte==top );
1764 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001765 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001766 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001767 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001768 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001769 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001770 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001771 }
1772
1773
drh43605152004-05-29 21:46:49 +00001774 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001775 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001776 ** validated the freelist. Given that the freelist is valid, there
1777 ** is no way that the allocation can extend off the end of the page.
1778 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001779 */
drh0a45c272009-07-08 01:49:11 +00001780 top -= nByte;
drh43605152004-05-29 21:46:49 +00001781 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001782 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001783 *pIdx = top;
1784 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001785}
1786
1787/*
drh9e572e62004-04-23 23:43:10 +00001788** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001789** The first byte of the new free block is pPage->aData[iStart]
1790** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001791**
drh5f5c7532014-08-20 17:56:27 +00001792** Adjacent freeblocks are coalesced.
1793**
drh5860a612019-02-12 16:58:26 +00001794** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001795** that routine will not detect overlap between cells or freeblocks. Nor
1796** does it detect cells or freeblocks that encrouch into the reserved bytes
1797** at the end of the page. So do additional corruption checks inside this
1798** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001799*/
drh5f5c7532014-08-20 17:56:27 +00001800static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001801 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001802 u16 iFreeBlk; /* Address of the next freeblock */
1803 u8 hdr; /* Page header size. 0 or 100 */
1804 u8 nFrag = 0; /* Reduction in fragmentation */
1805 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001806 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001807 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001808 unsigned char *data = pPage->aData; /* Page content */
drh009a48e2022-02-23 18:23:15 +00001809 u8 *pTmp; /* Temporary ptr into data[] */
drh2af926b2001-05-15 00:39:25 +00001810
drh9e572e62004-04-23 23:43:10 +00001811 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001812 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001813 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001814 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001815 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001816 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001817 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001818
drh5f5c7532014-08-20 17:56:27 +00001819 /* The list of freeblocks must be in ascending order. Find the
1820 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001821 */
drh43605152004-05-29 21:46:49 +00001822 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001823 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001824 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1825 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1826 }else{
drh85f071b2016-09-17 19:34:32 +00001827 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1828 if( iFreeBlk<iPtr+4 ){
drh05e8c542020-01-14 16:39:54 +00001829 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
daneebf2f52017-11-18 17:30:08 +00001830 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001831 }
drh7bc4c452014-08-20 18:43:44 +00001832 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001833 }
drh628b1a32020-01-05 21:53:15 +00001834 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
daneebf2f52017-11-18 17:30:08 +00001835 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001836 }
drh0aa09452022-02-14 13:53:49 +00001837 assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB );
drh7bc4c452014-08-20 18:43:44 +00001838
1839 /* At this point:
1840 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001841 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001842 **
1843 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1844 */
1845 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1846 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001847 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001848 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drh6aa75152020-06-12 00:31:52 +00001849 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001850 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001851 }
drh7bc4c452014-08-20 18:43:44 +00001852 iSize = iEnd - iStart;
1853 iFreeBlk = get2byte(&data[iFreeBlk]);
1854 }
1855
drh3f387402014-09-24 01:23:00 +00001856 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1857 ** pointer in the page header) then check to see if iStart should be
1858 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001859 */
1860 if( iPtr>hdr+1 ){
1861 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1862 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001863 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001864 nFrag += iStart - iPtrEnd;
1865 iSize = iEnd - iPtr;
1866 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001867 }
drh9e572e62004-04-23 23:43:10 +00001868 }
daneebf2f52017-11-18 17:30:08 +00001869 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001870 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001871 }
drh009a48e2022-02-23 18:23:15 +00001872 pTmp = &data[hdr+5];
1873 x = get2byte(pTmp);
drh5e398e42017-08-23 20:36:06 +00001874 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001875 /* The new freeblock is at the beginning of the cell content area,
1876 ** so just extend the cell content area rather than create another
1877 ** freelist entry */
drh3b76c452020-01-03 17:40:30 +00001878 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
drh48118e42020-01-29 13:50:11 +00001879 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001880 put2byte(&data[hdr+1], iFreeBlk);
1881 put2byte(&data[hdr+5], iEnd);
1882 }else{
1883 /* Insert the new freeblock into the freelist */
1884 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001885 }
drh5e398e42017-08-23 20:36:06 +00001886 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1887 /* Overwrite deleted information with zeros when the secure_delete
1888 ** option is enabled */
1889 memset(&data[iStart], 0, iSize);
1890 }
1891 put2byte(&data[iStart], iFreeBlk);
1892 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001893 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001894 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001895}
1896
1897/*
drh271efa52004-05-30 19:19:05 +00001898** Decode the flags byte (the first byte of the header) for a page
1899** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001900**
1901** Only the following combinations are supported. Anything different
1902** indicates a corrupt database files:
1903**
1904** PTF_ZERODATA
1905** PTF_ZERODATA | PTF_LEAF
1906** PTF_LEAFDATA | PTF_INTKEY
1907** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001908*/
drh44845222008-07-17 18:39:57 +00001909static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001910 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001911
1912 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001913 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001914 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001915 flagByte &= ~PTF_LEAF;
1916 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001917 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001918 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001919 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001920 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1921 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001922 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001923 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1924 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001925 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001926 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001927 if( pPage->leaf ){
1928 pPage->intKeyLeaf = 1;
drh19ae01b2022-02-23 22:56:10 +00001929 pPage->xCellSize = cellSizePtrTableLeaf;
drh5fa60512015-06-19 17:19:34 +00001930 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001931 }else{
1932 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001933 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001934 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001935 }
drh271efa52004-05-30 19:19:05 +00001936 pPage->maxLocal = pBt->maxLeaf;
1937 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001938 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001939 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1940 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001941 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001942 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1943 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001944 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001945 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001946 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001947 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001948 pPage->maxLocal = pBt->maxLocal;
1949 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001950 }else{
drhfdab0262014-11-20 15:30:50 +00001951 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1952 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001953 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001954 }
drhc9166342012-01-05 23:32:06 +00001955 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001956 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001957}
1958
1959/*
drhb0ea9432019-02-09 21:06:40 +00001960** Compute the amount of freespace on the page. In other words, fill
1961** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00001962*/
drhb0ea9432019-02-09 21:06:40 +00001963static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001964 int pc; /* Address of a freeblock within pPage->aData[] */
1965 u8 hdr; /* Offset to beginning of page header */
1966 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00001967 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00001968 int nFree; /* Number of unused bytes on the page */
1969 int top; /* First byte of the cell content area */
1970 int iCellFirst; /* First allowable cell or freeblock offset */
1971 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001972
danielk197771d5d2c2008-09-29 11:49:47 +00001973 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001974 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001975 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001976 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001977 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1978 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00001979 assert( pPage->isInit==1 );
1980 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001981
drhb0ea9432019-02-09 21:06:40 +00001982 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00001983 hdr = pPage->hdrOffset;
1984 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00001985 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1986 ** the start of the cell content area. A zero value for this integer is
1987 ** interpreted as 65536. */
1988 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00001989 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00001990 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00001991
drh14e845a2017-05-25 21:35:56 +00001992 /* Compute the total free space on the page
1993 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1994 ** start of the first freeblock on the page, or is zero if there are no
1995 ** freeblocks. */
1996 pc = get2byte(&data[hdr+1]);
1997 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1998 if( pc>0 ){
1999 u32 next, size;
dan9a20ea92020-01-03 15:51:23 +00002000 if( pc<top ){
drh14e845a2017-05-25 21:35:56 +00002001 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
2002 ** always be at least one cell before the first freeblock.
2003 */
daneebf2f52017-11-18 17:30:08 +00002004 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00002005 }
drh14e845a2017-05-25 21:35:56 +00002006 while( 1 ){
2007 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00002008 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00002009 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002010 }
2011 next = get2byte(&data[pc]);
2012 size = get2byte(&data[pc+2]);
2013 nFree = nFree + size;
2014 if( next<=pc+size+3 ) break;
2015 pc = next;
2016 }
2017 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00002018 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00002019 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002020 }
2021 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00002022 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00002023 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002024 }
danielk197771d5d2c2008-09-29 11:49:47 +00002025 }
drh14e845a2017-05-25 21:35:56 +00002026
2027 /* At this point, nFree contains the sum of the offset to the start
2028 ** of the cell-content area plus the number of free bytes within
2029 ** the cell-content area. If this is greater than the usable-size
2030 ** of the page, then the page must be corrupted. This check also
2031 ** serves to verify that the offset to the start of the cell-content
2032 ** area, according to the page header, lies within the page.
2033 */
drhdfcecdf2019-05-08 00:17:45 +00002034 if( nFree>usableSize || nFree<iCellFirst ){
daneebf2f52017-11-18 17:30:08 +00002035 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002036 }
2037 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00002038 return SQLITE_OK;
2039}
2040
2041/*
drh5860a612019-02-12 16:58:26 +00002042** Do additional sanity check after btreeInitPage() if
2043** PRAGMA cell_size_check=ON
2044*/
2045static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
2046 int iCellFirst; /* First allowable cell or freeblock offset */
2047 int iCellLast; /* Last possible cell or freeblock offset */
2048 int i; /* Index into the cell pointer array */
2049 int sz; /* Size of a cell */
2050 int pc; /* Address of a freeblock within pPage->aData[] */
2051 u8 *data; /* Equal to pPage->aData */
2052 int usableSize; /* Maximum usable space on the page */
2053 int cellOffset; /* Start of cell content area */
2054
2055 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
2056 usableSize = pPage->pBt->usableSize;
2057 iCellLast = usableSize - 4;
2058 data = pPage->aData;
2059 cellOffset = pPage->cellOffset;
2060 if( !pPage->leaf ) iCellLast--;
2061 for(i=0; i<pPage->nCell; i++){
2062 pc = get2byteAligned(&data[cellOffset+i*2]);
2063 testcase( pc==iCellFirst );
2064 testcase( pc==iCellLast );
2065 if( pc<iCellFirst || pc>iCellLast ){
2066 return SQLITE_CORRUPT_PAGE(pPage);
2067 }
2068 sz = pPage->xCellSize(pPage, &data[pc]);
2069 testcase( pc+sz==usableSize );
2070 if( pc+sz>usableSize ){
2071 return SQLITE_CORRUPT_PAGE(pPage);
2072 }
2073 }
2074 return SQLITE_OK;
2075}
2076
2077/*
drhb0ea9432019-02-09 21:06:40 +00002078** Initialize the auxiliary information for a disk block.
2079**
2080** Return SQLITE_OK on success. If we see that the page does
2081** not contain a well-formed database page, then return
2082** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2083** guarantee that the page is well-formed. It only shows that
2084** we failed to detect any corruption.
2085*/
2086static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00002087 u8 *data; /* Equal to pPage->aData */
2088 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00002089
2090 assert( pPage->pBt!=0 );
2091 assert( pPage->pBt->db!=0 );
2092 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2093 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2094 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2095 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2096 assert( pPage->isInit==0 );
2097
2098 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00002099 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00002100 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2101 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00002102 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00002103 return SQLITE_CORRUPT_PAGE(pPage);
2104 }
2105 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2106 pPage->maskPage = (u16)(pBt->pageSize - 1);
2107 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00002108 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2109 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2110 pPage->aDataEnd = pPage->aData + pBt->usableSize;
2111 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002112 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2113 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002114 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002115 if( pPage->nCell>MX_CELL(pBt) ){
2116 /* To many cells for a single page. The page must be corrupt */
2117 return SQLITE_CORRUPT_PAGE(pPage);
2118 }
2119 testcase( pPage->nCell==MX_CELL(pBt) );
2120 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2121 ** possible for a root page of a table that contains no rows) then the
2122 ** offset to the cell content area will equal the page size minus the
2123 ** bytes of reserved space. */
2124 assert( pPage->nCell>0
mistachkin065f3bf2019-03-20 05:45:03 +00002125 || get2byteNotZero(&data[5])==(int)pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002126 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002127 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002128 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002129 if( pBt->db->flags & SQLITE_CellSizeCk ){
2130 return btreeCellSizeCheck(pPage);
2131 }
drh9e572e62004-04-23 23:43:10 +00002132 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002133}
2134
2135/*
drh8b2f49b2001-06-08 00:21:52 +00002136** Set up a raw page so that it looks like a database page holding
2137** no entries.
drhbd03cae2001-06-02 02:40:57 +00002138*/
drh9e572e62004-04-23 23:43:10 +00002139static void zeroPage(MemPage *pPage, int flags){
2140 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002141 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002142 u8 hdr = pPage->hdrOffset;
2143 u16 first;
drh9e572e62004-04-23 23:43:10 +00002144
danielk19773b8a05f2007-03-19 17:44:26 +00002145 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00002146 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2147 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002148 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002149 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002150 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002151 memset(&data[hdr], 0, pBt->usableSize - hdr);
2152 }
drh1bd10f82008-12-10 21:19:56 +00002153 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002154 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002155 memset(&data[hdr+1], 0, 4);
2156 data[hdr+7] = 0;
2157 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002158 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002159 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002160 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002161 pPage->aDataEnd = &data[pBt->usableSize];
2162 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002163 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002164 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002165 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2166 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002167 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002168 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002169}
2170
drh897a8202008-09-18 01:08:15 +00002171
2172/*
2173** Convert a DbPage obtained from the pager into a MemPage used by
2174** the btree layer.
2175*/
2176static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2177 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002178 if( pgno!=pPage->pgno ){
2179 pPage->aData = sqlite3PagerGetData(pDbPage);
2180 pPage->pDbPage = pDbPage;
2181 pPage->pBt = pBt;
2182 pPage->pgno = pgno;
2183 pPage->hdrOffset = pgno==1 ? 100 : 0;
2184 }
2185 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002186 return pPage;
2187}
2188
drhbd03cae2001-06-02 02:40:57 +00002189/*
drh3aac2dd2004-04-26 14:10:20 +00002190** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002191** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002192**
drh7e8c6f12015-05-28 03:28:27 +00002193** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2194** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002195** to fetch the content. Just fill in the content with zeros for now.
2196** If in the future we call sqlite3PagerWrite() on this page, that
2197** means we have started to be concerned about content and the disk
2198** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002199*/
danielk197730548662009-07-09 05:07:37 +00002200static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002201 BtShared *pBt, /* The btree */
2202 Pgno pgno, /* Number of the page to fetch */
2203 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002204 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002205){
drh3aac2dd2004-04-26 14:10:20 +00002206 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002207 DbPage *pDbPage;
2208
drhb00fc3b2013-08-21 23:42:32 +00002209 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002210 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002211 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002212 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002213 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002214 return SQLITE_OK;
2215}
2216
2217/*
danielk1977bea2a942009-01-20 17:06:27 +00002218** Retrieve a page from the pager cache. If the requested page is not
2219** already in the pager cache return NULL. Initialize the MemPage.pBt and
2220** MemPage.aData elements if needed.
2221*/
2222static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2223 DbPage *pDbPage;
2224 assert( sqlite3_mutex_held(pBt->mutex) );
2225 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2226 if( pDbPage ){
2227 return btreePageFromDbPage(pDbPage, pgno, pBt);
2228 }
2229 return 0;
2230}
2231
2232/*
danielk197789d40042008-11-17 14:20:56 +00002233** Return the size of the database file in pages. If there is any kind of
2234** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002235*/
drhb1299152010-03-30 22:58:33 +00002236static Pgno btreePagecount(BtShared *pBt){
drh406dfcb2020-01-07 18:10:01 +00002237 return pBt->nPage;
drhb1299152010-03-30 22:58:33 +00002238}
drh584e8b72020-07-22 17:12:59 +00002239Pgno sqlite3BtreeLastPage(Btree *p){
drhb1299152010-03-30 22:58:33 +00002240 assert( sqlite3BtreeHoldsMutex(p) );
drh584e8b72020-07-22 17:12:59 +00002241 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002242}
2243
2244/*
drh28f58dd2015-06-27 19:45:03 +00002245** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002246**
drh15a00212015-06-27 20:55:00 +00002247** If pCur!=0 then the page is being fetched as part of a moveToChild()
2248** call. Do additional sanity checking on the page in this case.
2249** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002250**
2251** The page is fetched as read-write unless pCur is not NULL and is
2252** a read-only cursor.
2253**
2254** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002255** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002256*/
2257static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002258 BtShared *pBt, /* The database file */
2259 Pgno pgno, /* Number of the page to get */
2260 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002261 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2262 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002263){
2264 int rc;
drh28f58dd2015-06-27 19:45:03 +00002265 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002266 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002267 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002268 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002269 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002270
danba3cbf32010-06-30 04:29:03 +00002271 if( pgno>btreePagecount(pBt) ){
2272 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002273 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002274 }
drh9584f582015-11-04 20:22:37 +00002275 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002276 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002277 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002278 }
drh8dd1c252015-11-04 22:31:02 +00002279 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002280 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002281 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002282 rc = btreeInitPage(*ppPage);
2283 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002284 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002285 }
drhee696e22004-08-30 16:52:17 +00002286 }
drh8dd1c252015-11-04 22:31:02 +00002287 assert( (*ppPage)->pgno==pgno );
2288 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002289
drh15a00212015-06-27 20:55:00 +00002290 /* If obtaining a child page for a cursor, we must verify that the page is
2291 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002292 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002293 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002294 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002295 }
drh28f58dd2015-06-27 19:45:03 +00002296 return SQLITE_OK;
2297
drhb0ea9432019-02-09 21:06:40 +00002298getAndInitPage_error2:
2299 releasePage(*ppPage);
2300getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002301 if( pCur ){
2302 pCur->iPage--;
2303 pCur->pPage = pCur->apPage[pCur->iPage];
2304 }
danba3cbf32010-06-30 04:29:03 +00002305 testcase( pgno==0 );
drhcdc59c82022-02-24 01:41:14 +00002306 assert( pgno!=0 || rc==SQLITE_CORRUPT
2307 || rc==SQLITE_IOERR_NOMEM
2308 || rc==SQLITE_NOMEM );
drhde647132004-05-07 17:57:49 +00002309 return rc;
2310}
2311
2312/*
drh3aac2dd2004-04-26 14:10:20 +00002313** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002314** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002315**
2316** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002317*/
drhbbf0f862015-06-27 14:59:26 +00002318static void releasePageNotNull(MemPage *pPage){
2319 assert( pPage->aData );
2320 assert( pPage->pBt );
2321 assert( pPage->pDbPage!=0 );
2322 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2323 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2324 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2325 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002326}
drh3aac2dd2004-04-26 14:10:20 +00002327static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002328 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002329}
drh3908fe92017-09-01 14:50:19 +00002330static void releasePageOne(MemPage *pPage){
2331 assert( pPage!=0 );
2332 assert( pPage->aData );
2333 assert( pPage->pBt );
2334 assert( pPage->pDbPage!=0 );
2335 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2336 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2337 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2338 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2339}
drh3aac2dd2004-04-26 14:10:20 +00002340
2341/*
drh7e8c6f12015-05-28 03:28:27 +00002342** Get an unused page.
2343**
2344** This works just like btreeGetPage() with the addition:
2345**
2346** * If the page is already in use for some other purpose, immediately
2347** release it and return an SQLITE_CURRUPT error.
2348** * Make sure the isInit flag is clear
2349*/
2350static int btreeGetUnusedPage(
2351 BtShared *pBt, /* The btree */
2352 Pgno pgno, /* Number of the page to fetch */
2353 MemPage **ppPage, /* Return the page in this parameter */
2354 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2355){
2356 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2357 if( rc==SQLITE_OK ){
2358 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2359 releasePage(*ppPage);
2360 *ppPage = 0;
2361 return SQLITE_CORRUPT_BKPT;
2362 }
2363 (*ppPage)->isInit = 0;
2364 }else{
2365 *ppPage = 0;
2366 }
2367 return rc;
2368}
2369
drha059ad02001-04-17 20:09:11 +00002370
2371/*
drha6abd042004-06-09 17:37:22 +00002372** During a rollback, when the pager reloads information into the cache
2373** so that the cache is restored to its original state at the start of
2374** the transaction, for each page restored this routine is called.
2375**
2376** This routine needs to reset the extra data section at the end of the
2377** page to agree with the restored data.
2378*/
danielk1977eaa06f62008-09-18 17:34:44 +00002379static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002380 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002381 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002382 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002383 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002384 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002385 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002386 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002387 /* pPage might not be a btree page; it might be an overflow page
2388 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002389 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002390 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002391 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002392 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002393 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002394 }
drha6abd042004-06-09 17:37:22 +00002395 }
2396}
2397
2398/*
drhe5fe6902007-12-07 18:55:28 +00002399** Invoke the busy handler for a btree.
2400*/
danielk19771ceedd32008-11-19 10:22:33 +00002401static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002402 BtShared *pBt = (BtShared*)pArg;
2403 assert( pBt->db );
2404 assert( sqlite3_mutex_held(pBt->db->mutex) );
drh783e1592020-05-06 20:55:38 +00002405 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
drhe5fe6902007-12-07 18:55:28 +00002406}
2407
2408/*
drhad3e0102004-09-03 23:32:18 +00002409** Open a database file.
2410**
drh382c0242001-10-06 16:33:02 +00002411** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002412** then an ephemeral database is created. The ephemeral database might
2413** be exclusively in memory, or it might use a disk-based memory cache.
2414** Either way, the ephemeral database will be automatically deleted
2415** when sqlite3BtreeClose() is called.
2416**
drhe53831d2007-08-17 01:14:38 +00002417** If zFilename is ":memory:" then an in-memory database is created
2418** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002419**
drh33f111d2012-01-17 15:29:14 +00002420** The "flags" parameter is a bitmask that might contain bits like
2421** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002422**
drhc47fd8e2009-04-30 13:30:32 +00002423** If the database is already opened in the same database connection
2424** and we are in shared cache mode, then the open will fail with an
2425** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2426** objects in the same database connection since doing so will lead
2427** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002428*/
drh23e11ca2004-05-04 17:27:28 +00002429int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002430 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002431 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002432 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002433 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002434 int flags, /* Options */
2435 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002436){
drh7555d8e2009-03-20 13:15:30 +00002437 BtShared *pBt = 0; /* Shared part of btree structure */
2438 Btree *p; /* Handle to return */
2439 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2440 int rc = SQLITE_OK; /* Result code from this function */
2441 u8 nReserve; /* Byte of unused space on each page */
2442 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002443
drh75c014c2010-08-30 15:02:28 +00002444 /* True if opening an ephemeral, temporary database */
2445 const int isTempDb = zFilename==0 || zFilename[0]==0;
2446
danielk1977aef0bf62005-12-30 16:28:01 +00002447 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002448 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002449 */
drhb0a7c9c2010-12-06 21:09:59 +00002450#ifdef SQLITE_OMIT_MEMORYDB
2451 const int isMemdb = 0;
2452#else
2453 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002454 || (isTempDb && sqlite3TempInMemory(db))
2455 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002456#endif
2457
drhe5fe6902007-12-07 18:55:28 +00002458 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002459 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002460 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002461 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2462
2463 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2464 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2465
2466 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2467 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002468
drh75c014c2010-08-30 15:02:28 +00002469 if( isMemdb ){
2470 flags |= BTREE_MEMORY;
2471 }
2472 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2473 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2474 }
drh17435752007-08-16 04:30:38 +00002475 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002476 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002477 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002478 }
2479 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002480 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002481#ifndef SQLITE_OMIT_SHARED_CACHE
2482 p->lock.pBtree = p;
2483 p->lock.iTable = 1;
2484#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002485
drh198bf392006-01-06 21:52:49 +00002486#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002487 /*
2488 ** If this Btree is a candidate for shared cache, try to find an
2489 ** existing BtShared object that we can share with
2490 */
drh4ab9d252012-05-26 20:08:49 +00002491 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002492 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002493 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002494 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002495 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002496 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002497
drhff0587c2007-08-29 17:43:19 +00002498 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002499 if( !zFullPathname ){
2500 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002501 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002502 }
drhafc8b7f2012-05-26 18:06:38 +00002503 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002504 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002505 }else{
2506 rc = sqlite3OsFullPathname(pVfs, zFilename,
2507 nFullPathname, zFullPathname);
2508 if( rc ){
drhc398c652019-11-22 00:42:01 +00002509 if( rc==SQLITE_OK_SYMLINK ){
2510 rc = SQLITE_OK;
2511 }else{
2512 sqlite3_free(zFullPathname);
2513 sqlite3_free(p);
2514 return rc;
2515 }
drhafc8b7f2012-05-26 18:06:38 +00002516 }
drh070ad6b2011-11-17 11:43:19 +00002517 }
drh30ddce62011-10-15 00:16:30 +00002518#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002519 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2520 sqlite3_mutex_enter(mutexOpen);
drhccb21132020-06-19 11:34:57 +00002521 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
drhff0587c2007-08-29 17:43:19 +00002522 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002523#endif
drh78f82d12008-09-02 00:52:52 +00002524 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002525 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002526 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002527 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002528 int iDb;
2529 for(iDb=db->nDb-1; iDb>=0; iDb--){
2530 Btree *pExisting = db->aDb[iDb].pBt;
2531 if( pExisting && pExisting->pBt==pBt ){
2532 sqlite3_mutex_leave(mutexShared);
2533 sqlite3_mutex_leave(mutexOpen);
2534 sqlite3_free(zFullPathname);
2535 sqlite3_free(p);
2536 return SQLITE_CONSTRAINT;
2537 }
2538 }
drhff0587c2007-08-29 17:43:19 +00002539 p->pBt = pBt;
2540 pBt->nRef++;
2541 break;
2542 }
2543 }
2544 sqlite3_mutex_leave(mutexShared);
2545 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002546 }
drhff0587c2007-08-29 17:43:19 +00002547#ifdef SQLITE_DEBUG
2548 else{
2549 /* In debug mode, we mark all persistent databases as sharable
2550 ** even when they are not. This exercises the locking code and
2551 ** gives more opportunity for asserts(sqlite3_mutex_held())
2552 ** statements to find locking problems.
2553 */
2554 p->sharable = 1;
2555 }
2556#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002557 }
2558#endif
drha059ad02001-04-17 20:09:11 +00002559 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002560 /*
2561 ** The following asserts make sure that structures used by the btree are
2562 ** the right size. This is to guard against size changes that result
2563 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002564 */
drh062cf272015-03-23 19:03:51 +00002565 assert( sizeof(i64)==8 );
2566 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002567 assert( sizeof(u32)==4 );
2568 assert( sizeof(u16)==2 );
2569 assert( sizeof(Pgno)==4 );
2570
2571 pBt = sqlite3MallocZero( sizeof(*pBt) );
2572 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002573 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002574 goto btree_open_out;
2575 }
danielk197771d5d2c2008-09-29 11:49:47 +00002576 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002577 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002578 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002579 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002580 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2581 }
2582 if( rc!=SQLITE_OK ){
2583 goto btree_open_out;
2584 }
shanehbd2aaf92010-09-01 02:38:21 +00002585 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002586 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002587 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002588 p->pBt = pBt;
2589
drhe53831d2007-08-17 01:14:38 +00002590 pBt->pCursor = 0;
2591 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002592 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002593#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002594 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002595#elif defined(SQLITE_FAST_SECURE_DELETE)
2596 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002597#endif
drh113762a2014-11-19 16:36:25 +00002598 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2599 ** determined by the 2-byte integer located at an offset of 16 bytes from
2600 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002601 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002602 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2603 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002604 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002605#ifndef SQLITE_OMIT_AUTOVACUUM
2606 /* If the magic name ":memory:" will create an in-memory database, then
2607 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2608 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2609 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2610 ** regular file-name. In this case the auto-vacuum applies as per normal.
2611 */
2612 if( zFilename && !isMemdb ){
2613 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2614 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2615 }
2616#endif
2617 nReserve = 0;
2618 }else{
drh113762a2014-11-19 16:36:25 +00002619 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2620 ** determined by the one-byte unsigned integer found at an offset of 20
2621 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002622 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002623 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002624#ifndef SQLITE_OMIT_AUTOVACUUM
2625 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2626 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2627#endif
2628 }
drhfa9601a2009-06-18 17:22:39 +00002629 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002630 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002631 pBt->usableSize = pBt->pageSize - nReserve;
2632 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002633
2634#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2635 /* Add the new BtShared object to the linked list sharable BtShareds.
2636 */
dan272989b2016-07-06 10:12:02 +00002637 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002638 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002639 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhccb21132020-06-19 11:34:57 +00002640 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
danielk1977075c23a2008-09-01 18:34:20 +00002641 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002642 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002643 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002644 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002645 goto btree_open_out;
2646 }
drhff0587c2007-08-29 17:43:19 +00002647 }
drhe53831d2007-08-17 01:14:38 +00002648 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002649 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2650 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002651 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002652 }
drheee46cf2004-11-06 00:02:48 +00002653#endif
drh90f5ecb2004-07-22 01:19:35 +00002654 }
danielk1977aef0bf62005-12-30 16:28:01 +00002655
drhcfed7bc2006-03-13 14:28:05 +00002656#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002657 /* If the new Btree uses a sharable pBtShared, then link the new
2658 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002659 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002660 */
drhe53831d2007-08-17 01:14:38 +00002661 if( p->sharable ){
2662 int i;
2663 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002664 for(i=0; i<db->nDb; i++){
2665 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002666 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002667 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002668 p->pNext = pSib;
2669 p->pPrev = 0;
2670 pSib->pPrev = p;
2671 }else{
drh3bfa7e82016-03-22 14:37:59 +00002672 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002673 pSib = pSib->pNext;
2674 }
2675 p->pNext = pSib->pNext;
2676 p->pPrev = pSib;
2677 if( p->pNext ){
2678 p->pNext->pPrev = p;
2679 }
2680 pSib->pNext = p;
2681 }
2682 break;
2683 }
2684 }
danielk1977aef0bf62005-12-30 16:28:01 +00002685 }
danielk1977aef0bf62005-12-30 16:28:01 +00002686#endif
2687 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002688
2689btree_open_out:
2690 if( rc!=SQLITE_OK ){
2691 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002692 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002693 }
drh17435752007-08-16 04:30:38 +00002694 sqlite3_free(pBt);
2695 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002696 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002697 }else{
dan0f5a1862016-08-13 14:30:23 +00002698 sqlite3_file *pFile;
2699
drh75c014c2010-08-30 15:02:28 +00002700 /* If the B-Tree was successfully opened, set the pager-cache size to the
2701 ** default value. Except, when opening on an existing shared pager-cache,
2702 ** do not change the pager-cache size.
2703 */
2704 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
dan78f04752020-09-04 19:10:43 +00002705 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
drh75c014c2010-08-30 15:02:28 +00002706 }
dan0f5a1862016-08-13 14:30:23 +00002707
2708 pFile = sqlite3PagerFile(pBt->pPager);
2709 if( pFile->pMethods ){
2710 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2711 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002712 }
drh7555d8e2009-03-20 13:15:30 +00002713 if( mutexOpen ){
2714 assert( sqlite3_mutex_held(mutexOpen) );
2715 sqlite3_mutex_leave(mutexOpen);
2716 }
dan272989b2016-07-06 10:12:02 +00002717 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002718 return rc;
drha059ad02001-04-17 20:09:11 +00002719}
2720
2721/*
drhe53831d2007-08-17 01:14:38 +00002722** Decrement the BtShared.nRef counter. When it reaches zero,
2723** remove the BtShared structure from the sharing list. Return
2724** true if the BtShared.nRef counter reaches zero and return
2725** false if it is still positive.
2726*/
2727static int removeFromSharingList(BtShared *pBt){
2728#ifndef SQLITE_OMIT_SHARED_CACHE
drh067b92b2020-06-19 15:24:12 +00002729 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
drhe53831d2007-08-17 01:14:38 +00002730 BtShared *pList;
2731 int removed = 0;
2732
drhd677b3d2007-08-20 22:48:41 +00002733 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh067b92b2020-06-19 15:24:12 +00002734 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2735 sqlite3_mutex_enter(pMainMtx);
drhe53831d2007-08-17 01:14:38 +00002736 pBt->nRef--;
2737 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002738 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2739 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002740 }else{
drh78f82d12008-09-02 00:52:52 +00002741 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002742 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002743 pList=pList->pNext;
2744 }
drh34004ce2008-07-11 16:15:17 +00002745 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002746 pList->pNext = pBt->pNext;
2747 }
2748 }
drh3285db22007-09-03 22:00:39 +00002749 if( SQLITE_THREADSAFE ){
2750 sqlite3_mutex_free(pBt->mutex);
2751 }
drhe53831d2007-08-17 01:14:38 +00002752 removed = 1;
2753 }
drh067b92b2020-06-19 15:24:12 +00002754 sqlite3_mutex_leave(pMainMtx);
drhe53831d2007-08-17 01:14:38 +00002755 return removed;
2756#else
2757 return 1;
2758#endif
2759}
2760
2761/*
drhf7141992008-06-19 00:16:08 +00002762** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002763** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2764** pointer.
drhf7141992008-06-19 00:16:08 +00002765*/
drh2f0bc1d2021-12-03 13:42:41 +00002766static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
2767 assert( pBt!=0 );
2768 assert( pBt->pTmpSpace==0 );
2769 /* This routine is called only by btreeCursor() when allocating the
2770 ** first write cursor for the BtShared object */
2771 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
2772 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2773 if( pBt->pTmpSpace==0 ){
2774 BtCursor *pCur = pBt->pCursor;
2775 pBt->pCursor = pCur->pNext; /* Unlink the cursor */
2776 memset(pCur, 0, sizeof(*pCur));
2777 return SQLITE_NOMEM_BKPT;
drhf7141992008-06-19 00:16:08 +00002778 }
drh2f0bc1d2021-12-03 13:42:41 +00002779
2780 /* One of the uses of pBt->pTmpSpace is to format cells before
2781 ** inserting them into a leaf page (function fillInCell()). If
2782 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2783 ** by the various routines that manipulate binary cells. Which
2784 ** can mean that fillInCell() only initializes the first 2 or 3
2785 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2786 ** it into a database page. This is not actually a problem, but it
2787 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2788 ** data is passed to system call write(). So to avoid this error,
2789 ** zero the first 4 bytes of temp space here.
2790 **
2791 ** Also: Provide four bytes of initialized space before the
2792 ** beginning of pTmpSpace as an area available to prepend the
2793 ** left-child pointer to the beginning of a cell.
2794 */
drh11e4fdb2021-12-03 14:57:05 +00002795 memset(pBt->pTmpSpace, 0, 8);
2796 pBt->pTmpSpace += 4;
drh2f0bc1d2021-12-03 13:42:41 +00002797 return SQLITE_OK;
drhf7141992008-06-19 00:16:08 +00002798}
2799
2800/*
2801** Free the pBt->pTmpSpace allocation
2802*/
2803static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002804 if( pBt->pTmpSpace ){
2805 pBt->pTmpSpace -= 4;
2806 sqlite3PageFree(pBt->pTmpSpace);
2807 pBt->pTmpSpace = 0;
2808 }
drhf7141992008-06-19 00:16:08 +00002809}
2810
2811/*
drha059ad02001-04-17 20:09:11 +00002812** Close an open database and invalidate all cursors.
2813*/
danielk1977aef0bf62005-12-30 16:28:01 +00002814int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002815 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00002816
danielk1977aef0bf62005-12-30 16:28:01 +00002817 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002818 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002819 sqlite3BtreeEnter(p);
drh5a4a15f2021-03-18 15:42:59 +00002820
2821 /* Verify that no other cursors have this Btree open */
2822#ifdef SQLITE_DEBUG
2823 {
2824 BtCursor *pCur = pBt->pCursor;
2825 while( pCur ){
2826 BtCursor *pTmp = pCur;
2827 pCur = pCur->pNext;
2828 assert( pTmp->pBtree!=p );
2829
danielk1977aef0bf62005-12-30 16:28:01 +00002830 }
drha059ad02001-04-17 20:09:11 +00002831 }
drh5a4a15f2021-03-18 15:42:59 +00002832#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002833
danielk19778d34dfd2006-01-24 16:37:57 +00002834 /* Rollback any active transaction and free the handle structure.
2835 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2836 ** this handle.
2837 */
drh47b7fc72014-11-11 01:33:57 +00002838 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002839 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002840
danielk1977aef0bf62005-12-30 16:28:01 +00002841 /* If there are still other outstanding references to the shared-btree
2842 ** structure, return now. The remainder of this procedure cleans
2843 ** up the shared-btree.
2844 */
drhe53831d2007-08-17 01:14:38 +00002845 assert( p->wantToLock==0 && p->locked==0 );
2846 if( !p->sharable || removeFromSharingList(pBt) ){
2847 /* The pBt is no longer on the sharing list, so we can access
2848 ** it without having to hold the mutex.
2849 **
2850 ** Clean out and delete the BtShared object.
2851 */
2852 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002853 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002854 if( pBt->xFreeSchema && pBt->pSchema ){
2855 pBt->xFreeSchema(pBt->pSchema);
2856 }
drhb9755982010-07-24 16:34:37 +00002857 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002858 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002859 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002860 }
2861
drhe53831d2007-08-17 01:14:38 +00002862#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002863 assert( p->wantToLock==0 );
2864 assert( p->locked==0 );
2865 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2866 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002867#endif
2868
drhe53831d2007-08-17 01:14:38 +00002869 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002870 return SQLITE_OK;
2871}
2872
2873/*
drh9b0cf342015-11-12 14:57:19 +00002874** Change the "soft" limit on the number of pages in the cache.
2875** Unused and unmodified pages will be recycled when the number of
2876** pages in the cache exceeds this soft limit. But the size of the
2877** cache is allowed to grow larger than this limit if it contains
2878** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002879*/
danielk1977aef0bf62005-12-30 16:28:01 +00002880int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2881 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002882 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002883 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002884 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002885 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002886 return SQLITE_OK;
2887}
2888
drh9b0cf342015-11-12 14:57:19 +00002889/*
2890** Change the "spill" limit on the number of pages in the cache.
2891** If the number of pages exceeds this limit during a write transaction,
2892** the pager might attempt to "spill" pages to the journal early in
2893** order to free up memory.
2894**
2895** The value returned is the current spill size. If zero is passed
2896** as an argument, no changes are made to the spill size setting, so
2897** using mxPage of 0 is a way to query the current spill size.
2898*/
2899int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2900 BtShared *pBt = p->pBt;
2901 int res;
2902 assert( sqlite3_mutex_held(p->db->mutex) );
2903 sqlite3BtreeEnter(p);
2904 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2905 sqlite3BtreeLeave(p);
2906 return res;
2907}
2908
drh18c7e402014-03-14 11:46:10 +00002909#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002910/*
dan5d8a1372013-03-19 19:28:06 +00002911** Change the limit on the amount of the database file that may be
2912** memory mapped.
2913*/
drh9b4c59f2013-04-15 17:03:42 +00002914int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002915 BtShared *pBt = p->pBt;
2916 assert( sqlite3_mutex_held(p->db->mutex) );
2917 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002918 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002919 sqlite3BtreeLeave(p);
2920 return SQLITE_OK;
2921}
drh18c7e402014-03-14 11:46:10 +00002922#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002923
2924/*
drh973b6e32003-02-12 14:09:42 +00002925** Change the way data is synced to disk in order to increase or decrease
2926** how well the database resists damage due to OS crashes and power
2927** failures. Level 1 is the same as asynchronous (no syncs() occur and
2928** there is a high probability of damage) Level 2 is the default. There
2929** is a very low but non-zero probability of damage. Level 3 reduces the
2930** probability of damage to near zero but with a write performance reduction.
2931*/
danielk197793758c82005-01-21 08:13:14 +00002932#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002933int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002934 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002935 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002936){
danielk1977aef0bf62005-12-30 16:28:01 +00002937 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002938 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002939 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002940 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002941 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002942 return SQLITE_OK;
2943}
danielk197793758c82005-01-21 08:13:14 +00002944#endif
drh973b6e32003-02-12 14:09:42 +00002945
drh2c8997b2005-08-27 16:36:48 +00002946/*
drh90f5ecb2004-07-22 01:19:35 +00002947** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002948** Or, if the page size has already been fixed, return SQLITE_READONLY
2949** without changing anything.
drh06f50212004-11-02 14:24:33 +00002950**
2951** The page size must be a power of 2 between 512 and 65536. If the page
2952** size supplied does not meet this constraint then the page size is not
2953** changed.
2954**
2955** Page sizes are constrained to be a power of two so that the region
2956** of the database file used for locking (beginning at PENDING_BYTE,
2957** the first byte past the 1GB boundary, 0x40000000) needs to occur
2958** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002959**
2960** If parameter nReserve is less than zero, then the number of reserved
2961** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002962**
drhc9166342012-01-05 23:32:06 +00002963** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002964** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002965*/
drhce4869f2009-04-02 20:16:58 +00002966int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002967 int rc = SQLITE_OK;
drhe937df82020-05-07 01:56:57 +00002968 int x;
danielk1977aef0bf62005-12-30 16:28:01 +00002969 BtShared *pBt = p->pBt;
drhe937df82020-05-07 01:56:57 +00002970 assert( nReserve>=0 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002971 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00002972 pBt->nReserveWanted = nReserve;
2973 x = pBt->pageSize - pBt->usableSize;
2974 if( nReserve<x ) nReserve = x;
drhc9166342012-01-05 23:32:06 +00002975 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002976 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002977 return SQLITE_READONLY;
2978 }
drhf49661a2008-12-10 16:45:50 +00002979 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002980 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2981 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002982 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002983 assert( !pBt->pCursor );
drh906602a2021-01-21 21:36:25 +00002984 if( nReserve>32 && pageSize==512 ) pageSize = 1024;
drhb2eced52010-08-12 02:41:12 +00002985 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002986 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002987 }
drhfa9601a2009-06-18 17:22:39 +00002988 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002989 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002990 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002991 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002992 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002993}
2994
2995/*
2996** Return the currently defined page size
2997*/
danielk1977aef0bf62005-12-30 16:28:01 +00002998int sqlite3BtreeGetPageSize(Btree *p){
2999 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00003000}
drh7f751222009-03-17 22:33:00 +00003001
dan0094f372012-09-28 20:23:42 +00003002/*
3003** This function is similar to sqlite3BtreeGetReserve(), except that it
3004** may only be called if it is guaranteed that the b-tree mutex is already
3005** held.
3006**
3007** This is useful in one special case in the backup API code where it is
3008** known that the shared b-tree mutex is held, but the mutex on the
3009** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
3010** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00003011** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00003012*/
3013int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00003014 int n;
dan0094f372012-09-28 20:23:42 +00003015 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00003016 n = p->pBt->pageSize - p->pBt->usableSize;
3017 return n;
dan0094f372012-09-28 20:23:42 +00003018}
3019
drh7f751222009-03-17 22:33:00 +00003020/*
3021** Return the number of bytes of space at the end of every page that
3022** are intentually left unused. This is the "reserved" space that is
3023** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00003024**
drh4d347662020-04-22 00:50:21 +00003025** The value returned is the larger of the current reserve size and
3026** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
3027** The amount of reserve can only grow - never shrink.
drh7f751222009-03-17 22:33:00 +00003028*/
drh45248de2020-04-20 15:18:43 +00003029int sqlite3BtreeGetRequestedReserve(Btree *p){
drhe937df82020-05-07 01:56:57 +00003030 int n1, n2;
drhd677b3d2007-08-20 22:48:41 +00003031 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00003032 n1 = (int)p->pBt->nReserveWanted;
3033 n2 = sqlite3BtreeGetReserveNoMutex(p);
drhd677b3d2007-08-20 22:48:41 +00003034 sqlite3BtreeLeave(p);
drhe937df82020-05-07 01:56:57 +00003035 return n1>n2 ? n1 : n2;
drh2011d5f2004-07-22 02:40:37 +00003036}
drhf8e632b2007-05-08 14:51:36 +00003037
drhad0961b2015-02-21 00:19:25 +00003038
drhf8e632b2007-05-08 14:51:36 +00003039/*
3040** Set the maximum page count for a database if mxPage is positive.
3041** No changes are made if mxPage is 0 or negative.
3042** Regardless of the value of mxPage, return the maximum page count.
3043*/
drhe9261db2020-07-20 12:47:32 +00003044Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
3045 Pgno n;
drhd677b3d2007-08-20 22:48:41 +00003046 sqlite3BtreeEnter(p);
3047 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
3048 sqlite3BtreeLeave(p);
3049 return n;
drhf8e632b2007-05-08 14:51:36 +00003050}
drh5b47efa2010-02-12 18:18:39 +00003051
3052/*
drha5907a82017-06-19 11:44:22 +00003053** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
3054**
3055** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3056** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3057** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3058** newFlag==(-1) No changes
3059**
3060** This routine acts as a query if newFlag is less than zero
3061**
3062** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3063** freelist leaf pages are not written back to the database. Thus in-page
3064** deleted content is cleared, but freelist deleted content is not.
3065**
3066** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3067** that freelist leaf pages are written back into the database, increasing
3068** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00003069*/
3070int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
3071 int b;
drhaf034ed2010-02-12 19:46:26 +00003072 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00003073 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00003074 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
3075 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00003076 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00003077 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3078 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3079 }
3080 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00003081 sqlite3BtreeLeave(p);
3082 return b;
3083}
drh90f5ecb2004-07-22 01:19:35 +00003084
3085/*
danielk1977951af802004-11-05 15:45:09 +00003086** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3087** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3088** is disabled. The default value for the auto-vacuum property is
3089** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3090*/
danielk1977aef0bf62005-12-30 16:28:01 +00003091int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00003092#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00003093 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00003094#else
danielk1977dddbcdc2007-04-26 14:42:34 +00003095 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003096 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00003097 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00003098
3099 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00003100 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003101 rc = SQLITE_READONLY;
3102 }else{
drh076d4662009-02-18 20:31:18 +00003103 pBt->autoVacuum = av ?1:0;
3104 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00003105 }
drhd677b3d2007-08-20 22:48:41 +00003106 sqlite3BtreeLeave(p);
3107 return rc;
danielk1977951af802004-11-05 15:45:09 +00003108#endif
3109}
3110
3111/*
3112** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3113** enabled 1 is returned. Otherwise 0.
3114*/
danielk1977aef0bf62005-12-30 16:28:01 +00003115int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00003116#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003117 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00003118#else
drhd677b3d2007-08-20 22:48:41 +00003119 int rc;
3120 sqlite3BtreeEnter(p);
3121 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003122 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3123 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3124 BTREE_AUTOVACUUM_INCR
3125 );
drhd677b3d2007-08-20 22:48:41 +00003126 sqlite3BtreeLeave(p);
3127 return rc;
danielk1977951af802004-11-05 15:45:09 +00003128#endif
3129}
3130
danf5da7db2017-03-16 18:14:39 +00003131/*
3132** If the user has not set the safety-level for this database connection
3133** using "PRAGMA synchronous", and if the safety-level is not already
3134** set to the value passed to this function as the second parameter,
3135** set it so.
3136*/
drh2ed57372017-10-05 20:57:38 +00003137#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3138 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003139static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3140 sqlite3 *db;
3141 Db *pDb;
3142 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3143 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3144 if( pDb->bSyncSet==0
3145 && pDb->safety_level!=safety_level
3146 && pDb!=&db->aDb[1]
3147 ){
3148 pDb->safety_level = safety_level;
3149 sqlite3PagerSetFlags(pBt->pPager,
3150 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3151 }
3152 }
3153}
3154#else
danfc8f4b62017-03-16 18:54:42 +00003155# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003156#endif
danielk1977951af802004-11-05 15:45:09 +00003157
drh0314cf32018-04-28 01:27:09 +00003158/* Forward declaration */
3159static int newDatabase(BtShared*);
3160
3161
danielk1977951af802004-11-05 15:45:09 +00003162/*
drha34b6762004-05-07 13:30:42 +00003163** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003164** also acquire a readlock on that file.
3165**
3166** SQLITE_OK is returned on success. If the file is not a
3167** well-formed database file, then SQLITE_CORRUPT is returned.
3168** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003169** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003170*/
danielk1977aef0bf62005-12-30 16:28:01 +00003171static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003172 int rc; /* Result code from subfunctions */
3173 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003174 u32 nPage; /* Number of pages in the database */
3175 u32 nPageFile = 0; /* Number of pages in the database file */
drhd677b3d2007-08-20 22:48:41 +00003176
drh1fee73e2007-08-29 04:00:57 +00003177 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003178 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003179 rc = sqlite3PagerSharedLock(pBt->pPager);
3180 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003181 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003182 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003183
3184 /* Do some checking to help insure the file we opened really is
3185 ** a valid database file.
3186 */
drh7d4c94b2021-10-04 22:34:38 +00003187 nPage = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003188 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003189 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003190 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003191 }
drh0314cf32018-04-28 01:27:09 +00003192 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3193 nPage = 0;
3194 }
drh97b59a52010-03-31 02:31:33 +00003195 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003196 u32 pageSize;
3197 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003198 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003199 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003200 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3201 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3202 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003203 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003204 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003205 }
dan5cf53532010-05-01 16:40:20 +00003206
3207#ifdef SQLITE_OMIT_WAL
3208 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003209 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003210 }
3211 if( page1[19]>1 ){
3212 goto page1_init_failed;
3213 }
3214#else
dane04dc882010-04-20 18:53:15 +00003215 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003216 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003217 }
dane04dc882010-04-20 18:53:15 +00003218 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003219 goto page1_init_failed;
3220 }
drhe5ae5732008-06-15 02:51:47 +00003221
drh0ccda522021-08-23 15:56:01 +00003222 /* If the read version is set to 2, this database should be accessed
dana470aeb2010-04-21 11:43:38 +00003223 ** in WAL mode. If the log is not already open, open it now. Then
3224 ** return SQLITE_OK and return without populating BtShared.pPage1.
3225 ** The caller detects this and calls this function again. This is
3226 ** required as the version of page 1 currently in the page1 buffer
3227 ** may not be the latest version - there may be a newer one in the log
3228 ** file.
3229 */
drhc9166342012-01-05 23:32:06 +00003230 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003231 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003232 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003233 if( rc!=SQLITE_OK ){
3234 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003235 }else{
danf5da7db2017-03-16 18:14:39 +00003236 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003237 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003238 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003239 return SQLITE_OK;
3240 }
dane04dc882010-04-20 18:53:15 +00003241 }
dan8b5444b2010-04-27 14:37:47 +00003242 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003243 }else{
3244 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003245 }
dan5cf53532010-05-01 16:40:20 +00003246#endif
dane04dc882010-04-20 18:53:15 +00003247
drh113762a2014-11-19 16:36:25 +00003248 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3249 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3250 **
drhe5ae5732008-06-15 02:51:47 +00003251 ** The original design allowed these amounts to vary, but as of
3252 ** version 3.6.0, we require them to be fixed.
3253 */
3254 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3255 goto page1_init_failed;
3256 }
drh113762a2014-11-19 16:36:25 +00003257 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3258 ** determined by the 2-byte integer located at an offset of 16 bytes from
3259 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003260 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003261 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3262 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003263 if( ((pageSize-1)&pageSize)!=0
3264 || pageSize>SQLITE_MAX_PAGE_SIZE
3265 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003266 ){
drh07d183d2005-05-01 22:52:42 +00003267 goto page1_init_failed;
3268 }
drhdcc27002019-01-06 02:06:31 +00003269 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003270 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003271 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3272 ** integer at offset 20 is the number of bytes of space at the end of
3273 ** each page to reserve for extensions.
3274 **
3275 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3276 ** determined by the one-byte unsigned integer found at an offset of 20
3277 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003278 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003279 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003280 /* After reading the first page of the database assuming a page size
3281 ** of BtShared.pageSize, we have discovered that the page-size is
3282 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3283 ** zero and return SQLITE_OK. The caller will call this function
3284 ** again with the correct page-size.
3285 */
drh3908fe92017-09-01 14:50:19 +00003286 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003287 pBt->usableSize = usableSize;
3288 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003289 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003290 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3291 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003292 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003293 }
drh5a6f8182022-01-17 14:42:38 +00003294 if( nPage>nPageFile ){
3295 if( sqlite3WritableSchema(pBt->db)==0 ){
3296 rc = SQLITE_CORRUPT_BKPT;
3297 goto page1_init_failed;
3298 }else{
3299 nPage = nPageFile;
3300 }
drhc2a4bab2010-04-02 12:46:45 +00003301 }
drh113762a2014-11-19 16:36:25 +00003302 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3303 ** be less than 480. In other words, if the page size is 512, then the
3304 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003305 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003306 goto page1_init_failed;
3307 }
drh43b18e12010-08-17 19:40:08 +00003308 pBt->pageSize = pageSize;
3309 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003310#ifndef SQLITE_OMIT_AUTOVACUUM
3311 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003312 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003313#endif
drh306dc212001-05-21 13:45:10 +00003314 }
drhb6f41482004-05-14 01:58:11 +00003315
3316 /* maxLocal is the maximum amount of payload to store locally for
3317 ** a cell. Make sure it is small enough so that at least minFanout
3318 ** cells can will fit on one page. We assume a 10-byte page header.
3319 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003320 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003321 ** 4-byte child pointer
3322 ** 9-byte nKey value
3323 ** 4-byte nData value
3324 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003325 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003326 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3327 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003328 */
shaneh1df2db72010-08-18 02:28:48 +00003329 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3330 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3331 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3332 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003333 if( pBt->maxLocal>127 ){
3334 pBt->max1bytePayload = 127;
3335 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003336 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003337 }
drh2e38c322004-09-03 18:38:44 +00003338 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003339 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003340 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003341 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003342
drh72f82862001-05-24 21:06:34 +00003343page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003344 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003345 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003346 return rc;
drh306dc212001-05-21 13:45:10 +00003347}
3348
drh85ec3b62013-05-14 23:12:06 +00003349#ifndef NDEBUG
3350/*
3351** Return the number of cursors open on pBt. This is for use
3352** in assert() expressions, so it is only compiled if NDEBUG is not
3353** defined.
3354**
3355** Only write cursors are counted if wrOnly is true. If wrOnly is
3356** false then all cursors are counted.
3357**
3358** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003359** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003360** have been tripped into the CURSOR_FAULT state are not counted.
3361*/
3362static int countValidCursors(BtShared *pBt, int wrOnly){
3363 BtCursor *pCur;
3364 int r = 0;
3365 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003366 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3367 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003368 }
3369 return r;
3370}
3371#endif
3372
drh306dc212001-05-21 13:45:10 +00003373/*
drhb8ca3072001-12-05 00:21:20 +00003374** If there are no outstanding cursors and we are not in the middle
3375** of a transaction but there is a read lock on the database, then
3376** this routine unrefs the first page of the database file which
3377** has the effect of releasing the read lock.
3378**
drhb8ca3072001-12-05 00:21:20 +00003379** If there is a transaction in progress, this routine is a no-op.
3380*/
danielk1977aef0bf62005-12-30 16:28:01 +00003381static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003382 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003383 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003384 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003385 MemPage *pPage1 = pBt->pPage1;
3386 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003387 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003388 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003389 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003390 }
3391}
3392
3393/*
drhe39f2f92009-07-23 01:43:59 +00003394** If pBt points to an empty file then convert that empty file
3395** into a new empty database by initializing the first page of
3396** the database.
drh8b2f49b2001-06-08 00:21:52 +00003397*/
danielk1977aef0bf62005-12-30 16:28:01 +00003398static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003399 MemPage *pP1;
3400 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003401 int rc;
drhd677b3d2007-08-20 22:48:41 +00003402
drh1fee73e2007-08-29 04:00:57 +00003403 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003404 if( pBt->nPage>0 ){
3405 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003406 }
drh3aac2dd2004-04-26 14:10:20 +00003407 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003408 assert( pP1!=0 );
3409 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003410 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003411 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003412 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3413 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003414 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3415 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003416 data[18] = 1;
3417 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003418 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3419 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003420 data[21] = 64;
3421 data[22] = 32;
3422 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003423 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003424 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003425 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003426#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003427 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003428 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003429 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003430 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003431#endif
drhdd3cd972010-03-27 17:12:36 +00003432 pBt->nPage = 1;
3433 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003434 return SQLITE_OK;
3435}
3436
3437/*
danb483eba2012-10-13 19:58:11 +00003438** Initialize the first page of the database file (creating a database
3439** consisting of a single page and no schema objects). Return SQLITE_OK
3440** if successful, or an SQLite error code otherwise.
3441*/
3442int sqlite3BtreeNewDb(Btree *p){
3443 int rc;
3444 sqlite3BtreeEnter(p);
3445 p->pBt->nPage = 0;
3446 rc = newDatabase(p->pBt);
3447 sqlite3BtreeLeave(p);
3448 return rc;
3449}
3450
3451/*
danielk1977ee5741e2004-05-31 10:01:34 +00003452** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003453** is started if the second argument is nonzero, otherwise a read-
3454** transaction. If the second argument is 2 or more and exclusive
3455** transaction is started, meaning that no other process is allowed
3456** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003457** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003458** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003459**
danielk1977ee5741e2004-05-31 10:01:34 +00003460** A write-transaction must be started before attempting any
3461** changes to the database. None of the following routines
3462** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003463**
drh23e11ca2004-05-04 17:27:28 +00003464** sqlite3BtreeCreateTable()
3465** sqlite3BtreeCreateIndex()
3466** sqlite3BtreeClearTable()
3467** sqlite3BtreeDropTable()
3468** sqlite3BtreeInsert()
3469** sqlite3BtreeDelete()
3470** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003471**
drhb8ef32c2005-03-14 02:01:49 +00003472** If an initial attempt to acquire the lock fails because of lock contention
3473** and the database was previously unlocked, then invoke the busy handler
3474** if there is one. But if there was previously a read-lock, do not
3475** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3476** returned when there is already a read-lock in order to avoid a deadlock.
3477**
3478** Suppose there are two processes A and B. A has a read lock and B has
3479** a reserved lock. B tries to promote to exclusive but is blocked because
3480** of A's read lock. A tries to promote to reserved but is blocked by B.
3481** One or the other of the two processes must give way or there can be
3482** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3483** when A already has a read lock, we encourage A to give up and let B
3484** proceed.
drha059ad02001-04-17 20:09:11 +00003485*/
drhbb2d9b12018-06-06 16:28:40 +00003486int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003487 BtShared *pBt = p->pBt;
dan7bb8b8a2020-05-06 20:27:18 +00003488 Pager *pPager = pBt->pPager;
danielk1977ee5741e2004-05-31 10:01:34 +00003489 int rc = SQLITE_OK;
3490
drhd677b3d2007-08-20 22:48:41 +00003491 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003492 btreeIntegrity(p);
3493
danielk1977ee5741e2004-05-31 10:01:34 +00003494 /* If the btree is already in a write-transaction, or it
3495 ** is already in a read-transaction and a read-transaction
3496 ** is requested, this is a no-op.
3497 */
danielk1977aef0bf62005-12-30 16:28:01 +00003498 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003499 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003500 }
dan56c517a2013-09-26 11:04:33 +00003501 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003502
danea933f02018-07-19 11:44:02 +00003503 if( (p->db->flags & SQLITE_ResetDatabase)
dan7bb8b8a2020-05-06 20:27:18 +00003504 && sqlite3PagerIsreadonly(pPager)==0
danea933f02018-07-19 11:44:02 +00003505 ){
3506 pBt->btsFlags &= ~BTS_READ_ONLY;
3507 }
3508
drhb8ef32c2005-03-14 02:01:49 +00003509 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003510 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003511 rc = SQLITE_READONLY;
3512 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003513 }
3514
danielk1977404ca072009-03-16 13:19:36 +00003515#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003516 {
3517 sqlite3 *pBlock = 0;
3518 /* If another database handle has already opened a write transaction
3519 ** on this shared-btree structure and a second write transaction is
3520 ** requested, return SQLITE_LOCKED.
3521 */
3522 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3523 || (pBt->btsFlags & BTS_PENDING)!=0
3524 ){
3525 pBlock = pBt->pWriter->db;
3526 }else if( wrflag>1 ){
3527 BtLock *pIter;
3528 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3529 if( pIter->pBtree!=p ){
3530 pBlock = pIter->pBtree->db;
3531 break;
3532 }
danielk1977641b0f42007-12-21 04:47:25 +00003533 }
3534 }
drh5a1fb182016-01-08 19:34:39 +00003535 if( pBlock ){
3536 sqlite3ConnectionBlocked(p->db, pBlock);
3537 rc = SQLITE_LOCKED_SHAREDCACHE;
3538 goto trans_begun;
3539 }
danielk1977404ca072009-03-16 13:19:36 +00003540 }
danielk1977641b0f42007-12-21 04:47:25 +00003541#endif
3542
danielk1977602b4662009-07-02 07:47:33 +00003543 /* Any read-only or read-write transaction implies a read-lock on
3544 ** page 1. So if some other shared-cache client already has a write-lock
3545 ** on page 1, the transaction cannot be opened. */
drh346a70c2020-06-15 20:27:35 +00003546 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
drh4c301aa2009-07-15 17:25:45 +00003547 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003548
drhc9166342012-01-05 23:32:06 +00003549 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3550 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003551 do {
dan11a81822020-05-07 14:26:40 +00003552 sqlite3PagerWalDb(pPager, p->db);
dan58021b22020-05-05 20:30:07 +00003553
3554#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3555 /* If transitioning from no transaction directly to a write transaction,
3556 ** block for the WRITER lock first if possible. */
3557 if( pBt->pPage1==0 && wrflag ){
3558 assert( pBt->inTransaction==TRANS_NONE );
dan861fb1e2020-05-06 19:14:41 +00003559 rc = sqlite3PagerWalWriteLock(pPager, 1);
dan7bb8b8a2020-05-06 20:27:18 +00003560 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
dan58021b22020-05-05 20:30:07 +00003561 }
3562#endif
3563
danielk1977295dc102009-04-01 19:07:03 +00003564 /* Call lockBtree() until either pBt->pPage1 is populated or
3565 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3566 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3567 ** reading page 1 it discovers that the page-size of the database
3568 ** file is not pBt->pageSize. In this case lockBtree() will update
3569 ** pBt->pageSize to the page-size of the file on disk.
3570 */
3571 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003572
drhb8ef32c2005-03-14 02:01:49 +00003573 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003574 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003575 rc = SQLITE_READONLY;
3576 }else{
dan58021b22020-05-05 20:30:07 +00003577 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003578 if( rc==SQLITE_OK ){
3579 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003580 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3581 /* if there was no transaction opened when this function was
3582 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3583 ** code to SQLITE_BUSY. */
3584 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003585 }
drhb8ef32c2005-03-14 02:01:49 +00003586 }
3587 }
3588
danielk1977bd434552009-03-18 10:33:00 +00003589 if( rc!=SQLITE_OK ){
danfc87ab82020-05-06 19:22:59 +00003590 (void)sqlite3PagerWalWriteLock(pPager, 0);
drhb8ef32c2005-03-14 02:01:49 +00003591 unlockBtreeIfUnused(pBt);
3592 }
danf9b76712010-06-01 14:12:45 +00003593 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003594 btreeInvokeBusyHandler(pBt) );
dan7bb8b8a2020-05-06 20:27:18 +00003595 sqlite3PagerWalDb(pPager, 0);
3596#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3597 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3598#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003599
3600 if( rc==SQLITE_OK ){
3601 if( p->inTrans==TRANS_NONE ){
3602 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003603#ifndef SQLITE_OMIT_SHARED_CACHE
3604 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003605 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003606 p->lock.eLock = READ_LOCK;
3607 p->lock.pNext = pBt->pLock;
3608 pBt->pLock = &p->lock;
3609 }
3610#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003611 }
3612 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3613 if( p->inTrans>pBt->inTransaction ){
3614 pBt->inTransaction = p->inTrans;
3615 }
danielk1977404ca072009-03-16 13:19:36 +00003616 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003617 MemPage *pPage1 = pBt->pPage1;
3618#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003619 assert( !pBt->pWriter );
3620 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003621 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3622 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003623#endif
dan59257dc2010-08-04 11:34:31 +00003624
3625 /* If the db-size header field is incorrect (as it may be if an old
3626 ** client has been writing the database file), update it now. Doing
3627 ** this sooner rather than later means the database size can safely
3628 ** re-read the database size from page 1 if a savepoint or transaction
3629 ** rollback occurs within the transaction.
3630 */
3631 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3632 rc = sqlite3PagerWrite(pPage1->pDbPage);
3633 if( rc==SQLITE_OK ){
3634 put4byte(&pPage1->aData[28], pBt->nPage);
3635 }
3636 }
3637 }
danielk1977aef0bf62005-12-30 16:28:01 +00003638 }
3639
drhd677b3d2007-08-20 22:48:41 +00003640trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003641 if( rc==SQLITE_OK ){
3642 if( pSchemaVersion ){
3643 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3644 }
3645 if( wrflag ){
3646 /* This call makes sure that the pager has the correct number of
3647 ** open savepoints. If the second parameter is greater than 0 and
3648 ** the sub-journal is not already open, then it will be opened here.
3649 */
dan7bb8b8a2020-05-06 20:27:18 +00003650 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
drhbb2d9b12018-06-06 16:28:40 +00003651 }
danielk1977fd7f0452008-12-17 17:30:26 +00003652 }
danielk197712dd5492008-12-18 15:45:07 +00003653
danielk1977aef0bf62005-12-30 16:28:01 +00003654 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003655 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003656 return rc;
drha059ad02001-04-17 20:09:11 +00003657}
3658
danielk1977687566d2004-11-02 12:56:41 +00003659#ifndef SQLITE_OMIT_AUTOVACUUM
3660
3661/*
3662** Set the pointer-map entries for all children of page pPage. Also, if
3663** pPage contains cells that point to overflow pages, set the pointer
3664** map entries for the overflow pages as well.
3665*/
3666static int setChildPtrmaps(MemPage *pPage){
3667 int i; /* Counter variable */
3668 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003669 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003670 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003671 Pgno pgno = pPage->pgno;
3672
drh1fee73e2007-08-29 04:00:57 +00003673 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003674 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003675 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003676 nCell = pPage->nCell;
3677
3678 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003679 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003680
drh0f1bf4c2019-01-13 20:17:21 +00003681 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003682
danielk1977687566d2004-11-02 12:56:41 +00003683 if( !pPage->leaf ){
3684 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003685 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003686 }
3687 }
3688
3689 if( !pPage->leaf ){
3690 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003691 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003692 }
3693
danielk1977687566d2004-11-02 12:56:41 +00003694 return rc;
3695}
3696
3697/*
drhf3aed592009-07-08 18:12:49 +00003698** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3699** that it points to iTo. Parameter eType describes the type of pointer to
3700** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003701**
3702** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3703** page of pPage.
3704**
3705** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3706** page pointed to by one of the cells on pPage.
3707**
3708** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3709** overflow page in the list.
3710*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003711static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003712 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003713 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003714 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003715 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003716 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003717 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003718 }
danielk1977f78fc082004-11-02 14:40:32 +00003719 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003720 }else{
danielk1977687566d2004-11-02 12:56:41 +00003721 int i;
3722 int nCell;
drha1f75d92015-05-24 10:18:12 +00003723 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003724
drh14e845a2017-05-25 21:35:56 +00003725 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003726 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003727 nCell = pPage->nCell;
3728
danielk1977687566d2004-11-02 12:56:41 +00003729 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003730 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003731 if( eType==PTRMAP_OVERFLOW1 ){
3732 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003733 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003734 if( info.nLocal<info.nPayload ){
3735 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003736 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003737 }
3738 if( iFrom==get4byte(pCell+info.nSize-4) ){
3739 put4byte(pCell+info.nSize-4, iTo);
3740 break;
3741 }
danielk1977687566d2004-11-02 12:56:41 +00003742 }
3743 }else{
3744 if( get4byte(pCell)==iFrom ){
3745 put4byte(pCell, iTo);
3746 break;
3747 }
3748 }
3749 }
3750
3751 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003752 if( eType!=PTRMAP_BTREE ||
3753 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003754 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003755 }
danielk1977687566d2004-11-02 12:56:41 +00003756 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3757 }
danielk1977687566d2004-11-02 12:56:41 +00003758 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003759 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003760}
3761
danielk1977003ba062004-11-04 02:57:33 +00003762
danielk19777701e812005-01-10 12:59:51 +00003763/*
3764** Move the open database page pDbPage to location iFreePage in the
3765** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003766**
3767** The isCommit flag indicates that there is no need to remember that
3768** the journal needs to be sync()ed before database page pDbPage->pgno
3769** can be written to. The caller has already promised not to write to that
3770** page.
danielk19777701e812005-01-10 12:59:51 +00003771*/
danielk1977003ba062004-11-04 02:57:33 +00003772static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003773 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003774 MemPage *pDbPage, /* Open page to move */
3775 u8 eType, /* Pointer map 'type' entry for pDbPage */
3776 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003777 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003778 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003779){
3780 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3781 Pgno iDbPage = pDbPage->pgno;
3782 Pager *pPager = pBt->pPager;
3783 int rc;
3784
danielk1977a0bf2652004-11-04 14:30:04 +00003785 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3786 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003787 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003788 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003789 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003790
drh85b623f2007-12-13 21:54:09 +00003791 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003792 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3793 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003794 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003795 if( rc!=SQLITE_OK ){
3796 return rc;
3797 }
3798 pDbPage->pgno = iFreePage;
3799
3800 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3801 ** that point to overflow pages. The pointer map entries for all these
3802 ** pages need to be changed.
3803 **
3804 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3805 ** pointer to a subsequent overflow page. If this is the case, then
3806 ** the pointer map needs to be updated for the subsequent overflow page.
3807 */
danielk1977a0bf2652004-11-04 14:30:04 +00003808 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003809 rc = setChildPtrmaps(pDbPage);
3810 if( rc!=SQLITE_OK ){
3811 return rc;
3812 }
3813 }else{
3814 Pgno nextOvfl = get4byte(pDbPage->aData);
3815 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003816 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003817 if( rc!=SQLITE_OK ){
3818 return rc;
3819 }
3820 }
3821 }
3822
3823 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3824 ** that it points at iFreePage. Also fix the pointer map entry for
3825 ** iPtrPage.
3826 */
danielk1977a0bf2652004-11-04 14:30:04 +00003827 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003828 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003829 if( rc!=SQLITE_OK ){
3830 return rc;
3831 }
danielk19773b8a05f2007-03-19 17:44:26 +00003832 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003833 if( rc!=SQLITE_OK ){
3834 releasePage(pPtrPage);
3835 return rc;
3836 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003837 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003838 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003839 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003840 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003841 }
danielk1977003ba062004-11-04 02:57:33 +00003842 }
danielk1977003ba062004-11-04 02:57:33 +00003843 return rc;
3844}
3845
danielk1977dddbcdc2007-04-26 14:42:34 +00003846/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003847static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003848
3849/*
dan51f0b6d2013-02-22 20:16:34 +00003850** Perform a single step of an incremental-vacuum. If successful, return
3851** SQLITE_OK. If there is no work to do (and therefore no point in
3852** calling this function again), return SQLITE_DONE. Or, if an error
3853** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003854**
peter.d.reid60ec9142014-09-06 16:39:46 +00003855** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003856** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003857**
dan51f0b6d2013-02-22 20:16:34 +00003858** Parameter nFin is the number of pages that this database would contain
3859** were this function called until it returns SQLITE_DONE.
3860**
3861** If the bCommit parameter is non-zero, this function assumes that the
3862** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003863** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003864** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003865*/
dan51f0b6d2013-02-22 20:16:34 +00003866static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003867 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003868 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003869
drh1fee73e2007-08-29 04:00:57 +00003870 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003871 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003872
3873 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003874 u8 eType;
3875 Pgno iPtrPage;
3876
3877 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003878 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003879 return SQLITE_DONE;
3880 }
3881
3882 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3883 if( rc!=SQLITE_OK ){
3884 return rc;
3885 }
3886 if( eType==PTRMAP_ROOTPAGE ){
3887 return SQLITE_CORRUPT_BKPT;
3888 }
3889
3890 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003891 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003892 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003893 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003894 ** truncated to zero after this function returns, so it doesn't
3895 ** matter if it still contains some garbage entries.
3896 */
3897 Pgno iFreePg;
3898 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003899 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003900 if( rc!=SQLITE_OK ){
3901 return rc;
3902 }
3903 assert( iFreePg==iLastPg );
3904 releasePage(pFreePg);
3905 }
3906 } else {
3907 Pgno iFreePg; /* Index of free page to move pLastPg to */
3908 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003909 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3910 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003911
drhb00fc3b2013-08-21 23:42:32 +00003912 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003913 if( rc!=SQLITE_OK ){
3914 return rc;
3915 }
3916
dan51f0b6d2013-02-22 20:16:34 +00003917 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003918 ** is swapped with the first free page pulled off the free list.
3919 **
dan51f0b6d2013-02-22 20:16:34 +00003920 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003921 ** looping until a free-page located within the first nFin pages
3922 ** of the file is found.
3923 */
dan51f0b6d2013-02-22 20:16:34 +00003924 if( bCommit==0 ){
3925 eMode = BTALLOC_LE;
3926 iNear = nFin;
3927 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003928 do {
3929 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003930 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003931 if( rc!=SQLITE_OK ){
3932 releasePage(pLastPg);
3933 return rc;
3934 }
3935 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003936 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003937 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003938
dane1df4e32013-03-05 11:27:04 +00003939 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003940 releasePage(pLastPg);
3941 if( rc!=SQLITE_OK ){
3942 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003943 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003944 }
3945 }
3946
dan51f0b6d2013-02-22 20:16:34 +00003947 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003948 do {
danielk19773460d192008-12-27 15:23:13 +00003949 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003950 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3951 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003952 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003953 }
3954 return SQLITE_OK;
3955}
3956
3957/*
dan51f0b6d2013-02-22 20:16:34 +00003958** The database opened by the first argument is an auto-vacuum database
3959** nOrig pages in size containing nFree free pages. Return the expected
3960** size of the database in pages following an auto-vacuum operation.
3961*/
3962static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3963 int nEntry; /* Number of entries on one ptrmap page */
3964 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3965 Pgno nFin; /* Return value */
3966
3967 nEntry = pBt->usableSize/5;
3968 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3969 nFin = nOrig - nFree - nPtrmap;
3970 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3971 nFin--;
3972 }
3973 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3974 nFin--;
3975 }
dan51f0b6d2013-02-22 20:16:34 +00003976
3977 return nFin;
3978}
3979
3980/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003981** A write-transaction must be opened before calling this function.
3982** It performs a single unit of work towards an incremental vacuum.
3983**
3984** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003985** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003986** SQLITE_OK is returned. Otherwise an SQLite error code.
3987*/
3988int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003989 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003990 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003991
3992 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003993 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3994 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003995 rc = SQLITE_DONE;
3996 }else{
dan51f0b6d2013-02-22 20:16:34 +00003997 Pgno nOrig = btreePagecount(pBt);
3998 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3999 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
4000
drhbc2cf3b2020-07-14 12:40:53 +00004001 if( nOrig<nFin || nFree>=nOrig ){
dan91384712013-02-24 11:50:43 +00004002 rc = SQLITE_CORRUPT_BKPT;
4003 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00004004 rc = saveAllCursors(pBt, 0, 0);
4005 if( rc==SQLITE_OK ){
4006 invalidateAllOverflowCache(pBt);
4007 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
4008 }
dan51f0b6d2013-02-22 20:16:34 +00004009 if( rc==SQLITE_OK ){
4010 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4011 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
4012 }
4013 }else{
4014 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00004015 }
danielk1977dddbcdc2007-04-26 14:42:34 +00004016 }
drhd677b3d2007-08-20 22:48:41 +00004017 sqlite3BtreeLeave(p);
4018 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00004019}
4020
4021/*
danielk19773b8a05f2007-03-19 17:44:26 +00004022** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00004023** is committed for an auto-vacuum database.
danielk1977687566d2004-11-02 12:56:41 +00004024*/
drh1bbfc672021-10-15 23:02:27 +00004025static int autoVacuumCommit(Btree *p){
danielk1977dddbcdc2007-04-26 14:42:34 +00004026 int rc = SQLITE_OK;
drh1bbfc672021-10-15 23:02:27 +00004027 Pager *pPager;
4028 BtShared *pBt;
4029 sqlite3 *db;
4030 VVA_ONLY( int nRef );
4031
4032 assert( p!=0 );
4033 pBt = p->pBt;
4034 pPager = pBt->pPager;
4035 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00004036
drh1fee73e2007-08-29 04:00:57 +00004037 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00004038 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00004039 assert(pBt->autoVacuum);
4040 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00004041 Pgno nFin; /* Number of pages in database after autovacuuming */
4042 Pgno nFree; /* Number of pages on the freelist initially */
drh1bbfc672021-10-15 23:02:27 +00004043 Pgno nVac; /* Number of pages to vacuum */
drh41d628c2009-07-11 17:04:08 +00004044 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00004045 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00004046
drhb1299152010-03-30 22:58:33 +00004047 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00004048 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
4049 /* It is not possible to create a database for which the final page
4050 ** is either a pointer-map page or the pending-byte page. If one
4051 ** is encountered, this indicates corruption.
4052 */
danielk19773460d192008-12-27 15:23:13 +00004053 return SQLITE_CORRUPT_BKPT;
4054 }
danielk1977ef165ce2009-04-06 17:50:03 +00004055
danielk19773460d192008-12-27 15:23:13 +00004056 nFree = get4byte(&pBt->pPage1->aData[36]);
drh1bbfc672021-10-15 23:02:27 +00004057 db = p->db;
4058 if( db->xAutovacPages ){
4059 int iDb;
4060 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
4061 if( db->aDb[iDb].pBt==p ) break;
4062 }
4063 nVac = db->xAutovacPages(
4064 db->pAutovacPagesArg,
4065 db->aDb[iDb].zDbSName,
4066 nOrig,
4067 nFree,
4068 pBt->pageSize
4069 );
4070 if( nVac>nFree ){
4071 nVac = nFree;
4072 }
4073 if( nVac==0 ){
4074 return SQLITE_OK;
4075 }
4076 }else{
4077 nVac = nFree;
4078 }
4079 nFin = finalDbSize(pBt, nOrig, nVac);
drhc5e47ac2009-06-04 00:11:56 +00004080 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00004081 if( nFin<nOrig ){
4082 rc = saveAllCursors(pBt, 0, 0);
4083 }
danielk19773460d192008-12-27 15:23:13 +00004084 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
drh1bbfc672021-10-15 23:02:27 +00004085 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00004086 }
danielk19773460d192008-12-27 15:23:13 +00004087 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00004088 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
drh1bbfc672021-10-15 23:02:27 +00004089 if( nVac==nFree ){
4090 put4byte(&pBt->pPage1->aData[32], 0);
4091 put4byte(&pBt->pPage1->aData[36], 0);
4092 }
drhdd3cd972010-03-27 17:12:36 +00004093 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00004094 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00004095 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00004096 }
4097 if( rc!=SQLITE_OK ){
4098 sqlite3PagerRollback(pPager);
4099 }
danielk1977687566d2004-11-02 12:56:41 +00004100 }
4101
dan0aed84d2013-03-26 14:16:20 +00004102 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00004103 return rc;
4104}
danielk1977dddbcdc2007-04-26 14:42:34 +00004105
danielk1977a50d9aa2009-06-08 14:49:45 +00004106#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4107# define setChildPtrmaps(x) SQLITE_OK
4108#endif
danielk1977687566d2004-11-02 12:56:41 +00004109
4110/*
drh80e35f42007-03-30 14:06:34 +00004111** This routine does the first phase of a two-phase commit. This routine
4112** causes a rollback journal to be created (if it does not already exist)
4113** and populated with enough information so that if a power loss occurs
4114** the database can be restored to its original state by playing back
4115** the journal. Then the contents of the journal are flushed out to
4116** the disk. After the journal is safely on oxide, the changes to the
4117** database are written into the database file and flushed to oxide.
4118** At the end of this call, the rollback journal still exists on the
4119** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00004120** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00004121** commit process.
4122**
4123** This call is a no-op if no write-transaction is currently active on pBt.
4124**
drh067b92b2020-06-19 15:24:12 +00004125** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4126** the name of a super-journal file that should be written into the
4127** individual journal file, or is NULL, indicating no super-journal file
drh80e35f42007-03-30 14:06:34 +00004128** (single database transaction).
4129**
drh067b92b2020-06-19 15:24:12 +00004130** When this is called, the super-journal should already have been
drh80e35f42007-03-30 14:06:34 +00004131** created, populated with this journal pointer and synced to disk.
4132**
4133** Once this is routine has returned, the only thing required to commit
4134** the write-transaction for this database file is to delete the journal.
4135*/
drh067b92b2020-06-19 15:24:12 +00004136int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
drh80e35f42007-03-30 14:06:34 +00004137 int rc = SQLITE_OK;
4138 if( p->inTrans==TRANS_WRITE ){
4139 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004140 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004141#ifndef SQLITE_OMIT_AUTOVACUUM
4142 if( pBt->autoVacuum ){
drh1bbfc672021-10-15 23:02:27 +00004143 rc = autoVacuumCommit(p);
drh80e35f42007-03-30 14:06:34 +00004144 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00004145 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004146 return rc;
4147 }
4148 }
danbc1a3c62013-02-23 16:40:46 +00004149 if( pBt->bDoTruncate ){
4150 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4151 }
drh80e35f42007-03-30 14:06:34 +00004152#endif
drh067b92b2020-06-19 15:24:12 +00004153 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
drhd677b3d2007-08-20 22:48:41 +00004154 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004155 }
4156 return rc;
4157}
4158
4159/*
danielk197794b30732009-07-02 17:21:57 +00004160** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4161** at the conclusion of a transaction.
4162*/
4163static void btreeEndTransaction(Btree *p){
4164 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00004165 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004166 assert( sqlite3BtreeHoldsMutex(p) );
4167
danbc1a3c62013-02-23 16:40:46 +00004168#ifndef SQLITE_OMIT_AUTOVACUUM
4169 pBt->bDoTruncate = 0;
4170#endif
danc0537fe2013-06-28 19:41:43 +00004171 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004172 /* If there are other active statements that belong to this database
4173 ** handle, downgrade to a read-only transaction. The other statements
4174 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004175 downgradeAllSharedCacheTableLocks(p);
4176 p->inTrans = TRANS_READ;
4177 }else{
4178 /* If the handle had any kind of transaction open, decrement the
4179 ** transaction count of the shared btree. If the transaction count
4180 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4181 ** call below will unlock the pager. */
4182 if( p->inTrans!=TRANS_NONE ){
4183 clearAllSharedCacheTableLocks(p);
4184 pBt->nTransaction--;
4185 if( 0==pBt->nTransaction ){
4186 pBt->inTransaction = TRANS_NONE;
4187 }
4188 }
4189
4190 /* Set the current transaction state to TRANS_NONE and unlock the
4191 ** pager if this call closed the only read or write transaction. */
4192 p->inTrans = TRANS_NONE;
4193 unlockBtreeIfUnused(pBt);
4194 }
4195
4196 btreeIntegrity(p);
4197}
4198
4199/*
drh2aa679f2001-06-25 02:11:07 +00004200** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004201**
drh6e345992007-03-30 11:12:08 +00004202** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004203** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4204** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4205** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004206** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004207** routine has to do is delete or truncate or zero the header in the
4208** the rollback journal (which causes the transaction to commit) and
4209** drop locks.
drh6e345992007-03-30 11:12:08 +00004210**
dan60939d02011-03-29 15:40:55 +00004211** Normally, if an error occurs while the pager layer is attempting to
4212** finalize the underlying journal file, this function returns an error and
4213** the upper layer will attempt a rollback. However, if the second argument
4214** is non-zero then this b-tree transaction is part of a multi-file
4215** transaction. In this case, the transaction has already been committed
drh067b92b2020-06-19 15:24:12 +00004216** (by deleting a super-journal file) and the caller will ignore this
dan60939d02011-03-29 15:40:55 +00004217** functions return code. So, even if an error occurs in the pager layer,
4218** reset the b-tree objects internal state to indicate that the write
4219** transaction has been closed. This is quite safe, as the pager will have
4220** transitioned to the error state.
4221**
drh5e00f6c2001-09-13 13:46:56 +00004222** This will release the write lock on the database file. If there
4223** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004224*/
dan60939d02011-03-29 15:40:55 +00004225int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004226
drh075ed302010-10-14 01:17:30 +00004227 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004228 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004229 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004230
4231 /* If the handle has a write-transaction open, commit the shared-btrees
4232 ** transaction and set the shared state to TRANS_READ.
4233 */
4234 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004235 int rc;
drh075ed302010-10-14 01:17:30 +00004236 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004237 assert( pBt->inTransaction==TRANS_WRITE );
4238 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004239 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004240 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004241 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004242 return rc;
4243 }
drh2b994ce2021-03-18 12:36:09 +00004244 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004245 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004246 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004247 }
danielk1977aef0bf62005-12-30 16:28:01 +00004248
danielk197794b30732009-07-02 17:21:57 +00004249 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004250 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004251 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004252}
4253
drh80e35f42007-03-30 14:06:34 +00004254/*
4255** Do both phases of a commit.
4256*/
4257int sqlite3BtreeCommit(Btree *p){
4258 int rc;
drhd677b3d2007-08-20 22:48:41 +00004259 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004260 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4261 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004262 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004263 }
drhd677b3d2007-08-20 22:48:41 +00004264 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004265 return rc;
4266}
4267
drhc39e0002004-05-07 23:50:57 +00004268/*
drhfb982642007-08-30 01:19:59 +00004269** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004270** code to errCode for every cursor on any BtShared that pBtree
4271** references. Or if the writeOnly flag is set to 1, then only
4272** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004273**
drh47b7fc72014-11-11 01:33:57 +00004274** Every cursor is a candidate to be tripped, including cursors
4275** that belong to other database connections that happen to be
4276** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004277**
dan80231042014-11-12 14:56:02 +00004278** This routine gets called when a rollback occurs. If the writeOnly
4279** flag is true, then only write-cursors need be tripped - read-only
4280** cursors save their current positions so that they may continue
4281** following the rollback. Or, if writeOnly is false, all cursors are
4282** tripped. In general, writeOnly is false if the transaction being
4283** rolled back modified the database schema. In this case b-tree root
4284** pages may be moved or deleted from the database altogether, making
4285** it unsafe for read cursors to continue.
4286**
4287** If the writeOnly flag is true and an error is encountered while
4288** saving the current position of a read-only cursor, all cursors,
4289** including all read-cursors are tripped.
4290**
4291** SQLITE_OK is returned if successful, or if an error occurs while
4292** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004293*/
dan80231042014-11-12 14:56:02 +00004294int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004295 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004296 int rc = SQLITE_OK;
4297
drh47b7fc72014-11-11 01:33:57 +00004298 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004299 if( pBtree ){
4300 sqlite3BtreeEnter(pBtree);
4301 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004302 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004303 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004304 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004305 if( rc!=SQLITE_OK ){
4306 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4307 break;
4308 }
4309 }
4310 }else{
4311 sqlite3BtreeClearCursor(p);
4312 p->eState = CURSOR_FAULT;
4313 p->skipNext = errCode;
4314 }
drh85ef6302017-08-02 15:50:09 +00004315 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004316 }
dan80231042014-11-12 14:56:02 +00004317 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004318 }
dan80231042014-11-12 14:56:02 +00004319 return rc;
drhfb982642007-08-30 01:19:59 +00004320}
4321
4322/*
drh41422652019-05-10 14:34:18 +00004323** Set the pBt->nPage field correctly, according to the current
4324** state of the database. Assume pBt->pPage1 is valid.
4325*/
4326static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4327 int nPage = get4byte(&pPage1->aData[28]);
4328 testcase( nPage==0 );
4329 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
mistachkin2b5fbb22021-12-31 18:26:50 +00004330 testcase( pBt->nPage!=(u32)nPage );
drh41422652019-05-10 14:34:18 +00004331 pBt->nPage = nPage;
4332}
4333
4334/*
drh47b7fc72014-11-11 01:33:57 +00004335** Rollback the transaction in progress.
4336**
4337** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4338** Only write cursors are tripped if writeOnly is true but all cursors are
4339** tripped if writeOnly is false. Any attempt to use
4340** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004341**
4342** This will release the write lock on the database file. If there
4343** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004344*/
drh47b7fc72014-11-11 01:33:57 +00004345int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004346 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004347 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004348 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004349
drh47b7fc72014-11-11 01:33:57 +00004350 assert( writeOnly==1 || writeOnly==0 );
4351 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004352 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004353 if( tripCode==SQLITE_OK ){
4354 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004355 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004356 }else{
4357 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004358 }
drh0f198a72012-02-13 16:43:16 +00004359 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004360 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4361 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4362 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004363 }
danielk1977aef0bf62005-12-30 16:28:01 +00004364 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004365
4366 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004367 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004368
danielk19778d34dfd2006-01-24 16:37:57 +00004369 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004370 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004371 if( rc2!=SQLITE_OK ){
4372 rc = rc2;
4373 }
4374
drh24cd67e2004-05-10 16:18:47 +00004375 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004376 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004377 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004378 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh41422652019-05-10 14:34:18 +00004379 btreeSetNPage(pBt, pPage1);
drh3908fe92017-09-01 14:50:19 +00004380 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004381 }
drh85ec3b62013-05-14 23:12:06 +00004382 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004383 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004384 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004385 }
danielk1977aef0bf62005-12-30 16:28:01 +00004386
danielk197794b30732009-07-02 17:21:57 +00004387 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004388 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004389 return rc;
4390}
4391
4392/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004393** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004394** back independently of the main transaction. You must start a transaction
4395** before starting a subtransaction. The subtransaction is ended automatically
4396** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004397**
4398** Statement subtransactions are used around individual SQL statements
4399** that are contained within a BEGIN...COMMIT block. If a constraint
4400** error occurs within the statement, the effect of that one statement
4401** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004402**
4403** A statement sub-transaction is implemented as an anonymous savepoint. The
4404** value passed as the second parameter is the total number of savepoints,
4405** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4406** are no active savepoints and no other statement-transactions open,
4407** iStatement is 1. This anonymous savepoint can be released or rolled back
4408** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004409*/
danielk1977bd434552009-03-18 10:33:00 +00004410int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004411 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004412 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004413 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004414 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004415 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004416 assert( iStatement>0 );
4417 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004418 assert( pBt->inTransaction==TRANS_WRITE );
4419 /* At the pager level, a statement transaction is a savepoint with
4420 ** an index greater than all savepoints created explicitly using
4421 ** SQL statements. It is illegal to open, release or rollback any
4422 ** such savepoints while the statement transaction savepoint is active.
4423 */
4424 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004425 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004426 return rc;
4427}
4428
4429/*
danielk1977fd7f0452008-12-17 17:30:26 +00004430** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4431** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004432** savepoint identified by parameter iSavepoint, depending on the value
4433** of op.
4434**
4435** Normally, iSavepoint is greater than or equal to zero. However, if op is
4436** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4437** contents of the entire transaction are rolled back. This is different
4438** from a normal transaction rollback, as no locks are released and the
4439** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004440*/
4441int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4442 int rc = SQLITE_OK;
4443 if( p && p->inTrans==TRANS_WRITE ){
4444 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004445 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4446 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4447 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004448 if( op==SAVEPOINT_ROLLBACK ){
4449 rc = saveAllCursors(pBt, 0, 0);
4450 }
4451 if( rc==SQLITE_OK ){
4452 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4453 }
drh9f0bbf92009-01-02 21:08:09 +00004454 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004455 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4456 pBt->nPage = 0;
4457 }
drh9f0bbf92009-01-02 21:08:09 +00004458 rc = newDatabase(pBt);
drh41422652019-05-10 14:34:18 +00004459 btreeSetNPage(pBt, pBt->pPage1);
drhb9b49bf2010-08-05 03:21:39 +00004460
dana9a54652019-04-22 11:47:40 +00004461 /* pBt->nPage might be zero if the database was corrupt when
4462 ** the transaction was started. Otherwise, it must be at least 1. */
4463 assert( CORRUPT_DB || pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004464 }
danielk1977fd7f0452008-12-17 17:30:26 +00004465 sqlite3BtreeLeave(p);
4466 }
4467 return rc;
4468}
4469
4470/*
drh8b2f49b2001-06-08 00:21:52 +00004471** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004472** iTable. If a read-only cursor is requested, it is assumed that
4473** the caller already has at least a read-only transaction open
4474** on the database already. If a write-cursor is requested, then
4475** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004476**
drhe807bdb2016-01-21 17:06:33 +00004477** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4478** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4479** can be used for reading or for writing if other conditions for writing
4480** are also met. These are the conditions that must be met in order
4481** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004482**
drhe807bdb2016-01-21 17:06:33 +00004483** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004484**
drhfe5d71d2007-03-19 11:54:10 +00004485** 2: Other database connections that share the same pager cache
4486** but which are not in the READ_UNCOMMITTED state may not have
4487** cursors open with wrFlag==0 on the same table. Otherwise
4488** the changes made by this write cursor would be visible to
4489** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004490**
4491** 3: The database must be writable (not on read-only media)
4492**
4493** 4: There must be an active transaction.
4494**
drhe807bdb2016-01-21 17:06:33 +00004495** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4496** is set. If FORDELETE is set, that is a hint to the implementation that
4497** this cursor will only be used to seek to and delete entries of an index
4498** as part of a larger DELETE statement. The FORDELETE hint is not used by
4499** this implementation. But in a hypothetical alternative storage engine
4500** in which index entries are automatically deleted when corresponding table
4501** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4502** operations on this cursor can be no-ops and all READ operations can
4503** return a null row (2-bytes: 0x01 0x00).
4504**
drh6446c4d2001-12-15 14:22:18 +00004505** No checking is done to make sure that page iTable really is the
4506** root page of a b-tree. If it is not, then the cursor acquired
4507** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004508**
drhf25a5072009-11-18 23:01:25 +00004509** It is assumed that the sqlite3BtreeCursorZero() has been called
4510** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004511*/
drhd677b3d2007-08-20 22:48:41 +00004512static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004513 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004514 Pgno iTable, /* Root page of table to open */
danielk1977cd3e8f72008-03-25 09:47:35 +00004515 int wrFlag, /* 1 to write. 0 read-only */
4516 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4517 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004518){
danielk19773e8add92009-07-04 17:16:00 +00004519 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004520 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004521
drh1fee73e2007-08-29 04:00:57 +00004522 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004523 assert( wrFlag==0
4524 || wrFlag==BTREE_WRCSR
4525 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4526 );
danielk197796d48e92009-06-29 06:00:37 +00004527
danielk1977602b4662009-07-02 07:47:33 +00004528 /* The following assert statements verify that if this is a sharable
4529 ** b-tree database, the connection is holding the required table locks,
4530 ** and that no other connection has any open cursor that conflicts with
drhac801802019-11-17 11:47:50 +00004531 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4532 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4533 || iTable<1 );
danielk197796d48e92009-06-29 06:00:37 +00004534 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4535
danielk19773e8add92009-07-04 17:16:00 +00004536 /* Assert that the caller has opened the required transaction. */
4537 assert( p->inTrans>TRANS_NONE );
4538 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4539 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004540 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004541
drhdb561bc2019-10-25 14:46:05 +00004542 if( iTable<=1 ){
4543 if( iTable<1 ){
4544 return SQLITE_CORRUPT_BKPT;
4545 }else if( btreePagecount(pBt)==0 ){
4546 assert( wrFlag==0 );
4547 iTable = 0;
4548 }
danielk19773e8add92009-07-04 17:16:00 +00004549 }
danielk1977aef0bf62005-12-30 16:28:01 +00004550
danielk1977aef0bf62005-12-30 16:28:01 +00004551 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004552 ** variables and link the cursor into the BtShared list. */
drhabc38152020-07-22 13:38:04 +00004553 pCur->pgnoRoot = iTable;
danielk1977172114a2009-07-07 15:47:12 +00004554 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004555 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004556 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004557 pCur->pBt = pBt;
drh2f0bc1d2021-12-03 13:42:41 +00004558 pCur->curFlags = 0;
drh27fb7462015-06-30 02:47:36 +00004559 /* If there are two or more cursors on the same btree, then all such
4560 ** cursors *must* have the BTCF_Multiple flag set. */
4561 for(pX=pBt->pCursor; pX; pX=pX->pNext){
drhabc38152020-07-22 13:38:04 +00004562 if( pX->pgnoRoot==iTable ){
drh27fb7462015-06-30 02:47:36 +00004563 pX->curFlags |= BTCF_Multiple;
drh2f0bc1d2021-12-03 13:42:41 +00004564 pCur->curFlags = BTCF_Multiple;
drh27fb7462015-06-30 02:47:36 +00004565 }
drha059ad02001-04-17 20:09:11 +00004566 }
drh2f0bc1d2021-12-03 13:42:41 +00004567 pCur->eState = CURSOR_INVALID;
drh27fb7462015-06-30 02:47:36 +00004568 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004569 pBt->pCursor = pCur;
drh2f0bc1d2021-12-03 13:42:41 +00004570 if( wrFlag ){
4571 pCur->curFlags |= BTCF_WriteFlag;
4572 pCur->curPagerFlags = 0;
4573 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
4574 }else{
4575 pCur->curPagerFlags = PAGER_GET_READONLY;
4576 }
danielk1977aef0bf62005-12-30 16:28:01 +00004577 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004578}
drhdb561bc2019-10-25 14:46:05 +00004579static int btreeCursorWithLock(
4580 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004581 Pgno iTable, /* Root page of table to open */
drhdb561bc2019-10-25 14:46:05 +00004582 int wrFlag, /* 1 to write. 0 read-only */
4583 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4584 BtCursor *pCur /* Space for new cursor */
4585){
4586 int rc;
4587 sqlite3BtreeEnter(p);
4588 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4589 sqlite3BtreeLeave(p);
4590 return rc;
4591}
drhd677b3d2007-08-20 22:48:41 +00004592int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004593 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004594 Pgno iTable, /* Root page of table to open */
danielk1977cd3e8f72008-03-25 09:47:35 +00004595 int wrFlag, /* 1 to write. 0 read-only */
4596 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4597 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004598){
drhdb561bc2019-10-25 14:46:05 +00004599 if( p->sharable ){
4600 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004601 }else{
drhdb561bc2019-10-25 14:46:05 +00004602 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004603 }
drhd677b3d2007-08-20 22:48:41 +00004604}
drh7f751222009-03-17 22:33:00 +00004605
4606/*
4607** Return the size of a BtCursor object in bytes.
4608**
4609** This interfaces is needed so that users of cursors can preallocate
4610** sufficient storage to hold a cursor. The BtCursor object is opaque
4611** to users so they cannot do the sizeof() themselves - they must call
4612** this routine.
4613*/
4614int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004615 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004616}
4617
drh7f751222009-03-17 22:33:00 +00004618/*
drhf25a5072009-11-18 23:01:25 +00004619** Initialize memory that will be converted into a BtCursor object.
4620**
4621** The simple approach here would be to memset() the entire object
4622** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4623** do not need to be zeroed and they are large, so we can save a lot
4624** of run-time by skipping the initialization of those elements.
4625*/
4626void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004627 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004628}
4629
4630/*
drh5e00f6c2001-09-13 13:46:56 +00004631** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004632** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004633*/
drh3aac2dd2004-04-26 14:10:20 +00004634int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004635 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004636 if( pBtree ){
4637 BtShared *pBt = pCur->pBt;
4638 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004639 assert( pBt->pCursor!=0 );
4640 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004641 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004642 }else{
4643 BtCursor *pPrev = pBt->pCursor;
4644 do{
4645 if( pPrev->pNext==pCur ){
4646 pPrev->pNext = pCur->pNext;
4647 break;
4648 }
4649 pPrev = pPrev->pNext;
4650 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004651 }
drh352a35a2017-08-15 03:46:47 +00004652 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004653 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004654 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004655 sqlite3_free(pCur->pKey);
daneeee8a52021-03-18 14:31:37 +00004656 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4657 /* Since the BtShared is not sharable, there is no need to
4658 ** worry about the missing sqlite3BtreeLeave() call here. */
4659 assert( pBtree->sharable==0 );
4660 sqlite3BtreeClose(pBtree);
4661 }else{
4662 sqlite3BtreeLeave(pBtree);
4663 }
dan97c8cb32019-01-01 18:00:17 +00004664 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004665 }
drh8c42ca92001-06-22 19:15:00 +00004666 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004667}
4668
drh5e2f8b92001-05-28 00:41:15 +00004669/*
drh86057612007-06-26 01:04:48 +00004670** Make sure the BtCursor* given in the argument has a valid
4671** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004672** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004673**
4674** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004675** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004676*/
drh9188b382004-05-14 21:12:22 +00004677#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004678 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4679 if( a->nKey!=b->nKey ) return 0;
4680 if( a->pPayload!=b->pPayload ) return 0;
4681 if( a->nPayload!=b->nPayload ) return 0;
4682 if( a->nLocal!=b->nLocal ) return 0;
4683 if( a->nSize!=b->nSize ) return 0;
4684 return 1;
4685 }
danielk19771cc5ed82007-05-16 17:28:43 +00004686 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004687 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004688 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004689 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004690 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004691 }
danielk19771cc5ed82007-05-16 17:28:43 +00004692#else
4693 #define assertCellInfo(x)
4694#endif
drhc5b41ac2015-06-17 02:11:46 +00004695static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4696 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004697 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004698 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004699 }else{
4700 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004701 }
drhc5b41ac2015-06-17 02:11:46 +00004702}
drh9188b382004-05-14 21:12:22 +00004703
drhea8ffdf2009-07-22 00:35:23 +00004704#ifndef NDEBUG /* The next routine used only within assert() statements */
4705/*
4706** Return true if the given BtCursor is valid. A valid cursor is one
4707** that is currently pointing to a row in a (non-empty) table.
4708** This is a verification routine is used only within assert() statements.
4709*/
4710int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4711 return pCur && pCur->eState==CURSOR_VALID;
4712}
4713#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004714int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4715 assert( pCur!=0 );
4716 return pCur->eState==CURSOR_VALID;
4717}
drhea8ffdf2009-07-22 00:35:23 +00004718
drh9188b382004-05-14 21:12:22 +00004719/*
drha7c90c42016-06-04 20:37:10 +00004720** Return the value of the integer key or "rowid" for a table btree.
4721** This routine is only valid for a cursor that is pointing into a
4722** ordinary table btree. If the cursor points to an index btree or
4723** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004724*/
drha7c90c42016-06-04 20:37:10 +00004725i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004726 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004727 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004728 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004729 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004730 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004731}
drh2af926b2001-05-15 00:39:25 +00004732
drh7b14b652019-12-29 22:08:20 +00004733/*
4734** Pin or unpin a cursor.
4735*/
4736void sqlite3BtreeCursorPin(BtCursor *pCur){
4737 assert( (pCur->curFlags & BTCF_Pinned)==0 );
4738 pCur->curFlags |= BTCF_Pinned;
4739}
4740void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4741 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4742 pCur->curFlags &= ~BTCF_Pinned;
4743}
4744
drh092457b2017-12-29 15:04:49 +00004745#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004746/*
drh2fc865c2017-12-16 20:20:37 +00004747** Return the offset into the database file for the start of the
4748** payload to which the cursor is pointing.
4749*/
drh092457b2017-12-29 15:04:49 +00004750i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004751 assert( cursorHoldsMutex(pCur) );
4752 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004753 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004754 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004755 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4756}
drh092457b2017-12-29 15:04:49 +00004757#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004758
4759/*
drha7c90c42016-06-04 20:37:10 +00004760** Return the number of bytes of payload for the entry that pCur is
4761** currently pointing to. For table btrees, this will be the amount
4762** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004763**
4764** The caller must guarantee that the cursor is pointing to a non-NULL
4765** valid entry. In other words, the calling procedure must guarantee
4766** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004767*/
drha7c90c42016-06-04 20:37:10 +00004768u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4769 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004770 assert( pCur->eState==CURSOR_VALID );
4771 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004772 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004773}
4774
4775/*
drh53d30dd2019-02-04 21:10:24 +00004776** Return an upper bound on the size of any record for the table
4777** that the cursor is pointing into.
4778**
4779** This is an optimization. Everything will still work if this
4780** routine always returns 2147483647 (which is the largest record
4781** that SQLite can handle) or more. But returning a smaller value might
4782** prevent large memory allocations when trying to interpret a
4783** corrupt datrabase.
4784**
4785** The current implementation merely returns the size of the underlying
4786** database file.
4787*/
4788sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4789 assert( cursorHoldsMutex(pCur) );
4790 assert( pCur->eState==CURSOR_VALID );
4791 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4792}
4793
4794/*
danielk1977d04417962007-05-02 13:16:30 +00004795** Given the page number of an overflow page in the database (parameter
4796** ovfl), this function finds the page number of the next page in the
4797** linked list of overflow pages. If possible, it uses the auto-vacuum
4798** pointer-map data instead of reading the content of page ovfl to do so.
4799**
4800** If an error occurs an SQLite error code is returned. Otherwise:
4801**
danielk1977bea2a942009-01-20 17:06:27 +00004802** The page number of the next overflow page in the linked list is
4803** written to *pPgnoNext. If page ovfl is the last page in its linked
4804** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004805**
danielk1977bea2a942009-01-20 17:06:27 +00004806** If ppPage is not NULL, and a reference to the MemPage object corresponding
4807** to page number pOvfl was obtained, then *ppPage is set to point to that
4808** reference. It is the responsibility of the caller to call releasePage()
4809** on *ppPage to free the reference. In no reference was obtained (because
4810** the pointer-map was used to obtain the value for *pPgnoNext), then
4811** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004812*/
4813static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004814 BtShared *pBt, /* The database file */
4815 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004816 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004817 Pgno *pPgnoNext /* OUT: Next overflow page number */
4818){
4819 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004820 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004821 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004822
drh1fee73e2007-08-29 04:00:57 +00004823 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004824 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004825
4826#ifndef SQLITE_OMIT_AUTOVACUUM
4827 /* Try to find the next page in the overflow list using the
4828 ** autovacuum pointer-map pages. Guess that the next page in
4829 ** the overflow list is page number (ovfl+1). If that guess turns
4830 ** out to be wrong, fall back to loading the data of page
4831 ** number ovfl to determine the next page number.
4832 */
4833 if( pBt->autoVacuum ){
4834 Pgno pgno;
4835 Pgno iGuess = ovfl+1;
4836 u8 eType;
4837
4838 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4839 iGuess++;
4840 }
4841
drhb1299152010-03-30 22:58:33 +00004842 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004843 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004844 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004845 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004846 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004847 }
4848 }
4849 }
4850#endif
4851
danielk1977d8a3f3d2009-07-11 11:45:23 +00004852 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004853 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004854 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004855 assert( rc==SQLITE_OK || pPage==0 );
4856 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004857 next = get4byte(pPage->aData);
4858 }
danielk1977443c0592009-01-16 15:21:05 +00004859 }
danielk197745d68822009-01-16 16:23:38 +00004860
danielk1977bea2a942009-01-20 17:06:27 +00004861 *pPgnoNext = next;
4862 if( ppPage ){
4863 *ppPage = pPage;
4864 }else{
4865 releasePage(pPage);
4866 }
4867 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004868}
4869
danielk1977da107192007-05-04 08:32:13 +00004870/*
4871** Copy data from a buffer to a page, or from a page to a buffer.
4872**
4873** pPayload is a pointer to data stored on database page pDbPage.
4874** If argument eOp is false, then nByte bytes of data are copied
4875** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4876** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4877** of data are copied from the buffer pBuf to pPayload.
4878**
4879** SQLITE_OK is returned on success, otherwise an error code.
4880*/
4881static int copyPayload(
4882 void *pPayload, /* Pointer to page data */
4883 void *pBuf, /* Pointer to buffer */
4884 int nByte, /* Number of bytes to copy */
4885 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4886 DbPage *pDbPage /* Page containing pPayload */
4887){
4888 if( eOp ){
4889 /* Copy data from buffer to page (a write operation) */
4890 int rc = sqlite3PagerWrite(pDbPage);
4891 if( rc!=SQLITE_OK ){
4892 return rc;
4893 }
4894 memcpy(pPayload, pBuf, nByte);
4895 }else{
4896 /* Copy data from page to buffer (a read operation) */
4897 memcpy(pBuf, pPayload, nByte);
4898 }
4899 return SQLITE_OK;
4900}
danielk1977d04417962007-05-02 13:16:30 +00004901
4902/*
danielk19779f8d6402007-05-02 17:48:45 +00004903** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004904** for the entry that the pCur cursor is pointing to. The eOp
4905** argument is interpreted as follows:
4906**
4907** 0: The operation is a read. Populate the overflow cache.
4908** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004909**
4910** A total of "amt" bytes are read or written beginning at "offset".
4911** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004912**
drh3bcdfd22009-07-12 02:32:21 +00004913** The content being read or written might appear on the main page
4914** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004915**
drh42e28f12017-01-27 00:31:59 +00004916** If the current cursor entry uses one or more overflow pages
4917** this function may allocate space for and lazily populate
4918** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004919** Subsequent calls use this cache to make seeking to the supplied offset
4920** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004921**
drh42e28f12017-01-27 00:31:59 +00004922** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004923** invalidated if some other cursor writes to the same table, or if
4924** the cursor is moved to a different row. Additionally, in auto-vacuum
4925** mode, the following events may invalidate an overflow page-list cache.
4926**
4927** * An incremental vacuum,
4928** * A commit in auto_vacuum="full" mode,
4929** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004930*/
danielk19779f8d6402007-05-02 17:48:45 +00004931static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004932 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004933 u32 offset, /* Begin reading this far into payload */
4934 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004935 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004936 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004937){
4938 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004939 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004940 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004941 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004942 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004943#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004944 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004945#endif
drh3aac2dd2004-04-26 14:10:20 +00004946
danielk1977da107192007-05-04 08:32:13 +00004947 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004948 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004949 assert( pCur->eState==CURSOR_VALID );
drha7149082021-10-13 20:11:30 +00004950 if( pCur->ix>=pPage->nCell ){
4951 return SQLITE_CORRUPT_PAGE(pPage);
4952 }
drh1fee73e2007-08-29 04:00:57 +00004953 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004954
drh86057612007-06-26 01:04:48 +00004955 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004956 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004957 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004958
drh0b982072016-03-22 14:10:45 +00004959 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004960 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004961 /* Trying to read or write past the end of the data is an error. The
4962 ** conditional above is really:
4963 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4964 ** but is recast into its current form to avoid integer overflow problems
4965 */
daneebf2f52017-11-18 17:30:08 +00004966 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004967 }
danielk1977da107192007-05-04 08:32:13 +00004968
4969 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004970 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004971 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004972 if( a+offset>pCur->info.nLocal ){
4973 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004974 }
drh42e28f12017-01-27 00:31:59 +00004975 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004976 offset = 0;
drha34b6762004-05-07 13:30:42 +00004977 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004978 amt -= a;
drhdd793422001-06-28 01:54:48 +00004979 }else{
drhfa1a98a2004-05-14 19:08:17 +00004980 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004981 }
danielk1977da107192007-05-04 08:32:13 +00004982
dan85753662014-12-11 16:38:18 +00004983
danielk1977da107192007-05-04 08:32:13 +00004984 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004985 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004986 Pgno nextPage;
4987
drhfa1a98a2004-05-14 19:08:17 +00004988 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
drh584e8b72020-07-22 17:12:59 +00004989
drha38c9512014-04-01 01:24:34 +00004990 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004991 **
4992 ** The aOverflow[] array is sized at one entry for each overflow page
4993 ** in the overflow chain. The page number of the first overflow page is
4994 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4995 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004996 */
drh42e28f12017-01-27 00:31:59 +00004997 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004998 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004999 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00005000 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00005001 ){
dan85753662014-12-11 16:38:18 +00005002 Pgno *aNew = (Pgno*)sqlite3Realloc(
5003 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00005004 );
5005 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00005006 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00005007 }else{
dan5a500af2014-03-11 20:33:04 +00005008 pCur->aOverflow = aNew;
5009 }
5010 }
drhcd645532017-01-20 20:43:14 +00005011 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
5012 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00005013 }else{
5014 /* If the overflow page-list cache has been allocated and the
5015 ** entry for the first required overflow page is valid, skip
5016 ** directly to it.
5017 */
5018 if( pCur->aOverflow[offset/ovflSize] ){
5019 iIdx = (offset/ovflSize);
5020 nextPage = pCur->aOverflow[iIdx];
5021 offset = (offset%ovflSize);
5022 }
danielk19772dec9702007-05-02 16:48:37 +00005023 }
danielk1977da107192007-05-04 08:32:13 +00005024
drhcd645532017-01-20 20:43:14 +00005025 assert( rc==SQLITE_OK && amt>0 );
5026 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00005027 /* If required, populate the overflow page-list cache. */
drh584e8b72020-07-22 17:12:59 +00005028 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
drh42e28f12017-01-27 00:31:59 +00005029 assert( pCur->aOverflow[iIdx]==0
5030 || pCur->aOverflow[iIdx]==nextPage
5031 || CORRUPT_DB );
5032 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00005033
danielk1977d04417962007-05-02 13:16:30 +00005034 if( offset>=ovflSize ){
5035 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00005036 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00005037 ** data is not required. So first try to lookup the overflow
5038 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00005039 ** function.
danielk1977d04417962007-05-02 13:16:30 +00005040 */
drha38c9512014-04-01 01:24:34 +00005041 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00005042 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00005043 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00005044 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00005045 }else{
danielk1977da107192007-05-04 08:32:13 +00005046 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00005047 }
danielk1977da107192007-05-04 08:32:13 +00005048 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00005049 }else{
danielk19779f8d6402007-05-02 17:48:45 +00005050 /* Need to read this page properly. It contains some of the
5051 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00005052 */
danielk1977cfe9a692004-06-16 12:00:29 +00005053 int a = amt;
danf4ba1092011-10-08 14:57:07 +00005054 if( a + offset > ovflSize ){
5055 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00005056 }
danf4ba1092011-10-08 14:57:07 +00005057
5058#ifdef SQLITE_DIRECT_OVERFLOW_READ
5059 /* If all the following are true:
5060 **
5061 ** 1) this is a read operation, and
5062 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00005063 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00005064 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00005065 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00005066 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00005067 **
5068 ** then data can be read directly from the database file into the
5069 ** output buffer, bypassing the page-cache altogether. This speeds
5070 ** up loading large records that span many overflow pages.
5071 */
drh42e28f12017-01-27 00:31:59 +00005072 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00005073 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00005074 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00005075 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00005076 ){
dan09236752018-11-22 19:10:14 +00005077 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00005078 u8 aSave[4];
5079 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00005080 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00005081 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00005082 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
drhb9fc4552019-08-15 00:04:44 +00005083 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
danf4ba1092011-10-08 14:57:07 +00005084 nextPage = get4byte(aWrite);
5085 memcpy(aWrite, aSave, 4);
5086 }else
5087#endif
5088
5089 {
5090 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00005091 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00005092 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00005093 );
danf4ba1092011-10-08 14:57:07 +00005094 if( rc==SQLITE_OK ){
5095 aPayload = sqlite3PagerGetData(pDbPage);
5096 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00005097 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00005098 sqlite3PagerUnref(pDbPage);
5099 offset = 0;
5100 }
5101 }
5102 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00005103 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00005104 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00005105 }
drhcd645532017-01-20 20:43:14 +00005106 if( rc ) break;
5107 iIdx++;
drh2af926b2001-05-15 00:39:25 +00005108 }
drh2af926b2001-05-15 00:39:25 +00005109 }
danielk1977cfe9a692004-06-16 12:00:29 +00005110
danielk1977da107192007-05-04 08:32:13 +00005111 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00005112 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00005113 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00005114 }
danielk1977da107192007-05-04 08:32:13 +00005115 return rc;
drh2af926b2001-05-15 00:39:25 +00005116}
5117
drh72f82862001-05-24 21:06:34 +00005118/*
drhcb3cabd2016-11-25 19:18:28 +00005119** Read part of the payload for the row at which that cursor pCur is currently
5120** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00005121** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00005122**
drhcb3cabd2016-11-25 19:18:28 +00005123** pCur can be pointing to either a table or an index b-tree.
5124** If pointing to a table btree, then the content section is read. If
5125** pCur is pointing to an index b-tree then the key section is read.
5126**
5127** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5128** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5129** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00005130**
drh3aac2dd2004-04-26 14:10:20 +00005131** Return SQLITE_OK on success or an error code if anything goes
5132** wrong. An error is returned if "offset+amt" is larger than
5133** the available payload.
drh72f82862001-05-24 21:06:34 +00005134*/
drhcb3cabd2016-11-25 19:18:28 +00005135int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00005136 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00005137 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005138 assert( pCur->iPage>=0 && pCur->pPage );
drh5d1a8722009-07-22 18:07:40 +00005139 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00005140}
drh83ec2762017-01-26 16:54:47 +00005141
5142/*
5143** This variant of sqlite3BtreePayload() works even if the cursor has not
5144** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5145** interface.
5146*/
danielk19773588ceb2008-06-10 17:30:26 +00005147#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00005148static SQLITE_NOINLINE int accessPayloadChecked(
5149 BtCursor *pCur,
5150 u32 offset,
5151 u32 amt,
5152 void *pBuf
5153){
drhcb3cabd2016-11-25 19:18:28 +00005154 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00005155 if ( pCur->eState==CURSOR_INVALID ){
5156 return SQLITE_ABORT;
5157 }
dan7a2347e2016-01-07 16:43:54 +00005158 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00005159 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00005160 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5161}
5162int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5163 if( pCur->eState==CURSOR_VALID ){
5164 assert( cursorOwnsBtShared(pCur) );
5165 return accessPayload(pCur, offset, amt, pBuf, 0);
5166 }else{
5167 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00005168 }
drh2af926b2001-05-15 00:39:25 +00005169}
drhcb3cabd2016-11-25 19:18:28 +00005170#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00005171
drh72f82862001-05-24 21:06:34 +00005172/*
drh0e1c19e2004-05-11 00:58:56 +00005173** Return a pointer to payload information from the entry that the
5174** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00005175** the key if index btrees (pPage->intKey==0) and is the data for
5176** table btrees (pPage->intKey==1). The number of bytes of available
5177** key/data is written into *pAmt. If *pAmt==0, then the value
5178** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00005179**
5180** This routine is an optimization. It is common for the entire key
5181** and data to fit on the local page and for there to be no overflow
5182** pages. When that is so, this routine can be used to access the
5183** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00005184** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00005185** the key/data and copy it into a preallocated buffer.
5186**
5187** The pointer returned by this routine looks directly into the cached
5188** page of the database. The data might change or move the next time
5189** any btree routine is called.
5190*/
drh2a8d2262013-12-09 20:43:22 +00005191static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00005192 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00005193 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00005194){
danf2f72a02017-10-19 15:17:38 +00005195 int amt;
drh352a35a2017-08-15 03:46:47 +00005196 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00005197 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00005198 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00005199 assert( cursorOwnsBtShared(pCur) );
drhcd789f92021-10-11 09:39:42 +00005200 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
drh86dd3712014-03-25 11:00:21 +00005201 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00005202 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5203 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00005204 amt = pCur->info.nLocal;
5205 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5206 /* There is too little space on the page for the expected amount
5207 ** of local content. Database must be corrupt. */
5208 assert( CORRUPT_DB );
5209 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5210 }
5211 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00005212 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00005213}
5214
5215
5216/*
drhe51c44f2004-05-30 20:46:09 +00005217** For the entry that cursor pCur is point to, return as
5218** many bytes of the key or data as are available on the local
5219** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005220**
5221** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005222** or be destroyed on the next call to any Btree routine,
5223** including calls from other threads against the same cache.
5224** Hence, a mutex on the BtShared should be held prior to calling
5225** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005226**
5227** These routines is used to get quick access to key and data
5228** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005229*/
drha7c90c42016-06-04 20:37:10 +00005230const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005231 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005232}
5233
5234
5235/*
drh8178a752003-01-05 21:41:40 +00005236** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005237** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005238**
5239** This function returns SQLITE_CORRUPT if the page-header flags field of
5240** the new child page does not match the flags field of the parent (i.e.
5241** if an intkey page appears to be the parent of a non-intkey page, or
5242** vice-versa).
drh72f82862001-05-24 21:06:34 +00005243*/
drh3aac2dd2004-04-26 14:10:20 +00005244static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005245 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005246
dan7a2347e2016-01-07 16:43:54 +00005247 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005248 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005249 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005250 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005251 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5252 return SQLITE_CORRUPT_BKPT;
5253 }
drh271efa52004-05-30 19:19:05 +00005254 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005255 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005256 pCur->aiIdx[pCur->iPage] = pCur->ix;
5257 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005258 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005259 pCur->iPage++;
5260 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005261}
5262
drhd879e3e2017-02-13 13:35:55 +00005263#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005264/*
5265** Page pParent is an internal (non-leaf) tree page. This function
5266** asserts that page number iChild is the left-child if the iIdx'th
5267** cell in page pParent. Or, if iIdx is equal to the total number of
5268** cells in pParent, that page number iChild is the right-child of
5269** the page.
5270*/
5271static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005272 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5273 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005274 assert( iIdx<=pParent->nCell );
5275 if( iIdx==pParent->nCell ){
5276 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5277 }else{
5278 assert( get4byte(findCell(pParent, iIdx))==iChild );
5279 }
5280}
5281#else
5282# define assertParentIndex(x,y,z)
5283#endif
5284
drh72f82862001-05-24 21:06:34 +00005285/*
drh5e2f8b92001-05-28 00:41:15 +00005286** Move the cursor up to the parent page.
5287**
5288** pCur->idx is set to the cell index that contains the pointer
5289** to the page we are coming from. If we are coming from the
5290** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005291** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005292*/
danielk197730548662009-07-09 05:07:37 +00005293static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005294 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005295 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005296 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005297 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005298 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005299 assertParentIndex(
5300 pCur->apPage[pCur->iPage-1],
5301 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005302 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005303 );
dan6c2688c2012-01-12 15:05:03 +00005304 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005305 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005306 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005307 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005308 pLeaf = pCur->pPage;
5309 pCur->pPage = pCur->apPage[--pCur->iPage];
5310 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005311}
5312
5313/*
danielk19778f880a82009-07-13 09:41:45 +00005314** Move the cursor to point to the root page of its b-tree structure.
5315**
5316** If the table has a virtual root page, then the cursor is moved to point
5317** to the virtual root page instead of the actual root page. A table has a
5318** virtual root page when the actual root page contains no cells and a
5319** single child page. This can only happen with the table rooted at page 1.
5320**
5321** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005322** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5323** the cursor is set to point to the first cell located on the root
5324** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005325**
5326** If this function returns successfully, it may be assumed that the
5327** page-header flags indicate that the [virtual] root-page is the expected
5328** kind of b-tree page (i.e. if when opening the cursor the caller did not
5329** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5330** indicating a table b-tree, or if the caller did specify a KeyInfo
5331** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5332** b-tree).
drh72f82862001-05-24 21:06:34 +00005333*/
drh5e2f8b92001-05-28 00:41:15 +00005334static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005335 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005336 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005337
dan7a2347e2016-01-07 16:43:54 +00005338 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005339 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5340 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5341 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005342 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005343 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005344
5345 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005346 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005347 releasePageNotNull(pCur->pPage);
5348 while( --pCur->iPage ){
5349 releasePageNotNull(pCur->apPage[pCur->iPage]);
5350 }
drh7f8f6592021-12-13 19:59:55 +00005351 pRoot = pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005352 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005353 }
dana205a482011-08-27 18:48:57 +00005354 }else if( pCur->pgnoRoot==0 ){
5355 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005356 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005357 }else{
drh28f58dd2015-06-27 19:45:03 +00005358 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005359 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5360 if( pCur->eState==CURSOR_FAULT ){
5361 assert( pCur->skipNext!=SQLITE_OK );
5362 return pCur->skipNext;
5363 }
5364 sqlite3BtreeClearCursor(pCur);
5365 }
drh352a35a2017-08-15 03:46:47 +00005366 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005367 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005368 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005369 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005370 return rc;
drh777e4c42006-01-13 04:31:58 +00005371 }
danielk1977172114a2009-07-07 15:47:12 +00005372 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005373 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005374 }
drh352a35a2017-08-15 03:46:47 +00005375 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005376 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005377
5378 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5379 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5380 ** NULL, the caller expects a table b-tree. If this is not the case,
5381 ** return an SQLITE_CORRUPT error.
5382 **
5383 ** Earlier versions of SQLite assumed that this test could not fail
5384 ** if the root page was already loaded when this function was called (i.e.
5385 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5386 ** in such a way that page pRoot is linked into a second b-tree table
5387 ** (or the freelist). */
5388 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5389 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005390 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005391 }
danielk19778f880a82009-07-13 09:41:45 +00005392
drh7ad3eb62016-10-24 01:01:09 +00005393skip_init:
drh75e96b32017-04-01 00:20:06 +00005394 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005395 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005396 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005397
drh4e8fe3f2013-12-06 23:25:27 +00005398 if( pRoot->nCell>0 ){
5399 pCur->eState = CURSOR_VALID;
5400 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005401 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005402 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005403 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005404 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005405 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005406 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005407 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005408 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005409 }
5410 return rc;
drh72f82862001-05-24 21:06:34 +00005411}
drh2af926b2001-05-15 00:39:25 +00005412
drh5e2f8b92001-05-28 00:41:15 +00005413/*
5414** Move the cursor down to the left-most leaf entry beneath the
5415** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005416**
5417** The left-most leaf is the one with the smallest key - the first
5418** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005419*/
5420static int moveToLeftmost(BtCursor *pCur){
5421 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005422 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005423 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005424
dan7a2347e2016-01-07 16:43:54 +00005425 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005426 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005427 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005428 assert( pCur->ix<pPage->nCell );
5429 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005430 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005431 }
drhd677b3d2007-08-20 22:48:41 +00005432 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005433}
5434
drh2dcc9aa2002-12-04 13:40:25 +00005435/*
5436** Move the cursor down to the right-most leaf entry beneath the
5437** page to which it is currently pointing. Notice the difference
5438** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5439** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5440** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005441**
5442** The right-most entry is the one with the largest key - the last
5443** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005444*/
5445static int moveToRightmost(BtCursor *pCur){
5446 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005447 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005448 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005449
dan7a2347e2016-01-07 16:43:54 +00005450 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005451 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005452 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005453 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005454 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005455 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005456 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005457 }
drh75e96b32017-04-01 00:20:06 +00005458 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005459 assert( pCur->info.nSize==0 );
5460 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5461 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005462}
5463
drh5e00f6c2001-09-13 13:46:56 +00005464/* Move the cursor to the first entry in the table. Return SQLITE_OK
5465** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005466** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005467*/
drh3aac2dd2004-04-26 14:10:20 +00005468int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005469 int rc;
drhd677b3d2007-08-20 22:48:41 +00005470
dan7a2347e2016-01-07 16:43:54 +00005471 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005472 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005473 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005474 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005475 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005476 *pRes = 0;
5477 rc = moveToLeftmost(pCur);
5478 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005479 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005480 *pRes = 1;
5481 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005482 }
drh5e00f6c2001-09-13 13:46:56 +00005483 return rc;
5484}
drh5e2f8b92001-05-28 00:41:15 +00005485
drh9562b552002-02-19 15:00:07 +00005486/* Move the cursor to the last entry in the table. Return SQLITE_OK
5487** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005488** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005489*/
drh3aac2dd2004-04-26 14:10:20 +00005490int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005491 int rc;
drhd677b3d2007-08-20 22:48:41 +00005492
dan7a2347e2016-01-07 16:43:54 +00005493 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005494 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005495
5496 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005497 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005498#ifdef SQLITE_DEBUG
5499 /* This block serves to assert() that the cursor really does point
5500 ** to the last entry in the b-tree. */
5501 int ii;
5502 for(ii=0; ii<pCur->iPage; ii++){
5503 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5504 }
drh319deef2021-04-04 23:56:15 +00005505 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5506 testcase( pCur->ix!=pCur->pPage->nCell-1 );
5507 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
drh352a35a2017-08-15 03:46:47 +00005508 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005509#endif
drheb265342019-05-08 23:55:04 +00005510 *pRes = 0;
danielk19773f632d52009-05-02 10:03:09 +00005511 return SQLITE_OK;
5512 }
5513
drh9562b552002-02-19 15:00:07 +00005514 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005515 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005516 assert( pCur->eState==CURSOR_VALID );
5517 *pRes = 0;
5518 rc = moveToRightmost(pCur);
5519 if( rc==SQLITE_OK ){
5520 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005521 }else{
drh44548e72017-08-14 18:13:52 +00005522 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005523 }
drh44548e72017-08-14 18:13:52 +00005524 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005525 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005526 *pRes = 1;
5527 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005528 }
drh9562b552002-02-19 15:00:07 +00005529 return rc;
5530}
5531
drh42a410d2021-06-19 18:32:20 +00005532/* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5533** table near the key intKey. Return a success code.
drh3aac2dd2004-04-26 14:10:20 +00005534**
drh5e2f8b92001-05-28 00:41:15 +00005535** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005536** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005537** were present. The cursor might point to an entry that comes
5538** before or after the key.
5539**
drh64022502009-01-09 14:11:04 +00005540** An integer is written into *pRes which is the result of
5541** comparing the key with the entry to which the cursor is
5542** pointing. The meaning of the integer written into
5543** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005544**
5545** *pRes<0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005546** is smaller than intKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005547** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005548**
5549** *pRes==0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005550** exactly matches intKey.
drhbd03cae2001-06-02 02:40:57 +00005551**
5552** *pRes>0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005553** is larger than intKey.
drha059ad02001-04-17 20:09:11 +00005554*/
drh42a410d2021-06-19 18:32:20 +00005555int sqlite3BtreeTableMoveto(
drhe63d9992008-08-13 19:11:48 +00005556 BtCursor *pCur, /* The cursor to be moved */
drhe63d9992008-08-13 19:11:48 +00005557 i64 intKey, /* The table key */
5558 int biasRight, /* If true, bias the search to the high end */
5559 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005560){
drh72f82862001-05-24 21:06:34 +00005561 int rc;
drhd677b3d2007-08-20 22:48:41 +00005562
dan7a2347e2016-01-07 16:43:54 +00005563 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005564 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005565 assert( pRes );
drh42a410d2021-06-19 18:32:20 +00005566 assert( pCur->pKeyInfo==0 );
5567 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
drha2c20e42008-03-29 16:01:04 +00005568
5569 /* If the cursor is already positioned at the point we are trying
5570 ** to move to, then just return without doing any work */
drh42a410d2021-06-19 18:32:20 +00005571 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
drhe63d9992008-08-13 19:11:48 +00005572 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005573 *pRes = 0;
5574 return SQLITE_OK;
5575 }
drh451e76d2017-01-21 16:54:19 +00005576 if( pCur->info.nKey<intKey ){
5577 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5578 *pRes = -1;
5579 return SQLITE_OK;
5580 }
drh7f11afa2017-01-21 21:47:54 +00005581 /* If the requested key is one more than the previous key, then
5582 ** try to get there using sqlite3BtreeNext() rather than a full
5583 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005584 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005585 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005586 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005587 rc = sqlite3BtreeNext(pCur, 0);
5588 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005589 getCellInfo(pCur);
5590 if( pCur->info.nKey==intKey ){
5591 return SQLITE_OK;
5592 }
drhe85e1da2021-10-01 21:01:07 +00005593 }else if( rc!=SQLITE_DONE ){
drh2ab792e2017-05-30 18:34:07 +00005594 return rc;
drh451e76d2017-01-21 16:54:19 +00005595 }
5596 }
drha2c20e42008-03-29 16:01:04 +00005597 }
5598 }
5599
drh37ccfcf2020-08-31 18:49:04 +00005600#ifdef SQLITE_DEBUG
5601 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5602#endif
5603
drh42a410d2021-06-19 18:32:20 +00005604 rc = moveToRoot(pCur);
5605 if( rc ){
5606 if( rc==SQLITE_EMPTY ){
5607 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5608 *pRes = -1;
5609 return SQLITE_OK;
5610 }
5611 return rc;
dan1fed5da2014-02-25 21:01:25 +00005612 }
drh42a410d2021-06-19 18:32:20 +00005613 assert( pCur->pPage );
5614 assert( pCur->pPage->isInit );
5615 assert( pCur->eState==CURSOR_VALID );
5616 assert( pCur->pPage->nCell > 0 );
5617 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5618 assert( pCur->curIntKey );
5619
5620 for(;;){
5621 int lwr, upr, idx, c;
5622 Pgno chldPg;
5623 MemPage *pPage = pCur->pPage;
5624 u8 *pCell; /* Pointer to current cell in pPage */
5625
5626 /* pPage->nCell must be greater than zero. If this is the root-page
5627 ** the cursor would have been INVALID above and this for(;;) loop
5628 ** not run. If this is not the root-page, then the moveToChild() routine
5629 ** would have already detected db corruption. Similarly, pPage must
5630 ** be the right kind (index or table) of b-tree page. Otherwise
5631 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5632 assert( pPage->nCell>0 );
5633 assert( pPage->intKey );
5634 lwr = 0;
5635 upr = pPage->nCell-1;
5636 assert( biasRight==0 || biasRight==1 );
5637 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh42a410d2021-06-19 18:32:20 +00005638 for(;;){
5639 i64 nCellKey;
5640 pCell = findCellPastPtr(pPage, idx);
5641 if( pPage->intKeyLeaf ){
5642 while( 0x80 <= *(pCell++) ){
5643 if( pCell>=pPage->aDataEnd ){
5644 return SQLITE_CORRUPT_PAGE(pPage);
5645 }
5646 }
5647 }
5648 getVarint(pCell, (u64*)&nCellKey);
5649 if( nCellKey<intKey ){
5650 lwr = idx+1;
5651 if( lwr>upr ){ c = -1; break; }
5652 }else if( nCellKey>intKey ){
5653 upr = idx-1;
5654 if( lwr>upr ){ c = +1; break; }
5655 }else{
5656 assert( nCellKey==intKey );
5657 pCur->ix = (u16)idx;
5658 if( !pPage->leaf ){
5659 lwr = idx;
5660 goto moveto_table_next_layer;
5661 }else{
5662 pCur->curFlags |= BTCF_ValidNKey;
5663 pCur->info.nKey = nCellKey;
5664 pCur->info.nSize = 0;
5665 *pRes = 0;
5666 return SQLITE_OK;
5667 }
5668 }
5669 assert( lwr+upr>=0 );
5670 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
5671 }
5672 assert( lwr==upr+1 || !pPage->leaf );
5673 assert( pPage->isInit );
5674 if( pPage->leaf ){
5675 assert( pCur->ix<pCur->pPage->nCell );
5676 pCur->ix = (u16)idx;
5677 *pRes = c;
5678 rc = SQLITE_OK;
5679 goto moveto_table_finish;
5680 }
5681moveto_table_next_layer:
5682 if( lwr>=pPage->nCell ){
5683 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5684 }else{
5685 chldPg = get4byte(findCell(pPage, lwr));
5686 }
5687 pCur->ix = (u16)lwr;
5688 rc = moveToChild(pCur, chldPg);
5689 if( rc ) break;
5690 }
5691moveto_table_finish:
5692 pCur->info.nSize = 0;
5693 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5694 return rc;
5695}
5696
5697/* Move the cursor so that it points to an entry in an index table
5698** near the key pIdxKey. Return a success code.
5699**
5700** If an exact match is not found, then the cursor is always
5701** left pointing at a leaf page which would hold the entry if it
5702** were present. The cursor might point to an entry that comes
5703** before or after the key.
5704**
5705** An integer is written into *pRes which is the result of
5706** comparing the key with the entry to which the cursor is
5707** pointing. The meaning of the integer written into
5708** *pRes is as follows:
5709**
5710** *pRes<0 The cursor is left pointing at an entry that
5711** is smaller than pIdxKey or if the table is empty
5712** and the cursor is therefore left point to nothing.
5713**
5714** *pRes==0 The cursor is left pointing at an entry that
5715** exactly matches pIdxKey.
5716**
5717** *pRes>0 The cursor is left pointing at an entry that
5718** is larger than pIdxKey.
5719**
5720** The pIdxKey->eqSeen field is set to 1 if there
5721** exists an entry in the table that exactly matches pIdxKey.
5722*/
5723int sqlite3BtreeIndexMoveto(
5724 BtCursor *pCur, /* The cursor to be moved */
5725 UnpackedRecord *pIdxKey, /* Unpacked index key */
5726 int *pRes /* Write search results here */
5727){
5728 int rc;
5729 RecordCompare xRecordCompare;
5730
5731 assert( cursorOwnsBtShared(pCur) );
5732 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5733 assert( pRes );
5734 assert( pCur->pKeyInfo!=0 );
5735
5736#ifdef SQLITE_DEBUG
5737 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5738#endif
5739
5740 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5741 pIdxKey->errCode = 0;
5742 assert( pIdxKey->default_rc==1
5743 || pIdxKey->default_rc==0
5744 || pIdxKey->default_rc==-1
5745 );
dan1fed5da2014-02-25 21:01:25 +00005746
drh5e2f8b92001-05-28 00:41:15 +00005747 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005748 if( rc ){
drh44548e72017-08-14 18:13:52 +00005749 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005750 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005751 *pRes = -1;
5752 return SQLITE_OK;
5753 }
drhd677b3d2007-08-20 22:48:41 +00005754 return rc;
5755 }
drh352a35a2017-08-15 03:46:47 +00005756 assert( pCur->pPage );
5757 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005758 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005759 assert( pCur->pPage->nCell > 0 );
5760 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005761 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005762 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005763 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005764 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005765 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005766 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005767
5768 /* pPage->nCell must be greater than zero. If this is the root-page
5769 ** the cursor would have been INVALID above and this for(;;) loop
5770 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005771 ** would have already detected db corruption. Similarly, pPage must
5772 ** be the right kind (index or table) of b-tree page. Otherwise
5773 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005774 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005775 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005776 lwr = 0;
5777 upr = pPage->nCell-1;
drh42a410d2021-06-19 18:32:20 +00005778 idx = upr>>1; /* idx = (lwr+upr)/2; */
drh42a410d2021-06-19 18:32:20 +00005779 for(;;){
5780 int nCell; /* Size of the pCell cell in bytes */
5781 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005782
drh42a410d2021-06-19 18:32:20 +00005783 /* The maximum supported page-size is 65536 bytes. This means that
5784 ** the maximum number of record bytes stored on an index B-Tree
5785 ** page is less than 16384 bytes and may be stored as a 2-byte
5786 ** varint. This information is used to attempt to avoid parsing
5787 ** the entire cell by checking for the cases where the record is
5788 ** stored entirely within the b-tree page by inspecting the first
5789 ** 2 bytes of the cell.
5790 */
5791 nCell = pCell[0];
5792 if( nCell<=pPage->max1bytePayload ){
5793 /* This branch runs if the record-size field of the cell is a
5794 ** single byte varint and the record fits entirely on the main
5795 ** b-tree page. */
5796 testcase( pCell+nCell+1==pPage->aDataEnd );
5797 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5798 }else if( !(pCell[1] & 0x80)
5799 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5800 ){
5801 /* The record-size field is a 2 byte varint and the record
5802 ** fits entirely on the main b-tree page. */
5803 testcase( pCell+nCell+2==pPage->aDataEnd );
5804 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5805 }else{
5806 /* The record flows over onto one or more overflow pages. In
5807 ** this case the whole cell needs to be parsed, a buffer allocated
5808 ** and accessPayload() used to retrieve the record into the
5809 ** buffer before VdbeRecordCompare() can be called.
5810 **
5811 ** If the record is corrupt, the xRecordCompare routine may read
5812 ** up to two varints past the end of the buffer. An extra 18
5813 ** bytes of padding is allocated at the end of the buffer in
5814 ** case this happens. */
5815 void *pCellKey;
5816 u8 * const pCellBody = pCell - pPage->childPtrSize;
5817 const int nOverrun = 18; /* Size of the overrun padding */
5818 pPage->xParseCell(pPage, pCellBody, &pCur->info);
5819 nCell = (int)pCur->info.nKey;
5820 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5821 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5822 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5823 testcase( nCell==2 ); /* Minimum legal index key size */
5824 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5825 rc = SQLITE_CORRUPT_PAGE(pPage);
5826 goto moveto_index_finish;
5827 }
5828 pCellKey = sqlite3Malloc( nCell+nOverrun );
5829 if( pCellKey==0 ){
5830 rc = SQLITE_NOMEM_BKPT;
5831 goto moveto_index_finish;
5832 }
5833 pCur->ix = (u16)idx;
5834 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5835 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5836 pCur->curFlags &= ~BTCF_ValidOvfl;
5837 if( rc ){
drhfacf0302008-06-17 15:12:00 +00005838 sqlite3_free(pCellKey);
drh42a410d2021-06-19 18:32:20 +00005839 goto moveto_index_finish;
drhe51c44f2004-05-30 20:46:09 +00005840 }
drh42a410d2021-06-19 18:32:20 +00005841 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5842 sqlite3_free(pCellKey);
drh72f82862001-05-24 21:06:34 +00005843 }
drh42a410d2021-06-19 18:32:20 +00005844 assert(
5845 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5846 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5847 );
5848 if( c<0 ){
5849 lwr = idx+1;
5850 }else if( c>0 ){
5851 upr = idx-1;
5852 }else{
5853 assert( c==0 );
5854 *pRes = 0;
5855 rc = SQLITE_OK;
5856 pCur->ix = (u16)idx;
5857 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5858 goto moveto_index_finish;
5859 }
5860 if( lwr>upr ) break;
5861 assert( lwr+upr>=0 );
5862 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005863 }
drhb07028f2011-10-14 21:49:18 +00005864 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005865 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005866 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005867 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005868 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005869 *pRes = c;
5870 rc = SQLITE_OK;
drh42a410d2021-06-19 18:32:20 +00005871 goto moveto_index_finish;
drhebf10b12013-11-25 17:38:26 +00005872 }
drhebf10b12013-11-25 17:38:26 +00005873 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005874 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005875 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005876 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005877 }
drh75e96b32017-04-01 00:20:06 +00005878 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005879 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005880 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005881 }
drh42a410d2021-06-19 18:32:20 +00005882moveto_index_finish:
drhd2022b02013-11-25 16:23:52 +00005883 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005884 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005885 return rc;
5886}
5887
drhd677b3d2007-08-20 22:48:41 +00005888
drh72f82862001-05-24 21:06:34 +00005889/*
drhc39e0002004-05-07 23:50:57 +00005890** Return TRUE if the cursor is not pointing at an entry of the table.
5891**
5892** TRUE will be returned after a call to sqlite3BtreeNext() moves
5893** past the last entry in the table or sqlite3BtreePrev() moves past
5894** the first entry. TRUE is also returned if the table is empty.
5895*/
5896int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005897 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5898 ** have been deleted? This API will need to change to return an error code
5899 ** as well as the boolean result value.
5900 */
5901 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005902}
5903
5904/*
drh5e98e832017-02-17 19:24:06 +00005905** Return an estimate for the number of rows in the table that pCur is
5906** pointing to. Return a negative number if no estimate is currently
5907** available.
5908*/
5909i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5910 i64 n;
5911 u8 i;
5912
5913 assert( cursorOwnsBtShared(pCur) );
5914 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005915
5916 /* Currently this interface is only called by the OP_IfSmaller
5917 ** opcode, and it that case the cursor will always be valid and
5918 ** will always point to a leaf node. */
5919 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005920 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005921
drh352a35a2017-08-15 03:46:47 +00005922 n = pCur->pPage->nCell;
5923 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005924 n *= pCur->apPage[i]->nCell;
5925 }
5926 return n;
5927}
5928
5929/*
drh2ab792e2017-05-30 18:34:07 +00005930** Advance the cursor to the next entry in the database.
5931** Return value:
5932**
5933** SQLITE_OK success
5934** SQLITE_DONE cursor is already pointing at the last element
5935** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005936**
drhee6438d2014-09-01 13:29:32 +00005937** The main entry point is sqlite3BtreeNext(). That routine is optimized
5938** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5939** to the next cell on the current page. The (slower) btreeNext() helper
5940** routine is called when it is necessary to move to a different page or
5941** to restore the cursor.
5942**
drh89997982017-07-11 18:11:33 +00005943** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5944** cursor corresponds to an SQL index and this routine could have been
5945** skipped if the SQL index had been a unique index. The F argument
5946** is a hint to the implement. SQLite btree implementation does not use
5947** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005948*/
drh89997982017-07-11 18:11:33 +00005949static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005950 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005951 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005952 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005953
dan7a2347e2016-01-07 16:43:54 +00005954 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00005955 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005956 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005957 rc = restoreCursorPosition(pCur);
5958 if( rc!=SQLITE_OK ){
5959 return rc;
5960 }
5961 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005962 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005963 }
drh0c873bf2019-01-28 00:42:06 +00005964 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00005965 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005966 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005967 }
danielk1977da184232006-01-05 11:34:32 +00005968 }
danielk1977da184232006-01-05 11:34:32 +00005969
drh352a35a2017-08-15 03:46:47 +00005970 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005971 idx = ++pCur->ix;
drha957e222020-09-30 00:48:45 +00005972 if( !pPage->isInit || sqlite3FaultSim(412) ){
drhf3cd0c82018-06-08 19:13:57 +00005973 /* The only known way for this to happen is for there to be a
5974 ** recursive SQL function that does a DELETE operation as part of a
5975 ** SELECT which deletes content out from under an active cursor
5976 ** in a corrupt database file where the table being DELETE-ed from
5977 ** has pages in common with the table being queried. See TH3
5978 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5979 ** example. */
5980 return SQLITE_CORRUPT_BKPT;
5981 }
danbb246c42012-01-12 14:25:55 +00005982
danielk197771d5d2c2008-09-29 11:49:47 +00005983 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005984 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005985 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005986 if( rc ) return rc;
5987 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005988 }
drh5e2f8b92001-05-28 00:41:15 +00005989 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005990 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005991 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005992 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005993 }
danielk197730548662009-07-09 05:07:37 +00005994 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005995 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005996 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005997 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005998 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005999 }else{
drhee6438d2014-09-01 13:29:32 +00006000 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00006001 }
drh8178a752003-01-05 21:41:40 +00006002 }
drh3aac2dd2004-04-26 14:10:20 +00006003 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00006004 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00006005 }else{
6006 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00006007 }
drh72f82862001-05-24 21:06:34 +00006008}
drh2ab792e2017-05-30 18:34:07 +00006009int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00006010 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00006011 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00006012 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00006013 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00006014 pCur->info.nSize = 0;
6015 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00006016 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00006017 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00006018 if( (++pCur->ix)>=pPage->nCell ){
6019 pCur->ix--;
drh89997982017-07-11 18:11:33 +00006020 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00006021 }
6022 if( pPage->leaf ){
6023 return SQLITE_OK;
6024 }else{
6025 return moveToLeftmost(pCur);
6026 }
6027}
drh72f82862001-05-24 21:06:34 +00006028
drh3b7511c2001-05-26 13:15:44 +00006029/*
drh2ab792e2017-05-30 18:34:07 +00006030** Step the cursor to the back to the previous entry in the database.
6031** Return values:
6032**
6033** SQLITE_OK success
6034** SQLITE_DONE the cursor is already on the first element of the table
6035** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00006036**
drhee6438d2014-09-01 13:29:32 +00006037** The main entry point is sqlite3BtreePrevious(). That routine is optimized
6038** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00006039** to the previous cell on the current page. The (slower) btreePrevious()
6040** helper routine is called when it is necessary to move to a different page
6041** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00006042**
drh89997982017-07-11 18:11:33 +00006043** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
6044** the cursor corresponds to an SQL index and this routine could have been
6045** skipped if the SQL index had been a unique index. The F argument is a
6046** hint to the implement. The native SQLite btree implementation does not
6047** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00006048*/
drh89997982017-07-11 18:11:33 +00006049static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00006050 int rc;
drh8178a752003-01-05 21:41:40 +00006051 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00006052
dan7a2347e2016-01-07 16:43:54 +00006053 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00006054 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
6055 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00006056 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00006057 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00006058 if( rc!=SQLITE_OK ){
6059 return rc;
drhf66f26a2013-08-19 20:04:10 +00006060 }
6061 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00006062 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00006063 }
drh0c873bf2019-01-28 00:42:06 +00006064 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00006065 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00006066 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00006067 }
danielk1977da184232006-01-05 11:34:32 +00006068 }
danielk1977da184232006-01-05 11:34:32 +00006069
drh352a35a2017-08-15 03:46:47 +00006070 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00006071 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00006072 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00006073 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00006074 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00006075 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00006076 rc = moveToRightmost(pCur);
6077 }else{
drh75e96b32017-04-01 00:20:06 +00006078 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00006079 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00006080 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00006081 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00006082 }
danielk197730548662009-07-09 05:07:37 +00006083 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00006084 }
drhee6438d2014-09-01 13:29:32 +00006085 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00006086 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006087
drh75e96b32017-04-01 00:20:06 +00006088 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00006089 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00006090 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00006091 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00006092 }else{
6093 rc = SQLITE_OK;
6094 }
drh2dcc9aa2002-12-04 13:40:25 +00006095 }
drh2dcc9aa2002-12-04 13:40:25 +00006096 return rc;
6097}
drh2ab792e2017-05-30 18:34:07 +00006098int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00006099 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00006100 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00006101 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00006102 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
6103 pCur->info.nSize = 0;
6104 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00006105 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00006106 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00006107 ){
drh89997982017-07-11 18:11:33 +00006108 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00006109 }
drh75e96b32017-04-01 00:20:06 +00006110 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00006111 return SQLITE_OK;
6112}
drh2dcc9aa2002-12-04 13:40:25 +00006113
6114/*
drh3b7511c2001-05-26 13:15:44 +00006115** Allocate a new page from the database file.
6116**
danielk19773b8a05f2007-03-19 17:44:26 +00006117** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00006118** has already been called on the new page.) The new page has also
6119** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00006120** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00006121**
6122** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00006123** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00006124**
drh82e647d2013-03-02 03:25:55 +00006125** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00006126** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00006127** attempt to keep related pages close to each other in the database file,
6128** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00006129**
drh82e647d2013-03-02 03:25:55 +00006130** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6131** anywhere on the free-list, then it is guaranteed to be returned. If
6132** eMode is BTALLOC_LT then the page returned will be less than or equal
6133** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
6134** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00006135*/
drh4f0c5872007-03-26 22:05:01 +00006136static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00006137 BtShared *pBt, /* The btree */
6138 MemPage **ppPage, /* Store pointer to the allocated page here */
6139 Pgno *pPgno, /* Store the page number here */
6140 Pgno nearby, /* Search for a page near this one */
6141 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006142){
drh3aac2dd2004-04-26 14:10:20 +00006143 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00006144 int rc;
drh35cd6432009-06-05 14:17:21 +00006145 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00006146 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00006147 MemPage *pTrunk = 0;
6148 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00006149 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00006150
drh1fee73e2007-08-29 04:00:57 +00006151 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00006152 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00006153 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00006154 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00006155 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
6156 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00006157 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00006158 testcase( n==mxPage-1 );
6159 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00006160 return SQLITE_CORRUPT_BKPT;
6161 }
drh3aac2dd2004-04-26 14:10:20 +00006162 if( n>0 ){
drh91025292004-05-03 19:49:32 +00006163 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006164 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006165 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00006166 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006167
drh82e647d2013-03-02 03:25:55 +00006168 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006169 ** shows that the page 'nearby' is somewhere on the free-list, then
6170 ** the entire-list will be searched for that page.
6171 */
6172#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006173 if( eMode==BTALLOC_EXACT ){
drh41af5b32020-07-31 02:07:16 +00006174 if( nearby<=mxPage ){
dan51f0b6d2013-02-22 20:16:34 +00006175 u8 eType;
6176 assert( nearby>0 );
6177 assert( pBt->autoVacuum );
6178 rc = ptrmapGet(pBt, nearby, &eType, 0);
6179 if( rc ) return rc;
6180 if( eType==PTRMAP_FREEPAGE ){
6181 searchList = 1;
6182 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006183 }
dan51f0b6d2013-02-22 20:16:34 +00006184 }else if( eMode==BTALLOC_LE ){
6185 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006186 }
6187#endif
6188
6189 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6190 ** first free-list trunk page. iPrevTrunk is initially 1.
6191 */
danielk19773b8a05f2007-03-19 17:44:26 +00006192 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00006193 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00006194 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006195
6196 /* The code within this loop is run only once if the 'searchList' variable
6197 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00006198 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6199 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00006200 */
6201 do {
6202 pPrevTrunk = pTrunk;
6203 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00006204 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6205 ** is the page number of the next freelist trunk page in the list or
6206 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006207 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00006208 }else{
drh113762a2014-11-19 16:36:25 +00006209 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6210 ** stores the page number of the first page of the freelist, or zero if
6211 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006212 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00006213 }
drhdf35a082009-07-09 02:24:35 +00006214 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00006215 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00006216 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00006217 }else{
drh7e8c6f12015-05-28 03:28:27 +00006218 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00006219 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006220 if( rc ){
drhd3627af2006-12-18 18:34:51 +00006221 pTrunk = 0;
6222 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006223 }
drhb07028f2011-10-14 21:49:18 +00006224 assert( pTrunk!=0 );
6225 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00006226 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6227 ** is the number of leaf page pointers to follow. */
6228 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006229 if( k==0 && !searchList ){
6230 /* The trunk has no leaves and the list is not being searched.
6231 ** So extract the trunk page itself and use it as the newly
6232 ** allocated page */
6233 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006234 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006235 if( rc ){
6236 goto end_allocate_page;
6237 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006238 *pPgno = iTrunk;
6239 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6240 *ppPage = pTrunk;
6241 pTrunk = 0;
6242 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00006243 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006244 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00006245 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00006246 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006247#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006248 }else if( searchList
6249 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6250 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006251 /* The list is being searched and this trunk page is the page
6252 ** to allocate, regardless of whether it has leaves.
6253 */
dan51f0b6d2013-02-22 20:16:34 +00006254 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006255 *ppPage = pTrunk;
6256 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006257 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006258 if( rc ){
6259 goto end_allocate_page;
6260 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006261 if( k==0 ){
6262 if( !pPrevTrunk ){
6263 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6264 }else{
danf48c3552010-08-23 15:41:24 +00006265 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6266 if( rc!=SQLITE_OK ){
6267 goto end_allocate_page;
6268 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006269 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6270 }
6271 }else{
6272 /* The trunk page is required by the caller but it contains
6273 ** pointers to free-list leaves. The first leaf becomes a trunk
6274 ** page in this case.
6275 */
6276 MemPage *pNewTrunk;
6277 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00006278 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006279 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006280 goto end_allocate_page;
6281 }
drhdf35a082009-07-09 02:24:35 +00006282 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00006283 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006284 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00006285 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006286 }
danielk19773b8a05f2007-03-19 17:44:26 +00006287 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006288 if( rc!=SQLITE_OK ){
6289 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00006290 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006291 }
6292 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6293 put4byte(&pNewTrunk->aData[4], k-1);
6294 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006295 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006296 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006297 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006298 put4byte(&pPage1->aData[32], iNewTrunk);
6299 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006300 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006301 if( rc ){
6302 goto end_allocate_page;
6303 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006304 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6305 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006306 }
6307 pTrunk = 0;
6308 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6309#endif
danielk1977e5765212009-06-17 11:13:28 +00006310 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006311 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006312 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006313 Pgno iPage;
6314 unsigned char *aData = pTrunk->aData;
6315 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006316 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006317 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006318 if( eMode==BTALLOC_LE ){
6319 for(i=0; i<k; i++){
6320 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006321 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006322 closest = i;
6323 break;
6324 }
6325 }
6326 }else{
6327 int dist;
6328 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6329 for(i=1; i<k; i++){
6330 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6331 if( d2<dist ){
6332 closest = i;
6333 dist = d2;
6334 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006335 }
6336 }
6337 }else{
6338 closest = 0;
6339 }
6340
6341 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006342 testcase( iPage==mxPage );
drh07812192021-04-07 12:21:35 +00006343 if( iPage>mxPage || iPage<2 ){
drhcc97ca42017-06-07 22:32:59 +00006344 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006345 goto end_allocate_page;
6346 }
drhdf35a082009-07-09 02:24:35 +00006347 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006348 if( !searchList
6349 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6350 ){
danielk1977bea2a942009-01-20 17:06:27 +00006351 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006352 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006353 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6354 ": %d more free pages\n",
6355 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006356 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6357 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006358 if( closest<k-1 ){
6359 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6360 }
6361 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006362 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006363 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006364 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006365 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006366 if( rc!=SQLITE_OK ){
6367 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006368 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006369 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006370 }
6371 searchList = 0;
6372 }
drhee696e22004-08-30 16:52:17 +00006373 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006374 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006375 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006376 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006377 }else{
danbc1a3c62013-02-23 16:40:46 +00006378 /* There are no pages on the freelist, so append a new page to the
6379 ** database image.
6380 **
6381 ** Normally, new pages allocated by this block can be requested from the
6382 ** pager layer with the 'no-content' flag set. This prevents the pager
6383 ** from trying to read the pages content from disk. However, if the
6384 ** current transaction has already run one or more incremental-vacuum
6385 ** steps, then the page we are about to allocate may contain content
6386 ** that is required in the event of a rollback. In this case, do
6387 ** not set the no-content flag. This causes the pager to load and journal
6388 ** the current page content before overwriting it.
6389 **
6390 ** Note that the pager will not actually attempt to load or journal
6391 ** content for any page that really does lie past the end of the database
6392 ** file on disk. So the effects of disabling the no-content optimization
6393 ** here are confined to those pages that lie between the end of the
6394 ** database image and the end of the database file.
6395 */
drh3f387402014-09-24 01:23:00 +00006396 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006397
drhdd3cd972010-03-27 17:12:36 +00006398 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6399 if( rc ) return rc;
6400 pBt->nPage++;
6401 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006402
danielk1977afcdd022004-10-31 16:25:42 +00006403#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006404 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006405 /* If *pPgno refers to a pointer-map page, allocate two new pages
6406 ** at the end of the file instead of one. The first allocated page
6407 ** becomes a new pointer-map page, the second is used by the caller.
6408 */
danielk1977ac861692009-03-28 10:54:22 +00006409 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006410 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6411 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006412 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006413 if( rc==SQLITE_OK ){
6414 rc = sqlite3PagerWrite(pPg->pDbPage);
6415 releasePage(pPg);
6416 }
6417 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006418 pBt->nPage++;
6419 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006420 }
6421#endif
drhdd3cd972010-03-27 17:12:36 +00006422 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6423 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006424
danielk1977599fcba2004-11-08 07:13:13 +00006425 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006426 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006427 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006428 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006429 if( rc!=SQLITE_OK ){
6430 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006431 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006432 }
drh3a4c1412004-05-09 20:40:11 +00006433 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006434 }
danielk1977599fcba2004-11-08 07:13:13 +00006435
danba14c692019-01-25 13:42:12 +00006436 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006437
6438end_allocate_page:
6439 releasePage(pTrunk);
6440 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006441 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6442 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006443 return rc;
6444}
6445
6446/*
danielk1977bea2a942009-01-20 17:06:27 +00006447** This function is used to add page iPage to the database file free-list.
6448** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006449**
danielk1977bea2a942009-01-20 17:06:27 +00006450** The value passed as the second argument to this function is optional.
6451** If the caller happens to have a pointer to the MemPage object
6452** corresponding to page iPage handy, it may pass it as the second value.
6453** Otherwise, it may pass NULL.
6454**
6455** If a pointer to a MemPage object is passed as the second argument,
6456** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006457*/
danielk1977bea2a942009-01-20 17:06:27 +00006458static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6459 MemPage *pTrunk = 0; /* Free-list trunk page */
6460 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6461 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6462 MemPage *pPage; /* Page being freed. May be NULL. */
6463 int rc; /* Return Code */
drh25050f22019-04-09 01:26:31 +00006464 u32 nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006465
danielk1977bea2a942009-01-20 17:06:27 +00006466 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006467 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006468 assert( !pMemPage || pMemPage->pgno==iPage );
6469
drh9a4e8862022-02-14 18:18:56 +00006470 if( iPage<2 || iPage>pBt->nPage ){
drh58b42ad2019-03-25 19:50:19 +00006471 return SQLITE_CORRUPT_BKPT;
6472 }
danielk1977bea2a942009-01-20 17:06:27 +00006473 if( pMemPage ){
6474 pPage = pMemPage;
6475 sqlite3PagerRef(pPage->pDbPage);
6476 }else{
6477 pPage = btreePageLookup(pBt, iPage);
6478 }
drh3aac2dd2004-04-26 14:10:20 +00006479
drha34b6762004-05-07 13:30:42 +00006480 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006481 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006482 if( rc ) goto freepage_out;
6483 nFree = get4byte(&pPage1->aData[36]);
6484 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006485
drhc9166342012-01-05 23:32:06 +00006486 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006487 /* If the secure_delete option is enabled, then
6488 ** always fully overwrite deleted information with zeros.
6489 */
drhb00fc3b2013-08-21 23:42:32 +00006490 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006491 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006492 ){
6493 goto freepage_out;
6494 }
6495 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006496 }
drhfcce93f2006-02-22 03:08:32 +00006497
danielk1977687566d2004-11-02 12:56:41 +00006498 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006499 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006500 */
danielk197785d90ca2008-07-19 14:25:15 +00006501 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006502 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006503 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006504 }
danielk1977687566d2004-11-02 12:56:41 +00006505
danielk1977bea2a942009-01-20 17:06:27 +00006506 /* Now manipulate the actual database free-list structure. There are two
6507 ** possibilities. If the free-list is currently empty, or if the first
6508 ** trunk page in the free-list is full, then this page will become a
6509 ** new free-list trunk page. Otherwise, it will become a leaf of the
6510 ** first trunk page in the current free-list. This block tests if it
6511 ** is possible to add the page as a new free-list leaf.
6512 */
6513 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006514 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006515
6516 iTrunk = get4byte(&pPage1->aData[32]);
drh10248222020-07-28 20:32:12 +00006517 if( iTrunk>btreePagecount(pBt) ){
6518 rc = SQLITE_CORRUPT_BKPT;
6519 goto freepage_out;
6520 }
drhb00fc3b2013-08-21 23:42:32 +00006521 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006522 if( rc!=SQLITE_OK ){
6523 goto freepage_out;
6524 }
6525
6526 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006527 assert( pBt->usableSize>32 );
6528 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006529 rc = SQLITE_CORRUPT_BKPT;
6530 goto freepage_out;
6531 }
drheeb844a2009-08-08 18:01:07 +00006532 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006533 /* In this case there is room on the trunk page to insert the page
6534 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006535 **
6536 ** Note that the trunk page is not really full until it contains
6537 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6538 ** coded. But due to a coding error in versions of SQLite prior to
6539 ** 3.6.0, databases with freelist trunk pages holding more than
6540 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6541 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006542 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006543 ** for now. At some point in the future (once everyone has upgraded
6544 ** to 3.6.0 or later) we should consider fixing the conditional above
6545 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006546 **
6547 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6548 ** avoid using the last six entries in the freelist trunk page array in
6549 ** order that database files created by newer versions of SQLite can be
6550 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006551 */
danielk19773b8a05f2007-03-19 17:44:26 +00006552 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006553 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006554 put4byte(&pTrunk->aData[4], nLeaf+1);
6555 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006556 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006557 sqlite3PagerDontWrite(pPage->pDbPage);
6558 }
danielk1977bea2a942009-01-20 17:06:27 +00006559 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006560 }
drh3a4c1412004-05-09 20:40:11 +00006561 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006562 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006563 }
drh3b7511c2001-05-26 13:15:44 +00006564 }
danielk1977bea2a942009-01-20 17:06:27 +00006565
6566 /* If control flows to this point, then it was not possible to add the
6567 ** the page being freed as a leaf page of the first trunk in the free-list.
6568 ** Possibly because the free-list is empty, or possibly because the
6569 ** first trunk in the free-list is full. Either way, the page being freed
6570 ** will become the new first trunk page in the free-list.
6571 */
drhb00fc3b2013-08-21 23:42:32 +00006572 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006573 goto freepage_out;
6574 }
6575 rc = sqlite3PagerWrite(pPage->pDbPage);
6576 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006577 goto freepage_out;
6578 }
6579 put4byte(pPage->aData, iTrunk);
6580 put4byte(&pPage->aData[4], 0);
6581 put4byte(&pPage1->aData[32], iPage);
6582 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6583
6584freepage_out:
6585 if( pPage ){
6586 pPage->isInit = 0;
6587 }
6588 releasePage(pPage);
6589 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006590 return rc;
6591}
drhc314dc72009-07-21 11:52:34 +00006592static void freePage(MemPage *pPage, int *pRC){
6593 if( (*pRC)==SQLITE_OK ){
6594 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6595 }
danielk1977bea2a942009-01-20 17:06:27 +00006596}
drh3b7511c2001-05-26 13:15:44 +00006597
6598/*
drh86c779f2021-05-15 13:08:44 +00006599** Free the overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00006600*/
drh86c779f2021-05-15 13:08:44 +00006601static SQLITE_NOINLINE int clearCellOverflow(
drh9bfdc252014-09-24 02:05:41 +00006602 MemPage *pPage, /* The page that contains the Cell */
6603 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006604 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006605){
drh60172a52017-08-02 18:27:50 +00006606 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006607 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006608 int rc;
drh94440812007-03-06 11:42:19 +00006609 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006610 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006611
drh1fee73e2007-08-29 04:00:57 +00006612 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh86c779f2021-05-15 13:08:44 +00006613 assert( pInfo->nLocal!=pInfo->nPayload );
drh6fcf83a2018-05-05 01:23:28 +00006614 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6615 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6616 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006617 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006618 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006619 }
drh80159da2016-12-09 17:32:51 +00006620 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006621 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006622 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006623 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006624 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006625 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006626 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006627 );
drh72365832007-03-06 15:53:44 +00006628 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006629 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006630 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006631 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006632 /* 0 is not a legal page number and page 1 cannot be an
6633 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6634 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006635 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006636 }
danielk1977bea2a942009-01-20 17:06:27 +00006637 if( nOvfl ){
6638 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6639 if( rc ) return rc;
6640 }
dan887d4b22010-02-25 12:09:16 +00006641
shaneh1da207e2010-03-09 14:41:12 +00006642 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006643 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6644 ){
6645 /* There is no reason any cursor should have an outstanding reference
6646 ** to an overflow page belonging to a cell that is being deleted/updated.
6647 ** So if there exists more than one reference to this page, then it
6648 ** must not really be an overflow page and the database must be corrupt.
6649 ** It is helpful to detect this before calling freePage2(), as
6650 ** freePage2() may zero the page contents if secure-delete mode is
6651 ** enabled. If this 'overflow' page happens to be a page that the
6652 ** caller is iterating through or using in some other way, this
6653 ** can be problematic.
6654 */
6655 rc = SQLITE_CORRUPT_BKPT;
6656 }else{
6657 rc = freePage2(pBt, pOvfl, ovflPgno);
6658 }
6659
danielk1977bea2a942009-01-20 17:06:27 +00006660 if( pOvfl ){
6661 sqlite3PagerUnref(pOvfl->pDbPage);
6662 }
drh3b7511c2001-05-26 13:15:44 +00006663 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006664 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006665 }
drh5e2f8b92001-05-28 00:41:15 +00006666 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006667}
6668
drh86c779f2021-05-15 13:08:44 +00006669/* Call xParseCell to compute the size of a cell. If the cell contains
6670** overflow, then invoke cellClearOverflow to clear out that overflow.
6671** STore the result code (SQLITE_OK or some error code) in rc.
6672**
6673** Implemented as macro to force inlining for performance.
6674*/
6675#define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
6676 pPage->xParseCell(pPage, pCell, &sInfo); \
6677 if( sInfo.nLocal!=sInfo.nPayload ){ \
6678 rc = clearCellOverflow(pPage, pCell, &sInfo); \
6679 }else{ \
6680 rc = SQLITE_OK; \
6681 }
6682
6683
drh3b7511c2001-05-26 13:15:44 +00006684/*
drh91025292004-05-03 19:49:32 +00006685** Create the byte sequence used to represent a cell on page pPage
6686** and write that byte sequence into pCell[]. Overflow pages are
6687** allocated and filled in as necessary. The calling procedure
6688** is responsible for making sure sufficient space has been allocated
6689** for pCell[].
6690**
6691** Note that pCell does not necessary need to point to the pPage->aData
6692** area. pCell might point to some temporary storage. The cell will
6693** be constructed in this temporary area then copied into pPage->aData
6694** later.
drh3b7511c2001-05-26 13:15:44 +00006695*/
6696static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006697 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006698 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006699 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006700 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006701){
drh3b7511c2001-05-26 13:15:44 +00006702 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006703 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006704 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006705 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006706 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006707 unsigned char *pPrior;
6708 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006709 BtShared *pBt;
6710 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006711 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006712
drh1fee73e2007-08-29 04:00:57 +00006713 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006714
drhc5053fb2008-11-27 02:22:10 +00006715 /* pPage is not necessarily writeable since pCell might be auxiliary
6716 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006717 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006718 || sqlite3PagerIswriteable(pPage->pDbPage) );
6719
drh91025292004-05-03 19:49:32 +00006720 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006721 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006722 if( pPage->intKey ){
6723 nPayload = pX->nData + pX->nZero;
6724 pSrc = pX->pData;
6725 nSrc = pX->nData;
6726 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006727 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006728 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006729 }else{
drh8eeb4462016-05-21 20:03:42 +00006730 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6731 nSrc = nPayload = (int)pX->nKey;
6732 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006733 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006734 }
drhdfc2daa2016-05-21 23:25:29 +00006735
6736 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006737 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006738 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006739 /* This is the common case where everything fits on the btree page
6740 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006741 n = nHeader + nPayload;
6742 testcase( n==3 );
6743 testcase( n==4 );
6744 if( n<4 ) n = 4;
6745 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006746 assert( nSrc<=nPayload );
6747 testcase( nSrc<nPayload );
6748 memcpy(pPayload, pSrc, nSrc);
6749 memset(pPayload+nSrc, 0, nPayload-nSrc);
6750 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006751 }
drh5e27e1d2017-08-23 14:45:59 +00006752
6753 /* If we reach this point, it means that some of the content will need
6754 ** to spill onto overflow pages.
6755 */
6756 mn = pPage->minLocal;
6757 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6758 testcase( n==pPage->maxLocal );
6759 testcase( n==pPage->maxLocal+1 );
6760 if( n > pPage->maxLocal ) n = mn;
6761 spaceLeft = n;
6762 *pnSize = n + nHeader + 4;
6763 pPrior = &pCell[nHeader+n];
6764 pToRelease = 0;
6765 pgnoOvfl = 0;
6766 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006767
drh6200c882014-09-23 22:36:25 +00006768 /* At this point variables should be set as follows:
6769 **
6770 ** nPayload Total payload size in bytes
6771 ** pPayload Begin writing payload here
6772 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6773 ** that means content must spill into overflow pages.
6774 ** *pnSize Size of the local cell (not counting overflow pages)
6775 ** pPrior Where to write the pgno of the first overflow page
6776 **
6777 ** Use a call to btreeParseCellPtr() to verify that the values above
6778 ** were computed correctly.
6779 */
drhd879e3e2017-02-13 13:35:55 +00006780#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006781 {
6782 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006783 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006784 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006785 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006786 assert( *pnSize == info.nSize );
6787 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006788 }
6789#endif
6790
6791 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006792 while( 1 ){
6793 n = nPayload;
6794 if( n>spaceLeft ) n = spaceLeft;
6795
6796 /* If pToRelease is not zero than pPayload points into the data area
6797 ** of pToRelease. Make sure pToRelease is still writeable. */
6798 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6799
6800 /* If pPayload is part of the data area of pPage, then make sure pPage
6801 ** is still writeable */
6802 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6803 || sqlite3PagerIswriteable(pPage->pDbPage) );
6804
6805 if( nSrc>=n ){
6806 memcpy(pPayload, pSrc, n);
6807 }else if( nSrc>0 ){
6808 n = nSrc;
6809 memcpy(pPayload, pSrc, n);
6810 }else{
6811 memset(pPayload, 0, n);
6812 }
6813 nPayload -= n;
6814 if( nPayload<=0 ) break;
6815 pPayload += n;
6816 pSrc += n;
6817 nSrc -= n;
6818 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006819 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006820 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006821#ifndef SQLITE_OMIT_AUTOVACUUM
6822 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006823 if( pBt->autoVacuum ){
6824 do{
6825 pgnoOvfl++;
6826 } while(
6827 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6828 );
danielk1977b39f70b2007-05-17 18:28:11 +00006829 }
danielk1977afcdd022004-10-31 16:25:42 +00006830#endif
drhf49661a2008-12-10 16:45:50 +00006831 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006832#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006833 /* If the database supports auto-vacuum, and the second or subsequent
6834 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006835 ** for that page now.
6836 **
6837 ** If this is the first overflow page, then write a partial entry
6838 ** to the pointer-map. If we write nothing to this pointer-map slot,
6839 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006840 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006841 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006842 */
danielk19774ef24492007-05-23 09:52:41 +00006843 if( pBt->autoVacuum && rc==SQLITE_OK ){
6844 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006845 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006846 if( rc ){
6847 releasePage(pOvfl);
6848 }
danielk1977afcdd022004-10-31 16:25:42 +00006849 }
6850#endif
drh3b7511c2001-05-26 13:15:44 +00006851 if( rc ){
drh9b171272004-05-08 02:03:22 +00006852 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006853 return rc;
6854 }
drhc5053fb2008-11-27 02:22:10 +00006855
6856 /* If pToRelease is not zero than pPrior points into the data area
6857 ** of pToRelease. Make sure pToRelease is still writeable. */
6858 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6859
6860 /* If pPrior is part of the data area of pPage, then make sure pPage
6861 ** is still writeable */
6862 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6863 || sqlite3PagerIswriteable(pPage->pDbPage) );
6864
drh3aac2dd2004-04-26 14:10:20 +00006865 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006866 releasePage(pToRelease);
6867 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006868 pPrior = pOvfl->aData;
6869 put4byte(pPrior, 0);
6870 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006871 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006872 }
drhdd793422001-06-28 01:54:48 +00006873 }
drh9b171272004-05-08 02:03:22 +00006874 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006875 return SQLITE_OK;
6876}
6877
drh14acc042001-06-10 19:56:58 +00006878/*
6879** Remove the i-th cell from pPage. This routine effects pPage only.
6880** The cell content is not freed or deallocated. It is assumed that
6881** the cell content has been copied someplace else. This routine just
6882** removes the reference to the cell from pPage.
6883**
6884** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006885*/
drh98add2e2009-07-20 17:11:49 +00006886static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006887 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006888 u8 *data; /* pPage->aData */
6889 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006890 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006891 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006892
drh98add2e2009-07-20 17:11:49 +00006893 if( *pRC ) return;
drh2dfe9662022-01-02 11:25:51 +00006894 assert( idx>=0 );
6895 assert( idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006896 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006897 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006898 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00006899 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00006900 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006901 ptr = &pPage->aCellIdx[2*idx];
mistachkinbeacaac2022-01-12 00:28:12 +00006902 assert( pPage->pBt->usableSize > (u32)(ptr-data) );
shane0af3f892008-11-12 04:55:34 +00006903 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006904 hdr = pPage->hdrOffset;
drh0aa09452022-02-14 13:53:49 +00006905#if 0 /* Not required. Omit for efficiency */
6906 if( pc<hdr+pPage->nCell*2 ){
6907 *pRC = SQLITE_CORRUPT_BKPT;
6908 return;
6909 }
6910#endif
mistachkin2b5fbb22021-12-31 18:26:50 +00006911 testcase( pc==(u32)get2byte(&data[hdr+5]) );
drhc314dc72009-07-21 11:52:34 +00006912 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006913 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006914 *pRC = SQLITE_CORRUPT_BKPT;
6915 return;
shane0af3f892008-11-12 04:55:34 +00006916 }
shanedcc50b72008-11-13 18:29:50 +00006917 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006918 if( rc ){
6919 *pRC = rc;
6920 return;
shanedcc50b72008-11-13 18:29:50 +00006921 }
drh14acc042001-06-10 19:56:58 +00006922 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006923 if( pPage->nCell==0 ){
6924 memset(&data[hdr+1], 0, 4);
6925 data[hdr+7] = 0;
6926 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6927 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6928 - pPage->childPtrSize - 8;
6929 }else{
6930 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6931 put2byte(&data[hdr+3], pPage->nCell);
6932 pPage->nFree += 2;
6933 }
drh14acc042001-06-10 19:56:58 +00006934}
6935
6936/*
6937** Insert a new cell on pPage at cell index "i". pCell points to the
6938** content of the cell.
6939**
6940** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006941** will not fit, then make a copy of the cell content into pTemp if
6942** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006943** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006944** in pTemp or the original pCell) and also record its index.
6945** Allocating a new entry in pPage->aCell[] implies that
6946** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006947**
6948** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006949*/
drh98add2e2009-07-20 17:11:49 +00006950static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006951 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006952 int i, /* New cell becomes the i-th cell of the page */
6953 u8 *pCell, /* Content of the new cell */
6954 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006955 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006956 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6957 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006958){
drh383d30f2010-02-26 13:07:37 +00006959 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006960 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006961 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006962 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006963
drhcb89f4a2016-05-21 11:23:26 +00006964 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006965 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006966 assert( MX_CELL(pPage->pBt)<=10921 );
6967 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006968 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6969 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006970 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh996f5cc2019-07-17 16:18:01 +00006971 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00006972 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00006973 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006974 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006975 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006976 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006977 }
danielk19774dbaa892009-06-16 16:50:22 +00006978 if( iChild ){
6979 put4byte(pCell, iChild);
6980 }
drh43605152004-05-29 21:46:49 +00006981 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006982 /* Comparison against ArraySize-1 since we hold back one extra slot
6983 ** as a contingency. In other words, never need more than 3 overflow
6984 ** slots but 4 are allocated, just to be safe. */
6985 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006986 pPage->apOvfl[j] = pCell;
6987 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006988
6989 /* When multiple overflows occur, they are always sequential and in
6990 ** sorted order. This invariants arise because multiple overflows can
6991 ** only occur when inserting divider cells into the parent page during
6992 ** balancing, and the dividers are adjacent and sorted.
6993 */
6994 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6995 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006996 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006997 int rc = sqlite3PagerWrite(pPage->pDbPage);
6998 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006999 *pRC = rc;
7000 return;
danielk19776e465eb2007-08-21 13:11:00 +00007001 }
7002 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00007003 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00007004 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00007005 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00007006 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00007007 /* The allocateSpace() routine guarantees the following properties
7008 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00007009 assert( idx >= 0 );
7010 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00007011 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00007012 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00007013 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00007014 /* In a corrupt database where an entry in the cell index section of
7015 ** a btree page has a value of 3 or less, the pCell value might point
7016 ** as many as 4 bytes in front of the start of the aData buffer for
7017 ** the source page. Make sure this does not cause problems by not
7018 ** reading the first 4 bytes */
7019 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00007020 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00007021 }else{
7022 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00007023 }
drh2c8fb922015-06-25 19:53:48 +00007024 pIns = pPage->aCellIdx + i*2;
7025 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
7026 put2byte(pIns, idx);
7027 pPage->nCell++;
7028 /* increment the cell count */
7029 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00007030 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
danielk1977a19df672004-11-03 11:37:07 +00007031#ifndef SQLITE_OMIT_AUTOVACUUM
7032 if( pPage->pBt->autoVacuum ){
7033 /* The cell may contain a pointer to an overflow page. If so, write
7034 ** the entry for the overflow page into the pointer map.
7035 */
drh0f1bf4c2019-01-13 20:17:21 +00007036 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00007037 }
7038#endif
drh14acc042001-06-10 19:56:58 +00007039 }
7040}
7041
7042/*
drhe3dadac2019-01-23 19:25:59 +00007043** The following parameters determine how many adjacent pages get involved
7044** in a balancing operation. NN is the number of neighbors on either side
7045** of the page that participate in the balancing operation. NB is the
7046** total number of pages that participate, including the target page and
7047** NN neighbors on either side.
7048**
7049** The minimum value of NN is 1 (of course). Increasing NN above 1
7050** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7051** in exchange for a larger degradation in INSERT and UPDATE performance.
7052** The value of NN appears to give the best results overall.
7053**
7054** (Later:) The description above makes it seem as if these values are
7055** tunable - as if you could change them and recompile and it would all work.
7056** But that is unlikely. NB has been 3 since the inception of SQLite and
7057** we have never tested any other value.
7058*/
7059#define NN 1 /* Number of neighbors on either side of pPage */
7060#define NB 3 /* (NN*2+1): Total pages involved in the balance */
7061
7062/*
drh1ffd2472015-06-23 02:37:30 +00007063** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00007064** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00007065**
7066** The cells in this array are the divider cell or cells from the pParent
7067** page plus up to three child pages. There are a total of nCell cells.
7068**
7069** pRef is a pointer to one of the pages that contributes cells. This is
7070** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7071** which should be common to all pages that contribute cells to this array.
7072**
7073** apCell[] and szCell[] hold, respectively, pointers to the start of each
7074** cell and the size of each cell. Some of the apCell[] pointers might refer
7075** to overflow cells. In other words, some apCel[] pointers might not point
7076** to content area of the pages.
7077**
7078** A szCell[] of zero means the size of that cell has not yet been computed.
7079**
7080** The cells come from as many as four different pages:
7081**
7082** -----------
7083** | Parent |
7084** -----------
7085** / | \
7086** / | \
7087** --------- --------- ---------
7088** |Child-1| |Child-2| |Child-3|
7089** --------- --------- ---------
7090**
drh26b7ec82019-02-01 14:50:43 +00007091** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00007092**
7093** 1. All cells from Child-1 in order
7094** 2. The first divider cell from Parent
7095** 3. All cells from Child-2 in order
7096** 4. The second divider cell from Parent
7097** 5. All cells from Child-3 in order
7098**
drh26b7ec82019-02-01 14:50:43 +00007099** For a table-btree (with rowids) the items 2 and 4 are empty because
7100** content exists only in leaves and there are no divider cells.
7101**
7102** For an index btree, the apEnd[] array holds pointer to the end of page
7103** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7104** respectively. The ixNx[] array holds the number of cells contained in
7105** each of these 5 stages, and all stages to the left. Hence:
7106**
drhe3dadac2019-01-23 19:25:59 +00007107** ixNx[0] = Number of cells in Child-1.
7108** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7109** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7110** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7111** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00007112**
7113** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7114** are used and they point to the leaf pages only, and the ixNx value are:
7115**
7116** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00007117** ixNx[1] = Number of cells in Child-1 and Child-2.
7118** ixNx[2] = Total number of cells.
7119**
7120** Sometimes when deleting, a child page can have zero cells. In those
7121** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7122** entries, shift down. The end result is that each ixNx[] entry should
7123** be larger than the previous
drhfa1a98a2004-05-14 19:08:17 +00007124*/
drh1ffd2472015-06-23 02:37:30 +00007125typedef struct CellArray CellArray;
7126struct CellArray {
7127 int nCell; /* Number of cells in apCell[] */
7128 MemPage *pRef; /* Reference page */
7129 u8 **apCell; /* All cells begin balanced */
7130 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00007131 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
7132 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00007133};
drhfa1a98a2004-05-14 19:08:17 +00007134
drh1ffd2472015-06-23 02:37:30 +00007135/*
7136** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7137** computed.
7138*/
7139static void populateCellCache(CellArray *p, int idx, int N){
7140 assert( idx>=0 && idx+N<=p->nCell );
7141 while( N>0 ){
7142 assert( p->apCell[idx]!=0 );
7143 if( p->szCell[idx]==0 ){
7144 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
7145 }else{
7146 assert( CORRUPT_DB ||
7147 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
7148 }
7149 idx++;
7150 N--;
drhfa1a98a2004-05-14 19:08:17 +00007151 }
drh1ffd2472015-06-23 02:37:30 +00007152}
7153
7154/*
7155** Return the size of the Nth element of the cell array
7156*/
7157static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7158 assert( N>=0 && N<p->nCell );
7159 assert( p->szCell[N]==0 );
7160 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7161 return p->szCell[N];
7162}
7163static u16 cachedCellSize(CellArray *p, int N){
7164 assert( N>=0 && N<p->nCell );
7165 if( p->szCell[N] ) return p->szCell[N];
7166 return computeCellSize(p, N);
7167}
7168
7169/*
dan8e9ba0c2014-10-14 17:27:04 +00007170** Array apCell[] contains pointers to nCell b-tree page cells. The
7171** szCell[] array contains the size in bytes of each cell. This function
7172** replaces the current contents of page pPg with the contents of the cell
7173** array.
7174**
7175** Some of the cells in apCell[] may currently be stored in pPg. This
7176** function works around problems caused by this by making a copy of any
7177** such cells before overwriting the page data.
7178**
7179** The MemPage.nFree field is invalidated by this function. It is the
7180** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00007181*/
drh658873b2015-06-22 20:02:04 +00007182static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00007183 CellArray *pCArray, /* Content to be added to page pPg */
7184 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00007185 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00007186 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00007187){
7188 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
7189 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
7190 const int usableSize = pPg->pBt->usableSize;
7191 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00007192 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00007193 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00007194 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00007195 u8 *pCellptr = pPg->aCellIdx;
7196 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7197 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00007198 int k; /* Current slot in pCArray->apEnd[] */
7199 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00007200
drhe3dadac2019-01-23 19:25:59 +00007201 assert( i<iEnd );
7202 j = get2byte(&aData[hdr+5]);
drh10f73652022-01-05 21:01:26 +00007203 if( j>(u32)usableSize ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00007204 memcpy(&pTmp[j], &aData[j], usableSize - j);
7205
7206 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7207 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00007208
dan8e9ba0c2014-10-14 17:27:04 +00007209 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00007210 while( 1/*exit by break*/ ){
7211 u8 *pCell = pCArray->apCell[i];
7212 u16 sz = pCArray->szCell[i];
7213 assert( sz>0 );
drh8cae5a42021-04-20 20:48:15 +00007214 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
drhb2b61bb2020-01-04 14:50:06 +00007215 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00007216 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00007217 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7218 && (uptr)(pCell)<(uptr)pSrcEnd
7219 ){
7220 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00007221 }
drhe3dadac2019-01-23 19:25:59 +00007222
7223 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00007224 put2byte(pCellptr, (pData - aData));
7225 pCellptr += 2;
drhe5cf3e92020-01-04 12:34:44 +00007226 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drheca3c672021-04-22 20:01:02 +00007227 memmove(pData, pCell, sz);
drhe5cf3e92020-01-04 12:34:44 +00007228 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007229 i++;
7230 if( i>=iEnd ) break;
7231 if( pCArray->ixNx[k]<=i ){
7232 k++;
7233 pSrcEnd = pCArray->apEnd[k];
7234 }
dan33ea4862014-10-09 19:35:37 +00007235 }
7236
dand7b545b2014-10-13 18:03:27 +00007237 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00007238 pPg->nCell = nCell;
7239 pPg->nOverflow = 0;
7240
7241 put2byte(&aData[hdr+1], 0);
7242 put2byte(&aData[hdr+3], pPg->nCell);
7243 put2byte(&aData[hdr+5], pData - aData);
7244 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00007245 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00007246}
7247
dan8e9ba0c2014-10-14 17:27:04 +00007248/*
drhe3dadac2019-01-23 19:25:59 +00007249** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7250** This function attempts to add the cells stored in the array to page pPg.
7251** If it cannot (because the page needs to be defragmented before the cells
7252** will fit), non-zero is returned. Otherwise, if the cells are added
7253** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00007254**
7255** Argument pCellptr points to the first entry in the cell-pointer array
7256** (part of page pPg) to populate. After cell apCell[0] is written to the
7257** page body, a 16-bit offset is written to pCellptr. And so on, for each
7258** cell in the array. It is the responsibility of the caller to ensure
7259** that it is safe to overwrite this part of the cell-pointer array.
7260**
7261** When this function is called, *ppData points to the start of the
7262** content area on page pPg. If the size of the content area is extended,
7263** *ppData is updated to point to the new start of the content area
7264** before returning.
7265**
7266** Finally, argument pBegin points to the byte immediately following the
7267** end of the space required by this page for the cell-pointer area (for
7268** all cells - not just those inserted by the current call). If the content
7269** area must be extended to before this point in order to accomodate all
7270** cells in apCell[], then the cells do not fit and non-zero is returned.
7271*/
dand7b545b2014-10-13 18:03:27 +00007272static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00007273 MemPage *pPg, /* Page to add cells to */
7274 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00007275 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00007276 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00007277 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00007278 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00007279 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007280){
drhe3dadac2019-01-23 19:25:59 +00007281 int i = iFirst; /* Loop counter - cell index to insert */
7282 u8 *aData = pPg->aData; /* Complete page */
7283 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7284 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7285 int k; /* Current slot in pCArray->apEnd[] */
7286 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00007287 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00007288 if( iEnd<=iFirst ) return 0;
7289 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7290 pEnd = pCArray->apEnd[k];
7291 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00007292 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00007293 u8 *pSlot;
dan666a42f2019-08-24 21:02:47 +00007294 assert( pCArray->szCell[i]!=0 );
7295 sz = pCArray->szCell[i];
drhb7580e82015-06-25 18:36:13 +00007296 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00007297 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00007298 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00007299 pSlot = pData;
7300 }
drh48310f82015-10-10 16:41:28 +00007301 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7302 ** database. But they might for a corrupt database. Hence use memmove()
7303 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7304 assert( (pSlot+sz)<=pCArray->apCell[i]
7305 || pSlot>=(pCArray->apCell[i]+sz)
7306 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007307 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7308 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7309 ){
7310 assert( CORRUPT_DB );
7311 (void)SQLITE_CORRUPT_BKPT;
7312 return 1;
7313 }
drh48310f82015-10-10 16:41:28 +00007314 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007315 put2byte(pCellptr, (pSlot - aData));
7316 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007317 i++;
7318 if( i>=iEnd ) break;
7319 if( pCArray->ixNx[k]<=i ){
7320 k++;
7321 pEnd = pCArray->apEnd[k];
7322 }
dand7b545b2014-10-13 18:03:27 +00007323 }
7324 *ppData = pData;
7325 return 0;
7326}
7327
dan8e9ba0c2014-10-14 17:27:04 +00007328/*
drhe3dadac2019-01-23 19:25:59 +00007329** The pCArray object contains pointers to b-tree cells and their sizes.
7330**
7331** This function adds the space associated with each cell in the array
7332** that is currently stored within the body of pPg to the pPg free-list.
7333** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007334**
7335** This function returns the total number of cells added to the free-list.
7336*/
dand7b545b2014-10-13 18:03:27 +00007337static int pageFreeArray(
7338 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007339 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007340 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007341 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007342){
7343 u8 * const aData = pPg->aData;
7344 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007345 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007346 int nRet = 0;
7347 int i;
drhf7838932015-06-23 15:36:34 +00007348 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007349 u8 *pFree = 0;
7350 int szFree = 0;
7351
drhf7838932015-06-23 15:36:34 +00007352 for(i=iFirst; i<iEnd; i++){
7353 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007354 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007355 int sz;
7356 /* No need to use cachedCellSize() here. The sizes of all cells that
7357 ** are to be freed have already been computing while deciding which
7358 ** cells need freeing */
7359 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007360 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007361 if( pFree ){
7362 assert( pFree>aData && (pFree - aData)<65536 );
7363 freeSpace(pPg, (u16)(pFree - aData), szFree);
7364 }
dand7b545b2014-10-13 18:03:27 +00007365 pFree = pCell;
7366 szFree = sz;
drhccb897c2021-05-11 10:47:41 +00007367 if( pFree+sz>pEnd ){
7368 return 0;
drhc3c23f32021-05-06 11:02:55 +00007369 }
dand7b545b2014-10-13 18:03:27 +00007370 }else{
7371 pFree = pCell;
7372 szFree += sz;
7373 }
7374 nRet++;
7375 }
7376 }
drhfefa0942014-11-05 21:21:08 +00007377 if( pFree ){
7378 assert( pFree>aData && (pFree - aData)<65536 );
7379 freeSpace(pPg, (u16)(pFree - aData), szFree);
7380 }
dand7b545b2014-10-13 18:03:27 +00007381 return nRet;
7382}
7383
dand7b545b2014-10-13 18:03:27 +00007384/*
drha0466432019-01-29 16:41:13 +00007385** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007386** balanced. The current page, pPg, has pPg->nCell cells starting with
7387** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007388** starting at apCell[iNew].
7389**
7390** This routine makes the necessary adjustments to pPg so that it contains
7391** the correct cells after being balanced.
7392**
dand7b545b2014-10-13 18:03:27 +00007393** The pPg->nFree field is invalid when this function returns. It is the
7394** responsibility of the caller to set it correctly.
7395*/
drh658873b2015-06-22 20:02:04 +00007396static int editPage(
dan09c68402014-10-11 20:00:24 +00007397 MemPage *pPg, /* Edit this page */
7398 int iOld, /* Index of first cell currently on page */
7399 int iNew, /* Index of new first cell on page */
7400 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007401 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007402){
dand7b545b2014-10-13 18:03:27 +00007403 u8 * const aData = pPg->aData;
7404 const int hdr = pPg->hdrOffset;
7405 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7406 int nCell = pPg->nCell; /* Cells stored on pPg */
7407 u8 *pData;
7408 u8 *pCellptr;
7409 int i;
7410 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7411 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007412
7413#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007414 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7415 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007416#endif
7417
dand7b545b2014-10-13 18:03:27 +00007418 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007419 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007420 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007421 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drhfde25922020-05-05 19:54:02 +00007422 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007423 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7424 nCell -= nShift;
7425 }
7426 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007427 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7428 assert( nCell>=nTail );
7429 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007430 }
dan09c68402014-10-11 20:00:24 +00007431
drh5ab63772014-11-27 03:46:04 +00007432 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007433 if( pData<pBegin ) goto editpage_fail;
drh10f73652022-01-05 21:01:26 +00007434 if( pData>pPg->aDataEnd ) goto editpage_fail;
dand7b545b2014-10-13 18:03:27 +00007435
7436 /* Add cells to the start of the page */
7437 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007438 int nAdd = MIN(nNew,iOld-iNew);
7439 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007440 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007441 pCellptr = pPg->aCellIdx;
7442 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7443 if( pageInsertArray(
7444 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007445 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007446 ) ) goto editpage_fail;
7447 nCell += nAdd;
7448 }
7449
7450 /* Add any overflow cells */
7451 for(i=0; i<pPg->nOverflow; i++){
7452 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7453 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007454 pCellptr = &pPg->aCellIdx[iCell * 2];
drh4b986b22019-03-08 14:02:11 +00007455 if( nCell>iCell ){
7456 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7457 }
dand7b545b2014-10-13 18:03:27 +00007458 nCell++;
dan666a42f2019-08-24 21:02:47 +00007459 cachedCellSize(pCArray, iCell+iNew);
dand7b545b2014-10-13 18:03:27 +00007460 if( pageInsertArray(
7461 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007462 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007463 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007464 }
dand7b545b2014-10-13 18:03:27 +00007465 }
dan09c68402014-10-11 20:00:24 +00007466
dand7b545b2014-10-13 18:03:27 +00007467 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007468 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007469 pCellptr = &pPg->aCellIdx[nCell*2];
7470 if( pageInsertArray(
7471 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007472 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007473 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007474
dand7b545b2014-10-13 18:03:27 +00007475 pPg->nCell = nNew;
7476 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007477
dand7b545b2014-10-13 18:03:27 +00007478 put2byte(&aData[hdr+3], pPg->nCell);
7479 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007480
7481#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007482 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007483 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007484 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007485 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007486 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007487 }
drh1ffd2472015-06-23 02:37:30 +00007488 assert( 0==memcmp(pCell, &aData[iOff],
7489 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007490 }
dan09c68402014-10-11 20:00:24 +00007491#endif
7492
drh658873b2015-06-22 20:02:04 +00007493 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007494 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007495 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007496 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007497 return rebuildPage(pCArray, iNew, nNew, pPg);
drhfa1a98a2004-05-14 19:08:17 +00007498}
7499
danielk1977ac245ec2005-01-14 13:50:11 +00007500
drh615ae552005-01-16 23:21:00 +00007501#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007502/*
7503** This version of balance() handles the common special case where
7504** a new entry is being inserted on the extreme right-end of the
7505** tree, in other words, when the new entry will become the largest
7506** entry in the tree.
7507**
drhc314dc72009-07-21 11:52:34 +00007508** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007509** a new page to the right-hand side and put the one new entry in
7510** that page. This leaves the right side of the tree somewhat
7511** unbalanced. But odds are that we will be inserting new entries
7512** at the end soon afterwards so the nearly empty page will quickly
7513** fill up. On average.
7514**
7515** pPage is the leaf page which is the right-most page in the tree.
7516** pParent is its parent. pPage must have a single overflow entry
7517** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007518**
7519** The pSpace buffer is used to store a temporary copy of the divider
7520** cell that will be inserted into pParent. Such a cell consists of a 4
7521** byte page number followed by a variable length integer. In other
7522** words, at most 13 bytes. Hence the pSpace buffer must be at
7523** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007524*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007525static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7526 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007527 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007528 int rc; /* Return Code */
7529 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007530
drh1fee73e2007-08-29 04:00:57 +00007531 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007532 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007533 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007534
drh6301c432018-12-13 21:52:18 +00007535 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007536 assert( pPage->nFree>=0 );
7537 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007538
danielk1977a50d9aa2009-06-08 14:49:45 +00007539 /* Allocate a new page. This page will become the right-sibling of
7540 ** pPage. Make the parent page writable, so that the new divider cell
7541 ** may be inserted. If both these operations are successful, proceed.
7542 */
drh4f0c5872007-03-26 22:05:01 +00007543 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007544
danielk1977eaa06f62008-09-18 17:34:44 +00007545 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007546
7547 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007548 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007549 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007550 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007551 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007552
drhc5053fb2008-11-27 02:22:10 +00007553 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007554 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007555 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007556 b.nCell = 1;
7557 b.pRef = pPage;
7558 b.apCell = &pCell;
7559 b.szCell = &szCell;
7560 b.apEnd[0] = pPage->aDataEnd;
7561 b.ixNx[0] = 2;
7562 rc = rebuildPage(&b, 0, 1, pNew);
7563 if( NEVER(rc) ){
7564 releasePage(pNew);
7565 return rc;
7566 }
dan8e9ba0c2014-10-14 17:27:04 +00007567 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007568
7569 /* If this is an auto-vacuum database, update the pointer map
7570 ** with entries for the new page, and any pointer from the
7571 ** cell on the page to an overflow page. If either of these
7572 ** operations fails, the return code is set, but the contents
7573 ** of the parent page are still manipulated by thh code below.
7574 ** That is Ok, at this point the parent page is guaranteed to
7575 ** be marked as dirty. Returning an error code will cause a
7576 ** rollback, undoing any changes made to the parent page.
7577 */
7578 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007579 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7580 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007581 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007582 }
7583 }
danielk1977eaa06f62008-09-18 17:34:44 +00007584
danielk19776f235cc2009-06-04 14:46:08 +00007585 /* Create a divider cell to insert into pParent. The divider cell
7586 ** consists of a 4-byte page number (the page number of pPage) and
7587 ** a variable length key value (which must be the same value as the
7588 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007589 **
danielk19776f235cc2009-06-04 14:46:08 +00007590 ** To find the largest key value on pPage, first find the right-most
7591 ** cell on pPage. The first two fields of this cell are the
7592 ** record-length (a variable length integer at most 32-bits in size)
7593 ** and the key value (a variable length integer, may have any value).
7594 ** The first of the while(...) loops below skips over the record-length
7595 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007596 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007597 */
danielk1977eaa06f62008-09-18 17:34:44 +00007598 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007599 pStop = &pCell[9];
7600 while( (*(pCell++)&0x80) && pCell<pStop );
7601 pStop = &pCell[9];
7602 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7603
danielk19774dbaa892009-06-16 16:50:22 +00007604 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007605 if( rc==SQLITE_OK ){
7606 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7607 0, pPage->pgno, &rc);
7608 }
danielk19776f235cc2009-06-04 14:46:08 +00007609
7610 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007611 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7612
danielk1977e08a3c42008-09-18 18:17:03 +00007613 /* Release the reference to the new page. */
7614 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007615 }
7616
danielk1977eaa06f62008-09-18 17:34:44 +00007617 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007618}
drh615ae552005-01-16 23:21:00 +00007619#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007620
danielk19774dbaa892009-06-16 16:50:22 +00007621#if 0
drhc3b70572003-01-04 19:44:07 +00007622/*
danielk19774dbaa892009-06-16 16:50:22 +00007623** This function does not contribute anything to the operation of SQLite.
7624** it is sometimes activated temporarily while debugging code responsible
7625** for setting pointer-map entries.
7626*/
7627static int ptrmapCheckPages(MemPage **apPage, int nPage){
7628 int i, j;
7629 for(i=0; i<nPage; i++){
7630 Pgno n;
7631 u8 e;
7632 MemPage *pPage = apPage[i];
7633 BtShared *pBt = pPage->pBt;
7634 assert( pPage->isInit );
7635
7636 for(j=0; j<pPage->nCell; j++){
7637 CellInfo info;
7638 u8 *z;
7639
7640 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007641 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007642 if( info.nLocal<info.nPayload ){
7643 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007644 ptrmapGet(pBt, ovfl, &e, &n);
7645 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7646 }
7647 if( !pPage->leaf ){
7648 Pgno child = get4byte(z);
7649 ptrmapGet(pBt, child, &e, &n);
7650 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7651 }
7652 }
7653 if( !pPage->leaf ){
7654 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7655 ptrmapGet(pBt, child, &e, &n);
7656 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7657 }
7658 }
7659 return 1;
7660}
7661#endif
7662
danielk1977cd581a72009-06-23 15:43:39 +00007663/*
7664** This function is used to copy the contents of the b-tree node stored
7665** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7666** the pointer-map entries for each child page are updated so that the
7667** parent page stored in the pointer map is page pTo. If pFrom contained
7668** any cells with overflow page pointers, then the corresponding pointer
7669** map entries are also updated so that the parent page is page pTo.
7670**
7671** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007672** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007673**
danielk197730548662009-07-09 05:07:37 +00007674** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007675**
7676** The performance of this function is not critical. It is only used by
7677** the balance_shallower() and balance_deeper() procedures, neither of
7678** which are called often under normal circumstances.
7679*/
drhc314dc72009-07-21 11:52:34 +00007680static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7681 if( (*pRC)==SQLITE_OK ){
7682 BtShared * const pBt = pFrom->pBt;
7683 u8 * const aFrom = pFrom->aData;
7684 u8 * const aTo = pTo->aData;
7685 int const iFromHdr = pFrom->hdrOffset;
7686 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007687 int rc;
drhc314dc72009-07-21 11:52:34 +00007688 int iData;
7689
7690
7691 assert( pFrom->isInit );
7692 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007693 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007694
7695 /* Copy the b-tree node content from page pFrom to page pTo. */
7696 iData = get2byte(&aFrom[iFromHdr+5]);
7697 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7698 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7699
7700 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007701 ** match the new data. The initialization of pTo can actually fail under
7702 ** fairly obscure circumstances, even though it is a copy of initialized
7703 ** page pFrom.
7704 */
drhc314dc72009-07-21 11:52:34 +00007705 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007706 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00007707 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00007708 if( rc!=SQLITE_OK ){
7709 *pRC = rc;
7710 return;
7711 }
drhc314dc72009-07-21 11:52:34 +00007712
7713 /* If this is an auto-vacuum database, update the pointer-map entries
7714 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7715 */
7716 if( ISAUTOVACUUM ){
7717 *pRC = setChildPtrmaps(pTo);
7718 }
danielk1977cd581a72009-06-23 15:43:39 +00007719 }
danielk1977cd581a72009-06-23 15:43:39 +00007720}
7721
7722/*
danielk19774dbaa892009-06-16 16:50:22 +00007723** This routine redistributes cells on the iParentIdx'th child of pParent
7724** (hereafter "the page") and up to 2 siblings so that all pages have about the
7725** same amount of free space. Usually a single sibling on either side of the
7726** page are used in the balancing, though both siblings might come from one
7727** side if the page is the first or last child of its parent. If the page
7728** has fewer than 2 siblings (something which can only happen if the page
7729** is a root page or a child of a root page) then all available siblings
7730** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007731**
danielk19774dbaa892009-06-16 16:50:22 +00007732** The number of siblings of the page might be increased or decreased by
7733** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007734**
danielk19774dbaa892009-06-16 16:50:22 +00007735** Note that when this routine is called, some of the cells on the page
7736** might not actually be stored in MemPage.aData[]. This can happen
7737** if the page is overfull. This routine ensures that all cells allocated
7738** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007739**
danielk19774dbaa892009-06-16 16:50:22 +00007740** In the course of balancing the page and its siblings, cells may be
7741** inserted into or removed from the parent page (pParent). Doing so
7742** may cause the parent page to become overfull or underfull. If this
7743** happens, it is the responsibility of the caller to invoke the correct
7744** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007745**
drh5e00f6c2001-09-13 13:46:56 +00007746** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007747** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007748** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007749**
7750** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007751** buffer big enough to hold one page. If while inserting cells into the parent
7752** page (pParent) the parent page becomes overfull, this buffer is
7753** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007754** a maximum of four divider cells into the parent page, and the maximum
7755** size of a cell stored within an internal node is always less than 1/4
7756** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7757** enough for all overflow cells.
7758**
7759** If aOvflSpace is set to a null pointer, this function returns
7760** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007761*/
danielk19774dbaa892009-06-16 16:50:22 +00007762static int balance_nonroot(
7763 MemPage *pParent, /* Parent page of siblings being balanced */
7764 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007765 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007766 int isRoot, /* True if pParent is a root-page */
7767 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007768){
drh16a9b832007-05-05 18:39:25 +00007769 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007770 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007771 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007772 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007773 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007774 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007775 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007776 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007777 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007778 int usableSpace; /* Bytes in pPage beyond the header */
7779 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007780 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007781 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007782 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007783 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007784 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007785 u8 *pRight; /* Location in parent of right-sibling pointer */
7786 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007787 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7788 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007789 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007790 u8 *aSpace1; /* Space for copies of dividers cells */
7791 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007792 u8 abDone[NB+2]; /* True after i'th new page is populated */
7793 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007794 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007795 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh7d4c94b2021-10-04 22:34:38 +00007796 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007797
dan33ea4862014-10-09 19:35:37 +00007798 memset(abDone, 0, sizeof(abDone));
drh7d4c94b2021-10-04 22:34:38 +00007799 memset(&b, 0, sizeof(b));
danielk1977a50d9aa2009-06-08 14:49:45 +00007800 pBt = pParent->pBt;
7801 assert( sqlite3_mutex_held(pBt->mutex) );
7802 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007803
danielk19774dbaa892009-06-16 16:50:22 +00007804 /* At this point pParent may have at most one overflow cell. And if
7805 ** this overflow cell is present, it must be the cell with
7806 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007807 ** is called (indirectly) from sqlite3BtreeDelete().
7808 */
danielk19774dbaa892009-06-16 16:50:22 +00007809 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007810 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007811
danielk197711a8a862009-06-17 11:49:52 +00007812 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007813 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007814 }
drh68133502019-02-11 17:22:30 +00007815 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00007816
danielk1977a50d9aa2009-06-08 14:49:45 +00007817 /* Find the sibling pages to balance. Also locate the cells in pParent
7818 ** that divide the siblings. An attempt is made to find NN siblings on
7819 ** either side of pPage. More siblings are taken from one side, however,
7820 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007821 ** has NB or fewer children then all children of pParent are taken.
7822 **
7823 ** This loop also drops the divider cells from the parent page. This
7824 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007825 ** overflow cells in the parent page, since if any existed they will
7826 ** have already been removed.
7827 */
danielk19774dbaa892009-06-16 16:50:22 +00007828 i = pParent->nOverflow + pParent->nCell;
7829 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007830 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007831 }else{
dan7d6885a2012-08-08 14:04:56 +00007832 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007833 if( iParentIdx==0 ){
7834 nxDiv = 0;
7835 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007836 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007837 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007838 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007839 }
dan7d6885a2012-08-08 14:04:56 +00007840 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007841 }
dan7d6885a2012-08-08 14:04:56 +00007842 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007843 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7844 pRight = &pParent->aData[pParent->hdrOffset+8];
7845 }else{
7846 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7847 }
7848 pgno = get4byte(pRight);
7849 while( 1 ){
dan1f9f5762021-03-01 16:15:41 +00007850 if( rc==SQLITE_OK ){
7851 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7852 }
danielk19774dbaa892009-06-16 16:50:22 +00007853 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007854 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007855 goto balance_cleanup;
7856 }
drh85a379b2019-02-09 22:33:44 +00007857 if( apOld[i]->nFree<0 ){
7858 rc = btreeComputeFreeSpace(apOld[i]);
7859 if( rc ){
7860 memset(apOld, 0, (i)*sizeof(MemPage*));
7861 goto balance_cleanup;
7862 }
7863 }
danb9f8a182021-06-22 14:59:34 +00007864 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
danielk19774dbaa892009-06-16 16:50:22 +00007865 if( (i--)==0 ) break;
7866
drh9cc5b4e2016-12-26 01:41:33 +00007867 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007868 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007869 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007870 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007871 pParent->nOverflow = 0;
7872 }else{
7873 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7874 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007875 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007876
7877 /* Drop the cell from the parent page. apDiv[i] still points to
7878 ** the cell within the parent, even though it has been dropped.
7879 ** This is safe because dropping a cell only overwrites the first
7880 ** four bytes of it, and this function does not need the first
7881 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007882 ** later on.
7883 **
drh8a575d92011-10-12 17:00:28 +00007884 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007885 ** the dropCell() routine will overwrite the entire cell with zeroes.
7886 ** In this case, temporarily copy the cell into the aOvflSpace[]
7887 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7888 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007889 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007890 int iOff;
7891
dan1f9f5762021-03-01 16:15:41 +00007892 /* If the following if() condition is not true, the db is corrupted.
7893 ** The call to dropCell() below will detect this. */
drh8a575d92011-10-12 17:00:28 +00007894 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
dan1f9f5762021-03-01 16:15:41 +00007895 if( (iOff+szNew[i])<=(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007896 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7897 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7898 }
drh5b47efa2010-02-12 18:18:39 +00007899 }
drh98add2e2009-07-20 17:11:49 +00007900 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007901 }
drh8b2f49b2001-06-08 00:21:52 +00007902 }
7903
drha9121e42008-02-19 14:59:35 +00007904 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007905 ** alignment */
drha9121e42008-02-19 14:59:35 +00007906 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007907
drh8b2f49b2001-06-08 00:21:52 +00007908 /*
danielk1977634f2982005-03-28 08:44:07 +00007909 ** Allocate space for memory structures
7910 */
drhfacf0302008-06-17 15:12:00 +00007911 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007912 nMaxCells*sizeof(u8*) /* b.apCell */
7913 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007914 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007915
drhf012dc42019-03-19 15:36:46 +00007916 assert( szScratch<=7*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007917 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007918 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007919 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007920 goto balance_cleanup;
7921 }
drh1ffd2472015-06-23 02:37:30 +00007922 b.szCell = (u16*)&b.apCell[nMaxCells];
7923 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007924 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007925
7926 /*
7927 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007928 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007929 ** into space obtained from aSpace1[]. The divider cells have already
7930 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007931 **
7932 ** If the siblings are on leaf pages, then the child pointers of the
7933 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007934 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007935 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007936 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007937 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007938 **
7939 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7940 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007941 */
drh1ffd2472015-06-23 02:37:30 +00007942 b.pRef = apOld[0];
7943 leafCorrection = b.pRef->leaf*4;
7944 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007945 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007946 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007947 int limit = pOld->nCell;
7948 u8 *aData = pOld->aData;
7949 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007950 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007951 u8 *piEnd;
drhe12ca5a2019-05-02 15:56:39 +00007952 VVA_ONLY( int nCellAtStart = b.nCell; )
danielk19774dbaa892009-06-16 16:50:22 +00007953
drh73d340a2015-05-28 11:23:11 +00007954 /* Verify that all sibling pages are of the same "type" (table-leaf,
7955 ** table-interior, index-leaf, or index-interior).
7956 */
7957 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7958 rc = SQLITE_CORRUPT_BKPT;
7959 goto balance_cleanup;
7960 }
7961
drhfe647dc2015-06-23 18:24:25 +00007962 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007963 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007964 ** in the correct spot.
7965 **
7966 ** Note that when there are multiple overflow cells, it is always the
7967 ** case that they are sequential and adjacent. This invariant arises
7968 ** because multiple overflows can only occurs when inserting divider
7969 ** cells into a parent on a prior balance, and divider cells are always
7970 ** adjacent and are inserted in order. There is an assert() tagged
7971 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7972 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007973 **
7974 ** This must be done in advance. Once the balance starts, the cell
7975 ** offset section of the btree page will be overwritten and we will no
7976 ** long be able to find the cells if a pointer to each cell is not saved
7977 ** first.
7978 */
drh36b78ee2016-01-20 01:32:00 +00007979 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007980 if( pOld->nOverflow>0 ){
drh27e80a32019-08-15 13:17:49 +00007981 if( NEVER(limit<pOld->aiOvfl[0]) ){
drhe12ca5a2019-05-02 15:56:39 +00007982 rc = SQLITE_CORRUPT_BKPT;
7983 goto balance_cleanup;
7984 }
drhfe647dc2015-06-23 18:24:25 +00007985 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007986 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007987 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007988 piCell += 2;
7989 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007990 }
drhfe647dc2015-06-23 18:24:25 +00007991 for(k=0; k<pOld->nOverflow; k++){
7992 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007993 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007994 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007995 }
drh1ffd2472015-06-23 02:37:30 +00007996 }
drhfe647dc2015-06-23 18:24:25 +00007997 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7998 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007999 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00008000 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00008001 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00008002 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00008003 }
drhe12ca5a2019-05-02 15:56:39 +00008004 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
drh4edfdd32015-06-23 14:49:42 +00008005
drh1ffd2472015-06-23 02:37:30 +00008006 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00008007 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00008008 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00008009 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00008010 assert( b.nCell<nMaxCells );
8011 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00008012 pTemp = &aSpace1[iSpace1];
8013 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00008014 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00008015 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00008016 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00008017 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00008018 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00008019 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00008020 if( !pOld->leaf ){
8021 assert( leafCorrection==0 );
dan5b482a92021-04-20 13:31:51 +00008022 assert( pOld->hdrOffset==0 || CORRUPT_DB );
danielk19774dbaa892009-06-16 16:50:22 +00008023 /* The right pointer of the child page pOld becomes the left
8024 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00008025 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00008026 }else{
8027 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00008028 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00008029 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
8030 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00008031 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
8032 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00008033 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00008034 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00008035 }
8036 }
drh1ffd2472015-06-23 02:37:30 +00008037 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00008038 }
drh8b2f49b2001-06-08 00:21:52 +00008039 }
8040
8041 /*
drh1ffd2472015-06-23 02:37:30 +00008042 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00008043 ** Store this number in "k". Also compute szNew[] which is the total
8044 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00008045 ** in b.apCell[] of the cell that divides page i from page i+1.
8046 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00008047 **
drh96f5b762004-05-16 16:24:36 +00008048 ** Values computed by this block:
8049 **
8050 ** k: The total number of sibling pages
8051 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00008052 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00008053 ** the right of the i-th sibling page.
8054 ** usableSpace: Number of bytes of space available on each sibling.
8055 **
drh8b2f49b2001-06-08 00:21:52 +00008056 */
drh43605152004-05-29 21:46:49 +00008057 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00008058 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00008059 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00008060 b.apEnd[k] = p->aDataEnd;
8061 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00008062 if( k && b.ixNx[k]==b.ixNx[k-1] ){
8063 k--; /* Omit b.ixNx[] entry for child pages with no cells */
8064 }
drh26b7ec82019-02-01 14:50:43 +00008065 if( !leafData ){
8066 k++;
8067 b.apEnd[k] = pParent->aDataEnd;
8068 b.ixNx[k] = cntOld[i]+1;
8069 }
drhb0ea9432019-02-09 21:06:40 +00008070 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00008071 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00008072 for(j=0; j<p->nOverflow; j++){
8073 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
8074 }
8075 cntNew[i] = cntOld[i];
8076 }
8077 k = nOld;
8078 for(i=0; i<k; i++){
8079 int sz;
8080 while( szNew[i]>usableSpace ){
8081 if( i+1>=k ){
8082 k = i+2;
8083 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
8084 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00008085 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00008086 }
drh1ffd2472015-06-23 02:37:30 +00008087 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00008088 szNew[i] -= sz;
8089 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00008090 if( cntNew[i]<b.nCell ){
8091 sz = 2 + cachedCellSize(&b, cntNew[i]);
8092 }else{
8093 sz = 0;
8094 }
drh658873b2015-06-22 20:02:04 +00008095 }
8096 szNew[i+1] += sz;
8097 cntNew[i]--;
8098 }
drh1ffd2472015-06-23 02:37:30 +00008099 while( cntNew[i]<b.nCell ){
8100 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00008101 if( szNew[i]+sz>usableSpace ) break;
8102 szNew[i] += sz;
8103 cntNew[i]++;
8104 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00008105 if( cntNew[i]<b.nCell ){
8106 sz = 2 + cachedCellSize(&b, cntNew[i]);
8107 }else{
8108 sz = 0;
8109 }
drh658873b2015-06-22 20:02:04 +00008110 }
8111 szNew[i+1] -= sz;
8112 }
drh1ffd2472015-06-23 02:37:30 +00008113 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00008114 k = i+1;
drh672073a2015-06-24 12:07:40 +00008115 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00008116 rc = SQLITE_CORRUPT_BKPT;
8117 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00008118 }
8119 }
drh96f5b762004-05-16 16:24:36 +00008120
8121 /*
8122 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00008123 ** on the left side (siblings with smaller keys). The left siblings are
8124 ** always nearly full, while the right-most sibling might be nearly empty.
8125 ** The next block of code attempts to adjust the packing of siblings to
8126 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00008127 **
8128 ** This adjustment is more than an optimization. The packing above might
8129 ** be so out of balance as to be illegal. For example, the right-most
8130 ** sibling might be completely empty. This adjustment is not optional.
8131 */
drh6019e162001-07-02 17:51:45 +00008132 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00008133 int szRight = szNew[i]; /* Size of sibling on the right */
8134 int szLeft = szNew[i-1]; /* Size of sibling on the left */
8135 int r; /* Index of right-most cell in left sibling */
8136 int d; /* Index of first cell to the left of right sibling */
8137
8138 r = cntNew[i-1] - 1;
8139 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00008140 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00008141 do{
drh1ffd2472015-06-23 02:37:30 +00008142 assert( d<nMaxCells );
8143 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008144 (void)cachedCellSize(&b, r);
8145 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00008146 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00008147 break;
8148 }
8149 szRight += b.szCell[d] + 2;
8150 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00008151 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00008152 r--;
8153 d--;
drh672073a2015-06-24 12:07:40 +00008154 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00008155 szNew[i] = szRight;
8156 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00008157 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8158 rc = SQLITE_CORRUPT_BKPT;
8159 goto balance_cleanup;
8160 }
drh6019e162001-07-02 17:51:45 +00008161 }
drh09d0deb2005-08-02 17:13:09 +00008162
drh2a0df922014-10-30 23:14:56 +00008163 /* Sanity check: For a non-corrupt database file one of the follwing
8164 ** must be true:
8165 ** (1) We found one or more cells (cntNew[0])>0), or
8166 ** (2) pPage is a virtual root page. A virtual root page is when
8167 ** the real root page is page 1 and we are the only child of
8168 ** that page.
drh09d0deb2005-08-02 17:13:09 +00008169 */
drh2a0df922014-10-30 23:14:56 +00008170 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00008171 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8172 apOld[0]->pgno, apOld[0]->nCell,
8173 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8174 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00008175 ));
8176
drh8b2f49b2001-06-08 00:21:52 +00008177 /*
drh6b308672002-07-08 02:16:37 +00008178 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00008179 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008180 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00008181 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00008182 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00008183 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00008184 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00008185 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00008186 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00008187 nNew++;
drh41d26392021-06-20 22:17:49 +00008188 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8189 && rc==SQLITE_OK
8190 ){
drh9e673ac2021-02-01 12:39:50 +00008191 rc = SQLITE_CORRUPT_BKPT;
8192 }
danielk197728129562005-01-11 10:25:06 +00008193 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00008194 }else{
drh7aa8f852006-03-28 00:24:44 +00008195 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00008196 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00008197 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008198 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00008199 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00008200 nNew++;
drh1ffd2472015-06-23 02:37:30 +00008201 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00008202
8203 /* Set the pointer-map entry for the new sibling page. */
8204 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00008205 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008206 if( rc!=SQLITE_OK ){
8207 goto balance_cleanup;
8208 }
8209 }
drh6b308672002-07-08 02:16:37 +00008210 }
drh8b2f49b2001-06-08 00:21:52 +00008211 }
8212
8213 /*
dan33ea4862014-10-09 19:35:37 +00008214 ** Reassign page numbers so that the new pages are in ascending order.
8215 ** This helps to keep entries in the disk file in order so that a scan
8216 ** of the table is closer to a linear scan through the file. That in turn
8217 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00008218 **
dan33ea4862014-10-09 19:35:37 +00008219 ** An O(n^2) insertion sort algorithm is used, but since n is never more
8220 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00008221 **
dan33ea4862014-10-09 19:35:37 +00008222 ** When NB==3, this one optimization makes the database about 25% faster
8223 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00008224 */
dan33ea4862014-10-09 19:35:37 +00008225 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00008226 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00008227 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00008228 for(j=0; j<i; j++){
drh8ab79d62021-02-04 13:52:34 +00008229 if( NEVER(aPgno[j]==aPgno[i]) ){
dan89ca0b32014-10-25 20:36:28 +00008230 /* This branch is taken if the set of sibling pages somehow contains
8231 ** duplicate entries. This can happen if the database is corrupt.
8232 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00008233 ** we do the detection here in order to avoid populating the pager
8234 ** cache with two separate objects associated with the same
8235 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00008236 assert( CORRUPT_DB );
8237 rc = SQLITE_CORRUPT_BKPT;
8238 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00008239 }
8240 }
dan33ea4862014-10-09 19:35:37 +00008241 }
8242 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00008243 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00008244 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00008245 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00008246 }
drh00fe08a2014-10-31 00:05:23 +00008247 pgno = aPgOrder[iBest];
8248 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00008249 if( iBest!=i ){
8250 if( iBest>i ){
8251 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
8252 }
8253 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8254 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00008255 }
8256 }
dan33ea4862014-10-09 19:35:37 +00008257
8258 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8259 "%d(%d nc=%d) %d(%d nc=%d)\n",
8260 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00008261 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00008262 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008263 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00008264 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008265 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00008266 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8267 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8268 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8269 ));
danielk19774dbaa892009-06-16 16:50:22 +00008270
8271 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh55f66b32019-07-16 19:44:32 +00008272 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8273 assert( apNew[nNew-1]!=0 );
danielk19774dbaa892009-06-16 16:50:22 +00008274 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00008275
dan33ea4862014-10-09 19:35:37 +00008276 /* If the sibling pages are not leaves, ensure that the right-child pointer
8277 ** of the right-most new sibling page is set to the value that was
8278 ** originally in the same field of the right-most old sibling page. */
8279 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8280 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8281 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8282 }
danielk1977ac11ee62005-01-15 12:45:51 +00008283
dan33ea4862014-10-09 19:35:37 +00008284 /* Make any required updates to pointer map entries associated with
8285 ** cells stored on sibling pages following the balance operation. Pointer
8286 ** map entries associated with divider cells are set by the insertCell()
8287 ** routine. The associated pointer map entries are:
8288 **
8289 ** a) if the cell contains a reference to an overflow chain, the
8290 ** entry associated with the first page in the overflow chain, and
8291 **
8292 ** b) if the sibling pages are not leaves, the child page associated
8293 ** with the cell.
8294 **
8295 ** If the sibling pages are not leaves, then the pointer map entry
8296 ** associated with the right-child of each sibling may also need to be
8297 ** updated. This happens below, after the sibling pages have been
8298 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00008299 */
dan33ea4862014-10-09 19:35:37 +00008300 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00008301 MemPage *pOld;
8302 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00008303 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00008304 int iNew = 0;
8305 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00008306
drh1ffd2472015-06-23 02:37:30 +00008307 for(i=0; i<b.nCell; i++){
8308 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00008309 while( i==cntOldNext ){
8310 iOld++;
8311 assert( iOld<nNew || iOld<nOld );
drhdd2d9a32019-05-07 17:47:43 +00008312 assert( iOld>=0 && iOld<NB );
drh9c7e44c2019-02-14 15:27:12 +00008313 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00008314 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
drh4b70f112004-05-02 21:12:19 +00008315 }
dan33ea4862014-10-09 19:35:37 +00008316 if( i==cntNew[iNew] ){
8317 pNew = apNew[++iNew];
8318 if( !leafData ) continue;
8319 }
danielk197785d90ca2008-07-19 14:25:15 +00008320
dan33ea4862014-10-09 19:35:37 +00008321 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00008322 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00008323 ** or else the divider cell to the left of sibling page iOld. So,
8324 ** if sibling page iOld had the same page number as pNew, and if
8325 ** pCell really was a part of sibling page iOld (not a divider or
8326 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008327 if( iOld>=nNew
8328 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008329 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008330 ){
dan33ea4862014-10-09 19:35:37 +00008331 if( !leafCorrection ){
8332 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8333 }
drh1ffd2472015-06-23 02:37:30 +00008334 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008335 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00008336 }
drhea82b372015-06-23 21:35:28 +00008337 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00008338 }
drh14acc042001-06-10 19:56:58 +00008339 }
8340 }
dan33ea4862014-10-09 19:35:37 +00008341
8342 /* Insert new divider cells into pParent. */
8343 for(i=0; i<nNew-1; i++){
8344 u8 *pCell;
8345 u8 *pTemp;
8346 int sz;
drhc3c23f32021-05-06 11:02:55 +00008347 u8 *pSrcEnd;
dan33ea4862014-10-09 19:35:37 +00008348 MemPage *pNew = apNew[i];
8349 j = cntNew[i];
8350
8351 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008352 assert( b.apCell[j]!=0 );
8353 pCell = b.apCell[j];
8354 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008355 pTemp = &aOvflSpace[iOvflSpace];
8356 if( !pNew->leaf ){
8357 memcpy(&pNew->aData[8], pCell, 4);
8358 }else if( leafData ){
8359 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008360 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008361 ** cell consists of the integer key for the right-most cell of
8362 ** the sibling-page assembled above only.
8363 */
8364 CellInfo info;
8365 j--;
drh1ffd2472015-06-23 02:37:30 +00008366 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008367 pCell = pTemp;
8368 sz = 4 + putVarint(&pCell[4], info.nKey);
8369 pTemp = 0;
8370 }else{
8371 pCell -= 4;
8372 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8373 ** previously stored on a leaf node, and its reported size was 4
8374 ** bytes, then it may actually be smaller than this
8375 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8376 ** any cell). But it is important to pass the correct size to
8377 ** insertCell(), so reparse the cell now.
8378 **
drhc1fb2b82016-03-09 03:29:27 +00008379 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8380 ** and WITHOUT ROWID tables with exactly one column which is the
8381 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008382 */
drh1ffd2472015-06-23 02:37:30 +00008383 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008384 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008385 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008386 }
8387 }
8388 iOvflSpace += sz;
8389 assert( sz<=pBt->maxLocal+23 );
8390 assert( iOvflSpace <= (int)pBt->pageSize );
drhc3c23f32021-05-06 11:02:55 +00008391 for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
8392 pSrcEnd = b.apEnd[k];
8393 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8394 rc = SQLITE_CORRUPT_BKPT;
8395 goto balance_cleanup;
8396 }
dan33ea4862014-10-09 19:35:37 +00008397 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
drhd2cfbea2019-05-08 03:34:53 +00008398 if( rc!=SQLITE_OK ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008399 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8400 }
8401
8402 /* Now update the actual sibling pages. The order in which they are updated
8403 ** is important, as this code needs to avoid disrupting any page from which
8404 ** cells may still to be read. In practice, this means:
8405 **
drhd836d422014-10-31 14:26:36 +00008406 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8407 ** then it is not safe to update page apNew[iPg] until after
8408 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008409 **
drhd836d422014-10-31 14:26:36 +00008410 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8411 ** then it is not safe to update page apNew[iPg] until after
8412 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008413 **
8414 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008415 **
8416 ** The iPg value in the following loop starts at nNew-1 goes down
8417 ** to 0, then back up to nNew-1 again, thus making two passes over
8418 ** the pages. On the initial downward pass, only condition (1) above
8419 ** needs to be tested because (2) will always be true from the previous
8420 ** step. On the upward pass, both conditions are always true, so the
8421 ** upwards pass simply processes pages that were missed on the downward
8422 ** pass.
dan33ea4862014-10-09 19:35:37 +00008423 */
drhbec021b2014-10-31 12:22:00 +00008424 for(i=1-nNew; i<nNew; i++){
8425 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008426 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008427 if( abDone[iPg] ) continue; /* Skip pages already processed */
8428 if( i>=0 /* On the upwards pass, or... */
8429 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008430 ){
dan09c68402014-10-11 20:00:24 +00008431 int iNew;
8432 int iOld;
8433 int nNewCell;
8434
drhd836d422014-10-31 14:26:36 +00008435 /* Verify condition (1): If cells are moving left, update iPg
8436 ** only after iPg-1 has already been updated. */
8437 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8438
8439 /* Verify condition (2): If cells are moving right, update iPg
8440 ** only after iPg+1 has already been updated. */
8441 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8442
dan09c68402014-10-11 20:00:24 +00008443 if( iPg==0 ){
8444 iNew = iOld = 0;
8445 nNewCell = cntNew[0];
8446 }else{
drh1ffd2472015-06-23 02:37:30 +00008447 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008448 iNew = cntNew[iPg-1] + !leafData;
8449 nNewCell = cntNew[iPg] - iNew;
8450 }
8451
drh1ffd2472015-06-23 02:37:30 +00008452 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008453 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008454 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008455 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008456 assert( apNew[iPg]->nOverflow==0 );
8457 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008458 }
8459 }
drhd836d422014-10-31 14:26:36 +00008460
8461 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008462 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8463
drh7aa8f852006-03-28 00:24:44 +00008464 assert( nOld>0 );
8465 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008466
danielk197713bd99f2009-06-24 05:40:34 +00008467 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8468 /* The root page of the b-tree now contains no cells. The only sibling
8469 ** page is the right-child of the parent. Copy the contents of the
8470 ** child page into the parent, decreasing the overall height of the
8471 ** b-tree structure by one. This is described as the "balance-shallower"
8472 ** sub-algorithm in some documentation.
8473 **
8474 ** If this is an auto-vacuum database, the call to copyNodeContent()
8475 ** sets all pointer-map entries corresponding to database image pages
8476 ** for which the pointer is stored within the content being copied.
8477 **
drh768f2902014-10-31 02:51:41 +00008478 ** It is critical that the child page be defragmented before being
8479 ** copied into the parent, because if the parent is page 1 then it will
8480 ** by smaller than the child due to the database header, and so all the
8481 ** free space needs to be up front.
8482 */
drh9b5351d2015-09-30 14:19:08 +00008483 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008484 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008485 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00008486 assert( apNew[0]->nFree ==
drh1c960262019-03-25 18:44:08 +00008487 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8488 - apNew[0]->nCell*2)
drh768f2902014-10-31 02:51:41 +00008489 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00008490 );
drhc314dc72009-07-21 11:52:34 +00008491 copyNodeContent(apNew[0], pParent, &rc);
8492 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00008493 }else if( ISAUTOVACUUM && !leafCorrection ){
8494 /* Fix the pointer map entries associated with the right-child of each
8495 ** sibling page. All other pointer map entries have already been taken
8496 ** care of. */
8497 for(i=0; i<nNew; i++){
8498 u32 key = get4byte(&apNew[i]->aData[8]);
8499 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008500 }
dan33ea4862014-10-09 19:35:37 +00008501 }
danielk19774dbaa892009-06-16 16:50:22 +00008502
dan33ea4862014-10-09 19:35:37 +00008503 assert( pParent->isInit );
8504 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008505 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008506
dan33ea4862014-10-09 19:35:37 +00008507 /* Free any old pages that were not reused as new pages.
8508 */
8509 for(i=nNew; i<nOld; i++){
8510 freePage(apOld[i], &rc);
8511 }
danielk19774dbaa892009-06-16 16:50:22 +00008512
8513#if 0
dan33ea4862014-10-09 19:35:37 +00008514 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008515 /* The ptrmapCheckPages() contains assert() statements that verify that
8516 ** all pointer map pages are set correctly. This is helpful while
8517 ** debugging. This is usually disabled because a corrupt database may
8518 ** cause an assert() statement to fail. */
8519 ptrmapCheckPages(apNew, nNew);
8520 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008521 }
dan33ea4862014-10-09 19:35:37 +00008522#endif
danielk1977cd581a72009-06-23 15:43:39 +00008523
drh8b2f49b2001-06-08 00:21:52 +00008524 /*
drh14acc042001-06-10 19:56:58 +00008525 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008526 */
drh14acc042001-06-10 19:56:58 +00008527balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008528 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008529 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008530 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008531 }
drh14acc042001-06-10 19:56:58 +00008532 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008533 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008534 }
danielk1977eaa06f62008-09-18 17:34:44 +00008535
drh8b2f49b2001-06-08 00:21:52 +00008536 return rc;
8537}
8538
drh43605152004-05-29 21:46:49 +00008539
8540/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008541** This function is called when the root page of a b-tree structure is
8542** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008543**
danielk1977a50d9aa2009-06-08 14:49:45 +00008544** A new child page is allocated and the contents of the current root
8545** page, including overflow cells, are copied into the child. The root
8546** page is then overwritten to make it an empty page with the right-child
8547** pointer pointing to the new page.
8548**
8549** Before returning, all pointer-map entries corresponding to pages
8550** that the new child-page now contains pointers to are updated. The
8551** entry corresponding to the new right-child pointer of the root
8552** page is also updated.
8553**
8554** If successful, *ppChild is set to contain a reference to the child
8555** page and SQLITE_OK is returned. In this case the caller is required
8556** to call releasePage() on *ppChild exactly once. If an error occurs,
8557** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008558*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008559static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8560 int rc; /* Return value from subprocedures */
8561 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008562 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008563 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008564
danielk1977a50d9aa2009-06-08 14:49:45 +00008565 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008566 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008567
danielk1977a50d9aa2009-06-08 14:49:45 +00008568 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8569 ** page that will become the new right-child of pPage. Copy the contents
8570 ** of the node stored on pRoot into the new child page.
8571 */
drh98add2e2009-07-20 17:11:49 +00008572 rc = sqlite3PagerWrite(pRoot->pDbPage);
8573 if( rc==SQLITE_OK ){
8574 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008575 copyNodeContent(pRoot, pChild, &rc);
8576 if( ISAUTOVACUUM ){
8577 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008578 }
8579 }
8580 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008581 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008582 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008583 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008584 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008585 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8586 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drh12fe9a02019-02-19 16:42:54 +00008587 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00008588
danielk1977a50d9aa2009-06-08 14:49:45 +00008589 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8590
8591 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008592 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8593 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8594 memcpy(pChild->apOvfl, pRoot->apOvfl,
8595 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008596 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008597
8598 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8599 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8600 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8601
8602 *ppChild = pChild;
8603 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008604}
8605
8606/*
drha2d50282019-12-23 18:02:15 +00008607** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8608** on the same B-tree as pCur.
8609**
drh87463962021-10-05 22:51:26 +00008610** This can occur if a database is corrupt with two or more SQL tables
drha2d50282019-12-23 18:02:15 +00008611** pointing to the same b-tree. If an insert occurs on one SQL table
8612** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8613** table linked to the same b-tree. If the secondary insert causes a
8614** rebalance, that can change content out from under the cursor on the
8615** first SQL table, violating invariants on the first insert.
8616*/
8617static int anotherValidCursor(BtCursor *pCur){
8618 BtCursor *pOther;
8619 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8620 if( pOther!=pCur
8621 && pOther->eState==CURSOR_VALID
8622 && pOther->pPage==pCur->pPage
8623 ){
8624 return SQLITE_CORRUPT_BKPT;
8625 }
8626 }
8627 return SQLITE_OK;
8628}
8629
8630/*
danielk197771d5d2c2008-09-29 11:49:47 +00008631** The page that pCur currently points to has just been modified in
8632** some way. This function figures out if this modification means the
8633** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008634** routine. Balancing routines are:
8635**
8636** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008637** balance_deeper()
8638** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008639*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008640static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008641 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008642 const int nMin = pCur->pBt->usableSize * 2 / 3;
8643 u8 aBalanceQuickSpace[13];
8644 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008645
drhcc5f8a42016-02-06 22:32:06 +00008646 VVA_ONLY( int balance_quick_called = 0 );
8647 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008648
8649 do {
dan01fd42b2019-07-13 09:55:33 +00008650 int iPage;
drh352a35a2017-08-15 03:46:47 +00008651 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008652
drha941ff72019-02-12 00:58:10 +00008653 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
dan01fd42b2019-07-13 09:55:33 +00008654 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8655 break;
8656 }else if( (iPage = pCur->iPage)==0 ){
drha2d50282019-12-23 18:02:15 +00008657 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008658 /* The root page of the b-tree is overfull. In this case call the
8659 ** balance_deeper() function to create a new child for the root-page
8660 ** and copy the current contents of the root-page to it. The
8661 ** next iteration of the do-loop will balance the child page.
8662 */
drhcc5f8a42016-02-06 22:32:06 +00008663 assert( balance_deeper_called==0 );
8664 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008665 rc = balance_deeper(pPage, &pCur->apPage[1]);
8666 if( rc==SQLITE_OK ){
8667 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008668 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008669 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008670 pCur->apPage[0] = pPage;
8671 pCur->pPage = pCur->apPage[1];
8672 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008673 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008674 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008675 break;
8676 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008677 }else{
8678 MemPage * const pParent = pCur->apPage[iPage-1];
8679 int const iIdx = pCur->aiIdx[iPage-1];
8680
8681 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00008682 if( rc==SQLITE_OK && pParent->nFree<0 ){
8683 rc = btreeComputeFreeSpace(pParent);
8684 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008685 if( rc==SQLITE_OK ){
8686#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008687 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008688 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008689 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008690 && pParent->pgno!=1
8691 && pParent->nCell==iIdx
8692 ){
8693 /* Call balance_quick() to create a new sibling of pPage on which
8694 ** to store the overflow cell. balance_quick() inserts a new cell
8695 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008696 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008697 ** use either balance_nonroot() or balance_deeper(). Until this
8698 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8699 ** buffer.
8700 **
8701 ** The purpose of the following assert() is to check that only a
8702 ** single call to balance_quick() is made for each call to this
8703 ** function. If this were not verified, a subtle bug involving reuse
8704 ** of the aBalanceQuickSpace[] might sneak in.
8705 */
drhcc5f8a42016-02-06 22:32:06 +00008706 assert( balance_quick_called==0 );
8707 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008708 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8709 }else
8710#endif
8711 {
8712 /* In this case, call balance_nonroot() to redistribute cells
8713 ** between pPage and up to 2 of its sibling pages. This involves
8714 ** modifying the contents of pParent, which may cause pParent to
8715 ** become overfull or underfull. The next iteration of the do-loop
8716 ** will balance the parent page to correct this.
8717 **
8718 ** If the parent page becomes overfull, the overflow cell or cells
8719 ** are stored in the pSpace buffer allocated immediately below.
8720 ** A subsequent iteration of the do-loop will deal with this by
8721 ** calling balance_nonroot() (balance_deeper() may be called first,
8722 ** but it doesn't deal with overflow cells - just moves them to a
8723 ** different page). Once this subsequent call to balance_nonroot()
8724 ** has completed, it is safe to release the pSpace buffer used by
8725 ** the previous call, as the overflow cell data will have been
8726 ** copied either into the body of a database page or into the new
8727 ** pSpace buffer passed to the latter call to balance_nonroot().
8728 */
8729 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008730 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8731 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008732 if( pFree ){
8733 /* If pFree is not NULL, it points to the pSpace buffer used
8734 ** by a previous call to balance_nonroot(). Its contents are
8735 ** now stored either on real database pages or within the
8736 ** new pSpace buffer, so it may be safely freed here. */
8737 sqlite3PageFree(pFree);
8738 }
8739
danielk19774dbaa892009-06-16 16:50:22 +00008740 /* The pSpace buffer will be freed after the next call to
8741 ** balance_nonroot(), or just before this function returns, whichever
8742 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008743 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008744 }
8745 }
8746
8747 pPage->nOverflow = 0;
8748
8749 /* The next iteration of the do-loop balances the parent page. */
8750 releasePage(pPage);
8751 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008752 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008753 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008754 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008755 }while( rc==SQLITE_OK );
8756
8757 if( pFree ){
8758 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008759 }
8760 return rc;
8761}
8762
drh3de5d162018-05-03 03:59:02 +00008763/* Overwrite content from pX into pDest. Only do the write if the
8764** content is different from what is already there.
8765*/
8766static int btreeOverwriteContent(
8767 MemPage *pPage, /* MemPage on which writing will occur */
8768 u8 *pDest, /* Pointer to the place to start writing */
8769 const BtreePayload *pX, /* Source of data to write */
8770 int iOffset, /* Offset of first byte to write */
8771 int iAmt /* Number of bytes to be written */
8772){
8773 int nData = pX->nData - iOffset;
8774 if( nData<=0 ){
8775 /* Overwritting with zeros */
8776 int i;
8777 for(i=0; i<iAmt && pDest[i]==0; i++){}
8778 if( i<iAmt ){
8779 int rc = sqlite3PagerWrite(pPage->pDbPage);
8780 if( rc ) return rc;
8781 memset(pDest + i, 0, iAmt - i);
8782 }
8783 }else{
8784 if( nData<iAmt ){
8785 /* Mixed read data and zeros at the end. Make a recursive call
8786 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008787 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8788 iAmt-nData);
8789 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008790 iAmt = nData;
8791 }
8792 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8793 int rc = sqlite3PagerWrite(pPage->pDbPage);
8794 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00008795 /* In a corrupt database, it is possible for the source and destination
8796 ** buffers to overlap. This is harmless since the database is already
8797 ** corrupt but it does cause valgrind and ASAN warnings. So use
8798 ** memmove(). */
8799 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00008800 }
8801 }
8802 return SQLITE_OK;
8803}
8804
8805/*
8806** Overwrite the cell that cursor pCur is pointing to with fresh content
8807** contained in pX.
8808*/
8809static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8810 int iOffset; /* Next byte of pX->pData to write */
8811 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8812 int rc; /* Return code */
8813 MemPage *pPage = pCur->pPage; /* Page being written */
8814 BtShared *pBt; /* Btree */
8815 Pgno ovflPgno; /* Next overflow page to write */
8816 u32 ovflPageSize; /* Size to write on overflow page */
8817
drh27e80a32019-08-15 13:17:49 +00008818 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8819 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8820 ){
drh4f84e9c2018-05-03 13:56:23 +00008821 return SQLITE_CORRUPT_BKPT;
8822 }
drh3de5d162018-05-03 03:59:02 +00008823 /* Overwrite the local portion first */
8824 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8825 0, pCur->info.nLocal);
8826 if( rc ) return rc;
8827 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8828
8829 /* Now overwrite the overflow pages */
8830 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008831 assert( nTotal>=0 );
8832 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008833 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8834 pBt = pPage->pBt;
8835 ovflPageSize = pBt->usableSize - 4;
8836 do{
8837 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8838 if( rc ) return rc;
drhf9241a52021-11-11 16:26:46 +00008839 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
drhd5aa9262018-05-03 16:56:06 +00008840 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008841 }else{
drh30f7a252018-05-07 11:29:59 +00008842 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008843 ovflPgno = get4byte(pPage->aData);
8844 }else{
8845 ovflPageSize = nTotal - iOffset;
8846 }
8847 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8848 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008849 }
drhd5aa9262018-05-03 16:56:06 +00008850 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008851 if( rc ) return rc;
8852 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008853 }while( iOffset<nTotal );
8854 return SQLITE_OK;
8855}
8856
drhf74b8d92002-09-01 23:20:45 +00008857
8858/*
drh8eeb4462016-05-21 20:03:42 +00008859** Insert a new record into the BTree. The content of the new record
8860** is described by the pX object. The pCur cursor is used only to
8861** define what table the record should be inserted into, and is left
8862** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008863**
drh8eeb4462016-05-21 20:03:42 +00008864** For a table btree (used for rowid tables), only the pX.nKey value of
8865** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8866** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8867** hold the content of the row.
8868**
8869** For an index btree (used for indexes and WITHOUT ROWID tables), the
8870** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8871** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008872**
8873** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008874** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8875** been performed. In other words, if seekResult!=0 then the cursor
8876** is currently pointing to a cell that will be adjacent to the cell
8877** to be inserted. If seekResult<0 then pCur points to a cell that is
8878** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8879** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008880**
drheaf6ae22016-11-09 20:14:34 +00008881** If seekResult==0, that means pCur is pointing at some unknown location.
8882** In that case, this routine must seek the cursor to the correct insertion
8883** point for (pKey,nKey) before doing the insertion. For index btrees,
8884** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8885** key values and pX->aMem can be used instead of pX->pKey to avoid having
8886** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008887*/
drh3aac2dd2004-04-26 14:10:20 +00008888int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008889 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008890 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008891 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008892 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008893){
drh3b7511c2001-05-26 13:15:44 +00008894 int rc;
drh3e9ca092009-09-08 01:14:48 +00008895 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008896 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008897 int idx;
drh3b7511c2001-05-26 13:15:44 +00008898 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008899 Btree *p = pCur->pBtree;
8900 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008901 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008902 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008903
dancd1b2d02020-12-09 20:33:51 +00008904 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
dan7aae7352020-12-10 18:06:24 +00008905 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
danf91c1312017-01-10 20:04:38 +00008906
danf5ea93b2021-04-08 19:39:00 +00008907 if( pCur->eState==CURSOR_FAULT ){
8908 assert( pCur->skipNext!=SQLITE_OK );
8909 return pCur->skipNext;
drh98add2e2009-07-20 17:11:49 +00008910 }
8911
dan7a2347e2016-01-07 16:43:54 +00008912 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008913 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8914 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008915 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008916 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8917
danielk197731d31b82009-07-13 13:18:07 +00008918 /* Assert that the caller has been consistent. If this cursor was opened
8919 ** expecting an index b-tree, then the caller should be inserting blob
8920 ** keys with no associated data. If the cursor was opened expecting an
8921 ** intkey table, the caller should be inserting integer keys with a
8922 ** blob of associated data. */
dan855aed12020-12-11 19:01:24 +00008923 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008924
danielk19779c3acf32009-05-02 07:36:49 +00008925 /* Save the positions of any other cursors open on this table.
8926 **
danielk19773509a652009-07-06 18:56:13 +00008927 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008928 ** example, when inserting data into a table with auto-generated integer
8929 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8930 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008931 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008932 ** that the cursor is already where it needs to be and returns without
8933 ** doing any work. To avoid thwarting these optimizations, it is important
8934 ** not to clear the cursor here.
8935 */
drh27fb7462015-06-30 02:47:36 +00008936 if( pCur->curFlags & BTCF_Multiple ){
8937 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8938 if( rc ) return rc;
danf5ea93b2021-04-08 19:39:00 +00008939 if( loc && pCur->iPage<0 ){
8940 /* This can only happen if the schema is corrupt such that there is more
8941 ** than one table or index with the same root page as used by the cursor.
8942 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
8943 ** the schema was loaded. This cannot be asserted though, as a user might
8944 ** set the flag, load the schema, and then unset the flag. */
8945 return SQLITE_CORRUPT_BKPT;
8946 }
drhd60f4f42012-03-23 14:23:52 +00008947 }
8948
danielk197771d5d2c2008-09-29 11:49:47 +00008949 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008950 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008951 /* If this is an insert into a table b-tree, invalidate any incrblob
8952 ** cursors open on the row being replaced */
drh49bb56e2021-05-14 20:01:36 +00008953 if( p->hasIncrblobCur ){
8954 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8955 }
drhe0670b62014-02-12 21:31:12 +00008956
danf91c1312017-01-10 20:04:38 +00008957 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008958 ** to a row with the same key as the new entry being inserted.
8959 */
8960#ifdef SQLITE_DEBUG
8961 if( flags & BTREE_SAVEPOSITION ){
8962 assert( pCur->curFlags & BTCF_ValidNKey );
8963 assert( pX->nKey==pCur->info.nKey );
drhd720d392018-05-07 17:27:04 +00008964 assert( loc==0 );
8965 }
8966#endif
danf91c1312017-01-10 20:04:38 +00008967
drhd720d392018-05-07 17:27:04 +00008968 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8969 ** that the cursor is not pointing to a row to be overwritten.
8970 ** So do a complete check.
8971 */
drh7a1c28d2016-11-10 20:42:08 +00008972 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008973 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008974 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008975 assert( pX->nData>=0 && pX->nZero>=0 );
8976 if( pCur->info.nSize!=0
8977 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8978 ){
drhd720d392018-05-07 17:27:04 +00008979 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008980 return btreeOverwriteCell(pCur, pX);
8981 }
drhd720d392018-05-07 17:27:04 +00008982 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008983 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008984 /* The cursor is *not* pointing to the cell to be overwritten, nor
8985 ** to an adjacent cell. Move the cursor so that it is pointing either
8986 ** to the cell to be overwritten or an adjacent cell.
8987 */
drh42a410d2021-06-19 18:32:20 +00008988 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
8989 (flags & BTREE_APPEND)!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008990 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008991 }
drhd720d392018-05-07 17:27:04 +00008992 }else{
8993 /* This is an index or a WITHOUT ROWID table */
8994
8995 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8996 ** to a row with the same key as the new entry being inserted.
8997 */
8998 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8999
9000 /* If the cursor is not already pointing either to the cell to be
9001 ** overwritten, or if a new cell is being inserted, if the cursor is
9002 ** not pointing to an immediately adjacent cell, then move the cursor
9003 ** so that it does.
9004 */
9005 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
9006 if( pX->nMem ){
9007 UnpackedRecord r;
9008 r.pKeyInfo = pCur->pKeyInfo;
9009 r.aMem = pX->aMem;
9010 r.nField = pX->nMem;
9011 r.default_rc = 0;
drhd720d392018-05-07 17:27:04 +00009012 r.eqSeen = 0;
drh42a410d2021-06-19 18:32:20 +00009013 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
drhd720d392018-05-07 17:27:04 +00009014 }else{
drh42a410d2021-06-19 18:32:20 +00009015 rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
9016 (flags & BTREE_APPEND)!=0, &loc);
drhd720d392018-05-07 17:27:04 +00009017 }
9018 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00009019 }
drh89ee2292018-05-07 18:41:19 +00009020
9021 /* If the cursor is currently pointing to an entry to be overwritten
9022 ** and the new content is the same as as the old, then use the
9023 ** overwrite optimization.
9024 */
9025 if( loc==0 ){
9026 getCellInfo(pCur);
9027 if( pCur->info.nKey==pX->nKey ){
9028 BtreePayload x2;
9029 x2.pData = pX->pKey;
9030 x2.nData = pX->nKey;
9031 x2.nZero = 0;
9032 return btreeOverwriteCell(pCur, &x2);
9033 }
9034 }
danielk1977da184232006-01-05 11:34:32 +00009035 }
drh0e5ce802019-12-20 12:33:17 +00009036 assert( pCur->eState==CURSOR_VALID
9037 || (pCur->eState==CURSOR_INVALID && loc)
9038 || CORRUPT_DB );
danielk1977da184232006-01-05 11:34:32 +00009039
drh352a35a2017-08-15 03:46:47 +00009040 pPage = pCur->pPage;
dancd1b2d02020-12-09 20:33:51 +00009041 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
drh44845222008-07-17 18:39:57 +00009042 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00009043 if( pPage->nFree<0 ){
drh21c7ccb2021-04-10 20:21:28 +00009044 if( NEVER(pCur->eState>CURSOR_INVALID) ){
drha1085f02020-07-11 16:42:28 +00009045 rc = SQLITE_CORRUPT_BKPT;
9046 }else{
9047 rc = btreeComputeFreeSpace(pPage);
9048 }
drhb0ea9432019-02-09 21:06:40 +00009049 if( rc ) return rc;
9050 }
danielk19778f880a82009-07-13 09:41:45 +00009051
drh3a4c1412004-05-09 20:40:11 +00009052 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00009053 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00009054 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00009055 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00009056 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009057 assert( newCell!=0 );
dancd1b2d02020-12-09 20:33:51 +00009058 if( flags & BTREE_PREFORMAT ){
dancd1b2d02020-12-09 20:33:51 +00009059 rc = SQLITE_OK;
dan7aae7352020-12-10 18:06:24 +00009060 szNew = pBt->nPreformatSize;
9061 if( szNew<4 ) szNew = 4;
9062 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
9063 CellInfo info;
9064 pPage->xParseCell(pPage, newCell, &info);
dan9257ddb2020-12-10 19:54:13 +00009065 if( info.nPayload!=info.nLocal ){
dan7aae7352020-12-10 18:06:24 +00009066 Pgno ovfl = get4byte(&newCell[szNew-4]);
9067 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
9068 }
9069 }
dancd1b2d02020-12-09 20:33:51 +00009070 }else{
9071 rc = fillInCell(pPage, newCell, pX, &szNew);
dancd1b2d02020-12-09 20:33:51 +00009072 }
dan7aae7352020-12-10 18:06:24 +00009073 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00009074 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00009075 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00009076 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00009077 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00009078 CellInfo info;
drh635480e2021-10-08 16:15:17 +00009079 assert( idx>=0 );
9080 if( idx>=pPage->nCell ){
9081 return SQLITE_CORRUPT_BKPT;
9082 }
danielk19776e465eb2007-08-21 13:11:00 +00009083 rc = sqlite3PagerWrite(pPage->pDbPage);
9084 if( rc ){
9085 goto end_insert;
9086 }
danielk197771d5d2c2008-09-29 11:49:47 +00009087 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00009088 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00009089 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00009090 }
drh86c779f2021-05-15 13:08:44 +00009091 BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
drh554a19d2019-08-12 18:26:46 +00009092 testcase( pCur->curFlags & BTCF_ValidOvfl );
9093 invalidateOverflowCache(pCur);
danca66f6c2017-06-08 11:14:08 +00009094 if( info.nSize==szNew && info.nLocal==info.nPayload
9095 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
9096 ){
drhf9238252016-12-09 18:09:42 +00009097 /* Overwrite the old cell with the new if they are the same size.
9098 ** We could also try to do this if the old cell is smaller, then add
9099 ** the leftover space to the free list. But experiments show that
9100 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00009101 ** calling dropCell() and insertCell().
9102 **
9103 ** This optimization cannot be used on an autovacuum database if the
9104 ** new entry uses overflow pages, as the insertCell() call below is
9105 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00009106 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh93788182019-07-22 23:24:01 +00009107 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
9108 return SQLITE_CORRUPT_BKPT;
9109 }
9110 if( oldCell+szNew > pPage->aDataEnd ){
9111 return SQLITE_CORRUPT_BKPT;
9112 }
drh80159da2016-12-09 17:32:51 +00009113 memcpy(oldCell, newCell, szNew);
9114 return SQLITE_OK;
9115 }
9116 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00009117 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00009118 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00009119 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00009120 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00009121 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00009122 }else{
drh4b70f112004-05-02 21:12:19 +00009123 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00009124 }
drh98add2e2009-07-20 17:11:49 +00009125 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00009126 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00009127 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00009128
mistachkin48864df2013-03-21 21:20:32 +00009129 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00009130 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00009131 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00009132 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00009133 **
danielk1977a50d9aa2009-06-08 14:49:45 +00009134 ** Previous versions of SQLite called moveToRoot() to move the cursor
9135 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00009136 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9137 ** set the cursor state to "invalid". This makes common insert operations
9138 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00009139 **
danielk1977a50d9aa2009-06-08 14:49:45 +00009140 ** There is a subtle but important optimization here too. When inserting
9141 ** multiple records into an intkey b-tree using a single cursor (as can
9142 ** happen while processing an "INSERT INTO ... SELECT" statement), it
9143 ** is advantageous to leave the cursor pointing to the last entry in
9144 ** the b-tree if possible. If the cursor is left pointing to the last
9145 ** entry in the table, and the next row inserted has an integer key
9146 ** larger than the largest existing key, it is possible to insert the
9147 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00009148 */
danielk1977a50d9aa2009-06-08 14:49:45 +00009149 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00009150 if( pPage->nOverflow ){
9151 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00009152 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00009153 rc = balance(pCur);
9154
9155 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00009156 ** fails. Internal data structure corruption will result otherwise.
9157 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9158 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00009159 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00009160 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00009161 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00009162 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00009163 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00009164 assert( pCur->pKey==0 );
9165 pCur->pKey = sqlite3Malloc( pX->nKey );
9166 if( pCur->pKey==0 ){
9167 rc = SQLITE_NOMEM;
9168 }else{
9169 memcpy(pCur->pKey, pX->pKey, pX->nKey);
9170 }
9171 }
9172 pCur->eState = CURSOR_REQUIRESEEK;
9173 pCur->nKey = pX->nKey;
9174 }
danielk19773f632d52009-05-02 10:03:09 +00009175 }
drh352a35a2017-08-15 03:46:47 +00009176 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00009177
drh2e38c322004-09-03 18:38:44 +00009178end_insert:
drh5e2f8b92001-05-28 00:41:15 +00009179 return rc;
9180}
9181
dand2ffc972020-12-10 19:20:15 +00009182/*
9183** This function is used as part of copying the current row from cursor
9184** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9185** parameter iKey is used as the rowid value when the record is copied
9186** into pDest. Otherwise, the record is copied verbatim.
9187**
9188** This function does not actually write the new value to cursor pDest.
9189** Instead, it creates and populates any required overflow pages and
9190** writes the data for the new cell into the BtShared.pTmpSpace buffer
9191** for the destination database. The size of the cell, in bytes, is left
9192** in BtShared.nPreformatSize. The caller completes the insertion by
9193** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9194**
9195** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9196*/
dan7aae7352020-12-10 18:06:24 +00009197int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
dan036e0672020-12-08 20:19:07 +00009198 int rc = SQLITE_OK;
dan7aae7352020-12-10 18:06:24 +00009199 BtShared *pBt = pDest->pBt;
9200 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */
danebbf3682020-12-09 16:32:11 +00009201 const u8 *aIn; /* Pointer to next input buffer */
drhe5baf5c2020-12-16 14:20:45 +00009202 u32 nIn; /* Size of input buffer aIn[] */
dan7f607062020-12-15 19:27:20 +00009203 u32 nRem; /* Bytes of data still to copy */
dan036e0672020-12-08 20:19:07 +00009204
dan036e0672020-12-08 20:19:07 +00009205 getCellInfo(pSrc);
dan7aae7352020-12-10 18:06:24 +00009206 aOut += putVarint32(aOut, pSrc->info.nPayload);
9207 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
danebbf3682020-12-09 16:32:11 +00009208 nIn = pSrc->info.nLocal;
9209 aIn = pSrc->info.pPayload;
drh0a8b6a92020-12-16 21:09:45 +00009210 if( aIn+nIn>pSrc->pPage->aDataEnd ){
9211 return SQLITE_CORRUPT_BKPT;
9212 }
danebbf3682020-12-09 16:32:11 +00009213 nRem = pSrc->info.nPayload;
dan7aae7352020-12-10 18:06:24 +00009214 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9215 memcpy(aOut, aIn, nIn);
9216 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9217 }else{
9218 Pager *pSrcPager = pSrc->pBt->pPager;
9219 u8 *pPgnoOut = 0;
9220 Pgno ovflIn = 0;
9221 DbPage *pPageIn = 0;
9222 MemPage *pPageOut = 0;
drhe5baf5c2020-12-16 14:20:45 +00009223 u32 nOut; /* Size of output buffer aOut[] */
danebbf3682020-12-09 16:32:11 +00009224
dan7aae7352020-12-10 18:06:24 +00009225 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9226 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9227 if( nOut<pSrc->info.nPayload ){
9228 pPgnoOut = &aOut[nOut];
9229 pBt->nPreformatSize += 4;
9230 }
9231
9232 if( nRem>nIn ){
drh0a8b6a92020-12-16 21:09:45 +00009233 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9234 return SQLITE_CORRUPT_BKPT;
9235 }
dan7aae7352020-12-10 18:06:24 +00009236 ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9237 }
9238
9239 do {
9240 nRem -= nOut;
9241 do{
9242 assert( nOut>0 );
9243 if( nIn>0 ){
9244 int nCopy = MIN(nOut, nIn);
9245 memcpy(aOut, aIn, nCopy);
9246 nOut -= nCopy;
9247 nIn -= nCopy;
9248 aOut += nCopy;
9249 aIn += nCopy;
9250 }
9251 if( nOut>0 ){
9252 sqlite3PagerUnref(pPageIn);
9253 pPageIn = 0;
9254 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9255 if( rc==SQLITE_OK ){
9256 aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9257 ovflIn = get4byte(aIn);
9258 aIn += 4;
9259 nIn = pSrc->pBt->usableSize - 4;
9260 }
9261 }
9262 }while( rc==SQLITE_OK && nOut>0 );
9263
drhad1188b2021-10-02 18:22:24 +00009264 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
dan7aae7352020-12-10 18:06:24 +00009265 Pgno pgnoNew;
9266 MemPage *pNew = 0;
9267 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9268 put4byte(pPgnoOut, pgnoNew);
9269 if( ISAUTOVACUUM && pPageOut ){
9270 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9271 }
9272 releasePage(pPageOut);
9273 pPageOut = pNew;
9274 if( pPageOut ){
9275 pPgnoOut = pPageOut->aData;
9276 put4byte(pPgnoOut, 0);
9277 aOut = &pPgnoOut[4];
9278 nOut = MIN(pBt->usableSize - 4, nRem);
danebbf3682020-12-09 16:32:11 +00009279 }
9280 }
dan7aae7352020-12-10 18:06:24 +00009281 }while( nRem>0 && rc==SQLITE_OK );
9282
9283 releasePage(pPageOut);
9284 sqlite3PagerUnref(pPageIn);
dan036e0672020-12-08 20:19:07 +00009285 }
9286
9287 return rc;
9288}
9289
drh5e2f8b92001-05-28 00:41:15 +00009290/*
danf0ee1d32015-09-12 19:26:11 +00009291** Delete the entry that the cursor is pointing to.
9292**
drhe807bdb2016-01-21 17:06:33 +00009293** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9294** the cursor is left pointing at an arbitrary location after the delete.
9295** But if that bit is set, then the cursor is left in a state such that
9296** the next call to BtreeNext() or BtreePrev() moves it to the same row
9297** as it would have been on if the call to BtreeDelete() had been omitted.
9298**
drhdef19e32016-01-27 16:26:25 +00009299** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9300** associated with a single table entry and its indexes. Only one of those
9301** deletes is considered the "primary" delete. The primary delete occurs
9302** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9303** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9304** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00009305** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00009306*/
drhe807bdb2016-01-21 17:06:33 +00009307int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00009308 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00009309 BtShared *pBt = p->pBt;
drh7e17a3a2022-01-02 14:55:43 +00009310 int rc; /* Return code */
9311 MemPage *pPage; /* Page to delete cell from */
9312 unsigned char *pCell; /* Pointer to cell to delete */
9313 int iCellIdx; /* Index of cell to delete */
9314 int iCellDepth; /* Depth of node containing pCell */
9315 CellInfo info; /* Size of the cell being deleted */
9316 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
drh8b2f49b2001-06-08 00:21:52 +00009317
dan7a2347e2016-01-07 16:43:54 +00009318 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00009319 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009320 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00009321 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00009322 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9323 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drhdef19e32016-01-27 16:26:25 +00009324 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danb560a712019-03-13 15:29:14 +00009325 if( pCur->eState==CURSOR_REQUIRESEEK ){
9326 rc = btreeRestoreCursorPosition(pCur);
danf0ac2902021-04-26 15:32:36 +00009327 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9328 if( rc || pCur->eState!=CURSOR_VALID ) return rc;
danb560a712019-03-13 15:29:14 +00009329 }
dan112501f2021-04-06 18:02:17 +00009330 assert( CORRUPT_DB || pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00009331
danielk19774dbaa892009-06-16 16:50:22 +00009332 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00009333 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00009334 pPage = pCur->pPage;
drh7e17a3a2022-01-02 14:55:43 +00009335 if( pPage->nCell<=iCellIdx ){
9336 return SQLITE_CORRUPT_BKPT;
9337 }
danielk19774dbaa892009-06-16 16:50:22 +00009338 pCell = findCell(pPage, iCellIdx);
drh2dfe9662022-01-02 11:25:51 +00009339 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
9340 return SQLITE_CORRUPT_BKPT;
9341 }
danielk19774dbaa892009-06-16 16:50:22 +00009342
drh7e17a3a2022-01-02 14:55:43 +00009343 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
drhbfc7a8b2016-04-09 17:04:05 +00009344 ** be preserved following this delete operation. If the current delete
9345 ** will cause a b-tree rebalance, then this is done by saving the cursor
9346 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9347 ** returning.
9348 **
drh7e17a3a2022-01-02 14:55:43 +00009349 ** If the current delete will not cause a rebalance, then the cursor
drhbfc7a8b2016-04-09 17:04:05 +00009350 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
drh7e17a3a2022-01-02 14:55:43 +00009351 ** before or after the deleted entry.
9352 **
9353 ** The bPreserve value records which path is required:
9354 **
9355 ** bPreserve==0 Not necessary to save the cursor position
9356 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
9357 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
9358 */
9359 bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
drhbfc7a8b2016-04-09 17:04:05 +00009360 if( bPreserve ){
9361 if( !pPage->leaf
drh19ae01b2022-02-23 22:56:10 +00009362 || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00009363 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00009364 ){
9365 /* A b-tree rebalance will be required after deleting this entry.
9366 ** Save the cursor key. */
9367 rc = saveCursorKey(pCur);
9368 if( rc ) return rc;
9369 }else{
drh7e17a3a2022-01-02 14:55:43 +00009370 bPreserve = 2;
drhbfc7a8b2016-04-09 17:04:05 +00009371 }
9372 }
9373
danielk19774dbaa892009-06-16 16:50:22 +00009374 /* If the page containing the entry to delete is not a leaf page, move
9375 ** the cursor to the largest entry in the tree that is smaller than
9376 ** the entry being deleted. This cell will replace the cell being deleted
9377 ** from the internal node. The 'previous' entry is used for this instead
9378 ** of the 'next' entry, as the previous entry is always a part of the
9379 ** sub-tree headed by the child page of the cell being deleted. This makes
9380 ** balancing the tree following the delete operation easier. */
9381 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00009382 rc = sqlite3BtreePrevious(pCur, 0);
9383 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00009384 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00009385 }
9386
9387 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00009388 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00009389 if( pCur->curFlags & BTCF_Multiple ){
9390 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9391 if( rc ) return rc;
9392 }
drhd60f4f42012-03-23 14:23:52 +00009393
9394 /* If this is a delete operation to remove a row from a table b-tree,
9395 ** invalidate any incrblob cursors open on the row being deleted. */
drh49bb56e2021-05-14 20:01:36 +00009396 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
drh9ca431a2017-03-29 18:03:50 +00009397 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00009398 }
9399
danf0ee1d32015-09-12 19:26:11 +00009400 /* Make the page containing the entry to be deleted writable. Then free any
9401 ** overflow pages associated with the entry and finally remove the cell
9402 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00009403 rc = sqlite3PagerWrite(pPage->pDbPage);
9404 if( rc ) return rc;
drh86c779f2021-05-15 13:08:44 +00009405 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
drh80159da2016-12-09 17:32:51 +00009406 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00009407 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00009408
danielk19774dbaa892009-06-16 16:50:22 +00009409 /* If the cell deleted was not located on a leaf page, then the cursor
9410 ** is currently pointing to the largest entry in the sub-tree headed
9411 ** by the child-page of the cell that was just deleted from an internal
9412 ** node. The cell from the leaf node needs to be moved to the internal
9413 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00009414 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00009415 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00009416 int nCell;
drh352a35a2017-08-15 03:46:47 +00009417 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00009418 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00009419
drhb0ea9432019-02-09 21:06:40 +00009420 if( pLeaf->nFree<0 ){
9421 rc = btreeComputeFreeSpace(pLeaf);
9422 if( rc ) return rc;
9423 }
drh352a35a2017-08-15 03:46:47 +00009424 if( iCellDepth<pCur->iPage-1 ){
9425 n = pCur->apPage[iCellDepth+1]->pgno;
9426 }else{
9427 n = pCur->pPage->pgno;
9428 }
danielk19774dbaa892009-06-16 16:50:22 +00009429 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00009430 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00009431 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00009432 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00009433 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009434 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00009435 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00009436 if( rc==SQLITE_OK ){
9437 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9438 }
drh98add2e2009-07-20 17:11:49 +00009439 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00009440 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00009441 }
danielk19774dbaa892009-06-16 16:50:22 +00009442
9443 /* Balance the tree. If the entry deleted was located on a leaf page,
9444 ** then the cursor still points to that page. In this case the first
9445 ** call to balance() repairs the tree, and the if(...) condition is
9446 ** never true.
9447 **
9448 ** Otherwise, if the entry deleted was on an internal node page, then
9449 ** pCur is pointing to the leaf page from which a cell was removed to
9450 ** replace the cell deleted from the internal node. This is slightly
9451 ** tricky as the leaf node may be underfull, and the internal node may
9452 ** be either under or overfull. In this case run the balancing algorithm
9453 ** on the leaf node first. If the balance proceeds far enough up the
9454 ** tree that we can be sure that any problem in the internal node has
9455 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9456 ** walk the cursor up the tree to the internal node and balance it as
9457 ** well. */
9458 rc = balance(pCur);
9459 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00009460 releasePageNotNull(pCur->pPage);
9461 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00009462 while( pCur->iPage>iCellDepth ){
9463 releasePage(pCur->apPage[pCur->iPage--]);
9464 }
drh352a35a2017-08-15 03:46:47 +00009465 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00009466 rc = balance(pCur);
9467 }
9468
danielk19776b456a22005-03-21 04:04:02 +00009469 if( rc==SQLITE_OK ){
drh7e17a3a2022-01-02 14:55:43 +00009470 if( bPreserve>1 ){
9471 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00009472 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00009473 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00009474 pCur->eState = CURSOR_SKIPNEXT;
9475 if( iCellIdx>=pPage->nCell ){
9476 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00009477 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00009478 }else{
9479 pCur->skipNext = 1;
9480 }
9481 }else{
9482 rc = moveToRoot(pCur);
9483 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00009484 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00009485 pCur->eState = CURSOR_REQUIRESEEK;
9486 }
drh44548e72017-08-14 18:13:52 +00009487 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00009488 }
danielk19776b456a22005-03-21 04:04:02 +00009489 }
drh5e2f8b92001-05-28 00:41:15 +00009490 return rc;
drh3b7511c2001-05-26 13:15:44 +00009491}
drh8b2f49b2001-06-08 00:21:52 +00009492
9493/*
drhc6b52df2002-01-04 03:09:29 +00009494** Create a new BTree table. Write into *piTable the page
9495** number for the root page of the new table.
9496**
drhab01f612004-05-22 02:55:23 +00009497** The type of type is determined by the flags parameter. Only the
9498** following values of flags are currently in use. Other values for
9499** flags might not work:
9500**
9501** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9502** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00009503*/
drhabc38152020-07-22 13:38:04 +00009504static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00009505 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009506 MemPage *pRoot;
9507 Pgno pgnoRoot;
9508 int rc;
drhd4187c72010-08-30 22:15:45 +00009509 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00009510
drh1fee73e2007-08-29 04:00:57 +00009511 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009512 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009513 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00009514
danielk1977003ba062004-11-04 02:57:33 +00009515#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00009516 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00009517 if( rc ){
9518 return rc;
9519 }
danielk1977003ba062004-11-04 02:57:33 +00009520#else
danielk1977687566d2004-11-02 12:56:41 +00009521 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009522 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9523 MemPage *pPageMove; /* The page to move to. */
9524
danielk197720713f32007-05-03 11:43:33 +00009525 /* Creating a new table may probably require moving an existing database
9526 ** to make room for the new tables root page. In case this page turns
9527 ** out to be an overflow page, delete all overflow page-map caches
9528 ** held by open cursors.
9529 */
danielk197792d4d7a2007-05-04 12:05:56 +00009530 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009531
danielk1977003ba062004-11-04 02:57:33 +00009532 /* Read the value of meta[3] from the database to determine where the
9533 ** root page of the new table should go. meta[3] is the largest root-page
9534 ** created so far, so the new root-page is (meta[3]+1).
9535 */
danielk1977602b4662009-07-02 07:47:33 +00009536 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
drh10248222020-07-28 20:32:12 +00009537 if( pgnoRoot>btreePagecount(pBt) ){
9538 return SQLITE_CORRUPT_BKPT;
9539 }
danielk1977003ba062004-11-04 02:57:33 +00009540 pgnoRoot++;
9541
danielk1977599fcba2004-11-08 07:13:13 +00009542 /* The new root-page may not be allocated on a pointer-map page, or the
9543 ** PENDING_BYTE page.
9544 */
drh72190432008-01-31 14:54:43 +00009545 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009546 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009547 pgnoRoot++;
9548 }
drh48bf2d72020-07-30 17:14:55 +00009549 assert( pgnoRoot>=3 );
danielk1977003ba062004-11-04 02:57:33 +00009550
9551 /* Allocate a page. The page that currently resides at pgnoRoot will
9552 ** be moved to the allocated page (unless the allocated page happens
9553 ** to reside at pgnoRoot).
9554 */
dan51f0b6d2013-02-22 20:16:34 +00009555 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009556 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009557 return rc;
9558 }
danielk1977003ba062004-11-04 02:57:33 +00009559
9560 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009561 /* pgnoRoot is the page that will be used for the root-page of
9562 ** the new table (assuming an error did not occur). But we were
9563 ** allocated pgnoMove. If required (i.e. if it was not allocated
9564 ** by extending the file), the current page at position pgnoMove
9565 ** is already journaled.
9566 */
drheeb844a2009-08-08 18:01:07 +00009567 u8 eType = 0;
9568 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009569
danf7679ad2013-04-03 11:38:36 +00009570 /* Save the positions of any open cursors. This is required in
9571 ** case they are holding a reference to an xFetch reference
9572 ** corresponding to page pgnoRoot. */
9573 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009574 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009575 if( rc!=SQLITE_OK ){
9576 return rc;
9577 }
danielk1977f35843b2007-04-07 15:03:17 +00009578
9579 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009580 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009581 if( rc!=SQLITE_OK ){
9582 return rc;
9583 }
9584 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009585 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9586 rc = SQLITE_CORRUPT_BKPT;
9587 }
9588 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009589 releasePage(pRoot);
9590 return rc;
9591 }
drhccae6022005-02-26 17:31:26 +00009592 assert( eType!=PTRMAP_ROOTPAGE );
9593 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009594 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009595 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009596
9597 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009598 if( rc!=SQLITE_OK ){
9599 return rc;
9600 }
drhb00fc3b2013-08-21 23:42:32 +00009601 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009602 if( rc!=SQLITE_OK ){
9603 return rc;
9604 }
danielk19773b8a05f2007-03-19 17:44:26 +00009605 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009606 if( rc!=SQLITE_OK ){
9607 releasePage(pRoot);
9608 return rc;
9609 }
9610 }else{
9611 pRoot = pPageMove;
9612 }
9613
danielk197742741be2005-01-08 12:42:39 +00009614 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009615 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009616 if( rc ){
9617 releasePage(pRoot);
9618 return rc;
9619 }
drhbf592832010-03-30 15:51:12 +00009620
9621 /* When the new root page was allocated, page 1 was made writable in
9622 ** order either to increase the database filesize, or to decrement the
9623 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9624 */
9625 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009626 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009627 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009628 releasePage(pRoot);
9629 return rc;
9630 }
danielk197742741be2005-01-08 12:42:39 +00009631
danielk1977003ba062004-11-04 02:57:33 +00009632 }else{
drh4f0c5872007-03-26 22:05:01 +00009633 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009634 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009635 }
9636#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009637 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009638 if( createTabFlags & BTREE_INTKEY ){
9639 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9640 }else{
9641 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9642 }
9643 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009644 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009645 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drhabc38152020-07-22 13:38:04 +00009646 *piTable = pgnoRoot;
drh8b2f49b2001-06-08 00:21:52 +00009647 return SQLITE_OK;
9648}
drhabc38152020-07-22 13:38:04 +00009649int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
drhd677b3d2007-08-20 22:48:41 +00009650 int rc;
9651 sqlite3BtreeEnter(p);
9652 rc = btreeCreateTable(p, piTable, flags);
9653 sqlite3BtreeLeave(p);
9654 return rc;
9655}
drh8b2f49b2001-06-08 00:21:52 +00009656
9657/*
9658** Erase the given database page and all its children. Return
9659** the page to the freelist.
9660*/
drh4b70f112004-05-02 21:12:19 +00009661static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00009662 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00009663 Pgno pgno, /* Page number to clear */
9664 int freePageFlag, /* Deallocate page if true */
dan2c718872021-06-22 18:32:05 +00009665 i64 *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00009666){
danielk1977146ba992009-07-22 14:08:13 +00009667 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00009668 int rc;
drh4b70f112004-05-02 21:12:19 +00009669 unsigned char *pCell;
9670 int i;
dan8ce71842014-01-14 20:14:09 +00009671 int hdr;
drh80159da2016-12-09 17:32:51 +00009672 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00009673
drh1fee73e2007-08-29 04:00:57 +00009674 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00009675 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00009676 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00009677 }
drh28f58dd2015-06-27 19:45:03 +00009678 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00009679 if( rc ) return rc;
dan1273d692021-10-16 17:09:36 +00009680 if( (pBt->openFlags & BTREE_SINGLE)==0
drh9a4e8862022-02-14 18:18:56 +00009681 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
dan1273d692021-10-16 17:09:36 +00009682 ){
drhccf46d02015-04-01 13:21:33 +00009683 rc = SQLITE_CORRUPT_BKPT;
9684 goto cleardatabasepage_out;
9685 }
dan8ce71842014-01-14 20:14:09 +00009686 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00009687 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00009688 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00009689 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00009690 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009691 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009692 }
drh86c779f2021-05-15 13:08:44 +00009693 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
danielk19776b456a22005-03-21 04:04:02 +00009694 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009695 }
drha34b6762004-05-07 13:30:42 +00009696 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00009697 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009698 if( rc ) goto cleardatabasepage_out;
dan020c4f32021-06-22 18:06:23 +00009699 if( pPage->intKey ) pnChange = 0;
drha6df0e62021-06-03 18:51:51 +00009700 }
9701 if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00009702 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00009703 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00009704 }
9705 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00009706 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00009707 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00009708 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00009709 }
danielk19776b456a22005-03-21 04:04:02 +00009710
9711cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00009712 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00009713 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009714}
9715
9716/*
drhab01f612004-05-22 02:55:23 +00009717** Delete all information from a single table in the database. iTable is
9718** the page number of the root of the table. After this routine returns,
9719** the root page is empty, but still exists.
9720**
9721** This routine will fail with SQLITE_LOCKED if there are any open
9722** read cursors on the table. Open write cursors are moved to the
9723** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00009724**
drha6df0e62021-06-03 18:51:51 +00009725** If pnChange is not NULL, then the integer value pointed to by pnChange
9726** is incremented by the number of entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00009727*/
dan2c718872021-06-22 18:32:05 +00009728int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00009729 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009730 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009731 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009732 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009733
drhc046e3e2009-07-15 11:26:44 +00009734 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009735
drhc046e3e2009-07-15 11:26:44 +00009736 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009737 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9738 ** is the root of a table b-tree - if it is not, the following call is
9739 ** a no-op). */
drh49bb56e2021-05-14 20:01:36 +00009740 if( p->hasIncrblobCur ){
9741 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9742 }
danielk197762c14b32008-11-19 09:05:26 +00009743 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009744 }
drhd677b3d2007-08-20 22:48:41 +00009745 sqlite3BtreeLeave(p);
9746 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009747}
9748
9749/*
drh079a3072014-03-19 14:10:55 +00009750** Delete all information from the single table that pCur is open on.
9751**
9752** This routine only work for pCur on an ephemeral table.
9753*/
9754int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9755 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9756}
9757
9758/*
drh8b2f49b2001-06-08 00:21:52 +00009759** Erase all information in a table and add the root of the table to
9760** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009761** page 1) is never added to the freelist.
9762**
9763** This routine will fail with SQLITE_LOCKED if there are any open
9764** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009765**
9766** If AUTOVACUUM is enabled and the page at iTable is not the last
9767** root page in the database file, then the last root page
9768** in the database file is moved into the slot formerly occupied by
9769** iTable and that last slot formerly occupied by the last root page
9770** is added to the freelist instead of iTable. In this say, all
9771** root pages are kept at the beginning of the database file, which
9772** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9773** page number that used to be the last root page in the file before
9774** the move. If no page gets moved, *piMoved is set to 0.
9775** The last root page is recorded in meta[3] and the value of
9776** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009777*/
danielk197789d40042008-11-17 14:20:56 +00009778static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009779 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009780 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009781 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009782
drh1fee73e2007-08-29 04:00:57 +00009783 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009784 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009785 assert( iTable>=2 );
drh9a518842019-03-08 01:52:30 +00009786 if( iTable>btreePagecount(pBt) ){
9787 return SQLITE_CORRUPT_BKPT;
9788 }
drh055f2982016-01-15 15:06:41 +00009789
danielk1977c7af4842008-10-27 13:59:33 +00009790 rc = sqlite3BtreeClearTable(p, iTable, 0);
dan1273d692021-10-16 17:09:36 +00009791 if( rc ) return rc;
9792 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drhda125362021-10-16 18:53:36 +00009793 if( NEVER(rc) ){
danielk19776b456a22005-03-21 04:04:02 +00009794 releasePage(pPage);
9795 return rc;
9796 }
danielk1977a0bf2652004-11-04 14:30:04 +00009797
drh205f48e2004-11-05 00:43:11 +00009798 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009799
danielk1977a0bf2652004-11-04 14:30:04 +00009800#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009801 freePage(pPage, &rc);
9802 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009803#else
drh055f2982016-01-15 15:06:41 +00009804 if( pBt->autoVacuum ){
9805 Pgno maxRootPgno;
9806 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009807
drh055f2982016-01-15 15:06:41 +00009808 if( iTable==maxRootPgno ){
9809 /* If the table being dropped is the table with the largest root-page
9810 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009811 */
drhc314dc72009-07-21 11:52:34 +00009812 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009813 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009814 if( rc!=SQLITE_OK ){
9815 return rc;
9816 }
9817 }else{
9818 /* The table being dropped does not have the largest root-page
9819 ** number in the database. So move the page that does into the
9820 ** gap left by the deleted root-page.
9821 */
9822 MemPage *pMove;
9823 releasePage(pPage);
9824 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9825 if( rc!=SQLITE_OK ){
9826 return rc;
9827 }
9828 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9829 releasePage(pMove);
9830 if( rc!=SQLITE_OK ){
9831 return rc;
9832 }
9833 pMove = 0;
9834 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9835 freePage(pMove, &rc);
9836 releasePage(pMove);
9837 if( rc!=SQLITE_OK ){
9838 return rc;
9839 }
9840 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009841 }
drh055f2982016-01-15 15:06:41 +00009842
9843 /* Set the new 'max-root-page' value in the database header. This
9844 ** is the old value less one, less one more if that happens to
9845 ** be a root-page number, less one again if that is the
9846 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009847 */
drh055f2982016-01-15 15:06:41 +00009848 maxRootPgno--;
9849 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9850 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9851 maxRootPgno--;
9852 }
9853 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9854
9855 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9856 }else{
9857 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009858 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009859 }
drh055f2982016-01-15 15:06:41 +00009860#endif
drh8b2f49b2001-06-08 00:21:52 +00009861 return rc;
9862}
drhd677b3d2007-08-20 22:48:41 +00009863int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9864 int rc;
9865 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009866 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009867 sqlite3BtreeLeave(p);
9868 return rc;
9869}
drh8b2f49b2001-06-08 00:21:52 +00009870
drh001bbcb2003-03-19 03:14:00 +00009871
drh8b2f49b2001-06-08 00:21:52 +00009872/*
danielk1977602b4662009-07-02 07:47:33 +00009873** This function may only be called if the b-tree connection already
9874** has a read or write transaction open on the database.
9875**
drh23e11ca2004-05-04 17:27:28 +00009876** Read the meta-information out of a database file. Meta[0]
9877** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009878** through meta[15] are available for use by higher layers. Meta[0]
9879** is read-only, the others are read/write.
9880**
9881** The schema layer numbers meta values differently. At the schema
9882** layer (and the SetCookie and ReadCookie opcodes) the number of
9883** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009884**
9885** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9886** of reading the value out of the header, it instead loads the "DataVersion"
9887** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9888** database file. It is a number computed by the pager. But its access
9889** pattern is the same as header meta values, and so it is convenient to
9890** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009891*/
danielk1977602b4662009-07-02 07:47:33 +00009892void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009893 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009894
drhd677b3d2007-08-20 22:48:41 +00009895 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009896 assert( p->inTrans>TRANS_NONE );
drh346a70c2020-06-15 20:27:35 +00009897 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009898 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009899 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009900
drh91618562014-12-19 19:28:02 +00009901 if( idx==BTREE_DATA_VERSION ){
drh2b994ce2021-03-18 12:36:09 +00009902 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
drh91618562014-12-19 19:28:02 +00009903 }else{
9904 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9905 }
drhae157872004-08-14 19:20:09 +00009906
danielk1977602b4662009-07-02 07:47:33 +00009907 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9908 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009909#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009910 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9911 pBt->btsFlags |= BTS_READ_ONLY;
9912 }
danielk1977003ba062004-11-04 02:57:33 +00009913#endif
drhae157872004-08-14 19:20:09 +00009914
drhd677b3d2007-08-20 22:48:41 +00009915 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009916}
9917
9918/*
drh23e11ca2004-05-04 17:27:28 +00009919** Write meta-information back into the database. Meta[0] is
9920** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009921*/
danielk1977aef0bf62005-12-30 16:28:01 +00009922int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9923 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009924 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009925 int rc;
drh23e11ca2004-05-04 17:27:28 +00009926 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009927 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009928 assert( p->inTrans==TRANS_WRITE );
9929 assert( pBt->pPage1!=0 );
9930 pP1 = pBt->pPage1->aData;
9931 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9932 if( rc==SQLITE_OK ){
9933 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009934#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009935 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009936 assert( pBt->autoVacuum || iMeta==0 );
9937 assert( iMeta==0 || iMeta==1 );
9938 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009939 }
drh64022502009-01-09 14:11:04 +00009940#endif
drh5df72a52002-06-06 23:16:05 +00009941 }
drhd677b3d2007-08-20 22:48:41 +00009942 sqlite3BtreeLeave(p);
9943 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009944}
drh8c42ca92001-06-22 19:15:00 +00009945
danielk1977a5533162009-02-24 10:01:51 +00009946/*
9947** The first argument, pCur, is a cursor opened on some b-tree. Count the
9948** number of entries in the b-tree and write the result to *pnEntry.
9949**
9950** SQLITE_OK is returned if the operation is successfully executed.
9951** Otherwise, if an error is encountered (i.e. an IO error or database
9952** corruption) an SQLite error code is returned.
9953*/
drh21f6daa2019-10-11 14:21:48 +00009954int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
danielk1977a5533162009-02-24 10:01:51 +00009955 i64 nEntry = 0; /* Value to return in *pnEntry */
9956 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009957
drh44548e72017-08-14 18:13:52 +00009958 rc = moveToRoot(pCur);
9959 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009960 *pnEntry = 0;
9961 return SQLITE_OK;
9962 }
danielk1977a5533162009-02-24 10:01:51 +00009963
9964 /* Unless an error occurs, the following loop runs one iteration for each
9965 ** page in the B-Tree structure (not including overflow pages).
9966 */
dan892edb62020-03-30 13:35:05 +00009967 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
danielk1977a5533162009-02-24 10:01:51 +00009968 int iIdx; /* Index of child node in parent */
9969 MemPage *pPage; /* Current page of the b-tree */
9970
9971 /* If this is a leaf page or the tree is not an int-key tree, then
9972 ** this page contains countable entries. Increment the entry counter
9973 ** accordingly.
9974 */
drh352a35a2017-08-15 03:46:47 +00009975 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009976 if( pPage->leaf || !pPage->intKey ){
9977 nEntry += pPage->nCell;
9978 }
9979
9980 /* pPage is a leaf node. This loop navigates the cursor so that it
9981 ** points to the first interior cell that it points to the parent of
9982 ** the next page in the tree that has not yet been visited. The
9983 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9984 ** of the page, or to the number of cells in the page if the next page
9985 ** to visit is the right-child of its parent.
9986 **
9987 ** If all pages in the tree have been visited, return SQLITE_OK to the
9988 ** caller.
9989 */
9990 if( pPage->leaf ){
9991 do {
9992 if( pCur->iPage==0 ){
9993 /* All pages of the b-tree have been visited. Return successfully. */
9994 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009995 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009996 }
danielk197730548662009-07-09 05:07:37 +00009997 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009998 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009999
drh75e96b32017-04-01 00:20:06 +000010000 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +000010001 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +000010002 }
10003
10004 /* Descend to the child node of the cell that the cursor currently
10005 ** points at. This is the right-child if (iIdx==pPage->nCell).
10006 */
drh75e96b32017-04-01 00:20:06 +000010007 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +000010008 if( iIdx==pPage->nCell ){
10009 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
10010 }else{
10011 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
10012 }
10013 }
10014
shanebe217792009-03-05 04:20:31 +000010015 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +000010016 return rc;
10017}
drhdd793422001-06-28 01:54:48 +000010018
drhdd793422001-06-28 01:54:48 +000010019/*
drh5eddca62001-06-30 21:53:53 +000010020** Return the pager associated with a BTree. This routine is used for
10021** testing and debugging only.
drhdd793422001-06-28 01:54:48 +000010022*/
danielk1977aef0bf62005-12-30 16:28:01 +000010023Pager *sqlite3BtreePager(Btree *p){
10024 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +000010025}
drh5eddca62001-06-30 21:53:53 +000010026
drhb7f91642004-10-31 02:22:47 +000010027#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010028/*
10029** Append a message to the error message string.
10030*/
drh2e38c322004-09-03 18:38:44 +000010031static void checkAppendMsg(
10032 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +000010033 const char *zFormat,
10034 ...
10035){
10036 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +000010037 if( !pCheck->mxErr ) return;
10038 pCheck->mxErr--;
10039 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +000010040 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +000010041 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +000010042 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +000010043 }
drh867db832014-09-26 02:41:05 +000010044 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +000010045 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +000010046 }
drh0cdbe1a2018-05-09 13:46:26 +000010047 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +000010048 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +000010049 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drh8ddf6352020-06-29 18:30:49 +000010050 pCheck->bOomFault = 1;
drhc890fec2008-08-01 20:10:08 +000010051 }
drh5eddca62001-06-30 21:53:53 +000010052}
drhb7f91642004-10-31 02:22:47 +000010053#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010054
drhb7f91642004-10-31 02:22:47 +000010055#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +000010056
10057/*
10058** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
10059** corresponds to page iPg is already set.
10060*/
10061static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10062 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10063 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
10064}
10065
10066/*
10067** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10068*/
10069static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10070 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10071 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
10072}
10073
10074
drh5eddca62001-06-30 21:53:53 +000010075/*
10076** Add 1 to the reference count for page iPage. If this is the second
10077** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +000010078** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +000010079** if this is the first reference to the page.
10080**
10081** Also check that the page number is in bounds.
10082*/
drh867db832014-09-26 02:41:05 +000010083static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +000010084 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +000010085 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010086 return 1;
10087 }
dan1235bb12012-04-03 17:43:28 +000010088 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +000010089 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010090 return 1;
10091 }
dan892edb62020-03-30 13:35:05 +000010092 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
dan1235bb12012-04-03 17:43:28 +000010093 setPageReferenced(pCheck, iPage);
10094 return 0;
drh5eddca62001-06-30 21:53:53 +000010095}
10096
danielk1977afcdd022004-10-31 16:25:42 +000010097#ifndef SQLITE_OMIT_AUTOVACUUM
10098/*
10099** Check that the entry in the pointer-map for page iChild maps to
10100** page iParent, pointer type ptrType. If not, append an error message
10101** to pCheck.
10102*/
10103static void checkPtrmap(
10104 IntegrityCk *pCheck, /* Integrity check context */
10105 Pgno iChild, /* Child page number */
10106 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +000010107 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +000010108){
10109 int rc;
10110 u8 ePtrmapType;
10111 Pgno iPtrmapParent;
10112
10113 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
10114 if( rc!=SQLITE_OK ){
drh8ddf6352020-06-29 18:30:49 +000010115 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
drh867db832014-09-26 02:41:05 +000010116 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +000010117 return;
10118 }
10119
10120 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +000010121 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +000010122 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10123 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
10124 }
10125}
10126#endif
10127
drh5eddca62001-06-30 21:53:53 +000010128/*
10129** Check the integrity of the freelist or of an overflow page list.
10130** Verify that the number of pages on the list is N.
10131*/
drh30e58752002-03-02 20:41:57 +000010132static void checkList(
10133 IntegrityCk *pCheck, /* Integrity checking context */
10134 int isFreeList, /* True for a freelist. False for overflow page list */
drhabc38152020-07-22 13:38:04 +000010135 Pgno iPage, /* Page number for first page in the list */
drheaac9992019-02-26 16:17:06 +000010136 u32 N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +000010137){
10138 int i;
drheaac9992019-02-26 16:17:06 +000010139 u32 expected = N;
drh91d58662018-07-20 13:39:28 +000010140 int nErrAtStart = pCheck->nErr;
10141 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +000010142 DbPage *pOvflPage;
10143 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +000010144 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +000010145 N--;
drh9584f582015-11-04 20:22:37 +000010146 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +000010147 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010148 break;
10149 }
danielk19773b8a05f2007-03-19 17:44:26 +000010150 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +000010151 if( isFreeList ){
drhae104742018-12-14 17:57:01 +000010152 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +000010153#ifndef SQLITE_OMIT_AUTOVACUUM
10154 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010155 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010156 }
10157#endif
drhae104742018-12-14 17:57:01 +000010158 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +000010159 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +000010160 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +000010161 N--;
10162 }else{
drhae104742018-12-14 17:57:01 +000010163 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +000010164 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +000010165#ifndef SQLITE_OMIT_AUTOVACUUM
10166 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010167 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010168 }
10169#endif
drh867db832014-09-26 02:41:05 +000010170 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +000010171 }
10172 N -= n;
drh30e58752002-03-02 20:41:57 +000010173 }
drh30e58752002-03-02 20:41:57 +000010174 }
danielk1977afcdd022004-10-31 16:25:42 +000010175#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010176 else{
10177 /* If this database supports auto-vacuum and iPage is not the last
10178 ** page in this overflow list, check that the pointer-map entry for
10179 ** the following page matches iPage.
10180 */
10181 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +000010182 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +000010183 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +000010184 }
danielk1977afcdd022004-10-31 16:25:42 +000010185 }
10186#endif
danielk19773b8a05f2007-03-19 17:44:26 +000010187 iPage = get4byte(pOvflData);
10188 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +000010189 }
10190 if( N && nErrAtStart==pCheck->nErr ){
10191 checkAppendMsg(pCheck,
10192 "%s is %d but should be %d",
10193 isFreeList ? "size" : "overflow list length",
10194 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +000010195 }
10196}
drhb7f91642004-10-31 02:22:47 +000010197#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010198
drh67731a92015-04-16 11:56:03 +000010199/*
10200** An implementation of a min-heap.
10201**
10202** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +000010203** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +000010204** and aHeap[N*2+1].
10205**
10206** The heap property is this: Every node is less than or equal to both
10207** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +000010208** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +000010209**
10210** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10211** the heap, preserving the heap property. The btreeHeapPull() routine
10212** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +000010213** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +000010214** property.
10215**
10216** This heap is used for cell overlap and coverage testing. Each u32
10217** entry represents the span of a cell or freeblock on a btree page.
10218** The upper 16 bits are the index of the first byte of a range and the
10219** lower 16 bits are the index of the last byte of that range.
10220*/
10221static void btreeHeapInsert(u32 *aHeap, u32 x){
10222 u32 j, i = ++aHeap[0];
10223 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +000010224 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +000010225 x = aHeap[j];
10226 aHeap[j] = aHeap[i];
10227 aHeap[i] = x;
10228 i = j;
10229 }
10230}
10231static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10232 u32 j, i, x;
10233 if( (x = aHeap[0])==0 ) return 0;
10234 *pOut = aHeap[1];
10235 aHeap[1] = aHeap[x];
10236 aHeap[x] = 0xffffffff;
10237 aHeap[0]--;
10238 i = 1;
10239 while( (j = i*2)<=aHeap[0] ){
10240 if( aHeap[j]>aHeap[j+1] ) j++;
10241 if( aHeap[i]<aHeap[j] ) break;
10242 x = aHeap[i];
10243 aHeap[i] = aHeap[j];
10244 aHeap[j] = x;
10245 i = j;
10246 }
10247 return 1;
10248}
10249
drhb7f91642004-10-31 02:22:47 +000010250#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010251/*
10252** Do various sanity checks on a single page of a tree. Return
10253** the tree depth. Root pages return 0. Parents of root pages
10254** return 1, and so forth.
10255**
10256** These checks are done:
10257**
10258** 1. Make sure that cells and freeblocks do not overlap
10259** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +000010260** 2. Make sure integer cell keys are in order.
10261** 3. Check the integrity of overflow pages.
10262** 4. Recursively call checkTreePage on all children.
10263** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +000010264*/
10265static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +000010266 IntegrityCk *pCheck, /* Context for the sanity check */
drhabc38152020-07-22 13:38:04 +000010267 Pgno iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +000010268 i64 *piMinKey, /* Write minimum integer primary key here */
10269 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +000010270){
drhcbc6b712015-07-02 16:17:30 +000010271 MemPage *pPage = 0; /* The page being analyzed */
10272 int i; /* Loop counter */
10273 int rc; /* Result code from subroutine call */
10274 int depth = -1, d2; /* Depth of a subtree */
10275 int pgno; /* Page number */
10276 int nFrag; /* Number of fragmented bytes on the page */
10277 int hdr; /* Offset to the page header */
10278 int cellStart; /* Offset to the start of the cell pointer array */
10279 int nCell; /* Number of cells */
10280 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10281 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
10282 ** False if IPK must be strictly less than maxKey */
10283 u8 *data; /* Page content */
10284 u8 *pCell; /* Cell content */
10285 u8 *pCellIdx; /* Next element of the cell pointer array */
10286 BtShared *pBt; /* The BtShared object that owns pPage */
10287 u32 pc; /* Address of a cell */
10288 u32 usableSize; /* Usable size of the page */
10289 u32 contentOffset; /* Offset to the start of the cell content area */
10290 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +000010291 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +000010292 const char *saved_zPfx = pCheck->zPfx;
10293 int saved_v1 = pCheck->v1;
10294 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +000010295 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +000010296
drh5eddca62001-06-30 21:53:53 +000010297 /* Check that the page exists
10298 */
drhd9cb6ac2005-10-20 07:28:17 +000010299 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +000010300 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +000010301 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +000010302 if( checkRef(pCheck, iPage) ) return 0;
drhabc38152020-07-22 13:38:04 +000010303 pCheck->zPfx = "Page %u: ";
drh867db832014-09-26 02:41:05 +000010304 pCheck->v1 = iPage;
drhabc38152020-07-22 13:38:04 +000010305 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +000010306 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +000010307 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +000010308 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +000010309 }
danielk197793caf5a2009-07-11 06:55:33 +000010310
10311 /* Clear MemPage.isInit to make sure the corruption detection code in
10312 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +000010313 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +000010314 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +000010315 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +000010316 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +000010317 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +000010318 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +000010319 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +000010320 }
drhb0ea9432019-02-09 21:06:40 +000010321 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10322 assert( rc==SQLITE_CORRUPT );
10323 checkAppendMsg(pCheck, "free space corruption", rc);
10324 goto end_of_check;
10325 }
drhcbc6b712015-07-02 16:17:30 +000010326 data = pPage->aData;
10327 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +000010328
drhcbc6b712015-07-02 16:17:30 +000010329 /* Set up for cell analysis */
drhabc38152020-07-22 13:38:04 +000010330 pCheck->zPfx = "On tree page %u cell %d: ";
drhcbc6b712015-07-02 16:17:30 +000010331 contentOffset = get2byteNotZero(&data[hdr+5]);
10332 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
10333
10334 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10335 ** number of cells on the page. */
10336 nCell = get2byte(&data[hdr+3]);
10337 assert( pPage->nCell==nCell );
10338
10339 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10340 ** immediately follows the b-tree page header. */
10341 cellStart = hdr + 12 - 4*pPage->leaf;
10342 assert( pPage->aCellIdx==&data[cellStart] );
10343 pCellIdx = &data[cellStart + 2*(nCell-1)];
10344
10345 if( !pPage->leaf ){
10346 /* Analyze the right-child page of internal pages */
10347 pgno = get4byte(&data[hdr+8]);
10348#ifndef SQLITE_OMIT_AUTOVACUUM
10349 if( pBt->autoVacuum ){
drhabc38152020-07-22 13:38:04 +000010350 pCheck->zPfx = "On page %u at right child: ";
drhcbc6b712015-07-02 16:17:30 +000010351 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10352 }
10353#endif
10354 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10355 keyCanBeEqual = 0;
10356 }else{
10357 /* For leaf pages, the coverage check will occur in the same loop
10358 ** as the other cell checks, so initialize the heap. */
10359 heap = pCheck->heap;
10360 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +000010361 }
10362
drhcbc6b712015-07-02 16:17:30 +000010363 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10364 ** integer offsets to the cell contents. */
10365 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +000010366 CellInfo info;
drh5eddca62001-06-30 21:53:53 +000010367
drhcbc6b712015-07-02 16:17:30 +000010368 /* Check cell size */
drh867db832014-09-26 02:41:05 +000010369 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +000010370 assert( pCellIdx==&data[cellStart + i*2] );
10371 pc = get2byteAligned(pCellIdx);
10372 pCellIdx -= 2;
10373 if( pc<contentOffset || pc>usableSize-4 ){
10374 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10375 pc, contentOffset, usableSize-4);
10376 doCoverageCheck = 0;
10377 continue;
shaneh195475d2010-02-19 04:28:08 +000010378 }
drhcbc6b712015-07-02 16:17:30 +000010379 pCell = &data[pc];
10380 pPage->xParseCell(pPage, pCell, &info);
10381 if( pc+info.nSize>usableSize ){
10382 checkAppendMsg(pCheck, "Extends off end of page");
10383 doCoverageCheck = 0;
10384 continue;
drh5eddca62001-06-30 21:53:53 +000010385 }
10386
drhcbc6b712015-07-02 16:17:30 +000010387 /* Check for integer primary key out of range */
10388 if( pPage->intKey ){
10389 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10390 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10391 }
10392 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +000010393 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +000010394 }
10395
10396 /* Check the content overflow list */
10397 if( info.nPayload>info.nLocal ){
drheaac9992019-02-26 16:17:06 +000010398 u32 nPage; /* Number of pages on the overflow chain */
drhcbc6b712015-07-02 16:17:30 +000010399 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +000010400 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +000010401 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +000010402 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +000010403#ifndef SQLITE_OMIT_AUTOVACUUM
10404 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010405 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +000010406 }
10407#endif
drh867db832014-09-26 02:41:05 +000010408 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +000010409 }
10410
drh5eddca62001-06-30 21:53:53 +000010411 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +000010412 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +000010413 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +000010414#ifndef SQLITE_OMIT_AUTOVACUUM
10415 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010416 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +000010417 }
10418#endif
drhcbc6b712015-07-02 16:17:30 +000010419 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10420 keyCanBeEqual = 0;
10421 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +000010422 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +000010423 depth = d2;
drh5eddca62001-06-30 21:53:53 +000010424 }
drhcbc6b712015-07-02 16:17:30 +000010425 }else{
10426 /* Populate the coverage-checking heap for leaf pages */
10427 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +000010428 }
10429 }
drhcbc6b712015-07-02 16:17:30 +000010430 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +000010431
drh5eddca62001-06-30 21:53:53 +000010432 /* Check for complete coverage of the page
10433 */
drh867db832014-09-26 02:41:05 +000010434 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +000010435 if( doCoverageCheck && pCheck->mxErr>0 ){
10436 /* For leaf pages, the min-heap has already been initialized and the
10437 ** cells have already been inserted. But for internal pages, that has
10438 ** not yet been done, so do it now */
10439 if( !pPage->leaf ){
10440 heap = pCheck->heap;
10441 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +000010442 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +000010443 u32 size;
10444 pc = get2byteAligned(&data[cellStart+i*2]);
10445 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +000010446 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +000010447 }
drh2e38c322004-09-03 18:38:44 +000010448 }
drhcbc6b712015-07-02 16:17:30 +000010449 /* Add the freeblocks to the min-heap
10450 **
10451 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +000010452 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +000010453 ** freeblocks on the page.
10454 */
drh8c2bbb62009-07-10 02:52:20 +000010455 i = get2byte(&data[hdr+1]);
10456 while( i>0 ){
10457 int size, j;
drh5860a612019-02-12 16:58:26 +000010458 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010459 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +000010460 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +000010461 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +000010462 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10463 ** big-endian integer which is the offset in the b-tree page of the next
10464 ** freeblock in the chain, or zero if the freeblock is the last on the
10465 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +000010466 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +000010467 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10468 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +000010469 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10470 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010471 i = j;
drh2e38c322004-09-03 18:38:44 +000010472 }
drhcbc6b712015-07-02 16:17:30 +000010473 /* Analyze the min-heap looking for overlap between cells and/or
10474 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +000010475 **
10476 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10477 ** There is an implied first entry the covers the page header, the cell
10478 ** pointer index, and the gap between the cell pointer index and the start
10479 ** of cell content.
10480 **
10481 ** The loop below pulls entries from the min-heap in order and compares
10482 ** the start_address against the previous end_address. If there is an
10483 ** overlap, that means bytes are used multiple times. If there is a gap,
10484 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +000010485 */
10486 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +000010487 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +000010488 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +000010489 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +000010490 checkAppendMsg(pCheck,
drhabc38152020-07-22 13:38:04 +000010491 "Multiple uses for byte %u of page %u", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +000010492 break;
drh67731a92015-04-16 11:56:03 +000010493 }else{
drhcbc6b712015-07-02 16:17:30 +000010494 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +000010495 prev = x;
drh2e38c322004-09-03 18:38:44 +000010496 }
10497 }
drhcbc6b712015-07-02 16:17:30 +000010498 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +000010499 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10500 ** is stored in the fifth field of the b-tree page header.
10501 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10502 ** number of fragmented free bytes within the cell content area.
10503 */
drhcbc6b712015-07-02 16:17:30 +000010504 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +000010505 checkAppendMsg(pCheck,
drhabc38152020-07-22 13:38:04 +000010506 "Fragmentation of %d bytes reported as %d on page %u",
drhcbc6b712015-07-02 16:17:30 +000010507 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +000010508 }
10509 }
drh867db832014-09-26 02:41:05 +000010510
10511end_of_check:
drh72e191e2015-07-04 11:14:20 +000010512 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +000010513 releasePage(pPage);
drh867db832014-09-26 02:41:05 +000010514 pCheck->zPfx = saved_zPfx;
10515 pCheck->v1 = saved_v1;
10516 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +000010517 return depth+1;
drh5eddca62001-06-30 21:53:53 +000010518}
drhb7f91642004-10-31 02:22:47 +000010519#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010520
drhb7f91642004-10-31 02:22:47 +000010521#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010522/*
10523** This routine does a complete check of the given BTree file. aRoot[] is
10524** an array of pages numbers were each page number is the root page of
10525** a table. nRoot is the number of entries in aRoot.
10526**
danielk19773509a652009-07-06 18:56:13 +000010527** A read-only or read-write transaction must be opened before calling
10528** this function.
10529**
drhc890fec2008-08-01 20:10:08 +000010530** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010531** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010532** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010533** returned. If a memory allocation error occurs, NULL is returned.
drh17d2d592020-07-23 00:45:06 +000010534**
10535** If the first entry in aRoot[] is 0, that indicates that the list of
10536** root pages is incomplete. This is a "partial integrity-check". This
10537** happens when performing an integrity check on a single table. The
10538** zero is skipped, of course. But in addition, the freelist checks
10539** and the checks to make sure every page is referenced are also skipped,
10540** since obviously it is not possible to know which pages are covered by
10541** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10542** checks are still performed.
drh5eddca62001-06-30 21:53:53 +000010543*/
drh1dcdbc02007-01-27 02:24:54 +000010544char *sqlite3BtreeIntegrityCheck(
drh21f6daa2019-10-11 14:21:48 +000010545 sqlite3 *db, /* Database connection that is running the check */
drh1dcdbc02007-01-27 02:24:54 +000010546 Btree *p, /* The btree to be checked */
drhabc38152020-07-22 13:38:04 +000010547 Pgno *aRoot, /* An array of root pages numbers for individual trees */
drh1dcdbc02007-01-27 02:24:54 +000010548 int nRoot, /* Number of entries in aRoot[] */
10549 int mxErr, /* Stop reporting errors after this many */
10550 int *pnErr /* Write number of errors seen to this variable */
10551){
danielk197789d40042008-11-17 14:20:56 +000010552 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010553 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010554 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010555 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010556 char zErr[100];
drh17d2d592020-07-23 00:45:06 +000010557 int bPartial = 0; /* True if not checking all btrees */
10558 int bCkFreelist = 1; /* True to scan the freelist */
drh8deae5a2020-07-29 12:23:20 +000010559 VVA_ONLY( int nRef );
drh17d2d592020-07-23 00:45:06 +000010560 assert( nRoot>0 );
10561
10562 /* aRoot[0]==0 means this is a partial check */
10563 if( aRoot[0]==0 ){
10564 assert( nRoot>1 );
10565 bPartial = 1;
10566 if( aRoot[1]!=1 ) bCkFreelist = 0;
10567 }
drh5eddca62001-06-30 21:53:53 +000010568
drhd677b3d2007-08-20 22:48:41 +000010569 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010570 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010571 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10572 assert( nRef>=0 );
drh21f6daa2019-10-11 14:21:48 +000010573 sCheck.db = db;
drh5eddca62001-06-30 21:53:53 +000010574 sCheck.pBt = pBt;
10575 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010576 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010577 sCheck.mxErr = mxErr;
10578 sCheck.nErr = 0;
drh8ddf6352020-06-29 18:30:49 +000010579 sCheck.bOomFault = 0;
drh867db832014-09-26 02:41:05 +000010580 sCheck.zPfx = 0;
10581 sCheck.v1 = 0;
10582 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010583 sCheck.aPgRef = 0;
10584 sCheck.heap = 0;
10585 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010586 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010587 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010588 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010589 }
dan1235bb12012-04-03 17:43:28 +000010590
10591 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10592 if( !sCheck.aPgRef ){
drh8ddf6352020-06-29 18:30:49 +000010593 sCheck.bOomFault = 1;
drhe05b3f82015-07-01 17:53:49 +000010594 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010595 }
drhe05b3f82015-07-01 17:53:49 +000010596 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10597 if( sCheck.heap==0 ){
drh8ddf6352020-06-29 18:30:49 +000010598 sCheck.bOomFault = 1;
drhe05b3f82015-07-01 17:53:49 +000010599 goto integrity_ck_cleanup;
10600 }
10601
drh42cac6d2004-11-20 20:31:11 +000010602 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010603 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010604
10605 /* Check the integrity of the freelist
10606 */
drh17d2d592020-07-23 00:45:06 +000010607 if( bCkFreelist ){
10608 sCheck.zPfx = "Main freelist: ";
10609 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10610 get4byte(&pBt->pPage1->aData[36]));
10611 sCheck.zPfx = 0;
10612 }
drh5eddca62001-06-30 21:53:53 +000010613
10614 /* Check all the tables.
10615 */
drh040d77a2018-07-20 15:44:09 +000010616#ifndef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010617 if( !bPartial ){
10618 if( pBt->autoVacuum ){
drhed109c02020-07-23 09:14:25 +000010619 Pgno mx = 0;
10620 Pgno mxInHdr;
drh17d2d592020-07-23 00:45:06 +000010621 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10622 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10623 if( mx!=mxInHdr ){
10624 checkAppendMsg(&sCheck,
10625 "max rootpage (%d) disagrees with header (%d)",
10626 mx, mxInHdr
10627 );
10628 }
10629 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
drh040d77a2018-07-20 15:44:09 +000010630 checkAppendMsg(&sCheck,
drh17d2d592020-07-23 00:45:06 +000010631 "incremental_vacuum enabled with a max rootpage of zero"
drh040d77a2018-07-20 15:44:09 +000010632 );
10633 }
drh040d77a2018-07-20 15:44:09 +000010634 }
10635#endif
drhcbc6b712015-07-02 16:17:30 +000010636 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010637 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010638 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010639 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010640 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010641#ifndef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010642 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
drh867db832014-09-26 02:41:05 +000010643 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010644 }
10645#endif
drhcbc6b712015-07-02 16:17:30 +000010646 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000010647 }
drhcbc6b712015-07-02 16:17:30 +000010648 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000010649
10650 /* Make sure every page in the file is referenced
10651 */
drh17d2d592020-07-23 00:45:06 +000010652 if( !bPartial ){
10653 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000010654#ifdef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010655 if( getPageReferenced(&sCheck, i)==0 ){
10656 checkAppendMsg(&sCheck, "Page %d is never used", i);
10657 }
danielk1977afcdd022004-10-31 16:25:42 +000010658#else
drh17d2d592020-07-23 00:45:06 +000010659 /* If the database supports auto-vacuum, make sure no tables contain
10660 ** references to pointer-map pages.
10661 */
10662 if( getPageReferenced(&sCheck, i)==0 &&
10663 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10664 checkAppendMsg(&sCheck, "Page %d is never used", i);
10665 }
10666 if( getPageReferenced(&sCheck, i)!=0 &&
10667 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10668 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10669 }
danielk1977afcdd022004-10-31 16:25:42 +000010670#endif
drh47eb5612020-08-10 21:01:32 +000010671 }
drh5eddca62001-06-30 21:53:53 +000010672 }
10673
drh5eddca62001-06-30 21:53:53 +000010674 /* Clean up and report errors.
10675 */
drhe05b3f82015-07-01 17:53:49 +000010676integrity_ck_cleanup:
10677 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000010678 sqlite3_free(sCheck.aPgRef);
drh8ddf6352020-06-29 18:30:49 +000010679 if( sCheck.bOomFault ){
drh0cdbe1a2018-05-09 13:46:26 +000010680 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010681 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000010682 }
drh1dcdbc02007-01-27 02:24:54 +000010683 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000010684 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010685 /* Make sure this analysis did not leave any unref() pages. */
10686 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10687 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000010688 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000010689}
drhb7f91642004-10-31 02:22:47 +000010690#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000010691
drh73509ee2003-04-06 20:44:45 +000010692/*
drhd4e0bb02012-05-27 01:19:04 +000010693** Return the full pathname of the underlying database file. Return
10694** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000010695**
10696** The pager filename is invariant as long as the pager is
10697** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000010698*/
danielk1977aef0bf62005-12-30 16:28:01 +000010699const char *sqlite3BtreeGetFilename(Btree *p){
10700 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000010701 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000010702}
10703
10704/*
danielk19775865e3d2004-06-14 06:03:57 +000010705** Return the pathname of the journal file for this database. The return
10706** value of this routine is the same regardless of whether the journal file
10707** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000010708**
10709** The pager journal filename is invariant as long as the pager is
10710** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000010711*/
danielk1977aef0bf62005-12-30 16:28:01 +000010712const char *sqlite3BtreeGetJournalname(Btree *p){
10713 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000010714 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000010715}
10716
danielk19771d850a72004-05-31 08:26:49 +000010717/*
drh99744fa2020-08-25 19:09:07 +000010718** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10719** to describe the current transaction state of Btree p.
danielk19771d850a72004-05-31 08:26:49 +000010720*/
drh99744fa2020-08-25 19:09:07 +000010721int sqlite3BtreeTxnState(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000010722 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
drh99744fa2020-08-25 19:09:07 +000010723 return p ? p->inTrans : 0;
danielk19771d850a72004-05-31 08:26:49 +000010724}
10725
dana550f2d2010-08-02 10:47:05 +000010726#ifndef SQLITE_OMIT_WAL
10727/*
10728** Run a checkpoint on the Btree passed as the first argument.
10729**
10730** Return SQLITE_LOCKED if this or any other connection has an open
10731** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000010732**
dancdc1f042010-11-18 12:11:05 +000010733** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000010734*/
dancdc1f042010-11-18 12:11:05 +000010735int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000010736 int rc = SQLITE_OK;
10737 if( p ){
10738 BtShared *pBt = p->pBt;
10739 sqlite3BtreeEnter(p);
10740 if( pBt->inTransaction!=TRANS_NONE ){
10741 rc = SQLITE_LOCKED;
10742 }else{
dan7fb89902016-08-12 16:21:15 +000010743 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000010744 }
10745 sqlite3BtreeLeave(p);
10746 }
10747 return rc;
10748}
10749#endif
10750
danielk19771d850a72004-05-31 08:26:49 +000010751/*
drh99744fa2020-08-25 19:09:07 +000010752** Return true if there is currently a backup running on Btree p.
danielk19772372c2b2006-06-27 16:34:56 +000010753*/
danielk197704103022009-02-03 16:51:24 +000010754int sqlite3BtreeIsInBackup(Btree *p){
10755 assert( p );
10756 assert( sqlite3_mutex_held(p->db->mutex) );
10757 return p->nBackup!=0;
10758}
10759
danielk19772372c2b2006-06-27 16:34:56 +000010760/*
danielk1977da184232006-01-05 11:34:32 +000010761** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010762** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010763** purposes (for example, to store a high-level schema associated with
10764** the shared-btree). The btree layer manages reference counting issues.
10765**
10766** The first time this is called on a shared-btree, nBytes bytes of memory
10767** are allocated, zeroed, and returned to the caller. For each subsequent
10768** call the nBytes parameter is ignored and a pointer to the same blob
10769** of memory returned.
10770**
danielk1977171bfed2008-06-23 09:50:50 +000010771** If the nBytes parameter is 0 and the blob of memory has not yet been
10772** allocated, a null pointer is returned. If the blob has already been
10773** allocated, it is returned as normal.
10774**
danielk1977da184232006-01-05 11:34:32 +000010775** Just before the shared-btree is closed, the function passed as the
10776** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010777** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010778** on the memory, the btree layer does that.
10779*/
10780void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10781 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010782 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010783 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010784 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010785 pBt->xFreeSchema = xFree;
10786 }
drh27641702007-08-22 02:56:42 +000010787 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010788 return pBt->pSchema;
10789}
10790
danielk1977c87d34d2006-01-06 13:00:28 +000010791/*
danielk1977404ca072009-03-16 13:19:36 +000010792** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10793** btree as the argument handle holds an exclusive lock on the
drh1e32bed2020-06-19 13:33:53 +000010794** sqlite_schema table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010795*/
10796int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010797 int rc;
drhe5fe6902007-12-07 18:55:28 +000010798 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010799 sqlite3BtreeEnter(p);
drh346a70c2020-06-15 20:27:35 +000010800 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
danielk1977404ca072009-03-16 13:19:36 +000010801 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010802 sqlite3BtreeLeave(p);
10803 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010804}
10805
drha154dcd2006-03-22 22:10:07 +000010806
10807#ifndef SQLITE_OMIT_SHARED_CACHE
10808/*
10809** Obtain a lock on the table whose root page is iTab. The
10810** lock is a write lock if isWritelock is true or a read lock
10811** if it is false.
10812*/
danielk1977c00da102006-01-07 13:21:04 +000010813int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010814 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010815 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010816 if( p->sharable ){
10817 u8 lockType = READ_LOCK + isWriteLock;
10818 assert( READ_LOCK+1==WRITE_LOCK );
10819 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010820
drh6a9ad3d2008-04-02 16:29:30 +000010821 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010822 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010823 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010824 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010825 }
10826 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010827 }
10828 return rc;
10829}
drha154dcd2006-03-22 22:10:07 +000010830#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010831
danielk1977b4e9af92007-05-01 17:49:49 +000010832#ifndef SQLITE_OMIT_INCRBLOB
10833/*
10834** Argument pCsr must be a cursor opened for writing on an
10835** INTKEY table currently pointing at a valid table entry.
10836** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010837**
10838** Only the data content may only be modified, it is not possible to
10839** change the length of the data stored. If this function is called with
10840** parameters that attempt to write past the end of the existing data,
10841** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010842*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010843int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010844 int rc;
dan7a2347e2016-01-07 16:43:54 +000010845 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010846 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010847 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010848
danielk1977c9000e62009-07-08 13:55:28 +000010849 rc = restoreCursorPosition(pCsr);
10850 if( rc!=SQLITE_OK ){
10851 return rc;
10852 }
danielk19773588ceb2008-06-10 17:30:26 +000010853 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10854 if( pCsr->eState!=CURSOR_VALID ){
10855 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010856 }
10857
dan227a1c42013-04-03 11:17:39 +000010858 /* Save the positions of all other cursors open on this table. This is
10859 ** required in case any of them are holding references to an xFetch
10860 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010861 **
drh3f387402014-09-24 01:23:00 +000010862 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010863 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10864 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010865 */
drh370c9f42013-04-03 20:04:04 +000010866 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10867 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010868
danielk1977c9000e62009-07-08 13:55:28 +000010869 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010870 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010871 ** (b) there is a read/write transaction open,
10872 ** (c) the connection holds a write-lock on the table (if required),
10873 ** (d) there are no conflicting read-locks, and
10874 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010875 */
drh036dbec2014-03-11 23:40:44 +000010876 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010877 return SQLITE_READONLY;
10878 }
drhc9166342012-01-05 23:32:06 +000010879 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10880 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010881 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10882 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010883 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010884
drhfb192682009-07-11 18:26:28 +000010885 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010886}
danielk19772dec9702007-05-02 16:48:37 +000010887
10888/*
dan5a500af2014-03-11 20:33:04 +000010889** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010890*/
dan5a500af2014-03-11 20:33:04 +000010891void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010892 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010893 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010894}
danielk1977b4e9af92007-05-01 17:49:49 +000010895#endif
dane04dc882010-04-20 18:53:15 +000010896
10897/*
10898** Set both the "read version" (single byte at byte offset 18) and
10899** "write version" (single byte at byte offset 19) fields in the database
10900** header to iVersion.
10901*/
10902int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10903 BtShared *pBt = pBtree->pBt;
10904 int rc; /* Return code */
10905
dane04dc882010-04-20 18:53:15 +000010906 assert( iVersion==1 || iVersion==2 );
10907
danb9780022010-04-21 18:37:57 +000010908 /* If setting the version fields to 1, do not automatically open the
10909 ** WAL connection, even if the version fields are currently set to 2.
10910 */
drhc9166342012-01-05 23:32:06 +000010911 pBt->btsFlags &= ~BTS_NO_WAL;
10912 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010913
drhbb2d9b12018-06-06 16:28:40 +000010914 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000010915 if( rc==SQLITE_OK ){
10916 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010917 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000010918 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000010919 if( rc==SQLITE_OK ){
10920 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10921 if( rc==SQLITE_OK ){
10922 aData[18] = (u8)iVersion;
10923 aData[19] = (u8)iVersion;
10924 }
10925 }
10926 }
dane04dc882010-04-20 18:53:15 +000010927 }
10928
drhc9166342012-01-05 23:32:06 +000010929 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010930 return rc;
10931}
dan428c2182012-08-06 18:50:11 +000010932
drhe0997b32015-03-20 14:57:50 +000010933/*
10934** Return true if the cursor has a hint specified. This routine is
10935** only used from within assert() statements
10936*/
10937int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10938 return (pCsr->hints & mask)!=0;
10939}
drhe0997b32015-03-20 14:57:50 +000010940
drh781597f2014-05-21 08:21:07 +000010941/*
10942** Return true if the given Btree is read-only.
10943*/
10944int sqlite3BtreeIsReadonly(Btree *p){
10945 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10946}
drhdef68892014-11-04 12:11:23 +000010947
10948/*
10949** Return the size of the header added to each page by this module.
10950*/
drh37c057b2014-12-30 00:57:29 +000010951int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010952
drh5a1fb182016-01-08 19:34:39 +000010953#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010954/*
10955** Return true if the Btree passed as the only argument is sharable.
10956*/
10957int sqlite3BtreeSharable(Btree *p){
10958 return p->sharable;
10959}
dan272989b2016-07-06 10:12:02 +000010960
10961/*
10962** Return the number of connections to the BtShared object accessed by
10963** the Btree handle passed as the only argument. For private caches
10964** this is always 1. For shared caches it may be 1 or greater.
10965*/
10966int sqlite3BtreeConnectionCount(Btree *p){
10967 testcase( p->sharable );
10968 return p->pBt->nRef;
10969}
drh5a1fb182016-01-08 19:34:39 +000010970#endif